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Abstract
Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the
need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial
tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue clas-
sification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algo-
rithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features
concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital fea-
tures was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two
independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort
(n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal
tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were
found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-
index values of 0.65 (p= 0.0189) and 0.60 (p= 0.0437), respectively, on the TCGA cohort as a validation set. Com-
bining the Digi-sTILs feature with the patient’s positivity status for axillary lymph nodes yielded a C-index of 0.76 on
unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk
stratification and management of TNBC patients.
© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.

Keywords: triple-negative breast cancer; tumour microenvironment; disease-specific survival analysis; histology images; artificial
intelligence

Received 10 August 2022; Revised 12 January 2023; Accepted 23 January 2023

Conflict of interest statement: NR is CSO and a co-founder of Histofy Ltd. No other conflicts of interest were declared.

Introduction

Triple-negative breast cancer (TNBC) is a subtype of
breast cancer defined by its lack of expression of
oestrogen receptor (ER) and progesterone receptor
(PR), and absence of overexpression of the human epi-
dermal growth factor receptor 2 (HER2). In the
United States, TNBC accounts for about 15–20% of
breast cancer cases and is more frequent among African
American and Hispanic women who are young and have

a relatively high pre-menopausal bodymass index [1–3].
The disease mainly occurs in young women and confers
a shorter survival time and a 40% mortality rate within
the first 5 years after diagnosis, and 75% within
3 months after recurrence [4]. The median survival time
after metastasis is 13.3 months, because 46% of TNBC
patients develop distant metastasis that often involves
the brain and visceral organs [5].
Chemotherapy is the main treatment option as TNBC

patients do not benefit from targeted therapies, due to the
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absence of three receptors, and nomolecular targets have
been recognised for the subtype. However, TNBC
patients’ response to chemotherapy lacks durability,
with high relapse rates [6]. Different potential treatments
have been proposed in recent years to improve the
disease outcomes, such as optimising chemotherapy reg-
imens and incorporating immunotherapy [7,8]. Under-
standing the disease microenvironment is crucial to
giving potential reasons for treatment responses and
predicting markers for favourable survival outcomes.
Recently, the immunogenic microenvironment and

tumour–stroma interactions have been found to be of
clinical significance [9–11]. The presence of tumour-
infiltrating lymphocytes (TILs) in the breast tumour
microenvironment increased pathological complete
responses (pCR) with promising results for immune
checkpoint inhibitors in a subgroup of metastatic
TNBCs [6,12,13]. Early-stage TNBC patient outcomes
correlate strongly with the presence of stromal TILs
(sTILs), as an 18% death risk reduction was associated
with a 10% increment of stromal lymphocytes [14].
Many studies conclude that a higher number of sTILs,
measured using a unified methodology, show a
favourable response to chemotherapy and neoadjuvant
therapy and can be used as a predictive marker in TNBC
[6,15–17]. However, due to the inherent subjective
nature of manual assessment, this feature is not reported
in a routine manner. The use of more accurate and sys-
tematic digital methods for the measurement of this char-
acteristic presents the opportunity to add clinically
relevant information that complements traditional
assessment approaches.
The stroma surrounding tumour tissue carries a prog-

nostic value and impacts tumour development and
behaviour in triple-negative cancer subpopulations
[18]. Patients with stroma-high tumours show a worse
prognosis compared with women with a low tumour–
stroma ratio. The tumour–stroma ratio shows discrimi-
native results in triple-negative tumours compared with
non-TNBC despite the patient’s clinical variables such
as age and tumour size [11]. The clinical risk stratifica-
tion between the two groups was based on evaluating
digital haematoxylin and eosin (H&E)-stained histolog-
ical sections with some variation between methodolo-
gies [11,19,20].
In general, TNBC has a high histological grade (grade

III), greater mean tumour size, and elevated mitotic
count. Other features such as central necrosis, pushing
margins of invasion, a lymphocytic stromal response,
and multiple apoptotic cells also are common [3,5].
However, despite all the recent progress to understand
the disease, it is widely accepted that TNBC cases are
grouped according to what they lack rather than what
they share, and they are posing a significant clinical
management challenge [1,3,10].
Currently, histopathological analysis remains the

mainstay of TNBC prognostication. However, the
digitisation of tissue slides into whole-slide images
(WSIs) opens the possibility of studying the spatial
tumour microenvironment (sTME) to mine for novel

digital image-based markers using modern artificial
intelligence (AI) and deep learning-based image analysis
[21]. Using these technologies, it is now possible to
explore quantitative measures of the TNBC sTME
instead of relying only on qualitative assessment,
allowing an in-depth investigation of the TNBC sTME
by expanding the observation space.

Deep convolutional neural networks (CNNs) have
emerged as the leading branch of AI for image analysis,
demonstrating significant strength in several computer
vision and pattern recognition tasks [22,23]. The deep
CNNs have been shown to effectively classify and seg-
ment tissue types and different kinds of nuclei in the
WSIs with a high degree of accuracy, opening vast
opportunities for understanding the sTME from novel
perspectives [15,24–27]. Several researchers have
recently proposed computational models to assess the
role of different biomarkers such as the absolute mitotic
count [28], tumour-infiltrating lymphocyte architecture
[29], and spatial organisation of TILs [30].

This study combines the power of deep CNNs and
graph theory to develop novel digitised sTME markers
for TNBC prognostication. After detailed analysis, we
found that digital markers of the tumour-associated
stroma (TAS) and stromal tumour-infiltrating lympho-
cytes (sTILS) could stratify TNBC cases from two inde-
pendent multi-centric cohorts (one from Australia and
the other from the USA) into two risk groups with statis-
tically significant differences in terms of disease-specific
survival. Patient survival predictions can be applied to
tailored clinical therapy and expand response assessment
aspects in future clinical trials.

Materials and methods

Study cohort and datasets
In this study, we analysed data from two independent
multi-centric TNBC datasets, consisting of digitised
whole-slide images (WSIs) of H&E-stained slides with
linked clinical follow-up and outcome data, to develop
and evaluate quantitative measures derived from our
deep learning-based analysis of the WSIs. The two
datasets typically contain a single WSI per patient. The
two cohorts are denoted as the AUBC (Australian Breast
Cancer) cohort (n = 318) and the TCGA (The Cancer
Genome Atlas) cohort (n = 111). The use of the AUBC
cohort was approved by the Western Sydney Local
Health District Human Research Ethics Committee
(approval reference 2019/ETH02413) and the Royal
Brisbane and Women’s Hospital Human Research
Ethics Committee (HREC/2021/QRBW/76049). The
AUBC images were obtained from the Australian Breast
Cancer Tissue Bank, and donors provided informed con-
sent to the bank for their tissue and data to be used for
future unspecified research at the time of recruitment.
The TCGA cohort was de-identified and publicly avail-
able, and participant consent had previously been
obtained by The Cancer Genome Atlas Consortium.

2 R Albusayli et al

© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2023
www.thejournalofpathology.com

 10969896, 0, D
ow

nloaded from
 https://pathsocjournals.onlinelibrary.w

iley.com
/doi/10.1002/path.6061 by T

est, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.pathsoc.org
http://www.thejournalofpathology.com


The AUBC dataset collected by the Australian Breast
Cancer Tissue Bank consisted of 412 cases, with one
H&E-stained representative slide per case, treated pri-
marily with surgery between 2003 and 2017, from 12 dif-
ferent pathology departments. All digitised WSIs for the
slides were scanned using a Hamamatsu NanoZoomer
scanner (Hamamatsu Photonics, Bridgewater, NJ,
USA) with a magnification power of 40�. The WSIs
were further filtered to exclude cases with missing
follow-up data and inadequate imaging, leaving a total
of 318 cases in the AUBC cohort for the study (supple-
mentary material, Figure S1).

The TCGA dataset consisted of WSIs for the diagnos-
tic slides, typically one slide per case, and the
corresponding survival data for a total of 157 TNBC
cases. They were retrieved from the TCGA portal from
a larger collection of 1,098 breast cancer cases based
on their negativity for the three receptors (ER, PR, and
HER2), with their initial pathological diagnosis year
varying between 1993 and 2013. After performing qual-
ity checks, 46 slides with artefacts were excluded,
resulting in 111 cases (111 WSIs) for the TCGA-TNBC
cohort (supplementary material, Table S1), referred to as
the TCGA cohort hereafter.

Clinicopathological features
In total, 429 female patients were included in the study,
with the median follow-up duration of the whole cohort
being 45 months (range 0–188 months) (Table 1). The
follow-up duration for the AUBC cohort was up to
188 months compared with that of the TCGA cohort,
which had a maximum follow-up duration of
133 months. To harmonise the follow-up duration
between the two cohorts, we right-censored the maxi-
mum survival analysis time to 120 months (10 years).

The average age of all participants was 56 years, and
the disease caused death for 24% of the patients. The
majority of the TNBC lesions were grade III (92.76%
of AUBC), and no prognostic factors were found in the
disease-specific survival (DSS) analysis using patients’
grade (supplementary material, Figure S2).

Tissue detection and segmentation
A concept diagram of our analytical pipeline is shown in
Figure 1. After dividing the digitised WSIs into smaller
manageable image patches of size 224 � 224 pixels at
40� magnification power, the first step in our pipeline
was to recognise and localise the various tissue types
present in the WSIs. We employed a previously devel-
oped in-house deep learning model [31] to automatically
recognise the different tissue types, followed by a graph-
based method to enhance the class predictions based on
neighbouring nodes.
We used an end-to-end CNN model to label a given

image patch into one of the six classes: stroma, lympho-
cytes, necrosis, tumour, normal lobules, and other
(including miscellaneous other tissue types and the fatty
tissue), employing the ResNet neural network model
[32] to perform initial classification of the tissue types.
An expert pathologist (JA) manually annotated regions
corresponding to the six tissue types (stroma, lympho-
cytes, necrosis, tumour, normal lobules, and others)
using the Automated Slide Analysis Platform (ASAP)
annotation tool [33] for training of the tissue classifica-
tion algorithm. The batch size was set to 16 and the net-
work was trained for 100 epochs with a learning rate of
0.001. The data were split into an average of 80% and
20% for training and testing, respectively; no patches
from the same slide were simultaneously used for dis-
covery and validation (supplementary material,

Table 1. Summary of clinical and pathological features for the patients in the two cohorts.
Variable Sub-variables AUBC n (%) or mean (SD) TCGA n (%) or mean (SD)

Age (months) 0–188 56 (14.89) 55 (11.94)
Laterality Bilateral 3 (00.94%)

Left 164 (51.57%) 63 (56.75%)
Right 151 (47.48%) 48 (43.24%)

Primary histological diagnosis Invasive lobular carcinoma (ILC) 6 (01.88%) 1 (0.9%)
No special type (NST) 283 (88.99%) 101 (99.99%)
Medullary cancer 6 (01.88%) 2 (1.80%)
Metaplastic cancer 6 (01.88%) 1 (0.9%)
Other 17 (05.34%) 6 (5.40%)

Tumour stage T1 98 (30.81%) NR
T2 196 (61.64)
T3 21 (6.61%)
NA 3 (0.94%)

Grade 2 19 (05.97%) NR
3 295 (92.76%)
No grade 4 (01.25%)

Stage I NR 21 (18.91%)
II 73 (65.76%)
III 13 (11.71%)
Others 4 (03.60%)

Axillary lymph nodes positive 0 220 (69.18%) 78 (70.27%)
>0 98 (30.81%) 33 (29.72%)

N, number of patients; NA, not available; NR, data not reported; SD, standard deviation.
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Table S2), with the validation set’s model performance
having an average F1 score of 0.92 (supplementary
material, Table S3).
At the time of inference on WSIs, we mapped the

model prediction to patches after extracting superpixel
clusters using the Simple Non-Iterative Clustering
(SNIC) method [34] on image tiles at 5� magnification.
The SNIC algorithm was applied to each WSI to seg-
ment tissue regions (superpixel), which represent
patches, with an additional step to improve tissue predic-
tion performance using a graph-based method to incor-
porate the effect of relationships between neighbouring
nodes [31].

Extraction of spatial tumour microenvironment
(sTME) features
The graph representation of each WSI was used to
extract quantitative sTME image features for each
patient. The extracted features included metrics derived

from the connectivity of graph nodes of different tissue
types. Supplementary material, Table S4 gives the equa-
tions and descriptions for each of the selected features.

The sTILs feature was studied by finding associations
between lymphocytes and stroma, as shown in
Figure 1G, and the calculation of the Digi-sTILs score
is based on the analysis of the entire WSI (500 patches
per WSI on average). It shows strong risk stratification,
which makes it a potential digital marker for extracting
TNBC case outcomes. Tumour-associated stroma
(TAS) density was investigated by finding and quantify-
ing direct connections between the tumour and stroma
nodes. The absence of such links excludes nodes from
being represented in the corresponding features. Exam-
ples of these nodes’ connectivity are shown in
Figure 2G. The area selected for the quantification
method is based on the recommendation from a clinical
perspective [20], with one representative slide being
used per case and WSI’s highest Digi-TAS score patch
considered for survival analysis. Different quantitative

Figure 1. An overview of our analysis pipeline with visual representations of features.
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combinations of tissue types were investigated using
some or all tissue types; however, no significant results
were found among them.

Survival analysis using sTME features
The follow-up time in months was defined as the time
interval between the date of diagnosis and the date of
death or the total duration of the follow-up. Patients
who died from other causes, still alive without an event
at the last reported date, or alive and remaining
disease-free were labelled as censored. Statistical analy-
sis was conducted using R software (version 3.6.3;
https://www.r-project.org/) and Python 3.7 (Python
Software Foundation, https://www.python.org/).

Two-sided statistical tests were performed with a sig-
nificance level set at p < 0.05. Prognostic evaluation
and survival analyses were performed using the
Kaplan–Meier (KM) analysis to show a statistically
significant different outcome between two groups of
patients. The grouping was done using a cut-off on
the feature value that corresponds to the most important
relationship with the disease-specific survival of the
discovery set based on the log-rank test with the same
cut-off value used on the validation set. The feature
scores below the feature cut-off correspond to the
low-value group, while the high values represent the
high-value group.

We report the concordance index (C-index), defined
as the fraction of concordant pairs of individuals divided
by the total number of all possible pairs based on
Harrell’s C-statistics [35,36]. In the case of survival
analysis, the C-index assesses the model’s discrimina-
tion power by measuring the correlation rank between
the predicted risk scores and survival times [37]. A
Cox proportional hazards (Cox PH) model was trained

using either of the two cohorts as a discovery cohort to
predict survival in the other cohort as the validation
cohort. Based on the significance of the model’s
p value, we used the function concordance.index in the
R survcomp package using the Cox PH model trained
on the discovery set [38]. The C-indices for Survival
Support Vector Machine (SurvivalSVM) were calcu-
lated based on the model’s prediction risk score without
splitting the patients into two groups, as with the KM
analysis.
We expanded our analysis of time-to-event outcomes

to use a combination of features with SurvivalSVM,
which are both extensions of their standard models to
right-censored time-to-event data [39]. We plotted the
KM survival curves of the two risk groups with their
C-index, p-value, and HR on validation sets. The main
contribution of the SurvivalSVM model is that it finds
the relationships between features and survival groups
using a complex and nonlinear hyperplane. The high-
dimensional feature space mapping gives a new direc-
tion to understand the association with time-to-event
patient data. The split quality is measured using the
log-rank test with a significant p value below 0.05. We
used scikit-survival, which is a Python module for sur-
vival analysis (https://scikit-survival.readthedocs.io/)
with their default hyperparameters. Kaplan–Meier sur-
vival curves were drawn for each experiment, and Cox
proportional hazards regression was applied to deter-
mine C-indices, HRs, and p values.

Results

Experiments for the aforementioned features were
conducted in four different ways. For independent exter-
nal cross-validation, we used AUBC as the discovery

Table 2. Univariate disease-specific survival analysis and survival machine learning model (SurvivalSVM) were performed on the two cohorts
using the studied features.
Validation cohort TCGA AUBC

Features C-index HR P value C-index HR P value

Digi-sTILs score 0.65 3.8 0.0189 0.60 2.5 0.0054
Digi-TAS score 0.60 3.2 0.0437 0.59 2.6 0.0008
Digi-sTILs + ALN (SurvivalSVM) 0.76 4.5 0.0131 0.71 4.0 <0.0001

The table shows the results of using each cohort as independent validation sets, with detailed results of the training sets that can be found in supplementary material,
Table S5. The p values shown in bold font represent significant differences in the corresponding K–M curves.

Table 3. Univariate disease-specific survival analysis and survival machine learning model (SurvivalSVM) were performed with internal cross-
validation in the AUBC cohort and mixed cohorts (AUBC, TCGA).
Validation cohorts AUBC (two-folds, ten runs) Mixed cohorts (two-folds, ten runs)

Features C-index (SD) HR P value C-index (SD) HR P value

Digi-sTILs score 0.63 (0.03) 3.4 0.0037 0.61 (0.02) 2.8 0.0103
Digi-TAS score 0.58 (0.03) 5.3 0.0044 0.57 (0.02) 5.9 <0.0001
Digi-sTILs + ALN (SurvivalSVM) 0.73 (0.04) 6.9 <0.0001 0.68 (0.03) 4.7 <0.0001

The table shows the results of the validation sets, with detailed results of training sets that can be found in supplementary material, Tables S6 and S7. HR represents the
hazard ratio, and SD denotes the standard deviation across the ten runs. The p values shown in bold font represent significant differences in the corresponding K–M
curves.
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Figure 2. Significant survival differences for TCGA and AUBC. Kaplan–Meier (KM) curves are shown for high-value and low-value groups for
the specific features when using a specific cohort for validation.
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cohort and TCGA as the external validation cohort and
vice versa.We also performedmixed cohorts and AUBC
internal cross-validation with two-fold cross-validation
and ten multiple runs. For mixed cohorts and AUBC
internal cross-validation, we report twice the median of
the p values to avoid the inherent problems associated
with data splitting and dependent p values [40].

Prognostic value of the digital score of TAS and sTILs
scores
We conducted univariate Cox PH regression on each of
the computed features and identified two significant fea-
tures (log-rank p < 0.05) associated with survival and
compatible with clinical viewpoints (Tables 2 and 3).
The survival analysis was performed with KM estimates
for low and high mortality risk groups based on the
patient prediction scores for each feature (Figure 2).

Figure 2A illustrates the KM plots for TCGA and
AUBC as validation sets for the digital sTILs (Digi-sTILs)
feature, with the cohort stratified according to digital sTILs
value. A high Digi-sTILs score was significantly associ-
ated with higher breast cancer disease-specific survival.
The log-rank p value for the TCGA cohort as validation
set was 0.0189, and 0.0054 for the AUBC cohort as vali-
dation set. The C-indices were calculated using the
Cox PH regression model with 0.65, 0.60 for TCGA and
AUBC for external cross-validation, respectively, and
0.63, 0.61 for AUBC with internal cross-validation
and mixed cohorts with hazard ratios (HRs) between
2.8 and 3.4 (Table 3). We also investigated the

concordance between the pathologist-assigned sTILs per-
centages from three pathologists [41] and the Digi-sTILs
scores in the TCGA cohort (supplementary material,
Figure S3).
Figure 2B shows the KM curves for the digital TAS

(Digi-TAS) score. The curves show statistically signifi-
cant differences between the high and low value groups
with respect to outcomes, with a high value associated
with shorter survival (HRs 2.6–5.9) and the C-indices
ranging between 0.57 and 0.60 (Tables 2 and 3). The
pathologist assigned TAS ratios (high/medium/low)
manually to 20 cases from the AUBC cohorts, giving a
high value of the correlation score (0.85) and the
corresponding p value less than 0.0001 with Digi-TAS
scores (Figure 3).

Multivariate assessment with a survival machine
learning-based model
We investigated the performance of survival analysis with
the combined features using the machine learning-based
SurvivalSVM algorithm. Overall, the SurvivalSVM
model performed quite well, with C-indices reaching
0.76 (Tables 2 and 3). The best feature combination in
terms of the C-index is a combination of the Digi-sTILs
score and the patient’s positivity status to the axillary
lymph node (ALN).
For the TCGA dataset as the external validation cohort,

we achieved a high C-index (0.76) (p = 0.0131 and HR
of 4.5) using SurvivalSVM with a similar trend observed
using AUBC as a validation set with the C-index value of

Figure 3. Illustrating the Spearman correlation with pathologists’ TAS score and our digital scores.
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Figure 4. Illustrating the prognosis prediction difference between good and poor outcomes on the whole-slide images (WSIs).
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0.71 (p < 0.0001 and HR of 4.0). For internal validation
on the AUBC cohort and mixed cohorts, the performance
of two-folds and ten runs was averaged for C-indices and
HRs, and we reported twice the medians of p values. In
that case, the C-indices were 0.73 and 0.68, with HR
values of 6.9 (p < 0.0001) and 4.7 (p < 0.0001), respec-
tively, for AUBC internal cross-validation and mixed
cohorts, as shown in Table 3. Figure 2C shows the perfor-
mance of the SurvivalSVM model using the KM curves
showing clear risk stratification for time-to-event in both
AUBC and TCGA cohorts using the SurvivalSVM risk
prediction scores.

Discussion

There is increasing interest in the use of automated anal-
ysis of clinical and pathological data for predicting and
improving patient outcomes. Traditional histopathologi-
cal examinations using clinical parameters [41,42] and
tumour characteristics are limited in their scope to iden-
tify and categorise specific features in the spatial tumour
microenvironment and are also susceptible to intra- and
inter-observer variation [43]. This study presents a novel
way of automatically quantifying different features
related to tissue adjacency and cellular networks using
deep learning-based tissue classification. We compiled
quantitative tissue descriptors concerning the spatial
relationship of tumour with stroma and lymphocytes
from digitised images of routine H&E sections of
TNBC. When cross-validated in two independent held-
out datasets, our features successfully predicted risk
independent of routine clinical variables with machine
learning survival models.

In our analysis, features related to sTILs and TAS
were found to be strongly associated with patient out-
comes in the two cohorts (AUBC and TCGA), with the
strongest prognostic significance for the combination
of our digital score of sTILs and the patient’s positivity
status for axillary lymph nodes using a machine learn-
ing-based survival model. A common theme of the pro-
posed features is that they quantify the relationship
between the tumour and its neighbouring stroma tissue
and capture the arrangement of lymphocytic nodes that
have direct connections with stromal nodes.

The proposed digital stromal tumour-infiltrating lym-
phocytes (Digi-sTILs) score indicates the ratio of stromal
area occupied by lymphocytic cells to the total stroma.
The C-indices of the Digi-sTILs score digital marker for
disease-specific survival were between 0.60
(p = 0.0189) and 0.65 (p = 0.0037). Figure 4A shows a
WSI with a good prognosis and a relatively high Digi-
sTILs score, while Figure 4B shows the WSI of a case
with a poor prognosis with theDigi-sTILs score being rel-
atively low. Also, no significant departures from linearity
were observed in the relationship between Digi-sTILs and
DSS events, even with the addition of ALN status and age
features (supplementary material, Figure S5).

Stroma tumour-infiltrating lymphocytes (sTILs),
defined as lymphocytes located in the stroma but not in
contact with tumour, have emerged as a robust and predic-
tive biomarker in triple-negative breast cancer [15,44], with
a relatively high value of sTILs shown to be associated
with improvement in overall survival in inflammatory
breast cancers. This study reinforces the role of sTILs in
the context of the tumour microenvironment and eventu-
ally for the clinical outcomes of breast cancer.
Our results indicate that high-risk tumours have rela-

tively higher levels of inter-mixing of stromal and
tumour tissue as opposed to separate areas of pure
stroma and tumour. The C-indices of TAS-related
markers for disease-specific survival were between
0.57 (p = 0.0437) and 0.60 (p < 0.0001). Figure 4C
shows a WSI with good prognosis and a relatively low
Digi-TAS score, while Figure 4D shows the WSI of a
case with poor prognosis with the Digi-TAS score being
relatively high.
The relationship between stroma and tumour in TNBC

is significant as high levels of intermixing of stroma and
tumour cells are related to relatively poor prognosis com-
pared with patients with a low tumour–stroma ratio
[11,18,45], rendering our Digi-TAS score as a potential
quantitative and reproducible marker for improved risk
scoring. Moreover, a great deal of evidence has recently
emerged showing that adjacent stromal tissue contributes
significantly to regulating tumour progression. These
findings present an opportunity to improve the prognosti-
cation of TNBC patients [19,46,47].
We further expanded our study with a machine

learning-based model (SurvivalSVM), exploring a com-
bination of the above features, including clinical vari-
ables, to test the utility of strengthening the model’s
risk stratification ability. Combining these features using
the machine learning-based survival model resulted in
C-indices reaching 0.76 and 0.71 in both TCGA and
AUBC as validation sets, making the predictive ability
of these models stronger than that of individual features.
Notably, some clinical inputs were excluded due to high
levels of missing data.
In summary, we have presented a novel computa-

tional approach using standard H&E histology images
of TNBC and developed a set of novel digital features
related to stromal tumour-infiltrating lymphocytes
(sTILs) and tumour–stroma spatial arrangement (TAS)
to predict survival outcomes. This study, to the best of
our knowledge, is the first to show the importance of
stromal features in TNBC survival outcomes with auto-
matic quantification based on a deep learning approach.
Our image-based markers successfully stratified patients
into high-risk and low-risk groups. Moreover, they
emphasised the role of sTILs and TAS in risk stratifica-
tion. These findings could help prognosticate TNBC
patients, potentially leading to new and more
personalised treatment strategies with randomised con-
trol studies between our digital scores and pathologists
to achieve the required high level of confidence for clin-
ical deployment. We also investigated the prognostic
value of Digi-sTILs and ALN status in addition to stage
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II and compared our findings with those of Loi et al [16];
our findings were found to be aligned with those of Loi
et al (supplementary material, Figure S4 and Table S8).
The proposed scores for sTILs and TAS are objective,

reproducible, and prognostically significant in terms of
disease-specific survival for TNBC and could assist
pathologists in assessing the role of sTILs and TAS.
Additional analyses using larger patient cohorts and
multi-centric external validation sets are needed to con-
firm our findings. Integrating patient therapy types and
histopathological characteristics would potentially
strengthen the study findings and broaden the knowl-
edge about survival data. The TNBC tumour subtyping
is critical to better understanding the disease, and incor-
porating the subtype may add additional perspective on
the role of tumour microenvironment biomarkers.
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