
 

WORKING PAPERS SERIES 

WP07-01 

 

 

 

A Simple Asymmetric Herding Model to 

Distinguish Between Stock and Foreign 

Exchange Markets  

Simone Alfarano and Reiner Franke 



A Simple Asymmetric Herding Model to Distinguish

Between Stock and Foreign Exchange Markets

Simone Alfarano∗

Reiner Franke

Department of Economics
University of Kiel
Kiel, Germany

May 2007

Abstract

Drawing on previous work of one of the authors, the paper takes an asymmetric

variant of Kirman’s ant model and combines it with an elementary asset pricing

mechanism. The closed-form solution of the equilibrium probability distribution

allows the specification of a tractable likelihood function for daily returns, which

is then employed to estimate the model’s behavioural parameters for a large pool

of Japanese stocks. By way of Monte Carlo simulations it is found that most of

these markets belong to the same class, which is characterized by a dominance

of the stylized noise traders. In contrast, the model assigns a number of major

foreign exchange markets to a different class, where on average the majority of

agents follows the fundamentalist trading rule. Implications for the tail index

are also worked out.
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1 Introduction

Financial markets are known to be well characterized by a number of stylized facts concern-

ing the conditional and unconditional properties of their time series. Most prominently,

these are the excess volatility of prices when compared to the underlying fundamentals,

volatility clustering of returns where periods of quiescence and turbulence tend to group

together, and the non-Gaussian leptokurtic shape of the distribution of returns (the “fat

tails”). It is now furthermore widely agreed that these robust findings are hard to recon-

cile with the Efficient Market Hypothesis (EMH) and the one-to-one relationship between

price changes and new information that it implies, at least if the “relevant” information

is conceived as an assortment of non-correlated economical, political and perhaps even

meteorological news.

On the other hand, a growing body of literature has developed in recent times that

is built on heterogeneous interacting agents with limited rationality, which has proved to

provide a fruitful alternative paradigm to account for the stylized facts. However, while

this approach allows for a behaviour of its agents that in itself and its implications for

the price dynamics is far more satisfactory than the EMH, it goes at the price of a major

drawback. Typically, the greater complexity arising in the agent-based models precludes an

analytical closed-form solution which, specifically, could be used to subject them to direct

econometric tests. Instead, numerical values for the structural parameters are inferred

from Monte Carlo simulations and their comparison with several summary statistics of the

empirical data. These methods are (still) mainly informal and rather mixed, so that the

empirical merits of different models are difficult to assess.

As far as we know, there are presently only few models that have been tested empir-

ically. One class puts up a behavioural interpretation of econometric time series models

within a simple chartist–fundamentalist framework. Vigfusson (1997) introduces a Markov

switching mechanism as an approximation to the Frankel–Froot (1986) model, and Wester-

hoff and Reitz (2003, 2005) use a smooth transition autoregressive (STAR) model in order

to describe the switching between a fundamentalist and chartist regime. This work is so far

somewhat sketchy since a possible connection of these results to the stylized facts has not

yet been explored. In another contribution, Boswijk et al. (2006) compose an elementary

variant along the lines of Brock and Hommes of adaptive beliefs on the stock market. Re-
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formulating the model in such a way that it can be estimated with single-equation nonlinear

least-squares (on annual data, though), they find a significant role for heterogeneity in the

strategies and a substantial variation of the average sentiment over time.

The stylized facts are addressed more directly in a different class of models. Gilli

and Winker (2003) are concerned with Kirman’s (1991, 1993) seminal herding model and

estimate its two key parameters by an indirect simulated method of moments approach,

where they seek to match the empirical kurtosis and the first-order autocorrelation of

the squared daily returns of DEM/USD data. The parameter estimates imply that the

unconditional frequency distribution of the two groups of traders is bimodal, which is an

interesting structural result. Since the paper largely focusses on the intricacies of tuning

the optimization algorithm to the specific problem at hand, it might, however, also be read

as evidence against the special objective function here employed, which does not appear to

be well-behaved, and as a call for a better tractable estimation approach.

Alfarano et al. (2005a,b, 2007) have designed an extended variant of a Kirman-type

model that allows for asymmetric transition probabilities between the two categories of

traders (referred to as the ALW model in the following). In addition to the enhanced

flexibility of the modelling framework, the great virtue of this approach is that it permits

the parameters to be estimated by maximum likelihood, so that the results can be readily

reproduced with standard software tools. Application of this method becomes here possible

by a skillful but nevertheless extremely simple specification of the flow of orders that drive

the asset price. As this demand is formulated by the two groups of fundamentalists and

noise traders, the prices are closely linked to the herding mechanism, which in turn governs

the endogenous evolution of the population shares. As a result, not only is it possible

to derive closed-form expressions for many properties of the herding dynamics, but they

also carry over to the statistical distributions of prices and returns. In particular, the

model can be explicitly solved for the unconditional distribution of returns, from which

subsequently a likelihood function can be set up for estimation. Furthermore, the estimated

coefficients provide us with a rough indication of whether a market tends to be dominated

by fundamentalists or noise traders.

As it turns out, the basic structure of the ALW model could be cast in terms of

a stochastic volatility framework. These models can reproduce the key stylized facts of

financial time series, but their formulation is mainly driven by mathematical convenience
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and less by economic intuition. The ALW model, by contrast, develops a meaningful

behavioural framework for the decisions of financial investors (though still a very frugal

one). Given its econometric tractability, estimations of this model might thus eventually

be used as a simple diagnostic tool to distinguish different classes of speculative markets,

by identifying different investment attitudes prevailing there.

A first attempt in this direction has already been made in previous work (Alfarano

et al., 2005a,b), where the model has been successfully tested with daily returns from a

number of financial markets. It has there been noticed that foreign exchange and stock

markets might be characterized by the preponderance of different types of traders, such

that fundamentalists have a greater weight on foreign exchange markets and noise traders

on stock markets. So far, however, this interesting hypothesis was supported by a few

casual observations only. In the present paper we therefore want to continue this empirical

work and put it on a broader basis.

To this end, we estimate the two central parameters of the model for 982 stocks from

the Tokyo Stock Exchange (see the appendix for a description of the data). The results

thereby obtained have to be discussed with respect to two complementary criteria: stability

and sensitivity. Stability in this context means that similar markets should yield similar

estimates. Accordingly, since the composition of traders and their speculative strategies can

be expected to be quite comparable across many of these Japanese markets, the parameter

estimates should not be scattered over the entire parameter plane. On the other hand and

in conformity with our hypothesis, the parameter estimates should be sensitive enough to

distinguish these stock markets from the main foreign exchange markets.

It may also be emphasized that although foreign exchange and stock markets are held

to be different in many informal discussions, a rigorous and straightforward characterization

still seems to be lacking. Despite its oversimplification, the results from applying the present

model to the daily data can be claimed to provide a useful step for such a distinction.

The remainder of the paper is organized as follows. Section 2 introduces the model,

that is, the probabilistic herding mechanism, the price determination of the asset, and the

concept of the equilibrium probability density function of returns. The section concludes

with the presentation of the maximum likelihood approach derived from the equilibrium

distribution. Estimations themselves are carried out in Section 3, where we begin with the

estimations of the 982 Japanese stocks just mentioned. On the basis of extensive bootstrap
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re-estimations we then argue that the great majority of the stocks can be considered to

belong to the same class of markets. By estimating a number of major foreign exchange

markets and similar bootstrap experiments, it is subsequently shown that these can be

assigned to a different type of markets. In Section 4, we resolve a possible contradiction

between the model’s tail index of the equilibrium distribution and the markedly distinct

empirical Hill estimators that we find. Section 5 concludes, and an appendix informs about

the data.

2 The model and its solution

2.1 The herding mechanism

In the following a probabilistic herding process is formulated along the lines of Kirman’s

(1993) famous ant model. Consider a market that is populated by a fixed number of

agents, N . Each agent is either a noise trader (which we also refer to a as type 1) or

a fundamentalist (type 2). Over time agents may switch from one strategy to the other

with certain probabilities, which take account of two principles: autonomous switches and

switches arising from social interaction among the agents (but no feedback from market

prices). The analysis is concerned with the evolution of the population composition over

time. To begin with the total number n of noise traders at a point in time, and N−n the

number of fundamentalists, eq. (1) specifies the probabilities ρ that within a microscopic

time interval ∆τ the switching of one of the agents increases or decreases the number of

noise traders by one:

ρ(n+1, t+∆τ |n, t) = (N−n) [ a1 + n b ] ∆τ

ρ(n−1, t+∆τ |n, t) = n [ a2 + (N−n) b ] ∆τ
(1)

where a1, a2, b are positive and constant coefficients. The interval ∆τ is assumed so small

that no more than one switching agent needs to be considered, and ρ(n, t+∆τ |n, t) =

1 − ρ(n+1, . . .) − ρ(n−1, . . .) is positive. Clearly, the two parameters a1 and a2 represent

the autonomous component, the agents’ idiosyncratic propensities to change their attitude,

which, in contrast to the original Kirman model, need not be equally strong in both direc-

tions. The parameter b captures a herding effect. It may here be noted that the probabilities

are supposed to increase with the absolute number of agents to switch to (and not with
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the fractions n/N and (N−n)/N). In the course of the mathematical analysis this will

turn out to be a momentous specification detail, namely, the stochasticity of the herding

dynamics is maintained even if the population size N tends to infinity (cf. Alfarano et al.,

2007, Section 5).

The aggregate dynamics of the Markov chain constituted by the transition probabili-

ties (1) can be analyzed by means of the so-called Master equation. It describes the time

evolution of the probability P (n, t) to find n agents of the noise trader type at time t, given

the starting distribution P (n, 0). In the limit of a very large number of agents N # 1, one

can work with the Fokker-Planck equation as a second-order approximation of the Master

equation, which governs the evolution of the probability density p(z, t) of the fraction z of

noise traders over time, z = n/N . The details of this mathematical treatment in continuous

time, where ∆τ → 0, have been presented in Alfarano et al. (2005a, 2007).

The analysis makes it possible to derive closed-form solutions for a wide range of con-

ditional and unconditional properties of the herding dynamics; in particular, the equilibrium

distribution and the autocorrelation functions of the variable z. For our present purpose

it is worth making the unconditional equilibrium density pe
z(·) explicit, which depends only

on the two ratios ε1 = a1/b and ε2 = a2/b :

pe
z(z) =

1

B(ε1, ε2)
zε1−1 (1−z)ε2−1 (2)

(B(ε1, ε2) being the beta function). The beta distribution in (2) is one of the most versatile

distributions in probability theory. Therefore, despite the dependence on just two structural

parameters, the unconditional distribution (2) is extremely flexible in describing different

scenarios: unimodal or bimodal distributions, or monotonically increasing or decreasing

distributions, depending on the relative magnitude of the two parameters. We may, how-

ever, anticipate that all our estimates of ε1 and ε2 will imply a unimodal distribution of the

share of noise traders (in contrast to the estimates by Gilli and Winker, 2003, mentioned

in the Introduction).

A sample path of the population share zt in discrete time can be computed by means of

the so-called Langevin equation (which is intimately related to the Fokker-Planck equation).

Letting ∆t be a small but fixed (macroscopic) time interval, it describes the changes in zt
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by the following stochastic difference equation,1

zt+∆t = zt − ∆t (a1 + a2) (zt − z̄) +
√

∆t 2b (1− zt) zt ζt

z̄ = a1 / (a1 + a2) ζt ∼ N(0, 1)
(3)

Our simulations of the full model below will indeed use this macroscopic adjustment equa-

tion for the herding dynamics. As z̄ will turn out to be the average value of the fraction of

noise traders, the stochastic process (3) is seen to exhibit a linear mean reversion toward

this reference value. The tendency is spoiled by the random influences from the last term of

the equation, but notice that these forces will become progressively weaker as zt approaches

one of the end-points of the unit interval.2

2.2 The price dynamics

Turning to the financial market, it is now time to specify the demand of fundamentalists

and noise traders that is driving the asset price. Fundamentalists have an unanimous

notion of the fundamental value of the asset. They expect that prices will return to it in a

reasonable span of time and so buy (sell) when the asset is undervalued (overvalued), where

the excess demand of a single fundamentalist agent is proportional with factor αf to the

percentage deviations. If pt and pf,t denote the logs of the actual price and fundamental

value, respectively, total excess demand on the part of fundamentalists at time t amounts

to,

EDf,t = − (N−nt) αf (pt − pf,t) (4)

The excess demand of a representative single noise trader is proportional, with factor αn,

to a random variable λt, which represents the average “mood” of all noise traders. Their

total excess demand is thus

EDn,t = nt αn λt (5)

Individual noise traders might be quite inhomogeneous and follow different technical trading

rules or irrational fads, hypes or other misperceptions. We abstain from any specific details

1Thus, ∆t is at a different conceptual level from ∆τ in eq. (1), which must converge to zero as the

population becomes arbitrarily large.
2Since a non-vanishing probability for the variable zt to leave the unit interval nevertheless remains, we

impose a condition of reflecting boundaries for these (rare) cases.
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in this respect and simply assume that their average demand follows a random walk,

ηt := (λt − λt−∆t) ∼ UID(−1, +1) (6)

where UID means that the ηt are uniformly, independently and identically distributed on

the interval [−1, +1]. The main reason why we have not not employed a Gaussian or

Student’s t distribution, say, is that the uniform noise in (6) will make the derivation of a

closed-form solution for the distribution of returns a feasible task.

Regarding the determination of prices by these demands, we employ a Walrasian

scenario and assume continuous market clearing,

EDf,t + EDn,t = 0 (7)

for all t. Taking zt = nt/N into account and defining ρ := αn/αf , the (log) price resulting

from (4), (5), (7) is

pt = pf,t + ρ
zt

1− zt
λt (8)

For the corresponding rate of return over the interval ∆t, rt = (pt − pt−∆t)/∆t, we obtain

rt = rf,t + ρ
[ zt

1− zt
λt −

zt−∆t

1− zt−∆t
λt−∆t

] /
∆t (9)

where rf,t represents the fundamental returns. We are from now on concerned with a trading

period of a day and with daily returns; so put ∆t = 1. Empirically, however, returns are

systematically correlated only over intervals shorter than a trading day. This property can

be readily built in by assuming that the mood λt of the noise traders changes much faster

than the total composition zt of agents. Such a separation of time scales is in physics called

an adiabatic approximation. Here it allows us to neglect the lag in the population share

in (9). Once this simplification is accepted, it is furthermore even more justifiable to omit

the fundamental returns rf,t, which on a daily basis are typically so small that they will be

dominated by the other term.3 Using (6), the daily returns are thus determined by

rt = ρ
zt

1− zt
ηt (10)

3This includes the coefficient ρ, which will be specified as a normalization factor below. We have carried

out a number of Monte Carlo experiments with a small constant rf to verify the indeed negligible effect on

the estimation results.
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In Alfarano et al. (2005a) and Alfarano (2006) it has been shown theoretically as well

numerically that this equation can generate the key stylized facts of financial returns,

namely, fat tails, power-law decay of large returns, absence of memory in the returns as

measured by their autocorrelations, and the presence of positive correlations for squared

and absolute returns.

It should also be pointed out that (10) exhibits a so-called stochastic volatility struc-

ture, wich is given by the product of an iid noise and a stochastic variable σt that describes

the time-dependence observed in the empirical data. In these models, σt follows a largely

atheoretical stochastic process typically chosen for analytical tractability, and it is this

process which is ultimately responsible for the good match of the main stylized facts such

as, in particular, the power-law decay for large returns. By contrast, in eq. (10) the volatil-

ity factor σt = ρ zt
1−zt

derives from a theoretical herding model. The fact that our returns

display similarly attractive properties to those from the stochastic volatility models can,

therefore, be primarily ascribed to the stochastic herding dynamics. Moreover, in the orig-

inal specification of the herding component one would hardly identify a strong potential

to generate the ubiquitous empirical findings. In other words, the present model does not

suffer from the usual “you have to start with GARCH to obtain GARCH” effect of many

other models in the literature (see Pagan, 1996, p. 92).

2.3 The estimation approach

It has already been sketched how the stochastic process governing the noise trader share zt

can be analyzed. Since only the impact of zt on prices and returns has been considered but

no feedback in the opposite direction, the properties of the herding dynamics essentially

carry over to the return equation (10), although the ratio zt/(1−zt) and the multiplicative

noise term ηt still require some analytical effort. Most important for us, one can also de-

rive a closed-form representation for the equilibrium probability distribution of the returns

(Alfarano et al., 2005a). Just as the distribution of z in (2), it is only dependent on the

two ratios

ε1 := a1 / b and ε2 := a2 / b (11)
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and not on the size of a1, a2, b. Evaluated at a value r, the equilibrium probability density

function of returns is given by the expression

pe(r) = pe(r; ε1, ε2) =
ε2

2 ρ (ε1 − 1)

[
1 − β

( |r|
|r| + ρ

; ε1−1, ε2+1
) ]

(12)

where β is the incomplete beta function. To have finite first and second moments, the pa-

rameter ε2 must be larger than 2, while ε1 > 1 implies a unimodal distribution (Alfarano,

2006, p. 117). These conditions will be understood in the following, and none of our estima-

tions will even come close to these values. Nevertheless, there still remains a great degree

of flexibility in describing the properties of financial returns. For example, a suitable choice

of ε2 can virtually achieve any level of excess kurtosis and fatness of the tail.

The coefficient ρ has not been included in the arguments of pe(·) since before carrying

out the estimation, the returns will be rescaled such that the mean of the absolute returns

is unity. In the equilibrium distribution pe(·) the corresponding normalization E(|r|) = 1

is brought about by putting

ρ = 2 (ε2 − 1) / ε1 (13)

(Alfarano et al., 2005a, p. 32). The analytically known equilibrium density of returns can,

in particular, be used for an estimation approach via maximum likelihood. To this end

it is straightforward to set up the following likelihood function (in logs, of course) for an

empirical series {remp
t }T

t=1 of returns,4

*(ε1, ε2; r
emp
t ) :=

T∑

t=1

ln[ pe(remp
t ; ε1, ε2) ] (14)

It should not go unnoticed, however, that the likelihood in (14) is an approximation of the

‘true’ likelihood. It pretends, in fact, that the realizations of the returns in (10), which are

conditional on the noise trader fractions zt, are independent and identically distributed,

according to the unconditional distribution (12). The advantage of the approximation is

the simplicity of its implementation and the reduced computational burden. The method

also gives asymptotically consistent estimates if the sample size T is large enough and the

sampling frequency is sufficiently small (cf. Genon-Catalot, 1999).

4The notation remp
t on the left-hand side of (14) avoids the curly brackets and is to mean the entire

series {remp
t }.
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3 A characterization of speculative markets

The agent-based nature of the model described above gives us the possibility to distinguish

between speculative markets being dominated by fundamentalists or by noise traders, re-

spectively. In fact, as it was remarked on eq. (3), the expression z̄ = a1/(a1 +a2), which

by (11) equals ε1/(ε1+ε2), is the average share of noise traders in the population, so that

estimating the two parameters ε1, ε2 also easily allows us to characterize a market in this re-

spect. From a few estimations in previous work some evidence has been obtained that stock

markets are dominated by noise traders (owing to ε1 > ε2) and foreign exchange markets

by fundamentalists (since ε1 < ε2; cf. Alfarano et al., 2005b, p. 253). In the following we

want to investigate the robustness of this result on a broader empirical and methodological

basis, which, in particular, will require us to establish appropriate confidence regions to the

point estimates of the parameter pairs ε1 and ε2.

3.1 The case of the Tokyo Stock Exchange

Our investigations are primarily based on a great number of markets for corporate shares,

for which we can utilize the daily prices of 982 stocks traded at the Tokyo Stock Exchange

over the years 1975 – 2001. The availability of this large data set enables us to subject

the model to an extensive test. Thus, we calculate the daily returns, normalize them and

maximize the likelihood function (14) for each of these series. The resulting estimates of ε1

and ε2 are plotted as dots in the parameter plane of Figure 1.

The first impression from the scatter plot is that the estimated coefficients cover a wide

range, especially if it is added that the diagram does not show all of the estimates; almost

9.0% of them yield a value of ε1 above the diagram’s upper boundary of 50.5 Assuming that

the empirical time series are different realizations of the common generating mechanism of

the herding model, the variability of the estimates in Figure 1 can be attributed to two

different sources: finite-sample properties of the estimation procedure, and a variability of

5However, the large estimates of ε1 should not be overrated since their effect on the shape of the

equilibrium density pe is disproportionately low. As a matter of fact, if we plot the density function

pe(· ; ε1, ε2) of a pair ε1, ε2 with ε1 = 15, say, then for all ε1 > 15 a range of values ε2 can be found such

that the corresponding density functions are practically indiscernible from the original one. Alfarano et al.

(2006) contains a formal analysis of the asymptotic version of the model as ε1 # 1, which can make this

visual impression more precise.
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Figure 1: Estimates ε̂1, ε̂2 for 982 Japanese stocks at TSE.

Note: The diagonal (red) cross represents the median values εm
1 = 11.6, εm

2 = 4.5 of
the estimates. The shaded area is the confidence region from the LR test statistic of
eq. (15).

the ‘true’ parameters across the different shares. The following investigations can be seen

as an attempt at telling the two sources apart.

For a first quantitative assessment of the variability beyond the naked eye, we can

set up a confidence region based on the likelihood ratio test. To this end a reference

series {rref
t } is needed. We choose it from the 982 empirical series such that its estimated

coefficients nearly coincide with the median values εm
1 = 11.6 and εm

2 = 4.5. Given the

strong asymmetric distribution of the parameters that will be demonstrated below, the

median is certainly a more appropriate candidate for a typical value than the mean. In

addition, the sample size T = 5, 728 of the reference series is close to the median sample

size of 5, 768 data points.

In carrying out the likelihood ratio test LR (e.g., Davidson and MacKinnon, pp. 420f),

we let {rref
t } enter the log-likelihood function and first compute its value for the median

values εm
1 , εm

2 . Another pair ε1, ε2 is then not statistically different from εm
1 , εm

2 at a 5
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percent significance level if we obtain

LR(ε1, ε2) := 2 [ *(εm
1 , εm

2 ; rref
t ) − *(ε1, ε2; r

ref
t ) ] ≤ χ2

2;0.95 = 5.99 (15)

where the chi-square critical value is based on two degrees of freedom, too. All parameter

pairs satisfying this inequality are contained in the shaded area of Figure 1. Interestingly,

its extension to the right makes clear that even estimates with values of ε1 as high as 50

and more may not be significantly different from estimates in a narrow vicinity of εm
1 , εm

2 .

So far, it can be said that the shaded area has identified a class of stocks at TSE,

for which the median εm
1 and εm

2 cannot be rejected as the common underlying pair of

parameters. While it captures a considerable proportion of stocks, this class is obviously

not predominant. More precisely, only 321 of the estimated pairs happen to fall into the

area, which is slightly less than one-third of the 982 stocks under consideration.

In evaluating this result it must be taken into account that the LR criterion (15)

is based on asymptotic theory, which means it is valid if the underlying sample size T is

sufficiently large. Although an order of magnitude of 5,000 observations is a comfortable

amount of data for many aspects of time series estimations, our approach, which is based

on an entire unconditional density function (including its tail properties), may require

T # 5, 000 to permit the application of asymptotic theory.

To assess whether the asymptotic LR test provides a good approximation for the

present data, the small sample properties of the estimation approach have to be studied

in isolation. This can be done by means of a bootstrap method, by which we generate

the data ourselves. To this end we fix the model parameters at the values εs
1 = 11.0 and

εs
2 = 4.5, which are essentially the median values of the empirical estimates, and get a series

of returns by simulating eqs (3), (6), (10) over T = 5, 768 days.6 Subsequently, ε1 and ε2

are re-estimated by maximum likelihood from this sample. Using different random number

sequences of ηt, we repeat this procedure 5,000 times and so obtain 5,000 bootstrap esti-

mates ε̂b
1, ε̂b

2 (b = 1, . . . , 5000). The bootstrap estimates are therefore, by construction, not

only generated by the same mechanism but they also share the same underlying parameter

values.
6Regarding the parameter b in (3) we employ b = 0.0025, though the results are not sensitive to

this choice. We have checked that it reproduces an empirically reasonable degree of long memory in the

autocorrelation functions of absolute and squared returns; cf. Alfarano et al. (2005a, p. 37).
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Figure 2: Scatter plot and marginal distributions from 5,000 bootstrap estimates.

Note: The thinner (red) dots in the top panel comprise 2.5% of the estimates. Bold
lines (blue) in the lower panels depict the frequency distributions from the bootstrap
estimations, solid lines (black) those from the empirical estimations. The dotted lines
mark the median values.

The top panel in Figure 2 is analogous to Figure 1 and shows the estimated pairs as

a scatter plot in the (ε1, ε2)-plane. The dotted horizontal and vertical lines indicate the

median values of these estimates, which with 12.1 for ε1 and 4.2 for ε2 differ slightly from

the true values. The dots of the pairs ε̂b
1, ε̂b

2 cover a similar range to the empirical estimates.

In particular, the lower limits of the estimates seem to be quite alike.

Nevertheless, before turning to a more direct comparison of the joint estimates of ε1

and ε2, let us consider their marginal distributions. This is done in the lower two panels

of Figure 2.7 As was to be expected, both density functions, which are plotted as the bold

(blue) lines, are not symmetrical but skewed to the right. The shaded area defines the 95%

confidence interval of the parameters, that is, the white areas under the density function

7The graphs of the functions are obtained from kernel density estimations of the frequency distributions.

Specifically, the Epanechnikov kernel was used (cf. Davidson and MacKinnon, 2004, pp. 678ff).
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to the left and to the right represent 2.5% each of the total area under the graph of that

function. The fact that in the lower-left panel there is no such white area to the right

demonstrates that also in the bootstrap experiments more than 2.5% of the ε̂b
1-estimates

are larger than 50 (in fact, 13.1% of the ε̂b
1 exceed 50).

The most remarkable information in the lower two panels derives from a comparison

of the frequency distributions based on the bootstrap experiments with those based on the

982 empirical estimations. The latter being drawn as the thin (black) solid line, it is seen

that the two marginal distributions for ε1 are almost identical, and also those for ε2 are

fairly close. Since the 5,000 bootstrap estimates belong to the same class by construction,

the high similarity of the distributions suggests that most of the empirical estimates could

be assigned to one class as well.

The marginal distribution can also be computed for the implied mean value z̄ of noise

traders, which recalling eqs (3) and (11) is given by z̄ = ε1 / (ε1 + ε2). Doing this we find a

95% confidence band for z̄ (in percentage points) of

48.2 = 74.2− 26.0 ≤ z̄ ≤ 74.2 + 23.5 = 97.7 (16)

where 74.2% is the median z̄ of the distribution. As the distribution of z̄ implied by the

empirical estimates is not much different from the bootstrap distribution, either, eq. (16)

asserts that the empirical markets for the single shares can be characterized as being strongly

influenced by the noise traders. Though certainly not in every episode of the price dynamics,

but on average, fundamentalists tend to be in a minority position.

The high similarity of the empirical and bootstrapped marginal distributions as well

as the qualitative agreement between the two scatter plots in Figures 1 and 2 indicate that

the variability of the empirical estimates are to a large extent due to the finite sample

properties of the estimation procedure, rather than to a variability of the underlying ‘true’

parameters. Thus, the asymptotic confidence region from eq. (15), i.e. the shaded area

in Figure 1, appears to underestimate the sampling variability of the empirical estimates.

This means that the ‘class’ of essentially equivalent pairs ε1, ε2 that this area defines is too

narrow. It should better be specified on the basis of the scatter plot from the bootstrap

experiments in Figure 2.
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3.2 Constructing a two-dimensional confidence region

Our task is therefore to construct a whole confidence region from the cloud of points ε̂b
1, ε̂

b
2 in

Figure 2. Based on the concept of eq. (15), we can for that purpose design a ‘modified’ LR

test. However, two aspects have now to be taken into account. First, in order to establish

an appropriate critical value of chi-square, we gradually increase the right-hand side of the

LR inequality until it is satisfied by exactly 95% of the bootstrap estimates. The resulting

critical value is denoted as χ̃2
2;0.95.

The second issue concerns the fact that this LR test is dependent on a single artificial

series {rb
t} against which the likelihood function is evaluated. Clearly, such a series must

not be arbitrary. The problem is solved by choosing from the 5,000 random sequences

underlying the simulations a sequence b" that gives rise to a “consistent” return series

{rb!

t }, by which we mean that its estimation yields precisely the parameters from which

it was generated: (ε̂b!

1 , ε̂b!

2 ) = (εs
1, ε

s
2) = (11.0, 4.5). Several series with this property exist

(actually six out of the 5,000, with a precision of at least two digits after the decimal point).

Employing one of them, a critical chi-square value of 34.4 is found and the LR criterion

(15) becomes

LR(ε1, ε2) := 2 [ *(ε̂b!

1 , ε̂b!

2 ; rb!

t ) − *(ε1, ε2; rb!

t ) ]

= 2 [ *(εs
1, ε

s
2; r

b!

t ) − *(ε1, ε2; rb!

t ) ] ≤ χ̃2
2;0.95 = 34.4

(17)

The resulting set is the shaded area in Figure 3, which for graphical reasons is there trun-

cated at ε1 = 50.8 This area can be safely relied on as the most instructive part of an appro-

priate 95% confidence region for our model with parameters (ε1, ε2) = (εs
1, e

s
2) = (11.0, 4.5),

and finite sample size T = 5, 768.

The original motive for constructing this set was to have a criterion that can decide

which of the single empirical estimates belong to a common class. Counting the number of

estimates within that class can give us an indication of how homogeneous the stocks traded

at TSE might be. To this end the dots in Figure 3 reproduce the empirical estimates

ε̂1, ε̂2 from Figure 1. Clearly, we can observe a lower number of these estimates outside

the present confidence region; the precise percentage is 11.6% (in contrast to 67.3% in

8To check the robustness of this region, we carried out the same procedure for the other five consistent

series {rb!

t }. Their critical chi-square values are fairly similar to the value in (17) (ranging between 34.0

and 34.4), and the six areas themselves are only marginally different.
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Figure 3: Class S of parameter pairs ε1, ε2 (the shaded area).

Note: The dots are the empirical estimates ε̂1, ε̂2 from Figure 1. ‘G’, ‘DM’, ‘SF’, etc.,
are the model’s estimates of the gold and the foreign exchange markets; cf. Table 1.
Points above the zz-line imply z̄ < 48.2; cf. eq. (16).

Figure 1). So we can summarize that the area in Figure 3 represents almost 90 percent

of the Japanese stocks. That is, almost 90 percent of the daily return series at the Tokyo

Stock Exchange are compatible with our model’s data generation process under constant

parameters (ε1, ε2) = (εs
1, e

s
2) = (11.0, 4.5). We refer to this region in Figure 3 as area,

region or class S, where S is meant to be mnemonic of ‘stocks’.

The higher percentage of 11.6% of the empirical estimates outside class S, as compared

to the benchmark of 5%, is a signal that there might be an intrinsic variability of the

parameters across the time series, which is not directly linked to the finite sample effect.

Nevertheless, the bootstrap experiment points out that the large range of estimates may

not be exclusively, but mainly or even predominantly, due to the finite sample size of the

empirical time series. We may therefore claim that the parameter pair (εs
1, e

s
2) is a good

estimate characterizing most of the Japanese stock market.

To sum up, the modified, bootstrap-based LR criterion of eq. (17) and its represen-

tation as the shaded confidence region in Figure 3 constitute a reliable way to specify a
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homogeneous type of markets to which, as it turns out, the great majority of share mar-

kets at TSE can be assigned. The return dynamics on these markets can thus be broadly

characterized by a single common pair of the structural parameters ε1 and ε2, which is

(practically) given by the median of the empirical estimates (neglecting the small differ-

ence between εs
1 and εm

1 ). Given that εm
1 exceeds εm

2 by far, the conceptual background

of our herding model allows us furthermore to reveal the noise traders as the, on average,

dominating group vis-à-vis the fundamentalists.

3.3 Contrasting the stock markets with foreign exchange markets

The analysis that culminated in the shaded area in Figure 3 has not only demonstrated that

similar share markets yield similar estimates, it has also established a criterion of “similar”,

or “essentially equivalent”. We now have to look at this result from a different angle and ask

whether the class defined by the confidence region in Figure 3 is not rather uninformative

in that it is much too wide. The question does not only concern the estimation procedure

by which we have arrived at the set, but also the structure of the model altogether. While

it has been emphasized that the model’s main merit just lies in its analytical tractability

and the convenient estimation approach thus made possible, which would then be worth all

the simplifying assumptions, the model would lose much of its attractiveness if nearly all

estimated parameters from speculative markets turned out to be “essentially equivalent”.

To check the model’s ability to discriminate, we turn to foreign exchange markets. We

estimate the daily returns of eight major currencies against the US Dollar: the Canadian

Dollar (CD), Japanese Yen (JY), Deutsche Mark (DM), British Pound (BP), Swiss Franc

(SF), French Franc (FF), Italian Lira (IL), and the Australian Dollar (AUS). In addition,

the gold market (G) may be considered (see the appendix for further details). Table 1

reports the estimated values of ε1, ε2 and the corresponding mean value z̄ (in percent) of

the share of noise traders (the statistics α̂H and α in the last two rows will be discussed

later).

Seven of the nine parameter pairs are also drawn as the (black) crosses in Figure

3. Only two of them, the Japanese Yen and the Australian Dollar, happen to fall into

the shaded area, while the estimates of the other foreign exchange markets (including the

omitted FF and IL) are consistently above it. The estimate of the Gold market lies outside
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CD JY DM BP SF FF IL AUS G

ε̂1 : 14.0 5.2 5.2 4.9 6.0 4.2 4.2 4.5 3.2

ε̂2 : 5.9 7.0 14.0 9.0 12.0 14.1 10.5 6.9 3.9

z̄ : 70.4 42.6 27.1 35.3 33.3 23.0 28.6 39.4 45.1

α̂H : 4.0 3.5 4.9 5.0 5.1 3.9 4.1 4.1 2.9
α : 3.7 3.6 4.6 3.9 4.5 4.3 3.9 3.5 2.5

Table 1: Estimations of eight foreign exchange markets (currencies against USD)

and the gold market (G).

Note: α̂H and α are the Hill estimator and the Hill index characterizing the tail of
the distribution of returns, which are discussed in Section 4.

region S, too; remarkably to the south-west of it and also to the left of the ‘outliers’ of

the empirical estimates.9 The main message to be derived from these features is that the

model does not tend to assign all markets to the same class; there are indeed important

speculative markets that are recognized as being significantly different.

Comparing the third row of Table 1 with eq. (16), it is seen that the differences have

also a structural interpretation. Except for the Canadian Dollar, the foreign exchange

markets as well as the Gold market distinguish themselves from the stock markets by

average shares z̄ of noise traders that are well below 48%, which is the lower-bound of

the marginal distribution of z̄ from the stock market bootstrap estimates reported in (16).

Figure 3 emphasizes this feature by the zz-line. It is (a segment of) the geometrical locus of

the pairs ε1, ε2 that entail z̄ = ε1/(ε1+ε2) = 48.2%, and pairs above the line are associated

with a lower average share of noise traders. If the average noise trader share were employed

as an alternative criterion to (17), the Japanese Yen and the Australian Dollar could no

longer be considered as possibly being generated by (εs
1, ε

s
2); in exchange, so to speak, for

the Canadian Dollar and its high share z̄ = 70.4%.

9The Gold market is well-known to be quite different from the other markets studied here, which begins

with its intransparency and the special role of the central banks as major actors on it. The fact that

the Gold market is estimated so much differently from the other markets may therefore be pointed out as

another credit the model can claim.
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Maintaining the LR criterion (17) for establishing a confidence region, we can put the

results on the foreign exchange markets on a firmer basis by carrying out the same kind of

bootstrap experiments as for the Japanese estimations. We pick out a representative pair

of the parameters, simulate the model with respect to a sequence of random shocks b over

T = 5, 768 periods again, and then re-estimate εb
1, ε

b
2 from the resulting return series. As

before, 5,000 replications are evaluated.

Figure 4: Two classes of parameter pairs ε1, ε2.

Note: The sets are the truncated 95% confidence regions S and F for, as indicated
by the diagonal crosses, (εs

1, ε
s
2) and (εf

1 , εf
2). The other crosses represent the currency

estimates from Table 1.

Concretely, we choose εf
1 = 5 and εf

2 = 10 for these experiments, which are essentially

the median values of the currency parameters from Table 1. From the simulation runs we

again select a special random sequence b" that gives rise to a return series {rb!

t }, such that

(εb"
1 , εb"

2 ) = (ef
1 , ε

f
2). Applying then eq. (17) to the 5,000 estimations (where now superscript

‘s’ is to be replaced with ‘f ’ and the critical value on the right-hand side is 28.2), the set

F in Figure 4 results as the 95% confidence region to which the representative parameter

pair (ef
1 , ε

f
2) = (5.0, 10.0) gives rise.10

10Regarding the second parameter, the confidence set extends to about ε2 = 50.
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Labelling the newly generated area with a symbol of its own F (for foreign exchange

markets) is justified since it contains the estimates of all currencies from Table 1 in its

interior, including the French Franc and the Italian Lira. The only exception is the Aus-

tralian Dollar, which is practically on the borderline in the south-west. Notice also that

the Canadian Dollar, which in Figure 3 could have perhaps been regarded as an outlier,

happens to be within set F (in the south-east corner).

Moreover, the two sets F and S are largely disjunct. Visually, the overlapping region

would appear even smaller if the two sets had not been truncated. The degree of overlapping

can be made precise as follows: (1) 20.3% of the estimates ε̂b
1, ε̂

b
2 originating with εf

1 , ε
f
2 fall

into class S; (2) conversely, 16.3% of the estimates ε̂b
1, ε̂

b
2 originating with εs

1, ε
s
2 fall into class

F ; (3) as concerns the empirical Japanese stock market estimates ε̂1, ε̂2, 20.4% of them fall

into class F .

It can thus be said that the model is able to identify two different classes of speculative

markets. It predicts that the (ε1, ε2)-estimates for stock markets tend to fall into the set

S, and those for the foreign exchange markets into the set F . According to the structural

interpretation of the model, markets in set S are dominated by noise traders and markets in

the set F by fundamentalist traders. About 16 – 20 percent of the estimates are, however,

contained in an inconclusive region for which, if the origin of the return series were not

known, we could not decide whether it comes from a stock market or a foreign exchange

market. This summary is a concise hypothesis that we have derived from a large sample of

stocks at TSE and a smaller sample of foreign exchange markets, and that can be tested in

further empirical work.

The special result for the gold market is noteworthy in addition, and that so far we

have no empirical example of an estimate lying above set S and to the right of set F .

Figure 5 illustrates the differences between stock and foreign exchange markets from

a time series perspective. The diagram displays three normalized series of daily absolute

returns, for the USD/DEM exchange rate, the Japanes Nikkei index, and a ‘representative’

stock from the TSE sample. Since the series are of equal length and the |r|-axes are

identically scaled, their volatility can be directly compared. A simple visual inspection

shows that the exchange rate in the top panel has the lowest, and the Japanese stock in

the bottom panel the highest variability. The middle panel demonstrates that the greater

variability of stocks persists after aggregation, though the Nikkei index exhibits less extreme
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Figure 5: Absolute daily returns from three markets (normalized).

events than the single stock. Similar differences are observed for other empirical data from

stock and foreign exchange markets, and the human eye has no great difficulty in recognizing

them.

A connection of the empirical time series to our structural model is provided by the

parameter ε2. As already mentioned in a remark on the equilibrium distribution (12), ε2

can be tailored to achieve an almost arbitrary degree of fatness in the tail. For example,

parameter values ε2 ≥ 10, which are typical for the foreign exchange markets, can be

shown to generate such a rapid decay in the tail that the event |r| > 10% has a practically

negligible probability (in the empirical series in the top panel, it has actually never occurred

within 3,607 days). The limited number of extreme events on these markets nicely fits in

with our characterization that (because of the higher estimates of ε2) they are dominated

by fundamentalist traders, and the general economic intuition that fundamentalists tend

to be stabilizing.
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4 Parameter estimates and tail indices

An outstanding characteristic of the return distributions of speculative markets are the fat

tails and their power-law decay. A possible theoretical measure of fatness, or the hyperbolic

decay in the tail, is the tail index, which is defined as the highest finite absolute moment

of the underlying distribution. The empirical estimates of the tail index across different

markets, time periods and frequencies are now well-known to be contained in a limited

interval centered around a value slightly higher than three, which has even been advocated

as a trace of an underlying inverse “cubic law” for financial returns (Gopikrishnan et al.,

1998). It seems to be a pleasant property of the present model that it indeed exhibits a

power-law decay of the extreme returns, where the tail index can be proved to be equal to

the behavioural parameter ε2 (see Alfarano, 2006, pp. 120, 127). However, our estimated

values of this parameter for both stock and foreign exchange data do not appear to be

compatible with the interval just mentioned. In the following we want to inquire into this

problem and reconcile the theoretical feature of the model with the empirically identified

regularities.

4.1 The concept of the Hill tail index of a probability distribution

For empirical time series, the tail index can be conveniently estimated by the Hill estimator,

denoted as α̂H . For a few selected stocks it has already been noticed in previous work that

α̂H tends to be lower than the estimated ε2 (Alfarano et al., 2005a, p. 36). This also

holds true for the abovementioned reference series {rref
t } from TSE, for which we obtain

α̂H = 3.16 although the estimated ε2 is 4.5. Even worse are the differences between ε2 and

α̂H for the foreign exchange markets in Table 1. The discrepancies are indeed so large and

systematic that ascribing them to the finite-sample variability appears no longer convincing.

To reestablish confidence in the model estimations the problem calls for a more profound

resolution.

To this end we begin with a recapitulation of the definition of the Hill estimator

(Hill, 1975). Since the equilibrium density function is symmetrical around zero and there

is also little evidence in the empirical return series that their positive and negative tails are

different, we can work with absolute returns. Denote them as vt := |rt| and assume the vt

are already rearranged in ascending order, vt ≤ vt+1 for all t. It is furthermore presupposed
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that the tail of the series has been specified in advance by the last m elements. The Hill

estimator is then defined as

α̂H = 1 / γ̂H , where γ̂H =
1

m

m−1∑

k=0

[ ln vT−k − ln vT−m ] (18)

Obviously, lower values of α̂H indicate a fatter tail of the data.

The Hill estimator derives from the semi-parametric assumption of a Pareto decay

of the ordered returns, conditionally on being higher than a given threshold. In contrast,

the estimation of the parameter ε2 is based on a parametric approach, which utilizes the

entire functional form of the model’s equilibrium return distribution. Moreover, the Hill

estimator is a function of ‘few’ extreme events, while the estimated value of ε2 is, in principle,

influenced by the entire data points. A direct comparison between the estimated ε2 of a

time series and its Hill estimator should therefore be taken with some caution.

For a careful study of the problem we want to carry over Hill’s concept of eq. (18)

to a situation where the values vT−k need not be actually sampled, since their distribution

is known and available in a closed-form representation. In the present case, the density

function pv = pv(v; ε1, ε2) of the absolute returns is linked to the equilibrium density pe =

pe(r; ε1, ε2) of the model’s symmetrical raw returns in (12) by the relationship

pv(v; ε1, ε2) = 2 pe(v; ε1, ε2) (19)

With respect to a given threshold value vo and an arbitrarily large maximum value vmax, let

the tail support be given by the interval (vo, vmax). To mimic the sampling process, divide

the tail into m equally spaced subintervals (m likewise arbitrarily large) and consider their

mid-points

uk := vo + (k − 1/2) (vmax − vo)/m (k = 1, . . . , m) (20)

Instead of actually sampling from the tail and multiplying the log differences from ln vo

by 1/m as in (18), we can concentrate on the intervals, represent each one by its mid-

point uk, and multiply lnuk by its probability weight within the tail; that is, by the factor

pv(uk)/
∑m

j=1 pv(uj) = pv(uk; ε1, ε2) /
∑m

j=1 pv(uj; ε1, ε2). In this way, the analogues of γ̂H

and α̂H in (18) are

γ = γ(vo; ε1, ε2) =
m∑

k=1

pv(uk; ε1, ε2)∑m
j=1 pv(uj; ε1, ε2)

[
ln uk − ln vo

]

α(vo; ε1, ε2) = 1 / γ(vo; ε1, ε2)

(21)
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Once vmax and the tail density m are large enough, a further increase of these parameters

will leave γ in (21) essentially unaffected. It is the advantage of having an entire distribution

available that in this way α misses no rare events—a risk unavoidable for every sampled

return series; eq. (21) can include them with the appropriate probability weights, even if

the theoretical probabilities are getting arbitrarily close to zero.

The quantity α in (21) is a definite magnitude associated with a given (and com-

putable) probability distribution, and no longer an estimator. For this reason the caret

over α was omitted. The number α(vo; ε1, ε2) may be referred to (not as “the” tail index

and not as the Hill “estimator”, but) as the “Hill tail index” of the model’s equilibrium

density pe( · ; ε1, ε2). The notation clarifies that α is a function of the two behavioural

parameters ε1, ε2 and the chosen threshold.

After a few explorations, the computations of (21) were found to be completely safe if

they are based on vmax = 50 (a value never observed in empirical nor simulated data) and a

density of the subintervals in the tail like m = 5, 000 (also m = 500 would have been good

enough). It is established below that vo = 3 is a reasonable threshold value to choose. The

thus determined Hill tail indices for the two parameter pairs constituting classes S and F

are reported in Table 2.

εs
1 =11, εs

2 =4.5 εf
1 =5, εf

2 =10

α(vo; ε1, ε2) : 3.10 4.07

Table 2: Hill tail indices of the equilibrium distribution (vo = 3).

The table clearly shows that the analytical tail index (ε2) of the model’s equilibrium

density and its Hill tail (α) index are generally different. The results are rather quite in

line with the empirical findings mentioned above. With α = 3.10, the Hill index for εs
1, ε

s
2

is perfectly compatible with the Hill estimator α̂H = 3.16 that we had obtained for our

TSE reference series {rref
t }. The Hill index for εf

1 , ε
f
2 , which was taken to be representative

for the foreign exchange markets, is with α = 4.07 of a similar order of magnitude as the

empirical estimators in the last row of Table 1. In particular, this α is distinctly lower than

εf
2 = 10.
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A couple of additional examples quickly demonstrate that there is no systematic

connection of α(vo; ε1, ε2) to the model parameter ε2 alone. The Hill tail index is actually

dependent on a certain kind of “trade-off” between ε2 and ε1, in the sense that a value

α(vo; ε1, ε2) is maintained upon an increase of ε2 if simultaneously ε1 is suitably reduced.

Figure 6 illustrates this interrelation by drawing two isoclines of α(vo; · , · ). As it is also

indicated by the diagonal cross, the lower line is the locus of parameter pairs giving rise

to α(vo; ε1, ε2) = α(vo; εs
1, ε

s
2) = 3.10 (setting vo = 3). The upper contour line induces

α(vo; ε1, ε2) = α(vo; ε
f
1 , ε

f
2) = 4.07. Obviously, the trade-off between the two parameters is

of a nonlinear nature. In the north-west of the parameter plane, the Hill index even stays

(nearly) put if ε2 increases and ε1 is held constant.

Figure 6: Isoclines of the Hill tail index α(vo; · , · ), with vo =3.

Note: Crosses indicate the two parameter pairs (εs
1, ε

s
2) and (εf

1 , εf
2).

It is interesting to compare the isoclines of the Hill tail index in Figure 6 with the

confidence regions constituting class S and F in Figure 4. To some qualitative degree, the

two isoclines trace out the general shape of the regions. The fact that the isoclines leave

these sets indicates, of course, that the latter incorporate more information than the Hill

tail index.

25



ε1 ε2 α tail size

vo = 2

11.0 4.5 : 2.65 11.27
5.0 10.0 : 3.12 11.68

vo = 2.788

11.0 4.5 : 3.02 5.00
5.0 10.0 : 3.89 4.55

vo = 3

11.0 4.5 : 3.10 4.10
5.0 10.0 : 4.07 3.55

vo = 5

11.0 4.5 : 3.57 0.85
5.0 10.0 : 5.38 0.42

vo = 25

11.0 4.5 : 4.43 0.00
5.0 10.0 : 8.58 0.00

Table 3: Hill tail indices α under alternative threshold values vo.

Note: Tail size in percent. Underlying is m = 5, 000 and vmax = 50, except for
vo = 25 where vmax is increased to 80.

4.2 The role of the threshold value

After this first evidence the impact of different values of the threshold vo should be checked.

Let us therefore concentrate on the two representative pairs (εs
1, ε

s
2) and (εf

1 , ε
f
2) and examine

the dependency of the Hill tail index upon variations of vo. This is done in Table 3. To

begin with, for the thresholds 2 ≤ vo ≤ 5 the index α is within a range that is in line with

what is known from empirical work on the Hill estimator (cf. also Table 1 for the exchange

rates). Note that the corresponding tail sizes on a percentage basis are in conventional

bounds, too (at least for vo ≥ 2.5, say). Over the given and even a much wider interval

of vo, however, α shows no tendency to settle down on a particular value: the index of a

parameter pair rather rises if vo rises. Obviously α can distinguish the tails of two data

sets by saying that one is “fatter” than the other, but as long as we do not agree on a fixed

value of the threshold, the index cannot provide an absolute measure of fatness.
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While in the first four parts of Table 3 the Hill index is in a familiar range but

considerably lower than the tail index ε2, in the last part an extraordinarily high threshold

vo = 25 is chosen. In this way, the Hill index gets much closer to ε2. We indeed checked

that the correct asymptotic power-law behaviour of the tail is recovered, i.e. α → ε2, if

simultaneously vo as well as vmax are suitably increased.11

The numerical exercise shows that the discrepancies between the Hill tail index α and

the underlying value of ε2 are related to the choice of the tail size. The application of the

Hill tail index is in fact based on the semi-parametric approximation to a power-law decay

of the distribution. Although this assumption is in principle satisfied for our equilibrium

distribution (12), the ‘pure’ form of this law is an inadequate description of the tail if we

consider a threshold vo between 3 and 5, say, for the normalized returns. In that region,

which corresponds to the usual choice in empirical investigations using the Hill estimator,

the estimation of the ‘tail’ index is affected by entries that still form part of the shoulders

of the distribution. Hence at least for the type of distribution with which we are working

here, lower values of the threshold vo introduce a downward bias of the Hill statistic.

As has also been demonstrated, by sufficiently increasing the threshold the remaining

tail eventually produces a Hill index α that is similar to the theoretical decay parameter

ε2. The price for this reconciliation is that it relies on such extreme returns |rt| > 25% that

are hardly ever observed in reality. One might even suspect that this is not just a sampling

problem but that these events would only be outliers that should not be part of a theory.

In any case, the theoretical parameter ε2 is of limited informational value to describe a

power-law decay and we have to resort to the Hill index as a more reasonable summary

statistic to characterize the tail behaviour of the available returns.12

Even if the power-law decay in the equilibrium probability distribution (12) is in its

pure form too rigorous to be of practical use, there is still another remarkable property

concerning the tail. If we take the estimated ε1, ε2 values, employ the Hill tail index

to describe the ‘fatness’ of the tail of this distribution, and base its computation on an

empirically relevant range of the threshold like 3 ≤ vo ≤ 4, then we obtain an order of

11If vmax stays constant, α may happen to exceed ε2.
12It is an open question after all whether the scaling properties suggested by the usual visual procedures

are not spurious, and only due to the small-sample properties of these tests; cf. LeBaron (2001) and Lux

(2001).

27



magnitude in the results that is quite compatible with the Hill estimators that one typically

finds in the financial markets literature. Hence our estimations do not only support the

model’s characteristic probability distribution (12) in its entirety, but also in this more

specific feature of its tail, as it is usually conceived in empirical work.13

5 Conclusion

In this paper we have dealt with an elementary agent-based model for a parsimonious

description of an artificial financial market with fundamentalists and noise traders. As

shown in earlier work (Alfarano et al., 2005a,b), its interplay between randomness and

a herding component is capable of reproducing the key stylized facts of financial data,

namely, volatility clustering, Paretian tails of the return distribution, unit root and positive

dependence of the autocorrelations of absolute and squared returns.

In contrast to many contributions from the agent-based literature, the simple structure

of the model makes it possible to express several conditional and unconditional properties of

the return time series in a closed-form solution. Using this information, the (few) underlying

parameters can be estimated by standard econometric techniques. This is a feature the

model shares with the class of econometric time series models, i.e., GARCH and other

stochastic volatility models. An important advantage of our approach, however, consists in

the behavioural roots of its volatility features, which allow us to connect the abovementioned

statistical properties of the returns to the stylized characteristics of the investors that we

have postulated.

Our concern in this paper was to go beyond the previous casual estimations of the

model. We examined as many as 982 corporate shares traded at the Tokyo Stock Exchange

and contrasted them with results from the major foreign exchange markets. Considering

the returns on a daily basis, the main finding from these empirical estimations and a battery

of complementary Monte Carlo experiments is a tendency for the parameter estimates to

come out differently for the two types of markets. The implied structural interpretation is

13The relatively large difference between the two Hill tail indices 3.10 and 4.07 for the representative pairs

εs
1, ε

s
2 and εf

1 , εf
2 in Table 2, and the two distinct isoclines in Figure 6 suggest different tail properties for

the two regimes, even if one takes the sampling variability into account. This issue is more systematically

investigated in an extended version of this paper.
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a dominance of noise traders on stock markets, and a dominance of fundamentalists on the

foreign exchange markets. A degree of ambiguity that still remains can be loosely said to

be about 20 percent.

Admittedly, a general assessment of the properties we obtained would be premature

given that despite the large number of single stocks, our study was limited to the TSE data.

So the predictions still need to be tested with data from the other great trading places.

On the other hand, our approach opens up a new line of research on the design as well as

estimation of agent-based models with a richer and theoretically more satisfactory structure,

which may be complementary to the econometric time series modelling of financial data.

6 Appendix

The data set of the stocks time series consists of 982 stocks from the Japanese market at

daily sampling intervals with a time horizon ranging from 4 January 1975 to 28 December

2001 (though not all of the series cover the entire period; the identification numbers can be

provided upon request).

The currencies against the US Dollar of the Canadian Dollar (CD), Japanese Yen

(JP), Deutsche Mark (DM), British Pound (BP), Swiss Franc (SF), French Franc (FF)

and the Italian Lira consist of a total of 3,913 daily observations each, ranging from 15

December 1989 to 15 December 2004. The Australian exchange rate data (AUS) cover the

period since the floatation of the Australian Dollar in December 1983 until the end of 2004

(amounting to 5,495 data points).

The time series of the gold price (G) extends from January 1974 until December 1998

(5,140 entries).
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