Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/174405

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

C
 BY NC ND

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Computing points on bielliptic modular curves over fixed quadratic fields

Philippe Michaud-Jacobs (ORCID ID: 0000-0001-9415-8519)

Abstract

We present a Mordell-Weil sieve that can be used to compute points on certain bielliptic modular curves $X_{0}(N)$ over fixed quadratic fields. We study $X_{0}(N)(\mathbb{Q}(\sqrt{d}))$ for $N \in\{53,61,65,79,83,89,101,131\}$ and $|d|<100$.

1 Introduction

There has been a lot of recent interest in computing low-degree points on modular curves, and in particular in computing quadratic points on the curves $X_{0}(N)$. Computing such points gives much insight into the arithmetic of elliptic curves and has direct applications in the resolution of Diophantine equations (see [8, p. 888] or [10] for such examples).

As we range over all quadratic fields, a curve $X_{0}(N)$ will either have finitely many or infinitely many quadratic points. For those curves $X_{0}(N)$ that have finitely many quadratic points, these points have been computed in many cases, such as when the genus of $X_{0}(N)$ is ≤ 5, or when $X_{0}(N)$ is bielliptic [5, 14, 12]. If $X_{0}(N)$ has genus ≥ 2 and has infinitely many quadratic points (so that $X_{0}(N)$ is either hyperelliptic, or bielliptic with an elliptic quotient of positive rank over \mathbb{Q}), a geometric description of all the quadratic points has been given in these cases [$5,6,12$].

There are precisely 10 values of N such that the modular curve $X_{0}(N)$ is bielliptic with an elliptic quotient of positive rank [3, pp. 26-28]. For two of these values of N, namely 37 and 43 , the methods we present will not work (see Remark 2.2), and so we will consider the remaining eight values of N, which are

$$
N \in \mathcal{N}:=\{53,61,65,79,83,89,101,131\} .
$$

For each $N \in \mathcal{N}$ the elliptic curve $X_{0}^{+}(N)=X_{0}(N) / w_{N}$ has rank 1 over \mathbb{Q}. In $[5,12]$ it is proven that every quadratic point on $X_{0}(N)$ arises as the

[^0]pullback of a rational point on $X_{0}^{+}(N)$ (via the natural degree 2 quotient map). However, this classification does not describe $X_{0}(N)(K)$ for a given quadratic field K. The purpose of this paper is to introduce a Mordell-Weil sieve that can be used to check, for $N \in \mathcal{N}$, whether $X_{0}(N)(K)=X_{0}(N)(\mathbb{Q})$ for a given quadratic field K. The sieve uses information on the splitting behaviour of primes in K together with the structure of the Mordell-Weil group of $X_{0}^{+}(N)(\mathbb{Q})$ modulo these primes. The sieve builds on ideas present in the author's work in [10, pp. 338-340]. We prove the following result.

Theorem 1. Let $N \in\{53,61,65,79,83,89,101,131\}$ and let $d \in \mathbb{Z}$ such that $|d|<100$. Then $X_{0}(N)(\mathbb{Q}(\sqrt{d})) \neq X_{0}(N)(\mathbb{Q})$ if and only if $d \in \mathcal{D}_{N}$, where

$$
\begin{aligned}
\mathcal{D}_{53} & =\{-43,-11,-7,-1\}, \\
\mathcal{D}_{61} & =\{-19,-3,-1,61\}, \\
\mathcal{D}_{65} & =\{-79,-1\}, \\
\mathcal{D}_{79} & =\{-43,-7,-3\}, \\
\mathcal{D}_{83} & =\{-67,-43,-19,-2\}, \\
\mathcal{D}_{89} & =\{-67,-11,-2,-1,89\}, \\
\mathcal{D}_{101} & =\{-43,-19,-1\}, \\
\mathcal{D}_{131} & =\{-67,-19,-2\} .
\end{aligned}
$$

Although we have considered integers d satisfying $|d|<100$ here, there are no apparent obstructions to proving analogous results for any integer d.

For certain (but not all) integers d, the results of Theorem 1 could be achieved by applying [13, Theorem 1.1] or some of the techniques described in [2]. In Section 3, we compare (for $N=53$) our results with those one can obtain by applying [13, Theorem 1.1], and use this to provide an example of a curve that violates the Hasse principle.

We note that results of a similar nature to Theorem 1 (obtained using different techniques) are proven in [11] for hyperelliptic curves $X_{0}(N)$.

The Magma [4] code used to support the computations in this paper is available at https://github.com/michaud-jacobs/bielliptic.

I would like to thank the anonymous referee for a careful reading of the paper.

2 A Mordell-Weil sieve

In this section we present a Mordell-Weil sieve and apply it to prove Theorem 1.

We first describe how to obtain a suitable model for $X_{0}(N)$ for $N \in$ \mathcal{N}. Let g denote the genus of the modular curve $X_{0}(N)$. We start by
computing a basis f_{1}, \ldots, f_{g} of cusp forms for $S_{2}\left(\Gamma_{0}(N)\right)$ with integer Fourier coefficients such that the Atkin-Lehner involution w_{N} satisfies $w_{N}\left(f_{1}\right)=f_{1}$ and $w_{N}\left(f_{i}\right)=-f_{i}$ for $2 \leq i \leq g$ (we refer to such a basis as a diagonalised basis). For each $N \in \mathcal{N}$ the curve $X_{0}(N)$ is non-hyperelliptic of genus >2 and we may obtain a nonsingular model for $X_{0}(N)$ over \mathbb{Q} in $\mathbb{P}_{x_{1}, \ldots, x_{g}}^{g-1}$ as the image of the canonical embedding on the cusp forms f_{1}, \ldots, f_{g}. The details of this (standard) procedure are described in [9, pp. 17-38], and the Magma code we used to do this is adapted from [14].

The Atkin-Lehner involution w_{N} on this model is then given by the map $\left(x_{1}: x_{2}: \cdots: x_{g}\right) \mapsto\left(-x_{1}: x_{2}: \cdots: x_{g}\right)$. We denote by $\psi: X_{0}(N) \rightarrow$ $X_{0}^{+}(N)$ the degree 2 map induced by quotienting by w_{N}. In each case, we found that the projection map onto the coordinates x_{2}, \ldots, x_{g} had degree 2 and image $X_{0}^{+}(N)$ (and not some quotient of $X_{0}^{+}(N)$), so that the map ψ is given by

$$
\begin{aligned}
\psi: X_{0}(N) & \longrightarrow X_{0}^{+}(N) \\
\left(x_{1}: x_{2}: \cdots: x_{g}\right) & \longmapsto\left(x_{2}: \cdots: x_{g}\right)
\end{aligned}
$$

We in fact then obtained a Weierstrass model for $X_{0}^{+}(N)$ and composed ψ with this transformation (see the example in Section 3). The reason for using a diagonalised model for $X_{0}(N)$ is twofold. First, it forces the coordinates of a quadratic point to be of a certain shape, as we see below. Secondly, it greatly speeds up the computations we perform in the sieving step.

Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic field and write σ for the generator of $\operatorname{Gal}(K / \mathbb{Q})$. Suppose that $P \in X_{0}(N)(K) \backslash X_{0}(N)(\mathbb{Q})$ (equivalently, P is a non-cuspidal quadratic point). In projective coordinates, we may write

$$
\begin{aligned}
P & =\left(a_{1}+b_{1} \sqrt{d}: a_{2}+b_{2} \sqrt{d}: \cdots: a_{g}+b_{g} \sqrt{d}\right) \\
w_{N}(P) & =\left(-a_{1}-b_{1} \sqrt{d}: a_{2}+b_{2} \sqrt{d}: \cdots: a_{g}+b_{g} \sqrt{d}\right), \text { and } \\
P^{\sigma} & =\left(a_{1}-b_{1} \sqrt{d}: a_{2}-b_{2} \sqrt{d}: \cdots: a_{g}-b_{g} \sqrt{d}\right)
\end{aligned}
$$

where $a_{i}, b_{i} \in \mathbb{Z}$ for $1 \leq i \leq g$.
As discussed in the introduction, thanks to the work of Box and NajmanVukorepa in $[5,12]$, we know that $\psi(P)=\psi\left(P^{\sigma}\right) \in X_{0}^{+}(N)(\mathbb{Q})$, or equivalently, $w_{N}(P)=P^{\sigma}$. It follows that

$$
P=\left(b_{1} \sqrt{d}: a_{2}: \cdots: a_{g}\right)
$$

with $b_{1} \neq 0$, and we may assume that $\operatorname{gcd}\left(b_{1}, a_{2}, \ldots, a_{g}\right)=1$ by rescaling if necessary.

We now present the sieve in the case that $N \neq 65$. In the case $N=65$ we will need to adapt the sieve slightly, and we discuss this case in the proof of Theorem 1 below. For each $N \neq 65$, we have that $X_{0}^{+}(N)(\mathbb{Q}) \cong \mathbb{Z}$, and we let R denote a generator of the Mordell-Weil group, so that

$$
\psi(P)=m \cdot R \quad \text { for some } m \in \mathbb{Z}
$$

Let ℓ be a prime of good reduction for our models of $X_{0}(N)$ and $X_{0}^{+}(N)$, and consider the following commutative diagram, where \sim denotes reduction $\bmod \ell$, or a prime of K above ℓ :

By commutativity we have that $\psi_{\ell}(\widetilde{P})=m \cdot \widetilde{R}$, so that $\widetilde{P} \in \psi_{\ell}^{-1}(m \cdot \widetilde{R})$. Write G_{ℓ} for the order of \widetilde{R} in the group $\widetilde{X}_{0}^{+}(N)\left(\mathbb{F}_{\ell}\right)$. Then

$$
\psi_{l}(\widetilde{P})=m \cdot \widetilde{R}=m_{0} \cdot \widetilde{R}
$$

for some integer m_{0} satisfying $0 \leq m_{0}<G_{\ell}$ and $m \equiv m_{0}\left(\bmod G_{\ell}\right)$. We note that $\psi_{\ell}^{-1}(m \cdot \widetilde{R})=\psi_{\ell}^{-1}\left(m_{0} \cdot \widetilde{R}\right)$. For each integer $0 \leq m_{1}<G_{\ell}$ we explicitly compute the set $\psi_{\ell}^{-1}\left(m_{1} \cdot \widetilde{R}\right) \subset \widetilde{X}_{0}(N)\left(\mathbb{F}_{\ell^{2}}\right)$. There are three cases:
(i) The set $\psi_{\ell}^{-1}\left(m_{1} \cdot \widetilde{R}\right)$ consists of a pair of distinct points defined over \mathbb{F}_{ℓ}.
If ℓ is inert or ramifies in K, then $\psi_{\ell}^{-1}(m \cdot \widetilde{R})$ will not consist of a pair of distinct points defined over \mathbb{F}_{ℓ}, and so $m \not \equiv m_{1}\left(\bmod G_{\ell}\right)$.
(ii) The set $\psi_{\ell}^{-1}\left(m_{1} \cdot \widetilde{R}\right)$ consists of a pair of points defined over $\mathbb{F}_{\ell^{2}}$ (with each point not defined over $\left.\mathbb{F}_{\ell}\right)$.
If ℓ splits or ramifies in K, then $\psi_{\ell}^{-1}(m \cdot \widetilde{R})$ will not consist of a pair of points defined over $\mathbb{F}_{\ell^{2}}$, and so $m \not \equiv m_{1}\left(\bmod G_{\ell}\right)$.
(iii) The set $\psi_{\ell}^{-1}\left(m_{1} \cdot \widetilde{R}\right)$ consists of a single point defined over \mathbb{F}_{ℓ}.

Verifying the splitting behaviour of the prime ℓ in cases (i) and (ii) leaves us with a list of possible values for $m\left(\bmod G_{\ell}\right)$.

We may then repeat this process with a list of primes $\ell_{1}, \ldots, \ell_{s}$. For each $1 \leq i \leq s$ we obtain a list of possibilities for $m\left(\bmod G_{\ell_{i}}\right)$. This gives a system of congruences that we may solve using the Chinese remainder theorem to obtain a list of possibilities for $m\left(\bmod \operatorname{lcm}\left(G_{\ell_{i}}\right)_{1 \leq i \leq s)}\right)$. If no solution exists to this system of congruences then we obtain a contradiction and conclude that $X_{0}(N)(K)=X_{0}(N)(\mathbb{Q})$.

Proof of Theorem 1 for $N \neq 65$. Let $N \in \mathcal{N} \backslash\{65\}$. We start by proving that if $d \in \mathcal{D}_{N}$ then $X_{0}(N)(\mathbb{Q}(\sqrt{d})) \neq X_{0}(N)(\mathbb{Q})$. We computed the preimages $\psi^{-1}(t \cdot R)$ for $t \in \mathbb{Z}$ with $|t| \leq 5$ and verified the field of definition of the points we obtained. For each $d \in \mathcal{D}_{N}$ we found a pair of quadratic points in $X_{0}(N)(\mathbb{Q}(\sqrt{d}))$.

For the converse, we suppose that $|d|<100$ with $d \notin \mathcal{D}_{N}$ and aim to prove that $X_{0}(N)(\mathbb{Q}(\sqrt{d}))=X_{0}(N)(\mathbb{Q})$. We note that this is immediate if $\mathbb{Q}(\sqrt{d})=\mathbb{Q}$, so we assume that $\mathbb{Q}(\sqrt{d})$ is a quadratic field. Suppose, for a contradiction, that $P \in X_{0}(N)(\mathbb{Q}(\sqrt{d})) \backslash X_{0}(N)(\mathbb{Q})$. We applied the Mordell-Weil sieve described above with the following (ordered) choice of primes (we discuss this choice in Remark 2.1):

$$
\begin{equation*}
\mathcal{L}=\{\ell \mid d: \ell \nmid 2 N\} \cup\left\{\ell<1000: \ell \nmid 2 N \text { and } q \nmid G_{\ell} \text { for primes } q>7\right\} . \tag{1}
\end{equation*}
$$

In each case this led to a contradiction.
Proof of Theorem 1 for $N=65$. The proof of the theorem in this case is very similar to the case $N \neq 65$. The key difference is that $X_{0}^{+}(N)(\mathbb{Q}) \cong$ $\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. We write Q for the 2 -torsion point and choose a point R such that any point in $X_{0}^{+}(N)(\mathbb{Q})$ may be expressed as $m \cdot R+n \cdot Q$ for some $m \in \mathbb{Z}$ and $n=0$ or 1 . For our choice of R, we found that $\psi^{-1}(-R)$ and $\psi^{-1}(-2 R)$ consisted of pairs of quadratic points defined over $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-79})$ respectively, proving one direction of the theorem.

For the converse, let $d \notin \mathcal{D}_{N}$ be such that $\mathbb{Q}(\sqrt{d})$ is a quadratic field and $|d|<100$. Suppose, for a contradiction, that there exists a point $P \in$ $X_{0}(N)(\mathbb{Q}(\sqrt{d})) \backslash X_{0}(N)(\mathbb{Q})$. Either $\psi(P)=m \cdot R$ or $m \cdot R+Q$. In the first case, we apply the sieve exactly as in the proof for $N \neq 65$ (with the same choice of primes) to achieve a contradiction. In the second case, we again apply the sieve in the same way, except that we work with the point $m \cdot R+Q$ instead. To be precise, for each prime ℓ, we have that $\widetilde{P} \in \psi_{\ell}^{-1}(m \cdot \widetilde{R}+\widetilde{Q})$, and so we compute $\psi_{\ell}^{-1}\left(m_{1} \cdot \widetilde{R}+\widetilde{Q}\right)$ for each $0 \leq m_{1}<G_{\ell}$. By considering each preimage and the splitting behaviour of ℓ in the quadratic field $\mathbb{Q}(\sqrt{d})$ we obtain a list of possibilities for $m\left(\bmod G_{\ell}\right)$. As in the previous case, we achieved a contradiction for each d.

The total computation time for the proof of Theorem 1 was 2500 seconds running on a 2200 MHz AMD Opteron.

Remark 2.1. We discuss the choice of primes \mathcal{L} used in the proof of the theorem. We start by choosing the primes that ramify as these usually eliminate the greatest number of possibilities for $m\left(\bmod G_{\ell}\right)$. We then choose primes ℓ such that the values G_{ℓ} are small and share many prime factors. There are two reasons for doing this. First, when solving each system of congruences we are more likely to obtain fewer solutions, and ultimately a contradiction. Secondly, we avoid (or reduce the likelihood) of a combinatorial explosion, since the lowest common multiple of the G_{ℓ} can grow very quickly if the primes ℓ are not chosen carefully. We note that the largest prime ℓ we in fact ended up reaching was $\ell=593$ in the case $N=101$ and $d=31$.

Remark 2.2. As discussed in the introduction, we have not considered the curves $X_{0}(37)$ or $X_{0}(43)$. The curve $X_{0}(37)$ is bielliptic with an elliptic quotient of positive rank, but it is also hyperelliptic, and therefore has two sources of infinitely many quadratic points, meaning the sieve we have presented would not work. The reason the sieve does not work for the curve $X_{0}(43)$ is due to the fact that $X_{0}(43)$ has a non-cuspidal rational point that is fixed by the Atkin-Lehner involution w_{43}. The sieve cannot distinguish between this rational point and a putative quadratic point.

Although we have presented this sieve for certain specific bielliptic modular curves $X_{0}(N)$, the sieve could be suitably adapted to compute quadratic points on a wider range of curves. Indeed, it should even be possible to apply a similar sieve to compute quadratic points on any curve X with a degree 2 quotient of genus ≥ 1, if there are finitely many quadratic points on X not arising as pullbacks of rational points on this quotient, and that these have all been computed. Although, as in the case $X_{0}(43)$ discussed above, there may be obstructions to the sieving process succeeding.

3 Example computations

In this section we provide some details of computations in the case $N=53$. We start by obtaining a model for the genus 4 curve $X_{0}(53)$ on which the Atkin-Lehner involution acts diagonally. By searching for relations between a diagonalised basis of cusp forms we obtain the following model in $\mathbb{P}_{x_{1}, x_{2}, x_{3}, x_{4}}^{3}$:

$$
\begin{aligned}
& x_{1}^{2}-x_{2}^{2}+2 x_{2} x_{3}-6 x_{2} x_{4}+11 x_{3}^{2}-6 x_{3} x_{4}-x_{4}^{2}=0 \\
& x_{1}^{3}-x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}-6 x_{1} x_{2} x_{4}+11 x_{1} x_{3}^{2}-6 x_{1} x_{3} x_{4}-x_{1} x_{4}^{2}=0, \\
& x_{1}^{2} x_{2}-x_{2}^{3}+2 x_{2}^{2} x_{3}+5 x_{2} x_{3}^{2}+5 x_{2} x_{4}^{2}-6 x_{3}^{2} x_{4}+6 x_{4}^{3}=0 \\
& x_{1}^{2} x_{3}-x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}-6 x_{2} x_{3} x_{4}+11 x_{3}^{3}-6 x_{3}^{2} x_{4}-x_{3} x_{4}^{2}=0 \\
& x_{1}^{2} x_{4}-x_{2} x_{3}^{2}+3 x_{2} x_{3} x_{4}-5 x_{2} x_{4}^{2}+10 x_{3}^{2} x_{4}-6 x_{3} x_{4}^{2}=0 \\
& x_{2}^{2} x_{4}-x_{2} x_{3}^{2}+x_{2} x_{3} x_{4}+x_{2} x_{4}^{2}-x_{3}^{2} x_{4}+x_{4}^{3}=0
\end{aligned}
$$

The equations for the Atkin-Lehner involution on this model are given by $w_{53}:\left(x_{1}: x_{2}: x_{3}: x_{4}\right) \mapsto\left(-x_{1}: x_{2}: x_{3}: x_{4}\right)$. The degree 2 map to the elliptic curve $X_{0}^{+}(53)$ is then simply given by the projection map $\left(x_{1}: x_{2}: x_{3}: x_{4}\right) \mapsto\left(x_{2}: x_{3}: x_{4}\right)$. We then apply a transformation to take the image of this projection map to the following Weierstrass form:

$$
X_{0}^{+}(53): Y^{2} Z+X Y Z+Y Z^{2}=X^{3}-X^{2} Z
$$

The map ψ is given by

$$
\begin{aligned}
\psi: X_{0}(53) & \longrightarrow X_{0}^{+}(53) \\
\left(x_{1}: x_{2}: x_{3}: x_{4}\right) & \longmapsto\left(x_{2} x_{3}+x_{3} x_{4}: x_{2}^{2}+x_{2} x_{4}-x_{3} x_{4}+x_{4}^{2}: x_{3} x_{4}\right)
\end{aligned}
$$

We choose $R=(0:-1: 1) \in X_{0}^{+}(53)(\mathbb{Q})$ as a generator of the Mordell-Weil group.

We now exhibit some steps in the sieving process for $d=-47$. As in the previous section, we will assume that $P \in X_{0}(53)(\mathbb{Q}(\sqrt{d})) \backslash X_{0}(53)(\mathbb{Q})$ and write $\psi(P)=m \cdot R$. We apply the sieve with the primes $\ell=5,7$, and 11 . The prime $\ell=5$ is inert in $\mathbb{Q}(\sqrt{d})$ and we find that $m \equiv 3$ or $5(\bmod 6)$. Next, $\ell=7$ splits and we find that $m \equiv 0,3,4,7$, or $11(\bmod 12)$. Combining this with the previous condition we have $m \equiv 3$ or $11(\bmod 12)$. Finally, the prime $\ell=11$ is inert and we find that $m \equiv 1,2,5,7$, or $10(\bmod 12)$, a contradiction. We conclude that $X_{0}(53)(\mathbb{Q}(\sqrt{-47}))=X_{0}(53)(\mathbb{Q})$.

We have in fact proven that $X_{0}(53)(K)=X_{0}(53)(\mathbb{Q})$ for any quadratic field K in which 5 and 11 are inert and 7 splits. In a similar vein, when $d=3$ we achieved a contradiction using only the prime $\ell=3$, and this proves that $X_{0}(53)(K)=X_{0}(53)(\mathbb{Q})$ for any quadratic field K in which 3 ramifies. This type of result is similar to those appearing in [11], and we could seek to prove more results along these lines, but we do not pursue this here.

In order to verify that the sieve is working as expected, we can try applying it for a value $d \in \mathcal{D}_{53}$. For example, applying the sieve with $d=-11 \in \mathcal{D}_{53}$ and the primes in \mathcal{L} (defined as in (1)) outputs a list of possibilities for $m\left(\bmod \operatorname{lcm}\left(G_{\ell}\right)_{\ell \in \mathcal{L}}\right)$, where $\operatorname{lcm}\left(G_{\ell}\right)_{\ell \in \mathcal{L}}=63504000$. We find that either $m=1$ or that $m \geq 1905121$. The fact that $m=1$ remains as a possibility is because $\psi^{-1}(1 \cdot R)$ consists of a pair of quadratic points defined over $\mathbb{Q}(\sqrt{-11})$.

It is interesting to consider how the results of Theorem 1 overlap with the results one may obtain by applying the techniques of [13], which give a criterion for testing whether $X_{0}(N)(\mathbb{Q}(\sqrt{d}))=X_{0}(N)(\mathbb{Q})$ by checking local points on the curve $X_{0}^{(d)}(N)$. This curve is the quadratic twist of $X_{0}(N)$ by the Atkin-Lehner involution w_{N} and the quadratic extension $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$ (see [7, p. 628] for a precise definition). For $N=53$, in Theorem 1 we prove that $X_{0}(N)(\mathbb{Q}(\sqrt{d}))=X_{0}(N)(\mathbb{Q})$ for 117 values of d, with d squarefree and $|d|<100$. Applying [13, Theorem 1.1], ${ }^{1}$ we reproduced these results for 94 of these values. For some values of d, where our sieving method works, but applying [13, Theorem 1.1] fails, we can often obtain examples of curves that violate the Hasse principle. Continuing our example with $d=$ -47 , we find that $X_{0}^{(-47)}(53)(\mathbb{Q})$ has points everywhere locally by applying [13, Theorem 1.1]. However, $X_{0}^{(-47)}(53)(\mathbb{Q})=\emptyset$, as proven above. Similar examples are considered in [13, pp. 344-346], where a standard Mordell-Weil sieve is applied to twists of a hyperelliptic curve.

[^1]
References

[1] B. Banwait. Explicit isogenies of prime degree over quadratic fields. Int. Mat. Res. Not., 1-48, 2022.
[2] B. Banwait, F. Najman, and O. Padurariu. Cyclic isogenies of elliptic curves over fixed quadratic fields. arXiv preprint, arXiv:2206.08891v2, 2022.
[3] F. Bars. On quadratic points of classical modular curves. Contemp. Math., 701:17-34, 2018.
[4] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997.
[5] J. Box. Quadratic points on modular curves with infinite Mordell-Weil group. Math. Comp., 90(327):321-343, 2021.
[6] P. Bruin and F. Najman. Hyperelliptic modular curves $X_{0}(n)$ and isogenies of elliptic curves over quadratic fields. LMS J. Comput. Math., 18 (1):578-602, 2015.
[7] P. Clark. An "Anti-Hasse Principle" for Prime Twists. Int. J. Number Theory, 4(4):627-637, 2008.
[8] N. Freitas and S. Siksek. Fermat's last theorem over some small real quadratic fields. Algebra Number Theory, 9(4):875-895, 2015.
[9] S. Galbraith. Equations for modular curves. PhD thesis, University of Oxford, 1996.
[10] P. Michaud-Jacobs. Fermat's Last Theorem and modular curves over real quadratic fields. Acta Arith., 203(4):319-352, 2022.
[11] F. Najman and A. Trbović. Splitting of primes in number fields generated by points on some modular curves. Res. Number Theory, 8(28): 1-18, 2022.
[12] F. Najman and B. Vukorepa. Quadratic points on bielliptic modular curves. Math. Comp., to appear, (arXiv:2112.03226v2), 2022.
[13] E. Ozman. Points on quadratic twists of $X_{0}(N)$. Acta Arith., 152(4): 323-348, 2012.
[14] E. Ozman and S. Siksek. Quadratic points on modular curves. Math. Comp., 88(319):2461-2484, 2019.

Mathematics Institute, University of Warwick, CV4 7AL, United Kingdom E-mail address: p.rodgers@warwick.ac.uk

[^0]: Date: March 14, 2023.
 Keywords: Modular curve, quadratic points, elliptic curve, Mordell-Weil sieve. MSC2020: primary 11G18; secondary 11G05, 14G05.
 The author is supported by an EPSRC studentship and has previously used the name Philippe Michaud-Rodgers.

[^1]: ${ }^{1}$ As discussed in [1, p. 39], some care is needed in order to interpret correctly parts (5) and (6) of [13, Theorem 1.1].

