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Computing points on bielliptic modular curves over

fixed quadratic fields

Philippe Michaud-Jacobs (ORCID ID: 0000-0001-9415-8519)

Abstract

We present a Mordell–Weil sieve that can be used to compute points
on certain bielliptic modular curves X0(N) over fixed quadratic fields.
We study X0(N)(Q(

√
d)) for N ∈ {53, 61, 65, 79, 83, 89, 101, 131} and

|d| < 100.

1 Introduction

There has been a lot of recent interest in computing low-degree points on
modular curves, and in particular in computing quadratic points on the
curvesX0(N). Computing such points gives much insight into the arithmetic
of elliptic curves and has direct applications in the resolution of Diophantine
equations (see [8, p. 888] or [10] for such examples).

As we range over all quadratic fields, a curve X0(N) will either have
finitely many or infinitely many quadratic points. For those curves X0(N)
that have finitely many quadratic points, these points have been computed
in many cases, such as when the genus of X0(N) is ≤ 5, or when X0(N)
is bielliptic [5, 14, 12]. If X0(N) has genus ≥ 2 and has infinitely many
quadratic points (so that X0(N) is either hyperelliptic, or bielliptic with an
elliptic quotient of positive rank over Q), a geometric description of all the
quadratic points has been given in these cases [5, 6, 12].

There are precisely 10 values of N such that the modular curve X0(N)
is bielliptic with an elliptic quotient of positive rank [3, pp. 26–28]. For two
of these values of N , namely 37 and 43, the methods we present will not
work (see Remark 2.2), and so we will consider the remaining eight values
of N , which are

N ∈ N := {53, 61, 65, 79, 83, 89, 101, 131}.

For each N ∈ N the elliptic curve X+
0 (N) = X0(N)/wN has rank 1 over

Q. In [5, 12] it is proven that every quadratic point on X0(N) arises as the
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pullback of a rational point on X+
0 (N) (via the natural degree 2 quotient

map). However, this classification does not describe X0(N)(K) for a given
quadratic field K. The purpose of this paper is to introduce a Mordell–Weil
sieve that can be used to check, for N ∈ N , whether X0(N)(K) = X0(N)(Q)
for a given quadratic field K. The sieve uses information on the splitting
behaviour of primes in K together with the structure of the Mordell–Weil
group of X+

0 (N)(Q) modulo these primes. The sieve builds on ideas present
in the author’s work in [10, pp. 338–340]. We prove the following result.

Theorem 1. Let N ∈ {53, 61, 65, 79, 83, 89, 101, 131} and let d ∈ Z such
that |d| < 100. Then X0(N)(Q(

√
d)) 6= X0(N)(Q) if and only if d ∈ DN ,

where

D53 = {−43,−11,−7,−1},
D61 = {−19,−3,−1, 61},
D65 = {−79,−1},
D79 = {−43,−7,−3},
D83 = {−67,−43,−19,−2},
D89 = {−67,−11,−2,−1, 89},
D101 = {−43,−19,−1},
D131 = {−67,−19,−2}.

Although we have considered integers d satisfying |d| < 100 here, there
are no apparent obstructions to proving analogous results for any integer d.

For certain (but not all) integers d, the results of Theorem 1 could be
achieved by applying [13, Theorem 1.1] or some of the techniques described
in [2]. In Section 3, we compare (for N = 53) our results with those one can
obtain by applying [13, Theorem 1.1], and use this to provide an example
of a curve that violates the Hasse principle.

We note that results of a similar nature to Theorem 1 (obtained using
different techniques) are proven in [11] for hyperelliptic curves X0(N).

The Magma [4] code used to support the computations in this paper is
available at https://github.com/michaud-jacobs/bielliptic.

I would like to thank the anonymous referee for a careful reading of the
paper.

2 A Mordell–Weil sieve

In this section we present a Mordell–Weil sieve and apply it to prove Theo-
rem 1.

We first describe how to obtain a suitable model for X0(N) for N ∈
N . Let g denote the genus of the modular curve X0(N). We start by
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computing a basis f1, . . . , fg of cusp forms for S2(Γ0(N)) with integer Fourier
coefficients such that the Atkin–Lehner involution wN satisfies wN (f1) = f1
and wN (fi) = −fi for 2 ≤ i ≤ g (we refer to such a basis as a diagonalised
basis). For each N ∈ N the curve X0(N) is non-hyperelliptic of genus > 2
and we may obtain a nonsingular model for X0(N) over Q in Pg−1x1,...,xg as the
image of the canonical embedding on the cusp forms f1, . . . , fg. The details
of this (standard) procedure are described in [9, pp. 17–38], and the Magma

code we used to do this is adapted from [14].
The Atkin–Lehner involution wN on this model is then given by the map

(x1 : x2 : · · · : xg) 7→ (−x1 : x2 : · · · : xg). We denote by ψ : X0(N) →
X+

0 (N) the degree 2 map induced by quotienting by wN . In each case, we
found that the projection map onto the coordinates x2, . . . , xg had degree 2
and image X+

0 (N) (and not some quotient of X+
0 (N)), so that the map ψ

is given by

ψ : X0(N) −→ X+
0 (N)

(x1 : x2 : · · · : xg) 7−→ (x2 : · · · : xg).

We in fact then obtained a Weierstrass model for X+
0 (N) and composed ψ

with this transformation (see the example in Section 3). The reason for using
a diagonalised model for X0(N) is twofold. First, it forces the coordinates
of a quadratic point to be of a certain shape, as we see below. Secondly, it
greatly speeds up the computations we perform in the sieving step.

Let K = Q(
√
d) be a quadratic field and write σ for the generator of

Gal(K/Q). Suppose that P ∈ X0(N)(K)\X0(N)(Q) (equivalently, P is a
non-cuspidal quadratic point). In projective coordinates, we may write

P = (a1 + b1
√
d : a2 + b2

√
d : · · · : ag + bg

√
d),

wN (P ) = (−a1 − b1
√
d : a2 + b2

√
d : · · · : ag + bg

√
d), and

P σ = (a1 − b1
√
d : a2 − b2

√
d : · · · : ag − bg

√
d),

where ai, bi ∈ Z for 1 ≤ i ≤ g.
As discussed in the introduction, thanks to the work of Box and Najman–

Vukorepa in [5, 12], we know that ψ(P ) = ψ(P σ) ∈ X+
0 (N)(Q), or equiva-

lently, wN (P ) = P σ. It follows that

P = (b1
√
d : a2 : · · · : ag),

with b1 6= 0, and we may assume that gcd(b1, a2, . . . , ag) = 1 by rescaling if
necessary.

We now present the sieve in the case that N 6= 65. In the case N = 65
we will need to adapt the sieve slightly, and we discuss this case in the proof
of Theorem 1 below. For each N 6= 65, we have that X+

0 (N)(Q) ∼= Z, and
we let R denote a generator of the Mordell–Weil group, so that

ψ(P ) = m ·R for some m ∈ Z.
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Let ` be a prime of good reduction for our models of X0(N) and X+
0 (N),

and consider the following commutative diagram, where ∼ denotes reduction
mod `, or a prime of K above `:

X0(N) X+
0 (N)

X̃0(N) X̃+
0 (N)

ψ

∼ ∼

ψ`

By commutativity we have that ψ`(P̃ ) = m · R̃, so that P̃ ∈ ψ−1` (m · R̃).

Write G` for the order of R̃ in the group X̃+
0 (N)(F`). Then

ψl(P̃ ) = m · R̃ = m0 · R̃

for some integer m0 satisfying 0 ≤ m0 < G` and m ≡ m0 (mod G`). We
note that ψ−1` (m · R̃) = ψ−1` (m0 · R̃). For each integer 0 ≤ m1 < G` we

explicitly compute the set ψ−1` (m1 ·R̃) ⊂ X̃0(N)(F`2). There are three cases:

(i) The set ψ−1` (m1 · R̃) consists of a pair of distinct points defined over
F`.
If ` is inert or ramifies in K, then ψ−1` (m · R̃) will not consist of a pair
of distinct points defined over F`, and so m 6≡ m1 (mod G`).

(ii) The set ψ−1` (m1 · R̃) consists of a pair of points defined over F`2 (with
each point not defined over F`).
If ` splits or ramifies in K, then ψ−1` (m · R̃) will not consist of a pair
of points defined over F`2 , and so m 6≡ m1 (mod G`).

(iii) The set ψ−1` (m1 · R̃) consists of a single point defined over F`.

Verifying the splitting behaviour of the prime ` in cases (i) and (ii) leaves
us with a list of possible values for m (mod G`).

We may then repeat this process with a list of primes `1, . . . , `s. For
each 1 ≤ i ≤ s we obtain a list of possibilities for m (mod G`i). This gives
a system of congruences that we may solve using the Chinese remainder
theorem to obtain a list of possibilities for m (mod lcm(G`i)1≤i≤s)). If no
solution exists to this system of congruences then we obtain a contradiction
and conclude that X0(N)(K) = X0(N)(Q).

Proof of Theorem 1 for N 6= 65. Let N ∈ N\{65}. We start by proving
that if d ∈ DN then X0(N)(Q(

√
d)) 6= X0(N)(Q). We computed the preim-

ages ψ−1(t ·R) for t ∈ Z with |t| ≤ 5 and verified the field of definition of the
points we obtained. For each d ∈ DN we found a pair of quadratic points in
X0(N)(Q(

√
d)).
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For the converse, we suppose that |d| < 100 with d /∈ DN and aim to
prove that X0(N)(Q(

√
d)) = X0(N)(Q). We note that this is immediate

if Q(
√
d) = Q, so we assume that Q(

√
d) is a quadratic field. Suppose,

for a contradiction, that P ∈ X0(N)(Q(
√
d))\X0(N)(Q). We applied the

Mordell–Weil sieve described above with the following (ordered) choice of
primes (we discuss this choice in Remark 2.1):

L = {` | d : ` - 2N} ∪ {` < 1000 : ` - 2N and q - G` for primes q > 7}. (1)

In each case this led to a contradiction.

Proof of Theorem 1 for N = 65. The proof of the theorem in this case is
very similar to the case N 6= 65. The key difference is that X+

0 (N)(Q) ∼=
Z ⊕ Z/2Z. We write Q for the 2-torsion point and choose a point R such
that any point in X+

0 (N)(Q) may be expressed as m · R + n · Q for some
m ∈ Z and n = 0 or 1. For our choice of R, we found that ψ−1(−R) and
ψ−1(−2R) consisted of pairs of quadratic points defined over Q(

√
−1) and

Q(
√
−79) respectively, proving one direction of the theorem.

For the converse, let d /∈ DN be such that Q(
√
d) is a quadratic field

and |d| < 100. Suppose, for a contradiction, that there exists a point P ∈
X0(N)(Q(

√
d))\X0(N)(Q). Either ψ(P ) = m ·R or m ·R +Q. In the first

case, we apply the sieve exactly as in the proof for N 6= 65 (with the same
choice of primes) to achieve a contradiction. In the second case, we again
apply the sieve in the same way, except that we work with the point m·R+Q
instead. To be precise, for each prime `, we have that P̃ ∈ ψ−1` (m · R̃+ Q̃),

and so we compute ψ−1` (m1 · R̃+ Q̃) for each 0 ≤ m1 < G`. By considering

each preimage and the splitting behaviour of ` in the quadratic field Q(
√
d)

we obtain a list of possibilities for m (mod G`). As in the previous case, we
achieved a contradiction for each d.

The total computation time for the proof of Theorem 1 was 2500 seconds
running on a 2200MHz AMD Opteron.

Remark 2.1. We discuss the choice of primes L used in the proof of the
theorem. We start by choosing the primes that ramify as these usually
eliminate the greatest number of possibilities for m (mod G`). We then
choose primes ` such that the values G` are small and share many prime
factors. There are two reasons for doing this. First, when solving each
system of congruences we are more likely to obtain fewer solutions, and
ultimately a contradiction. Secondly, we avoid (or reduce the likelihood) of
a combinatorial explosion, since the lowest common multiple of the G` can
grow very quickly if the primes ` are not chosen carefully. We note that
the largest prime ` we in fact ended up reaching was ` = 593 in the case
N = 101 and d = 31.
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Remark 2.2. As discussed in the introduction, we have not considered the
curves X0(37) or X0(43). The curve X0(37) is bielliptic with an elliptic
quotient of positive rank, but it is also hyperelliptic, and therefore has two
sources of infinitely many quadratic points, meaning the sieve we have pre-
sented would not work. The reason the sieve does not work for the curve
X0(43) is due to the fact that X0(43) has a non-cuspidal rational point that
is fixed by the Atkin–Lehner involution w43. The sieve cannot distinguish
between this rational point and a putative quadratic point.

Although we have presented this sieve for certain specific bielliptic modu-
lar curves X0(N), the sieve could be suitably adapted to compute quadratic
points on a wider range of curves. Indeed, it should even be possible to
apply a similar sieve to compute quadratic points on any curve X with a
degree 2 quotient of genus ≥ 1, if there are finitely many quadratic points
on X not arising as pullbacks of rational points on this quotient, and that
these have all been computed. Although, as in the case X0(43) discussed
above, there may be obstructions to the sieving process succeeding.

3 Example computations

In this section we provide some details of computations in the case N = 53.
We start by obtaining a model for the genus 4 curve X0(53) on which the
Atkin–Lehner involution acts diagonally. By searching for relations be-
tween a diagonalised basis of cusp forms we obtain the following model
in P3

x1,x2,x3,x4 :

x21 − x22 + 2x2x3 − 6x2x4 + 11x23 − 6x3x4 − x24 = 0,

x31 − x1x22 + 2x1x2x3 − 6x1x2x4 + 11x1x
2
3 − 6x1x3x4 − x1x24 = 0,

x21x2 − x32 + 2x22x3 + 5x2x
2
3 + 5x2x

2
4 − 6x23x4 + 6x34 = 0,

x21x3 − x22x3 + 2x2x
2
3 − 6x2x3x4 + 11x33 − 6x23x4 − x3x24 = 0,

x21x4 − x2x23 + 3x2x3x4 − 5x2x
2
4 + 10x23x4 − 6x3x

2
4 = 0,

x22x4 − x2x23 + x2x3x4 + x2x
2
4 − x23x4 + x34 = 0.

The equations for the Atkin–Lehner involution on this model are given by
w53 : (x1 : x2 : x3 : x4) 7→ (−x1 : x2 : x3 : x4). The degree 2 map
to the elliptic curve X+

0 (53) is then simply given by the projection map
(x1 : x2 : x3 : x4) 7→ (x2 : x3 : x4). We then apply a transformation to take
the image of this projection map to the following Weierstrass form:

X+
0 (53) : Y 2Z +XY Z + Y Z2 = X3 −X2Z.

The map ψ is given by

ψ : X0(53) −→ X+
0 (53)

(x1 : x2 : x3 : x4) 7−→ (x2x3 + x3x4 : x22 + x2x4 − x3x4 + x24 : x3x4).
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We choose R = (0 : −1 : 1) ∈ X+
0 (53)(Q) as a generator of the Mordell–Weil

group.
We now exhibit some steps in the sieving process for d = −47. As in the

previous section, we will assume that P ∈ X0(53)(Q(
√
d))\X0(53)(Q) and

write ψ(P ) = m·R. We apply the sieve with the primes ` = 5, 7, and 11. The
prime ` = 5 is inert in Q(

√
d) and we find that m ≡ 3 or 5 (mod 6). Next,

` = 7 splits and we find that m ≡ 0, 3, 4, 7, or 11 (mod 12). Combining
this with the previous condition we have m ≡ 3 or 11 (mod 12). Finally,
the prime ` = 11 is inert and we find that m ≡ 1, 2, 5, 7, or 10 (mod 12), a
contradiction. We conclude that X0(53)(Q(

√
−47)) = X0(53)(Q).

We have in fact proven that X0(53)(K) = X0(53)(Q) for any quadratic
field K in which 5 and 11 are inert and 7 splits. In a similar vein, when
d = 3 we achieved a contradiction using only the prime ` = 3, and this
proves that X0(53)(K) = X0(53)(Q) for any quadratic field K in which 3
ramifies. This type of result is similar to those appearing in [11], and we
could seek to prove more results along these lines, but we do not pursue this
here.

In order to verify that the sieve is working as expected, we can try
applying it for a value d ∈ D53. For example, applying the sieve with
d = −11 ∈ D53 and the primes in L (defined as in (1)) outputs a list of
possibilities for m (mod lcm(G`)`∈L), where lcm(G`)`∈L = 63504000. We
find that either m = 1 or that m ≥ 1905121. The fact that m = 1 remains
as a possibility is because ψ−1(1 · R) consists of a pair of quadratic points
defined over Q(

√
−11).

It is interesting to consider how the results of Theorem 1 overlap with
the results one may obtain by applying the techniques of [13], which give a
criterion for testing whether X0(N)(Q(

√
d)) = X0(N)(Q) by checking local

points on the curve X
(d)
0 (N). This curve is the quadratic twist of X0(N)

by the Atkin–Lehner involution wN and the quadratic extension Q(
√
d)/Q

(see [7, p. 628] for a precise definition). For N = 53, in Theorem 1 we prove
that X0(N)(Q(

√
d)) = X0(N)(Q) for 117 values of d, with d squarefree

and |d| < 100. Applying [13, Theorem 1.1],1 we reproduced these results
for 94 of these values. For some values of d, where our sieving method
works, but applying [13, Theorem 1.1] fails, we can often obtain examples
of curves that violate the Hasse principle. Continuing our example with d =

−47, we find that X
(−47)
0 (53)(Q) has points everywhere locally by applying

[13, Theorem 1.1]. However, X
(−47)
0 (53)(Q) = ∅, as proven above. Similar

examples are considered in [13, pp. 344–346], where a standard Mordell–Weil
sieve is applied to twists of a hyperelliptic curve.

1As discussed in [1, p. 39], some care is needed in order to interpret correctly parts (5)
and (6) of [13, Theorem 1.1].
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