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A Deep Learning-based Solution for Securing the
Power Grid against Load Altering Threats by

IoT-enabled Devices
Hamidreza Jahangir, Subhash Lakshminarayana, Carsten Maple, and Gregory Epiphaniou

Abstract—The growing integration of high-wattage Internet-
of-Things (IoT)-enabled electrical appliances at the consumer
end has created a new attack surface that an adversary can
exploit to disrupt power grid operations. Specifically, dynamic
load-altering attacks (D-LAAs), accomplished by an abrupt or
strategic manipulation of a large number of consumer appliances
in a botnet-type attack, have been recognized as major threats
that can potentially destabilize power grid control loops. This
paper introduces a novel approach based a multi-output network
(two-dimensional convolutional neural networks classifier and
reconstruction decoder) — called “2DR-CNN”— to detect and
localize D-LAAs with high resolution. To achieve this, we leverage
the frequency and phase angle data of the generator buses
monitored by phasor measurement units (PMUs) installed in
the power grid. To verify the effectiveness of the proposed
method, simulations are conducted on IEEE 14- and 39-bus
systems. The performance of the 2DR-CNN method is compared
against several benchmark machine learning-based approaches.
The results confirm that the proposed method outperforms
other techniques in detection and localizing D-LAAs with high
resolution in a number of practical scenarios, including PMU
measurement noises and missing measurements.

Index Terms—cyber physical systems, dynamic load altering
attack, Internet of Things, cyber security, deep learning.

I. INTRODUCTION

THE proliferation of Internet-of-Things (IoT) enabled
high-wattage electrical appliances (e.g., air conditioners,

plug-in-electric vehicles) has created a new attack surface to
target power grids. Although IoT intends to increase operating
efficiency and provide convenience to end-users, they are an
effective entry point for adversaries to intrude into the power
grid and thus creates cyber security risks [1]. In particular, the
adversary can disrupt power grid operation by manipulating
the electrical demand via a large-scale Botnet-type attack
against IoT-based electrical appliances [2]. Thus, it is of
critical importance to devise defense strategies that can secure
the power grid against these so-called load-altering attacks
(LAAs).
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The stability of the power grid is determined, in large part,
by the balance between generation and demand. When an
adversary abruptly changes a large amount of demand by
manipulating high-wattage IoT-enabled devices, it can upset
this balance. Existing works on this topic can be broadly
divided into (i) attack impact analysis, and (ii) attack detection
and localization.

Attack Impact Analysis: Prior research has shown that
LAAs can lead to severe consequences such as causing unsafe
frequency excursions, and/or line outages [2]. Power grid
emergency actions, such as, under-frequency load shedding,
can limit the damage to some extent. However, LAAs can
still cause a partition of the bulk power system and con-
trolled load shedding [3]. The so-called dynamic LAAs (D-
LAAs), in which the attacker manipulates the system load
by monitoring the grid’s frequency dynamics, can potentially
destabilize the power grid’s frequency control loop [4]. An
analytical framework to analyze static and D-LAAs using
the theory of second-order dynamical systems was proposed
in [5] to identify the victim nodes from which an attacker
can launch the most impactful attacks. Recent works [6], [7]
have also investigated how different loading and renewable
energy penetration conditions impact the grid’s vulnerability
to D-LAAs. In particular, low-inertia conditions due to high
renewable energy penetration can exacerbate this problem [7].

Detection and localization: The focus of this work is on
developing a fast and robust tool to detect and localize D-
LAAs with high precision, which is an essential step toward
limiting the damage due to D-LAAs. To this end, exist-
ing works have proposed utilizing the phase angle/frequency
dynamics monitored by phasor measurement units (PMUs)
[8]–[10]. Similar approaches using PMU measurement data
are also adopted in the broader context of detecting cyber-
physical attacks against wide-area monitoring systems [11],
[12], localizing the source of faults/oscillations [13]–[15] and
disturbance type classification [16]. These approaches can be
broadly divided into methods that explicitly use the underlying
power system model in their formulation [8], [10], [14] and
purely data-driven methods [13], [15], [16].

Approaches that use the power grid model in their formula-
tion are specific to a linear model and cannot be extended to a
non-linear model in a straightforward manner [8], [11], [14].
Moreover, due to the computational complexity associated
with the algorithms, the localization can be only performed up
to the zone of operation, but not identify the exact bus from
which the attack/fault originates [8], [12], [14]. Alternatively,



2

an unscented Kalman filter approach was proposed in [9].
However, this method does not scale well as the number
of attack nodes increase. Reference [10] proposed a D-LAA
localization method using physics-informed machine learn-
ing approaches, which can be applied to non-linear models.
While the proposed algorithms achieve good performance in
specific scenarios, the implementation difficulties associated
with combining the power grid’s operation constraints with
machine learning techniques’ training loss limit the application
of these algorithms (e.g., the physics-informed neural network
algorithm does not perform well in systems that exhibit slow
oscillatory dynamics).

Regarding the application of pure data-driven methods,
the authors of reference [17] have developed a data-driven
hierarchical monitoring framework that can detect and local-
ize cyber threats in distribution power systems with sparse
monitoring sensors. This study is shown to provide accurate
localization at the distribution system level by monitoring the
voltage and current of the selected buses using waveform
measurement devices. However, at the power grid transmission
level, the frequency and phase angle profiles are the two most
essential factors in stability studies [18]. The authors of [13]
proposed a data-driven strategy to detect and localize forced
oscillations using robust principal component analysis. This
technique produces sufficient outcomes, but is contingent on
the operators’ selection of internal parameters. This constrains
the approach’s applicability in online applications such as
localizing D-LAAs in which the operator cannot have prior
knowledge of the actual parameters used by the attacker.

Finally, one-dimensional convolution neural networks (1D-
CNNs) have been used in the context of fault localiza-
tion/classification [15], [16]. However, as we show in this
work, a multi-output network based on two-dimensional con-
volutional neural networks classifier and reconstruction de-
coder — here after called “2DR-CNN” — achieves superior
feature extraction and classification performance, especially in
the proposed context in which we have two different physical
signals (i.e., phase angle and frequency data) for localizing the
attack. In addition, the 2DR-CNN is resistant to PMU noise
and data quality concerns such as missing/outlier data points
because of the parallel integration of reconstruction decoder
and the classification process.

To summarize, we note that in the specific case of LAAs,
we require a high-resolution attack localization method that
can be generalized to linear/non-linear grid models, and that
is robust to PMU noise/data quality issues.

To address the aforementioned shortcomings, this paper
proposes a deep learning-based solution named as 2DR-CNN.
CNN is a robust tool for high-quality feature extraction in
high-dimensional cases (e.g., image processing [19]). In the
context of this work, we have two features in this study: phase
angle and frequency of the generator buses. By implementing
2D kernels, we simultaneously consider both these signals
in the feature extraction task. This 2D feature extraction
helps us engage the interaction between the phase angle and
frequency of the generator buses, which are interdependent
parameters in power grid swing equations [20]. To implement
a 2D kernel (moving in two directions), the input data set

is transformed into an image structure, i.e., two-dimensional
data with channels. (Further details are provided in Section
III-A.) Furthermore, we only utilize the PMU measurements
from the generator buses to infer the attack parameters. This is
particularly relevant in our scenario, since the measurements
corresponding to the load buses cannot be trusted, e.g., a
sophisticated attacker may launch a coordinated false data
injection attack on the load-bus measurements to hide their at-
tack. Thus, the proposed method is intrinsically secure against
such attacks. In addition to the above mentioned details, being
a purely data-driven method, the proposed approach is not
restricted to the linear system model and can be generalized
to non-linear models. The main contributions of this paper can
be summarized as follows:

• Designing a data-driven framework that relies solely on
generator bus profiles (phase angle and frequency) to
precisely detect and locate D-LAAs with high resolution
– If we install PMUs on load buses, they may be
vulnerable to fault data injection attacks, which will also
raise the cost of monitoring.

• Assessing a narrow observation window —- just 2 sec-
onds of the explored profiles to be in accordance with the
power grid relays’ response time under IEEE Standard
1547 [21] – to detect and localize the D-LAAs with the
help of implementing a 2D feature extraction environment
(2DR-CNN) that concurrently reads both the phase angle
and the frequency of generator buses in the feature
extraction task.

• Securing the proposed method in real-world scenarios
involving noisy PMU data as well as missing and outlier
points by considering robust feature extraction layers
— designing a reconstruction decoder network equipped
with sparsity regularization parallel with the classification
layer that prevents the loss of spatiotemporal features in
backward gradient descent via a bypass way.

In summary, this study presents a novel data-driven solution
using a two-dimensional CNN structure that is capable of
detecting and localizing LAAs by analyzing only two seconds
of the power grid dynamic profiles, including the frequency
and phase angle of the generator buses. In addition, the pro-
posed method is provided with a reconstruction network that
enables it to deliver robust performance in noisy environments
and in the presence of real-world obstacles like missing and
outlier points in the observed profiles. Finally, we note that
this study introduces a novel security solution for the power
grids based on monitoring the physical parameters of the
power grid, such as, frequency and phase angles of the power
grid dynamics, and adds as an additional layer of security (in
addition to the cryptographic security and those that monitor
the network traffic data), which enhances the power grid’s
protection against malicious behavior such as LAAs.

The focus of this work is on monitoring the power grid from
the perspective of a transmission system operator (TSO). In
particular, we focus on transmission network oscillations, with
the goal of localising the “substation(s)” from which the LAAs
originate. We assume the power grid that the TSO has an
accurate knowledge of the grid topology, which is a reasonable
assumption for transmission networks and the deployed PMUs
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can monitor the dynamics of the power grid in real-time [22].
The remaining parts of this paper are organized as follows:

a short description of the LAAs problem is provided in section
II. Section III introduces our solution to address the detection
and localization of the D-LAAs with 2DR-CNN. In section IV,
the simulation framework and results are presented. Finally,
Section V concludes the findings of this study.

II. PROBLEM STATEMENT

A. Power Grid Model Under LAAs

We consider a generic power grid consisting of N buses
connected by M transmission lines. We denote the set of
buses by N , which can be divided as N = NG ∪NL, where
NG and NL denote the set of generator and load buses
respectively. Let NG = |NG| and NL = |NL|. The power
grid dynamics under LAAs are given by the following set of
differential equations [4]:

I 0 0
0 −M 0
0 0 0

 δ̇
ω̇

θ̇

 =

 0
0

pLS + ϵL

+

 0 I 0
KI +BGG KP +DG BGL

BLG −KL BLL

δ
ω
θ

 , (1)

where δ ∈ RNG and θ ∈ RNL are the phase angle of the gen-
erator and the load buses respectively, and ω ∈ RNG are the
generator bus frequencies. The matrices M,DG,KI ,KP ∈
RNG×NG are diagonal matrices whose diagonal entries are
the generator inertia, damping, proportional, and integral co-
efficients, respectively. Matrices BGG ∈ RNG×NG ,BLL ∈
RNL×NL ,BGL ∈ RNG×NL are sub-matrices of the admit-

tance matrix, derived as Bbus =

[
BGG BGL

BLG BLL

]
. The vectors

pLS , ϵL ∈ RNL along with the matrix KL model the system
load under LAAs (more details are presented in the following).

B. Description of LAAs

We assume that the total system load consists of two
components, i.e., pL = pLS + pLV , where pLS is the
secure part of the system load (i.e., it includes non-smart
and/or protected loads) and pLV is the vulnerable portion
of the load. Under LAAs, the net load of the system is given by

pL = pLS + ϵL −KLω, (2)

where ϵL ∈ RL is the static LAA component and −KLω
is the dynamic LAA (D-LAAs). The static LAA is a one-
time load perturbation introduced by the attacker. On the other
hand, the D-LAA is a time-varying load perturbation that
follows the frequency fluctuations of the system. Note that
to execute a D-LAA the attacker is required to monitor the
frequency fluctuations of the system (i.e., ω), and adjust their
load perturbations accordingly [4]. KL ∈ RNL×RNG denotes
a matrix consisting of attack controller gain values (feedback
coefficients multiplying the observed frequencies ω) which
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Fig. 1: Frequency and phase angle profiles of Generator buses
in IEEE 39-bus system following the initiation of a D-LAA
with KL(19, 4) = 24.02 pu and ϵ19 = 0.8 pu.

has the effect of increasing the frequency deviations from the
setpoint. Note that the total load altered by the attacker is
bounded by pLV as follows [4]:

KLω ≤ (PLV − ϵL)/2. (3)

To illustrate the effect that D-LAAs have on the power grid
operations, Fig.1 depicts the oscillation of the generator buses
following the initiation of a D-LAA in the IEEE 39-bus system
(attack parameters specified in the figure description). It can be
observed that the frequency oscillations grow in an unbounded
manner, eventually leading to system instability.

C. Power Grid Monitoring and Attack Localization Problem

We assume that the system operator has installed
PMUs at generator buses, enabling them to monitor the
phase angles {δ(τ)i }i∈NG,τ=1,...,T and frequency fluctuations
{δ̇(τ)i }i∈NG,τ=1,...,T over time (i.e., a sampled version of the
signals shown in Fig.1). Herein, x(τ) is the value of the signal
x at time slot τ, the slots being sampled at a time interval
of Ts, and T being the total number of time slots. IEEE/IEC
standards specify that the sampling frequency of the PMU for
a 50 Hz system can be between 10 and 100 frames per second.
That is, Ts is between 10− 100 ms [23].

The objective of this work is to detect and localize the
LAAs by monitoring the signals {δ(τ)i }i∈NG,τ=1,...,T and
{ω(τ)

i }i∈NG,τ=1,...,T . In particular, we aim to detect the lo-
cations corresponding to non-zero values of the elements of ϵ
and KL for destabilizing attacks (see Section III-B for more
details).

III. DESIGN OF ATTACK DETECTION AND LOCALIZATION
FRAMEWORK

This section discusses the proposed D-LAA detection and
localization approach in detail. The proposed deep learning-
based method comprises two phases – (i) offline training phase
and (ii) online inference phase. In the offline training phase, we
provide the CNN with extensive data samples under various
normal operation/attack scenarios to train the classifier. In the
online phase, the trained classifier is deployed at a power grid
control center takes PMU signals as inputs and performs attack
detection/localization.
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A. Motivation for Using 2D Feature Extraction

As noted in Section I, power grid monitoring using PMUs
provides the operator with two signals to exploit – the
frequency and the phase angle of the generator buses. As
we note in Fig.1, the frequency/phase angle dynamics under
D-LAAs can rapidly grow in magnitude, leading to unsafe
frequency excursions within a short time interval. Thus, attack
detection/localization must be timely. This, in turn, requires
precise feature extraction to accurately and quickly attribute
the observed oscillations to the correct victim buses that
are under the attacker’s control. Thus, we reshape the input
data into a 2D structure to concurrently integrate these two
parameters in the feature extraction task. Our kernel travels
in two directions as a result of this method, enabling us to
effectively interpret the input data.

B. Data Generation to Train the Supervised Classifier

The training data for the 2DR-CNN corresponds to a
sampled version of the frequency/phase angle data as shown
in Fig.1. Online monitoring of generator buses using PMUs
has been proven as an efficient way for assessing the transient
stability of the power grid in studies on power system stability
[18]. Accordingly, the data to train the machine learning (ML)
models are arranged in matrices of size NG×T × 2 (recall T
corresponds to the number of time samples considered in the
training data). For instance, considering a two-second obser-
vation window in Fig.1 with a PMU sampling frequency of 50
samples per second would result in T = 100. The two layers
in the training data (corresponding to the third dimension) are
the phase angle and frequency data, respectively.

Fig. 2: Central monitoring of IEEE 39-bus system.

To train a supervised classifier for detecting and localizing
D-LAAs, we must ensure that our training dataset completely
covers all potential victim buses and attack magnitudes. To this
end, we inject a variety of D-LAAs from diverse load buses
and attack controller gains to generate the training datset. The
samples that include LAAs are labelled with the location of the
bus from which the attacker’s inputs have been injected. We
consider a number of different attacks, including single-point
and multi-point attacks (i.e., simultaneous attacks at multiple
nodes) to cover the different types of attacks that are likely
to occur. Let Ntr denote the total number of distinct attacks
generated in this process. Thus, the training data consists of
Ntr matrices of size NG × T × 2.

Differentiating D-LAAs from Normal System Operation:
D-LAAs will have an effect on the stability of the power
grid. In other words, for destabilizing D-LAAs, at least one of
the eigenvalue defined in the state-space representation of the
power grid will lie on the right-half plane [24]. Additionally,
the attacker can also transfer the eigenvalues to a “zone of
vulnerability”, from which intrinsic disturbances associated
with power grid operations can result in grid instability. We
refer to such attacks as semi-destabilizing attacks, which we
formalize in the following. First, we define the power grid
eigenvalues in terms of damping ratio ζ and natural oscillation
frequency ωn: a = −ζωn, b = ωn

√
1− ζ2 [25]. According to

the North American Electric Reliability Corporation, the vul-
nerable plane is defined as: ζ ≤ 3%, 2.5 ≤ ωn ≤ 12.6rad/s
[26]. Thus, any attacks that transfer the eigenvalues into this
region can be defined as semi-destabilizing attacks. To illus-
trate the notion, Fig.3 illustrates the eigenvalue configuration
for a semi-unstable D-LAA with D-LAA (KL(24, 4) = 55.62
pu), in which two eigenvalues are moved near to the right-half
plane. To differentiate D-LAAs from normal power grid fluc-
tuations, we examine the real part of the system’s eigenvalues.
If at least one of the eigenvalues lies in the right-half plane,
or in the zone of vulnerability, then the corresponding data
in the training set is labelled as “attack” data. Otherwise, the
system is deemed to be under normal operation (or a benign
attack that is unlikely to destabilize the system).

In order to provide a clear overview of the generated
profiles, a concise description of the overall data generation
procedure for this study is provided below1 (in accordance
with the framework presented in reference [27]):

• Step 1: Obtaining power grid topological data from the
MATPOWER simulator and power grid dynamic param-
eters from Appendix section for the understudied IEEE
case to initialize the general structure of the Equation (1).

• Step 2: Getting a random value for the attack controller
gain matrix KL ∈ RNL × RNG while considering the
constraints in Equation (3).

• Step 3: Checking the eigenvalues of the power grid ac-
cording to the detailed formulation presented in reference
[5].

• Step 4: Evaluating the impact of the launched attack: (i)
attack: if an eigenvalue is in the unstable plane (a =
−ζωn > 0) or semi-unstable plane ζ ≤ 3%, 2.5 ≤ ωn ≤
12.6rad/s. (ii) normal fluctuation: if neither the semi-
unstable nor the unstable plane contain any eigenvalues.

• Step 5: Storing the frequency and phase angle profiles
of the generator buses for two seconds (100 samples, 50
samples per second) in both attack and normal fluctuation
scenarios.

• Step 6: Storing the location of the launched attack ac-
cording to the KL ∈ RNL × RNG values for the attack
profiles – location is determined based on the position of
the load bus in the attack controller gain matrix (RNL ).

• Step 7: Repeating the mentioned steps to cover a variety
of possible scenarios (we considered 3000 samples for

1The generated data set for the numerical results of this study are available
at https://github.com/omiddeeplearning/IEEE-IoTJ-LAAs.git.
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Fig. 3: Eigenvalues of IEEE 39-bus system for KL(24, 4) =
55.62 pu.

each of the under-studied IEEE cases, which present
accurate results in our tests).

C. Designing 2DR-CNN for Detection and localization of D-
LAAs

The overall structure of the proposed method is outlined
in Algorithm 1. Following the algorithm description, we
note that the proposed method consists of two classification
networks: the first one detects attacks, while the second one
localizes the primary source of attack with high resolution (that
is, identifies the bus from which the attack was launched).
As discussed in Sections III-A and III-B, our detection and
localization tasks require high-dimensional input data. To deal
with this vast volume of data, we utilize a 2DR-CNN, a
deep network tailored for both noise-free and noisy data
environments. Since CNNs are designed primarily for image
processing applications, we view the input data as an image
with dimensions NG × T × 2, which is effectively a picture
with dimensions NG × T and 2 channels. To facilitate the
handling of our input data with the CNN structure, the initial
convolution layer of the 2DR-CNN network converts the input
data into a square image. To accomplish this goal, we use 512
filters with 1×T/NG size by 1×T/NG stride value to convert
our original rectangular image of dimensions NG×T×2 into a
square image of dimensions NG ×NG × 512. Following this,
different layers are applied to the input data during feature
extraction in both the detection and localization networks. The
detailed architecture of the 2DR-CNN developed to detect
and localize tasks in the IEEE 14- and 39-bus systems are
shown in Table I. As illustrated, the dimension of the output
layer for the detection and localization networks is set to
2 (binary classification: attack/non-attack) and |NL| (multi-
classification: location of the attacked bus, where, for the
IEEE 14-bus case |NL| = 9 and for the IEEE 39-bus
case |NL| = 29), respectively. As outlined in Table I, the
reconstruction network is introduced immediately after the
flattening layer, which is comprised of three dense layers.
In order to prevent overfitting concerns in the reconstruction
network, the first dense layer — the downsampling layer —
is equipped with a sparsity regularization constraint (10−5).
In this configuration, we have a network with two outputs:
detection/localization and reconstruction. The loss function is
therefore defined as follows:

Loss = LossDet/Loc + λ LossRec (4)

where λ is defined as 0.0005. Adding the reconstruction
network is primarily intended to prevent the loss of spatiotem-
poral features due to pooling layers (before the flattening

layer, shown in Fig. 4) during feedforward flow of data. The
reconstruction network parallel to the classification network
is used to recover the removed features from the original
input data during backward flow of data (gradient descent).
In this structure, it is important to consider the low coefficient
for reconstruction loss in order to ensure the stability of the
overall structure (avoiding convergence issues and misleading
gradients due to two sources of errors – classification and
reconstruction networks). The reconstruction network is only
responsible for fine-tuning the training task by providing a by-
pass channel to recover the eliminated features by the polling
layers during the training procedure of the main network’s
parameters (WConv), as shown below:

∂Loss

∂WConv
=

∂Loss

∂LossDet/Loc
×

∂LossDet/Loc

∂WConv
+

λ
∂Loss

∂LossRec
× ∂LossRec

∂WConv
(5)

To provide a better visual representation of the designed 2DR-
CNN network, Fig. 4 illustrates the structure of the developed
networks (detection/localization classifiers and reconstruction
network) for the IEEE 39-bus system. The overall structure
of the proposed networks (i.e., number of CNN and pooling
layers, size of filters (kernels), stride values, etc.) is specifically
designed to deliver robust and stable feature extraction proce-
dures based on the size of the input data (monitoring profiles
from PMU units) and target classes (number of load buses
that might be used for LAA launch) of the understudied cases.
For instance, the IEEE 39-bus system, which has more load
buses (candidate targets for our localization work) than the
IEEE 14-bus system, includes more hidden layers and larger
stride values in the initial layers due to their larger input data
size. According to the numerical tests, the structures proposed
had the most efficient performance compared to other possible
structures.

Algorithm 1 Detection and localization Algorithm.

Input: Phase angle data {δ(τ)i }i∈NG,τ=1,...,T and frequency
data {ω(τ)

i }i∈NG,τ=1,...,T , where, for the IEEE 14-bus system,
NG = {1, 2, 3, 6, 8}, |NG| = 5 for IEEE 39-bus case,
NG = {30, . . . , 39}, |NG| = 10.
Output: Detect the D-LAAs and localize the attacked bus ( i ∈ NL),
where, for IEEE 14-bus case |NL| = 9 and for IEEE 39-bus case
|NL| = 29.

1: Monitor phase angle {δ(τ)i }i∈NG,τ=1,...,T and frequency
{ω(τ)

i }i∈NG,τ=1,...,T data.
2: Discriminate between the regular fluctuations of the power grid and D-

LAAs using the first binary classifier.
3: Output of first classifier: D-LAAs attacks or regular fluctuations.
4: if first classifier detects D-LAAs attacks then
5: Localize the victim buses using the second multi-class classifier.
6: Output of second classifier: location of the attacked bus ( i ∈ NL)
7: else
8: first classifier confirms regular fluctuations and goes to monitor the

next time step
9: end if
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TABLE I: Detailed structure of 2DR-CNN for IEEE 14- and 39-bus systems.

Operation Layer Number of Filters Size of Each Filter Stride Value Output Data
Detection/Localization

Output Data
Reconstruction

Output Data
Detection/Localization

Output Data
Reconstruction

IEEE 14-bus IEEE 39-bus IEEE 14-bus IEEE 39-bus IEEE 14-bus IEEE 39-bus IEEE 14-bus IEEE 39-bus
Input Data – – – – – – 5× 100× 2 10× 100× 2

Convolution Layer Convolution 512 512 1× 20 1× 10 1× 20 1× 10 5× 5× 512 10× 100× 512
ReLU – – – – – – 5× 5× 512 10× 10× 512

Pooling Layer Max pooling 1 1 2× 2 2× 2 1× 1 2× 2 4× 4× 512 5× 5× 512
Dropout Layer Dropout (0.5) 1 1 – – – – 4× 4× 512 5× 5× 512

Convolutional Layer Convolutional 256 256 2× 2 2× 2 1× 1 1× 1 3× 3× 256 4× 4× 256
ReLU – – – – – – 3× 3× 256 4× 4× 256

Pooling Layer Max pooling 1 1 2× 2 2× 2 1× 1 2× 2 2× 2× 256 2× 2× 256
Dropout Layer Dropout (0.5) 1 1 – – – – 2× 2× 256 2× 2× 256
Flatten Layer Flat 1 1 – – – – 1024 1024

Dense Layer Fully connected 128 128 – – – – 128 256 128 512
ReLU – – – – – – 128 256 128 512

Dense Layer Fully connected 1 1 – – – – 2(detection)/9(localization) 512 2(detection)/29(localization) 1024
Softmax/ReLU – – – – – – 2(detection)/9(localization) 512 2(detection)/29(localization) 1024

Dense Layer Fully connected 1 1 – – – – – 1000 – 2000
Reshape – – – – – – – 5× 100× 2 – 10× 100× 2
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Fig. 4: Overall structure of 2DR-CNN for IEEE 39-bus system.

IV. SIMULATIONS

A. Simulation Settings

Two test cases are included to verify the effectiveness of
the proposed method, including IEEE 14- and 39-bus systems.
The MATPOWER simulator contains the topological data for
the IEEE cases. The Appendix includes further information
on the dynamic simulation parameters. To evaluate the sug-
gested method’s efficiency against various D-LAAs, the simu-
lation results include single-point (static and dynamic attacks
launched from the same location) and multi-point (static and
dynamic attacks launched from multiple locations) D-LAAs.
Finally, to evaluate the suggested method’s performance in
real-world application scenarios, a section on applying appro-
priate PMU noise and data-quality issues is included at the
end of this section. In all the detection/localization tasks, we
consider data from a two-second interval following the attack
sampled at 50-times per second. Thus, T is set at 100.

To demonstrate the superiority of the proposed 2DR-CNN
method, it is compared to several benchmark techniques de-
ployed in supervised classification tasks, including 1D-CNN
, auto-encoder-based deep neural network (AE-DNN), DNN
support vector machines (SVM)Ṫhese benchmark algorithms
are also implemented in a cascaded manner, similar to 2DR-
CNN, with the first classifier detecting attacks and the second
classifier localizing them. To run the simulation results, a wide
library of Ntr = 3000 samples for each of the under-studied
scenarios is established. The training, validation, and test data
sets are partitioned by 80%, 10%, and 10%, respectively.

The proposed method is implemented in Python 3.9 using
the TensorFlow framework. The categorical cross-entropy loss
function is considered, and the Adam optimizer method is

TABLE II: Online response time of different approaches
Method Online response time (msec)

2DR-CNN 89
1D-CNN 69

MLP 66
SVM 61

applied to perform the training process. Fig. 5 illustrates the
overall training loss and accuracy for validation and test data
sets. The simulations are conducted on a Windows PC with
11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz proces-
sor, RAM: 16 GB. Offline training procedures for different
algorithms vary significantly, and more intricate algorithms
such as 2DR-CNN and 1D-CNN require more time than SVM
and DNN. The crucial element, which is the online execution
time, is less than 89ms for the proposed method (2DR-CNN)
(the average value for all three cases, including IEEE 14-, 39-
and 57-bus systems), making it suitable for online applications.
Table II provides a thorough comparison of the response times
of all adopted benchmark techniques.

In this study, the accuracy for both detection and localization
tasks is calculated as follows [28]:

accuracy =
1

Tn

Tn∑
i=1

Ci

Qi
(6)

where, Ci and Qi represent the number of successfully cat-
egorized samples and query samples in the ith test series,
respectively, and Tn is the total number of test series.

B. Simulation Results and Discussion

Detection of D-LAAs: As indicated in Algorithm 1, the
first classifier distinguishes D-LAAs from regular power grid



7

50 100 150 200 250 300 350 400 450 500

Epochs

0

0.5

1

1.5

2

2.5

3

3.5

L
os

s

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Train-Loss

Valid-Loss

Train-Acc

Valid-Acc

Fig. 5: Training plot of 2DR-CNN.

TABLE III: Detection results of D-LAAs with different ap-
proaches.

Methods IEEE 14-Bus IEEE39-Bus
2DR-CNN 99.66% 99.27%
1D-CNN 97.49% 96.54%
AE-DNN 96.36% 96.11%

DNN 96.44% 95.37%
SVM 95.13% 91.34%%

oscillations. Table III summarizes the accuracy of the detection
compared to the other benchmarks. The detection phase,
particularly for the IEEE 14-bus system, is not difficult for
any of the benchmark techniques, and the accuracy ranges
from 95.13% to 99.66% for SVM and 2DR-CNN algorithms,
respectively. However, for the larger of the two systems, i.e.,
the IEEE 39-bus system, the accuracy of SVM decreases to
91.34%, and other benchmarks also see a minor decrease
(in the region of 1%). In comparison, 2DR-CNN once again
achieves greater than 99% accuracy. Overall, we observe that
most of the benchmark techniques have acceptable perfor-
mance in differentiating D-LAAs from normal power grid
operations, with the 2DR-CNN performing the best.

Localization of single-point and multi-point D-LAAs: As
stated in Algorithm 1, once the first classifier detects an attack,
the second classifier begins high-resolution localization of the
source of the attack. Table IV summarizes the performance of
the 2DR-CNN and other benchmark methods for single- and
multi-point attacks. As expected, due to the increased number
of classes in the localization task (i.e., multi-task classification
as compared to binary classification in the detection task), the
accuracy of classification in this step drops slightly, in both
single- and multi-point attack scenarios. However, we observe
that 2DR-CNN surpasses the other benchmark techniques in
both IEEE 14- and IEEE 39-bus scenarios. In particular, the
2DR-CNN step achieves 99.02% and 98.07% accuracy for
single- and multi-point attacks on the IEEE 14-bus system, re-
spectively; and 95.33% and 93.57% accuracy for the IEEE 39-
bus system. Additionally, the results demonstrate that although
other benchmark approaches perform satisfactorily in both
single and multi-point assaults on the IEEE 14-bus system,
SVM attains poor performance in both single- and multi-
point attacks in the IEEE 39-bus system, with an accuracy of
70.15% and 69.93% percent, respectively. Other benchmarks
such as 1D-CNN, AE-DNN, and DNN, obtain an accuracy
of less than 90%. When we delve deeper, we observe that
the distinction between single- and multi- point attacks on
IEEE 39-bus is more pronounced, as the performance gap
between the algorithms is widened for multi-point attacks in
comparison to the single-point attacks. To support this claim,
Fig.6 depicts the frequency profiles of generator buses during
single- and multi-point attacks. Due to the fact that multi-

TABLE IV: localization results of D-LAAs with different
approaches.

Methods IEEE 14-Bus IEEE 39-Bus
Single-point

attacks
Multi-point

attacks
Single-point

attacks
Multi-point

attacks
2DR-CNN 99.02% 98.07% 95.53% 93.57%
1D-CNN 97.17% 96.55% 89.76% 87.59%
AE-DNN 97.69% 96.63% 88.09% 86.81%

DNN 97.23% 96.29% 85.21% 81.23%
SVM 91.14% 89.36%% 70.15% 69.93%
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Fig. 6: Frequency profiles IEEE 39-bus after attacks:
KL(24, 4) = 55.62pu for single-point attack ϵ19 =1MW and
for multi-point attack ϵ5 = 3MW, ϵ6 = 2MW and ϵ19 = 1MW.

point attacks include at least two sources of static attacks in
addition to the D-LAAs, the frequency profiles of multi-point
attacks exhibit more volatility, which makes it harder for the
algorithms to perform the classification task.

The comparison of 2DR-CNN and 1D-CNN demonstrates
the paper’s central idea, which is to convert the input data into
an image-like structure and implement 2DR-CNN for feature
extraction. In the 2DR-CNN, the interconnection between
the frequency and phase angle profiles is considered directly
during the feature extraction task (by moving the kernel in
two directions). This results in a difference of 6% between the
accuracies of 2DR-CNN and 1D-CNN in localizing DLAAs
for the IEEE 39-bus system. Following that, we observe
AE-DNN with AE at the initial layer outperforms DNN by
approximately 3% and 5% in single and multi-point attacks,
respectively. However, we do not observe a major difference
in the performance between AE-DNN and DNN for the IEEE
14-bus system, since AE serves as a denoising element for the
AE-DNN and there is no substantial fluctuation in the input
data profiles in small cases. To illustrate the performance of
2DR-CNN in detail, Fig. 7 and Fig. 8 exhibit the localization
outcomes as confusion matrices for single- and multi-point
attacks, respectively. As previously noted, the localization task
is more challenging with multi-point attacks. Comparing the
localization performances of attacks launched from buses 8
and 16 in single- and multi-point attacks elucidates this point.

Localization of D-LAAs in noisy environments: To assess
the proposed method’s robustness in the presence of noisy
PMU measurements, this section examines the localization
performance for IEEE 14- and 39-bus systems under three
different noise scenarios. As suggested in reference [16],
Gaussian noise can be used to model the PMU noise. Table V
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Fig. 7: Confusion matrix of 2DR-CNN single-point attacks.
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Fig. 8: Confusion matrix of 2DR-CNN multi-point attacks.

compares the performance of the 2DR-CNN to that of other
benchmark methods. The numerical results demonstrate the
proposed method’s robustness with noisy data. For instance,
for multi-point attacks in the IEEE 39-bus system, 2DR-CNN
provides 92.51%, 91.21%, and 90.04% accuracies for 26,
20, and 16.5 dB SNR (20 log(signal/noise) [29]) values,
respectively. An inspection of Table V demonstrates that the
proposed method achieves 95.04% and 92.52% accuracy in
the localization of single- and multi-point attacks on the
IEEE 39-bus case with the 26 dB SNR value, respectively,
while other benchmarks achieve less than 87.92% and 86.56%
accuracy. Moreover, we observe that AE-DNN delivers a
similar performance to that of 1D-CNN. This is because
of the additional AE in this structure, which aids in noisy
measurements (about 2% gain against DNN). The 2DR-CNN
has robust feature extraction that outperforms the AE-DNN’s
additional AE layer, and as a result, the AE layer is not
considered for CNN-based networks. As expected, raising
the noise level (i.e., decreasing the SNR values) degrades
the accuracy of 2DR-CNN and other benchmarks, although
2DR-CNN is significantly more robust than other methods
– implementing reconstruction network along with the 2D
feature extraction –, achieving approximately 90% accuracy
in localization of various D-LAAs at a 16.5 dB SNR rate.

TABLE V: localization results of D-LAAs with different
approaches by considering the PMU Noise.

Methods IEEE 14-Bus IEEE 39-Bus
26 DB SNR (noise variance 5%)

Single-point
attacks

Multi-point
attacks

Single-point
attacks

Multi-point
attacks

2DR-CNN 97.01% 96.14% 95.04% 92.51%
1D-CNN 96.74% 95.11% 87.93% 86.56%
AE-DNN 96.75% 94.81% 88.09% 85.98%

DNN 96.41% 94.66% 87.33% 81.13%
SVM 91.07% 89.31% 62.91% 59.78%

20 DB SNR (noise variance 10%)
Single-point

attacks
Multi-point

attacks
Single-point

attacks
Multi-point

attacks
2DR-CNN 96.07% 93.13% 92.28% 91.21%
1D-CNN 96.08% 90.23% 86.15% 84.95%
AE-DNN 96.73% 91.38% 84.49% 82.78%

DNN 95.13% 90.61% 82.33% 79.43%
SVM 90.39% 85.43% 60.44% 58.12%

16.5 DB SNR (noise variance 15%)
Single-point

attacks
Multi-point

attacks
Single-point

attacks
Multi-point

attacks
2DR-CNN 93.41% 91.92% 91.14% 90.04%
1D-CNN 89.13% 85.98% 83.59% 85.98%
AE-DNN 89.77% 84.49% 82.74% 84.46%

DNN 88.71% 81.31% 80.66% 81.31%
SVM 87.84% 83.97% 54.79% 53.97%

Verifying the robustness of the proposed method with
PMU data-quality issues: Finally, we evaluate the proposed
method’s effectiveness towards other practical challenges, such
as missing and outlier points in the PMU data. We consider
two possible scenarios: (i) 5% of randomly-selected data
points are missing (over the 2-second time horizon). (ii) 5%-
10% of the randomly-selected data points contain outliers. As
shown in Fig. 9, the missing data points are set to zero (i.e.,
they are replaced with the reference power system frequency
of 50 Hz). To create outlier data points, we multiply the
true value of the signal at a particular time instant with a
random number generated in the range [0.5, 1.5]. Then, we
replace the corresponding data point with the modified value.
It should be noted, the outlier data points deviate significantly
from their neighbouring data samples in comparison with
the missing points (shown in Fig. 9). Therefore, the training
process of machine learning algorithms may be more biased
and influenced by outliers in input data than by missing point
scenarios, which may result in longer training times, less
accurate models, and ultimately worse results. Robust methods
should focus on the general trend of the monitoring profiles
rather than chasing down outliers. As indicated in Table VI, the
2DR-CNN surpasses the other benchmarks in terms of lost and
outlier points, achieving accuracies of 89.21% and 85.91%,
respectively (outlier scenarios result in lower accuracy). The
primary reason for the 2DR-CNN’s robustness in this chal-
lenging scenario lies in its strategy of reconstructing data via a
decoder network along with the classification task. In addition,
as illustrated in Fig.9, 2DR-CNN employs a rectangular kernel
that moves in two directions across the data, distinguishing
it from the point-by-point reading of the data employed in
techniques such as AE-DNN, DNN, and SVM. Following
2DR-CNN, we see that 1D-CNN exceeds other benchmarks;
nevertheless, 1D-CNN’s performance declines dramatically in
these cases (for instance, below 80% for the outlier point
scenario), which is the fundamental motivation for employing
2D kernels and reconstruction network in this study.
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Fig. 9: Frequency profiles for IEEE 39-bus system with lost
points in PMU data (multi-point attack: KL(28, 5) = 59.45pu,
ϵ28 = 0.79MW, ϵ24 = 5.98MW, ϵ29 = 0.15MW) and outlier
points in PMU data (multi-point attack: KL(27, 5)=95.12pu,
ϵ27 = 1.35MW, ϵ23 = 8.62MW, ϵ24 = 1.35MW ).

TABLE VI: Localization of multi-point D-LAAs on IEEE 39-
bus system with lost/outlier points in PMU data.

Scenarios 2DR-CNN 1D-CNN AE-DNN DNN SVM
Lost points in PMU data 89.21% 83.58% 77.24% 74.63% 43.19%

Outlier points in PMU data 85.91% 78.63% 69.26% 68.09% 35.47%

C. Scalability of the suggested framework

In this study, the monitoring framework is built on CNN
structure, which has been shown to be successful in different
big-data classification tasks like face recognition [19]. How-
ever, to verify the effectiveness of the proposed method in a
larger case study, a challenging case, such as the IEEE 57-
bus system, which is composed of 7 generator buses and 50
load buses is also investigated (see Section III-B). To design a
monitoring framework for the IEEE 57-bus case, we followed
the general concept shown in Fig. 4. The input data for this
case is defined as 7 × 100 × 2 and 50 classes are defined
for the output of the localization task (see Section III-B). Our
proposed method (2DR-CNN) delivers 98.51% accuracy for
the detection task, whereas the second-best method (1D-CNN)
achieves 95.18% and after that AE-DNN, DNN and SVM
methods reach 93.82%, 93.02% and 90.17%, respectively.
Table VII summarizes the results of the localization task in
different scenarios for the IEEE 57-bus case. As shown in
Table VII, difference between 2DR-CNN and other benchmark
methods is more pronounced in this case than in the IEEE
14- and 39-bus cases. While the proposed method delivers
a robust performance in noisy environments with more than
90% accuracy, the second-best method delivers an accuracy
of 81.08% for multi-point attacks in noisy environments. In
a similar manner, other methods lose significant performance
and produce results below 80% (AE-DNN, DNN) and 70%
(SVM). The localization results of the various methods with
lost and outlier points in PMU data are shown in Table VIII
that confirms the robustness of the 2DR-CNN method in
comparison to other benchmarks by presenting significantly
more accurate results (at least 7%) than the next-best method

TABLE VII: Localization results of D-LAAs on the IEEE 57-
bus system with different approaches in different scenarios
(without noise and average outcome of the noisy environments
(26, 20 and 16.5 DB SNR).

Methods Without noise Average of noisy environments
Single-point

attacks
Multi-point

attacks
Single-point

attacks
Multi-point

attacks
2DR-CNN 93.71% 91.78% 91.59% 90.03%
1D-CNN 88.44% 86.09% 84.68% 81.08%
AE-DNN 82.11% 79.31% 79.31% 73.55%

DNN 80.42% 76.59% 77.12% 70.41%
SVM 77.23% 72.58% 69.28% 63.51%

TABLE VIII: Localization of multi-point D-LAAs on IEEE
57-bus system with lost/outlier points in PMU data.

Scenarios 2DR-CNN 1D-CNN AE-DNN DNN SVM
Lost points in PMU data 87.32% 80.50% 71.85% 67.33% 39.17%

Outlier points in PMU data 83.29% 76.27% 63.57% 62.97% 30.10%

(1D-CNN).

D. Efforts to address the new attack surfaces:

As compared to unsupervised and semi-supervised meth-
ods, supervised methods are able to achieve high accuracy,
especially when it comes to localization, which involves
multi-class classification [30], [31]. As a result, the proposed
supervised localization solution is able to achieve accurate
detection and localization outcomes in challenging scenarios
(semi-destabilizing LAAs, see Section III-B), which is difficult
with unsupervised methods. However, as with other supervised
data-driven intrusion detection methods, a large number of la-
belled samples is needed for the training task [32]. To address
this issue, in this study, we enrich our training data library
by considering various types of static and dynamic LAAs
(more than 3000 samples), details are given in SectionIII-B.
In terms of generating a significant amount of power grid
dynamic profiles (i.e., frequency and phase angle) while the
system is under attack, two points should be considered:
(i) the proposed algorithm relies on “physical measurement
data” and there are well-known power grid simulators (e.g.,
MATPOWER, PowerWorld, etc.) that accurately model the
system (widely used by the power system industry). (ii) the
LAAs that this work concentrates on are attacks that disrupt
the “physical controllers” of the power grid, which may also
be easily simulated using the given simulators. As a result,
while the system is under attack, we can generate enough
training data utilising power grid simulators during the “offline
training phase” (this approach has been widely applied to
detecting cyber-physical attacks in power grids, such as false
data injection attacks [30].) We note that due to the offline
character of the training, the vast size of the training data will
not be an impediment to the proposed method’s deployment
in real-world applications. In our numerical results, 10% of
the generated data that was not observed by our supervised
technique is assigned to the test procedure, and the precise
detection and localization of load-altering threats are reported
(more than 85% accuracy even in highly noisy environments).
This verifies the extensiveness of our training data and the
viability of the proposed technique in unexpected scenarios.
Despite all of the above considerations, as with any other
supervised intrusion detection techniques, there is a risk as-



10

sociated with the new attack surfaces [33]. Nevertheless, this
risk can be mitigated by updating the training data with new
samples, which is a common approach in supervised deep
learning-based solutions [34], [35].

E. Approach Feasibility Discussion

The focus of this work is on monitoring the power grid
from the perspective of a transmission system operator (TSO).
In particular, we focus on transmission network oscillations,
with the goal of localising the “substation(s)” from which
the LAAs originate. We assume the power grid that the TSO
has a thorough knowledge of the grid topology, which is a
valid assumption for transmission networks, and the deployed
PMUs can track the dynamics of the power grid in real-time
[22]. The synchrophasor technology has been widely used
to improve the observability of power systems over the past
decade. The proposed method uses 50 samples per second.
With the aid of global positioning system time stamps (GPS),
the acquired data (such as voltage, current, frequency, and
phase angle) can be synchronized. A phasor data concentrator
(PDC) in a control station receives the measurements recorded
by each PMU using the IEEE C37.118 protocol. Several
PMU applications (such as wide-area monitoring, disturbance
detection, and voltage stability) have been developed in order
to enhance the stability of the power grid [36]. In light of
the aforementioned details, the proposed method is capable
of being implemented in real-world scenarios as an effective
monitoring solution against different kinds of LAAs in power
grids.

V. CONCLUSIONS

This paper proposes a multi-output data-driven technique
based on the 2DR-CNN structure for the detection and lo-
calization of D-LAAs. To accomplish this, a reconstruction
decoder is applied along with the classification networks, in
which the first classifier detects D-LAAs by distinguishing
them from natural power grid oscillations, and the second clas-
sifier precisely localizes the location of D-LAAs. To demon-
strate the suggested method’s effectiveness, a range of attacks,
including single- and multi-point attacks, are examined in two
case studies involving IEEE 14- and 39-bus systems. The
proposed method achieves an accuracy of approximately 95%
by using 2D feature extraction and reconstruction decoder
network equipped with sparsity regularization constraints, thus
outperforming other benchmarks. Additionally, to investigate
the proposed method’s robustness in practical situations, the
findings address diverse scenarios such as noise and lost/outlier
points in the PMU data. By incorporating a robust feature
extraction approach with its 2D kernel, the suggested method
exhibits robust performance in the aforementioned conditions.
As demonstrated by the numerical findings, the proposed
method has the potential to be considered as an extra security
surface for increasing the protection of modern power grids.
Future work for this study will focus on designing a robust
network by incorporating additional scenarios, such as the
delay in receiving profiles from PMUs, and implementing a
hybrid method with the support of advanced semi-supervised

techniques in the localization task to mitigate the risks of new
attack vectors.

APPENDIX: SIMULATION PARAMETERS

Dynamic parameters for IEEE 14-bus system:

M1 − M5 = [0.125; 0.034; 0.016; 0.010; 0.015];

D1 − D5 = [0.125; 0.068; 0.032; 0.068; 0.072];

K
P
1 − K

P
5 = [0.02; 0.09; 0.03; 0.03; 0.08];

K
I
1 − K

I
5 = [0.35; 0.40; 0.35; 0.35; 0.40];

Di = 0.01, ∀i ∈ NL;

Dynamic parameters for IEEE 39-bus system:

M1 = 2.3186;M2 : M8 = 2.6419;M9 : M10 = 2.4862.

K
P
1 − K

P
10 = [1; 0.45; 0.45; 0.1; 0.5; 0.4; 0.3; 0.2; 0.4; 0.5];

K
I
i = 0.6, ∀i ∈ NG;Di = 2, ∀i ∈ NG;Di = 0.01, ∀i ∈ NL;

Dynamic parameters for IEEE 57-bus system:

M1 − M7 = [2.6309; 1.200; 5.078; 1.200; 2.6309; 1.200; 2.6309];

D1 − D7 = [2; 0; 2; 0; 2; 0; 2];

K
P
1 − K

P
7 = [25; 35; 10; 20; 30; 10; 30];

K
P
1 − K

P
7 = [25; 20; 20; 20; 30; 15; 30];

Di = 0.2, ∀i ∈ NL;
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