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KNESER GRAPHS ARE HAMILTONIAN

ARTURO MERINO, TORSTEN MÜTZE, AND NAMRATA

Abstract. For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all
k-element subsets of an n-element ground set, and an edge between any two disjoint sets. It
has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one
notable exception, namely the Petersen graph K(5, 2). This problem received considerable
attention in the literature, including a recent solution for the sparsest case n = 2k + 1. The
main contribution of this paper is to prove the conjecture in full generality. We also extend this
Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph).
The generalized Johnson graph J(n, k, s) has as vertices all k-element subsets of an n-element
ground set, and an edge between any two sets whose intersection has size exactly s. Clearly, we
have K(n, k) = J(n, k, 0), i.e., generalized Johnson graph include Kneser graphs as a special
case. Our results imply that all known families of vertex-transitive graphs defined by intersecting
set systems have a Hamilton cycle, which settles an interesting special case of Lovász’ conjecture
on Hamilton cycles in vertex-transitive graphs from 1970. Our main technical innovation is to
study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different
speeds and that interact over time, reminiscent of the gliders in Conway’s Game of Life, and to
analyze this system combinatorially and via linear algebra.

1. Introduction

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all k-element K(n, k)
subsets of [n] := {1, 2, . . . , n}, and an edge between any two sets A and B that are disjoint, i.e.,
A ∩ B = ∅. Kneser graphs were introduced by Lovász [Lov78] in his celebrated proof of Kneser’s
conjecture. Using the Borsuk-Ulam theorem, he proved that the chromatic number of K(n, k)
equals n − 2k + 2, and his proof gave rise to the field of topological combinatorics. We proceed to
list a few other important properties of Kneser graphs. The maximum independent set in K(n, k)
has size

(n−1
k−1
)

by the famous Erdős-Ko-Rado [EKR61] theorem. Furthermore, the graph K(n, k)
is vertex-transitive, i.e., it ‘looks the same’ from the point of view of any vertex, and all vertices
have degree

(n−k
k

)
. Lastly, note that when n < ck, the Kneser graph K(n, k) does not contain

cliques of size c, whereas it does contain such cliques when n ≥ ck. Many other properties
of Kneser graphs have been studied, for example their diameter [VPV05], treewidth [HW14],
boxicity [CL21], and removal lemmas [FR18].

1.1. Hamilton cycles in Kneser graphs. In this work we investigate Hamilton cycles in Kneser
graphs, i.e., cycles that visit every vertex exactly once. Kneser graphs have long been conjectured
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2 KNESER GRAPHS ARE HAMILTONIAN

to have a Hamilton cycle, with one notable exception, the Petersen graph K(5, 2) (see Figure 2),
which only admits a Hamilton path. This conjecture goes back to the 1970s, and in the following
we give a detailed account of this long history. As Kneser graphs are vertex-transitive, this is
a special case of Lovász’ famous conjecture [Lov70], which asserts that every vertex-transitive
graph admits a Hamilton path. A stronger form of the conjecture asserts that every vertex-
transitive graph admits a Hamilton cycle, apart from five exceptional graphs, one of them being
the Petersen graph. So far, the conjecture for Hamilton cycles in Kneser graphs has been tackled
from two angles, namely for sufficiently dense Kneser graphs, and for the sparsest Kneser graphs.
From the aforementioned results about the degree and cliques in K(n, k), we see that K(n, k) is
relatively dense when n is large w.r.t. k, and relatively sparse otherwise. The sparsest case is
when n = 2k + 1, and the graphs Ok := K(2k + 1, k) are also known as odd graphs. Intuitively, Ok

proving Hamiltonicity should be easier for the dense cases, and harder for the sparse cases.
We first recap the known results for dense Kneser graphs. Heinrich and Wallis [HW78] showed

that K(n, k) has a Hamilton cycle if n ≥ 2k + k/( k
√

2 − 1) = (1 + o(1))k2/ ln 2. This was
improved by B. Chen and Lih [CL87], whose results imply that K(n, k) has a Hamilton cycle if
n ≥ (1+o(1))k2/ log k; see [CI96]. In another breakthrough, Y. Chen [Che00] showed that K(n, k)
is Hamiltonian when n ≥ 3k. A particularly nice and clean proof for the cases where n = ck,
c ∈ {3, 4, . . .}, was obtained by Y. Chen and Füredi [CF02]. Their proof uses Baranyai’s well-
known partition theorem for complete hypergraphs [Bar75] to partition the vertices of K(ck, k)
into cliques of size c. This proof method was extended by Bellmann and Schülke to any
n ≥ 4k [BS21]. The asymptotically best result known to date, again due to Y. Chen [Che03], is
that K(n, k) has a Hamilton cycle if n ≥ (3k + 1 +

√
5k2 − 2k + 1)/2 = (1 + o(1))2.618 . . . · k.

With the help of computers, Shields and Savage [SS04] found Hamilton cycles in K(n, k) for
all n ≤ 27 (except for the Petersen graph).

We now briefly summarize the Hamiltonicity story of the sparsest Kneser graphs, namely
the odd graphs. Note that Ok = K(2k + 1, k) has degree k + 1, which is only logarithmic in
the number of vertices. The conjecture that Ok has a Hamilton cycle for all k ≥ 3 originated
in the 1970s, in papers by Meredith and Lloyd [ML72, ML73] and by Biggs [Big79]. Already
Balaban [Bal72] exhibited a Hamilton cycle for the cases k = 3 and k = 4, and Meredith and
Lloyd described one for k = 5 and k = 6. Later, Mather [Mat76] solved the case k = 7. Mütze,
Nummenpalo and Walczak [MNW21] finally settled the problem for all odd graphs, proving
that Ok has a Hamilton cycle for every k ≥ 3. In fact, they even proved that Ok admits double-
exponentially (in k) many distinct Hamilton cycles. Already much earlier, Johnson [Joh11]
provided an inductive argument that establishes Hamiltonicity of K(n, k) provided that the
existence of Hamilton cycles is known for several smaller Kneser graphs. Combining his result
with the unconditional results from [MNW21] yields that K(2k + 2a, k) has a Hamilton cycle
for all k ≥ 3 and a ≥ 0. These results still leave infinitely many open cases, the sparsest one of
which is the family K(2k + 3, k) for k ≥ 1.

Another line of attack towards proving Hamiltonicity is to find long cycles in K(n, k). To this
end, Johnson [Joh04] showed that there exists a constant c > 0 such that the odd graph Ok has a
cycle that visits at least a (1−c/

√
k)-fraction of all vertices, which is almost all vertices as k tends

to infinity. This was generalized and improved in [MS17], where it was shown that K(n, k) has
a cycle visiting a 2k/n-fraction of all vertices. For n = 2k + 1 this fraction is (1 − 1/(2k + 1)),
and more generally for n = 2k + o(k) it is 1 − o(1).

The main contribution of this paper is to settle the conjecture on Hamilton cycles in Kneser
graphs affirmatively in full generality.
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Theorem 1. For all k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has a Hamilton cycle,
unless it is the Petersen graph, i.e., (n, k) = (5, 2).

In the following we present generalizations of this result that we establish in this paper, and
we discuss how they extend previously known Hamiltonicity results. The relations between these
results for different families of vertex-transitive graphs are illustrated in Figure 1. In fact, our
proof of Theorem 1 enables us to settle all known instances of Lovász’ conjecture for vertex-
transitive graphs defined by intersecting set systems. As we shall see, Kneser graphs are the
hardest cases among them to prove. Indeed, the more general families of graphs can be settled
easily once Hamiltonicity is established for Kneser graphs.

generalized Johnson graphs
J(n, k, s)

Theorem 2

generalized Kneser graphs
K(n, k, s)

Corollary 3

Johnson graphs
J(n, k) = J(n, k, k − 1)

[TL73]

bipartite Kneser graphs
H(n, k)

[MS17]

Kneser graphs K(n, k) =
K(n, k, 0) = J(n, k, 0)

Theorem 1

middle levels graphs
Mk = H(2k + 1, k)

[Müt16]

Odd graphs
Ok = K(2k + 1, k)

[MNW21]

n = 2k + 1n = 2k + 1

s = 0 s = k − 1

spanning
subgraph

Lemma 4
s = 0

Lemma 4

Figure 1. Relation between Hamiltonicity results established in this paper and previous
papers. Arrows indicate implications.

1.2. Generalized Johnson graphs. The generalized Johnson graph J(n, k, s) has as vertices J(n, k, s)
all k-element subsets of [n], and an edge between any two sets A and B that satisfy |A ∩ B| = s,
i.e., the intersection of A and B has size exactly s. To ensure that the graph is connected, we
assume that s < k and n ≥ 2k − s + 1[s=0], where 1[s=0] denotes the indicator function that
equals 1 if s = 0 and 0 otherwise. Generalized Johnson graphs are sometimes called ‘uniform
subset graphs’ in the literature, and they are also vertex-transitive. Furthermore, by taking
complements, we see that J(n, k, s) is isomorphic to J(n, n − k, n − 2k + s). Clearly, Kneser
graphs are special generalized Johnson graphs obtained for s = 0. On the other hand, the graphs
obtained for s = k − 1 are known as (ordinary) Johnson graphs J(n, k) := J(n, k, k − 1). J(n, k)

Chen and Lih [CL87] conjectured that all graphs J(n, k, s) admit a Hamilton cycle except the
Petersen graph J(5, 2, 0) = J(5, 3, 1), and this problem was reiterated in Gould’s survey [Gou91].
In their original paper, Chen and Lih settled the cases s ∈ {k − 1, k − 2, k − 3}. It is known that
a Hamilton cycle in the Johnson graph J(n, k) = J(n, k, k − 1) can be obtained by restricting
the binary reflected Gray code for bitstrings of length n to those strings with Hamming
weight k [TL73]. In fact, for Johnson graphs J(n, k) much stronger Hamiltonicity properties
are known [JR94, Kno94]. Other properties of generalized Johnson graphs were investigated
in [CW08a, AAC+18, Zak20, KZ22].
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We generalize Theorem 1 further, by showing that all connected generalized Johnson graphs
admit a Hamilton cycle. This resolves Chen and Lih’s conjecture affirmatively in full generality.

Theorem 2. For all k ≥ 1, 0 ≤ s < k, and n ≥ 2k − s + 1[s=0] the generalized John-
son graph J(n, k, s) has a Hamilton cycle, unless it is the Petersen graph, i.e., (n, k, s) ∈
{(5, 2, 0), (5, 3, 1)}.

1.3. Generalized Kneser graphs. The generalized Kneser graph K(n, k, s) has as vertices all k- K(n, k, s)
element subsets of [n], and an edge between any two sets A and B that satisfy |A∩B| ≤ s, i.e., the
intersection of A and B has size at most s. The definition is very similar to generalized Johnson
graphs, only the equality condition on the size of the set intersection is replaced by an inequality.
As a consequence, we clearly have K(n, k, s) =

⋃
t≤s J(n, k, t), i.e., K(n, k, s) has the same vertex

set as J(n, k, s), but more edges. In other words, J(n, k, s) is a spanning subgraph of K(n, k, s).
Generalized Kneser graphs are also vertex-transitive, and they have been studied heavily in the
literature; see e.g. [Fra85, Den97, CW08b, BCK19, JM20, GMKM21, LCL22, Met22].

As J(n, k, s) is a spanning subgraph of K(n, k, s), Theorem 2 yields the following immediate
corollary.

Corollary 3. For all k ≥ 1, 0 ≤ s < k, and n ≥ 2k − s + 1[s=0] the generalized Kneser
graph K(n, k, s) has a Hamilton cycle, unless it is the Petersen graph, i.e., (n, k, s) ∈ {(5, 2, 0), (5, 3, 1)}.

1.4. Bipartite Kneser graphs and the middle levels problem. For integers k ≥ 1 and
n ≥ 2k + 1, the bipartite Kneser graph H(n, k) has as vertices all k-element and (n − k)-element H(n, k)
subsets of [n], and an edge between any two sets A and B that satisfy A ⊆ B. It is easy to see
that bipartite Kneser graphs are also vertex-transitive. The following simple lemma shows that
Hamiltonicity of K(n, k) is harder than the Hamiltonicity of H(n, k).

Lemma 4. If K(n, k) admits a Hamilton cycle, then H(n, k) admits a Hamilton cycle or path.

Proof. Given a Hamilton cycle C = (x1, x2, . . . , xN ) in K(n, k), the sequences P := (x1, x2, x3, x4, . . .)
and P ′ := (x1, x2, x3, x4, . . .), where xi := [n] \ xi, are two spanning paths in H(n, k). Conse-
quently, if N =

(n
k

)
is odd, then the concatenation PP ′ is a Hamilton cycle in H(n, k), and if N

is even, then P and P ′ are two disjoint cycles that together span the graph and that can be
joined to a Hamilton path. □

The sparsest bipartite Kneser graphs Mk := H(2k + 1, k) are known as middle levels graphs, Mk

as they are isomorphic to the subgraph of the (2k + 1)-dimensional hypercube induced by the
middle two levels. The well-known middle levels conjecture asserts that Mk has a Hamilton
cycle for all k ≥ 1. This conjecture was raised in the 1980s, settled affirmatively in [Müt16], and
a short proof was given in [GMN18]. More generally, all bipartite Kneser graphs H(n, k) were
shown to have a Hamilton cycle in [MS17], via a short argument that uses the sparsest case Mk

as a basis for induction. These papers completed a long line of previous partial results on these
problems; see the papers for more references and historical remarks. Via Lemma 4 and its proof
shown before, our Theorem 1 thus also yields a new alternative proof for the Hamiltonicity of
bipartite Kneser graphs. Consequently, our results in this paper settle Lovász’ conjecture for all
known families of vertex-transitive graphs that are defined by intersecting set systems.

1.5. Algorithmic considerations. A combinatorial Gray code [Sav97, Müt22] is an algorithm
that computes a listing of combinatorial objects such that any two consecutive objects in the list
satisfy a certain adjacency condition. Many such algorithms are covered in depths in Knuth’s
book ‘The Art of Computer Programming Vol. 4A’ [Knu11], and several of them correspond to
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computing a Hamilton cycle in a vertex-transitive graph, thus algorithmically solving one special
case of Lovász’ conjecture. For example, the classical binary reflected Gray code computes a
Hamilton cycle in the n-dimensional hypercube, which can be seen as the Cayley graph of Zn

2
given by the standard generators. Another example is the well-known Steinhaus-Johnson-Trotter
algorithm, which computes a Hamilton cycle in the Cayley graph of the symmetric group when
the generators are adjacent transpositions. Similarly, the recent solution [SW20] of Nijenhuis
and Wilf’s sigma-tau problem [NW75, Ex. 6] computes a Hamilton cycle in the Cayley (di)graph
of the symmetric group with the two generators being cyclic left-shift or transposition of the first
two elements. Similar Gray code algorithms have been discovered for the symmetric group with
other generators, such as prefix reversals [Ord67, Zak84], prefix shifts [Cor92, CW93, RW10],
and for other groups such as the alternating group [GR87, Hol17].

Subsets of size k of an n-element ground set are known as (n, k)-combinations in the Gray
code literature. Many different algorithms have been devised for generating (n, k)-combinations
by element exchanges, i.e., any two consecutive combinations differ in removing one element
from the subset and adding another one [TL73, EM84, Cha89, BW84, EHR84, Rus88]. This is
equivalent to saying that any two consecutive sets intersect in exactly k − 1 elements, i.e., such
a Gray code computes a Hamilton cycle in the Johnson graph J(n, k).

Computing a Hamilton cycle in the Kneser graph K(n, k) thus corresponds to computing a
Gray code for (n, k)-combinations where the adjacency condition is disjointness. Our proof of
the existence of a Hamilton cycle in K(n, k) is constructive, and it translates straightforwardly
into an algorithm for computing the cycle whose running time is polynomial in the size N :=

(n
k

)
of the Kneser graph. It remains open whether there exists a more efficient algorithm, i.e., one
with running time that is polynomial in n and k per generated combination (note that N is
exponential in k), similarly to the previously mentioned combination generation algorithms; see
also the discussion at the end of this paper.

1.6. Proof ideas. In Section 1.7 below we demonstrate how Theorem 1 can be used to establish
Theorem 2 by a simple inductive construction. Consequently, the main work in this paper is to
prove Theorem 1.

As mentioned before, Mütze, Nummenpalo and Walczak [MNW21] proved that K(n, k)
has a Hamilton cycle for n = 2k + 1 and all k ≥ 3. Combining this result with Johnson’s
construction [Joh11] shows that K(n, k) has a Hamilton cycle for n = 2k + 2a and all k ≥ 3
and a ≥ 0, in particular for n = 2k + 2. The techniques developed in this paper work whenever
n ≥ 2k + 3, and thus they settle all remaining cases of Theorem 1. It should be noted that our
proof does not work in the cases n = 2k + 1 and n = 2k + 2, so the two earlier constructions do
not become obsolete.

We follow a two-step approach to construct a Hamilton cycle in K(n, k) for n ≥ 2k + 3. In
the first step, we construct a cycle factor in the graph, i.e., a collection of disjoint cycles that
together visit all vertices. In the second step, we join the cycles of the factor to a single cycle. In
the following we discuss both of these steps in more detail, outlining the main obstacles and novel
ingredients to overcome them. This outline reflects the structure of the remainder of this paper.

1.6.1. Cycle factor construction. The starting point is to consider the characteristic vectors of
the vertices of K(n, k). For every k-element subset of [n], this is a bitstring of length n with
exactly k many 1s at the positions corresponding to the elements of the set. For example, the
vertex {1, 7, 9} of K(9, 3) is represented by the bitstring 100000101; see also Figure 2. In this
figure and the following ones, 1s are often represented by black squares, and 0s by white squares.
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{1, 4}

{2, 5}

{2, 3}

{1, 2}

{3, 5}

{3, 4}

{1, 3}

{2, 4}

{1, 5}

{4, 5}

Figure 2. The Petersen graph K(5, 2). The vertices are all 2-elements subsets of [5] =
{1, 2, 3, 4, 5}, and in the corresponding bitstrings, 1s are represented by black squares and
0s by white squares.

Clearly, two sets A and B that are vertices of K(n, k) are disjoint if and only if the corresponding
bitstrings have no 1s at the same positions.

Our construction of a cycle factor in the Kneser graph K(n, k) uses the following simple rule
based on parenthesis matching, which is a technique pioneered by Greene and Kleitman [GK76]
(in a completely different context): Given a vertex represented by a bitstring x, we interpret the
1s in x as opening brackets and the 0s as closing brackets, and we match closest pairs of opening
and closing brackets in the natural way, which will leave some 0s unmatched. This matching
is done cyclically across the boundary of x, i.e., x is considered as a cyclic string. We write
f(x) for the vertex obtained from x by complementing all matched bits, leaving the unmatched
bits unchanged. For example, x = 100000101 is interpreted as x = ()))))()( = ())---()(,
where each - denotes an unmatched closing bracket, and then complementing matched bits
(the first three and last three in this case) yields the vertex f(x) = 011000010. Repeatedly
applying f to every vertex partitions the vertices of the Kneser graph into cycles, and we
write C(x) := (x, f(x), f2(x), . . .) for the cycle containing x. For example, for x from before
we obtain C(x) = (100000101, 011000010, 000110001, 100001100, 010000011, . . . , 000011010).
Figure 3 shows several more examples of cycles generated by this parenthesis matching rule. The
reason that this rule indeed generates disjoint cycles is that f is invertible and that f(x) ̸= x and
f2(x) ̸= x. Indeed, x is obtained from f(x) by applying the same parenthesis matching procedure
as before, but with interpreting the 1s as closing brackets and the 0s are opening brackets instead.

1.6.2. Analysis via gliders. The next key step is to understand the structure of the cycles
generated by f , as this is important for joining the cycles to a single Hamilton cycle. Unfortunately,
the number of cycles and their lengths in our factor are governed by intricate number-theoretic
phenomena, which we are unable to understand fully. Instead, we describe the evolution of a
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x = 1 0 -

C(x)

(a)

x = 1 0 0 -

C(x)

(b)

-1

x = 1 0 0 0 -

C(x)

...

(c)

-1 1-

- - ------ ----

- - - -- -- --

- - - -- -

x = 1 0 0 0

C(x)

...

(d)

-1 1- - 1 0 01 01

f

f

f

f

time

time

time

time

(n, k) = (15, 1)

(n, k) = (15, 2)

(n, k) = (15, 3)

(n, k) = (15, 6)

speed 1

speed 2

speed 1speed 2

speed 1speed 2 speed 3

Figure 3. Cycles of the factor Cn,k in several different Kneser graphs K(n, k). The cycles
in (a) and (b) are shown completely, whereas in (c) and (d) only the first 15 vertices are
shown. The right hand side shows the interpretation of certain groups of bits as gliders,
and their movement over time. Matched bits belonging to the same glider are colored in
the same color, with the opaque filling given to 1-bits, and the transparent filling given to 0-
bits. (a) one glider of speed 1; (b) one glider of speed 2; (c) two gliders with speeds 1 and 2
that participate in an overtaking; (d) three gliders of speeds 1, 2 and 3 that participate in
multiple overtakings. Animations of these examples are available at [Müt23].
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bitstring x under repeated applications of f combinatorially, which enables us to extract some
important cycle properties and invariants (other than the number of cycles and the cycle lengths).
Specifically, we describe this evolution by a kinetic system of multiple gliders that move at
different speeds and that interact over time, reminiscent of the gliders in Conway’s Game of
Life. This physical interpretation and its analysis are one of the main innovations of this paper.
Specifically, we view each application of f as one unit of time moving forward. Furthermore, we
partition the matched bits of x into groups, and each of these groups is called a glider. A glider
has a speed associated to it, which is given by the number of 1s in its group. As a consequence
of this definition, the sum of speeds of all gliders equals k. For example, in the cycle shown in
Figure 3 (a), there is a single matched 1 and the corresponding matched 0, and together these
two bits form a glider of speed 1 that moves one step to the right in every time step. Applying f

means going down to the next row in the picture, so the time axis points downwards. Similarly,
in Figure 3 (b), there are two matched 1s and the corresponding two matched 0s, and together
these four bits form a glider of speed 2 that moves two steps to the right in every time step. As
we see from these examples, a single glider of speed v simply moves uniformly, following the
basic physics law

s(t) = s(0) + v · t,

where t is the time (i.e., the number of applications of f) and s(t) is the position of the glider in
the bitstring as a function of time. The position s(t) has to be considered modulo n, as bitstrings
are considered as cyclic strings and the gliders hence wrap around the boundary. The situation
gets more interesting and complicated when gliders of different speeds interact with each other.
For example, in Figure 3 (c), there is one glider of speed 2 and one glider of speed 1. As long as
these groups of bits are separated, each glider moves uniformly as before. However, when the
speed 2 glider catches up with the speed 1 glider, an overtaking occurs. During an overtaking,
the faster glider receives a boost, whereas the slower glider is delayed. This can be captured
by augmenting the corresponding equations of motion by introducing additional terms, making
them non-uniform. In the simplest case of two gliders of different speeds, the equations become

s1(t) = s1(0) + v1 · t − 2v1c1,2,

s2(t) = s2(0) + v2 · t + 2v1c1,2,

where the subscript 1 stands for the slower glider and the subscript 2 stands for the faster glider,
and the additional variable c1,2 counts the number of overtakings. Note that the terms 2v1c1,2
occur with opposite signs in both equations, capturing the fact that the faster glider is boosted
by the same amount that the slower glider is delayed. This can be seen as ‘energy conservation’
in the system of gliders. Overall, the slower glider stands still for two time steps during an
overtaking, as v1 · 2 − 2v1 · 1 = 0, and the faster glider’s position changes by an additional
amount of 2v1 (compared to its movement without overtaking). For more than two gliders,
the equations of motion can be generalized accordingly, by introducing additional overtaking
counters between any pair of gliders (see Proposition 28). Nevertheless, as the reader may
appreciate from Figure 3 (d), in general it is highly nontrivial to recognize from an arbitrary
bitstring x which of its matched bits belong to which glider, and consequently which glider
is currently overtaking which other glider. Note that in general the gliders will not be nicely
separated, but will be involved in simultaneous interactions, so that the groups of bits forming
the gliders will be interleaved in complicated ways. Our general rule that achieves the glider
partition is based on a recursion that uses an interpretation of x as a Motzkin path, where every
matched 1 becomes an ↗-step in the Motzkin path, every matched 0 becomes a ↘-step, and
every unmatched 0 becomes a →-step (see Section 3.4).
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One important property that we extract from the aforementioned physics interpretation is
that the number of gliders and their speeds are invariant along each cycle (see Lemma 23). For
example, in Figure 3 (d), every bitstring along this cycle has three gliders of speeds 1, 2 and 3.
Note in this example that the speeds do not necessarily correspond to the lengths of maximal
sequences of consecutive 1s in the bitstrings, due to the interleaving of gliders. We also use the
equations of motion to derive a seemingly innocent, but very crucial property, namely that no
glider stands still forever, but will move eventually (see Lemma 30). Note that the speed 1 glider
in Figure 3 (d) stands still between time steps 2–8, as during those steps it is overtaken once
by the speed 2 glider, and twice by the speed 3 glider (wrapping around the boundary). We
establish this fact by linear algebra, by showing that the determinant of the linear systems of
equations that governs the gliders’ movements is non-singular (see Lemma 29).

For the reader’s entertainment, we programmed an interactive animation of gliders over time,
and we encourage experimentation with this code, which can be found at [Müt23]. In particular,
this link contains animations of many examples used in figures from our paper, which greatly
improves their educational value.

The cycle factor construction discussed before and our analysis via gliders actually work for
all n ≥ 2k + 1, not just for n ≥ 2k + 3. The assumption n ≥ 2k + 3 will become crucial in the
next step, though.

1.6.3. Gluing the cycles together. To join the cycles of our factor to a single Hamilton cycle, we
consider a 4-cycle D that shares two opposite edges with two cycles C, C ′ from our factor. Clearly,
the symmetric difference of the edge sets (C ∪ C ′)∆D yields a single cycle on the same vertex set
as C ∪ C ′. We may repeatedly apply such gluing operations, each time reducing the number of
cycles in the factor by one, until the resulting factor has a single cycle, namely a Hamilton cycle.
It turns out that the cycle factor defined by f admits a lot of such gluing 4-cycles. Note that
K(n, k) does not have any 4-cycles for n = 2k + 1, so the assumption n ≥ 2k + 2 is needed here.

The two main technical obstacles we have to overcome are the following: (a) All of the 4-cycles
used for the gluing must be edge-disjoint, so that none of the gluings interfere with each other. (b)
We must use sufficiently many gluings to achieve connectivity, i.e., every cycle must be connected
to every other cycle via a sequence of gluings. These two objectives are somewhat conflicting with
each other, so satisfying both at the same time is nontrivial. The final gluings that we use and
that satisfy both conditions are described by a set of nine intricate regular expressions (see (53)).

The 4-cycles that we use for the gluings are based on local modifications of two bitstrings x

and y that satisfy certain conditions and that lie on two different cycles C(x) and C(y) from
our factor, by considering the gliders in x and y. Specifically, this local modification changes
the speed sets of the gliders in x and y in a controllable way. Recall that the speeds of gliders
are invariant along each cycle, so these speeds will only change along the gluing 4-cycles. To
control the gluing, we consider the speeds of gliders in a bitstring x in non-increasing order.
Recall that the sum of speeds equals k, so such a sorted sequence forms a number partition
of k. To establish (b) we choose gluings that guarantee a lexicographic increase in those number
partitions. This ensures that every cycle is joined, via a sequence of gluings, to a cycle that has
the lexicographically largest number partition, namely the number k itself. This corresponds to
a single glider of maximum speed k, i.e., to a bitstring x in which all 1s are consecutive.

For example, consider the two cycles C(x) and C(y) shown in Figure 4, which can be glued
together using the 4-cycle C4(x, y) := (x, f(x), y, f(y)). Note that in C(x), there are two gliders
of speed 1 and one glider of speed 3, whereas in C(y) there is one glider of speed 2 and one of
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C(x) = (x, f(x), f2(x), . . . ) = (0100101110000, 0010010001110, 1101001000001, . . .)

C(y) = (y, f(y), f2(y), . . . ) = (1100001110000, 0011000001110, 1100110000001, . . .)

C4(x, y) := (x, f(x), y, f(y))

sp
ee
d
1

speed 3

speed 2 speed 3

sp
ee
d
1

Figure 4. Gluing of two cycles from the factor via a 4-cycle in K(13, 5).

speed 3. Consequently, via the gluing we have moved from the number partition (3, 1, 1) to the
lexicographically larger partition (3, 2).

The general idea for choosing the gluings C4(x, y), which can already be seen in this example,
is such that in x we decrease the speed of a glider of minimum speed by 1, and instead we
increase the speed of any other glider by 1, which ensures that the number partition associated
with y is lexicographically larger than that of x. Unfortunately, it is not always possible to use
gluings that guarantee such immediate lexicographic improvement. In some cases we have to use
gluings where a small lexicographic decrease occurs. It then has to be argued that subsequent
gluings compensate for this defect such that the overall effect of the resulting sequence of gluings
is again a lexicographic improvement. For example, from a vertex with associated number
partition (4, 4), the first gluing may lead to a vertex with number partition (4, 3, 1), and the next
gluing may lead to (5, 3). While the step (4, 4) → (4, 3, 1) is a lexicographic decrease instead of
an increase, overall (4, 4) → (4, 3, 1) → (5, 3) is a lexicographic increase. In this step of the proof
the assumption n ≥ 2k + 3 finally enters the picture, as it gives us the necessary flexibility in
choosing gluings that are guaranteed to achieve this improvement in all cases.

The arguments so far show that every cycle is connected, via a sequence of gluings, to a cycle
in which all 1s are consecutive. Note however, that there may be several such cycles, depending
on the values of n and k. Specifically, there are exactly gcd(n, k) such cycles. To join those, we
observe that the subgraph of K(n, k) induced by those special cycles is isomorphic to a Cayley
graph of Z/nZ, which admits many gluing 4-cycles to join them (see Lemma 34).

1.7. Proof of Theorem 2. We first show how Theorem 1 can be used to establish the more
general Theorem 2 quite easily. Chen and Lih showed the following about generalized Johnson
graphs.

Lemma 5 ([CL87, Thm. 1]). If J(n − 1, k − 1, s − 1) and J(n − 1, k, s) have a Hamilton cycle,
then J(n, k, s) also has a Hamilton cycle.

The proof of Lemma 5 given in [CL87] is based on a straightforward partitioning of the
graph J(n, k, s) into two subgraphs that are isomorphic to J(n−1, k −1, s−1) and J(n−1, k, s).
Specifically, this partition is obtained by considering all vertices (=sets) that contain a fixed
element, n say, and those that do not contain it. One can then join the cycles in the two
subgraphs to one, by taking the symmetric difference with a 4-cycle that has one edge in each
of the two subgraphs, using the fact that Johnson graphs are edge-transitive, i.e., we can force
each of the cycles in the two subgraphs to use this edge from the 4-cycle. All that is needed now
for the proof of Theorem 2 is the following simple observation.

Lemma 6. If J(n, k, s) is a generalized Johnson graph, then either it is a Kneser graph or
J(n − 1, k − 1, s − 1) and J(n − 1, k, s) are both generalized Johnson graphs.
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In the proof we will use the aforementioned observation that J(n, k, s) is isomorphic to J(n, n−
k, n − 2k + s).

Proof. Let k ≥ 1, 0 ≤ s < k and n ≥ 2k−s+1[s=0]. If s = 0, then J(n, k, s) = J(n, k, 0) = K(n, k)
is a Kneser graph. This happens in particular if k = 1. If s > 0 and n = 2k − s, then
J(n, k, s) = J(n, n−k, n−2k+s) = J(n, k−s, 0) = K(n, k−s) is also a Kneser graph. Otherwise,
we have k > 1, s > 0 and n > 2k − s, and we consider the graphs H1 := J(n − 1, k − 1, s − 1)
and H0 := J(n − 1, k, s). From k > 1 we obtain k − 1 ≥ 1, and from s > 0 and s < k

we obtain that 0 ≤ s − 1 < k − 1. Furthermore, the inequality n > 2k − s is equivalent to
n − 1 > 2(k − 1) − (s − 1), which implies n − 1 ≥ 2(k − 1) − (s − 1) + 1. Combining these
observations shows that the graph H1 is indeed a valid generalized Johnson graph. Similarly,
the inequality n > 2k − s implies that n − 1 ≥ 2k − s = 2k − s + 1[s=0] (since s > 0), and
consequently the graph H0 is also a valid generalized Johnson graph. □

Proof of Theorem 2. Combine Lemmas 5 and 6, and use Theorem 1 and induction. Because of
the exceptional cases J(5, 2, 0) = J(5, 3, 1), in a few base cases the existence of a Hamilton cycle
in J(n, k, s) has to be checked directly, namely for (n, k, s) ∈ {(3, 1, 0), (4, 1, 0), (4, 2, 1), (5, 1, 0),
(5, 2, 1), (6, 1, 0), (6, 2, 0), (6, 2, 1), (6, 3, 1), (6, 3, 2)}. Using that J(n, k, s) = J(n, n − k, n − 2k + s)
this settles all cases with n ≤ 6. □

2. Cycle factor construction

In this section we describe in detail the construction of a cycle factor in the Kneser graph K(n, k)
outlined in Section 1.6.1. This construction is valid for the entire range of values n ≥ 2k + 1.

2.1. Preliminaries. We let Xn,k denote the set of all bitstrings of length n with exactly k many Xn,k

1s. We interpret the vertices of the Kneser graph K(n, k) as bitstrings in Xn,k, by considering
the corresponding characteristic vectors. Every pair of disjoint sets, which is an edge in the
Kneser graph, corresponds to a pair of bitstrings that have no 1s at the same positions. These
definitions are illustrated in Figure 2.

We write ε for the empty string. Moreover, for any bitstring x, we write x for the bitstring ε, x

obtained from x by complementing every bit. We also write x y for the concatenation of the
bitstrings x and y, and xa for the a-fold repetition of x. x y, xa

For integers a ≤ b we define [a, b] := {a, a + 1, . . . , b}, and we refer to this set of integers as an
interval. [a, b]

Throughout this paper, important terminology and symbols are printed on the page boundaries
at the place where they are first defined, to facilitate going back and looking up the definitions.

2.2. Cycle factor construction. We consider every bitstring x ∈ Xn,k, and we apply parenthe-
sis matching to it, which is a technique developed by Greene and Kleitman [GK76] in the context
of symmetric chain partitions of posets. For this we interpret the 1s in x as opening brackets
and the 0s as closing brackets, and we match closest pairs of opening and closing brackets in the
natural way. This matching is done cyclically across the boundary of x, i.e., x is considered as a
cyclic string; see Figure 5. In particular, in the following we will consider indices in x modulo n,
with 1, . . . , n as representatives of the equivalence classes. As n ≥ 2k + 1, there are more 0s than
1s in x, and consequently every 1 is matched to some 0, but not every 0 is matched to a 1. When-
ever we want to emphasize that we consider a bitstring x with parenthesis matching applied to
it, we write every unmatched 0 in x as -. For example, we write x = 001100001 = 0-1100--1.



12 KNESER GRAPHS ARE HAMILTONIAN

1 0 0 0 1 1 1 0 1 1 0 0 0 0 101 0
1 2 3 4 5 6 7 8 9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28

0 0

-

x =

f(x) =

µ1(x) = {1, 8, 9, 10, 12, 13, 14, 17, 24, 26, 29, 30}
µ0(x) = {2, 3, 4, 11, 15, 16, 18, 19, 20, 21, 25, 27}

0

µ(x) = {5, 6, 7, 22, 23, 28}

1 0 0 0 11

1 0 0 0 1 1 1 0 1 1 0 0 0 0 101 01 0 11=

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0

n = 30, k = 12

- - - --

29
30

1 0 0

1 0

0 1

Figure 5. Parenthesis matching for a bitstring x ∈ X30,12. Matched pairs of bits are
indicated by square brackets, and bits that are complemented to obtain f(x) are highlighted.

The parenthesis matching procedure can be described equivalently as follows: For every 1-bit
in x, we consider the shortest (cyclic) substring starting from this bit to the right that contains
the same number of 0s as 1s, and we match it to the last 0-bit of this substring.

We let µ(x) ⊆ [n] denote the set of positions of bits that are matched in x, and we write µ(x), µ(x)
µ(x) := [n] \ µ(x) for the positions of unmatched bits. Moreover, we partition µ(x) into the
sets µ1(x) and µ0(x) of the positions of matched 1s and 0s, respectively. By these definitions, µ1(x), µ0(x)
the sets µ1(x), µ0(x) and µ(x) are all disjoint, their union is [n], the union of µ1(x) and µ0(x)
is µ(x), and the sizes of the four sets µ0(x), µ1(x), µ(x), and µ(x) are k, k, 2k, and n − 2k,
respectively. Recall that every 1-bit is matched, or equivalently, all unmatched bits are 0s.
Consequently, µ1(x) is the set of positions of all 1s in x.

For any x ∈ Xn,k, we let f(x) ∈ Xn,k denote the bitstring obtained from x by complementing f(x)
all matched bits, i.e., the bits at all positions in µ(x); see Figure 5.

By this definition we have µ1(f(x)) = µ0(x). Consequently, x and f(x) have no 1s at the
same positions, i.e., they are characteristic vectors of disjoint sets. It follows that (x, f(x)) is an
edge in the Kneser graph K(n, k).

For any x ∈ Xn,k we define a sequence of vertices in K(n, k) by C(x)

C(x) :=
(
x, f(x), f2(x), . . .

)
, (1a)

i.e., we repeatedly apply f to x until we obtain x again.

Lemma 7. Let n ≥ 2k + 1. For any x ∈ Xn,k, the sequence C(x) defined in (1a) describes a
cycle of length at least 3 in the Kneser graph K(n, k).

Proof. We first argue that the mapping f is invertible. Specifically, we can obtain x from f(x)
by cyclically matching 0s and 1s (instead of 1s and 0s) and complementing matched bits. It
follows that there are no two distinct bitstrings x, x′ ∈ Xn,k with f(x) = f(x′). As the set Xn,k

is finite, we conclude that the first duplicate bitstring in the sequence C(x) is the first string x,
so the sequence C(x) is indeed cyclic.

Now consider three consecutive bitstrings x, f(x) and f2(x) in the sequence C(x). To complete
the proof of the lemma, we show that x ̸= f(x) and x ̸= f2(x). For this we identify a position
i ∈ [n] such that i ∈ µ(x), i ∈ µ0(f(x)) and i ∈ µ1(f2(x)). Specifically, consider a maximal
sequence of unmatched 0s in x, and let i be the position of the first such bit in the sequence.
Note that the set µ(x) is nonempty by the assumption n ≥ 2k + 1. By definition we clearly
have i ∈ µ(x). Moreover, we also have i − 1 ∈ µ(x), specifically i − 1 ∈ µ0(x), and consequently
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i − 1 ∈ µ1(f(x)), which implies that the 0-bit at position i in f(x) is matched to the 1-bit to its
left, so i ∈ µ0(f(x)). It follows that i ∈ µ1(f2(x)), as claimed. □

Using Lemma 7, we may define a cycle factor in K(n, k) by Cn,k

Cn,k := {C(x) | x ∈ Xn,k}. (1b)

For example, for the Petersen graph K(5, 2), for x := 10100 and x′ := 11000 we get

C(x) = (1010-, -1010, 0-101, 10-10, 010-1),
C(x′) = (1100-, 0-110, 100-1, -1100, 00-11),

and C5,2 = {C(x), C(x′)}. More examples are shown in Figure 3.

3. Analysis via gliders

In this section we analyze various properties and invariants of the cycles of the factor Cn,k

defined in the previous section via a system of interacting gliders, as sketched in Section 1.6.2.
All of these results hold for the entire range of values n ≥ 2k + 1.

3.1. Motzkin paths and Dyck paths. We identify any bitstring x ∈ Xn,k with a Motzkin
path in the integer lattice Z2 in the following way; see Figure 6. We apply parenthesis matching Motzkin

pathto x and we read the bits of x from left to right. Every matched 1 is drawn as an ↗-step,
every matched 0 as a ↘-step, and every unmatched 0 as a →-step, and these steps change the
current coordinate by (+1, +1), (+1, −1), or (+1, 0), respectively. In other words, the lattice
path corresponding to x has ↗-steps at the positions µ1(x), ↘-steps at the positions µ0(x), and
→-steps at the positions µ(x). To define the absolute position of this lattice path, it suffices to
specify the coordinate of one point on it. Specifically, if i is the position of the first unmatched
0-bit in x, then this →-step starts at the coordinate (i − 1, 0).

In every substring of x for which every prefix has at least as many 1s as 0s, every 0-bit is
matched to some 1-bit to its left in this substring. As a consequence, the Motzkin path x never
moves below the abscissa and all →-steps of x lie on the abscissa. It follows that in the above
definition, we can choose i as the position of any unmatched 0-bit in x, not necessarily the first one.

(0, 0) (4, 0)

1 0 0 0 - 1 1 1 0 1 1 0 0 1 0 0 1 0 1x = 1 0 0 1- - - - -

(30, 0)

1 0

Figure 6. The Motzkin path corresponding to the bitstring x from Figure 5. The starting
point (4, 0) of the first →-step of x is marked.

For any integer ℓ ≥ 0, we write Dℓ for the set of Dyck words of length 2ℓ, i.e., bitstrings Dyck
wordwith ℓ many 1s and 0s that have at least as many 1s as 0s in every prefix. Note that we have

D0 = {ε} and Dℓ = {1 u 0 v | u ∈ Di, v ∈ Dℓ−i−1, and i = 0, . . . , ℓ − 1} for ℓ > 0. Moreover, we
write D for the set of Dyck words of arbitrary length, i.e., D :=

⋃
ℓ≥0 Dℓ. Lastly, we use D′ ⊆ D D, D′

to denote the set of bitstrings that have strictly more 1s than 0s in every proper prefix, i.e., we
have D′ = {1 u 0 | u ∈ D}.

Observe that a substring y of x with y ∈ D corresponds to a subpath of the Motzkin path x

that has the same number of ↗-steps and ↘-steps, does not contain any →-steps, and that
never moves below the height of the starting point, i.e., it is a Dyck subpath.
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3.2. The infinite string x̂. We let x̂ be the bitstring obtained by extending x by copies of itself x̂

infinitely in both directions. We can think of x̂ as the string obtained by unrolling the cyclic
string x. As the parenthesis matching procedure interprets x as a cyclic string, the notion of
matched and unmatched bits extends in the natural way from x to x̂. Consequently, the Motzkin
path corresponding to x̂ is obtained by concatenating infinitely many copies of the Motzkin path
of x. In this way, the indices of bits in x̂ or of steps on the corresponding Motzkin path continue
beyond the indices 1, . . . , n used in x, i.e., these indices continue with 0, −1, −2, . . . , to the left,
and n + 1, n + 2, . . . to the right, and in x̂ we see the same bits/steps in each equivalence class
of indices modulo n. We can translate the indices in x̂ back to x simply by considering them
modulo n, with 1, . . . , n as representatives of the equivalence classes.

The motivation for considering the infinite Motzkin path x̂ in addition to the finite path x

is that we aim to partition certain steps of x̂ into groups, which we will call gliders. We do
this for every vertex along the cycle C(x), with the goal of tracking the movement of gliders
along C(x). By (1a), moving one step along the cycle C(x) corresponds to one application of f ,
which we interpret as time moving forward by one unit; recall Figure 3. As x̂ has periodicity n,
each glider repeats periodically every n steps along x̂; see Figure 9. However, for formulating
continuous equations of motions for the gliders, it is crucial to treat these periodic copies as
separate entities that continually move towards +∞ along the cycle C(x), and not to treat them
as a single entity that moves and wraps around the boundary of x. So in the infinite string x̂,
an infinite periodic set of gliders continually moves to the right over time, and we consider them
through the finite ‘window’ x, in which they appear to wrap around the boundary.

3.3. Hills and valleys. We refer to any Dyck subpath y ∈ D of x̂ as a hill, and to any hill,
valleycomplemented Dyck subpath y with y ∈ D as a valley. If a hill y of x̂ starts and ends at the

abscissa, we refer to it as a base hill. We define the height of a hill y in x as the difference base
hill
height

between the ordinates of its highest point and its starting point. Similarly, the depth of a valley y

depth
in x is defined as the difference between the ordinates of its starting point and its lowest point.

We consider a hill y ∈ D′ in x̂ of height h, and we let p denote the leftmost highest point of y

on the Motzkin path. The hill y can be decomposed uniquely as

y =


1 0 if h = 1,

1 u1 1 u2 · · · 1 uh−2 1 1 v0 0 v1 0 · · · 0 vh−2 0 0,

with u1, . . . , uh−2, v0, . . . , vh−2 ∈ D, if h ≥ 2,

(2)

u3 = 110100
u4 = 10u1 = 101100

v0 = 0011
v1 = 000111

v2 = ε
v3 = 010011

v4 = 01

1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0
1 2 3 4 5 6 7 8 9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50

p

h = 6

y =

u2 = 111000

A = {3, 10, 17, 24, 27, 28}

51
52

53
54

B = {33, 40, 41, 48, 51, 52}

Figure 7. Decomposition of a hill y ∈ D′ of height h = 6 contained in some larger
Motzkin path x̂ into bulges ui and dents vi. The leftmost highest point p of y is marked.
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i.e., the ui are maximal hills in y to the left of the point p, and the vi are maximal valleys in y

to the right of the point p; see Figure 7. We refer to the hill ui as the ith bulge of y and to the bulge
valley vi as the ith dent of y. If h = 1 then y = 1 0 has neither bulges nor dents. From (2) we dent
obtain the following lemma.

Lemma 8. For any hill y ∈ D′ of height h in x̂, the ith bulge of y has height at most h − 1 − i

for all i = 1, . . . , h − 2, and the ith dent of y has depth at most h − 1 − i for all i = 0, . . . , h − 2.

3.4. Glider partition. In the following we define a function Γ(x) that recursively computes a
partition of the set of indices of all ↗-steps and ↘-steps in the infinite Motzkin path x̂. This
corresponds to the set of all indices of matched bits in the bitstring x̂, i.e., to the set µ(x̂) ⊆ Z.
Moreover, the sets of the partition are grouped into pairs (A, B) with |A| = |B| and max A <

min B, and either A contains positions of ↗-steps of x̂ and B contains positions of ↘-steps, or
vice versa. We will refer to every such pair (A, B) as a glider (the formal definition is given
below), and we think of the steps of x̂ at the positions in A and B as the steps of the Motzkin
path that ‘belong’ to the glider (A, B). Every ↗-step and ↘-step of x̂ belongs to precisely one
glider, whereas →-steps do not belong to any glider; see Figure 8.

We first define Γ(x)
Γ(x) :=

⋃
y base hill in x̂

Γ(y). (3a)

For any hill y ∈ D \ D′ in x̂, if y = ε we define

Γ(y) := ∅, (3b)

and if y ̸= ε we consider the partition y = y1 · · · yℓ with y1, . . . , yℓ ∈ D′ and define

Γ(y) :=
ℓ⋃

i=1
Γ(yi). (3c)

The interesting step of the recursion happens for hills y ∈ D′ in x̂, for which we partition y

uniquely as in (2), and define

Γ(y) :=
( h−2⋃

i=1
Γ(ui) ∪

h−2⋃
i=0

Γ(vi)
)

∪ {(A, B)}, (3d)

where A and B are the set of indices of the 1s and 0s of y, respectively, that do not belong
to any of the bulges ui or the dents vi in the decomposition (2); see Figure 7. Recall that if
h = 1, then y = 1 0 has no bulges or dents, so in this case the unions in (3d) are empty and then
A and B are 1-element sets containing the positions of the 1 and the 0 in y, respectively. In
general, the indices in A and B are absolute with respect to the Motzkin path x̂ that contains y

as a subpath. We refer to any pair (A, B) ∈ Γ(x) computed in (3d) as a glider. glider
The complemented strings vi on the right hand side of (3d) need further explanation. By

definition we have vi ∈ D, i.e., the subpath vi in x̂ is a valley. Therefore, to compute Γ(vi) we
apply Γ to the hill vi, obtained by complementing the valley vi, without changing any other steps
of x̂, as they are irrelevant for the computation of Γ(vi); see Figure 8. Note that the vertical
positions of the steps of x̂ or its subpaths are irrelevant for the definition of Γ, but what matters
are their indices on the horizontal axis (as they enter the sets A and B in (3d)), which are not
modified by the complementation. However, complementation changes the roles of 0s and 1s, so
for any glider (A, B) ∈ Γ(x), A and B are either indices of ↗-steps and ↘-steps, respectively,
of some hill in the original Motzkin path x̂, or indices of ↘-steps and ↗-steps, respectively, of
some valley in the original path x̂. What is important is that max A < min B, i.e., all steps in A

are to the left of all steps in B.



16 KNESER GRAPHS ARE HAMILTONIAN

A7 = {40}
B7 = {41}
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1

Figure 8. Glider partitioning in a hill y ∈ D′ contained in some larger Motzkin path x̂.
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3.5. Range of gliders and equivalence classes. We define the range of a glider γ = (A, B) ∈
Γ(x) as the interval range

r(γ)
r(γ) := [min A, max B] = {min A, min A + 1, . . . , max B}.

Moreover, we write x̂r(γ) for the subpath of x̂ on the interval r(γ). This subpath contains all
steps from A and B, plus possibly steps of other gliders, and it starts with a step from A and ends
with a step from B. We refer to a glider γ ∈ Γ(x) as non-inverted if x̂r(γ) is a hill in x̂, and as
inverted if x̂r(γ) is a valley. Non-inverted gliders γ = (A, B) have ↗-steps of x̂ at the positions in A inverted
and ↘-steps at the positions in B, and for inverted gliders the situation is reversed. For example,
in Figure 8, the gliders γ1, γ3, γ4, γ5, γ6, γ7, γ10 are non-inverted, whereas γ2, γ8, γ9 are inverted.

Clearly, as x̂ is an infinite string containing infinitely many hills, the set Γ(x) is an infinite set.
However, as x̂ has periodicity n, we can partition the set Γ(x) into finitely many equivalence classes
of gliders. Specifically, for any two gliders (A, B), (A′, B′) ∈ Γ(x), we write (A, B) ∼ (A′, B′)
if these sets are the same modulo n. For any glider γ ∈ Γ(x), its equivalence class is denoted
by [γ] and the set of all equivalence classes by Γ(x)/∼

Γ(x)/∼ := {[γ] | γ ∈ Γ(x)}; (4)

see Figure 9. We also define ν(x)
ν(x) := |Γ(x)/∼|, (5)

and we simply refer to this quantity as the number of gliders. Of course, Γ(x) is an infinite set,
but there are only finitely many equivalence classes with respect to ∼.

3.6. Position and speed of gliders. For any glider γ = (A, B) ∈ Γ(x) we define s1(γ), s2(γ)

s1(γ) := max A and s2(γ) := max B. (6a)

Using these, the position of γ is defined as position
s(γ)

s(γ) := 1
2
(
s1(γ) + s2(γ)

)
= 1

2
(

max A + max B
)
. (6b)

In words, the position s(γ) is the average position of the rightmost ↗-step and the rightmost
↘-step that belong to γ, which is true regardless of whether γ is inverted or not. Clearly, the
numbers s(γ), γ ∈ Γ(x), are either integers or half-integers; see Figure 9. Also note from the
example in the figure that two distinct gliders may have the same position. For technical reasons
we also define s0(γ)

s0(γ) := min A,

so we have r(γ) = [s0(γ), s2(γ)].
The speed of γ = (A, B) ∈ Γ(x) is defined as speed

v(γ)
v(γ) := |A| = |B|. (7)

Note that the speed equals the height of the hill x̂r(γ) if γ is non-inverted, or the depth of the
valley x̂r(γ) if γ is inverted. We also define the speed set speed

set
V (x)V (x) := {v(γ) | [γ] ∈ Γ(x)/∼}, (8)

which we define as a multiset of size ν(x), as gliders from distinct equivalence classes may have
the same speed. Note that ∑

v∈V (x)
v = k, (9)

as the sum of speeds equals the number of 1s in x. In other words, the speed set is a number
partition of k.
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Figure 9. Position and speed of gliders in x̂.

3.7. Properties of the speed set. Before proceeding with the description of the movement
of gliders over time, we establish a few combinatorial properties about the speed set V (x).
Specifically, Lemma 9 below asserts that the speed set can be computed more directly, without
invoking the glider partitioning recursion described in Section 3.4. Furthermore, Lemma 10
asserts that the cardinality of V (x), which equals the number of gliders ν(x), is given by the
number of descents in x.

Let X be a nonempty multiset of positive integers. We write X ⊕ 1 for the multiset obtained X ⊕ 1
by incrementing one of the largest elements of X by 1. For example, for X = {4, 4, 4, 2, 1, 1} we
have X ⊕ 1 = {5, 4, 4, 2, 1, 1}.

In a bitstring x ∈ Xn,k under parenthesis matching, we refer to any maximal (cyclic) substring
of matched bits as a block. We define a multiset of integers W (x) as follows; see Figure 10. We block
first define W (x)

W (x) :=
⋃

y block in x

W (y). (10a)

For any y ∈ D \ D′, y ̸= ε, we consider the partition y = y1 · · · yℓ with y1, . . . , yℓ ∈ D′ and define

W (y) :=
ℓ⋃

i=1
W (yi). (10b)
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10 1 0 0 01 11 00 -1 - -x =

8 1

1

1

1
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1
1

1

5

2

x̂

7 1

1

1

1
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1
1

5

1

6 1

1 1
2

1
1

4

1

2

5 1

1 1
1 1

3

2

4 1

1 1

3 1

2 1

1 1

3
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2

1

1

1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 01 1 1 0 1 0 1 01 11 0 0 1 0 0 0 01 1 0 0 - - ∈ X59,27

W (x) = { , , , , , , , , , , , }1 2 1 5 1 2 11 3 1 8 1

Figure 10. Illustration of the recursive definition of the multiset W (x).

Lastly, for y ∈ D′ we have y = 1 u 0 with u ∈ D and define

W (y) :=

{1} if u = ε,

W (u) ⊕ 1 if u ̸= ε.
(10c)

Lemma 9. For any x ∈ Xn,k, the multisets V (x) and W (x) defined in (8) or (10), respectively,
are the same, i.e., we have V (x) = W (x).

Proof. Consider a block y ∈ D in x and the corresponding Dyck path, and let j by the position
of one of its ↗-steps. A staircase S(j) is the maximum size set {j = j1 < · · · < jh} of positions
of ↗-steps in y such that the subpath ui of y between positions ji and ji+1 is a hill, i.e., ui ∈ D,
of height at most h − 1 − i, for all i = 1, . . . , h − 1. In particular, uh−1 has height at most 0, i.e.,
uh−1 = ε.
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10 1 0 0 01 11 00 -1 - -x = 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 01 1 1 0 1 0 1 01 11 0 0 1 0 0 0 01 1 0 0 - - ∈ X59,27

T (x) = { , , , , , , , , , , , } = V (x) = W (x)
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S(13) = {13}

S(20) = {20}
S(25) = {25}

S(30) = {30, 37, 38, 39, 40}
S(35) = {35} S(44) = {44}

S(48) = {48, 49}
S(55) = {55}

S(31) = {31, 32}

S(x) = {S(1), S(2), S(3), S(13), S(20), S(25), S(30), S(31), S(35), S(44), S(48), S(55)}

S(2) = {2, 5, 6}

59

S(5) = {5, 6}
S(6) = {6}

Figure 11. Illustration of staircases. All shown staircases are full, except S(5) and S(6).
This continues the example from Figure 10.

Note that any two staircases are either disjoint or one is a contained in the other (as a suffix
when the elements are ordered increasingly). A staircase is full if it is not contained in another
staircase. For example, in Figure 11 we have S(2) ⊇ S(5) ⊇ S(6), so S(5) and S(6) are not full,
but S(2) is full. The set of full staircases partitions the set of positions of all ↗-steps in y; see
Figure 11. We write S(x) for the union of all full staircases over all blocks y ∈ D in x. We also
define the multiset T (x) := {|S| | S ∈ S(x)}.

We first show that
T (x) = W (x). (11)

To prove (11) we consider the recursive definition of W (x), and we consider a substring y ∈ D,
y ≠ ε, of x that arises in this computation. If y = 1 0 ∈ D′ then by the first case in (10c)
we have W (y) = {1}. Furthermore, we clearly have T (y) = {1}, so indeed T (y) = W (y).
If y = 1 u 0 ∈ D′ with u ̸= ε then by the second case in (10c) we have W (y) = W (u) ⊕ 1.
Furthermore, the leftmost full staircase in S(u) is extended by the leading 1 in y to a full
staircase in S(y), implying that T (y) = T (u) ⊕ 1. By induction we know T (u) = W (u) and
consequently T (y) = W (y). If y ∈ D \ D′, y ̸= ε, then we have y = y1 · · · yℓ for y1, . . . , yℓ ∈ D′

and by (10b) we have W (y) =
⋃ℓ

i=1 W (yi). Furthermore, the staircases in y are simply obtained
as the union of staircases in all substrings yi, implying that T (y) =

⋃ℓ
i=1 T (yi). By induction we

know T (yi) = W (yi) for all i = 1, . . . , ℓ and consequently T (y) = W (y).
We now show that

T (x) = V (x). (12)
We claim that for any glider γ = (A, B) ∈ Γ(x), the set of positions of its ↗-steps is a full

staircase S in the base hill of x̂ containing this glider. Specifically, if γ is non-inverted, then
S = A, whereas if γ is inverted, then S = B. In both cases we obtain v(γ) = |A| = |B| = |S|
(recall (7)), i.e., there is a bijection between the multisets T (x) and V (x), which proves (12). To
prove our claim we distinguish whether γ is non-inverted or inverted. The former case splits
into three subcases, and the latter case into two subcases, as follows; see Figure 12 (a)–(c2):
• Case (a): x̂r(γ) is a base hill.
• Case (b1): y x̂r(γ) y′ with y, y′ ∈ D is a bulge of x̂r(γ′) for some non-inverted glider γ′ ∈ Γ(x).
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(b1)

(c1)

(c2)

(b2)

r(γ)

A r(γ)

A r(γ′)

A r(γ′)
r(γ)

B r(γ′)
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B r(γ′)
r(γ)

y y′

y y′

x̂

x̂

x̂

x̂

x̂

y y′

y y′

Figure 12. Illustration of the five cases in the proof of Lemma 9. The gray-shaded
regions represent bulges and dents.

• Case (b2): y x̂r(γ) y with y, y′ ∈ D is a dent of x̂r(γ′) for some inverted glider γ′ ∈ Γ(x).
• Case (c1): y x̂r(γ) y′ with y, y′ ∈ D is a dent of x̂r(γ′) for some non-inverted glider γ′ ∈ Γ(x).
• Case (c2): y x̂r(γ) y′ with y, y′ ∈ D is a bulge of x̂r(γ′) for some inverted glider γ′ ∈ Γ(x).

Note that the glider γ′ in the latter four cases satisfies v(γ′) > v(γ). In all five cases the claim can
be verified directly from the definition of full staircases and the definition of Γ(x) given in (3).

To complete the proof we combine (11) and (12). □
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We emphasize that in the first part of the proof that establishes (11) the glider partitions for
y = 1 u 0 and u, i.e., the sets Γ(y) and Γ(u), may be considerably different; see Figure 27. More
specifically, Γ(y) may differ from Γ(u) by more than simply adding the positions of the first and
last step of y to a fastest glider from Γ(u).

We write d(x) for the number of descents in the (cyclic) string x, i.e., the number of occurrences descents
d(x)of the substring 10. Clearly, this is equal to the number of ascents, i.e., the number of occurrences

of the substring 01. Furthermore, this is the same as the number of maximal substrings of 1s, or
the number of maximal substrings of 0s. For example, x = 001100010001 has three descents, one
of them across the boundary, i.e., d(x) = 3. As this quantity has nothing to do with parenthesis
matching, we did not distinguish matched or unmatched 0s in x in this example. Nonetheless,
the next lemma asserts that d(x) equals the number of gliders ν(x).

Lemma 10. For any x ∈ Xn,k we have d(x) = ν(x).

Proof. We prove inductively that d(x) = |W (x)|, and then the claim follows with the help of
Lemma 9 and the definitions (5) and (8). To show that d(x) = |W (x)| we consider the recursive
definition of W (x), and we consider a substring y ∈ D, y ̸= ε, of x that arises in this computation.
If y = 1 0 ∈ D′ then by the first case in (10c) we have |W (y)| = 1. Furthermore, we clearly have
d(y) = 1, so indeed d(y) = |W (y)|. If y = 1 u 0 ∈ D′ with u ̸= ε then by the second case in (10c)
we have |W (y)| = |W (u) ⊕ 1| = |W (u)|. Furthermore, as the first and last bit of u are 1 and 0,
respectively, the first 1 and last 0 in y do not create additional occurrences of 10, implying
that d(y) = d(u). By induction we know d(u) = |W (u)| and consequently d(y) = |W (y)|.
If y ∈ D \ D′, y ̸= ε, then we have y = y1 · · · yℓ for y1, . . . , yℓ ∈ D′ and by (10b) we have
|W (y)| =

∑ℓ
i=1 |W (yi)|. Furthermore, the number of occurrences of 10 in y is simply the sum of

the number of such occurrences in each of the substrings yi, implying that d(y) =
∑ℓ

i=1 d(yi).
By induction we know d(yi) = |W (yi)| for all i = 1, . . . , ℓ and consequently d(y) = |W (y)|. □

3.8. Free and trapped gliders. We associate the recursive computation of Γ(x) in (3) with a
forest Λ(x) of rooted unordered trees as follows; see Figure 13. The vertex set of Λ(x) is the forest

Λ(x)set of gliders Γ(x). Moreover, for any glider γ ∈ Γ(x) we consider the recursion step (3d) in
which γ = (A, B) is added to the set Γ(x), and we consider the corresponding hill y ∈ D′ with
bulges ui and dents vi as defined by (2). The set of all descendants (direct or indirect) of γ in
the tree of Λ(x) is the set

⋃h−2
i=1 Γ(ui) ∪

⋃h−2
i=0 Γ(vi). Consequently, the direct descendants, i.e.,

the children, of γ are exactly the gliders computed in the next recursion step for the ui and vi.
Moreover, every tree in Λ(x) corresponds to a base hill y ∈ D′ in x̂ (recall (3a)), specifically the
root γ of this tree satisfies y = x̂r(γ).

Lemma 11. For any inverted glider γ ∈ Γ(x), the step at position s2(γ) + 1 in x̂ is a ↘-step,
i.e., the corresponding bit in x is a matched 0.

As γ is inverted, its last step at position s2(γ) is an ↗-step, and the ↘-step at position s2(γ)+1
is directly to its right.

Proof. As γ is inverted, it cannot be the root of a tree in Λ(x). Let γ′ be the parent of γ in
the forest Λ(x). If γ′ is non-inverted, then y := x̂r(γ) belongs to a dent of y′ := x̂r(γ′) and y

starts and ends on the same height as the starting point and endpoint of this dent. From (2)
it follows that y must be followed by a ↘-step of y′, which either belongs to the same dent or
to γ′. If γ′ is inverted, then y belongs to a bulge of y′ and y starts and ends on the same height
as the starting point and endpoint of this bulge. From (2) it follows that y must be followed
by a ↗-step of y′, which either belongs to the same bulge or to γ′ (in the latter case this is a
↘-step of γ′, however). In both cases y is followed by a ↘-step in x̂. □



KNESER GRAPHS ARE HAMILTONIAN 23

Γf(x) = {γ1,γ3}
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free:

T (γ2) = {
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T (γ9) = ∅

Figure 13. Tree of free and trapped gliders present in the hill y ∈ D′ of Figure 8.

For a glider γ as before in the definition of Λ(x), we define a set T (γ) ⊆ Γ(x) as T (γ)

T (γ) :=
h−2⋃
i=0

Γ(vi), (13)

and we refer to any glider γ′ ∈ T (γ) as trapped by γ. In the forest Λ(x), all descendants of γ in trapped
the subtrees on the gliders in Γ(vi) are trapped by γ. In Figure 13, children that are trapped by
their parent are connected by dashed lines. A glider that is not trapped by any of its predecessors
in the forest Λ(x) is called free. In particular, the gliders at the roots of the trees in Λ(x) are all free
free. We write Γf(x) for the set of all free gliders. Note that free gliders are always non-inverted, Γf(x)
whereas trapped gliders can be inverted or non-inverted. Specifically, a trapped glider is inverted
if and only if it is trapped by an odd number of predecessors in its tree in Λ(x).

The following lemma asserts that the speed of gliders decreases along parent-child pairs in
the forest Λ(x); cf. Figure 13.

Lemma 12. Let γ, γ′ ∈ Γ(x). If γ′ is a child of γ in the forest Λ(x), then v(γ) > v(γ′).

Proof. We assume w.l.o.g. that y := x̂r(γ) is a hill in x̂. Let h denote the height of y, and
recall that v(γ) = h. From Lemma 8 we obtain that the height of the ith bulge ui of y is at
most h − 1 − i ≤ h − 2 and the depth of the ith dent vi of y is at most h − 1 − i ≤ h − 1. It
follows that v(γ) > v(γ′) for all γ′ ∈

⋃h−2
i=1 Γ(ui) ∪

⋃h−2
i=0 Γ(vi), which are precisely the children

of γ in the forest Λ(x). □

Lemma 13. For any base hill y in x̂ of the form y = 1 u 0, u ∈ D, the first and last step of y

belong to the glider of maximum speed in Γ(y).

Proof. From (3) we see that the first and last step of y belong to the same glider γ ∈ Γ(x).
Furthermore, γ is the root of a tree in Λ(x) and every other glider in Γ(y) is a descendant of γ

in this tree. The statement hence follows from Lemma 12. □

We say that a glider γ ∈ Γ(x) is clean, if x̂r(γ) = 1v(γ)0v(γ) or x̂r(γ) = 0v(γ)1v(γ); see Figure 14. clean
In other words, in the infinite Motzkin path x̂, the steps belonging to γ are all consecutive, i.e.,
all steps of x̂r(γ) belong to γ. These are 2v(γ) steps in total, v(γ) many ↗-steps followed by
v(γ) many ↘-steps if γ is non-inverted, and vice versa if γ is inverted.

Lemma 14. If γ ∈ Γ(x) has minimum speed v(γ) = min V (x), then it is clean.
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Figure 14. Illustration of clean and coupled gliders, and of trains. In (a), all gliders
except γ8 and γ9 are clean, and in (b), all gliders except γ9 are clean. In both figures,
pairs of coupled gliders are connected by double arrows.

Proof. As γ has minimum speed, it must be a leaf in the tree Λ(x) by Lemma 12. Consequently,
in the corresponding hill y ∈ D′ whose support is r(γ), all bulges and dents are empty, i.e., we
have u1 = · · · = uh−2 = v0 = · · · = vh−2 = ε, h = v(γ), in the decomposition (2). □

We say that two gliders γ′, γ′′ ∈ Γ(x) of the same speed v(γ′) = v(γ′′) are coupled, if all coupled
steps between the last step of γ′ and the first step of γ′′ belong to gliders of strictly smaller
speed; see Figure 14. In particular, no →-steps are allowed between γ′ and γ′′. Note that if
v(γ′) = v(γ′′) = min V (x), then the last step of γ′ must be directly next to the first step of γ′′.

Lemma 15. Let γ, γ′, γ′′ ∈ Γ(x) such that γ′ and γ′′ are coupled. Then either both γ′ and γ′′

are trapped by γ or none of them.

Proof. Suppose for the sake of contradiction that only one of γ′, γ′′ is trapped by γ, but not the
other one. Then clearly we have v(γ) > v(γ′) = v(γ′′) by Lemma 12. However, note that in
the decomposition (2) of the hill y ∈ D′ whose support is r(γ), all dents are separated by the
↗-step at position s1(γ) and the ↘-step at position s2(γ) from the rest of the Motzkin path x̂,
so one of these steps is between γ′ and γ′′, a contradiction. □

3.9. Capturing relation. In the previous sections, we have partitioned certain steps of x̂

into gliders, and defined various properties for them, such as position, speed etc. All of these
definitions were ‘static’, i.e., for one particular vertex x ∈ Xn,k. We now aim to investigate the
behavior of gliders as we move from x to f(x) along the cycle C(x), i.e., we aim to understand
the ‘dynamic’ behavior of gliders over one time step. As long as a glider does not interact with
other gliders, this motion is uniform with the corresponding speed; recall Figure 3 (a)+(b).
However, two gliders of different speeds interact with each other. Specifically, they participate
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Figure 15. Illustration of the capturing relation and related definitions.

in an overtaking, which boosts the faster glider that is overtaking, and delays the slower glider
that is being overtaken; see Figure 3 (c)+(d). During an overtaking, the glider being overtaken
is trapped by the overtaking glider and does not change its position. However, its bits are
complemented, i.e., if it was non-inverted, it becomes inverted, and vice versa. In the following,
we determine which free gliders participate in overtakings in the next time step (trapped gliders
do not move, so they are ignored).

The following definitions are illustrated in Figure 15. We first define a binary relation ≻ on
the set of free gliders Γf(x) as follows. For any i ∈ Z we define w(i), w(I)
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w(i) =

1 if step i of x̂ is a →-step or ↗-step,

−1 if step i of x̂ is a ↘-step,

and for any interval I we define
w(I) :=

∑
i∈I

w(i).

For a free glider γ ∈ Γf(x), we consider the subpath of x̂ strictly to the right of position s2(γ),
i.e., starting from a := s2(γ) + 1, and we consider the minimal index b such that w([a, b]) = v(γ).
Formally, we define s+(γ)

s+(γ) := min{b | w([s2(γ) + 1, b]) = v(γ)}. (14)
From this definition we see that w([s2(γ) + 1, s+(γ)]) = v(γ). Intuitively, s+(γ) is the rightmost
position that the glider γ would occupy after its movement with speed v(γ) in one time step,
assuming that it moves independently of all other free gliders (i.e., if there are no faster gliders
that overtake γ in this time step). For two free gliders γ, γ′ ∈ Γf(x) such that s1(γ) < s1(γ′), we
say that γ captures γ′, which we denote by γ ≻ γ′, if s+(γ) > s+(γ′); see Figure 15. It follows capture

≻directly from this definition that the capturing relation ≻ is transitive, i.e., γ ≻ γ′ and γ′ ≻ γ′′

implies that γ ≻ γ′′.
The next lemma describes a transitivity property for coupled gliders.

Lemma 16. Let γ, γ′, γ′′ ∈ Γf(x) such that γ′ and γ′′ are coupled. If γ ≻ γ′, then we have γ ≻ γ′′.

Proof. This proof is illustrated in Figure 16. We define a := s2(γ′)+1, b := s0(γ′′)−1, c := s1(γ′′),
and d := s2(γ′′). As γ′ and γ′′ are free, they are non-inverted. Furthermore, as γ′ and γ′′ are
coupled, all steps of x̂[a,b] belong to gliders of strictly smaller speed, and all steps of those
gliders are in the interval [a, b] (recall Lemma 12). Consequently, x̂[a,b] is a hill of height less
than v(γ′) = v(γ′′), i.e., we have w([a, p]) < v(γ′) for all p ∈ [a, c − 1], and w([a, c]) = v(γ′), and
therefore s+(γ′) = c. From the assumption γ ≻ γ′ we know that s+(γ) > s+(γ′) = c and therefore
v(γ) > w([s2(γ) + 1, c]). As w([c + 1, d]) = −v(γ′′), we obtain v(γ) − v(γ′′) > w([s2(γ), d]).
Using the definition of s+(γ) and s+(γ′′) from (14), this inequality implies s+(γ) > s+(γ′′), and
therefore γ ≻ γ′′, as claimed. □

. . .. . .
γ

x̂

s2(γ)

a := s2(γ
′) + 1

γ′ γ′′

s+(γ)a b c ds2(γ
′) s+(γ′′)

b := s0(γ
′′)− 1

c := s1(γ
′′)

d := s2(γ
′′)

Figure 16. Illustration of the proof of Lemma 16.

The following lemma describes another transitivity property, namely that when a glider γ

captures another glider γ′, then γ also captures the free descendants of γ′ in Λ(x).

Lemma 17. Let γ, γ′, γ′′ ∈ Γf(x). If γ ≻ γ′ and γ′′ is a child of γ′ in Λ(x), then we have γ ≻ γ′′.

Proof. This proof is illustrated in Figure 17. Consider two gliders γ′, γ′′ ∈ Γf(x) such that γ′′ is
a child of γ′ in Λ(x). We have that x̂r(γ′′) is a bulge of the hill x̂r(γ′), and hence by Lemma 8 the



KNESER GRAPHS ARE HAMILTONIAN 27

. . .. . .

s+
(γ
)

s 2
(γ

′′ )

s+
(γ

′′ )

s 1
(γ

′ )

s 2
(γ

′ )

s+
(γ

′ )

γ′′

γ′Λ(x)

γ

γ

γ′
γ′′

s 2
(γ
)

x̂

s1(γ)

s 1
(γ

′′ )

s 0
(γ

′ )

Figure 17. Illustration of the proof of Lemma 17.

highest point of the hill x̂r(γ′′) is strictly lower than the highest point of the hill x̂r(γ′). From (14)
we see that the height of the hill x̂r(γ′′) equals v(γ′′) = w([s2(γ′′) + 1, s+(γ′′)]). Combining these
observations shows that s+(γ′′) < s1(γ′), in particular γ′′ ̸≻ γ′.

Now let γ, γ′, γ′′ ∈ Γf(x) be as in the lemma. From the arguments before we obtain that
s+(γ′′) < s1(γ′) < s+(γ′). Furthermore, using that γ ≻ γ′ we also obtain that γ is not a
descendant of γ′ in Λ(x), i.e., s1(γ) < s2(γ) < s0(γ′) < s1(γ′′) and that s+(γ) > s+(γ′).
Combining these observations shows that s+(γ) > s+(γ′′), yielding γ ≻ γ′′, as claimed. □

We introduce a few more definitions, illustrated in Figure 15.
For any free glider γ ∈ Γf(x), we define a set C(γ) ⊆ Γf(x) as C(γ)

C(γ) :=
{
γ′ ∈ Γf(x) | γ ≻ γ′}, (15)

and we refer to any glider γ′ ∈ C(γ) as captured by γ. By Lemma 17, C(γ) is a downset of captured
vertices of the subforest of Λ(x) induced by free gliders.

For any glider γ ∈ Γf(x), we let S(γ) be the set of positions in the interval [s2(γ) + 1, s+(γ)]
not belonging to the range of any glider in C(γ). Formally, we define S(γ)

S(γ) := [s2(γ) + 1, s+(γ)] \
⋃

γ′∈C(γ)
r(γ′). (16)

Furthermore, we define a partition of the set C(γ) of captured gliders as follows: We let C(γ)0 C(γ)i

be the subset of gliders γ′ from C(γ) for which r(γ′) is smaller than the minimum of S(γ).
Furthermore, we let C(γ)i, i ≥ 1, be the subset of gliders γ′ from C(γ) for which r(γ′) is between
the ith and (i + 1)th smallest element of S(γ). Note that s+(γ) ∈ S(γ) and therefore no gliders
in C(γ) are to the right of the largest element of S(γ). Lastly, for any glider γ ∈ Γf(x) we define I(γ)

I(γ) := [s1(γ) + 1, s+(γ)]. (17)

The next lemma describes a number of crucial properties of the capturing relation and the
corresponding concepts defined before.

Lemma 18. Any free glider γ ∈ Γf(x) has the following properties:
(i) The steps of x̂ whose support is the set S(γ) defined in (16) form a sequence of 0 or more

→-steps followed by 0 or more ↗-steps.
(ii) We have |S(γ)| = v(γ), i.e., the cardinality of S(γ) equals the speed of γ.

(iii) For any glider γ′ in the set C(γ)i defined after (16), we have v(γ′) < v(γ) − i. In particular,
v(γ′) < v(γ), i.e., a glider can only capture slower gliders, and a glider can only be captured
by faster gliders.
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Figure 18. Illustration of the three cases in the proof of Lemma 18.

(iv) For any glider γ′ ∈ Γf(x) such that s1(γ) < s1(γ′), we have I(γ′) ⊆ I(γ) if γ ≻ γ′, and
I(γ′) ∩ I(γ) = ∅ if γ ̸≻ γ′, i.e., any two of the intervals defined in (17) are either disjoint
or nested.

Proof. The definitions used in this proof are illustrated in Figure 18.
Let c := s2(γ) + 1 and d := s+(γ), and consider the subpath of x̂ on the interval J := [c, d].

From (14) we obtain the following Observation H: For any hill y = x̂[a,b] of height h with a ≥ c

and with the ↗-step at position p ∈ [a, b] leading to the leftmost highest point of y, if d > p

then we have d > b and
w([c, b]) < v(γ) − h. (18)



KNESER GRAPHS ARE HAMILTONIAN 29

Now consider any glider γ′ ∈ Γf(x) with r(γ′) ∩ J ̸= ∅, and define [a′, b′] := r(γ′) =
[s0(γ′), s2(γ′)], c′ := s2(γ′) + 1 = b′ + 1, and d′ := s+(γ′). From (14) we know that

w([c′, d′]) = v(γ′). (19)

Note that γ′ is not a descendant of γ in Λ(x), otherwise we would have r(γ′) ∩ J = ∅. It
remains to consider two possible cases:

Case (a): γ is not a descendant of γ′ in Λ(x). In this case, we must have a′ ∈ J .
Case (a1): If b′ ∈ J , then we apply Observation H. Specifically, using (18) with h = v(γ′) we

obtain
w([c, b′]) < v(γ) − v(γ′), (20)

which combined with (19) and c′ = b′ + 1 yields

v(γ) > w([c, b′]) + w([c′, d′]) = w([c, d′]). (21)

Combining (14) and (21) shows that d > d′, i.e., we have s+(γ) > s+(γ′), which implies γ ≻ γ′.
We also see from (17) that I(γ′) ⊆ I(γ). By the definition (15), the glider γ′ is contained in the
set C(γ), and hence none of the positions in r(γ′) = [a′, b′] are contained in the set S(γ) by (16).

Case (a2): If b′ /∈ J , then by Observation H we have d ≤ s1(γ′). It follows that γ ̸≻ γ′, and
therefore γ′ /∈ C(γ). We also see that I(γ′) ∩ I(γ) = ∅. Furthermore, all steps of γ′ at positions
in S(γ) are ↗-steps, and as there are no →-steps at positions in r(γ′), these positions in S(γ)
are not interleaved or followed by positions of any →-steps.

Case (b): γ is a descendant of γ′ in Λ(x). By Lemma 8 the highest point of the hill x̂r(γ) is
strictly lower than the highest point of the hill x̂r(γ′). From (14) we conclude that s+(γ) < s1(γ′),
in particular γ ̸≻ γ′ and therefore γ′ /∈ C(γ). We also see that I(γ′) ∩ I(γ) = ∅. Furthermore, all
steps of γ′ at positions in S(γ) are ↗-steps, and as there are no →-steps at positions in r(γ′),
the set S(γ) contains no positions of any →-steps at all.

Combining the observations resulting from cases (a1), (a2) and (b), we are now in position to
prove (i)-(iv).

We first obtain that for any i ∈ S(γ) we have x̂i ∈ {↗, →} and the positions of any ↗-steps
must be preceded by the positions of any →-steps, which proves (i).

For any γ′ ∈ C(γ) we have
w(r(γ′)) = 0, (22)

and so w([c, d]) = w([s2(γ) + 1, s+(γ)]) = v(γ) equals the cardinality of S(γ) by (16), which
proves (ii).

Consider a glider γ′ ∈ C(γ) and define [a′, b′] := r(γ′) = [s0(γ′), s2(γ′)]. From (20) and (22)
we obtain w([c, a′ − 1]) = w([s2(γ) + 1, s0(γ′) − 1]) < v(γ) − v(γ′). By (16) and (22), if the
number of elements in S(γ) smaller than r(γ′) equals i, then we have i = w([s2(γ)+1, s0(γ′)−1]).
Combining these observations yields i < v(γ)−v(γ′), which proves (iii). This argument also works
in the special case i = 0, when the interval [c, a′ − 1] is empty and therefore w([c, a′ − 1]) = 0.

To prove (iv), note that any glider γ′ ∈ Γf(x) as in case (a1) satisfies γ ≻ γ′ and I(γ′) ⊆ I(γ),
whereas any glider γ′ ∈ Γf(x) as in case (a2) or case (b) satisfies γ ̸≻ γ′ and I(γ′) ∩ I(γ) = ∅.

This completes the proof of the lemma. □

3.10. Movement of gliders in one time step. We now define a bijection g between gliders
in the sets Γ(x) and Γ(f(x)), so that repeatedly applying this bijection will enable us to track
the movement of each glider over time. Whereas the mapping f defined in Section 2.2 describes
the changes from x to f(x) on the level of 0s and 1s, the bijection g describes the changes on
the level of gliders.
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To define the bijection g : Γ(x) → Γ(f(x)), we let M(x) ⊆ Γf(x) be the set of free gliders that
are not captured by any other glider, i.e., M(x)

M(x) := {γ ∈ Γf(x) | there is no γ′ ∈ Γf(x) such that γ′ ≻ γ}. (23a)

For any glider γ =: (A, B) ∈ M(x) we consider the set S(γ) defined in (16) and define g(γ)

g(γ) := (B, S(γ)), (23b)

whereas for any other glider γ ∈ Γ(x) \ M(x) we define

g(γ) := γ. (23c)

In words, the gliders in M(x) move forward according to (23b), i.e., the downsteps of γ in x̂,
which are at the positions in B, become the upsteps of g(γ) in f̂(x), and the downsteps of g(γ)
in f̂(x) are at the positions in S(γ). Moreover, by (23c) none of the gliders in Γ(x) \ M(x)
changes its position. However, we will see that each of these gliders changes from being non-
inverted to inverted, or vice versa. See Figure 19 for an example illustrating these definitions.

We need to show that the bijection g defined in (23) is well-defined, i.e., that g maps a glider
from Γ(x) to a glider in Γ(f(x)). This is established in Lemma 20 below.

To prove Lemma 20, we need the following auxiliary construction and lemma. Specifically,
given the Motzkin path x̂, we first define another infinite Motzkin path φ(x̂). Lemma 19 below
shows that actually φ(x̂) = f̂(x), and the lemma establishes additional properties about gliders
in the Motzkin paths x̂ and f̂(x); see Figure 19. All the following definitions and computations
rely on the definitions provided in Section 3.9.

The Motzkin path φ(x̂) is defined as follows: For all steps i ∈
⋃

γ∈M(x) I(γ) we define φ(x̂)

φ(x̂)i :=

↗ if x̂i = ↘,

↘ if x̂i ∈ {→, ↗},
(24a)

and otherwise we define
φ(x̂)i := → . (24b)

Recall from Lemma 18 (iv) that for any two gliders γ, γ′ ∈ M(x), the intervals I(γ) and I(γ′)
are disjoint.

Lemma 19. For any x ∈ Xn,k, the Motzkin path φ(x̂) defined in (24) satisfies φ(x̂) = f̂(x).
Moreover, for any glider γ =: (A, B) ∈ M(x) with v(γ) = h, we have φ(x̂)I(γ) = z y, where
z ∈ D and y ∈ D′ are base hills in φ(x̂) and y has height h, satisfying the following conditions:
(i) z is the complement of the 0th dent of x̂r(γ);

(ii) the ith bulge of y is the complement of the ith dent of x̂r(γ), for all i = 1, . . . , h − 2;
(iii) the ith dent of y is the complement of x̂Ri , where Ri :=

⋃
γ′∈C(γ)i

r(γ′), for all i = 0, . . . , h−2;
(iv) the ↗-steps and ↘-steps of y not belonging to any of its bulges or dents are at the positions B

or S(γ), respectively.

In the proof of Lemma 19 we denote steps of the Motzkin path φ(x̂) by ↗, ↘, or →, as
given by the definition (24). Once we have established that φ(x̂) = f̂(x), it is clear that these
correspond to matched 1s, matched 0s, or unmatched 0s (-) in f(x), respectively.

Proof. Let γ =: (A, B) ∈ M(x). We split the interval I(γ) = [s1(γ) + 1, s+(γ)] into the two
smaller intervals [a, b] := [s1(γ) + 1, s2(γ)] and [c, d] := [s2(γ) + 1, s+(γ)].

We first consider the steps of φ(x̂) in the interval [a, b]. If h = 1, then we have x̂[a,b] = ↘
and consequently

φ(x̂)[a,b] = ↗ (25)
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Figure 19. One application of f and corresponding movement of gliders, captured by
the bijection g. The pairs of gliders mapped to each other under g are denoted by the
same index γi in x̂ and f̂(x), and connected by shaded trapezoids. Only the three gliders
in M(x) = {γ1, γ3, γ13} move forward in this step, whereas all others do not change
position. This figure continues the example from Figure 15.

by (24a). If h ≥ 2, then let v′
i, i = 0, . . . , h − 2, be the ith dent of x̂r(γ), and let Ii be its support.

As v′
0 is a valley in x̂, we obtain from (24a) that z := φ(x̂)I0 = v′

0 is a hill, i.e., z ∈ D. Similarly,
for i = 1, . . . , h − 2 we have that v′

i is a valley of depth at most h − 1 − i in x̂ by Lemma 8, and
consequently ui := φ(x̂)Ii = v′

i is a hill of height at most h − 1 − i in φ(x̂). The remaining steps
of x̂ in [a, b] not belonging to any of the intervals Ii, i = 0, . . . , h − 2, are at the positions in B

(recall (3d)), and these are v(γ) = h many ↘-steps (recall (7)), so in φ(x̂) there are h many
↗-steps at the positions in B. Combining these observations shows that

φ(x̂)[a,b] = z ↗ u1 ↗ u2 · · · ↗ uh−2 ↗↗ (26)
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with z ∈ D and hills ui ∈ D of height at most h − 1 − i for all i = 1, . . . , h − 2.
We now consider the steps of φ(x̂) in the interval [c, d]. If h = 1, then we have x̂[c,d] ∈ {→, ↗}

by Lemma 18 (i) and consequently
φ(x̂)[c,d] = ↘ (27)

by (24a). If h ≥ 2, then let Ri :=
⋃

γ′∈C(γ)i
r(γ′) for i = 0, . . . , h − 2. Note that x̂Ri is a

hill of height at most v(γ) − i − 1 = h − i − 1 in x̂ by Lemma 18 (iii), and consequently
vi := φ(x̂Ri) = x̂Ri is a valley of depth at most h − i − 1 in φ(x̂). The remaining steps of x̂

in [c, d] not belonging to any of the intervals Ri, i = 0, . . . , h − 2, are at the positions in S(γ),
and these are |S(γ)| = v(γ) = h many →-steps or ↗-steps by Lemma 18 (i)+(ii), so in φ(x̂)
there are h many ↘-steps at these positions in S(γ). Combining these observations shows that

φ(x̂)[c,d] = v0 ↘ v1 ↘ · · · vh−2 ↘ ↘ (28)

with valleys vi, i.e., vi ∈ D, of depth at most h − 1 − i for all i = 0, . . . , h − 2.
If h = 1, then from (25) and (27) we obtain

φ(x̂)I(γ) = ↗ ↘ = 1 0︸︷︷︸
=:y

, (29)

i.e., the statements in the lemma are trivially satisfied with z := ε. If h ≥ 2, then from (26)
and (28), using the stated constraints on the height of the hills ui and the depths of the valleys vi

we obtain
φ(x̂)I(γ) = z 1 u1 1 u2 · · · 1 uh−2 1 1 v0 0 v1 0 · · · 0 vh−2 0 0︸ ︷︷ ︸

=:y

, (30)

i.e., we indeed have z ∈ D and y ∈ D′ (recall (2) and Lemma 8). Note that the 0s and 1s
in (29) and (30) denote bits that are matched to another bit inside y. Moreover, z = v′

0 is the
complement of the 0th dent of x̂r(γ), the ith bulge of y is ui = v′

i, which is the complement of
the ith dent of x̂r(γ), and the ith dent of y is vi = x̂Ri . Furthermore, the ↗-steps or ↘-steps
of y not belonging to any of its bulges or dents are at the positions B or S(γ), respectively. This
proves statements (i)–(iv) in the lemma.

As every γ ∈ M(x) satisfies (29) or (30), and the steps of φ(x̂) not belonging to any of the
intervals I(γ), γ ∈ M(x), are →-steps by (24b), we see that φ(x̂) is a Motzkin path that never
moves below the abscissa and all of whose →-steps are on the abscissa. We also see that φ(x̂)I(γ)
is a base hill in φ(x̂) for all γ ∈ M(x). As φ(x̂) has periodicity n, it follows that φ(x̂) = x̂′ for
some x′ ∈ Xn,k. By (24), the 1s in x′ (corresponding to ↗-steps on the Motzkin path φ(x̂))
are precisely at the positions of the matched 0s in x (corresponding to ↘-steps on the Motzkin
path x̂), so indeed we have x′ = f(x), i.e., φ(x̂) = f̂(x), as claimed. □

Lemma 20. For any x ∈ Xn,k, the mapping g : Γ(x) → Γ(f(x)) defined in (23) is a bijection.
Furthermore, for any two gliders γ, γ′ ∈ Γ(x) with γ ∼ γ′ we have s(γ)−s(γ′) = s(g(γ))−s(g(γ′)).

Proof. Let γ =: (A, B) ∈ M(x) be as in Lemma 19.
By Lemma 19 (iv), the Motzkin path f̂(x) has a base hill y ∈ D′, and the ↗-steps and ↘-

steps not belonging to any of its bulges or dents are at the positions B or S(γ), respectively.
Consequently, from (3d) we see that (B, S(γ)) is indeed a glider of Γ(f(x)) and hence the
definition (23b) is well-defined.

Now consider the 0th dent of x̂r(γ), and let I0 be its support. By Lemma 19 (i), z := f̂(x)I0
=

x̂I0 ∈ D is base hill of the Motzkin path f̂(x), so by (3) the recursion Γ(z) yields the same results
for x̂ and f̂(x). It follows that for gliders γ′ ∈ Γ(x)\Γf(x) with r(γ′) ⊆ I0 the definition g(γ′) = γ′

given in (23c) is well-defined, and it is a bijection between those sets of gliders.
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Now consider the ith dent of x̂r(γ) for some i = 1, . . . , h − 2, and let Ii be its support. By
Lemma 19 (ii), ui := f̂(x)Ii

= x̂Ii ∈ D is the ith bulge of the base hill y ∈ D′ of the Motzkin
path f̂(x), so by (3) the recursion Γ(ui) yields the same results for x̂ and f̂(x). It follows that for
gliders γ′ ∈ Γ(x) \ Γf(x) with r(γ′) ⊆ Ii the definition g(γ′) = γ′ given in (23c) is a well-defined
bijection between those sets of gliders.

Now consider the interval Ri :=
⋃

γ′∈C(γ)i
r(γ′) for some i = 0, . . . , h − 2. Clearly, x̂Ri ∈ D is a

hill in x̂, either a base hill or a bulge of some base hill (recall Lemma 18 (i)). By Lemma 19 (iii),
f̂(x)Ri

= x̂Ri is the ith dent of the base hill y ∈ D′ of the Motzkin path f̂(x), so by (3) the
recursion Γ(x̂Ri) yields the same results for x̂ and f̂(x). It follows that for gliders γ′ ∈ Γ(x)\Γf(x)
with r(γ′) ⊆ Ri the definition g(γ′) = γ′ given in (23c) is a well-defined bijection between those
sets of gliders.

This proves the first part of the lemma. To verify the second part, consider two gliders
γ, γ′ ∈ Γ(x) with γ ∼ γ′. As x̂ has periodicity n, the set S(γ) is obtained from S(γ′) by adding
s(γ) − s(γ′) to all elements. As S(γ) and S(γ′) determine the images g(γ) and g(γ′), we obtain
the desired statement.

This completes the proof of the lemma. □

The next lemma describes how the bijection g affects the trappedness relations between gliders
from Γ(x) and Γ(f(x)); see Figure 19.

Lemma 21. Let T (x, γ) and C(x, γ) be the sets T (γ) and C(γ) of trapped and captured gliders,
respectively, defined in (13) and (15) for a given bitstring x ∈ Xn,k. Then we have:

(i) For any glider γ ∈ M(x), we have g(γ) ∈ Γf(f(x)) and T (f(x), g(γ)) = {γ′ ∪ T (x, γ′) | γ′ ∈
C(x, γ)}. In words, the glider g(γ) is free and the gliders trapped by g(γ) are precisely the free
gliders captured by γ, and the gliders trapped by them. In particular, T (x, γ)∩T (f(x), g(γ)) =
∅, i.e., none of the gliders trapped by γ is trapped by g(γ).

(ii) For any glider γ ∈ Γ(x) \ M(x) we have T (f(x), g(γ)) = T (x, γ). In words, the gliders
trapped by γ and g(γ) are the same.

Proof. We first prove (ii) and then (i).
To prove (ii), let γ ∈ Γ(x) \ M(x). By (23c) we have g(γ) = γ. Furthermore, any glider γ′ ∈

T (x, γ) is not free and therefore γ′ /∈ M(x), implying that g(γ′) = γ′ as well.
To prove (i), let γ ∈ M(x). By (23b) and Lemma 19 (iv), y := f̂(x)r(g(γ)) is a base hill in f̂(x),

and thus g(γ) is the root of the tree in the forest Λ(f(x)) that corresponds to the recursive
computation of Γ(y). Consequently, g(γ) is not trapped by any other glider and therefore
g(γ) ∈ Γf(f(x)). Furthermore, by Lemma 19 (iii), the gliders γ′ ∈ Γf(x) for which f̂(x)r(g(γ′))

belongs to a dent of f̂(x)r(g(γ)) are precisely the gliders C(x, γ). By part (ii) of the lemma
established before, for any glider γ′′ ∈ T (x, γ′), we have r(g(γ′′)) = r(γ′′) ⊆ r(γ′) = r(g(γ′)),
and therefore f̂(x)r(g(γ′′)) belongs to the same dent of f̂(x)r(g(γ)) as f̂(x)r(g(γ′)). □

We say that a glider γ ∈ Γ(x) is open, if in the Motzkin path x̂, the step to the right of γ at open
position s2(γ) + 1 is a →-step, i.e., the corresponding bit in x is an unmatched 0. Note that if γ

is open, then it must be free and therefore non-inverted. The next lemma asserts that if a glider
is open, then it has moved in the preceding time step.

Lemma 22. Let γ ∈ Γ(x) be such that g(γ) is open. Then we have γ ∈ M(x).

Note that γ ∈ M(x) if and only if g(γ) ̸= γ.
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Proof. For the sake of contradiction suppose that g(γ) = γ. In this case γ must be inverted, and
by Lemma 11 the step of x̂ at position s2(γ) + 1 is a ↘-step. This however implies that the step
of f̂(x) at this position is an ↗-step, contradicting the assumption that g(γ) is open. □

3.11. Cycle invariants. Clearly, the bijection g defined in (23) preserves the speeds of all
gliders. Together with the ‘uniformity’ property of g stated in Lemma 20, we obtain that the
speed set V (x) defined in (8) is invariant along the cycle C(x).

Lemma 23. For any x ∈ Xn,k and any vertex y on the cycle C(x), we have V (x) = V (y). In
words, the speed set is invariant along each cycle.

Lemma 23 shows that if V (x) ̸= V (y), then x and y are not on the same cycle. However, if
V (x) = V (y) then x and y may still be on different cycles. For example, for x = 1010-- ∈ X6,2
and y = 10-10- ∈ X6,2 we have V (x) = V (y) = {1, 1}, but in both cycles the two gliders of
speed 1 are in different relative distances to each other. Furthermore, these distances do not
change along the cycles, as all gliders have the same speed.

We can derive the following somewhat refined condition from Lemma 23, stated in Lemma 24
below. For this we write V −(x) for the set obtained from the multiset V (x) by removing V −(x)
duplicates, and for each v ∈ V −(x) we write νv(x) for the number of occurrences of v in V (x), νv(x)
i.e., νv(x) is the number of gliders of speed v. We can then write V (x) compactly as

V (x) = {vνv(x) | v ∈ V −(x)}, (31)

i.e., we write the elements of V −(x) with their multiplicities νv(x) as exponents to indicate
repetition. We refer to a maximal sequence of coupled gliders as a train, and its size is the
number of gliders belonging to this train. For example, in Figure 14 (a), the gliders γ2, γ3 form train
a train of size 2, the gliders γ4, γ5, γ6 form a train of size 3, and the gliders γ7, γ8 form a train of
size 2, whereas γ1 and γ9 are both their own train of size 1 each. The train sizes formed by all
equivalence classes of gliders of speed v from left to right define a cyclic composition of νv(x),
which we denote by zv(x), and we define train

compo-
sition
Z(x)

Z(x) := {vzv(x) | v ∈ V −(x)},

which we refer to as train composition. Note that Z(x) is obtained from (31) by replacing each
exponent νv(x) by a cyclic composition of it, i.e., by specifying how the gliders of speed v are
grouped into trains. By cyclic composition we mean a partition of νv(x) that is ordered up to
cyclic shifts, i.e., orderings that differ only by cyclic shift are considered equivalent. For the
example in Figure 14, we have z1(x) = (1, 2, 3) = (2, 3, 1) = (3, 1, 2), z2(x) = (2), z3(x) = (1),
z1(y) = (2, 1, 3) = (1, 3, 2) = (3, 2, 1), z2(y) = (2), and z3(y) = (1).

Lemma 24. For any x ∈ Xn,k and any vertex y on the cycle C(x), we have Z(x) = Z(y). In
words, the train composition is invariant along each cycle.

Proof. By Lemma 15, all gliders belonging to the same train are trapped by the same gliders.
In particular, they are either all free or all trapped. Furthermore, by Lemma 16, if one of them
is captured by some glider, then all of them are captured by the same glider. Furthermore, note
that for two coupled gliders γ, γ′ ∈ M(x), for γ =: (A, B) and γ′ =: (A′, B′) we have S(γ) = A′

and therefore g(γ) = (B, A′) and g(γ′) = (B′, S(γ′)). Consequently, the steps in f̂(x) between
the last step of g(γ) and the first step of g(γ′) are steps that belong to the 0th dent of x̂r(γ′)

in x̂, i.e., these steps belong to gliders of strictly smaller speed in x̂ and f̂(x). It follows that
g(γ) and g(γ′) are coupled. We conclude that for all gliders in a train in x̂, their images under g

also form a train in f̂(x).
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To complete the proof, note that the order of gliders of the same speed in x̂ is the same
in f̂(x) under the mapping g (recall Lemma 12), so the order of trains is also the same. □

For the bitstrings x and y shown in Figure 14 (a) and (b), respectively, we have V (x) = V (y),
but Z(x) ̸= Z(y), as the train sizes of the equivalence classes of gliders of speed 1 appear in
different cyclic order, so x and y lie on different cycles.

It seems that one should be able to give a complete combinatorial interpretation of the set of
cycles of the factor Cn,k defined in (1) via the speed sets of gliders, their train composition, and
the relative distances of the trains, but unfortunately we do not have such an interpretation.
Specifically, given two vertices x and y with the same train compositions Z(x) = Z(y), in general
we do not have an efficient way to decide whether x and y lie on the same cycle, other than
computing f t(x) for t = 0, 1, . . . and checking if y = f t(x) holds for one of them.

We can also derive the following somewhat coarser condition from Lemma 23. It uses the total
number of gliders ν(x) defined in (5), which can be computed very easily as the number d(x) of
descents in x by Lemma 10, without invoking the somewhat intricate glider partition introduced
in Section 3.4.

Lemma 25. For any x ∈ Xn,k and any vertex y on the cycle C(x), we have ν(x) = ν(y) and
consequently d(x) = d(y). In words, the number of descents is invariant along each cycle.

For example, the number of descents in all bitstrings in the four cycles shown in Figure 3 (a)–
(d) is 1, 1, 2, 3 respectively. As mentioned before, the number of descents equals the number
of maximal substrings of 1s (or 0s), so this quantity is also a cycle invariant. As Figure 3 (d)
shows, the lengths of those maximal substrings of 1s are not invariant, however (neither for 0s).

3.12. Movement of slowest gliders. Gliders with minimum speed play an important role in
our later arguments, and we will now analyze their movement.

The next lemma can be seen as the converse of Lemma 22 for the case of gliders of minimum
speed. Specifically, it asserts that if certain gliders of minimum speed move in some step, then
after this step they are open.

Lemma 26. Let γ ∈ M(x) be the rightmost glider in a train of minimum speed v(γ) = min V (x).
Then in f̂(x) the glider g(γ) is open.

Lemma 26 is illustrated in Figure 21. Intuitively, in the step from x to f(x), the glider γ

moves at minimum speed, whereas all other moving gliders either move at a strictly faster speed,
or they belong to another train of the same speed, i.e., a train that is separated from γ’s train
by a positive number of steps. This creates a ‘gap’ to the right of g(γ), i.e., a step that does not
belong to any other glider.

Proof. For the reader’s convenience, the notations used in this proof are illustrated in Figure 20.
As γ =: (A, B) has minimum speed, we know that γ and g(γ) are both clean by Lemma 14.

Consequently, the set B is an interval of length v(γ), and x̂ has v(γ) many ↘-steps at these
positions. Similarly, the set S(γ) is an interval of length v(γ), which by Lemma 18 (i) consists
of some number a of →-steps plus some number b := v(γ) − a of ↗-steps. Consider the
glider γ′ ∈ M(x) for which I(γ′) is to the right of I(γ) = B ∪ S(γ). We claim that the ↗-
step of γ′ at position s1(γ′) is not contained in the set S(γ). From this it follows that I(γ) is
separated from I(γ′) by at least one step, and by (24b) all these steps between the two intervals
are →-steps in f̂(x). To prove this claim we consider two cases.

Case (a): x̂r(γ) is a base hill; see Figure 20 (a). As γ′ has speed v(γ′) ≥ v(γ) and precisely
v(γ′) many ↗-steps, at most b = v(γ) − a ≤ v(γ) ≤ v(γ′) of these ↗-steps belong to S(γ). One
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Figure 20. Illustration of the proof of Lemma 26.

of these inequalities is strict either because a > 0 or because γ is the rightmost glider in its train
and therefore v(γ) < v(γ′). It follows that b < v(γ′) and therefore s1(γ′) /∈ S(γ).

Case (b): x̂r(γ) is not a base hill. Then let γ′′ ∈ Γ(x) be the parent of γ in the forest Λ(x)
and define y := x̂r(γ′′) ∈ D′. Note that x̂r(γ) belongs to a bulge of y and we have a = 0. If x̂r(γ)
belongs to the rightmost nonempty bulge of y, then we have γ′′ = γ′, and then the ↗-step of γ′

at position s1(γ′) is higher than the highest point of x̂r(γ), so s1(γ′) /∈ S(γ); see Figure 20 (b1).
Otherwise x̂r(γ′) is the initial part of the next nonempty bulge of y to the right of x̂r(γ); see
Figure 20 (b2). By the assumption that v(γ′) ≥ v(γ) and that γ is the rightmost glider in its
train, the ↗-step of γ′ at position s1(γ′) is higher than the highest point of x̂r(γ), so again we
have s1(γ′) /∈ S(γ). This completes the proof. □

For any x ∈ Xn,k and the rightmost glider γ ∈ Γ(x) in a train of minimum speed v(γ) =
min V (x), we let g′ : Γ(f−1(x)) → Γ(x) be the bijection defined in (23) for the string f−1(x), and
we let γ′ ∈ Γ(f−1(x)) be such that g′(γ′) = γ. We define hγ(x) ∈ Xn,k as the bitstring obtained hγ(x)
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x = 1 0 0 0

C(x)

-1 1- - 1 0 01 01

f time

...

γ
v(γ) = minV (x) = 1
V (x) = {1, 2, 3}

(a) (b) (c)

Figure 21. Illustration of Lemmas 26 and 31. The glider γ has minimum speed v(γ) =
min V (x) = 1. In (b), the steps in which γ moves are marked by little arrows on the right,
and the corresponding unmatched 0-bit guaranteed by the lemmas is marked by a cross.
Furthermore, transposing the two marked bits yields the cycle C(hγ(x)) shown in Figure 22
for the bitstring hγ(x) that is obtained from x by shifting the glider γ one position to the
right. Part (c) shows only the steps in (b) that are different from the ones in Figure 22 (b).

from x by transposing the two bits at positions s1(γ′) + 1 and s2(γ′) + 1; see Figures 21 and 22.
We emphasize that the transposed positions are computed based on f−1(x) (specifically, based
on γ′ ∈ Γ(f−1(x))), but the bits are transposed in x. In fact, we will see that the transposed bits
in x are always a (matched) 1 and a matched 0. However, when applying parenthesis matching
to the modified string hγ(x), the transposed 0 may be unmatched, and another 0-bit may
instead be matched. Observe that if γ′ ∈ M(f−1(x)), then by Lemma 26 the glider γ is open
in x̂, i.e., x̂r(γ) = 1v(γ)0v(γ) is a base hill followed by a →-step, and then the gliders in Γ(hγ(x))
are obtained from the gliders of Γ(x) by shifting the gliders in the equivalence class [γ] one
step to the right, while leaving all other gliders unchanged. In Figure 21 (b), these steps are
marked by little arrows on the right. In other cases, steps of more than one glider may change
in Γ(hγ(x)) compared to Γ(x), and in particular the position of γ may change by more than +1;
see Figures 21 (c) and 22 (c). The next lemma shows that the cycle C(hγ(x)) is obtained from
the cycle C(x) by shifting the glider γ and its images under repeated applications of g one step
to the right. As mentioned before, this intuition is literally true only for steps in C(x) in which
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hγ(x) = 1 0 0 0

C(hγ(x))

-1 1- - 1 0 01 01

f time

...

V (hγ(x)) = {1, 2, 3}

(a) (b) (c)

Figure 22. Illustration of Lemma 27. This figure continues Figure 21. Part (c) shows
only the steps in (b) that are different from the ones in Figure 21 (b). To fully appreciate
the two figures, the reader is encouraged to print both pages in color and alternately look
at them like in a flip-book. Alternatively, the reader may want to flip back and forth
between both pages on a screen reader, with fixed alignment of the page boundaries.

the glider has moved. Nonetheless, it will be the case that V (x) = V (hγ(x)), i.e., the speed sets
of gliders in the cycles C(x) and C(hγ(x)) are identical; recall Lemma 23.

Lemma 27. We have f(hγ(x)) = hg(γ)(f(x)).

Proof. In the proof we also consider the glider γ′ ∈ Γ(f−1(x)) defined before the lemma.
Throughout this proof, we will repeatedly use that γ and its images under g are clean by
Lemma 14. Let (A, B) := γ, and define the abbreviations a := s0(γ) = min A, b := s1(γ) + 1 =
max A + 1 = min B, and c := s2(γ) + 1 = max B + 1.

Case (a): We first consider the case that s(γ) > s(γ′); see Figure 23 (a). Clearly, we have

s1(γ′) + 1 = a and s2(γ′) + 1 = b.

Applying the definition of hγ , we see that hγ(x) is obtained from x by transposing the bits at
positions a and b.

In x, the 1-bits and 0-bits at the positions in A and B, respectively, are matched to each
other, i.e., we have A ⊆ µ1(x) and B ⊆ µ0(x). Furthermore, by Lemma 26 the bit at position c
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x
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(a)

γ

γ′

a := s0(γ) = minA
b := s1(γ) + 1 = maxA+ 1 = minB
c := s2(γ) + 1 = maxB + 1

A B

a b c

0

f−1(x)
0 001 1 1

x
10 0 10 1

A B

b c

0

hγ(x)
0 0 00- 11 1

f(x)
0 00 1

1 0 0 0

(b2)

f−1(x)
0 00 1 1 1

x
1 0 01 01

B

b c

1

hγ(x)
0 0011 1

f(x)
1 1 1 0

110 1

(b1)

1

γγ

γ′γ′
0

A

g(γ) g(γ) g(γ)

hg(γ)(f(x)) hg(γ)(f(x))

Figure 23. Illustration of the proof of Lemma 27. For the bits in hγ(x) and hg(γ)(f(x)),
no membership to certain gliders is specified, so they are drawn black (1-bits) and gray
(matched 0-bits). The 0-bits corresponding to half-white/half-gray cells may be matched
or unmatched.

is an unmatched 0, i.e., we have c /∈ µ0(x). Combining these two observations we obtain

µ0(hγ(x)) = µ0(x) − b + c. (32)

As b ∈ µ0(x), there is a 1-bit at position b in f(x). Furthermore, from c /∈ µ0(x) we see that
there is a 0-bit at position c in f(x). These two bits are swapped in f(x) to obtain hg(γ)(f(x)),
and consequently we have

µ1
(
hg(γ)(f(x))

)
= µ1(f(x)) − b + c. (33)

Combining (32) and (33) proves that f(hγ(x)) = hg(γ)(f(x)).
Case (b): We now consider the case that s(γ) = s(γ′). Clearly, we have

s1(γ′) + 1 = s1(γ) + 1 = b and s2(γ′) + 1 = s2(γ) + 1 = c,

i.e., hγ(x) is obtained from x by transposing the bits at positions b and c.
We distinguish the subcases whether γ is inverted or non-inverted.
Case (b1): γ is non-inverted; see Figure 23 (b1). In this case γ′ is inverted, and by Lemma 11

we have c ∈ µ0(f−1(x)) and therefore c ∈ µ1(x). Furthermore, in x the 1-bits and 0-bits at
the positions in A and B, respectively, are matched to each other, i.e., we have A ⊆ µ1(x) and
B ⊆ µ0(x). Combining these two observations we obtain

µ0(hγ(x)) = µ0(x) − b + c. (34)

As b ∈ µ0(x), there is a 1-bit at position b in f(x). Furthermore, as c ∈ µ1(x) there is a 0-bit at
position c in f(x). These two bits are swapped in f(x) to obtain hg(γ)(f(x)), and consequently
we have

µ1
(
hg(γ)(f(x))

)
= µ1(f(x)) − b + c. (35)

Combining (34) and (35) proves that f(hγ(x)) = hg(γ)(f(x)).
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Case (b2): γ is inverted; see Figure 23 (b2). By Lemma 11 we have c ∈ µ0(x). Note also
that the valley x̂r(γ) does not touch the abscissa, as otherwise A and B would not belong to the
same glider. Combining these two observations we obtain

µ0(hγ(x)) = µ0(x) − c + b. (36)

As b ∈ µ1(x), there is a 0-bit at position b in f(x). Furthermore, as c ∈ µ0(x) there is a 1-bit at
position c in f(x). These two bits are swapped in f(x) to obtain hg(γ)(f(x)), and consequently
we have

µ1
(
hg(γ)(f(x))

)
= µ1(f(x)) − c + b. (37)

Combining (36) and (37) proves that f(hγ(x)) = hg(γ)(f(x)).
This completes the proof of the lemma. □

3.13. Equations of motion. The main result of this section, Proposition 28 below, describes
equations of motion that capture the movement of gliders over time, including their interactions.

For any x ∈ Xn,k we define xt := f t(x) for all t ≥ 0, and we refer to the parameter t as time. xt

We let gt be the bijection defined in (23) between the sets Γ(xt−1) and Γ(xt). Furthermore, for
any γ ∈ Γ(x) = Γ(x0) we define γ0 := γ and γt := gt(γt−1) for t ≥ 1. γt

To describe the movement of gliders over time correctly, we need to take into account that
faster gliders may overtake slower gliders; see Figure 24. An overtaking happens in two steps,
namely first the slower glider is trapped by the faster glider (see the step t − 1 → t in the
figure), and later the slower glider is released again, i.e., it is not trapped anymore by the faster
glider (see the step t → t + 1 in the figure). Note that these two steps need not happen directly
consecutively, as in between both gliders may get trapped temporarily by an even faster glider.

Formally, we consider the equivalence classes of gliders defined in (4), namely gliders that
differ by multiples of n. We say that [γ′] gets trapped by [γ] in step t, if there are representatives get

trapped/
released

γ̃′ ∈ [γ′] and γ̃ ∈ [γ] such that γ̃′t−1 is not trapped by γ̃t−1 in xt−1 and γ̃′t is trapped by γ̃t in xt.
Similarly, we say that [γ′] gets released by [γ] in step t, if there are representatives γ̃′ ∈ [γ′] and
γ̃ ∈ [γ] such that γ̃′t−1 is trapped by γ̃t−1 in xt−1 and γ̃′t is not trapped by γ̃t in xt.

To track the trapped/released events over time we introduce half-integral parameters ∆ct
[γ′],[γ]

and ct
[γ′],[γ], defined for any two equivalence classes [γ], [γ′] ∈ Γ(x)/∼. Specifically, we define ct

[γ′],[γ]

∆ct
[γ′],[γ] :=


1
2 [γ′] gets trapped by [γ] in step t,
1
2 [γ′] gets released by [γ] in step t,
0 otherwise,

(38a)

for t ≥ 1. Based on this we define

ct
[γ′],[γ] :=

0 if t = 0,

ct−1
[γ′],[γ] + ∆ct

[γ′],[γ] if t ≥ 1.
(38b)

Figure 25 shows the evolution of these counters over several time steps for an example with four
gliders.

We are now in position to formulate equations of motion that describe the movement of each
glider as a function of time t. These equations involve the position s(γ) and the speed v(γ) of a
glider γ introduced in Section 3.6, and the counters defined in (38).

Proposition 28. For any x ∈ Xn,k and γ ∈ Γ(x), the position of the glider γ at time t is given by

s(γt) = s(γ0) + v(γ) · t +
∑

[γ′]∈Γ(x)/∼
2v(γ′)ct

[γ′],[γ] −
∑

[γ′]∈Γ(x)/∼
2v(γ)ct

[γ],[γ′]. (39)
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Figure 24. Illustration of the overtaking counter ct
[γ′],[γ].

Note that if γ′ is trapped by γ, then v(γ′) < v(γ) by Lemma 12. Consequently, we have
ct

[γ′],[γ] = 0 for all t ≥ 0 if v(γ′) ≥ v(γ). It follows that the only nonzero contributions to the first
or second sum in (39) come from gliders with v(γ′) < v(γ) or with v(γ′) > v(γ), respectively.

The equation (39) has the following physical interpretation: The first part of the equation
s(γt) = s(γ0) + v(γ) · t captures that the motion of γ is uniform with speed v(γ). This is all
that happens if γ never interacts with any other gliders, which occurs precisely if all gliders
have the same speed. Now let us discuss the additional terms in (39) that make the motion
non-uniform, in case gliders of different speeds are present. The first sum on the right hand side
of (39), which has a positive sign, corresponds to a boost whenever a slower glider [γ′], i.e., one
with v(γ′) < v(γ), gets trapped by [γ]. The second sum on the right hand side of (39), which
has a negative sign, corresponds to a delay whenever [γ] gets trapped by a faster glider [γ′], i.e.,
one with v(γ′) > v(γ). Note that when [γ′] gets trapped or released by [γ] in step t, then we see
a change of +2v(γ′)∆ct

[γ′],[γ] = +2v(γ′) · 1
2 = +v(γ′) (recall (38a)) in the equation for γ, and a

change of −2v(γ′)∆ct
[γ′],[γ] = −v(γ′) in the equation for γ′, i.e., two terms with the same absolute

value but opposite signs. This can be seen as ‘energy conservation’ in the system of gliders. For
the slower glider γ′, the uniform change in position by v(γ′) and the delay term −v(γ′) cancel
each other out, so effectively it does not change position in the two steps where it gets trapped
and released; see Figure 24. On the other hand, the total boost received by the faster glider γ in
these two steps is 2v(γ′), which is twice the speed of the slower glider, or equivalently, the total
number of its steps in the Motzkin path (number of ↗-steps plus ↘-steps; recall (7)).
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Figure 25. Illustration of movement of gliders over time.

Proof. We calculate the change in position of a glider in the step from t − 1 to t. To prove (39)
we will show that this change equals

∆s(γt) := s(γt) − s(γt−1)

= v(γ) +
∑

[γ′]∈Γ(x)/∼
2v(γ′)∆ct

[γ′],[γ] −
∑

[γ′]∈Γ(x)/∼
2v(γ)∆ct

[γ],[γ′]. (40)

We first consider a glider γt−1 ∈ M(xt−1). Note that γt−1 is free by assumption, and γt is
free by Lemma 21 (i), and therefore the second sum on the right hand side of (40) equals 0.

Recall from (7) that for any glider γ′ = (A, B) ∈ Γ(x), we have v(γ′) = |A| = |B|, and
therefore the total number of its steps on the Motzkin path is 2v(γ′) = 2|A| = 2|B|.
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Using this simple observation, the definitions (6a), as well as (23b), Lemma 18 (ii) and
Lemma 21 (i), we get

∆s2(γt) := s2(γt) − s2(γt−1) = v(γ) +
∑

γ′∈T (xt,γt)
2v(γ′),

∆s1(γt) := s1(γt) − s1(γt−1) = v(γ) +
∑

γ′∈T (xt−1,γt−1)
2v(γ′);

see also Figure 24. Combining these two equations via (6b) we obtain

∆s(γt) = 1
2
(
∆s1(γt) + ∆s2(γt)

)
= v(γ) +

∑
γ′∈T (xt,γt)

v(γ′) +
∑

γ′∈T (xt−1,γt−1)
v(γ′). (41)

We consider the first sum on the right hand side of (41). By Lemma 21 (i), T (xt, γt) =
{γ′ ∪ T (xt−1, γ′) | γ′ ∈ C(xt−1, γt−1)}, and these are precisely the gliders γ′ ∈ Γ(x) for which [γ′]
gets trapped by [γ] in step t, i.e., we have ∆ct

[γ′],[γ] = 1
2 by the first case in (38a) and therefore

v(γ′) = 2v(γ′)∆ct
[γ′],[γ] for such gliders. Now consider the second sum on the right hand side

of (41). By Lemma 21 (i), none of the gliders in T (xt−1, γt−1) are trapped by γt in xt, so these
are precisely the gliders γ′ ∈ Γ(x) for which [γ′] gets released by [γ] in step t, i.e., we have
∆ct

[γ′],[γ] = 1
2 by the second case in (38a) and therefore v(γ′) = 2v(γ′)∆ct

[γ′],[γ].
This shows that the right hand side of (41) equals (40), which completes the proof for

gliders γt−1 ∈ M(xt−1).
It remains to consider a glider γt−1 /∈ M(xt−1), i.e., we have γt = γt−1. By Lemma 21 (ii) the

first sum on the right hand side of (40) equals 0. Furthermore, by Lemma 21 there is a unique
glider γ′ ∈ Γ(x) such that γt−1 is trapped by γ′t−1 and γt = γt−1 is not trapped by γ′t, or γt−1 is
not trapped by γ′t−1 and γt is trapped by γ′t. It follows that we have ∆ct

[γ],[γ′] = 1
2 for this unique

glider γ′ and therefore ∆s(γt) = v(γ) − 2v(γ)∆ct
[γ],[γ′] = v(γ) − 2v(γ)1

2 = 0, as desired. □

3.14. Analyzing the equations. In this section, we analyze the equations of motion derived
in the previous section, by showing that the corresponding coefficient matrix is non-singular.

For any bitstring x ∈ Xn,k, we consider the cycle C(x) defined in (1a). As the length of
the cycle is finite, there is a minimum number T > 0, such that xT = x0 and within T time
steps from x0 to xT every glider γ ∈ Γ(x) has traveled an integral multiple of n many steps. In T

other words, after T steps, in xT a glider γ′ from the equivalence class [γT ] satisfies γ′ = γ0.
Note that T is not necessarily the length of the cycle, but a multiple of it. For example, for
x = 100100 ∈ X6,2 we have C(x) = (100100, 010010, 001001), i.e., the cycle has length 3, but we
have T = 6, as it takes 6 time steps until the gliders of speed 1 have traveled n = 6 steps.

We consider the equivalence classes of gliders Γ(x)/∼, and we label one representative from
each class by γi, i = 1, . . . , ν, ν = ν(x), in non-decreasing order of their speeds, i.e., for vi := v(γi) γi, vi

we have v1 ≤ v2 ≤ · · · ≤ vν . Furthermore, for integers 1 ≤ i ≤ j ≤ ν we define ci,j := cT
[γi],[γj ]. ci,j

The definition of T gives rise to the system of equations

s(γT
i ) − s(γ0

i ) = (c1 + c1,i)n, for i = 1, . . . , ν, (42)

for integers c1, c1,2, c1,3, . . . , c1,ν . Furthermore, by the definition of T we also have

ci,j = ci,k + ck,j (43)

for any i ≤ k ≤ j. Applying (43) for i = 1 and changing the names of indices gives in particular

ci,j = c1,j − c1,i. (44)
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Combining the equations of motion (39) guaranteed by Proposition 28 and (42) yields

viT +
∑

1≤j<i

2vjcj,i −
∑

i<j≤ν

2vici,j = (c1 + c1,i)n, for i = 1, . . . , ν. (45)

Eliminating from (45) all coefficients ci,j with i > 1 with the help of (44) we obtain the linear
system 

1
1
1
1
...
1


c1n =



v1 −2v1 −2v1 −2v1 · · · −2v1
v2 V2−2v2−n −2v2 −2v2 · · · −2v2
v3 −2v2 V3−2v3−n −2v3 · · · −2v3
v4 −2v2 −2v3 V4−2v4−n · · · −2v4
...

...
...

... . . . ...
vν −2v2 −2v3 −2v4 · · · Vν−2vν−n


︸ ︷︷ ︸

=:M



T

c1,2
c1,3
c1,4

...
c1,ν


, (46)

where

Vi :=
ν∑

j=1
2vmin{i,j}, for i = 2, . . . , ν.

These are ν homogeneous equations in the ν + 1 integral unknowns T, c1, c1,2, . . . , c1,ν .

Lemma 29. The coefficient matrix M of the linear system (46) satisfies

det M = (−1)ν−1v1

ν∏
i=2

(n − Vi) ̸= 0. (47)

Proof. Adding twice the first column of M to every other column creates a matrix that has 0s
above the diagonal, and with ith diagonal entry equal to −(n−Vi) for all i = 2, . . . , ν. Multiplying
those values on the diagonal yields the claimed determinant. Note that Vi ≤

∑ν
j=1 2vi = 2k

(recall (9)), and therefore n − Vi ≥ n − 2k > 0, implying that the product in (47) is nonzero. □

With similar tricks we could evaluate all cofactors of M , and thus obtain an explicit solution
of the system (46). However, this is not needed for the rest of this paper, and so we omit these
calculations.

3.15. Every glider moves eventually. As mentioned before, gliders with minimum speed
play an important role in our arguments. Clearly, a glider of maximum speed moves in every
time step, as it cannot be trapped by any other glider (recall Lemma 12). On the other hand, a
glider of minimum speed may be trapped, and hence does not move, for several consecutive time
steps by various faster gliders; see Figures 21 and 25. In fact, it is easy to construct examples
where a glider is trapped for an arbitrarily long interval of time (by adding gliders of increasing
speed on the left, which increases n and k). Nevertheless, the next lemma asserts that gliders of
minimum speed cannot be trapped indefinitely, but eventually will move forward. This property
is true more generally for gliders of any speed.

Lemma 30. For any glider γ ∈ Γ(x), there is a t > 0 such that s(γt) − s(γ0) > 0.

Maybe surprisingly, we do not have a purely combinatorial proof for this lemma. Instead, our
proof relies on the earlier determinant computation.

Proof. It suffices to prove the lemma for a glider γ of minimum speed v(γ) = min V (x). If
s(γt) − s(γ0) = 0 for all t > 0, then in particular s(γT ) − s(γ0) = 0, i.e., we would have c1 = 0.
However, if c1 = 0, then the left-hand side of (46) is the 0-vector, so by Lemma 29 the linear
system (46) only has the trivial solution T = 0 and c1,2 = c1,3 = · · · = c1,ν = 0. □
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We consider a bitstring x ∈ Xn,k under parenthesis matching, and we say that a pair of
matched bits is visible, if there is no pair of matched bits around it. For example, the visible visible
pairs of matched bits in the bitstring from Figure 5 are highlighted by shading in Figure 26.

1 0 0 0 1 1 1 0 1 1 0 0 0 0 101 0- -x = - 1 0 - - 111 0 -

n = 30, k = 12

Figure 26. Visible pairs of matched bits highlighted in the bitstring x from Figure 5.

The next lemma asserts that for any glider γ ∈ Γ(x) of minimum speed that is rightmost
in its train, while moving along the cycle C(x) this glider visits every possible position i ∈ [n],
both with its 0-bits and with its 1-bits, and moreover it is open in those steps, which implies
that its outermost pair of matched bits is visible. Recall that the positions of steps of γ in the
infinite Motzkin path x̂ translate to positions of bits in the finite string x by considering them
modulo n, with 1, . . . , n as representatives of the equivalence classes. In this sense each step
of γ corresponds to a bit in x, specifically every ↗-step corresponds to a matched 1 and every
↘-step corresponds to a matched 0. This lemma is illustrated in Figure 21.

Lemma 31. Let x ∈ Xn,k and let γ ∈ Γ(x) be the rightmost glider in a train of minimum
speed v(γ) = min V (x). Then for b ∈ {0, 1} and for any position i ∈ [n] there is a t > 0 such
that γt is open and one of its b-bits is at position i in xt.

Proof. By Lemma 14, we know that γt is clean for all t ≥ 0. If s(γt) = s(γt−1), then we have
r(γt) = r(γt−1) and exactly one of γt−1 and γt is inverted and the other is non-inverted. On the
other hand, if s(γt) > s(γt−1), then r(γt) = r(γt−1) + v(γ) (recall (23b)) and both γt−1 and γt

are free by Lemma 21 (i) and hence non-inverted. Moreover, by Lemma 26, γt is open. The
claim now follows with the help of Lemma 30. □

4. Gluing the cycles together

In this section we glue the cycles from the factor Cn,k together via 4-cycles, as outlined in
Section 1.6.3. The main result of this section, Theorem 35 below, asserts that this is possible
without any conflicts between 4-cycles, and such that the gluing results in a single Hamilton
cycle. The proof of this theorem is the first and only time in this paper that the assumption
n ≥ 2k + 3 is used. With Theorem 35 in hand, we prove Theorem 1 at the end of this section.

4.1. Connectors. For a bitstring x ∈ Xn,k and integer i ≥ 0, we write σi(x) for the string σi(x)
obtained from x by cyclic right-shift by i positions.

If two bitstrings x, y ∈ Xn,k have the same pairs of matched bits apart from one visible pair,
then we refer to {x, y} as a connector. In other words, x and y have the form connector

{x, y}[
x

y

]
= σi

([
· · · 1 u 0 · · · - w - · · ·
· · · - u - · · · 1 w 0 · · ·

])
(48)

for some i ≥ 0, where u, w ∈ D and the shaded pair of matched bits is visible, i.e., x and y

differ by transposing a visible pair of matched bits with two unmatched 0s that have no other
unmatched 0s nor the visible pair in between them. In other words, the transposed unmatched 0s
are adjacent to a block other than the one containing the transposed pair of matched bits. We
write Xn,k for the set of all connectors. Xn,k



46 KNESER GRAPHS ARE HAMILTONIAN

111x = ∈ X45,19
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Figure 27. Relation between speed sets V (x) and V (y) for a connector {x, y}.

Lemma 32. For any connector {x, y} ∈ Xn,k, the sequence C4(x, y) := (x, f(x), y, f(y)) is a
4-cycle in the Kneser graph K(n, k).

C4(x, y)

Proof. Recall from Section 2.2 that f complements all matched bits. We already know that
(x, f(x)) and (y, f(y)) are edges in the Kneser graph K(n, k). Therefore, it remains to show that
(x, f(y)) and (y, f(x)) are also edges. By symmetry, it suffices to argue that (x, f(y)) is an edge
in K(n, k). From the definition of f we know that the positions of 1s in f(y) are µ1(f(y)) = µ0(y).
Let x and y be as in (48), and let a and b be the positions of the bits directly to the right of u

and w, respectively. Clearly, we have µ0(y) = µ0(x)−a+b, i.e., we have µ1(f(y)) = µ0(x)−a+b

As xb = - is an unmatched 0, we see that the positions of 1s in f(y) are where x has either
matched or unmatched 0s, which proves that (x, f(y)) is indeed an edge in K(n, k). □

Observe that if {x, y} ∈ Xn,k and C(x) and C(y) are two distinct cycles in the factor Cn,k

defined in (1), then the symmetric difference of the edge sets
(
C(x) ∪ C(y)

)
∆C4(x, y) is a single

cycle in K(n, k) on the same vertex set as C(x) ∪ C(y), i.e., the 4-cycle ‘glues’ two cycles from
the factor together to a single cycle.

Given a connector {x, y} as in (48), we now aim to understand the relation between the
corresponding speed sets V (x) and V (y); see Figure 27. From (48) we see that

V (x) = V (1 u 0) ∪ V (w) ∪ S

for some set S (the set S contains the speeds of gliders outside of 1 u 0 and w). From the
definition (10) we obtain directly that W (1 u 0) = W (u) ⊕ 1. Using Lemma 9 we therefore have

V (x) =
(
V (u) ⊕ 1

)
∪ V (w) ∪ S. (49a)
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With analogous arguments we obtain

V (y) = V (u) ∪
(
V (w) ⊕ 1

)
∪ S. (49b)

In words, V (y) is obtained from V (x) by decreasing the speed of the fastest glider whose bits
belong to the substring 1 u 0 by 1, increasing the speed of a fastest glider whose bits belong to
the substring w by 1, whereas all other glider speeds remain unchanged. We emphasize that (49)
is only a statement about the speed sets, not about the glider partition and the resulting glider
positions in x and y, which may in fact change considerably; see Figure 27.

In the following, we write p(V (x)) for the sequence obtained from the multiset V (x) by sorting p(V (x))
its elements in non-increasing order. As in Section 3.14 before, we label the elements of V (x) in
non-decreasing order as v1 ≤ v2 ≤ · · · ≤ vν , ν = ν(x), so we have p(V (x)) = (vν , vν−1, . . . , v2, v1).
In this way we can think of the sequence p(V (x)) as a number partition of k (recall (9)). For
two number partitions p and q of k, we write p ▷ q if p is lexicographically strictly larger than q. ▷
This defines a total order on all number partitions of k. Observe that even if p and q do not
have the same number of parts (i.e., different length), they will differ in a prefix of the same
length in both, as they are partitions of the same number k.

Going back to (49), note that if 1 u 0 = 1v(γ)0v(γ) are the bits belonging to a glider γ ∈ Γ(x)
of minimum speed v(γ) = min V (x), then the multiset V (y) is obtained from V (x) by decreasing
an element of minimum value v(γ) by 1, and increasing another element by 1. When considering
the corresponding Young diagrams of the associated number partitions, this corresponds to one
square moving from the smallest (rightmost) stack to a stack further to the left. As a consequence,
we have p(V (y)) ▷ p(V (x)). We will use this observation to control the process of gluing together
cycles from our factor via connectors. Specifically, by using connectors that lexicographically
increase the number partitions associated with the speed set of gliders, we ensure that every
cycle is joined to a cycle C(x) that has the lexicographically largest partition p(V (x)) = k, i.e.,
a single glider of speed k.

Furthermore, for any number partition p of k and for any integer i ≥ 0 we write p ⊞ i for the
ith smallest element larger than p in the total lexicographic order ▷ of all number partitions
of k. Similarly, we write p ⊟ i for the ith largest element smaller than p. For example, all
number partition of k = 5 in lexicographic order are 11111, 2111, 221, 311, 32, 41, 5, so we have
221 ⊞ 1 = 311, and 32 ⊟ 3 = 2111, 2111 ⊞ 5 ▷ 41, and 11111 ⊞ 2 ▷ 32 ⊟ 3.

We state the following simple observations for further reference.

Lemma 33. Let V = {vν ≥ · · · ≥ v1}, ν ≥ 2, be a multiset of positive integers.
(i) For any ν ≥ j > i ≥ 1 we have p(V \ {vj , vi} ∪ {vj + 1} ∪ {vi − 1}) ▷ p(V ).

(ii) If ν ≥ 3 and v3 > v2 then for any ν ≥ j ≥ 3 and i ∈ {2, 1} we have p(V \ {vj , vi} ∪ {vj +
1} ∪ {vi − 1}) ▷ p(V ) ⊞ 1.

(iii) If v1 ≥ 2, then p(V \ {v1} ∪ {v1 − 1, 1}) = p(V ) ⊟ 1.
(iv) If v1 = 1, then p(V \ {v1} ∪ {v1 − 1, 1}) = p(V ).

4.2. Gluing the single glider cycles. Our proof will join most cycles from the factor Cn,k via
the aforementioned connectors. However, the cycles which contain the n vertices si

si := σi(1k 0k -ℓ), (50)

ℓ := n − 2k, for i = 0, . . . , n − 1 will first be joined in a slightly different way. These are
precisely the vertices with V (si) = {k}, i.e., they have only a single glider of maximum speed k.
Specifically, defining g := gcd(n, k) these cycles from Cn,k are C(si) = (si+kj)j=0,...,n/g−1 for g

i = 0, . . . , g − 1. Consequently, the n vertices si, i = 0, . . . , n − 1, are partitioned into g cycles,
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each containing n/g of those vertices. In particular, if g = 1, then this is only a single cycle, and
no joining is needed. We define D

D := {C(si) | i = 0, . . . , g − 1}. (51)

Note that the subgraph of K(n, k) induced by the vertices si, i = 0, . . . , n − 1, is isomorphic
to the Cayley graph of Z/nZ with generators {k + i | i = 0, . . . , ℓ}. The following lemma is a
simple consequence of that.

Lemma 34. Let k ≥ 1 and n ≥ 2k+1. For any r ∈ {0, . . . , n−1} the symmetric difference of the
edge sets of the cycles D with the 4-cycles C ′

4(sr+j , sr+j+k+1) := (sr+j , sr+j+k, sr+j+2k+1, sr+j+k+1)
for j = 0, . . . , g − 2 is a single cycle on the same vertex set.

C ′
4(x, y)

Note that the edges that the 4-cycles C ′
4(sr+j , sr+j+k+1) defined in Lemma 34 share with the

cycles from D are precisely the edges (si, f(si)) with si in Sr

Sr :=
{
{sr+j , sr+j+k+1} | j = 0, . . . , g − 2

}
. (52)

The pairs in Sr are not connectors in the sense of our definition (48). However, they serve
the same purpose of describing pairs of edges on the cycle factor Cn,k that lie on a common
4-cycle (specifically, each edge is described by one endpoint x, and the other endpoint is f(x)).
Note that the 4-cycle C4(x, y) defined in Lemma 32 for a connector {x, y} ∈ Xn,k has the
form C4(x, y) = (x, f(x), y, f(y)), whereas for a pair {x, y} ∈ Sr the 4-cycle C ′

4(x, y) defined in
Lemma 34 has the form C ′

4(x, y) = (x, f(x), f(y), y).

4.3. Auxiliary graph. Our strategy is to join the cycles of the factor Cn,k by repeatedly gluing
pairs of them together via connectors, as described before. This is modeled by the following
auxiliary graph. For any set of connectors U ⊆ Xn,k we define a graph Hn,k[U ] as follows: The Hn,k[U ]
nodes of Hn,k[U ] are the cycles of the factor Cn,k \ D, plus the set D defined in (51), which forms
its own single node. For any two distinct cycles C, C ′ ∈ Cn,k \ D and any connector {x, y} ∈ U
with x ∈ C and y ∈ C ′ we add an edge that connects C and C ′ to the graph Hn,k[U ]. Furthermore,
for any two cycles C ∈ Cn,k \ D and C ′ ∈ D and any connector {x, y} ∈ U with x ∈ C and y ∈ C ′

we add an edge that connects C and D to the graph Hn,k.
Note that every bitstring x ∈ Xn,k is contained in many different connectors. Specifically, let

p ≥ 1 denote the number of visible pairs of matched bits in x. There are ℓ := n−2k unmatched 0s
in x, i.e., ℓ pairs of substrings of the form -w- with w ∈ D. Each visible pair is contained in
precisely one of those substrings, and not contained in the remaining ℓ−1 of them. Consequently,
x is contained in exactly p(ℓ − 1) connectors. For example, the bitstring in Figure 26 has p = 4
visible pairs and ℓ = 30 − 2 · 12 = 6 unmatched 0s, i.e., it is contained in exactly 20 connectors.

Exploiting this observation, it is relatively easy to show that the graph Hn,k[Xn,k] is connected,
i.e., that it has a spanning tree, and each of the connectors corresponding to one edge of this
spanning tree glues together two cycles from the factor Cn,k. However, to obtain a Hamilton
cycle in K(n, k), it is crucial that no two gluing operations interfere with each other, i.e., that
any two of the 4-cycles used for the gluing are edge-disjoint. It is easy to see that C4(x, y)
and C4(x′, y′) are edge-disjoint if and only if {x, y} ∩ {x′, y′} = ∅. We therefore require a set of
pairwise disjoint connectors U ⊆ Xn,k such that Hn,k[U ] is a connected graph.

Theorem 35. For any k ≥ 1 and n ≥ 2k + 3, there is a set U ⊆ Xn,k of connectors and
an r ∈ {0, . . . , n − 1} such that U and Sr defined in (52) satisfy the following: the sets in U are
pairwise disjoint, the sets in U and Sr are pairwise disjoint, and Hn,k[U ] is a connected graph.
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Proof. We define ℓ := n − 2k. Note that by the assumption n ≥ 2k + 3 we have ℓ ≥ 3, and this
condition will be crucial for our proof. Throughout the proof, we fix a position p ∈ [n] arbitrarily.
For any x ∈ Xn,k and i ∈ µ(x), we write γ(x, i) = (A, B) ∈ Γ(x) for the glider with i ∈ A ∪ B.

As before, we will denote vertices from Xn,k under parenthesis matching by strings of length n

over the alphabet {1, 0, -}. We now introduce regular expressions to specify subsets of vertices
from Xn,k that satisfy certain constraints. In those expressions, the symbol ∗ is a wildcard char-
acter that represents a string of any length, possibly zero, of the symbols {1, 0, -}. Moreover,
for b ∈ {1, 0, -} we write b∗ for any number of occurrences of the symbol b, possibly zero. For
example, if (n, k) = (7, 3) then 10 -∗ 10 ∗ denotes the set of vertices {101010-, 1010-10, 10-1010}.
Disjunction of two regular expressions x and y is denoted as (x | y). For example, if (n, k) =
(6, 2) then (1100 | -2)∗ denotes the set of vertices {1100--, --1100, --1010}. We write D+ :=
D \ {ε} for the set of all nonempty Dyck words, which represent nonempty sequences of
matched pairs of bits. There may be additional constraints on certain substrings in the ex-
pressions, captured by propositional formulas. For example, if (n, k) = (11, 4), then 1b 0b -c w ∗
with the constraint formula b ≥ 2 ∧ c ∈ {1, 2} ∧ w ∈ D+ represents the set of vertices
{1100-1010--, 1100-10-10-, 1100-10--10, 1100-1100--, 1100--1010-, 1100--10-10, 1100--1100-,

111000-10--, 111000--10-}. Furthermore, our regular expressions contain underlined symbols
to indicate strings that have to be shifted cyclically so that one of the underlined symbols is
at position p. For example, if (n, k) = (5, 2) and p = 2 then 1100-1 denotes the set of ver-
tices {00-111, 0-1110, -11100}. As before, in a connector {x, y}, we shade the visible pair of
matched bits in which x and y differ, which provides a visual aid to highlight the change.

We define mappings αi, i = 1, . . . , 9, whose domains and images are subsets of Xn,k such that
{x, αi(x)} is a connector for all x ∈ dom(αi) as follows:

α1 :
[

x

α1(x)

]
=
[
u - 1 0 -ℓ−2 -
u 0 - - -ℓ−2 1

]
, u ∈ D+; (53a)

α2 :
[

x

α2(x)

]
=


1 1a−1 0a−1 0 - - - ∗- 1a−1 0a−1 - 1 0 - ∗ if τ(y, γ) /∈ X4

- 1a−1 0a−1 - - 1 0 ∗ otherwise

 , ν(x) ≥ 2 ∧ a = v1 even; (53b)

α3 :
[

x

α3(x)

]
=
[

1 1a−1 0a−1 0 -c - w - ∗
- 1a−1 0a−1 - -c 1 w 0 ∗

]
, a = v1 even ∧ c ∈ {0, 1} ∧ w ∈ D+; (53c)

α4 :
[

x

α4(x)

]
=


1 1a−1 0a−1 0 - - - -c ∗- 1a−1 0a−1 - 1 0 - -c ∗ if τ(y, γ) /∈ X4

- 1a−1 0a−1 - - 1 0 -c ∗ otherwise

 ,
ν(x) ≥ 2 ∧ a = v1 odd ∧
(a ≥ 3 ∨ c = ℓ − 3);

(53d)

α5 :
[

x

α5(x)

]
=
[
u 1 1a−1 0a−1 0 -c - w - (∗ - | ε)
u - 1a−1 0a−1 - -c 1 w 0 (∗ - | ε)

]
,

a = v1 odd ∧ (a = 1 ∨ c ∈ {0, 1}) ∧ u ∈ D ∧ w ∈ D+ ∧
¬
(
a = 1 ∧ c = 0 ∧ ν(x) ≥ 3 ∧ b := v2 < v3 ∧ u = 1b 0b

)
∧(

¬
(
a = 1 ∧ ν(x) ≥ 3 ∧ b := v2 < v3 ∧ w = 1b 0b

)
∨ (a = 1 ∧ c = 0 ∧ w = 10)

)
;

(53e)

α6 :
[

x

α6(x)

]
=
[

1 1b−1 0b−1 0 1 0 - w - (∗ - | ε)
- 1b−1 0b−1 - 1 0 1 w 0 (∗ - | ε)

]
, b = v2 < v3 ∧ w ∈ D+; (53f)
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α7 :
[

x

α7(x)

]
=
[

1 0 -∗ - 1b 0b -∗ - w′ - ∗
- - -∗ - 1b 0b -∗ 1 w′ 0 ∗

]
, b = v2 < v3 ∧ b ≥ 2 ∧ w′ ∈ D+; (53g)

α8 :
[

x

α8(x)

]
=
[
u 1 0 - -c 1 1b−1 0b−1 0 -∗ -
u 1 0 0 -c - 1b−1 0b−1 - -∗ 1

]
, b = v2 < v3 ∧ (b ≥ 2 ∨ c = 1) ∧ u ∈ D+;

(53h)

α9 :
[

x

α9(x)

]
=
[
u 1 0 -c - - - 1 0 -∗ -
u - - -c 1 0 - 1 0 -∗ -

]
, 1 < v3 ∧ c ≥ 0 ∧ u ∈ D+. (53i)

These specifications use the regular expressions defined before. Furthermore, preimage and
image of each mapping are written as a column vector, to facilitate their positionwise comparison,
which allows immediate verification that these are indeed valid connectors (recall (48)). These
expressions contain several occurrences of substrings of the form 1 1a−1 0a−1 0, which could of
course be simplified to 1a 0a, i.e., a consecutive 1s follows by a consecutive 0s, but this would
make the positionwise comparison harder, as the second expression is - 1a−1 0a−1 -. Note that
the definitions of αi, i ∈ {2, 4}, each involve a distinction between two possible cases for αi(x).
The condition τ(y, γ) /∈ X4 stated in the ‘if’ branch of these case distinctions will be specified
later at the end of this proof.

For i = 1, . . . , 9 we define Xi := dom(αi) and Yi := img(αi) = αi(Xi). Furthermore, the set of
connectors U ⊆ Xn,k we use to prove the theorem is defined, as one would expect at this point, by

U :=
9⋃

i=1

{
{x, αi(x)} | x ∈ Xi

}
. (54)

To complete the proof, we have to show that the sets in U are pairwise disjoint, that the sets
in U and Sr are pairwise disjoint for a suitable value of r, and that Hn,k[U ] is connected.

We first argue that the connectors in U are pairwise disjoint. As we have not yet specified the
conditions in the ‘if’ case of the definitions of α2 and α4, we prove the slightly stronger statement
that the connectors are disjoint for both of the two exclusive cases, in whichever combination
they may occur.

For any vertex x ∈ Xn,k with ν(x) ≥ 2 and any glider γ ∈ Γ(x) that is the rightmost glider in
a train of minimum speed v(γ) = min V (x) = v1, we define a vertex τ(x, γ) on the cycle C(x) as
follows. If v(γ) is even, then let t ≥ 0 be such that γt satisfies the conditions stated in Lemma 31
for b := 0 and i := p, and define τ(x, γ) := xt. If v(γ) is odd, then let t ≥ 0 be such that γt

satisfies the conditions stated in Lemma 31 for b := 1 and i := p, and define τ(x, γ) := xt.
In words, the vertex τ(x, γ) is obtained by moving along the cycle C(x) starting from x and
tracking the movement of the glider γ until one of its b-bits is at position p.

Clearly, the set of all vertices from Xn,k under the mapping τ is specified by the regular
expression x = 1a 0a - ∗ with the condition ν(x) ≥ 2 ∧ a = v1. We first argue that every such
vertex x belongs to exactly one of the sets Xi, i = 2, . . . , 9, and that these sets are all disjoint.
This argument is given in the decision tree shown in Figure 28. Each branching distinguishes
several exclusive cases, captured by logical conditions at the nodes. Furthermore, the conditions
imposed on x are captured by a regular expression that gets more refined as we move towards
the leaves and extra conditions are imposed. At the leaf nodes, one can check that x belongs to
precisely one of the sets Xi. Note that there are two branches in the tree ending with X4 and two
branches ending with X5. By taking the disjunction of conjunctions of logical conditions of all
root-leaf paths for a particular set Xi, i ∈ {1, . . . , 9}, we obtain precisely the regular expressions
and corresponding logical conditions stated in the definition of αi before.
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x = 1a 0a - ∗ ν(x) ≥ 2 ∧ a = v1

a even
x = 1a 0a - -c ∗ c ≥ 0

c ≥ 2

c ∈ {0, 1}

x = 1a 0a - - - ∗
⇒ x ∈ X2 = dom(α2)

⇒ x ∈ X3 = dom(α3)
x = 1a 0a -c - w - ∗

a odd
x = 1a 0a - ∗

a ≥ 3

a = 1
x = 10 - ∗

x has exactly 1 block
x = 10 - - - -ℓ−3 ∗
⇒ x ∈ X4 = dom(α4)

x = 1a 0a - -c ∗ c ≥ 0

c ≥ 2

c ∈ {0, 1}

x = 1a 0a - - - ∗
⇒ x ∈ X4 = dom(α4)

x = 1a 0a -c - w - ∗

w ∈ D+

w ∈ D+

⇒ x ∈ X5 = dom(α5)

x has ≥ 2 blocks
x = u 1 0 - -cw - (∗ - | ε) c ≥ 0 ∧ u ∈ D ∧ w ∈ D+

⇒ x ∈ X6 = dom(α6)

c = 0 ∧ ν(x) ≥ 3 ∧ b := v2 < v3 ∧ u = 1b 0b

x = 1b 0b 1 0 - w - (∗ - | ε)

ν(x) ≥ 3 ∧ b := v2 < v3 ∧ w = 1b 0b ∧ ¬(c = 0 ∧ w = 10)
x = u 1 0 - -c 1b 0b - (∗ - | ε)

¬
(
c = 0 ∧ ν(x) ≥ 3 ∧ b := v2 < v3 ∧ u = 1b 0b

)
∧
(
¬
(
ν(x) ≥ 3 ∧ b := v2 < v3 ∧ w = 1b 0b) ∨ (c = 0 ∧ w = 10)

)
x = u 1 0 -c - w - (∗ - | ε)
⇒ x ∈ X5 = dom(α5)

x has ≥ 3 blocks
x = 10 -∗ - 1b 0b -∗ - w′ - ∗
⇒ x ∈ X7 = dom(α7)

x has exactly 2 blocks
x = u 1 0 - -c 1b 0b -∗ -

b ≥ 2 ∨ c = 1

b = 1 ∧ c ≥ 2

x = u 1 0 - -c 1b 0b -∗ -
⇒ x ∈ X8 = dom(α8)

x = u 1 0 - - - -c−2 1 0 -∗ -
⇒ x ∈ X9 = dom(α9)

b = 1 ∧ c = 0 is impossible by the assumption ¬(c = 0 ∧ w = 10)

(ν(x) ≥ 3 ⇒ u ∈ D+)

w′ ∈ D+

Figure 28. Illustration of the proof of Theorem 35.
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We have shown that Xi, i = 2, . . . , 9 are pairwise disjoint sets. Note also that these sets are
all disjoint from X1, as for x ∈ X1 we have xp = -, whereas x′

p ∈ {0, 1} for all x′ ∈ X2 ∪ · · · ∪ X9.
Furthermore, it is easy to check that each of the mappings αi, i = 1, . . . , 9, is an injection.
Consequently, we still need to verify that Yi ∩ Xj = ∅ for all 1 ≤ i, j ≤ 9 and Yi ∩ Yj = ∅ for all
1 ≤ i < j ≤ 9. We do this pinpointing, for any pair of such bitstrings, a particular property in
which they differ. In the remainder of the proof we sometimes refer to the speed sets of several
different bitstrings x ∈ Xn,k, and to avoid ambiguities we then explicitly specify the argument x

for the different speed values as V (x) = {v1(x), . . . , vν(x)(x)}.
Case 1: y = α1(x) ∈ Y1. We have yp = 0, whereas x′

p ∈ {1, -} for x′ ∈ Xi, Yi, i = 4, . . . , 9.
The vertex y has exactly one visible pair of matched bits, whereas every x′ ∈ X1, X2, Y2, X3, Y3
has at least two visible pairs of matched bits.

Case 2: y = α2(x) ∈ Y2. The vertex y has the following properties:
(i) yp ∈ {0, -}.
(ii) If yp = 0, then v(γ(y, p)) is odd.
(iii) If yp = -, then either yp+1 = 1 and y contains at least three blocks, or yp+1 = -.
(iv) The first block entirely to the right of position p starts with 10.
If x′ ∈ X1, then x′

p = -, x′
p+1 = 1 and x′ contains exactly two blocks, contradicting (iii).

If x′ ∈ X2 ∪ X3, then we have x′
p = 0 and v(γ(x′, p)) is even, contradicting (ii). If y′ ∈ Y3,

then the first block entirely to the right of position p starts with 1 w 0 for some w ∈ D+,
contradicting (iv). If x′ ∈ X4, X5, X6, X7, X8, X9, Y6, Y8, then we have x′

p = 1, contradicting (i).
If y′ = α4(x′) ∈ Y4, then if y′

p = 1 we have a contradiction to (i). Otherwise we have y′
p = -

and the first block entirely to the right of position p starts with 1a−1 0a−1 for some odd a,
which contradicts (iv) if a ≥ 3. Otherwise we have a = 1, and then the definition (53d) implies
that x′ has only a single block, and all - are consecutive. Then the equality y = y′ implies that
x = 1a′ 0a′ -ℓ for some a′ ≥ 2, i.e., ν(x) = 1, contradicting the condition ν(x) ≥ 2 in (53b). If
y′ ∈ Y5, then either y′

p = 1, which contradicts (i), or y′
p = - and the first block entirely to the right

of position p is 1a−1 0a−1 for some odd a or starts with 1 w 0 for w ∈ D+, contradicting (iv). If
y′ ∈ Y7, then the first block entirely to the right of position p is 1b 0b for b ≥ 2, contradicting (iv).
If y′ ∈ Y9, then the equality y = y′ implies that x contains a substring -10, which means that
v1(x) = 1, contradicting the condition that v1(x) must be even in (53b).

Case 3: y = α3(x) ∈ Y3. The vertex y has the following properties:
(i) yp ∈ {0, -}.
(ii) If yp = 0, then v(γ(y, p)) is odd.
(iii) If yp = -, then yp+2 = 1.
(iv) The first block entirely to the right of position p starts with 1 w 0 for some w ∈ D+.
If x′ ∈ X1, Y9, then the first block entirely to the right of position p starts with 10, contra-
dicting (iv). If x′ ∈ X2, X3, then we have x′

p = 0 and v(γ(x′, p)) is even, contradicting (ii). If
x′ ∈ X4, X5, X6, X7, X8, X9, Y6, Y8, then we have x′

p = 1, contradicting (i). If y′ = α4(x′) ∈ Y4,
then if y′

p = 1 there is a contradiction to (i). Otherwise we have y′ = - 1a−1 0a−1 - -∗ 1 0 ∗
for some odd a ≥ 1. Consequently, if a = 1 then the first block in y′ entirely to the right of
position p starts with 10, contradicting (iv). On the other hand, if a ≥ 3 then the equality
y = y′ implies that x contains a substring -10, which means that v1(x) = 1, contradicting
the condition that v1(x) must be even in (53c). If y′ = α5(x′) ∈ Y5, then if y′

p = 1 we have
a contradiction to (i). Otherwise we have y′

p = - and then a conflict y = y′ either implies
that y = y′ = - 1a−1 0a−1 - - 1 w 0 ∗ or y = y′ = - 1a−1 0a−1 - 1 w 0 - -∗ 1 w′ 0 ∗ for some even
a ≥ 2 with a = v1(x) and w, w′ ∈ D+. In the first case, x′ = - 1a−1 0a−1 1 0 - w - ∗ violates the
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conditions in the second row of the conjunction in (53e), which is a contradiction. In the sec-
ond case, we have x′ = - 1a−1 0a−1 1 1 w 0 0 -∗ - w′ - ∗. Note that v1(w) ≥ a, and consequently
v1(1 1 w 0 0) ≥ a + 2 > a − 1. It follows that v1(x′) = a − 1, and since the 1-bit in x′ at position p

does not belong to a glider of minimum speed by Lemma 13, we have again a contradiction to
the definition (53e). If y′ ∈ Y7, then we have y′

p = - and y′
p+2 = -, contradicting (iii).

Case 4: y = α4(x) ∈ Y4. The vertex y has the following properties:
(i) yp ∈ {1, -}.
(ii) If yp = 1 then v(γ(y, p)) is even.
(iii) y[p,p+1,p+2] ̸= - 1 0.
(iv) y[p−1,p] ̸= 01.
(v) The first block entirely to the right of position p + 1 starts with 10.

If x′ ∈ X1, then we have x′
[p,p+1,p+2] = - 1 0, contradicting (iii). If x′ ∈ X2, X3, then we have

x′
p = 0, contradicting (i). If x′ ∈ X4, X5, X6, X7, X8, X9, Y6, then we have x′

p = 1 and v(γ(x′, p))
is odd, contradicting (ii). If y′ ∈ Y5, then the first block entirely to the right of position p + 1
starts with 1 w 0 for some w ∈ D+, contradicting (v). If y′ ∈ Y7, then the first block entirely to
the right of position p + 1 starts with 1b 0b for some b ≥ 2, contradicting (v). If y′ ∈ Y8, then we
have y′

[p−1,p] = 01, contradicting (iv). If y′ ∈ Y9, then the equality y = y′ implies that v1(x) = 1
and then the definition (53d) implies that x must have a single block, and all - are consecutive.
Then y has only two blocks, whereas y′ has three blocks, a contradiction.

Case 5: y = α5(x) ∈ Y5. The vertex y has the following properties:
(i) yp ∈ {1, -}.
(ii) If yp = 1 then v(γ(y, p)) is even.
(iii) y[p,p+1,p+2] ̸= - 1 0.
(iv) yp−1,p ̸= 01.
(v) The first block entirely to the right of position p + 1 starts with 1 w 0 for some w ∈ D+.

If x′ ∈ X1, then we have x′
[p,p+1,p+2] = - 1 0, contradicting (iii). If x′ ∈ X2, X3, then we

have x′
p = 0, contradicting (i). If x′ ∈ X4, X5, X6, X7, X8, X9, Y6, then we have x′

p = 1 and
v(γ(x′, p)) is odd, contradicting (ii). If y′ = α7(x′) ∈ Y7, then a conflict y = y′ implies
y = y′ = - - -∗ - 1b 0b -∗ 1 w′ 0 ∗ for b := v2(x′) < v3(x′), b ≥ 2, and some w′ ∈ D+. This however
implies x = 1 0 -∗ - - 1b−1 0b−1 - -∗ 1 w′ 0 ∗, so x violates the conditions in the third row of the
conjunction in (53e), a contradiction. If y′ ∈ Y8, then we have y′

[p−1,p] = 01, contradicting (iv). If
y′ ∈ Y9, then the first block entirely to the right of position p+1 starts with 10, contradicting (v).

Case 6: y = α6(x) ∈ Y6. The vertex y has the following properties:
(i) yp = 1.
(ii) The glider γ(y, p) is not open.
(iii) yp+2 = 1.
If x′ ∈ X1, X2, X3, Y7, Y9, then we have x′

p ∈ {0, -}, contradicting (i). If x′ ∈ X4, X5, X6, X7, X8, X9,
then the glider γ(x′, p) is open, contradicting (ii). If y′ ∈ Y8, then we have y′

p+2 = 0, contradict-
ing (iii).

Case 7: y = α7(x) ∈ Y7. The vertex y has the following properties:
(i) yp = -.
(ii) yp+1 = -.
(iii) The first block entirely to the right of position p starts with 1b 0b for some b ≥ 2.
If x′ ∈ X1, then we have x′

p+1 = 1, contradicting (ii). If x′ ∈ X2, X3, X4, X5, X6, X7, X8, X9, Y8,
then we have x′

p ∈ {0, 1}, contradicting (i). If y′ ∈ Y9, then the first block entirely to the right
of position p starts with 10, contradicting (iii).
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Case 8: y = α8(x) ∈ Y8. If x′ ∈ X1, X2, X3, Y9, then we have x′
p ∈ {0, -}, whereas yp = 1. If

x′ ∈ X4, X5, X6, X7, X8, X9, then we have x′
[p−1,p+2] ̸= 0100, whereas y[p−1,p+2] = 0100.

Case 9: y = α9(x) ∈ Y9. If x′ ∈ X1, then we have x′
p+1 = 1, whereas yp+1 = -. If

x′ ∈ X2, X3, X4, X5, X6, X7, X8, X9, then we have x′
p ∈ {0, 1}, whereas yp = -.

We now argue that the sets in U and Sr are pairwise disjoint for a suitable value of r ∈
{0, . . . , n − 1}. The connectors in U that contain a vertex si as defined in (50) all arise as images
of α1 and α5. Specifically, we have sp+c = - -c 1k 0k -ℓ−1−c ∈ Y5 for all c = 1, . . . , ℓ − 1 and
sp+ℓ = 1k 0k−1 0 -ℓ ∈ Y1, i.e., all those connectors si satisfy

p + 1 ≤ i ≤ p + ℓ. (55)

Note that the pairs of sets Sr defined in (52) contain only vertices si with r ≤ i ≤ r+(g−2)+k+1
Consequently, if we choose r := p + ℓ + 1, then we have

p + ℓ + 1 ≤ i ≤ (p + ℓ + 1) + (g − 2) + k + 1 ≤ p + n = p + 1 + (n − 1), (56)

where we used ℓ = n − 2k and the simple fact g = gcd(n, k) ≤ k in the upper bound estimates.
From (55) and (56) we see that the sets in U and Sr are pairwise disjoint, as desired.

It remains to argue that Hn,k[U ] is connected. To establish the connectivity, we consider the
speed sets V (x) of vertices x ∈ Xn,k, and the corresponding number partitions p(V (x)) of k

obtained by sorting the speeds non-increasingly. Note that the speed sets and hence the number
partitions are invariant along each cycle of the factor Cn,k by Lemma 23, but they can only change
along connectors. Specifically, we consider the number partitions p(V (x)) of vertices x ∈ Xi,
i ∈ {1, . . . , 9}, and we argue how they change with the connectors {x, αi(x)}, in such a way
that the number partitions increase lexicographically, either directly along a connector, or via
a sequence of connectors. In a sequence of connectors, some intermediate steps may decrease
lexicographically, but overall the change must be a lexicographic increase. This ensures that
every cycle is joined, via a sequence of connectors, to a cycle in D. This last part of the proof
also specifies the conditions for the case distinctions in the definitions (53b) and (53d).

For each of the connectors {x, αi(x)}, i = 1, . . . , 9, defined in (53) we first describe how the
number partitions p(V (x)) and p(V (αi(x))) compare lexicographically. For any x ∈ X1, we
obtain from (53a), (49) and Lemma 33 (i)+(ii) that

p(V (α1(x))) ▷

p(V (x)) ⊞ 1 if ν(x) ≥ 3 and v3 > v2,

p(V (x)) otherwise.
(57a)

Similarly, for any x ∈ X2 the definition (53b) and Lemma 33 (iii) yield

p(V (α2(x))) = p(V (x)) ⊟ 1 (57b)

(note that v1 is assumed to be even and therefore v1 ≥ 2). For any x ∈ X3 the definition (53c)
and Lemma 33 (i) give

p(V (α3(x))) ▷ p(V (x)) (57c)
For any x ∈ X4, the definition (53d) and Lemma 33 (iii)+(iv) prove that

p(V (α4(x))) =

p(V (x)) ⊟ 1 if v1 ≥ 3,

p(V (x)) if v1 = 1
(57d)

(note that v1 is assumed to be odd). For any x ∈ X5 the definition (53e) and Lemma 33 (i)+(ii)
show that

p(V (α5(x))) ▷

p(V (x)) ⊞ 1 if a = 1 ∧ ν(x) ≥ 3 ∧ v3 > v2 ∧ w ̸= 10,

p(V (x)) otherwise.
(57e)
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For any x ∈ Xi, i ∈ {6, 7, 8}, the definitions (53f)–(53h) and Lemma 33 (ii) establishes

p(V (αi(x))) ▷ p(V (x)) ⊞ 1. (57f)

Lastly, for any x ∈ X9 we obtain from the definition (53i) and from Lemma 33 (iv) that

p(V (α9(x))) = p(V (x)). (57g)

Let X :=
⋃9

i=1 Xi and consider a vertex x ∈ X. We show that there is a sequence of connectors
and cycles of the factor Cn,k in between them to reach a vertex y ∈ Xn,k with p(V (y)) ▷ p(V (x)).

For x ∈ X1, X3, X5, X6, X7, X8 this follows directly from (57a), (57c), (57e), (57f), respectively.
It remains to consider the cases x ∈ X2, X4, X9.

Case (a): x ∈ X2. Consider the two connectors {x, y} and {x, y′} where y and y′ are obtained
from x as described by the first and second case of the case distinction in (53b). From (57b)
we see that p(V (y)) = p(V (x)) ⊟ 1. As ν(x) ≥ 2 and v1(x) ≥ 2 we have ν(y) ≥ 3, v1(y) = 1
and v3(y) > v2(y). We clearly also have V (y′) = V (y). Let q be the position of the 1-bit of the
substring 10 in which y differs from x, and define γ := γ(y, q) ∈ Γ(y) and γ̂ := γ(y, q − 2) ∈ Γ(y).
By Lemma 22 and the definition of the mapping hγ given in Section 3.12 we have y′ = hγ(y).

We now consider the vertex z := τ(y, γ) ∈ Xi, i ∈ {2, . . . , 9}, which satisfies V (z) = V (y) by
Lemma 23, and we let t > 0 be such that yt = z. As v1(y) = 1 is odd, we know that i /∈ {2, 3}.

If i ̸= 4, then we define α2(x) := y, and we continue the argument as follows. If i = 6, 7, 8,
then by (57f) we have

p(V (αi(z))) ▷ p(V (z)) ⊞ 1 = p(V (y)) ⊞ 1 =
(
p(V (x)) ⊟ 1

)
⊞ 1 = p(V (x)), (58)

so we are done. If i = 9 then we have z = u 1 0 - -∗ 1 0 - -∗ for some u ∈ D+. Clearly, as
v1(x) ≥ 2 there are at most two equivalence classes of gliders in Γ(y) and Γ(z) that have speed 1,
and there can only be exactly two if v1(x) = 2. However, note that in hγ̂(y) the two gliders of
speed 1 form a train, and applying Lemma 27 shows that in hγ̂t(z) they do not form a train (as
u ∈ D+), a contradiction to Lemma 24. This shows that the case i = 9 cannot occur. If i = 5
then we have z = u 1 0 - -∗ w - ∗. For the same reason as in the case i = 9, we must have w ̸= 10,
and therefore p(V (αi(z))) ▷ p(V (z)) ⊞ 1 by (57e), so again (58) holds.

If i = 4, on the other hand, then z has only a single block, i.e., we have z = u 1 0 -ℓ for some
u ∈ D+. In this case we define α2(x) := y′. By Lemma 27 the vertex z′ := hγ(z) = u - 1 0 -ℓ−1

lies on the cycle C(y′), and we have z′ ∈ X1. From (57a) we therefore obtain

p(V (α1(z′))) ▷ p(V (z′)) ⊞ 1 = p(V (y′)) ⊞ 1 = (p(V (x)) ⊟ 1) ⊞ 1 = p(V (x)),

so we are done.
Case (b): x ∈ X4. Consider the two connectors {x, y} and {x, y′} where y and y′ are obtained

from x as described by the first and second case of the case distinction in (53d). If v1(x) ≥ 3,
then the argument continues as in case (a) before. It remains to consider the case v1(x) = 1.
From (57d) we see that p(V (y)) = p(V (x)). We clearly also have V (y′) = V (y). Let q be the
position of the 1-bit of the substring 10 in which y differs from x, and define γ := γ(y, q) ∈ Γ(y).

We now consider the vertex z := τ(y, γ) ∈ Xi, i ∈ {2, . . . , 9}. As v1(y) = 1 is odd, we know
that i /∈ {2, 3}.

If i ̸= 4, then we define α4(x) := y, and we continue the argument as follows. If i = 5, 6, 7, 8,
then from (57e) and (57f) we have

p(V (αi(z))) ▷ p(V (z)) = p(V (y)) = p(V (x)).

If i = 9, then we have z = u 1 0 -c - - - 1 0 - -∗ for some c ≥ 0 and u ∈ D+. Furthermore, we have
V (α9(z)) = V (z) by (57g). Let q̂ be the position of the 1-bit of the substring 10 in which α9(z)
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differs from z, and define γ̂ := γ(α9(z), q̂) ∈ Γ(z). We observe that ẑ := τ(α9(z), γ̂) satisfies
ẑ ∈ Xj with j /∈ {2, 3, 4, 9} (apply Lemma 27 to γ̂ and α9(z)) and therefore

p(V (αj(ẑ))) ▷ p(V (ẑ)) = p(V (α9(z))) = p(V (z)) = p(V (y)) = p(V (x)).

If i = 4, on the other hand, then we define α4(x) := y′. By Lemma 27 the vertex z′ := hγ(z)
lies on the cycle C(y′), and we have z′ ∈ X1. Using (57a) it follows that

p(V (α1(z′))) ▷ p(V (z′)) = p(V (y′)) = p(V (x)).

Case (c): x ∈ X9. This case can be settled in the same way as the subcase i = 9 in case (b).
This completes the proof of the theorem. □

Note that the condition ℓ = n−2k ≥ 3 is crucial in the definition (53d) for a = 1, as it gives us
freedom to proceed among one of two possible connectors. This prevents the potential problem
of an infinite cyclic sequence of connectors that yield no lexicographic change, for example by
continually shifting around a speed 1 glider. This is why the aforementioned proof does not
extend to the cases n = 2k + 2 or n = 2k + 1.

The reader may rightfully wonder how one would come up with the set of nine regular
expressions stated in (53). In fact, they were found following a computer-guided experimental
approach of trial and error. We started with a much smaller and simpler set of rules that would
guarantee lexicographic improvement along the connectors. By writing a computer program
that tests small cases, we figured out that those initial rules still allowed some conflicts, i.e., not
all pairs of connectors were disjoint. This led to modifying the existing rules and adding new
rules that would prevent those particular conflicts, sometimes creating new unforeseen conflicts,
as reported by our program. We used this approach of successive refinement until eventually
a conflict-free set of rules was confirmed by computer for small cases, which we then verified
theoretically for all cases.

4.4. Proof of Theorem 1.

Proof of Theorem 1. The graphs K(3, 1), K(4, 1) and K(6, 2) can easily be checked to admit
a Hamilton cycle. On the other hand, K(5, 2) is the Petersen graph, which is well known not
to have a Hamilton cycle. Furthermore, it was shown in [MNW21, Thm. 1] that K(2k + 1, k)
has a Hamilton cycle for all k ≥ 3. Combining this result with [Joh11, Thm. 1] proves that
K(2k + 2, k) has a Hamilton cycle for all k ≥ 3. To cover the remaining cases, let k ≥ 1 and
n ≥ 2k + 3. By Theorem 35, there is a set U ⊆ Xn,k and a choice for r where Sr is the set
defined in (52) such that the sets in U are pairwise disjoint, the sets in U and Sr are pairwise
disjoint, and Hn,k[U ] is a connected graph. Let T be a minimal subset of U such that Hn,k[T ]
is connected, i.e., this graph will be a spanning tree. By construction and by Lemma 34, the
symmetric difference of the edge sets of the cycle factor Cn,k in K(n, k) defined in (1) with the
4-cycles C4(x, y), {x, y} ∈ T , defined in Lemma 32 and with the 4-cycles C ′

4(x, y), {x, y} ∈ Sr,
defined in Lemma 34, which are all edge-disjoint, is a Hamilton cycle in K(n, k). □

5. Open questions

One interesting open problem is to develop an efficient algorithm for computing a Hamilton
cycle in the Kneser graph K(n, k), i.e., an algorithm whose running time is polynomial in n

and k, not only polynomial in N :=
(n

k

)
, the size of the Kneser graph. Our construction does not

give such an algorithm for fundamental reasons. Most importantly, our proof does not reveal the
number of cycles in the cycle factor, so it is not even clear how many gluings via 4-cycles have
to be used to join them to a Hamilton cycle. Clearly, if there are c cycles, then c − 1 gluings will
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be needed, but we do not know how to compute c more efficiently than actually computing all
the cycles of our factor, which takes time polynomial in N . Even if we knew how to compute c

efficiently, we do not know how to efficiently compute a minimal set of c − 1 connectors that
joins all the cycles (our proof uses many more connectors than will eventually be needed).

Furthermore, for any of the families of vertex-transitive graphs shown in Figure 1, it would be
very interesting to investigate whether they admit a Hamilton decomposition, i.e., a partition of
all their edges into Hamilton cycles, plus possibly a perfect matching. This problem was raised by
Meredith and Lloyd [ML73], and by Biggs [Big79] for the odd graphs Ok = K(2k +1, k). Gould’s
survey [Gou91] mentions the analogous problem for the middle levels graphs Mk = H(2k + 1, k).
In these two cases, we do not even know two edge-disjoint Hamilton cycles, so the problem seems
to be very hard in general. On the other hand, for Johnson graphs J(n, 2) with odd n, two edge-
disjoint Hamilton cycles are known [FKMS20]. To tackle this problem in general, it might be
helpful to first consider decompositions of the edges of the graph into cycle factors; see [JK04].

A strengthening of the concept of containing a Hamilton cycle is to contain the rth power
of a Hamilton cycle. To this end, Katona [Kat05] conjectured that the vertices of K(n, k) can
be ordered so that any r + 1 consecutive vertices for r := ⌊n/k⌋ − 2 are disjoint sets, which
he proved for k = 2 using Walecki’s theorem. Theorem 1 confirms this conjecture for the
cases 2k + 1 ≤ n ≤ 4k − 1 (where r = 1). It seems plausible that Katona’s conjecture holds
even for r := ⌈n/k⌉ − 2, and our theorem confirms this stronger variant of the conjecture for the
cases 2k + 1 ≤ n ≤ 3k (where r = 1).
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