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Abstract
Decades of work have been dedicated to developing and testing models that characterize how people make inter-temporal
choices. Although parameter estimates from these models are often interpreted as indices of latent components of the
choice process, little work has been done to examine their reliability. This is problematic because estimation error can
bias conclusions that are drawn from these parameter estimates. We examine the reliability of parameter estimates from 11
prominent models of inter-temporal choice by (a) fitting each model to data from three previous experiments with designs
representative of those typically used to study inter-temporal choice, (b) examining the consistency of parameters estimated
for the same person based on different choice sets, and (c) conducting a parameter recovery analysis. We find generally low
correlations between parameters estimated for the same person from the different choice sets. Moreover, parameter recovery
varies considerably between models and the experimental designs upon which parameter estimates are based. We conclude
that many parameter estimates reported in previous research are likely unreliable and provide recommendations on how to
enhance the reliability of inter-temporal choice models for measurement purposes.

Keywords Inter-temporal choice · Delay discounting · Parameter recovery · Measurement · Computational modeling

A fundamental feature of many decisions we face is the
trade-off between short-term and long-term consequences.
For example, the decision to attend university, eat healthy
food, or to quit smoking, all offer benefits that emerge
over the longer term, but also entail more immediate
challenges. These types of decisions are referred to as inter-
temporal choices, which involve deciding between options
with consequences that occur at different points in time
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(for reviews see: Doyle, 2013; Green & Myerson, 2004;
Lempert & Phelps, 2016; Loewenstein, Rick, & Cohen,
2008; Rung & Madden, 2018; Scholten & Read, 2010) The
majority of inter-temporal choice studies have examined
time preferences by asking participants to choose between
monetary choice options (usually two) which vary along two
dimensions: amount of money and time of receipt. A choice
then involves trade-offs between options that offer relatively
smaller rewards but are received sooner (smaller-sooner
option: SS) against relatively larger rewards which are to
be received later in the future (larger-later option: LL): for
example, $100 Today (SS option) or $150 in 3 Months (LL
option).

Inter-temporal choice has received widespread inter-
est across many different sub-disciplines in psychology
including cognitive (Dai, Pleskac, & Pachur, 2018; Zhao,
Diederich, Trueblood, & Bhatia, 2019), organizational
(Ballard, Vancouver, & Neal, 2018; Brodsky & Amabile,
2018), social (Trope & Liberman, 2003; Woolley & Fish-
bach, 2018), developmental (Liu, Gonzalez, & Warneken,
2019; Sparrow & Spaniol, 2018), health (Berkman, 2018;
Muñoz Torrecillas, Cruz Rambaud, & Takahashi, 2018), and
clinical psychology (Todokoro et al., 2018; Vanyukov et al.,
2016), as well as in the neuroscience (Achterberg, Peper,
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Duijvenvoorde, van Mandl, & Crone, 2016; Gluth, Hotal-
ing, & Rieskamp, 2017), economics (Carvalho, Meier, &
Wang, 2016; Castillo, Jordan, & Petrie, 2019), and manage-
ment (Crilly, 2017; Cubitt et al., 2018)literatures. The core
assumption (and fundamental empirical result) underlying
theories of inter-temporal choice is that people discount the
value of future outcomes. As a result, the subjective value of
an outcome is a decreasing function of the amount of time
before which the outcome is experienced. This phenomenon
has been referred to as temporal, time, or delay discounting.

The canonical and rational framework (or model) of
temporal discounting is exponential discounting whereby
the value of a future reward decreases with a constant
proportion (for more details see Section on Exponential
Discounting). However, human behaviour has been found
to be largely inconsistent with exponential discounting.
A common finding is that of hyperbolic discounting
(or decreasing impatience), whereby people discount
future rewards less strongly as time passes. Decades
of psychological research in inter-temporal choice has
identified a) that people’s observed behavior deviates from
rational theories (e.g., exponential discounting) in numerous
ways and b) the psychological and cognitive determinants
of how people represent time and make choices that
involve delayed outcomes. In particular, the development
and testing of computational models has accelerated our
understanding of how factors such as pleasure (gains),
pain (losses), time and uncertainty, influence people’s inter-
temporal choices (e.g., Ainslie, 1975; Ebert & Prelec,
2007; Gonzalez-Vallejo, 2002; Killeen, 2009; Loewenstein
& Prelec, 1992; Marzilli Ericson, White, Laibson, & Cohen,
2015; Samuelson, 1937).

More recently, the parameters of computational models
of inter-temporal choice have become the focus of
investigation. These models have been used as measurement
tools, whereby parameter estimates are interpreted as
indices of latent components of the choice process. For
example, estimates of the discount rate parameter of the
exponential and hyperbolic models, which reflects the rate
at which future outcomes are discounted, is often used
to measure individual differences in time preferences1

(e.g., impulsively or impatience (Kirby, Petry, & Bickel,
1999); (Muñoz Torrecillas, Cruz Rambaud, & Takahashi,
2018)). Differences in discount rate parameter estimates
have been explored between people of different age
groups (Samanez-Larkin et al., 2011), clinical populations
(Cheng & González-Vallejo, 2014), and across a variety
of experimental manipulations (Haushofer et al., 2013; Li

1The discount rate has a different meaning than the discount factor.
The discount rate refers to the degree to which future rewards or
outcomes are discounted, whereas the discount factor refers to the
discounted value of the reward or outcome (see Laibson, 2003).

et al., 2018; Liu, Gonzalez, & Warneken, 2019; Marzilli
Ericson, White, Laibson, & Cohen, 2015). For instance,
the discount rate parameter from the hyperbolic discounting
model is frequently used to compare time preferences in
substance abusers and non-clinical populations (for a review
see MacKillop et al., 2011, such as in Cheng and González-
Vallejo (2014) where discount rates were found to be higher
for heroin users than a matched control group, indicating
more impatience for the users group. Parameter values
from similar models, such as the hyperboloid model, have
also been used to measure changes in behaviour within an
individual, such as changes in time preferences due to the
magnitude of the outcome (Myerson & Green, 1995).

Parameter estimates from inter-temporal choice models
are also often compared with process measures, such
as measures of attention (Amasino, Sullivan, Kranton,
& Huettel, 2019; Fisher & Rangel, 2014). For instance,
using eye-tracking to measure visual attention, Fisher &
Rangel found that the hyperbolic discount rate parameter
correlates with the amount of time people spend looking
at information about delays, suggesting that impatience,
as measured by discounting, may be caused by attentional
biases. Similarly correlations between parameter estimates
and measures of neural activity are commonly used to
make inferences about how these processes play out in
the brain (e.g., Bos, van den Rodriguez, Schweitzer, &
Mcclure, 2014; Kable & Glimcher, 2007; Liu, Feng, Wang,
& Li, 2012; Marco-Pallarés, Mohammadi, Samii, & Münte,
2010). Even when the parameter values are not the primary
focus of the research, it has become common practice to
report their estimates and interpret them as meaningful.
For instance, Marzilli Ericson et al. (2015) report how
the weighting parameters (i.e., representing the degree of
importance placed on numerical values for outcomes and
delays) of their ITCH model vary across different framing
conditions and link this to the salience of different attributes
or types of comparisons within those conditions.

The tacit assumption implied from the research described
above is that estimates of model parameters reliably capture
meaningful psychological content. Despite the increasing
emphasis on interpreting parameter estimates, however,
we know of very little research that has examined the
reliability associated with inter-temporal choice models’
parameter estimates. This is important, because estimation
error can systematically bias conclusions that are drawn
from model parameters. Without first establishing that a
model’s parameters can be reliably estimated, it is difficult
to know whether meaningful conclusions can be made based
on parameter estimates (Heathcote, Brown & Wagenmakers
2015 Wilson and Collins, 2019).

In this paper, we examine the estimation properties
of 11 prominent models of inter-temporal choice (see
Table 1). We do so by conducting parameter recovery
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simulation analyses, separately for experimental data from
three different studies. In each study, we simulate data
from a prototypical inter-temporal choice experiment using
a range of parameter values for each model. We then fit
each model to the simulated datasets and examine the
extent to which the data-generating parameter values are
recovered. To anticipate our main results, we find that
the models vary widely in their parameter recovery, with
some models demonstrating excellent recovery and others
demonstrating very poor recovery. Recovery also depends
on the design of the study that is used to estimate the
parameters. In study 3, we also show that parameter values
for the same person differ depending on the choice sets
used, suggesting a lack of consistency in their estimates. We
conclude that researchers should use extreme caution when
interpreting the parameter estimates from certain models of
inter-temporal choice, especially when parameter estimates
are based on data from certain sets of items. We also
make recommendations regarding which approach might
offer more recoverable estimates for researchers wishing to
use these models for measurement purposes. The results
and recommendations of the current research not only will
inform the use of such models in future studies of inter-
temporal choice, but have the potential to (re)shape the
methods and experimental designs that are used to assess
people’s preferences with delayed rewards.

Effects andmodels of inter-temporal choice

In this section, we provide an overview of the inter-
temporal choice models that we examine in this research.
We consider 11 prominent models from the literature,
which differ in two key ways: Firstly, they differ in which
behavioral effects/regularities they predict, and secondly in
the theoretical assumptions they make about the processes
which generate these effects. Therefore, depending on the
effects they consider to be reliable and the theoretical
accounts they consider plausible, different researchers may
use different models to measure individual time preferences.
In this section we highlight the differences between the
11 models with respect to how they account for (or
not) four behavioral regularities; the common difference
effect, the magnitude effect, the delay duration effect, and
interval effects. We address these effects because they
are important for describing the motivation behind certain
models. However, this is not intended to be an exhaustive
list of inter-temporal choice phenomena.

Inter-temporal choice effects

The common difference effect refers to the tendency
for people’s preferences to change with time (Dai &

Busemeyer, 2014; Scholten, Read, & Sanborn, 2014).
Normatively, behavior should be consistent over time. This
means, for instance, if one prefers to receive $120 in two
years compared to receiving $100 in one year, then they
should also prefer $120 in one year to $100 today. The
previous example suggests that as long as the temporal
distance of 1 year is preserved across different choice
options (with the same monetary amounts), then the option
that is further delayed should always be selected. However,
people often switch preferences between these two choices,
preferring the larger-later option in the first choice (i.e.,
$120 in 2 years; a common delay of 1 year in both options),
whereas they choose the smaller-sooner option in the second
choice (i.e. $100 today; Weber & Chapman, 2005). More
generally, adding a common delay to both options tends
to make people more patient. This effect has also been
referred to as the immediacy effect (Keren & Roelofsma,
1995), delay effect (Scholten & Read, 2006), dynamic
inconsistency (Thaler, 1981), or hyperbolic discounting
(Kirby & Herrnstein, 1995).

The magnitude effect refers to the tendency for prefer-
ences to change with the absolute value of the outcomes.
Normatively, increasing the outcome magnitude of both
outcomes by a common multiplicative factor should not
influence preferences. According to discounted utility mod-
els (explained in detail below) for example, if both outcomes
are multiplied by a common factor (e.g., 10) then the dis-
counted utility of both options will also be multiplied by that
factor, and therefore the preferred option should not change.
Experimental evidence, however, suggests that people tend
to be more patient (i.e., more likely to pick the larger-later
option) when the magnitude of the outcomes is increased
(Thaler, 1981; Vincent, 2016).

The delay duration effect refers to the observation that
people tend to prefer the larger-later option less when the
time delays of both options are multiplied by a constant
greater than one (Dai & Busemeyer, 2014). Unlike the
previous two effects, this behaviour is consistent with
normative accounts. Multiplying the delays in this fashion
increases the delay of the larger-later option more than that
of the smaller-sooner, leading to a relatively greater increase
in the amount the larger-later option is discounted.

Finally, we consider two interval effects. The first of
these interval effects is called sub-additivity and refers to
the finding that when discounting is assessed over a whole
interval (e.g., 1 year) the observed rate of discounting
is lower than when it is assessed over sub-intervals that
make up that year (e.g., over each of the 12 months in
the year). The second interval effect, super-additivity is the
reverse, with more discounting over the whole interval than
would be expected based on discounting of the subintervals
(Scholten & Read, 2010). Preferences appear to shift from
showing sub-additivity to super-additivity as the interval
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between outcomes decreases and/or as the magnitude of the
outcome increases (Scholten & Read, 2010; Scholten, Read,
& Sanborn, 2014).

Discounted utility models

One of the earliest models proposed to account for inter-
temporal choice behavior is the exponential discounting
model (Samuelson, 1937). This model, and the majority
of those we examine, are discounted utility models, which
assume that people decide between inter-temporal prospects
as if they are discounting the value (or utility) of each option
based on how delayed it is, then choosing the option with
the highest discounted utility. In the exponential discounting
model the rate at which outcomes are discounted is stable,
that is, for each unit of time an outcome is delayed
it loses some stable proportion of its (remaining) value.
Formally, this is captured by the exponential discounting
function (Table 1, Eq. 1), where the outcome of an option
is multiplied by a discount term, which is an exponential
function of the time at which it will be received. In
the exponential discounting model, k is a discount rate

parameter, which measures differences in the rate at which
value is lost (i.e., discounting occurs), with larger values of
the parameter indicating greater discounting.

Equation 1 specifies how the discounted utility of each
option is calculated. The model is then applied to choice
data by mapping utilities to choice actions. The standard
economic approach is a deterministic mapping, which
assumes that people always choose the option with the
highest discounted utility (regardless of the size of the utility
difference). However, decades of research on the nature of
preferential choice (e.g., inter-temporal choice and risky
choice) has shown that people’s choices are better aligned
with “noisy” and probabilistic preferences (Rieskamp,
2008); that is, people do not always make the same choices
(e.g., maximizing some measure of subjective utility) when
presented with similar choice sets, and sometimes opt
for options with lower discounted utilities. Therefore, in
line with much of the literature (e.g., Dai & Busemeyer,
2014), we assume in the current work that the probability
of choosing the larger-later option is a logistic function
of the difference in the discounted utilities of the two
options (Table 1, Eq. 2). In the logistic function, σ is a

Table 1 Summary of models examined

Model Function(s)

Exponential Vi = xie
−kti (1)

pLL = L[σ(VLL − VSS)] (2)

Hyperbolic V = xi

1+kti
(3)

Double exponential Vi = xi [ωe−βti + (1 − ω)e−δti ] (4)

Generalized hyperbolic Vi = xi

(1+ktsi )
(5)

Hyperboloid Vi = xi

(1+kti )
s (6)

Generalized hyperbola Vi = xi

(1+αti )
β/α (7)

Constant sensitivity Vi = xie
−(αti )

β
(8)

Additive utility Vi = xα
i − λt

β
i (9)

Proportional difference d = max (|xLL|,|xSS |)−min (|xLL|,|xSS |)
max (|xLL|,|xSS |) − max (|tLL|,|tSS |)−min (|tLL|,|tSS |)

max (|tLL|,|tSS |) (10)

pLL = �[σ(d − δ)] (11)

ITCH pLL = L[β1 + βxA(xLL − xSS) + βxR(
xLL−xSS

x∗ ) + βtA(tLL − tSS)

+ βtR(
tLL−tSS

t∗ )] (12)

Trade-off vi = 1
γ

log(1 + γ xi) (13)

Qv = vLL − vSS (14)

wi = 1
τ

log(1 + τ ti ) (15)

Qw = κ
α

log[1 + α(
wLL−wSS

θ
)θ ] (16)

pLL = Q
1/ε
v

Q
1/ε
v +Q

1/ε
w

(17)

Note: In the above equations, xi and ti represent the monetary outcome and temporal delay associated with option i respectively. L(x) represents
the CDF of the standard logistic distribution evaluated at x, �(x) represents the CDF of the standard normal distribution evaluated at x, log(x)

represents the natural logarithm of x. For models with no likelihood function explicitly specified (all except the ITCH, proportional difference,
and tradeoff models), we assumed the likelihood function given in Eq. 2. To facilitate estimation of the Proportional Difference model, we
reparameterized the likelihood function for this model so that higher values of σ produced more deterministic decisions. The value function for
the Trade-off model differs for negative payoffs (see Scholten et al., 2014). However, since there were no negative payoffs in any of the three
experiments presented here, only the value function for positive payoffs is shown in the table
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free parameter governing how deterministic a person is,
with larger values indicating a steeper logistic function
and therefore more deterministic decisions. This choice
model can also be conceptualised as people choosing in
a deterministic manner, but having logistically distributed
noise (i.e., mistakes), with mean 0 and scale 1

σ
in the

calculation of the utility difference. For consistency, we will
use this choice function for all 7 of the discounted utility
models we consider.

Although influential, the exponential model, due to its
stable discount rate, does not account for the common
difference effect, which implies lower discount rates for
the more distant time period (1 to 2 years) than the more
proximal period (0 to 1 years). The other 7 discounted utility
models we consider were all proposed, in part, to capture the
common difference effect, albeit in different ways. Below
we categorise these models based on how they produce this
effect. It should be noted that all of these discounted utility
models, including the exponential, are able to account for
the delay duration effect, and with one exception, unable
to account for the magnitude effect in their most common
forms.2

Decreasing discount rates with time

A simple way to model the common difference effect is
to build a model with discount rates that decrease for
more temporally distant time points, rather than remaining
stable as in the exponential discounting model. This is how
the Hyperbolic discounting model produces the common
difference effect (Mazur, 1987). As the name suggests,
hyperbolic discounting assumes that the discount function
is a hyperbolic function of time, rather than an exponential
function (see Table 1, Eq. 3). In a hyperbolic model, rather
than outcomes losing a stable proportion of their remaining
value for each unit of time they are delayed, instead they
lose a decreasing proportion of their remaining value. In
Eq. 3, the k parameter is similar to the k parameter in the
exponential discounting function (Eq. 1). This parameter

2While the exponential model does not account for the common
difference or magnitude effects, combining it with the logistic
function does lead to preference strength changing as a function of
outcome magnitude and common delay. Multiplying both outcomes
by a common factor, similarly multiplies their absolute difference in
discounted utilities by the same factor, without changing the sign of
this difference. This means that the magnitude effect leads to stronger
preferences, i.e. those who prefer the SS (LL) option for small amounts
prefer the SS (LL) option more strongly for large amounts. Conversely
adding a common delay weakens preferences, without reversing them,
as discounting both options over an extra time period results in both
having their discounted utility, and therefore the difference, decreased
by the same additional proportion. Similar changes in preference
strength occur for the other discounted utility models.

determines the rate at which discounting occurs, with higher
values of the k parameter indicating higher discounting.

The Double-Exponential model produces a similar
pattern of decreasing discount rates by assuming that people
apply two separate discount rates to each choice option,
given by the β and δ parameters in Eq. 4. The discounted
value of an option is the weighted sum of the discounted
values produced by these two rates (Mcclure, Ericson,
Laibson, Loewenstein, & Cohen, 2007), with the parameter
ω (0 < ω < 1) determining the relative weight given
to each value. Mcclure et al. argue that these two separate
discount rates may be the result of different brain systems
being involved in the decision-making process, with more
future oriented/patient systems producing lower discount
rates, δ, than more present focused impatient systems, β.
Due to the shape of the exponential function, averaging
across two or more different exponential functions produces
a pattern of decreasing discount rates, similar to the
hyperbolic function.

Diminishing sensitivity to time

The Hyperboloid (Myerson & Green, 1995), Generalized
Hyperbolic (Rachlin, 2006) and Generalized Hyperbola
(Loewenstein & Prelec, 1992) models extend the baseline
Hyperbolic model by including a second mechanism (on
top of hyperbolic discounting) which can independently
produce the common difference effect. All three models
assume that discounting does not occur over objective time,
but instead over some form of subjective or psychological
time. If psychological time is assumed to be a concave
function of objective time, then people will exhibit
diminishing sensitivity to time. That is, the difference
between 1 year and 2 years from now will be treated
as shorter than the difference between now and 1 year
from now, despite both objectively being one year apart.
If discounting then occurs over this perceived time, the
common difference effect will occur, as adding a common
delay will shorten the perceived distance between the two
outcomes, and will therefore reduce the amount of extra
discounting the larger-later option undergoes relative to the
smaller-sooner.

The Generalized Hyperbolic model (Table 1, Eq. 5)
incorporates this notion by assuming that psychological
time is a power function of objective time, with s

determining the curvature of the relationship, where 0 <

s < 1 produces a concave relationship and s > 1 a
convex relationship (i.e., increasing sensitivity to time). The
Hyperboloid and Generalized Hyperbola models (Eqs. 6
and 7, respectively) use a slightly different form to produce
diminishing sensitivity to time, with the entire denominator
taken to the power, rather than just time. However, this will
similarly produce a concave relationship between objective
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and subjective time when 0 < s < 1 (Eq. 6) or β <

α (Eq. 7), and therefore similar effects. The Hyperboloid
and Generalized Hyperbola can be considered different
parameterizations of the same underlying model, with k =
α and s = β

α
.

Diminishing sensitivity to time can also produce the
common difference effect without the need for hyperbolic
discounting. The Constant Sensitivity model (Table 1, Eq. 8)
(Ebert & Prelec, 2007) produces the effect by assuming that
an exponential discount rate is applied over psychological
time, rather than objective time. As with the Generalized
Hyperbolic model, the Constant Sensitivity model assumes
that psychological time is a power function of objective
time, with β in Eq. 8 having a similar interpretation to s in
Eq. 5, and α a similar role to k in Eq. 1.

The final discounted utility model we consider (Additive
Utility model; Table 1, Eq. 9) also explains the common
difference effect through diminishing sensitivity to time,
by assuming that the discount rate is based on power-
transformed time rather than objective time. However,
its conceptualisation of how discounting occurs is very
different, and this allows it to produce effects that the other
models do not. In the previous seven discounted utility
models, the absolute amount of value that an outcome loses
per unit of time delay is a function of the outcome value,
as shown by the discount rate being multiplied by the value
(see Eqs. 1 & 3–8). In the Additive Utility model (Killeen,
2009) the amount of discounting is independent of the value
of the outcome; Instead the amount of utility (or value)
an outcome loses due to being delayed depends only on
the psychological/subjective length of the delay and the
discount rate parameter, λ (Eq. 9). This allows the Additive
Utility Model to capture the magnitude effect. Multiplying
the magnitude of the outcomes by a constant increases the
relative attractiveness of the larger-later option, and this
increase in attractiveness is not offset by any increase in
the effect of delay discounting. As a result, increases in
magnitude shift preferences toward the larger-later option.

Although unrelated to the common difference and
magnitude effects, the Additive Utility model also differs
from the other discounted utility models as it assumes that
the utility of an outcome is not its objective value, but
rather a power transformation thereof, with α determining
the curvature of the function. A similar utility function could
be added to the other discounted utility models (see (Dai &
Busemeyer, 2014). However, the canonical versions of these
models do not include such a transformation and typical
applications of these models assume a linear mapping
between objective value and utility. The empirical evidence
also suggests that this mapping is generally closer to linear
for inter-temporal choices than it is for other domains
where non-linear transformations are standard, such as
risky decision making (Abdellaoui, Bleichrodt, l’Haridon,

& Paraschiv, 2013; Cheung, 2020). As the goal of our
analysis is to examine the parameter estimates in contexts
in which the models are typically applied, we only apply
transformations of the objective value where specified in
Table 1.3

Attribute-wisemodels

The final three models we consider do not belong in
the discounted utility category. Rather than assuming that
people decide as if they calculate the discounted utility of
each option separately, these models assume that people
compare attribute values across options and decide by
weighting the attributes against each other. In all three
models presented here, it is assumed that people consider
the differences in the outcomes (e.g., $200 vs. $100) and
delays (e.g., 2 years vs. 1 years) between choice options,
and then reach a decision by weighting these differences
against each other. The exact way in which the differences
in attributes are computed and weighted against each other
differs between attribute-wise models.

These so-called attribute-wise models were developed
in response to evidence inconsistent with the discounted
utility framework and models, such as the interval effects
(Scholten & Read, 2010). Process-tracing methods and
measurements (e.g., eye-tracking data) provide additional
support for attribute-wise models, showing that comparing
choices along individual attributes (e.g., amount or delay) is
a frequent strategy among participants (Amasino, Sullivan,
Kranton, & Huettel, 2019; Reeck et al., 2017). The
distinction between discounted utility (or alternative-wise)
and attribute-wise models also parallels ongoing debates
in other areas of decision making (e.g., risky choice)
as to whether people use rules and heuristics based on
simple attribute comparisons to make decisions, or engage
in the arguably more cognitively demanding integration
of information across attributes required by models such
as discounted utility models (Brandstatter, Gigerenzer, &
Hertwig, 2006; Gonzalez-Vallejo, 2002).

The simplest of the three attribute-wise models, the Pro-
portional Difference model, assumes that people consider
the proportional differences in each of the two attributes
(Gonzalez-Vallejo, 2002). These proportional differences

3There are also non-linear utility functions that can allow the
discounting models to account for the magnitude effect, in particular
those with increasing elasticity, whereby multiplying both outcomes
by a constant leads to a larger proportional change in the value of the
larger outcome (Loewenstein & Prelec, 1992; Scholten & Read, 2010).
However, in addition to these transformations rarely being employed
in the literature, it is also an open question as to whether the magnitude
effect is best attributed to properties of the value function, or to features
of the discount rate, such as proposed by (Vincent, 2016).
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are calculated by dividing the difference in each attribute
by the maximum value offered for that attribute (Table 1,
Eq. 10). A decision is then made by calculating the differ-
ence between these two differences, and comparing it to a
threshold value δ. If the difference is greater than the thresh-
old then the larger-later option is chosen, if it is smaller
the smaller-sooner is chosen. As with the discounted util-
ity models, this decision process is assumed to be noisy
(Eq. 11), although in this case with normally distributed
noise. The threshold parameter, δ, can be considered a
bias parameter, with positive values indicating a bias for
choosing the smaller-sooner option and negative values the
larger-later option.

By assuming that people consider the proportional
difference in delay, the Proportional Difference model
naturally captures the common difference effect, as adding
a common delay to both options increases the maximum
delay, while leaving the absolute difference in delay
unchanged. Conversely, using proportional differences in
amount means that the Proportional Difference model does
not capture magnitude effects. The Proportional Difference
model is also the only model considered here that does
not capture the delay duration effect. This is because
multiplying the delays by a constant has no impact on
the proportional difference in delay, and therefore the
Proportional Difference model predicts that doing so will
have no impact on preferences.

The Inter-Temporal Choice Heuristic (ITCH; Marzilli
Ericson et al., 2015) builds on the Proportional Difference
model and assumes that people consider both proportional
and absolute differences in each attribute dimension (Table 1,
Eq. 12). This assumption allows the ITCH model to capture
the magnitude effect, as multiplying both outcomes by
a constant increases the absolute difference in outcomes
by that same constant, making the larger-later option
relatively more attractive. It similarly allows it to capture
delay duration effects. The ITCH model differs from
the Proportional Difference model by assuming that, in
addition to having a bias towards choosing sooner or larger
options, given by β1, participants can also vary in the
amount of weight they give each of the four types of
differences: absolute delays (βtA), relative delays (βtR),
absolute amounts (βxA), relative amounts (βxR). It also
uses the mean attribute values (rather than the maximum)
as the reference point when calculating the proportional
difference.

The final model we consider, the Trade-off model
(Scholten & Read, 2010), was developed to capture the
two interval effects (which the other 10 models we address
here do not account for), in addition to the other three
effects. The Trade-off model assumes that people make
decisions by comparing the difference in the utility of
the two options to the difference in the delay of the two

options. As with the Additive Utility model, the Trade-
off model assumes that the utility of an outcome is a
concave function of the objective outcome (in this case
in the log scale; Table 1, Eq. 13). Similarly, people do
not consider the objective delays to the two outcomes,
but rather psychologically weighted delay, which is also
a log function of the objective delays (Table 1, Eq. 15).
By assuming that people calculate the absolute difference
in the utility of the two outcomes (Table 1, Eq. 14), the
Trade-off model is able to produce the magnitude effect.
By assuming that psychologically weighted delays are a
concave function of objective delays, it can produce the
common difference effect through diminishing sensitivity
to delay. The Trade-off model produces sub-additivity and
super-additivity through the weighting function applied to
the difference in psychological delays (Table 1, Eq. 16).
This function weights the differences in delays against
the difference in amounts, with the κ parameter in
Eq. 16 determining the relative weighting of the two, the
α parameter determining the extent to which sub-additivity
is shown, and the θ parameter the extent to which super-
additivity is shown.4

Whatmakes a parameter estimate
meaningful?

As seen in the previous section, each model contains
parameters that are intended to map onto psychologically
meaningful constructs (e.g., discount rates, perceptions
of time). Estimates of these parameters can, in theory,
provide insight into the underlying construct they are
meant to reflect. For example, a researcher wishing to
examine the weight people place on the difference in
amounts might interpret the βxR parameter from the ITCH
model. Another researcher wishing to quantify the extent
to which people demonstrate sub-additivity in a certain
context might interpret the α parameter of the Trade-
off model. But how do we ensure that model parameters
are reliable representations of the latent psychological
and behavioral constructs? The first step is fitting each
candidate model to the data and comparing their ability
to parsimoniously account for the observed patterns of
behavior. The rationale is that the model that provides

4In our framework, because we assume choice is based on the
difference in discounted utilities, the Additive Utility model can also
be conceptualised as an attribute-wise model. The utility difference
produced by the model can be re-arranged into a difference between
attribute differences, i.e., d = (xα

LL − xα
SS) − λ(t

β
LL − t

β
SS). As this

is passed to a logistic function to calculate the choice probability,
the additive utility model is equivalent to a version of the Weighted
Additive Difference model with direct differences (Dai & Busemeyer,
2014).
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the best account for the data should also provide the best
account for the behavior under investigation. Consequently,
the calibrated/estimated model parameters should also
have been “tuned” in a way that reveal and explain
numerical properties of the latent construct that has
been instantiated by the model and its interactions and
relationships with other assumed psychological constructs
(inside or outside the model scope). For example, (Green
& Myerson, 2004) showed that a 2-parameter hyperbolic
model provides the best account for the delayed choices
of three different age groups, suggesting that discounting
of delayed rewards (in this particular dataset) is best
described by this functional form (as opposed to other
functional forms such as exponential discounting). Green et
al. compared the parameters from this model across different
age groups and used these differences to draw conclusions
about how discounting behavior changes with age (see also;
Green, Fry, & Myerson, 1994).

Such conclusions about latent psychological processes
rest on the assumption that parameter values reliably and accu-
rately measure the construct that they are intended to mea-
sure. However, human behaviour is noisy, idiosyncratic, and
adaptive. Noise may refer to anything that obstructs mea-
surement of the intended construct. For example, in the
context of inter-temporal choice, noise can be introduced: a)
due to participants having weak or inconsistent preferences
between choice options or b) due to poorly designed exper-
iments (i.e., choice sets) that do not allow for participants’
true preferences to be inferred. When fitting models to
behavioral data, we necessarily assume that some level
of noise is reflected in our model’s parameter estimates,
though what we assume to be noise will depend on the struc-
ture of the model and the processes it represents. Indeed,
noise itself can be a construct of interest (Gershman & Bhui,
2020). Ideally, we want to minimize the degree of noise that
intrudes into the parameter estimates, or similarly, to ensure
that the model does not over-fit the data (see e.g., (Pitt &
Myung, 2002); (Roberts & Pashler, 2000)). In other words,
a near-perfect model fit of the data may not be desirable,
as it may not allow for the separation of the true generating
process responsible for observed behavior and noise.

Parameter non-identifiability is another problem that can
obscure conclusions drawn from estimated parameter val-
ues (e.g., Bamber & van Santen, 1985; Krefeld-Schwalb,
Pachur, & Scheibehenne, 2022; Moran, 2016; Spektor &
Kellen, 2018). The issue of non-identifiability occurs when
more than one set of parameter combinations produce identi-
cal predictions about observed behavior. In other words,
there is not a unique mapping between model parameters
and data, and thus observed behavior can be explained by more
than one set of numerical values for the model parameters.

Parameter recovery can help identify issues with over-
fitting and non-identifiability. The main objective of
recovery is to establish the accuracy and consistency
of model parameters estimated from (synthetic) datasets
that have been produced using known parameter values
(Heathcote, Loft, & Remington, 2015). The advantage
of this exercise is that we already know two important
characteristics about the synthetic data: the generating
model and the model parameter values. With behavioral data
we are unsure about both. Knowing the true model of the
data and providing the model with the desired parameter
values, we can then examine whether the parameters that
generated the synthetic data can be recovered when the same
model is fit to these synthetic data. This helps researchers
to ascertain the extent to which a model’s parameters can
be reliably estimated and, if so, identify designs that are
appropriate for estimating them.

Parameter recovery exercises have been conducted with
models from different areas in preferential choice. Such
exercises are important especially when the models are used
as measurement models with the parameters differentiating
between groups (e.g., different age groups as in the example
above) or characterizing observed behavior (e.g., level of
impatience based on estimated discount rate). For example,
(Nilsson, Rieskamp, & Wagenmakers, 2011) performed a
parameter recovery on Cumulative Prospect Theory (CPT
(Tversky & Kahneman, 1992)). The exercise showed that
the loss aversion parameter which constitutes a key aspect
of the model, was hard to reliably estimate and recover.
Loss aversion correlated with the diminishing sensitivity
parameter for losses, as both parameters capture how losses
are being treated. Problems with loss aversion and other
CPT parameters have also been identified elsewhere (e.g.,
(Broomell & Bhatia, 2014); (Krefeld-Schwalb, Pachur, &
Scheibehenne, 2022)). Within the inter-temporal choice
literature, previous work has highlighted problems with
estimating and interpreting parameters from the hyperbolic
discounting model (Vincent & Stewart, 2020; Molloy et al.,
2020; Apesteguia & Ballester, 2018). However, no large
scale investigation has been conducted that systematically
examines parameter recovery using a broad set of models
and different datasets.

Identification of potential problems with certain model
parameters can also help provide solutions on how to
best assess the latent construct that a certain parameter is
assumed to measure. For example, loss aversion may be
indeed an important element of risky choice, but the way it is
implemented via the functional form of CPT makes it almost
indistinguishable from other parameters and elements of the
model (namely, diminishing sensitivity for losses). Certain
remedies (e.g., different functional forms and constraints
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on the parameter values) can help solve problems with
recovery performance and reduce redundancy between
model parameters.

A similar issue relating to the reliability of model
parameters is that of parameter consistency. The rationale is
that if a parameter reflects and measures a stable individual
trait, its value should correlate across different tasks
exploring the same psychological construct (Konstantinidis,
Speekenbrink, Stout, Ahn, & Shanks, 2014; Yechiam &
Busemeyer, 2008). Theoretically, loss aversion should be
a stable individual characteristic and describe behavior in
similar environments or experimental tasks. For example,
high correlations should be observed in the loss aversion
parameter when participants making choices between risky
prospects or when they evaluate individual lotteries (i.e.,
providing the certainty equivalent of a risky prospect).

Overview of current research

In this research, we examine the ability of each model to
account for widely observed behavioral regularities and the
reliability of parameter estimates based on experimental
protocols that have been used to examine these regularities.
Our analysis consists of three phases. In the first phase,
we perform a novel assessment of each model’s descriptive
adequacy, comparing the ability of all 11 models to
account for the pattern of empirical results in three
prior studies that use different experimental designs (see
Table 2). We then examine the consistency in each model’s
parameter estimates by assessing the correlation between
parameters estimated from the same individual across
different experimental conditions. In the third phase, we
conduct a parameter recovery analysis to examine the extent
to which each model’s parameters can be identified in the
designs used in each study.

In order to conduct a rigorous assessment of the
models, we utilize items and data from three prior studies
that are representative of the types of experiments that
are commonly used to examine models of inter-temporal
choice (see Table 2). In Study 1, we use data from
an experiment by Read et al. (2017; Study 2) which
employed the Kirby monetary choice questionnaire (Kirby,
Petry, & Bickel, 1999), one of the most commonly used
sets of choice items for studying inter-temporal choice
(Duckworth & Kern, 2011; MacKillop et al., 2011; Rung
& Madden, 2018). This choice set is designed to measure
hyperbolic discount rates (k, Eq. 3) and has been used to
study time preferences in a variety of domains, such as
studies of addiction (Kirby & Petry, 2004; Kirby et al.,
1999; MacKillop et al., 2011), education achievement
(Duckworth & Seligman, 2005; 2006), neuroimaging
(Contreras-Rodrı́guez et al., 2015; MacKillop et al., 2012;
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Monterosso et al., 2007), self-control (Duckworth & Kern,
2011), field studies (Chabris, Laibson, Morris, Schuldt,
& Taubinsky, 2008), and experimental manipulations of
discounting (Bulley et al., 2019; Read, Olivola, & Hardisty,
2017; Rung & Madden, 2018), amongst others (Foxall,
Doyle, Yani-de, & Wells, 2011; Housden, O’sullivan, Joyce,
Lees, & Roiser, 2010; Tate, Tsai, Landes, Rettiganti, &
Lefler, 2015). This choice set contains 27 items which pit a
larger-later option against an option that offers an immediate
reward of between $11 and $80. The delay for the larger-
later option ranges from 7 to 186 days and the reward
associated with this option ranges from $25 to $85. These
items are often analysed as 3 sets of 9 items, with the
magnitude of the outcomes involved increasing across the
sets. Within each set the items were designed so that the
delay at which a participant switches from preferring the
larger-later to smaller-sooner option can be used to estimate
the participant’s hyperbolic discount rate.

Although the Kirby et al. items are among the most
commonly used, it may be that a larger set of items is needed
to obtain reliable parameter estimates from certain models.
In Studies 2 and 3, we therefore used data from studies
which employed much larger choice sets. In Study 2, we
use data from an experiment by Konstantinidis et al. (2020;
the inter-temporal choice component of Experiment 1),
which provided a more fine-grained manipulation of delay
duration and reward magnitude. This experiment consisted
of 380 inter-temporal choices, in which participants had
to choose between $100 now and $X in D months, where
$X varied between $120 and $500 in $20 increments
and D varied between 2 months and 38 months in 2-
month increments. Participants were presented with every
combination of amount and delay once. In Study 3, we
use data from an experiment that was designed to elicit
three specific effects: the common difference, magnitude,
and delay duration effects. In this experiment, originally
reported by Dai and Busemeyer (2014); Experiment 3,5

participants chose between two delayed rewards and
different inter-temporal choice options were generated for
each participant. They used an adjustment procedure to
generate choice sets that were tailored to each participant.
The goal was to produce items that would be most suitable
for eliciting each of the three effects for that participant.
Each participant made 300 inter-temporal choices (100 for
each effect). For the items relating to the delay duration
effect, the larger-later options always had a delay that was
twice as long as the delay for the smaller-sooner options.
For the items relating to the common difference effect,
the larger-later delay always exceeded the smaller-sooner
delay by a constant amount (30 days). For both the delay
duration and the common difference effect, the shorter

5We thank Daniel Read and Junyi Dai for making their data available.

delays ranged between 2 and 40 days. For the items relating
to the magnitude effect, the larger-later reward amount was
always twice as much as the smaller-sooner reward, with
the smaller-sooner rewards ranging from $2 to $40. All
the data and code necessary to conduct the analyses can
be found at https://osf.io/5phxn/. These analyses were not
pre-registered.

Descriptive adequacy

We began by fitting each model to the datasets described
above and examining the extent to which each model
accounts for the patterns of inter-temporal choices in
each experiment. This also allowed us to ascertain the
most plausible parameter values for each model, so that
the parameter recovery simulations would be based on
parameter values that are within the range of those observed
in these experimental settings. We fit each model using
a hierarchical Bayesian framework, which assumes that
parameters varied across participants but were drawn from
common population distributions. The priors for each model
are shown in Appendix A.

The posterior distributions were estimated using the
No-U-Turn Sampler (Hoffman & Gelman, 2014) as
implemented by the Stan platform (Carpenter et al., 2017).
For each model, we ran four chains. Each chain had a burn-
in period of 2000 samples. After burning-in, each chain
produced a further 2000 samples. The analysis was therefore
based on 8000 samples (e.g., 4 chains × 2000 post burn-in
samples per chain). These settings are typical for model fits
using Stan as its sampler produces a relatively high number
of effective samples per iteration and therefore typically
requires far fewer samples than other algorithms to reach
convergence.

Figure 1 shows the fit of the models to the data that
was used for Study 1. As can be seen, participants in
this experiment became less likely to select the larger-later
option as the delay (represented on the x-axis) increased. All
11 models accurately capture this qualitative trend, though
many models underestimate the strength of the effect when
the magnitude of the larger-later option (represented as the
different panels) is smaller. We used the WAIC (Watanabe,
2013) to measure the predictive accuracy of the models (see
Table 3). The model that performed best according to this
measure was the Additive Utility model.6

Figure 2 shows the fit of the models to the data that
was used for Study 2. Participants in this experiment

6We also compared the models using the leave-one-out cross-
validation information criterion (Vehtari, Gelman, & Gabry, 2017).
The model rank order was identical to the results according to the
WAIC, so we only report the WAIC results here.

https://osf.io/5phxn/
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by black dots. Predictions were generated based on the mean of the posterior predictive distribution. The three panels represent differences in the
magnitude of the reward for the larger-later option

also became less likely to select the larger-later option
as the delay (represented on the x-axis) increased, and
became more likely to select the larger-later option as the
magnitude (represented as the different panels) increased.
As can be seen, 10 out of the 11 models provide very
close fit to the data. The only model that cannot account
for these results is the Proportional Difference model,
which does not predict an effect of delay when one of
the options offers an immediate reward. The models that
performed best according to the WAIC were the Constant
Sensitivity, Additive Utility, Generalized Hyperbolic, and
Double Exponential models.

Figure 3 shows the fit of the models to the data that
was used for Study 3. The left panel shows the results
for the choice set designed to elicit the delay duration

effect. As can be seen, when the delay for the smaller-
sooner option was always half the delay for the larger-later
option, participants became less likely to select the larger-
later option as the delays increased. Every model except
the Proportional Difference model was able to capture this
effect. The middle panel shows the results for the choice
set designed to elicit the Common Difference effect. As
can be seen, when the delay for the smaller-sooner option
was always 30 days less than the delay for the larger-later
option, participants became more likely to select the larger-
later option as the delays increased. Every model except the
ITCH model could reproduce this effect.

The right panel shows the results for the choice set
designed to elicit the magnitude effect. As can be seen,
when the amount associated with the smaller-sooner option

Table 3 Results of model comparisons for Studies 1, 2, and 3

Study 1 Study 2 Study 3

WAIC SE Rank WAIC SE Rank WAIC SE Rank

Exponential 3140.03 88.49 8 7678.12 134.06 8 10082.57 121.12 9
Hyperbolic 3138.66 88.45 7 7677.44 131.59 7 9605.51 119.56 7
Double exponential 3102.99 88.58 3 7257.16 131.35 4 8397.71 125.71 3
Generalized hyperbolic 3106.46 87.51 6 7256.28 131.9 3 8397.21 125.25 2
Hyperboloid 3104.92 87.94 4 7329.27 131.78 6 8675.39 123.48 5
Generalized hyperbola 3106.11 87.95 5 7328.88 131.8 5 8675.61 123.48 6
Constant sensitivity 3158.26 88.46 9 7243.11 131.67 1 8455.16 124.73 4
Additive utility 2819.08 82.02 1 7255.28 128.9 2 7289.19 127.38 1
Proportional difference 3004.95 79.96 2 13401.67 126.94 11 9876.74 114.93 8
ITCH 3504.33 96.71 10 9336.58 165.12 9 14343.42 269.08 11
Tradeoff 8063.80 201.78 11 12068.47 295.06 10 14262.83 325.54 10
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was always half the amount associated with the larger-later
option, participants become more likely to select the larger-
later option as the amounts increased. Only the Additive
Utility, Tradeoff, and (to a lesser extent) the ITCH models
captured this effect. According to the WAIC results, the
Additive Utility model performed best for Study 3.

These results combined suggest that, despite the close
fit of most of the models in Studies 1 and 2, only
a small number of models simultaneously captured the
different behavioral regularities observed in Study 3. As
expected, most of the discounted utility models failed
to capture the magnitude effect. The Trade-off, ITCH,
and Proportional Difference models also provided a le
descss satisfactoryription of the data. At first glance,
the poor performance of the attribute-wise models may
appear inconsistent with prior research showing attribute-
wise models to outperform discounted utility models (e.g.,
Amasino, Sullivan, Kranton, & Huettel, 2019; Dai &
Busemeyer, 2014; Marzilli Ericson et al., 2015; Scholten
et al., 2014). But the three attribute models demonstrated
poor performance for very different reasons. The Trade-
off model could account for the full pattern of results
across the three studies, but the level of complexity the
model employs to capture these results made it a less
satisfactory explanation than the simpler models (at least
as measured by the WAIC). It may be that the Tradeoff
model only reliably outperforms simpler models when item
sets are specifically designed to elicit more complex effects
like gain-loss asymmetry, superadditivity, and subadditivity
(e.g., Scholten et al., 2014).

The ITCH model was developed to capture the three
effects observed in Study 3, and indeed may be able to
reproduce these qualitative effects using a single set of
parameter values (Marzilli Ericson et al., 2015). However,
when we constrained parameters to have the same value
across the subsets of items in Study 3, the ITCH model
did not provide a good quantitative fit to all three
effects simultaneously. This indicates that the ITCH may
only be able to accurately capture these three behavioral
regularities by assuming the parameter values vary across
contexts. The Proportional Difference model performed
poorly because it simply could not account for delay
discounting when one option has an immediate reward
(e.g., Study 2). When this is the case (i.e., when tSS =
0), the second term in Eq. 10 reduces to 1

1 regardless
of the value of tLL, making the model unable to capture
effects of delay. Nevertheless, the Additive Utility Model,
which demonstrated the best descriptive adequacy, can be
conceptualized as an attribute-wise model (see Footnote 3),
specifically, a variant of the Weighted Additive Difference
model from Dai & Busemeyer. This provides evidence,
consistent with prior research, that certain attribute-wise
models indeed outperform many discounted utility models.

Notably, the rank order of the models was fairly
consistent across the three studies (particularly for Studies 2
and 3). The Additive Utility model in general demonstrated
the best descriptive adequacy (it had the lowest WAIC value
for Studies 1 and 3 and the second-lowest for Study 1) .
This finding suggests that the unique additive relationship
between the outcome value and the delay that is assumed by
this model may be important for describing inter-temporal
choices. By contrast, the ITCH and Tradeoff models were
consistently among the poorest performing models.

Parameter consistency

Prior to examining parameter recovery (see next section),
we first consider the issue of parameter consistency.
Parameter consistency refers to the extent to which
a model’s parameter values are stable across contexts
and is another important consideration when evaluating
whether model parameters can be interpreted meaningfully.
Parameters that change across contexts, experimental
designs, or time are difficult to interpret in any absolute
sense because their values depend on the exact settings in
which the parameters were estimated.

For example, consider the case of discount rate, its
relationship to the magnitude effect, and the Hyperbolic
model. Technically, the concept of discount rate should be
independent of variations along the dimension of money;
according to rational models of inter-temporal choice, the
same discount rate should apply to all decisions. However,
in order to account for increased patience with rewards of
higher magnitude, the Hyperbolic model can only assume
different discount rates to explain the effect. This is, of
course, not parsimonious (as there is an infinite number
of magnitudes that might be considered) and indicates that
discount rates in the Hyperbolic model are overly malleable
and prone to changes in the experimental setting (e.g.,
those using different amounts of money). In other words,
it may not provide stable measurements of an individual’s
discounting behavior. Instead what is actually needed is a
functional form that incorporates the effect of magnitude on
discount rates for a suggested form, see Vincent (2016).

The Dai and Busemeyer (2014) dataset used in Study
3 provides a useful opportunity to examine parameter
consistency. As described above, their dataset included three
separate subsets of items each designed to elicit a different
effect. As each participant completed all three subsets of
items, we can estimate model parameters independently for
each subset and compare them within participants. If model
parameters are consistent within an individual, we would
expect similar parameter estimates to be obtained when
the same model is fit to each subset of items separately.
If different parameter values are required to account for
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the different effects, this would suggest that the model’s
parameters are more context dependent and therefore more
difficult to interpret in a meaningful way.

We examine parameter consistency by analyzing the
correlation between individual model parameters estimated
based on the different subsets of items. Table 4 shows
the 95% credible intervals on the correlations between

estimates based on each pair of choice sets. As can be
seen, the credible intervals for most correlations include
zero, suggesting that it is plausible to assume there is no
relationship between parameter estimates based on different
subsets of items. Between the delay duration and common
difference subsets of items (the DD / CD column), only
five out of the 37 parameters examined had estimates that

Table 4 95% credible intervals on the correlations between parameters estimated from three subsets of the Dai and Busemeyer (2014) data

Model Parameter DD / CD DD / M CD / M

Exponential k (−0.21, 0.47) (0.02, 0.64) (−0.24, 0.54)
σ (−0.04, 0.56) (0.09, 0.56) (−0.15, 0.42)

Hyperbolic k (0.16, 0.78) (−0.04, 0.45) (−0.07, 0.46)
σ (0.14, 0.69) (−0.01, 0.14) (−0.03, 0.21)

Double exponential β (−0.27, 0.33) (−0.25, 0.35) (−0.25, 0.46)
δ (−0.41, 0.63) (−0.16, 0.58) (−0.33, 0.35)
ω (−0.12, 0.49) (−0.22, 0.38) (−0.27, 0.35)
σ (−0.08, 0.49) (0.07, 0.53) (−0.09, 0.55)

Generalized hyperbolic k (−0.20, 0.37) (−0.20, 0.53) (−0.23, 0.39)
s (0.16, 0.70) (−0.24, 0.35) (−0.13, 0.41)
σ (−0.04, 0.41) (0.06, 0.63) (0.07, 0.63)

Hyperboloid k (−0.11, 0.53) (−0.17, 0.55) (−0.21, 0.47)
s (−0.15, 0.49) (−0.26, 0.33) (−0.23, 0.40)
σ (−0.06, 0.41) (0.07, 0.59) (0.10, 0.66)

Generalized hyperbola α (−0.17, 0.53) (−0.18, 0.53) (−0.21, 0.46)

β (−0.16, 0.59) (−0.01, 0.72) (−0.17, 0.52)

σ (−0.07, 0.40) (0.07, 0.59) (0.08, 0.65)

Constant sensitivity α (−0.03, 0.54) (−0.23, 0.41) (−0.27, 0.40)

β (−0.23, 0.30) (−0.32, 0.27) (−0.19, 0.47)

σ (−0.11, 0.49) (−0.05, 0.59) (0.05, 0.69)

Additive utility α (−0.11, 0.49) (0.18, 0.55) (−0.26, 0.28)

β (−0.07, 0.44) (−0.11, 0.40) (0.10, 0.61)

λ (−0.26, 0.40) (−0.24, 0.43) (−0.20, 0.46)

σ (−0.06, 0.56) (−0.07, 0.54) (−0.11, 0.54)

Proportional difference δ (0.43, 0.72) (0.24, 0.60) (0.19, 0.56)

σ (−0.20, 0.40) (−0.19, 0.44) (−0.15, 0.44)

ITCH β1 (0.00, 0.51) (0.17, 0.55) (0.02, 0.52)

βtA (−0.19, 0.54) (−0.29, 0.34) (−0.30, 0.37)

βtR (−0.28, 0.39) (−0.31, 0.35) (−0.25, 0.42)

βxA (−0.27, 0.38) (−0.15, 0.52) (−0.28, 0.36)

βxR (−0.32, 0.34) (−0.30, 0.33) (−0.31, 0.34)

Tradeoff α (−0.33, 0.33) (−0.33, 0.33) (−0.30, 0.35)

ε (−0.45, 0.15) (−0.16, 0.40) (−0.30, 0.24)

γ (−0.28, 0.38) (−0.29, 0.35) (−0.21, 0.37)

κ (−0.28, 0.37) (−0.30, 0.34) (−0.05, 0.53)

τ (−0.06, 0.50) (−0.21, 0.37) (−0.20, 0.43)

θ (−0.37, 0.25) (−0.26, 0.38) (−0.33, 0.32)

Note: The DD / CD column contains the correlation between the parameters estimated from the delay duration and common difference subsets.
The DD / M column contains the correlation between the estimates from the delay duration and magnitude subsets. The CD / M column contains
the correlation between the estimates from the common difference and magnitude subsets. Credible intervals that do not include zero are shown
in bold
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Fig. 4 Summary of the approach used in the parameter recovery studies

had credible correlations (shown in bold). Between the
delay duration and magnitude effects, 9 out of 37 had
credible correlations. Between the common difference and
magnitude effects, 7 out of 37 had credible correlations.
Across all 11 models, only two parameters had credible
correlations for all three pairs of subsets. These were the
δ parameter of the Proportional Difference model and the
β1 parameter of the ITCH model (which both represent
a bias towards sooner options). There was no model for
which all parameters had credible correlations across all
subsets of items. Overall, these results provide evidence
against parameter consistency for most of the parameters
considered.

Parameter recovery

A summary of the approach we use for the parameter
recovery analysis is presented in Fig. 4. To evaluate the
parameter recovery, we randomly sampled 100 parameter
combinations per model from the posterior distributions
obtained from fitting each model to each dataset. We did
this by repeatedly sampling a participant from the dataset
and then extracting that participant’s parameter values on
a randomly sampled iteration. This method ensured that
any dependencies between the parameters in each model
would be preserved. For each parameter combination, we
generated 100 sets of simulated responses using the same
experimental design as the study to which the models were
fit. We can think of this as a simulated participant making
decisions according to a particular model under a particular
parameter combination, completing the same experiment

100 times. For Study 3, where each participant responded
to a different set of items, the simulated responses
were generated using the choice set associated with the
participant who provided the data-generating parameter
values. For example, if the first combination of parameters
was provided by participant i, participant i’s items would be
used to generate the 100 sets of responses associated with
that parameter combination. This method resulted in 10000
simulated response sets per model per experiment (100 for
each parameter combination).

We then fit each model to the 10000 simulated response
sets that it produced, estimating the model parameters
independently for each set of responses (see Appendix B
for model priors). This resulted in 3 experimental designs ×
11 models × 100 data-generating parameter combinations
× 100 response sets per parameter combination = 330000
response sets analyzed. For each parameter value examined,
we interpreted the average 95% credible interval (CI)
across the 100 simulated response sets as the measure of
recovery. This measure allows us to examine the average
precision with which any one participant’s parameters can
be estimated.7

The results of the recovery analysis for Study 1 are presented
in Figs. 5 and 6. As can be seen, most of the models show

7An alternative approach would be to assess parameter recovery using
a hierarchical model in which the simulated response sets are assumed
to be drawn from a common population and interpret the population
mean to assess recovery. The problem with this approach, however, is
that the precision with which the population mean is estimated depends
on the number of simulated response sets. Additionally, the ability
to recover the population mean does not necessarily indicate that the
parameters of any individual participant will themselves be recovered.
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Fig. 5 Results of parameter recovery analysis for the Exponential,
Hyperbolic, Double Exponential, Generalized Hyperbolic, Hyper-
boloid, and Generalized Hyperbola models in Study 1. The x- and
y-axes represent the generating and recovered parameter values respec-
tively. Points represent the average posterior median value across
simulated participants. Error bars represent the average 95% CI, which

was calculated by taking the mean lower and upper bounds across
simulated participants. The text in the top-left corner of each panel
indicates the 95% CI on the correlation between the data-generating
and recovered parameter values. The blue dotted line in each panel
represents the identity line
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Fig. 6 Results of parameter recovery analysis for the Constant Sensi-
tivity, Proportional Difference, Additive Utility, ITCH, and Tradeoff
models in Study 1. The x- and y-axes represent the generating and
recovered parameter values respectively. Points represent the aver-
age posterior median value across simulated participants. Error bars

represent the average 95% CI, which was calculated by taking the
mean lower and upper bounds across simulated participants. The text
in the top-left corner of each panel indicates the 95% CI on the cor-
relation between the data-generating and recovered parameter values.
The blue dotted line in each panel represents the identity line
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rather poor recovery when parameters are estimated based
on the Kirby et al. items. The Exponential and Hyperbolic
models—the simplest models and therefore the ones that
should be expected to demonstrate the best recovery—
showed correlations between data-generating and recovered
parameter values of between 0.33 and 0.51. These correla-
tions show an association between the data-generating and
recovered values, but are not high enough to inspire confi-
dence that an estimated value accurately quantifies the true
level of the underlying construct. The Generalized Hyper-
bolic, Constant Sensitivity, Proportional Difference, and
Additive Utility models also showed correlations between
data-generating and recovered parameter values that were
all at least 0.1, but no correlation was higher than 0.66 (the
α parameter in the Additive Utility model). The remaining
five models all had at least one parameter with a generating-
recovered value correlation as low as 0.02. Indeed, the
Double Exponential, Hyperboloid, and Tradeoff models all
contained at least one parameter in which the 95% credible
interval on the correlation between data generating and
recovered value included values that were negative.

The results of the recovery analysis for Study 2 are
presented in Figs. 7 and 8. As can be seen, the parameter
recovery was much stronger for the Konstantinidis et al.
items than for the Kirby et al. items. In Study 2, the
parameters of the Hyperbolic and Exponential models
demonstrated the best recovery, with correlations between
data-generating and recovered parameter values ranging
between 0.85 and 0.98. The parameters of the Proportional
Difference model were also well recovered, although
estimates of the δ parameter were noisy when the data-
generating value was positive. The next best models in terms
of parameter recovery were the Generalized Hyperbolic,
Generalized Hyperbola, and Constant Sensitivity models,
which all had correlations between data-generating and
recovered parameters that were above 0.7. Slightly worse
was the Hyperboloid model, where the recovered values
of the s parameter correlated only between 0.45 and
0.47 with the data-generating values. The remaining four
models—the ITCH, Additive Utility, Double Exponential,
and Tradeoff models—all demonstrated poorer recovery.
All of these models except the Double Exponential had
at least one parameter for which the correlation between
data-generating and recovered values was less than 0.1.

The results of the recovery analysis for Study 3 are
presented in Figs. 9 and 10. As can be seen, the param-
eter recovery was considerably worse for the design used
in Study 3 compared to the one used in Study 2. The
model that demonstrated the best parameter recovery in
Study 3 was the Proportional Difference model, which was
the only model to demonstrate better recovery in Study
3 than in Study 2. The other models that demonstrated
strong recovery in Study 2—the Exponential, Hyperbolic,

Hyperboloid, Generalized Hyperbolic, Generalized Hyper-
bola, and Constant Sensitivity models—all demonstrated
surprisingly poor recovery in Study 3. These models, with
the exception of the Hyperbolic model, all had at least
one parameter for which the correlation between the data-
generating and recovered parameter values was negative.
In many cases, the parameter that was most poorly recov-
ered was the most psychologically meaningful (e.g., k in
the Exponential, Hyperbolic, Hyperboloid, and Generalized
Hyperbolic; and α in the Generalized Hyperbola and Con-
stant Sensitivity). The remaining four models also demon-
strated poor recovery, with the Double Exponential being
the poorest.

Discussion

Models of inter-temporal choice have had widespread
impact across many areas in management, organizational,
behavioural and economic sciences as well as in neuro-
science, clinical psychology and addiction studies. Though
decades of work has been dedicated to developing mod-
els and evaluating their ability to account for established
empirical effects, surprisingly little work has examined the
extent to which model parameters can be reliably estimated
and consequently used as meaningful descriptions of how
people behave in the face of choices with delayed conse-
quences. This is a problem, because estimation error can
systematically bias the conclusions that are drawn from
parameter estimates. Given that inter-temporal choice mod-
els are often used for measurement purposes, it is important
to determine the reliability with which each model’s param-
eters can be estimated.

To address this problem, we examined the reliability of the
parameters estimated from 11 prominent models of inter-
temporal choice. To do this, we first fit each model to data
from three inter-temporal choice experiments to identify
plausible combinations of parameters in each design. We
then conducted a parameter recovery analysis, in which we
generated data from each model using randomly sampled
parameter combinations and examined the correspondence
between the estimated and data-generating parameter values
when each model was fit to the simulated/synthetic data.
We then examined the stability in each models’ parameter
estimates by assessing the consistency in estimated values
for the same individual across three different sets of items.

We found that the ability to recover model parame-
ters varied widely among the 11 models and depended on
the experimental design. In Study 2, where all participants
received the same 380 items, recoverability declined with
the number of model parameters. The three 2-parameter
models—the Exponential, Hyperbolic, and Proportional
Difference—all have parameters that were well recovered
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Fig. 7 Results of parameter recovery analysis for the Exponential,
Hyperbolic, Double Exponential, Generalized Hyperbolic, Hyper-
boloid, and Generalized Hyperbola models in Study 2. The x- and
y-axes represent the generating and recovered parameter values respec-
tively. Points represent the average posterior median value across
simulated participants. Error bars represent the average 95% CI, which

was calculated by taking the mean lower and upper bounds across
simulated participants. The text in the top-left corner of each panel
indicates the 95% CI on the correlation between the data-generating
and recovered parameter values. The blue dotted line in each panel
represents the identity line
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Fig. 8 Results of parameter recovery analysis for the Constant Sensi-
tivity, Proportional Difference, Additive Utility, ITCH, and Tradeoff
models in Study 2. The x- and y-axes represent the generating and
recovered parameter values respectively. Points represent the aver-
age posterior median value across simulated participants. Error bars

represent the average 95% CI, which was calculated by taking the
mean lower and upper bounds across simulated participants. The text
in the top-left corner of each panel indicates the 95% CI on the cor-
relation between the data-generating and recovered parameter values.
The blue dotted line in each panel represents the identity line
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Fig. 9 Results of parameter recovery analysis for the Exponential,
Hyperbolic, Double Exponential, Generalized Hyperbolic, Hyper-
boloid, and Generalized Hyperbola models in Study 3. The x- and
y-axes represent the generating and recovered parameter values respec-
tively. Points represent the average posterior median value across
simulated participants. Error bars represent the average 95% CI, which

was calculated by taking the mean lower and upper bounds across
simulated participants. The text in the top-left corner of each panel
indicates the 95% CI on the correlation between the data-generating
and recovered parameter values. The blue dotted line in each panel
represents the identity line
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Fig. 10 Results of parameter recovery analysis for the Constant Sensitivity, Proportional Difference, Additive Utility, ITCH, and Tradeoff models
in Study 3. The x- and y-axes represent the generating and recovered parameter values respectively. Points represent the average posterior median
value across simulated participants. Error bars represent the average 95% CI, which was calculated by taking the mean lower and upper bounds
across simulated participants. The text in the top-left corner of each panel indicates the 95% CI on the correlation between the data-generating
and recovered parameter values. The blue dotted line in each panel represents the identity line

(except for the δ parameter in the proportional difference
model when its true value is positive). The four 3-parameter
models—the Hyperboloid, Generalized Hyperbolic, Gen-
eralized Hyperbola, and Constant Sensitivity models—had
somewhat poorer recoverability. The parameter estimates of
the remaining models were much more difficult to recover.

We also found that the items on which parameter
estimates are based have a strong impact on parameter
recovery. In Study 1, in which participants responded to the
27 items introduced by Kirby, Petry, and Bickel (1999),
recovery was generally poorer than in Study 2. The likely

explanation for this is that this choice set contained too
few items and therefore provided insufficient information
to identify the models’ parameters. In Study 3, where each
participant had a unique set of items that was specifically
tailored to generate specific empirical effects, recovery
was also generally poorer than in Study 2. This was
the case even though the set of items used in Study 3
was similar in size to the set used in Study 2 (380 in
Study 2 versus 300 in Study 3). One reason for the poor
parameter recovery in Study 3 may have been that the
item generation procedure used in this design resulted in
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rather polarized decision-making patterns. For the subset of
items used for the delay duration and common difference
effects, the majority of participants chose the same option
at least 85% of the time. This lack of variance in choice
selection flattens the likelihood surface for many models,
making it harder to differentiate between the plausibility of
different combinations of parameter values. The choice set
used in Study 2, by contrast, produced much more varied
responding, with most participants regularly utilizing both
the larger-later and smaller-sooner options.

We also found a lack of consistency in the parameter esti-
mates between the three subsets of items used in Study 3.
There was no model for which participants’ parameter esti-
mates had credible correlations across all subsets of items.
On the surface, these results suggest that all 11 models have
parameters whose value changes depending on the context,
and therefore cannot be interpreted in an absolute sense.
On one hand, this finding suggests that certain model param-
eters may have issues that extend beyond poor recovery.
The lack of association among participant’s parameter val-
ues across contexts raises questions about the validity of
these estimates. On the other hand, given the recovery of the
parameter estimates that were based on the items used in
Study 3, this result should be interpreted with caution. It is
possible that the apparent lack of consistency across choice
sets may simply be the result of the unreliability of those
estimates or correlation between them (Vincent & Stewart,
2020) as opposed to a genuine change in the constructs they
represent. To make stronger conclusions about parameter
consistency, we need to examine it in a context in which the
parameters can be reliably estimated.

Recommendations

Based on our results, the approach that we believe is best suited
for measurement is to estimate the parameters of the Expo-
nential and Hyperbolic models based on data generated
using items similar to those used in Study 2. The parameters
of these models were among the most reliably estimated in
Study 2. However, as these models only capture the delay
duration and common difference effects (in the latter case),
this should only be done when other effects are neither rel-
evant to the behaviour being measured, nor present in the
item-set. For example, if, as was the case in Study 3, large
magnitude effects are present, the discount rate (i.e., k)
parameters of the Exponential and Hyperbolic models will
be less meaningful. The parameters of the Proportional Dif-
ference model were also highly well-recovered. However,
we cannot recommend the use of this model for measure-
ment due to concerns about the validity of the model as
a plausible explanation of inter-temporal choice (in addi-
tion to failing to capture basic empirical trends, such as
the delay duration effect, this model is also incapable of

accounting for behaviour when one of the items does not
have a delay).

We urge extreme caution when considering parameter
estimates that are based on the Kirby et al. items. As shown
in Study 1, parameter estimates based on these items were
noisy in all of the 11 models we examined, suggesting that
they may not provide a reliable index of the underlying
construct they are meant to represent when estimated in
this way. We also urge caution when considering parameter
estimates derived from designs such as the one used in
Dai and Busemeyer (2014) in which items are tailored
to participants in order to elicit specific effects. Study 3
showed that this design also resulted in unreliable parameter
estimates. Until we know more about how such item-
tailoring procedures affect the parameters estimated from
models fit to the resulting data, we believe parameters
estimated from such choice sets should not be used for
measurement purposes.

The most important recommendation we can make based
on our findings, therefore, is that parameter recovery needs
to be assessed for the specific design that will be used for
parameter estimation. The reliability of a model’s parameter
estimates depends to a large extent on the information upon
which parameter estimates are based. This can be seen
most clearly by the fact that the ability to recover the k

parameter from the Exponential and Hyperbolic models
was high in Study 2, lower in Study 1, and disappeared in
Study 3. It is dangerous to assume that because a model’s
parameters were reliably recovered using a particular
design, those parameter estimates can always be trusted.
If one wishes to interpret parameters based on a different
set of items to those considered here, the onus is on the
researcher to first establish the reliability of those parameter
estimates.

Additional considerations and future work

It is important to note that the analysis conducted here
does not constitute an exhaustive assessment of all possible
models of inter-temporal choice or methods for estimating
their parameters. While we believe the three choice sets we
considered here are representative of the types of choice sets
that are typically used to study inter-temporal choice, there
may be other sets of items for which parameter recovery is
stronger. One useful next step for those wishing to use the
models of inter-temporal choice that demonstrated poorer
recovery in our analysis for measurement purposes would
be to work towards identifying or developing choice sets
that produce more reliable parameter estimates for these
models. One way to do this would be to simulate the model
under a variety of parameter settings and identify choices
for which changing the parameter value(s) changes the
decision predicted by the model. This allows the researcher
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to pinpoint the items that are most diagnostic for the
parameters being estimated.

Hierarchical modelling also offers a promising tool that
may further facilitate reliable parameter estimation. Mol-
loy et al. (2020) demonstrated that a hierarchical Bayesian
framework can increase the reliability of estimates of the
parameters of the hyperbolic model, because it allows infor-
mation about the parameters o be pooled across participants.
Such a framework is likely to facilitate parameter estima-
tion for other models as well. Re-parameterizing models
may also help overcome estimation challenges. Krefeld-
Schwalb, Pachur, and Scheibehenne (2022) showed that
treating model parameters themselves as stochastic, as
opposed to assuming noise originates in the choice process,
can decrease intercorrelations between parameters. Specify-
ing inter-temporal choice models in this way may therefore
improve the reliability of parameter estimates. That said,
more complex models such as the Trade-off model may
require additional steps to be taken before its parameters can
be reliably estimated. For these models, it may be neces-
sary to fix certain parameters to plausible values in advance.
For example, if the researcher is not particularly interested
in quantifying the level of superadditivity in the choice pro-
cess, they may consider fixing the θ parameter to one (i.e.,
no superadditivity) or some other plausible value (if appro-
priate). This would provide further constraint to the model
that would facilitate the estimation of the other parameters.

Although we believe the data-generation procedures exam-
ined here are representative of the methods that are com-
monly used to estimate inter-temporal choice model param-
eters, there are other approaches that warrant consideration
in future work. One such method is the adaptive design opti-
mization approach (Cavagnaro, Gonzalez, Myung, & Pitt,
2013; Toubia, Johnson, Evgeniou, & Delquie, 2013; Vin-
cent & Rainforth, 2017; Yang, Pitt, Ahn, & Myung, 2021).
Adaptive design optimization involves updating parameter
estimates in real time and generating items on the fly that
maximize information gain. This method has the potential
to deliver more precise information about model parame-
ters, because it tailors the items to make them maximally
diagnostic of model parameters. Adaptive design optimiza-
tion may therefore yield more reliable parameter estimates,
making it possible to use a wider range of models for
measurement purposes.

One class of models that we did not examine is dynamic
accounts of inter-temporal choice, which are based on
evidence accumulation models (see Dai & Busemeyer,
2014; Dai et al., 2018; Konstantinidis et al., 2020;
Rodriguez et al., 2014). These models describe the dynamic
process by which preferences for the possible options evolve
over time until preference for one option becomes strong
enough that it is selected. They predict not only the choices that
people make but also the time it takes to make those

choices. These dynamic models therefore have the potential
to utilize more information for parameter estimation, which
may enable parameters to be more reliably estimated when
models are implemented within this framework. Previous
research that has examined these models has typically
focused more on model comparison than parameter
estimation (e.g., (Dai & Busemeyer, 2014); (Dai, Pleskac,
& Pachur, 2018)). However, these models may provide
a useful next step for those wishing to develop better
calibrated tools for measuring components of the inter-
temporal choice process.

One source of (un)reliability in model parameters that was
not examined here was the parameters’ (in)stability over
time. Although Study 3 showed variability within partici-
pants in parameters estimated from different sets of items,
we attributed these differences to the choice context rather
than to endogenous variability in process components. But
how similar are a participant’s parameter estimates when
the same individual completes the same choice set at dif-
ferent times? Studies examining the test-retest reliability of
measures of delay discounting have shown evidence of sta-
bility over time when participants complete the same choice
set (e.g., Anokhin, Golosheykin, & Mulligan, 2015; Kirby,
2009; Simpson & Vuchinich, 2000). Yet we also know that
preference can (but do not always) change over time as
outcomes draw nearer (Read, Frederick, & Airoldi, 2012).
Moreover, the question remains as to the stability of other
process components quantified by models of inter-temporal
choice beyond delay discounting. Once we develop models
and paradigms that produce well-recovered parameters, we
can work toward answering such questions about temporal
stability.

As a final point, we believe it is important to clarify that
the failure to recover a model’s parameters does not mean
that the model in question is not a plausible description of
inter-temporal choice. In other words, parameter recovery is
not a necessary condition for descriptive adequacy. Indeed,
attribute-wise accounts such as the Tradeoff model may
provide a more complete description of the behavioral
regularities observed in inter-temporal choice than many of
their alternative-wise predecessors (Scholten et al., 2014).
However, the poor recovery observed for the Trade-off
and other models does mean that their parameter estimates
cannot be mapped meaningfully to underlying processes,
which we believe is an important factor that contributes to a
model’s usefulness.

Conclusion

Decades of research has been dedicated to the development
and testing of inter-temporal choice models. However, the
lack of work examining the reliability of these models’
parameter estimates calls into question conclusions that
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have been made based on the assumption that parameter
estimates map meaningfully onto latent components of
the inter-temporal choice process. Our findings suggest
that many of the parameter estimates reported in previous
research are likely unreliable, and that caution should
therefore be used in making inferences based on their
values. Researchers wishing to do so must first establish
that the model’s parameters can be reliably estimated given
the experimental protocol that will be used to generate the

data and the particular parameterization of the model being
used. Models of inter-temporal choice have the potential to
yield important insights into the process by which humans
evaluate outcomes that are temporally distant, but care must
be taken to ensure such insights are robust.

Appendix A: Priors for hierarchical models
used to assess descriptive adequacy

Model Parameter Population Parameters

Exponential k ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Hyperbolic k ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Double ω ∼ Beta(A, B) L ∼ Unif orm(0, 1) S ∼ Gamma(1, 20)

Exponential � ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

δ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Generalized k ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Hyperbolic s ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Hyperboloid k ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

s ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Generalized α ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Hyperbola � ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Constant α ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Sensitivity β ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Additive α ∼ Beta(A, B) L ∼ Unif orm(0, 1) S ∼ Gamma(1, 20)

Utility β ∼ Beta(A, B) L ∼ Unif orm(0, 1) S ∼ Gamma(1, 20)

λ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Proportional δ ∼ Normal(L, S) L ∼ Normal(0, 1) S ∼ Normal+(0, 1)

Difference σ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

ITCH β1 ∼ Normal(L, S) L ∼ Normal(0, 1) S ∼ Normal+(0, 1)

βxA ∼ Normal+(L, S) L ∼ Normal+(0, 1) S ∼ Normal+(0, 1)

βxR ∼ Normal+(L, S) L ∼ Normal+(0, 1) S ∼ Normal+(0, 1)

βtA ∼ Normal−(L, S) L ∼ Normal−(0, 1) S ∼ Normal+(0, 1)

βtR ∼ Normal−(L, S) L ∼ Normal−(0, 1) S ∼ Normal+(0, 1)

Tradeoff γ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

τ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

� ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

κ ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

α ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

ε ∼ Gamma(A, B) A ∼ Normal+(0, 1) B ∼ Normal+(0, 1)

Note: Normal+(L, S) represents a truncated normal distribution with mean L, standard deviation S, a lower bound of 0, and no upper bound.
Normal− represents a truncated normal distribution with an upper bound of 0 and no lower bound. Gamma(A, B) represents a gamma
distribution with shape A and scale B. Certain models were reparameterized for efficiency reasons and/or in order to enforce parameter constraints.
In the double exponential model, β = � + δ. In the generalized hyperbola model, the parameter β = � × α. For the additive utility and double
exponential models, A = L × S and B = (1 − L) × S. For the tradeoff model, θ = � + 1
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Appendix B: Priors for models used to assess
parameter recovery

Model Parameter

Exponential k ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Hyperbolic k ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Double ω ∼ Unif orm(0, 1)

Exponential � ∼ Gamma(1, 0.5)

δ ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Generalized k ∼ Gamma(1, 0.5)

Hyperbolic s ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Hyperboloid k ∼ Normal+(0, 5)

s ∼ Normal+(0, 5)

σ ∼ Normal+(0, 5)

Generalized α ∼ Gamma(1, 0.5)

Hyperbola � ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Constant α ∼ Gamma(1, 0.5)

Sensitivity β ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Additive α ∼ Unif orm(0, 1)

Utility β ∼ Unif orm(0, 1)

λ ∼ Gamma(1, 0.5)

σ ∼ Gamma(1, 0.5)

Proportional δ ∼ Normal(0, 5)

Difference σ ∼ Gamma(1, 0.5)

ITCH β1 ∼ Normal(0, 5)

βxA ∼ Normal+(0, 5)

βxR ∼ Normal+(0, 5)

βtA ∼ Normal−(0, 5)

βtR ∼ Normal−(0, 5)

Tradeoff γ ∼ Gamma(1, 0.5)

τ ∼ Gamma(1, 0.5)

� ∼ Gamma(1, 0.5)

κ ∼ Gamma(1, 0.5)

α ∼ Gamma(1, 0.5)

ε ∼ Gamma(1, 0.5)

Note: Normal+(L, S) represents a truncated normal distribution with
mean L, standard deviation S, a lower bound of 0, and no upper
bound. Gamma(A, B) represents a gamma distribution with shape
A and scale B. Certain models were reparameterized for efficiency
reasons and/or in order to enforce parameter constraints. In the double
exponential model, β = �+δ. In the generalized hyperbola model, the
parameter β = � × α. For the additive utility and double exponential
models, A = L × S and B = (1 − L) × S. For the tradeoff model,
θ = � + 1
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