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a b s t r a c t 

This paper introduces a dynamic multi-period vehicle routing problem with touting as demand man- 

agement technique, where customers that have not yet placed an order can be actively encouraged to 

order a service sooner. Touting the right customers, such as those located nearby customers who already 

placed orders, allows for more efficient routes over time. However, it also increases the frequency of vis- 

its at such touted customers as they are serviced before they would normally require, which leads to 

smaller demand volumes per visit. To tackle this trade-off, we propose several strategies to decide which 

customers to tout and when, using the characteristics of the customers as well as the current plan at 

the time of touting. Specifically, using the demand and the location information, we approach the ones 

which are close to the current tour, relatively far from the depot and not likely to easily be covered in 

the near future. This information is then used as a part of different touting strategies, which are further 

embedded in a rolling-time horizon vehicle routing algorithm to address the multi-period nature of the 

problem. These different strategies are empirically compared in a simulation based on a real-world waste 

collection problem. We demonstrate that touting indeed allows to significantly reduce the travel distance 

in a dynamic vehicle routing problem. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In this paper, we consider a vehicle routing problem (VRP) with 

ue dates and customer orders (e.g., for collections of goods) ar- 

iving dynamically over multiple periods. The addressed problem 

s motivated by a real-world problem faced by a waste collection 

ompany. Naturally it is more efficient to collect waste from cus- 

omers located in the same region than from customers that are 

pread out. Therefore we investigate the option to actively influ- 

nce demand by approaching additional customers that can be eas- 

ly integrated into the current route and encouraging them to order 

ooner, a demand management technique known as touting . We as- 

ume that all customers are loyal and regular customers, whose 

emand distributions are known or can be estimated. Using these 

istributions, we predict the customers who are likely to place an 

rder in the near future and tout these. Our problem is related to 

ynamic VRPs with stochastic customer arrivals, where the infor- 

ation of the demand distributions of the customers is available 
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nd can be used for future planning. However, our approach is 

ovel, as we examine the benefit of touting, i.e., interacting with 

ustomers and encouraging them to order earlier. The outcome of 

outing is determined by the customer, who may accept or reject 

he touting offer. In the former case, the customer is served on 

he next route, otherwise, there is no change with respect to the 

ustomer’s status. So touting will not increase overall demand, just 

hift the timing of the demand. Because of this, touting may seem 

ounter-productive, as it is likely to increase the number of re- 

uired visits to a customer as customers are encouraged to order 

arlier, and thus smaller amounts. However, as we show in this pa- 

er, by specifically touting customers that fit well with the already 

cquired customer orders, touting can significantly reduce the dis- 

ances traveled to service all customers. To the best of our knowl- 

dge, this is the first paper considering touting strategies in vehicle 

outing. 

Note that the focus of this study is not on proposing a novel 

lgorithm to solve dynamic VRPs, but on linking dynamic VRP 

olvers to the demand management technique of touting. We 

ropose several heuristics to decide which customers should be 

outed, and when, in order to minimize overall distances traveled. 

he touting strategies are then combined with a vehicle routing al- 

orithm operating on a rolling time horizon. We test the resulting 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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lgorithms in a simulation based on a real-world waste-collection 

roblem of an industry partner that motivated our work. 

We would like to stress that the idea of touting is not limited 

o waste collection; it can be beneficial in a wide variety of similar 

ynamic vehicle routing problems, involving collection, delivery, or 

ervice. For example, companies that offer preventive maintenance 

ervices may need to repeatedly serve customers by known dead- 

ines and could contact some customers to check whether they 

ould accept an early service. In delivery problems with deadlines, 

e likewise may want to pro-actively contact certain customers 

hom we believe are likely to be interested in a delivery (of food, 

or instance) and whose locations fit well with the current planned 

outes. In the following, we stick to the waste collection applica- 

ion to explain our approach. 

The paper is organized as follows. We start with a review of 

elated literature in Section 2 , followed by a description of the 

onsidered problem in Section 3 . Section 4 explains the proposed 

outing strategies as well as the methodology to solve the routing 

roblem. The simulation model with empirical results of the dif- 

erent strategies are presented in Section 5 . Finally, Section 6 sum- 

arizes the paper and suggests some avenues for future research. 

. Literature review 

Vehicle routing is a very large and diverse research 

rea ( Braekers, Ramaekers, & Van Nieuwenhuyse, 2016 ), and 

ven the class of dynamic vehicle routing problems would be too 

arge to be covered here. The reader may refer to Pillac, Gendreau, 

uéret, & Medaglia (2013) , Ritzinger, Puchinger, & Hartl (2016) , 

lmer, Goodson, Mattfeld, & Thomas (2020) , or Soeffker, Ulmer, & 

attfeld (2022) for detailed reviews on dynamic VRP literature. 

In this section, we will focus on the papers most relevant to 

ur work, primarily on the class of multi-period vehicle routing 

roblems (MPVRPs). 

.1. Nature of the demand - static or dynamic 

In static problems, all data is available upfront. Although in our 

roblem the customers arrive dynamically over time, we plan on 

 rolling horizon, and each sub-problem could be regarded as a 

tatic problem. In this sense, our problem is related to those static 

roblems involving due dates. Athanasopoulos & Minis (2013) pre- 

ented a general model for the MPVRP, where the tasks have time 

indows and allowed visit days. Each period has a time constraint 

nd the objective is to minimize transportation cost of the entire 

orizon. Archetti, Jabali, & Speranza (2015) and Larrain, Coelho, 

rchetti, & Speranza (2019) considered customer release and due 

ates, and their objective is to minimize the distance traveled as 

ell as the inventory holding cost at the depot until the goods are 

hipped to the customers. 

In the dynamic MPVRP, new orders arrive dynamically over 

ime and the initial plan may need to be revised to take into 

ccount the new information. In this case, the problem at hand 

hanges due to the changed set of customers, and therefore, the 

olution found at the beginning of a period may not be the op- 

imal solution of the new problem in the next period ( Ozbaygin 

 Savelsbergh, 2019 ). Angelelli, Grazia Speranza, & Savelsbergh 

2007) studied a variant in which a set of orders are revealed at 

he beginning of each time period and they have to be served ei- 

her in that period or in the next one by a single uncapacitated 

ehicle. The plans are modified at the beginning of each period 

epending on the new orders. Wen, Cordeau, Laporte, & Larsen 

2010) optimized the routes such that the total customer waiting 

ime and travel time are minimized, and daily workload of the ve- 

icles is balanced over the planning horizon. Cordeau, DellÕAmico, 

alavigna, & Iori (2015) addressed an auto-carrier transportation 
2 
roblem with heterogeneous fleet and introduced penalties for late 

eliveries. To address the dynamic nature of the problem, a rolling- 

orizon approach is used. 

.2. Plan update 

While the above papers assume that the plan can only be 

hanged once at the beginning of every period (as we do in our pa- 

er), some authors have considered the case where the plan may 

e changed as soon as a new order arrives, re-directing the ve- 

icle to follow the updated plan. Ninikas, Athanasopoulos, Zeim- 

ekis, & Minis (2014) allowed diversion from the current plan for 

ew orders requesting urgent service, while due dates of regular 

rders still need to be obeyed. Their objective is minimizing over- 

ll transportation cost and maximizing the number of urgent cus- 

omers covered over the horizon. Dayarian, Crainic, Gendreau, & 

ei (2015) and Dayarian, Crainic, Gendreau, & Rei (2016) analyzed 

he case where the customers have stochastic demands. The ini- 

ial plan is constructed using the probabilistic information. Then 

uring the day, if the realized demand is higher than expected, 

ehicles are diverted to the depot to unload. Angelelli, Bianchessi, 

ansini, & Speranza (2009) studied different strategies to solve a 

-period routing problem. At the beginning of each period, they 

oute a fleet of uncapacitated vehicles using the known customers. 

hen, while the vehicles are traveling, new orders arrive and the 

outes are replanned. The new plan may postpone some customers 

riginally scheduled today to the next day. The objective is to ser- 

ice all requests with minimum average cost. Ulmer, Soeffker, & 

attfeld (2018) studied the same problem by increasing the num- 

er of periods in the planning horizon. However, their objective is 

o maximize the number of same-day services. 

.3. Use of historical information 

In some studies, knowledge on future demands is used in route 

lanning. Subramanyam, Mufalli, Pinto, & Gounaris (2017) modeled 

he problem as a robust multi-stage optimization problem that 

edges against customer order uncertainty, whose support func- 

ions are known from historical orders. The objective of the prob- 

em is minimizing the transportation cost over the planning hori- 

on. Billing, Jaehn, & Wensing (2018) also used historical data 

o obtain probabilities that customers place an order at a pe- 

iod and used these to make decisions about whether existing or- 

ers should be served today or be postponed to a later period. 

lbareda-Sambola, Fernández, & Laporte (2014) modelled the dy- 

amic VRP as a prize-collecting VRP by assigning prize measures 

o known customers using the information on future orders. They 

im at routing the known customers such that the plan is also con- 

enient for likely future requests. Ferrer & Alba (2019) considered 

 waste collection problem with prediction of the fill levels of the 

ontainers. The route planning is done based on these predictions. 

.4. Steering the demand in planning 

In a MPVRP context, few papers consider demand manage- 

ent to decrease transportation costs. Estrada-Moreno, Savels- 

ergh, Juan, & Panadero (2019) analyzed effects of price discounts 

ffered to customers to relax their preferred delivery day by one 

ay, either to the day before or after the preferred day. The aim 

s to minimize total distribution cost and discounts paid over the 

lanning horizon. Yildiz & Savelsbergh (2020) solved a simplified 

etting, where all the nodes are located on a line with the depot 

n one end. They considered discounts in exchange for delivery 

ay flexibility, however assumed that they are accepted by the cus- 

omers with a certain probability only. The customer set is static in 
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oth studies. On the other hand, in attended home delivery liter- 

ture, several demand management techniques are studied. In re- 

ent years, online grocery sales have increased rapidly, especially 

fter the pandemic many people prefer their groceries delivered to 

heir home instead of shopping in-store. Therefore, attended home 

elivery problems have become important. In this context, demand 

anagement techniques are extensively studied to steer the cus- 

omers in a desired direction. One approach uses price incentives 

n the shape of discounts for some delivery slots to have more ef- 

cient plans ( Yang & Strauss, 2017; Yang, Strauss, Currie, & Eglese, 

016 ). Another technique is to tailor the provided service or prod- 

cts according to the customers having the service. For example, 

ome delivery slots may not be opened to a specific geographical 

rea, some areas may be offered more slots, or the length of the 

lot for an area may be adjusted according to some features of the 

ustomers or of the area ( Agatz, Campbell, Fleischmann, & Savels- 

ergh, 2011 ). Recently, Agatz, Fan, & Stam (2021) have analysed us- 

ng green labels that are defined as ‘environmentally friendly time 

lots’ to motivate selection of specific delivery times. 

.5. Inventory routing problems 

Our problem is conceptually also similar to the Stochastic In- 

entory Routing or Vendor Managed Inventory Routing Problems, 

here the decisions are centralized at the supplier and the cus- 

omer demand is stochastic. Some papers in this area ( Coelho, 

ordeau, & Laporte, 2014; Markov, Bierlaire, Cordeau, Maknoon, & 

arone, 2018; 2020 ) assume that the supplier can precisely moni- 

or the inventory level at customer sites, and needs to ensure that 

ustomers do not have stock-outs. The aim is to minimize both 

he transportation and inventory holding costs. Other papers as- 

ume that the supplier has no knowledge of the inventory levels 

nd will only observe the inventory level when arriving at the cus- 

omer ( Huang & Lin, 2010; Jaillet, Bard, Huang, & Dror, 2002 , and

etzenberg & Metters, 2020 ). Hence, the plans are based on ex- 

ected values and recourse actions are defined if the plans do not 

eet the actual requirements of the customers. Our problem sits 

etween the above two cases: the supplier cannot monitor the cus- 

omers’ inventory levels but has information on the historical de- 

and, and as soon as a customer requests a collection, the amount 

o be collected is revealed by the customer, i.e., the demand be- 

omes known. In addition, it is possible to call (tout) a customer, 

ffer them a service, and, if the customer accepts the offer and 

laces an order, again the amount to be collected becomes known. 

Table 1 provides an overview of similarities and differences of 

ur study compared to the existing literature in multi-period ve- 

icle routing. In summary, our study extends the current literature 

f multi-period vehicle routing problem by introducing the concept 

f touting, i.e., actively approaching a customer with the purpose 

o elicit orders earlier, and combining this demand management 

echnique with routing decisions. 

. Problem definition 

Our work is motivated by the real-world application of a waste 

ollection company in the UK. This section first illustrates the pro- 

edures of the company, then explains how we model them in our 

aper. 

.1. Real-life challenge 

The company has a fleet of waste collection vehicles with dif- 

erent capacities. It services a stable set of customers, from whom 

hey collect the waste products. Customers accumulate waste over 

ime, i.e., on one day a high amount of waste may be produced, 

hereas on another day the waste production may be low. The 
3 
aste can be stored in tanks, and when the accumulated amount 

ets close to their storage capacity, they request a collection, spec- 

fying the amount of waste to be collected. The waste collection 

ompany promises service within a certain number of days. While 

he waste is being collected, there is a service time spent at the 

ustomer site. If the driver knows the client’s premises, this re- 

uces the time needed to collect the waste. For this reason, the 

ompany has decided to assign each driver to a designated service 

rea, which allows an independent planning of each driver’s route. 

hat is, a multi-period single vehicle routing problem is addressed 

n each service area. 

The company plans the routes of the vehicles on a daily ba- 

is. Throughout the day, the customer service department collects 

rders from the customers and at the end of the day, the routes 

f the collection vehicles for the following day are decided sub- 

ect to the capacity of the vehicles, daily and weekly working time 

imits for the drivers, as well as due dates of the customers. The 

outes are constructed based on the customers who have already 

equested collection. As the customers are to be serviced within a 

ertain number of days, the problem spans several days. Planning 

s done on a rolling horizon, i.e., the route for the following day 

s executed as planned, while there might be changes in the other 

outes as further requests are received. The stakeholders involved 

n this process are the customers, the customer service department 

nd the route planners of the company as well as the drivers of 

he waste collection vehicles. The objective of the company is to 

ervice its customers with the least transportation cost, i.e., with 

he minimum total distance driven by the collection vehicles. 

The company does not perform any forecasting on predicting 

he potential customers. This is done by the drivers based on their 

xperiences. If they know that a customer has not requested a col- 

ection for some time and if they are servicing an area nearby that 

ustomer, then they ask the customer service department to com- 

unicate with that customer and check whether they need a col- 

ection. This action is called “touting”. If the customer is happy 

ith the collection, then they are added to the current plan and 

he driver collects their waste within the day. This way, the cus- 

omers nearby those already scheduled for the current route can 

e serviced without a large detour. 

.2. Touting for the vehicle routing problem 

Our paper focuses primarily on this touting aspect. Before 

nalizing the next day’s tour, the company can attempt to elicit 

dditional orders via touting. In the model, the drivers’ experience 

n predicting the potential customers is replaced by a forecasting 

odel. When a potential customer is approached and offered a col- 

ection on the next day, they will accept this offer with a proba- 

ility depending on the current fill level of their storage tank. If 

he touted customer accepts the offer, they will be serviced on the 

ext day’s tour. Thus, customer requests are received during the 

ay, while touting only takes place at the end of the day when 

here are no more requests. Figure 1 illustrates the sequence of de- 

isions and the random events on a planning day, where the chart 

n the right shows the flow of events between 5pm and 6pm. 

At 8am the company starts receiving orders from the customers 

ia phone calls or emails. At the same time, the drivers execute 

heir planned routes, which have been finalized on the day be- 

ore, by visiting the customers in the planned order. At a cut-off

ime (5pm), the company starts planning and touting for the next 

ay. Using the known requests, i.e., the orders received until 5pm 

s well as the unserviced orders from previous days, a tentative 

outing plan is constructed. After that, a forecasting model is run 

o predict customers which are likely to request a service soon. 

f there are such customers, then they are added to the potential 

ustomers list. If this list contains some customers which could be 
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Table 1 

Multi-period vehicle routing literature overview. It highlights the nature of the customers (static or dynamic), the nature of the demand 

(deterministic, i.e., amount revealed at time of order, or stochastic, i.e., amount revealed when vehicle arrives at customer location), whether 

i) the method used in the paper anticipates the future demand and uses this information in the optimization, ii) the customers have due 

dates, and iii) the plans are re-optimized according to the revealed information while the vehicle is on the road and finally the demand 

management technique if the paper includes one. 

Papers 

Set of customers Demand Anticipation Due 

dates 

Re- 

opt. 

Demand 

static dynamic det. stoc. of demand manag. 

Athanasopoulos & Minis (2013) � � � 

Archetti et al. (2015) � � � 

Larrain et al. (2019) � � � 

Angelelli et al. (2007) � � � 

Wen et al. (2010) � � � 

Cordeau et al. (2015) � � � 

Ninikas et al. (2014) � � � � � 

Dayarian et al. (2015) � � � � 

Dayarian et al. (2016) � � � � 

Angelelli et al. (2009) � � � � 

Ulmer et al. (2018) � � � 

Subramanyam et al. (2017) � � � � 

Billing et al. (2018) � � � � 

Albareda-Sambola et al. (2014) � � � � 

Ferrer & Alba (2019) � � � 

Estrada-Moreno et al. (2019) � � � discounts 

Yildiz & Savelsbergh (2020) � � � discounts 

Coelho et al. (2014) � � � 

Markov et al. (2018) � � � 

Markov, Bierlaire, Cordeau, Maknoon, & Varone (2020) � � � 

Jaillet et al. (2002) � � � 

Huang & Lin (2010) � � � 

Ketzenberg & Metters (2020) � � � � 

Our paper � � � � touting 
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dded to the next day’s plan making it more efficient, i.e., by col- 

ecting a large amount of waste without a long detour, then the 

ost relevant of those is identified, and this customer is contacted 

nd asked whether they would accept a collection on the next day, 

n other words, they are ‘touted’. If the customer accepts having a 

ollection on the next day, they are added to the tentative plan 

nd removed from the potential customers list, otherwise they are 

lso removed from this list to prevent further communication with 

he customer. After that, other suitable customers are touted, until 

here are no more such customers or no additional customer can 

e feasibly added to the existing plan. These events take place un- 

il 6pm, after which the route plans for the next day are finalized. 

f course, the schedule used here is representative only, there may 

e different settings in different practices. 

There are two types of decisions: selecting the customers to 

out, and routing the current customers. Figure 2 illustrates a se- 

ies of touting and routing decisions along with the changes in 

he system depending on these decisions and on the exogenous 

nformation. Assume that the vehicle capacity is 4, all customers 

ave a unit demand, and at most one customer can be touted 

this is for illustration purposes, there is no such restriction in the 

odel). At the beginning ( Fig. 2 -1), i.e., at 5pm on day 1, there are

 customers with known orders (white circles) and 3 potential cus- 

omers, i.e., predicted to have a sufficient amount of waste through 

 forecasting model (grey circles). Using the known orders, an ini- 

ial plan is constructed as illustrated in Fig. 2 -1, i.e., customers 1, 2,

, and 4 are planned to be serviced the next day, and customer 5 is

eft for the following day. Note that because of the vehicle’s capac- 

ty restriction it cannot service the fifth customer. However, as long 

s their due dates are respected, the planner may want to post- 

one some customers to a later day if they require long detours 

o be serviced and it is expected that the vehicle may visit these 

reas in the future. The first decision is to tout customer 7, which 

hanges the state of the system as shown in Fig. 2 -2. If customer

 accepts the touting offer, then the system evolves to a state as 

hown in Fig. 2 -3.a, which is then followed by a routing decision 
4 
esulting in the tour for the following day as in Fig. 2 -4.a. Note

hat customer 4 has been removed from the tour to be serviced on 

nother day so that it is feasible to include customer 7. If customer 

 does not accept the touting offer, then the system evolves to a 

tate as shown in Fig. 2 -3.b. Another customer may be considered 

or touting, e.g. customer 6, which changes the state of the sys- 

em as shown in Fig. 2 -4.b. Their acceptance of the touting offer 

volves the system into a state as shown in Fig. 2 -5. After that, the

outing decision is made as shown in Fig. 2 -6, in which customer 

 is replaced by customer 6. 

This is essentially a multi-period dynamic vehicle routing prob- 

em with capacity constraints, time constraints and due dates. The 

lanning is done for a single vehicle, which belongs to the driver 

perating in the area under consideration. We assume that all cus- 

omers are regular customers known to the company, as the num- 

er of new customers is negligible. Customers request a collection 

hen the amount of their waste products reaches a threshold, and 

he company knows this amount only when the customer specifies 

t while placing the order. While it has been considered to install 

mart sensors at the clients’ premises for monitoring their inven- 

ory levels, in practice this has been deemed too expensive and is 

herefore not done. Instead, historical data may be used to forecast 

 customer’s inventory level. 

Let us emphasize again that touting does not generate addi- 

ional demand, it just nudges a customer to order earlier, and as 

 consequence, the amount to be collected is less than that if 

he company had just waited for the customer to place the or- 

er. While this implies more frequent visits to a customer picking 

p smaller amounts, and thus higher cost, it also allows to influ- 

nce the timing of the order, thus opening the opportunity to save 

ravel distance by visiting neighboring customers on the same day, 

r moving demand from high-demand periods to low-demand pe- 

iods. 

Let us return to the simple example from above, assuming the 

emand of each order is one, the capacity of the vehicle is four, 

nd each customer must be served within two days. In Fig. 3 five 
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Fig. 1. Sequence of decisions and random events on a planning day. 

Fig. 2. Example of a series of touting and routing decisions. 
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ustomers (unfilled circles) are known on day 1 and the others 

ill place their order on day 2. If touting is not used, the plan-

er would route the corresponding known customers on each day, 

nd obtain a result as depicted in Fig. 3 -a. With touting, the plan-

er may predict some customers who are likely to order soon, 

nd tout for example customer 7, as their location is close to cus- 

omers that would be visited tomorrow. If the customer accepts, 

hey can then be serviced on the next day, and the resulting tours 

ould look like in Fig. 3 -b, with a significantly shorter overall 

istance. 
u

5 
In order to help clarify the structure of the decision making 

roblem, we provide a dynamic programming formulation of the 

roblem (even though one cannot directly solve it in this way). The 

etails of the formulation can be found in Appendix D . 

. Rolling horizon route planning and demand management 

Our paper focuses on integration of demand management with 

oute planning via touting. The actual route planning algorithm 

sed is secondary, but necessary to evaluate our strategies empir- 
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Fig. 3. Route plans with and without touting customers. 
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Algorithm 1 Initial Solution Construction. 

Input: List of Unscheduled Customers 

1: while Unscheduled Customers List not empty do 

2: Put the customers having the earliest due dates into the Pri- 

ority List

3: while Priority List not empty do 

4: for all customers in Priority List do 

5: for all possible insertion positions in the routes cover- 

ing all time periods do 

6: if insertion of customer i between nodes j and k is 

feasible then 

7: Calculate the insertion cost as: 

8: (−d jk + d ji + d ik ) 

9: end if 

10: end for 

11: end for 

12: Determine the customer with the least insertion cost, i.e., 

customer i 

13: Perform the cheapest insertion for customer i 

14: Delete customer i from Priority List and Unscheduled Cus- 

tomers List 

15: end while 

16: end while 
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cally. Planning at the touting phase needs to have an anticipatory 

outing strategy for including suitable customers to the plan as 

ell as a fast and high quality routing procedure so as to ensure 

hat we arrive at efficient overall routes. Therefore, the proposed 

ethodology is essentially a combination of routing and touting 

lgorithms, which are applied to find the solution on a planning 

ay. For the former, we use Large Neighborhood Search (LNS) to 

onstruct the routes the vehicle will be performing. It uses the in- 

ormation of the customers with existing collection requests and 

roposes a route plan to serve these customers. For the latter, we 

se a touting strategy, which will be elaborated in Section 4.2 . It 

ses the information of all customers in the portfolio of the com- 

any, e.g., their history of collections to i) determine potential cus- 

omers to tout, ii) and among them to select the most relevant one 

o approach. Within this strategy, we also utilize the routing algo- 

ithm to calculate how the solution would be revised in case the 

outed customer accepts the offer and is included in the solution. 

he combination of these algorithms continues to be used until 

here are no customers that can feasibly be added to the solution. 

his procedure is repeated on every planning day with the updated 

nformation. Thus, in this section we will describe our routing al- 

orithm and the touting strategies. 

.1. Route planning 

Given the dynamic nature of the problem, planning is done on 

 rolling horizon. That is, at the end of each day, we solve a multi-

eriod VRP with all the order data available. On the next day, we 

xecute the plan for this day, remove all serviced customers from 

he set of orders, and add any new orders that arrived during this 

ay. Then we solve the next multi-period VRP with this new order 

ata and the cycle repeats. 

To solve the VRP of each day, we chose to use LNS. This was

otivated by the fact that VRP is NP-hard and thus an exact 

ethod is computationally expensive, but also because for a dy- 

amic problem, solving each sub-problem of the rolling horizon 

rocedure exactly does not guarantee overall optimality anyway, 

s we will later demonstrate in Section 5.2 . LNS starts by con- 

tructing an initial solution via cheapest insertion. The orders are 

orted according to their due dates and the ones having the earli- 

st due dates are considered first. Out of those, the customer that 

an be inserted with the least additional driving distance is in- 

erted, and the procedure is repeated until all orders have been 

cheduled. This procedure ensures all capacity and time constraints 

re obeyed and creates new routes as needed. An overview of the 

lgorithm is given in Algorithm 1 , where d i j stands for the driving 

istance between nodes i and j. 

The improvement step follows the removal and repair heuris- 

ics introduced in Ropke & Pisinger (2006) . In each improvement 

tep, some customers are removed from the current solution either 

andomly, or based on worst marginal distance, proximity time, or 
6 
emand. They are then re-inserted into the partial solution using 

reedy and regret insertion heuristics. The details of the algorithm 

re outlined in Algorithm 2 in Appendix B . 

.2. Touting algorithm 

Let us assume that an initial plan based on the orders received 

o far is given, i.e., via the routing algorithm discussed in the previ- 

us subsection, and that we have a given route to execute for the 

ext day. We then attempt to make it more efficient by exploit- 

ng information (from a forecasting model) about a set of potential 

ustomers whom we could contact to elicit their business. 

More specifically, our aim is to identify customers who are 

ikely to request service in the near future and to tout the ones 

hat would make the overall plan better. We assume that these 

otential customers who may require a service soon are available 

rom a forecasting model. To determine a customer to tout among 

hese potential customers, we may consider different criteria, such 

s required detour from the next day’s route, its distance from the 

epot, or whether it is possible to cover that potential customer in 

he near future. Figure 4 illustrates these criteria using a solution 

ith four scheduled customers (circles) and a depot (rectangle) as 

ell as several potential customers, shown with grey circles. The 

alues next to the arcs are the lengths of these arcs, which will 

e used to quantify the measures. In Fig. 4 a, touting customer 5 
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Fig. 4. Factors in selecting the most relevant customer to tout. 
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eems more advantageous than touting customer 6 in terms of the 

equired detour to insert the customer. Figure 4 b shows an exam- 

le where it may be more beneficial to tout a customer far from 

he depot if the vehicle is traveling in their neighborhood, than a 

ustomer close to the depot, as the latter may be easily included 

n another tour. Finally, other potential customers in the neighbor- 

ood of a potential customer may also be taken into account to de- 

ide which customer to tout. If there are many potential customers 

n the neighboring area, then another vehicle may be sent to cover 

hat area on another day. In Fig. 4 c, Customer 6 has many neigh-

ors, whereas Customer 5 has only one, which makes Customer 5 

ore relevant to tout. 

.2.1. Relevance measure 

We now define a relevance measure for each potential cus- 

omer that takes into account all three criteria mentioned above. 

et N be the set of potential customers that may be added to 

he route, whose calculation is elaborated in Section 4.2.2 . We in- 

ex the depot as 0. For a potential customer i ∈ N, the detour 

mount is calculated by determining the cheapest insertion cost 

 i , i.e., for each pair of consecutive nodes ( j, k ) in the next day’s

oute with distance d jk , the insertion cost is calculated as c i = 

rgmin (d ji + d ik − d jk ) . For example, for customer 5 in Fig. 4 c, the

nsertion cost is c 5 = 0 . 5 and it is c 6 = 1 . 5 for customer 6. Let I i 
e the cost of exclusively covering customer i by a single vehi- 

le, i.e., I i = d 0 i + d i 0 . For customers 5 and 6 in Fig. 4 c, these costs

ill be I 5 = 2 and I 6 = 8 , respectively. Finally, we define a neigh-

orhood demand measure p i for customer i based on their neigh- 

ors at a distance of less than ρ . More formally, define N ρ (i ) =
 j ∈ N| d i j ≤ ρ} . Let Q i = 

∑ 

j∈ N ρ (i ) ∪{ i } q j be the total demand of i and

heir neighbors, where q i stands for the demand of customer i . We 

hen define p i = Q i /L , i ∈ N, with L the load capacity of the vehi-

le, as a measure to assess whether it is worthwhile to drive to 

n area where customer i is located. To quantify this measure us- 

ng customers 5 and 6 in Fig. 4 c, let us assume that the potential

ustomers have unit demand and the capacity of the vehicle is 5. 

hen the demand measures for customers 5 and 6 are calculated as 

p 5 = 0 . 4 and p 6 = 1 , respectively. If p i is high, it means that there

s high demand in the area and the vehicle would go there any- 

ay to service these customers. Then customer i can be covered 

long with other customers nearby by another vehicle in the near 

uture, hence it does not necessarily need to be touted right away. 

owever, if p i is low, meaning that customer i is alone or has few 

emand around, then it is beneficial to include them in the next 

ay’s route. 

The relevance measure of a potential customer i is then calcu- 

ated as r i = α
c i 
M 

− β
I i 
I 

+ γ
p i 
P 

where α, β and γ are the weights 

ssigned to each criterion, and M, I, and P are used to normal- 

ze the different components. They represent the maximum detour 
7 
mount to include a customer, the maximum distance to cover a 

ustomer with an individual route, and the maximum of the neigh- 

orhood demand measures over all eligible customers for tout- 

ng, respectively. The total distance to cover a customer can be 

alculated at the beginning of the planning horizon and it does 

ot change. However, the other two values need to be updated in 

ach relevance measure calculation whenever a new maximum is 

chieved. To set the initial values for the first calculation, we run 

he simulation once and feed the final maximum values attained at 

he end of the simulation. The lower the relevance value, the more 

eneficial to tout that customer since we want to include those 

ustomers with a) small detour amount from the next day’s tour, 

) long distance from the depot, and c) little demand nearby. 

.2.2. Customers considered for touting 

Touting customers when they have only accumulated a very 

mall amount of waste will not only annoy the customer, but 

lso lead to very frequent collections of tiny amounts. On the 

ther hand, only touting customers which are predicted to or- 

er soon anyway may severely restrict the choice of customers 

o tout. In the touting algorithm, we restrict touting to customers 

hose predicted fill level is at least 50% of their tank capacity. 

ection 5.4.2 will examine the algorithm’s sensitivity to this choice. 

.2.3. Waiting vs. touting 

Obviously touting only makes sense if the route planned for the 

ext day still has sufficient capacity to incorporate additional cus- 

omers. On the other hand, if there is little demand and there are 

o customers who have to be serviced on the next day because 

f their due date, then it may be more beneficial to simply wait 

or new orders to arrive and not send the vehicle out at all. Con- 

equently, we consider touting only when the utilization of next 

ay’s vehicle is under a threshold, �% of vehicle capacity, the ve- 

icle must be dispatched because at least one customer must be 

erved the next day, and serving all these urgent customers still 

llows for some slack in time to potentially serve others. 

While we apply this waiting rule in combination with all tout- 

ng heuristics, waiting is of course also possible if touting is not 

sed. This strategy is called Wait-if-Possible , where if the vehicle 

tilization of the next day’s route is under �% of its capacity and 

here are no customers due next day. We check whether it is pos- 

ible to shift the customers in the initial plan to the following day 

ithout deteriorating the objective function. If this is possible, the 

ehicle is not dispatched, hoping that next day we receive orders 

rom conveniently located customers such that we can come up 

ith a more efficient plan. The scheduled jobs remain in the set of 

pen orders. De Bruecker, Beliën, De Boeck, De Jaeger, & Demeule- 

eester (2018) also stated that instead of having multiple half days 

ork, it may be more advantageous to have a complete day off. For 

xample, the drivers might use these off days for training purposes. 
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Fig. 5. Locations of the customers and the depot for two drivers. 
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.2.4. Touting heuristics 

Having defined the background information, we now propose 

he following heuristics to tout customers: 

• Tout using Distance per Litre : This heuristic touts customers in 

order of the benefit obtained on the total distance per litre of 

waste collected after their inclusion, given that the customer is 

inserted at the position requiring the smallest additional detour. 
• Tout using Relevance Measures : This approach first touts the cus- 

tomer which has the lowest relevance measure. 

It is possible to insert more than one additional customer via 

outing. We thus also test whether it is beneficial to re-optimize 

he VRP after the inclusion of every customer, and before the next 

outing is attempted. More specifically, we distinguish between 

• Tout without Re-Optimization : Here, we only add customers to 

the next day’s route without re-optimizing all tours. 
• Tout & Re-Optimize : This strategy allows re-optimizing the rout- 

ing decisions after the addition of the touted customer in the 

next day’s route. 

In all cases, touting continues until either there are no further 

otential customers or it is not feasible to add another customer 

o the next day’s route. Furthermore, a customer is only touted as 

ong as their insertion does not violate time and capacity feasibility 

f the solution and if and only if the solution with the additional 

ustomer is better than the current solution, i.e., it has a smaller 

alue for total distance per litre of collected waste. Note that, the 

outing problem solved on each day has the objective of mini- 

ization of total distance traveled by the vehicles as it considers 

 static set of customers at the time of planning. However, if ad- 

itional customers are included in the tours through touting, then 

he total demand changes compared to the case where there are no 

dditional customers. Therefore, comparing the solutions to these 

ifferent sets of customers through their total distances is not fair. 

hus, while comparing different strategies, we consider total dis- 

ance driven per litre of waste collected. Nevertheless, since the 

mount of waste collected is constant except for end-of-problem 

ffects, these two objectives are equal in the long-run. 

. Experimental study 

In this section, we first introduce the instances we use in the 

xperiments. Then, we show that for a dynamic multi-period VRP, 

olving each period’s subproblem with an exact method is no bet- 

er than the LNS heuristic we employ in this paper. Finally, we per- 

orm simulation studies to investigate the proposed touting strate- 

ies. The heuristics as well as the simulations were implemented 

n Java and all computations were performed on a PC equipped 

ith an Intel Core i7 2.60 GHz processor and 32 GB of RAM. 

In LNS, the maximum number of iterations is set to 40 0 0, and

he removal rules select half of the customers to be removed from 

he current solution. Regarding the percentage of customers re- 

oved from the solution, in several papers studying LNS, the per- 

entage of customers to be removed from the solution is ran- 

omly selected from the interval [10%–40%]. However, our initial 

xperiments showed that 50% provides better results, which has 

een observed also in the literature. For example, Liu, Tao, & Xie 

2019) conducted experiments with this value but decided to use 

 lower ratio because of the longer computational times of the for- 

er. As we are not constrained with the time because of the small 

umber of customers to be routed on a day, we decided to con- 

inue with 50% for more promising results. 

.1. Problem instances 

In the experiments, we use real world data from a waste collec- 

ion company operating in the UK. The company has several depot 
8 
ocations across the country and each depot has dedicated drivers 

ho cover different geographical areas. Customers’ waste is accu- 

ulated in tanks at a random rate which depends on the size of 

heir business. When the accumulated waste is close to the max- 

mal tank capacity, the customer requests a collection. They also 

tate the lead time they require, typically seven working days be- 

inning from the day of request. 

As only the data from one depot and its two drivers was made 

vailable to us, in the experiments, we use this depot of the com- 

any and the historical data for these drivers who operate for that 

epot. The dataset covers three months of waste collections of 

hese two drivers. Each collection order includes the customer’s 

ame, postcode, date when the waste collection order has been 

laced, and the amount of waste requested to be collected. Cus- 

omer locations are shown in Fig. 5 where the depot is represented 

y a red house. Total numbers of collections in the instances are 

73 and 260, whereas the numbers of unique customers in the net- 

ork are 142 and 125 for drivers 1 and 2, respectively. The dataset, 

hich includes these historical orders as well as the problem pa- 

ameters, such as vehicle capacity and time limits is available at 

endeley Data ( Branke, Deineko, & Strauss, 2023 ). 

The service time at a customer location is substantial and can- 

ot be ignored. It consists of a constant setup time and a vari- 

ble collection time. Setup time includes preparing and disman- 

ling the collection tools before and after the collection, respec- 

ively, whereas the collection time is the time spent on actually re- 

oving the waste from the tank and is proportional to the amount 

f waste collected. Since the company does not have records of 

he times the drivers spend on customer sites, we estimate these 

ervice times using linear regression based on data from differ- 

nt drivers’ operations. We collected 430 data points and using 

hese values, we found the service time can be approximated by 

 = 12 . 06 + 0 . 01565 w , where w is the amount of waste collected in

itres and s is the service time in minutes. 

We use this historical data of the company directly in the ex- 

eriments presented in Section 5.2 , whereas in Section 5.3 , we 

se simulated data, which is generated using the properties of this 

ata. 

.2. Comparing exact and heuristic VRP solvers 

Since the requests arrive continuously over time and the prob- 

em is solved on a rolling time horizon, an optimal plan for a par- 

icular planning horizon may become sub-optimal after arrival of 

ew orders, i.e., solving each period’s VRP to optimality does not 
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Table 2 

Comparison of results of solution approaches using exact and heuristic algorithms. 

Driver 1 Driver 2 

Subproblems are solved exactly heuristically exactly heuristically 

Total distance (km) 13,327 12,943 9334 9274 

Average lead time (days) 2.52 2.52 3.14 3.16 

Average capacity utilization 62.24% 62.78% 74.28% 74.37% 

Number of routes 55.0 54.5 56 55.8 

Average number of customers served per route 4.96 5.01 4.66 4.65 

Computational time (sec) 13,205 28.92 51,058 51.64 
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Table 3 

Distance per litre values for different relevance measure parameter set- 

tings. 

Parameter Values α, β, γ = 1 / 3 α = 1 β = 1 γ = 1 

Driver 1 0.02046 0.02061 0.02085 0.02090 

Driver 2 0.01362 0.01374 0.01369 0.01387 
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uarantee that the overall solution is optimal. This is illustrated 

hrough a toy example in Appendix C . For this reason, and because 

f the computational time required by exact solvers, we use the 

NS described in Section 4 in our experiments. However, in order 

o judge the quality of this heuristic, we compare it with an ex- 

ct solver. Note that each method is applied to solve the problem 

or a given single stage on a rolling horizon, rather than solving 

he whole dynamic problem for the entire planning horizon. The 

athematical model can be found in Appendix A , and has been 

olved using CPLEX. 

Table 2 presents the results of both approaches tested on two 

eal-world order datasets. As the heuristic has a randomized com- 

onent, results are averaged over 30 runs, while the mathematical 

odel is deterministic and solved only once. Capacity utilization is 

alculated by dividing the amount of waste collected by the vehicle 

apacity. Lead time shows the average number of days between the 

ay a customer requests a collection and the day it is served. The 

omputational time is the total time to solve the problems over 

 3-month horizon. Interestingly for these problem instances, the 

pproach using the LNS heuristic to solve the every-day routing 

roblem is able to find solutions with even smaller total distance 

han if the exact method is used to solve each day’s VRP. While this 

ay seem surprising, this is due to the loss of overall optimality of 

he exact method when applied on a rolling horizon. In fact, opti- 

al solutions are often more brittle to changes than heuristically 

enerated ones. These findings have been previously pointed out 

lso in other studies ( Brinkmann, Ulmer, & Mattfeld, 2020; Powell, 

owns, & Marar, 20 0 0 ). We take these results as confirmation that

he chosen LNS heuristic is fit for purpose. 

.3. A simulator for demand management 

In the previous subsection we used the real-world order data. 

owever, touting changes the time of ordering due to some touted 

ustomers ordering sooner than expected, and thus, in order to 

est and compare different touting strategies, we needed to cre- 

te a simulator based on the real-world data that would allow the 

outing algorithm to interact with customers. 

Therefore, we first create simulated data based on the real in- 

tances introduced in Section 5.1 . To achieve this, we keep the cus- 

omer locations the same, as visualized in Fig. 5 . However, rather 

han using a historical set of orders as in the previous subsec- 

ion, we assume that customers accumulate waste over time, with 

he amount accumulated each day following a normal distribution 

ith mean μ and variance σ 2 . The parameters of the waste ac- 

umulation distributions are derived from real data on the order 

mounts and the times between consecutive orders using maxi- 

um likelihood estimation, and are assumed fixed throughout the 

imulation. The storage capacity of each customer is set to the 

aximum amount collected from the corresponding customer. For 

ach customer, the initial amount of waste at the start of the sim- 

lation is chosen uniformly at random between 0% and 95% of its 

apacity. Then, on each planning day, a random value, which rep- 

esents the waste generated by that customer on that day, is gen- 
9 
rated according to the customer’s demand distribution and its ac- 

umulated waste is increased accordingly. 

The customers request service when their accumulated waste 

eaches 90% of their storage capacity. When touted before they 

ould usually order, they will agree to a collection with probability 

p accept = 

w 

0 . 9 W 

where w is the amount of waste accumulated and W 

s the customer’s storage capacity. In other words, their probabil- 

ty of accepting a collection increases linearly with the amount of 

aste accumulated. The neighborhood threshold used in the rele- 

ance measure calculation, ρ , is set to 25 km. The threshold for the 

tilization of next day’s vehicle, �, is set to 90%. 

The dataset including the distribution parameters of each cus- 

omer’s waste accumulation, tank storage capacities as well as the 

istance and travel time matrices is available at Mendeley data 

 Branke, Deineko, & Strauss, 2023 ). The simulation horizon has 

een set to 240 days, corresponding to one business year. 

.4. Analysis of demand management strategies 

Here, we summarize the results for the touting strategies pre- 

ented in Section 4.2.4 . We will start with an analysis of the 

eights in the calculation of our relevance measure. We usually 

ssume that only customers with a predicted amount of accumu- 

ated waste that is greater than half of their storage capacity are 

onsidered for touting, although we will vary this threshold in 

ection 5.4.2 . Finally, we demonstrate the advantage of touting by 

omparing it with approaches that don’t use touting. The key ob- 

ective to minimize is the distance per litre collected, as the to- 

al volume collected depends on the touting strategy and thus dis- 

ance alone is not a suitable objective. 

.4.1. Relevance measure parameters 

The relevance measure proposed in Section 4.2.1 is a linear 

ombination of three criteria. To better understand the importance 

f the different criteria, we run an experiment using the Tout using 

elevance Measures & Re-Optimize approach where the relevance is 

alculated using only one of the criteria, or equal weighting of the 

ifferent criteria. In Table 3 , we report the average of the distance 

raveled per litre of waste collected over the planning horizon for 

oth drivers. The results show that using an equal weighting in the 

alculation leads to a lower average distance per litre of waste col- 

ected for both drivers, thus gives better results. One-sided paired 

-tests show that the equal weighting of the three criteria is sig- 

ificantly better at 0.05 level than any of the individual criteria for 

ll cases and for both drivers. Therefore, we use equal weighting in 

he following experiments. 
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Fig. 6. Statistics for different accumulation levels. 
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.4.2. Accumulation threshold 

We use a minimum accumulation threshold to determine which 

ustomers may be considered for touting. The default setting in 

his paper is 50%. We increase it to 75% and decrease it to 25%,

hen we compare the performances of all values for Tout using Rel- 

vance Measures & Re-Optimize strategy. 

In Fig. 6 , we report some statistics emerging from the experi- 

ents with these accumulation levels. According to these results, 

hile the accumulation threshold decreases, we observe an in- 

reasing trend in the number of touted customers because the set 

f potential customers that are considered in touting gets larger. 

herefore, there are more customers to tout and it is easier to find 

ore appropriate customers from a larger set. In parallel, the av- 

rage number of days between two visits decreases since the cus- 

omers are visited more frequently due to more toutings. This is 

lso reflected in the % times the customers order by themselves or 

re touted, with the first percentage increasing while the threshold 

s increasing. As a result, when the accumulation threshold is set 

o 25%, visiting customers more frequently slightly decreases the 

fficiency with a higher total distance traveled per litre of waste 

ollected compared to 50% setting. On the other hand, in the 75% 

etting, since the set of potential customers is smaller, fewer cus- 

omers can be approached. This decreases the advantage of tout- 

ng by not being able to reach the appropriate customers, which 

esults in higher distance traveled per collected amount. We again 

erform one-sided paired t -tests in order to validate the results. 

he test statistics show that the differences between 25% and 50% 

s well as between 50% and 75% are significant. Therefore, we con- 
10 
lude that 50% is an appropriate threshold for the accumulation 

evel to determine the potential customers to tout. 

.4.3. Benefit of touting strategies 

Based on the above analysis, we now test different touting 

trategies for both drivers using the accumulation threshold of 50% 

nd equal weighting for the relevance parameters ( α = β = γ = 

 / 3 ). Table 4 summarizes the average results of 100 simulation 

uns. The results in the No-Touting column are obtained without 

pplying any strategies, i.e., they belong to the solutions of the 

olling horizon route planning heuristic only. Column 3 summa- 

izes the results obtained by the Wait-if-Possible strategy without 

outing. The results of Tout using Distance per Litre , abbreviated 

y dist./lt. , and Tout using Relevance Measures , abbreviated by rel- 

vance , are grouped according to whether they are applied along 

ith re-optimization or not. Tout without Re-Optimization strategies 

re given in the fourth and fifth columns, whereas the last two 

olumns summarize the results of Tout & Re-Optimize strategies. 

We report the total distance traveled throughout the planning 

orizon, total number of vehicles dispatched, which is the num- 

er of routes generated, average capacity utilization of the vehicle, 

verage lead time (in days) for the customers served, i.e., the num- 

er of days between the day a customer requests a collection and 

he day they have been serviced, the number of touted customers, 

he number of customer visits during the planning horizon, the av- 

rage of the distance traveled per litre of waste collected over the 

lanning horizon, and the computational times in seconds required 

o simulate the entire year. We then compare the performances 
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Table 4 

Results of different strategies. 

Strategies Wait- No Re-Optimization Re-Optimization 

No-Touting if-Possible Dist./Lt. Relevance Dist./Lt. Relevance 

Driver 1 Total distance 50,289 35,500 34,167 34,181 35,559 33,931 

Number of routes 233 159 149 150 150 149 

Capacity utilization 59% 86% 93% 92% 92% 93% 

Average lead time 2.41 4.10 3.81 3.75 3.80 3.76 

# Touted customers - - 125 149 112 147 

# Customer visits 815 815 854 863 850 861 

Distance / litre collected 0.03050 0.02153 0.02060 0.02060 0.02146 0.02046 

Imp. wrt. 
Wait-if-Possible -41.7% - 4.3% 4.3% 0.3% 5.0% 

No-Touting - 29.4% 32.5% 32.5% 29.7% 32.9% 

Computational time 106.7 107.3 123.5 132.3 214.7 230.4 

Driver 2 Total distance 37,712 33,387 32,228 32,030 33,150 31,926 

Number of routes 240 217 208 209 208 208 

Capacity utilization 81% 90% 94% 94% 94% 94% 

Average lead time 3.59 4.73 4.22 4.17 4.22 4.16 

# Touted customers - - 165 193 168 202 

# Customer visits 879 879 935 945 936 950 

Distance / litre collected 0.01618 0.01432 0.01375 0.01367 0.01414 0.01362 

Imp. wrt. 
Wait-if-Possible -13.0% - 4.0% 4.5% 1.3% 4.9% 

No-Touting - 11.5% 15.0% 15.5% 12.6% 15.8% 

Computational time 104.2 123.6 134.7 160.1 310.4 322.4 
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f different touting strategies with those of No-Touting and Wait- 

f-Possible strategies and report the improvements with respect to 

hese strategies. 

The results reveal that the default rolling horizon planning that 

olves a VRP each day and sends out a vehicle if there is an open

ustomer order is a rather inefficient strategy. The simple Wait-if- 

ossible strategy that delays sending out the truck until there is 

ither sufficient demand or it has to be sent out because of an im- 

inent due date is dramatically more efficient (29.4% for Driver 1, 

1.5% for Driver 2). This makes sense because occasional waiting 

eans the pool of waiting orders is larger, allowing to construct 

ore efficient tours. On top of this, touting is able to further im- 

rove efficiency by around 4.5%. The differences between the tout- 

ng strategies are relatively small, except a generally poor per- 

ormance of the distance per litre priority rule together with re- 

ptimization. Without re-optimization, the distance per litre and 

elevance heuristics perform comparable for Driver 1, while the rel- 

vance heuristic is substantially better for Driver 2. We thus con- 

lude that overall, the relevance measure with re-optimization is 

he most sensible choice. 

Further observations complement the analysis. The number of 

ours is the greatest for No-Touting , since the truck is always sent 

ut if there is an open customer order. The policy Wait-if-Possible 

ollows No-Touting and the touting strategies have very close num- 

ers for both drivers. As a result, the utilization of the vehicles is 

igher when touting is performed. One may argue that touting will 

ot only be more efficient and cost effective, but also has advan- 

ages for the drivers, as the number of days a driver goes out to 

isit customers is smaller. This may create an opportunity for train- 

ng for the drivers, or simply to take some days off. 

Average lead time is the shortest in No-Touting since all cus- 

omers are serviced as soon as possible. On the other hand, Wait- 

f-Possible has the longest average lead time, as the customers may 

e kept unserviced until their due dates if there are few orders 

o fill the vehicle. Touting strategies lead to smaller average lead 

imes than those in Wait-if-Possible case, as the touted customers 

re served one day after they are approached, which provides the 

mallest possible lead time. 

When the routes are re-optimized after the addition of the 

outed customers, the existing customers may be redistributed to 

ther routes such that the total distance is lower compared to the 

nitial solution. Hence, a better solution is obtained for this set 
11 
f customers. However, as new customers arrive on subsequent 

ays, the previously shifted customers may prevent obtaining a 

ood solution. It may be even harder to tout more customers. 

his is observed when the customers to tout are selected using 

he distance per litre criterion, which is a myopic approach. How- 

ver, when the relevance measure is used as criterion, then re- 

ptimisation is beneficial in the long-term and further increases 

he efficiency. Note that this benefit is achieved at the expense 

f increased computational times (74% and 101% higher compared 

o the no re-optimization strategy for Driver 1 and 2). It is also 

bserved that the number of customer visits during the planning 

orizon is higher when touting is used, but this is outweighed by 

he more efficient routes. 

Another perspective from the customers’ standpoint is that they 

re served slightly more often with touting (see Fig. 6 ). For the 

nstance for Driver 1, the average number of days between two 

onsecutive collections is 71 and 74 when touting is used and 

ot used, respectively. These values are 69 and 73 for the in- 

tance for Driver 2. These differences are small and are not ex- 

ected to make a noticeable difference in the experience of the 

ustomers. On the other hand, for the instances for Driver 1 and 

river 2, when touting is performed, 14% and 18% of the time, 

he customers are served even before they need to place an or- 

er via touting, whereas when touting is not performed, they need 

o place the orders by themselves all the time. According to our 

artner company, some customers do not always pay attention to 

ow much waste has been collected in their containers and some- 

imes this leads to overflowing. This is not only environmentally 

ostly, but also requires that an urgent collection must be arranged 

or this customer. Although we have not included these kinds of 

ncertainties in our simulation, customers are probably happy to 

e approached and have their waste collected before an overflow 

appens. 

We perform additional experiments using the Tout using Rele- 

ance Measures & Re-Optimize strategy by removing the probability 

hat a touted customer accepts the offer, i.e., they always accept 

eing served on the next day. For both drivers, as expected, the 

umbers of touted customers and overall customer visits increase 

nd the average lead time as well as the number of days between 

wo consecutive visits decreases. However, vehicle utilization and 

umber of routes remain unchanged. For the distance traveled per 

itre of waste collected, although it has slightly increased and de- 
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Fig. 7. Route plans before and after touting potential customers. 

Table 5 

Constructive heuristic results of different strategies. 

Strategies Wait- No Re-Optimization Re-Optimization 

No-Touting if-Possible Dist./Lt. Relevance Dist./Lt. Relevance 

Driver 1 Total distance 53,342 40,233 39,931 39,873 39,432 39,024 

Number of routes 234 148 146 146 146 146 

Capacity utilization 59% 93% 94% 94% 94% 94% 

Average lead time 2.16 4.46 4.37 4.35 4.30 4.25 

# Touted customers - - 31 32 46 53 

# Customer visits 815 815 828 829 831 836 

Distance / litre collected 0.03235 0.02440 0.02411 0.02410 0.02384 0.02357 

Imp. wrt. 
Wait-if-Possible -32.6% - 1.2% 1.2% 2.3% 3.4% 

No-Touting - 24.6% 25.5% 25.5% 26.3% 27.1% 

Computational time 0.03 0.47 0.52 0.53 1.25 1.32 

Driver 2 Total distance 46,378 41,494 40,713 40,508 39,459 38,848 

Number of routes 239 207 205 205 205 205 

Capacity utilization 81% 94% 95% 95% 95% 95% 

Average lead time 2.83 5.02 4.78 4.76 4.73 4.65 

# Touted customers - - 73 82 94 112 

# Customer visits 879 879 908 912 913 921 

Distance / litre collected 0.01989 0.01780 0.01740 0.01732 0.01686 0.01659 

Imp. wrt. 
Wait-if-Possible -11.8% - 2.2% 2.7% 5.3% 6.8% 

No-Touting - 10.5% 12.5% 13.0% 15.2% 16.6% 

Computational time 0.02 0.91 1.08 1.13 1.67 1.76 
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s

reased for Driver 1 and 2, respectively, paired t-tests show that 

he differences are not significant. 

Figure 7 illustrates a simulation day in which touting is per- 

ormed using Tout using Relevance Measures & Re-Optimize strategy. 

he depot is represented by an orange house and the customer set 

n the current plan involves customers 1–5. The planned route for 

he next day is depicted on the left with a total distance of 94 

iles and 90 0 0 litres of waste collected. Customers 6 and 7, which

re shown in the right figure, with demands of 1200 and 10 0 0

itres of waste are found as potential customers. Because their ad- 

ition is feasible in terms of capacity and time, they are touted 

nd included in the current plan. As a result, the vehicle could col- 

ect 2200 litres of additional waste with only 4 miles of detour. 

istance traveled per litre collected has decreased from 0.0104 to 

.00875. 

Finally, in order to demonstrate that the benefits of touting are 

ndependent of the algorithm used to solve the routing problem, 

e conduct another set of simulation experiments. Here, we only 

se the construction heuristic to obtain a solution, we do not im- 

rove it by means of LNS. The details of this heuristic are out- 

ined in Algorithm 1 . Similarly, in Tout & Re-Optimize strategies, 

hile re-optimizing the solution after considering a touted cus- 

omer, only the initial solution is constructed, it is not further im- 

roved. Table 5 presents the results for Drivers 1 and 2. The rel- 
12 
tive findings are analogous to those obtained with the more so- 

histicated heuristic. 

Since these results are obtained by using only the initial solu- 

ion construction heuristic, it is expected that re-optimization re- 

ults in better solutions. Compared to using the LNS heuristic, of 

ourse, the solution quality is on average 13.3% and 23.6% worse in 

erms of total distance per litre collected for Driver 1 and Driver 

, respectively. In addition, average lead times are longer in this 

pproach, except for the no-touting strategy. This is due to the na- 

ure of the construction heuristic, which tries to fill the next day’s 

ehicle. Since more jobs are scheduled in the first vehicle, the av- 

rage lead time decreases. While the relative performances of dif- 

erent strategies are similar to that of the heuristic with improve- 

ent component, Tout using Distance per Litre & Re-Optimize strat- 

gy provides a better result compared to the strategies where re- 

ptimization is not used. Overall, these results demonstrate that 

outing relevant customers improves the efficiency in the long-run, 

ndependent of the method to solve the VRP. 

.4.4. Experiments on additional instances 

As our industrial partner supplied the data of two drivers that 

re discussed above, to further validate the performance of the 

roposed strategies, we conduct additional experiments on in- 

tances we generate based on the well-known VRPTW instances of 
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Table 6 

Results of different strategies for C101 instance. 

Strategies 

Wait- No Re-Optimization Re-Optimization 

No-Touting if-Possible Dist./Lt. Relevance Dist./Lt. Relevance 

Total distance 21,869 16,282 16,246 16,264 16,364 16,133 

Number of routes 224 165 161 161 161 161 

Capacity utilization 67.9% 92.5% 95.7% 95.6% 95.7% 95.9% 

# Touted customers - - 47 49 46 52 

C101 # Customer visits 609 609 633 636 634 637 

Distance / litre collected 1.79440 1.33382 1.32003 1.32044 1.32779 1.30905 

Imp. wrt. 
Wait-if-Possible -34.5% - 1.0% 1.0% 0.5% 1.9% 

No-Touting 0.0% 25.7% 26.4% 26.4% 26.0% 27.0% 

Total distance 21,339 15,542 15,515 15,502 15,598 15,487 

Number of routes 232 172 168 169 168 168 

Capacity utilization 69.8% 94.3% 96.9% 96.7% 97.0% 97.0% 

# Touted customers - - 45 47 42 51 

R101 # Customer visits 789 789 814 815 812 817 

Distance / litre collected 1.65046 1.19930 1.18937 1.18784 1.19503 1.18605 

Imp. wrt. 
Wait-if-Possible -37.6% - 0.8% 1.0% 0.4% 1.1% 

No-Touting 0.0% 27.3% 27.9% 28.0% 27.6% 28.1% 

Total distance 26,492 19,316 19,287 19,186 19,342 19,194 

Number of routes 230 169 165 165 165 165 

Capacity utilization 68.5% 93.4% 96.1% 96.0% 96.1% 96.3% 

# Touted customers - - 39 40 37 45 

RC101 # Customer visits 724 724 747 747 745 750 

Distance / litre collected 2.10621 1.53282 1.51796 1.51068 1.52220 1.50967 

Imp. wrt. 
Wait-if-Possible -37.4% - 1.0% 1.4% 0.7% 1.5% 

No-Touting 0.0% 27.2% 27.9% 28.3% 27.7% 28.3% 
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olomon ( Solomon, 1987 ). We select one instance from each prob- 

em category, where the customers’ locations are randomly dis- 

ributed across the network (R), or they are clustered (C) or half of 

hem is clustered and the other half is randomly distributed (RC), 

pecifically we use instances C101, R101, and RC101. As the data is 

esigned for a static VRP, we make some additions to adapt it to 

ur problem. First, we assume that a customer’s demand value in 

he Solomon instance is the tank capacity of the customer in the 

evised instance for our problem. Then to simulate the random ac- 

umulation process, we generate mean and variance values based 

n one of the drivers’ data. Using the relationship between the ca- 

acity and the mean and the variance in that data, we generate the 

ean and variance values in Solomon’s instances. 1 Then we set 

he maximum lead time to 10 days to obtain feasible schedules. 

e apply the simulation process as discussed in Section 5.3 and 

he average results of 100 simulation runs are presented in 

able 6 

We observe that the results for all three spatial distributions 

re consistent with the ones obtained using the company’s dataset. 

outing strategies bring substantial improvement relative to the 

o-Touting strategy, and using the relevance measure works better 

han using distance/litre. 

There are also improvements with respect to Wait-if-Possible 

trategy with again Tout & Re-Optimize using Relevance Measures 

ringing the highest improvement. 

. Conclusion 

We have presented a dynamic multi-period vehicle routing 

roblem as faced by a UK waste collection company. It is solved on 

 rolling-horizon with a Large Neighborhood Search to solve each 

ndividual VRP. The paper introduces the idea to integrate demand 

anagement into the tour planning via a method called touting . 

outing consists of contacting a customer expected to order a col- 

ection soon, and nudge them to place their order now. While this 
1 This dataset is included in the Mendeley Data ( Keskin, Branke, Deineko and 

trauss, 2023 ). 

t

c

w

13 
eans smaller amounts are collected and the customers need to be 

isited more frequently, it opens up the opportunity for the com- 

any to visit a customer when they are nearby anyway, potentially 

educing the overall distance traveled. 

We have proposed different strategies for touting potential fu- 

ure customers. Using real world data from waste collection indus- 

ry, we have shown that touting appropriate future customers on 

elevant days may save a considerable amount of fuel due to de- 

reased total distance traveled per litre of waste collected. Further- 

ore, the number of tours required is shown to be smaller if the 

outing strategies are followed, which may provide additional mon- 

tary benefits from the vehicle acquisition costs. Although these 

dvantages are shown using a real-world waste collection prob- 

em, the idea of exploiting knowledge of demand and active man- 

gement of that demand in the form of touting can be applied to 

any routing problems in which customers arrive dynamically, in- 

luding maintenance routing - as visiting the customers a few days 

efore their deadline would not make much difference - and rout- 

ng random and subscribed customers, for example Amazon could 

ontact subscribed customers to offer service before the scheduled 

ates if their routes are nearby customers on the tour. 

This research opens up several directions for future research. 

irst, in this study, the decisions are made at the end of each 

ime period. Future work may attempt to make decisions more dy- 

amically within the day, and the routes of the vehicles may be 

pdated according to the new information, i.e., each time a new 

rder is received, or when a customer accepts the touting offer. 

his will make not only routing, but also touting dynamic, i.e., 

ustomers to be touted change according to the new set of cus- 

omers and the current tour. Second, we have considered a single- 

ehicle routing problem as our industry partner uses fixed service 

egions per driver for operational reasons. While we anticipate that 

esults carry over to VRPs with multiple vehicles, this should be 

emonstrated. Third, the most successful strategy for touting was 

he proposed relevance measure that is a linear combination of 

hree criteria with equal weighting. Additional criteria such as the 

ustomer’s own anticipated demand could be integrated, and the 

eighting of the criteria could be more sophisticated. Finally, an- 
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ther future work may include incentivising customers by offering 

iscounts at the time of touting to increase the probability that 

hey accept the offer. 
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ppendix A. Mathematical model for the static VRP at each 

ime period 

Here, we present the mathematical formulation for the routing 

ubproblem on a day within the planning horizon. H = { 1 , 2 , . . . l}
tands for the planning horizon for the day the problem is solved 

nd is a subset of the whole horizon. Let C = { 1 , . . . , n } be the set

f known customers, which have not yet been serviced at the be- 

inning of the planning day. A depot is located at vertex 0. d i j and

 i j stand for the distance and travel time between vertices i and j. 

he vehicle has a load capacity L . Let the amount of goods to be

ollected from customer i , the due date of the order, and the time 

pent while collecting the goods at the customer site be q i , d i , and

 i respectively. Hence, the last period in the planning horizon, l, 

s determined by the latest due date of the customers. Each day 

 ∈ H has a time limit, i.e., the vehicle should be back at the depot

efore T t max . Furthermore, there is a limit T max on the total time 

pent over the planning horizon, e.g., weekly working time limit 

ccording to the hours of service regulations. The decision variable 

 i jt is 1 if and only if arc (i, j) is traversed on day t . u i jt and τt 

rack the tank load of the vehicle upon traversing arc (i, j) , and

otal time spent on day t , respectively. The mathematical model is 

ormulated as follows: 

inimize 
∑ 

t∈ H 

∑ 

i, j∈ C 
d i j x i jt (A.1) 

ubject to 

∑ 

j∈ C 

d i ∑ 

t=1 

x i jt = 1 i ∈ C (A.2) 

∑ 

j∈ C 
x i jt = 

∑ 

j∈ C 
x jit i ∈ C, t ∈ { 1 . . . d i } (A.3) 

∑ 

j∈ C 
u i jt −

∑ 

j∈ C 
u jit = q i 

∑ 

j∈ C 
x i jt i ∈ C, t ∈ { 1 . . . d i } (A.4)

u i jt ≤ Lx i jt i, j ∈ C, t ∈ H (A.5) 

∑ 

j∈ C 
u j0 t −

∑ 

j∈ C 
u 0 jt = 

∑ 

i, j∈ C 
q i x i jt t ∈ H (A.6) 

∑ 

i, j∈ C 
(t i j + s i ) x i jt ≤ τt t ∈ H (A.7) 

τt ≤ T t max t ∈ H (A.8) 

∑ 

t∈ H 
τt ≤ T max (A.9) 

x i jt ∈ { 0 , 1 } i, j ∈ C, t ∈ H (A.10)

u i jt , τt ≥ 0 i, j ∈ C, t ∈ H (A.11) 
14 
The objective function, (A.1) minimizes the total distance trav- 

led over the remaining planning periods. Constraints (A.2) ensure 

hat each customer is serviced in one of the periods until their 

ue date, whereas Constraints (A.3) establish the flow conserva- 

ion. Constraints (A.4) - (A.6) track the load of the vehicle and en- 

ure that the tank capacity is not exceeded. Constraints (A.7) cal- 

ulate arrival time at the depot after completion of the route and 

onstraints (A.8) make sure that it does not exceed the time limit 

n each period. Total time limit over all periods is satisfied by Con- 

traint (A.9). Finally, (A.10) - (A.11) define domains of the decision 

ariables. 

ppendix B. Framework for solving the vehicle routing 

roblem 

In this appendix, the details of the algorithm, which we use 

o solve the multi-period vehicle routing problem throughout the 

imulation, are presented in Algorithm 2 , where x stands for a so- 

lgorithm 2 An LNS Framework to Solve Multi-Period VRP. 

1: Construct an initial solution, x init 

2: x best , x pre v ious ← x init 

3: while iter ≤ maximum number of iterations do 

4: Select a removal rule randomly 

5: Determine q % of the scheduled customers according to the 

removal rule 

6: Remove the determined customers from the current solution 

7: Select an insertion rule randomly 

8: Insert the removed customers into the solution according to 

the insertion rule, obtain a new solution, x current 

9: if f (x current ) < f (x pre v ious ) then 

0: x pre v ious ← x current 

11: end if 

2: if f (x current ) < f (x best ) then 

3: x best ← x current 

4: end if 

5: end while 

ution, which is a set of routes belonging to different time periods 

nd executed by the same vehicle, while f (x ) stands for the total 

ength of the routes in solution x . x current , x pre v ious , and x best corre-

pond to the solution obtained in the current iteration, the incum- 

ent solution the algorithm has had in the previous iteration, and 

he overall best solution found until that iteration, respectively. 

ppendix C. Comparison of solutions on a rolling horizon 

This appendix illustrates the fact that for the problems where 

he customers arrive dynamically over time, the optimal solution 

btained using the customers known on one day may not be nec- 

ssarily optimal when applied on a rolling horizon. Let us consider 

he example in Fig. 2 without customer 4 to make the calculations 

impler. On the first day, customers 1, 2, 3, and 5 are known, and 

hey are optimally served as in Fig. C.8 -a. Total distance of this tour 

s 19.12, which is calculated assuming unit length for each arc and 

uclidean distances. Then the next day three more customers ar- 

ive and are served as shown in Fig. C.8 -b. Total distance of this 

our is 16.45. On the contrary, if only 3 customers are served on 

he first day as shown in Fig. C.8 -c, and one of them is left to the

ollowing day, then the total distances traveled on these two days 

ould become 12.80 and 16.53, respectively, which decreases the 

otal distance of two days’ tours from 35.57 to 29.33. 

https://doi.org/10.13039/501100006041
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Fig. C.8. Illustration of different solutions on a rolling horizon setting. 
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ppendix D. Markov decision process representation 

This appendix provides a dynamic programming formulation of 

he problem. To that end, let us define the state, decisions, rewards, 

xogenous information and the state transitions of the Markov De- 

ision Process that underpins our problem. With this terminology, 

e then can formally state its dynamic programming formulation. 

1. Stages, states and decisions 

We consider a finite planning horizon with a discrete time grid 

f decision epochs (stages). Let us assume that the customer ar- 

ivals occur within the day exogenously and this random infor- 

ation regarding demand collected over the day becomes avail- 

ble at the end of the day. Let us further assume that touting 

akes place in the next m epochs after the customer arrivals are 

omplete. Then the decision space consists of decision epochs k ∈ 

 e 1 1 , e 
1 
2 , . . . , e 

1 
m 

, e 1 m +1 , e 
2 
1 , e 

2 
2 , . . . , e 

2 
m 

, e 2 m +1 , . . . , K} , where e a 
b 

is the b th 

ecision epoch to determine which customer to tout on day a , and 
15 
nally there is a decision epoch to decide the tours after there are 

o further customers to tout. On the first day, we observe demand 

hat has arrived over the day in one batch at the beginning of pe- 

iod e 1 
1 
, and proceed on this basis with sequential touting deci- 

ions. The next m epochs represent the time interval over which 

outing decisions are being made and we observe the customers’ 

esponses to them; and the routing decision takes place in the last 

poch, e 1 
m +1 

. Therefore, we decide whether to tout a customer (and 

f so, whom – expressed by a decision variable x t 
k 
), and then ob- 

erve whether the touted customer responds positively to the of- 

er. At the respective last epoch e a 
m +1 

, for each day a , we observe

o further new information but schedule customers to be served 

n the next day based on all requests (including touted ones) re- 

eived to date, expressed by a decision vector x r 
k 
. 

At stage k , the system is in a state S k = 

R k = (q c 
k 
, d c 

k 
, h c 

k 
) c∈ C , T a (k ) ) , where C stands for the set of cus- 

omers. The array R k contains all yet unscheduled customer 

equests, consisting of q c 
k 

as the requested quantity to be collected 

rom customer c, with q c 
k 

> 0 if there is an outstanding order, and
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A  

A  

A

A  

A

A  

A

B

B  

B

C  

C  

D  

D  

D  

E  
 otherwise. Next, d c 
k 

corresponds to the deadline of the collection 

equest if the order is outstanding, or has no meaning if q c 
k 

= 0 .

ote that this notation allows us to also handle the case where 

rders remain unfulfilled beyond their deadline. The array h c 
k 

epresents customer c’s collection history, consisting of collection 

ates and collection amounts, which we use to predict the fill level 

t each customer and subsequently decide whether a customer 

ould be touted or not. Recall that we assume a finite and known 

ustomer population C; thus their locations are not changing 

rom one state to another and we do not need to explicitly carry 

he locations of the customers in the state variable. Finally, T a (k ) 

epresents the set of touted customers on the corresponding day 

 (k ) to which period k belongs, up until period k . We need to

eep track of touted customers to prevent contacting them again. 

f course, this information is also added to the history arrays 

 , but separating out which customers have been touted already 

akes the model easier to read. 

2. Rewards, exogenous information and state transitions 

Our overall objective is to minimize the expected routing cost 

cross all days in the planning horizon. Routing costs are incurred 

nly at the end-of-day stages k ∈ E = { e a 
m +1 

: a ∈ A } , where A is

he set of all days in the planning horizon. These costs, denoted 

y f (S k , x 
r 
k 
) , pertain to the final schedule for the next day given

equests in state S k and routing decision x r 
k 
. During the day we 

nly collect orders and this exogenous information becomes avail- 

ble at the beginning of each day in period e a 
1 

of day a in the

orm of an array R new 

k 
that contains quantities and deadlines of 

ll new requests. We assume that the underpinning distribution 

s known such that the expectation over R new 

k 
is well-defined. For 

he first decision epoch k = e a 
1 

of day a , we start in state S k =
R k −1 ∪ R new 

k 
, T a = ∅ ) . 

Subsequently, in each decision epoch e a 
i 
, i ∈ { 2 , . . . , m } , we de-

ide on which customer to tout (if any), and then observe whether 

he touted customer will accept the offer as well as what quan- 

ity to be collected. If customer c accepts the touting offer, then 

ts information is added to the state as R c 
k 

= (q c 
k 
, d c 

k 
) ; otherwise, if

ustomer c does not accept or if we do not tout in the first place,

hen R c 
k 

= ∅ for all c ∈ C. The set of customers touted so far, T a , is

xpanded such that it includes customer c and this new demand 

nformation is added to the request history of customer c, h c . We 

ssume that a touted request must always be scheduled for the 

ext day. Therefore, for the touted customers who have accepted 

ollection, d c 
k 

is set to the next day. The state transition is written 

s R k +1 = R k ∪ R c 
k 
. 

At the end of a day ( k ∈ E), we schedule to serve certain cus-

omer requests for the next day, which then are removed from the 

ool of orders to be served by setting the corresponding indicator 

 

c 
k 

= 0 , for all scheduled customers c ∈ C, and by adding the col-

ection information to the corresponding collection history h c . As- 

uming R (c k ) denotes the customers scheduled for the next day, 

e use the shorthand notation R k +1 = R k \ R (c k ) to represent this

ransition. 

3. Dynamic programming formulation 

With this notation, we now can express the problem as a dy- 

amic program. Let V k (S k ) be the value function at stage k and

tate S k ; more specifically, it is the minimal expected cost from 

tage k until the end of the time horizon K and is given by: 

 k (S k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E R new 
k 

[
V k +1 (R k ∪ R 

new 

k 
, T a = ∅ ) 

]
k = e a 1 ∀ a ∈ A, 

min c∈ C\{ c ′ ∈ C: q c ′ > 0 }\ T a ∪{ 0 } 
E R c 

k 

[
V k +1 (R k ∪ R 

c 
k 
, T a ∪ { c} ) ] k∈{ e a 2 , . . . , e 

a 
m 

} ∀ a ∈ A,

min x r f (S k , x 
r 
k 
) + V k +1 (S k \ S(x r 

k 
)) ∀ k ∈ E. 
k 

16 
hich is a combination of different cases depending on the type 

f the state. The first case corresponds to the initial states at the 

nd of a day, after the customer arrivals are complete and the in- 

ormation on these new customers is available. The second case 

s for the states where touting is performed, i.e., the customers to 

out are determined and their responses to the touting offers are 

bserved. The minimization is over the touted customers, however 

t also includes the case in which we do not tout any customers, 

hich is represented by 0. Finally, the last case stands for the last 

tates of a day, in which the routing decision is taken based on 

he available information on unscheduled customers, and routing 

osts based on the function f (S k , x 
r 
k 
) are incurred. The boundary 

ondition is given by V K+1 (S k ) = 0 for all states S k (since we sim-

ly assume that there are no further orders coming in on the final 

ay in the planning horizon). 

Clearly, this dynamic program is intractable due to its large 

tate space and the fact that it involves vehicle routing problems 

n each stage k ∈ E. Therefore, in Section 4 , we present a heuristic

pproach for tackling this problem. This heuristic approach con- 

tructs routes for currently known customers, then uses different 

ays to decide which (if any) customer to tout. In the Markov 

ecision model, routing decisions are made only in the final pe- 

iods k ∈ E since it is not possible to calculate the value function 

f the DP formulation in reasonable time for realistic instances of 

he problem, whereas in our heuristic we progressively add touted 

ustomers to the routes. 
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