
ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Annual Review of Statistics and Its Application

Simulation-Based Bayesian
Analysis
Martyn Plummer
Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom;
email: martyn.plummer@warwick.ac.uk

Annu. Rev. Stat. Appl. 2023. 10:401–25

First published as a Review in Advance on
November 18, 2022

The Annual Review of Statistics and Its Application is
online at statistics.annualreviews.org

https://doi.org/10.1146/annurev-statistics-122121-
040905

Copyright © 2023 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords

Bayesian computation, Bayesian inference, Gibbs sampling, graphical
model, statistical software, MCMC, INLA, BUGS, Stan, JAGS, PDMPs

Abstract

I consider the development of Markov chain Monte Carlo (MCMC) meth-
ods, from late-1980sGibbs sampling to present-day gradient-basedmethods
and piecewise-deterministic Markov processes. In parallel, I show how these
ideas have been implemented in successive generations of statistical software
for Bayesian inference. These software packages have been instrumental
in popularizing applied Bayesian modeling across a wide variety of scien-
tific domains. They provide an invaluable service to applied statisticians in
hiding the complexities of MCMC from the user while providing a conve-
nient modeling language and tools to summarize the output from a Bayesian
model. As research into newMCMCmethods remains very active, it is likely
that future generations of software will incorporate newmethods to improve
the user experience.

401

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

mailto:martyn.plummer@warwick.ac.uk
https://doi.org/10.1146/annurev-statistics-122121-040905
https://doi.org/10.1146/annurev-statistics-122121-040905
https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-122121-040905
https://creativecommons.org/licenses/by/4.0/

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

1. INTRODUCTION

Over the last 30 years, Markov chain Monte Carlo (MCMC) methods have expanded the scope
of applied Bayesian statistics across diverse scientific fields. The growth in popularity of MCMC
has been accelerated by the wide availability of free software. Essential features of this software
include:

1. Providing a flexible and expressive modeling language that allows users to build large
complex models from simple components. This capability represented a radically differ-
ent approach from traditional statistical software, which provided a set of canned routines
for fixed classes of models. With a flexible Bayesian modeling language, the user can eas-
ily extend existing models to account for issues such as measurement error, missing data,
censoring and truncation, or hierarchical structure (Gilks et al. 1993).

2. Hiding the implementation details of MCMC from the user. Several competing sampling
methods to analyze a given model may be available. The software takes care of the choice
of sampling method. In addition, most sampling methods have parameters that need to
be tuned for optimal performance. The software also takes care of adaptively tuning the
sampling method. Ultimately, the user does not need to care about how the samples are
drawn as long as the sampling is efficient. From the point of view of statistical methodology,
the software packages are “black boxes,” or, perhapsmore accurately, “gray boxes,” since they
may allow partial control over the sampling methods.

3. Communicating with other software. Bayesian software is typically designed to do one
thing only—efficient sampling—allowing the complexities of data formatting and analyzing
output to be carried out in a more suitable environment such as R or Python.

Examples of Bayesian software with these features include BUGS (Lunn et al. 2012), JAGS
(Plummer 2017), NIMBLE (de Valpine et al. 2022), and Stan (Stan Dev. Team 2022). The same
description may be used for other packages that do not use MCMC, such as R-INLA (Iterated
Nested Laplace Approximation) (Rue et al. 2009).

In this article I review the historical development of software for Bayesian inference.The article
focuses on MCMC, which remains the dominant methodology in this area, but also touches on
alternatives such as INLA. The review tracks the way that advances in software have been driven
by advances in statistical methodology.Themain thesis of the review is that the success of general-
purpose Bayesian statistical software relies on two important pillars: (a) the existence of statistical
methods that can be easily tuned for optimal performance and so are widely applicable and (b) the
availability of reusable software components.

2. MARKOV CHAIN MONTE CARLO

The 1980s saw the convergence of three powerful ideas: graphical models, Gibbs sampling, and
Bayesian inference. At the same time, exponential growth in computing power reached a critical
point that enabled these ideas to be translated from theory to practice. In this section I review some
essential information onMCMCmethods, covering only the material necessary to understand the
rest of the article. A more comprehensive overview is presented by Brooks et al. (2011).

Bayesian computations involve high-dimensional integration to derive the posterior distribu-
tion. Analytic solutions to these integrals are rare and are generally limited to conjugate prior
distributions, that is, where the prior and the posterior come from the same family. Conjugate
priors are useful only in the simplest models.Numerical approximations such as Gaussian quadra-
ture do not scale well to high dimensions. This situation changed with the rediscovery of MCMC

402 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

methods in the 1980s (Gelfand & Smith 1990). MCMC was first developed in the 1950s to solve
problems in statistical physics (Metropolis et al. 1953). The wide applicability of MCMC to statis-
tical models was not fully appreciated until the rapid development of desktop computing made the
methods computationally feasible and accessible. With MCMC, we relax the search for an exact
solution to the posterior distribution, instead relying on the empirical distribution of a sequence
of samples. Furthermore, we do not require these samples to be independent. Instead, we create
a Markov chain that has the target distribution as its stationary distribution. Under suitable reg-
ularity conditions, the Markov chain will converge to the target distribution, allowing inference
from posterior samples after a suitable “burn-in” period.

To make matters more concrete, suppose we wish to estimate the distribution p(θ) for θ ∈ Rd .
In Bayesian applications, the distribution that we wish to estimate is the posterior distribution
p(θ#D) for some data D, but for notational convenience we suppress the dependence on D. The
aim of Monte Carlo inference is to conduct inference on p(θ) by drawing a sequence of samples
θ(1), θ(2), . . . θ(T). Then, for a function g(θ) with finite expectation under p(θ), the expectation is
estimated by the sample mean

g(T) =
(
1
T

T∑
t=1

g(θ(t))

)
. 1.

InMCMC, the sequence θ(1), θ(2), . . . θ(T) is a sequence of dependent samples from aMarkov chain,
with p(θ) as its stationary distribution. Under mild regularity conditions, the Markov chain is
ergodic so that g(T) is a consistent estimator of E(g):

lim
T→∞

g(T) = E
[
g(θ)

]
. 2.

In practice, convergence may be extremely slow, so that the sample mean in Equation 1 may be
a poor estimator even with a large number of iterations T. Ideally, the Markov chain should be
geometrically ergodic. Then, the Wasserstein distance between the distribution of θ(t) and the
target p(θ) diminishes as t → ∞ at a geometric rate. When the chain is geometrically ergodic, a
central limit theorem applies to the sample mean in Equation 1, which has an asymptotic normal
distribution as T → ∞.

The particular form of MCMC developed in the 1980s is named Gibbs sampling (Geman &
Geman 1984), in honor of JosiahWillardGibbs (1839–1903). Suppose we have d random variables
θ = (θ1 . . . θd) with joint distribution p(θ). At each iteration of the Gibbs sampler, we visit each
variable in turn and replace its current value θ i with a new value θ ′

i for i in 1. . .d. The new value
is a sample from the full conditional distribution p(θi | θ−i), where θ−i = (θ ′

1 . . . θ ′
i−1, θi+1 . . . θd) is

the state of the random variables, except for θ i, before we draw the new sample.
The worst-case computational complexity of the Gibbs sampler isO(d2). If the full conditional

density p(θi | θ−i) depends on all d − 1 elements of θ−1, then the computational cost of sampling
the new value θ ′

i is O(d) as d increases. At each iteration we draw d samples, once each for i =
1, . . .d, which is also O(d), giving an overall complexity of O(d2). An algorithm of this computa-
tional complexity would be impractical for very largemodels.However, in practice many statistical
models have a sparse representation in terms of a conditional independence graph (CIG), in which
variables are represented by nodes. The absence of an edge between two nodes in a CIG indicates
that the two corresponding variables are independent of each other, conditional on the values of
all other nodes in the graph.

In a CIG, the full conditional distribution p(θi | θ−i) of variable θ i depends only on its neigh-
bors in the graph. An archetypal CIG is a lattice, illustrated in Figure 1. In this example, the

www.annualreviews.org • Simulation-Based Bayesian Analysis 403

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Figure 1

Lattice illustrating conditional independence in a graph. The light gray node is conditionally independent of
the white nodes given its dark gray neighbors. The remaining nodes, in white, do not contribute to its full
conditional distribution.

highlighted node depends only on its four neighbors. The remaining nodes do not contribute to
its full conditional distribution. The same argument applies to all nodes. As a result, sampling a
new value for a given node takes constant time, regardless of the size of the lattice. Therefore, the
computational complexity of the Gibbs sampler scales linearly with the size of the graph.

Gibbs sampling on a graph fits perfectly with Bayesian inference. If a node on a graph repre-
sents an observed quantity, then the Gibbs sampler skips that node, leaving it at its observed value.
The stationary distribution of the resulting Markov chain is the conditional distribution of the
unobserved nodes given the observed nodes, in other words, the posterior distribution that is the
target of Bayesian inference.

Sampling from the full conditional distribution p(θi | θ−i) is not always feasible. However, it
is not necessary to draw an independent sample from the full conditional. It is sufficient to make
a transition θi → θ ′

i that is reversible. Let pt
(
θi → θ ′

i

)
be the probability of a transition from the

current value θ i to the new value θ ′
i . Reversibility is defined by the detailed balance condition:

p (θi | θ−i) pt
(
θi → θ ′

i

) = p
(
θ ′
i | θ−i

)
pt
(
θ ′
i → θi

)
. 3.

There are two qualitatively different probability terms in Equation 3. The conditional proba-
bility p (θi | θ−i) is derived from the joint distribution p(θ), which is defined by the model. The
transition probability pt

(
θi → θ ′

i

)
is determined by the transition kernel of the Markov chain

and is completely independent of p(θ). Many choices of pt
(
θi → θ ′

i

)
exist for a given model. We

emphasize the distinction between the two probabilities with the subscript t for the transition
probabilities. The goal of statistical software for MCMC is to determine appropriate transition
probabilities pt

(
θi → θ ′

i

)
without any user input and, in fact, to hide these probabilities from the

user.
Under broad conditions, any transition kernel can be made reversible by the addition of a

Metropolis–Hastings acceptance step (Metropolis et al. 1953, Hastings 1970).We can rewrite the
detailed balance condition in Equation 3 as R = 1, where

R = p
(
θ ′
i | θ−i

)
p
(
θi | θ′

−i
) × pt

(
θi → θ ′

i

)
pt
(
θ ′
i → θi

) 4.

is theMetropolis–Hastings acceptance ratio. The move θi → θ ′
i generated by the transition kernel

is considered a proposal,which is acceptedwith probabilitymin(1,R). If the proposal is rejected,we

404 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

remain at the current value θ i. The addition of the acceptance step makes the transition reversible.
The modified algorithm is known as Metropolis within Gibbs.

2.1. Markov Chain Monte Carlo in Practice

While Markov chain theory guarantees that the chain will converge to the target distribution, it is
relatively silent on how long convergence will take. Theoretical research on convergence bounds
did not lead to practically usable criteria. Therefore, the determination of MCMC convergence
remains largely empirical.

In practice, it is customary to discard the initial portion of the Markov chain. This process is
referred to as burn-in. The burn-in period may coincide with the samplers adapting their behav-
ior for optimal efficiency (Andrieu & Thoms 2008). After burn-in, samples of the parameters of
interest can be monitored. Visual inspection of the monitored values normally uses trace plots,
which show how each scalar parameter changes with time. When trace plots show high autocor-
relation, the chain is said to display poor mixing. In this case it is customary to thin the chain
by monitoring only every m iterations for m k 1. The discarded samples do not contribute any
additional information about the target distribution when the autocorrelation is high.

It is also customary to run several parallel chains, where the initial values and the transitions
are completely independent of one another. The use of the term “parallel chain” predates the
current multicore era of computing and simply refers to the realizations of the Markov chain
being statistically independent. However, in practice most software will run parallel chains on
different cores.

It remains to make a determination of whether the chain has converged sufficiently for the
monitored values to be considered an approximate sample from the posterior distribution. Af-
ter some vigorous activity on convergence diagnostics in the early 1990s (reviewed in Cowles &
Carlin 1996), consensus has largely settled on the Gelman–Rubin diagnostic (Gelman & Rubin
1992), which is based on starting parallel Markov chains from widely dispersed starting points.
The degree of convergence can then be assessed by comparing within-chain and between-chain
variation, with a summary statistic R̂ that tends to one as the Markov chains converge. The
Gelman–Rubin diagnostic has evolved over the years, notably with the introduction of the split
R̂ that separates the beginning and the end of each chain, and it continues to be refined (Gelman
et al. 2014, Vats & Knudson 2021, Vehtari et al. 2021).

3. BUGS

BUGS (Bayesian inference Using Gibbs Sampling) is a long-running project to develop Bayesian
modeling software. The BUGS project began in 1989 at the Medical Research Council (MRC)
Biostatistics Unit in Cambridge, United Kingdom.

The BUGS developersmaintain that the BUGS project was independent ofGelfland&Smith’s
(1990) paper, which appeared around the time of the launch of the BUGS project. It was in fact in-
spired by earlier developments in artificial intelligence. In the 1980s it was understood that expert
systems could represent qualitative knowledge in the form of a directed acyclic graph (DAG), or
influence diagram, and that uncertainty could be represented by a probability distribution on the
graph (Lauritzen et al. 1990). Furthermore, efficient algorithms for updating the probability in the
presence of new data were developed (Lauritzen& Spiegelhalter 1988).These ideas, together with
an understanding of the value of object-oriented programming, formed the conceptual foundation
of the BUGS project.

The BUGS software has evolved through four different versions, which, confusingly, have
different names. These versions are described below, but first I describe the key conceptual
contribution of the BUGS project to Bayesian modeling, which is the BUGS language.

www.annualreviews.org • Simulation-Based Bayesian Analysis 405

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

3.1. The BUGS Language and Directed Acyclic Graphs

Central to the success of BUGS has been the BUGS language (Thomas 2006) for specifying
graphical models. The BUGS language has been adopted by other projects, such as JAGS and
NIMBLE, so it is important to distinguish the language from the software.

The BUGS language is syntactically similar to S, or R, but is declarative, not procedural. State-
ments in BUGS define the static relationships between variables in the model, not instructions on
how to carry out a calculation.

I illustrate the BUGS language with the Eight Schools example,which was originally developed
by Rubin (1981) and has since been popularized by Gelman et al. (2014, section 5.5) as a teaching
example.The data come from an experiment to see how short-term coaching could improve scores
on a standardized school test. The coaching was applied across J = 8 schools with varying results.
The estimates of the coaching effect y1. . .yJ from the eight schools have known standard errors
σ 1. . .σ J, which vary across schools because varying numbers of students take the training in each
school. The aim is to estimate the average effect, accounting for the heterogeneous information
coming from the participating schools.

The model used to analyze the Eight Schools data is an example of a normal-normal
hierarchical model,

y j | θ j ∼ N (θ j , σ 2
j),

θ j | µ, τ ∼ N (µ, τ 2),
5.

where θ j is a random effect representing the effect of training in school j. The same model has an
alternative noncentered parameterization, which is used as the basis of the BUGS model:

y j | θ j ∼ N (θ j , σ 2
j),

θ j = µ + τη j ,

η j ∼ N (0, 1).

6.

Listing 1 shows the BUGS code for the Eight Schools example. The code is an almost exact
translation of the mathematical description of the noncentered parameterization in Equation 6,
except that we must also supply proper prior distributions for mu and tau.

Listing 1 BUGS code for the Eight Schools example

The BUGS language uses an S-like syntax to define the model in terms of a series of relations.
Relations may be of two types. A stochastic relation, denoted by a tilde (~), defines a random
variable on the left-hand side that is parameterized in terms of the quantities on the right. A
logical relation, denoted by a left arrow (<-), defines a quantity on the left-hand side that is a
deterministic function of the quantities on the right.

Listing 1 shows that relations indexed by j appear inside a for loop. Despite appearances, the
for loop is not a control flow statement but may be considered a macro that expands the contents
inside the curly braces J times, replacing index j with every integer value from 1 to J.

406 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Figure 2

Directed acyclic graph for the Eight Schools model. The graph was created with the WinBUGS Doodle
tool, which allows users to interactively create a graphical model.

The normal distribution in the BUGS language (dnorm) is parameterized in terms of the mean
and the precision, which is the reciprocal of the variance. This was an early language design deci-
sion that simplified the use of conjugate prior distributions (a gamma prior on the precision of a
normal random variable is conjugate). If the user wishes to define a weakly informative prior for a
normal random variable, then it should have a low precision, as observed in the small value of 10−6

assigned to the precision parameter of mu. For the outcome variable y[j], the standard deviation
parameter sigma[j] is transformed into a precision parameter precision.y[j], which is then
passed as the second argument of the dnorm distribution.

The BUGS language is largely agnostic about what is data and what is a parameter. There are
some restrictions, however. Any quantity that does not appear on the left-hand side of a relation
must be supplied as data. In the Eight Schools example (Listing 1), these quantities are J, used as
the limit of the for loop, and sigma[1]. . .sigma[J], used to define the precision of y[1]. . .y[J].
Apart from this restriction, the BUGS language makes no distinction between data and param-
eters. This distinction is made when the data are supplied to the model. For the Eight Schools
example, we may choose not to supply data values for y[1:J], and in this case the parameters
are sampled from their prior distribution. If we supply data values for y[1:J], then BUGS will
choose appropriate samplers for the unobserved stochastic variables and sample them from their
posterior distribution given y[1:J].

The BUGS language description defines a DAG, as shown in Figure 2, with directed edges
leading from quantities on the right-hand side of a relation to the quantity on the left. The BUGS
program takes the description of the model and translates it into a virtual graphical model (VGM)
in computer memory. The joint prior distribution of the variables in the model factorizes as

d∏
i=1

p (vi | Parents(vi)), 7.

where Parents(vi) denotes the set of parents of node vi.

www.annualreviews.org • Simulation-Based Bayesian Analysis 407

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Figure 3

Deriving a conditional independence graph (right) from a directed acyclic graph (left). Nodes A and C are
“married” in the conditional independence graph because they have a common child node, B.

In order to determine the conditional independence relationships forGibbs sampling, theDAG
must be translated into a CIG. This process involves three steps. First, we marginalize out any
deterministic nodes so that only stochastic nodes remain. Second, we draw an undirected edge be-
tween two nodes with a common stochastic child.Third, we replace all directed edges in the graph
with undirected edges.This step is known as moralizing the graph because it marries parents.This
process is illustrated for a simple graph in Figure 3.

3.2. Classic BUGS

The first version of the BUGS program, retrospectively named classic BUGS, was written in
Modula-2 and ran onMS-DOS and Unix (Gilks et al. 1994, Spiegelhalter et al. 1996a). It included
a scripting language for running a model as well as facilities for reading and writing data files.
Input data could be prepared in S-PLUS, the commercially available distribution of S, and then
written to file using the dump() function. Conversely, output files from BUGS could be read
into S-PLUS and analyzed with a suite of functions called CODA (Convergence Diagnostics and
Output Analysis), which was later developed into an R package (Plummer et al. 2006).

The workhorse algorithm for classic BUGSwas adaptive rejection sampling (ARS) (Gilks 1992,
Gilks &Wild 1992). ARS draws a sample from a univariate distribution with a log concave density.
It works by first constructing a piecewise-linear hull around the log density that is easy to sample
from. Then, rejection sampling is used to determine whether to accept the sampled value on the
basis of how closely the hull approximates the log density. As the name suggests, the algorithm is
adaptive: Rejected sampling points are used to improve the accuracy of the hull approximation so
that the probability of a successful draw increases with every rejection.

An expert system built into classic BUGS recognized situations where the full conditional dis-
tribution of a node was log concave and applied the ARS algorithm. This ability to identify and
sample log-concave distributions enabled Gibbs sampling on a graph without the user being re-
stricted to conjugate priors, the strong condition that had previously restricted the application of
Bayesian models. The algorithm was later generalized to adaptive rejection Metropolis sampling
(ARMS), which added a Metropolis–Hastings acceptance step when the full conditional is not log
concave, although ARMS is efficient only in situations when the log density is close to being log
concave (Gilks et al. 1995).

In addition to providing the software, the BUGS authors provided a rich set of examples from
the contemporaneous literature illustrating the use of BUGS (Spiegelhalter et al. 1996b,c). Many
of these examples were taken from Breslow & Clayton (1993), who assembled a set of examples
to illustrate approximate inference for generalized linear mixed models (GLMMs). These worked

408 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

examples provided templates for new users to get started with modeling in BUGS by adapting an
existing example to their own problems.

3.3. WinBUGS

In 1996, the BUGS project moved to Imperial College London, where the second generation of
BUGS was developed.WinBUGS (Lunn et al. 2000) was written in Component Pascal and built
with the Black Box Component Builder, originally a commercial product from Oberon Microsys-
tems that is now available as open source software (see https://blackboxframework.org). As its
name suggests, WinBUGS was designed to run on Windows, and it had a rich graphical user in-
terface (GUI). Initially, the user was required to use the GUI to run the model, but that changed
in later versions, when a scripting language was introduced. An interface to the R language was
developed in the form of the R2WinBUGS package (Sturtz et al. 2005).

A distinguishing feature of the Black Box Component Builder is its focus on compound doc-
uments, which may contain a richer set of entities than text alone. This feature was used in the
WinBUGS manual (Spiegelhalter et al. 2003), where, for each example, a single compound doc-
ument contains the model description, the data, initial values, and a human-readable rich-text
description. This might be considered an early example of reproducible research. However, Black
Box compound documents did not gain widespread use in statistics outside of WinBUGS.

The modular structure of WinBUGS allowed a richer set of samplers than the classic BUGS
software and led to the development of several extensions for specialized tasks:

■ The WinBUGS Differential Interface for models defined by differential equations.
■ TheWinBUGSDeveloper Interface, which enabled users to define their own functions and

hard-code them into WinBUGS (Lunn 2003,Wetzels et al. 2010).
■ PKBugs (Lunn et al. 1999), an interface for defining Bayesian pharmacokinetic/

pharmacodynamic models (Wakefield et al. 1999).
■ The WinBUGS Jump Interface (Lunn et al. 2009) for variable selection models using

reversible jump MCMC (Green 1995).

Some of these extensions improve on the flexibility of the BUGS language by allowing users to
define special classes of models more easily while retaining the flexibility of WinBUGS. Some
extensions provide specialized sampling routines to allow for more efficient sampling.

The final version of WinBUGS was 1.4.3. It is still available at the MRC Biostatistics Unit
website but is no longer actively developed.

3.4. OpenBUGS

OpenBUGS (see https://www.openbugs.net) was the third incarnation of the BUGS software.
It began in 2004, when lead developer Andrew Thomas moved to Helsinki. OpenBUGS was the
first open source version of BUGS and was released under the GNU General Public License,
version 2. OpenBUGS is not limited to the Windows operating system; it also runs on Linux
using a command line interface rather than a GUI. An interface to R is provided by the BRugs
package (Thomas et al. 2006).

OpenBUGS was developed in parallel withWinBUGS, with the rationale thatWinBUGS was
the stable release version while OpenBUGS was the experimental development version subject to
incompatible changes from one release to another. OpenBUGS was considered stable enough
to be a reliable replacement for WinBUGS from version 3.0.7. OpenBUGS 3.2.3 was the final
release of OpenBUGS.

www.annualreviews.org • Simulation-Based Bayesian Analysis 409

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://blackboxframework.org
https://www.openbugs.net

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

The GeoBUGS extension to OpenBUGS (Thomas et al. 2004) includes some features specif-
ically for geospatial models. However, the WinBUGS extensions described in the previous
section were not ported over to OpenBUGS.

3.5. MultiBUGS

The current version of BUGS isMultiBUGS (Goudie et al. 2020), which was designed specifically
for a multicore computing environment. Previous generations of software could count onMoore’s
law, which posited a doubling of the number of transistors every 18 months, thereby guaranteeing
increased performance on new hardware without fundamental changes to the software. In themid-
2000s, Moore’s law was opposed by the limitations of clock speeds and power consumption, so
hardware design switched to providing multicore processors. These offer improved performance
only if the software is designed for a multicore environment.

Gibbs sampling can be parallelized in three ways. The first way is to run parallel chains on
different cores. The second way involves parallelizing the log density calculations that occur at
each step of the MCMC algorithm. Many MCMC algorithms require the calculation of the log
density of the variables being sampled. This density is typically a sum of separate terms, and when
the number of terms is large, there may be a speed benefit in doing these calculations in parallel.
The third way to parallelize MCMC calculations is based on parallel updating of different nodes
in the same model. This can be done if the CIG can be partitioned into sets of nodes {S1. . .SK}
such that no nodes in Sk have an edge between them for k = 1. . .K.

Partitioning theCIG in this way is an example of a vertex coloring problem.Figure 4 illustrates
a coloring of the lattice from Figure 1. Only K = 2 colors are required to separate nodes that are
conditionally independent of one another. The Gibbs sampling algorithm can alternate between
updating nodes of the first color in parallel and nodes of the other color in parallel.

The regular structure of the lattice in Figure 4 makes the coloring problem easy. In general,
vertex coloring is computationally hard. For K > 2 it is NP-complete to determine whether a
graph admits a K-coloring (Garey et al. 1976). However, a CIG in a BUGS model is derived from
a DAG with a rich underlying structure that can be used to simplify the problem. Goudie et al.
(2020) note that each node in the DAG has a depth defined by the shortest distance from a root
node (one with no parents). Nodes with the same depth can be updated in parallel if they have no
common child nodes.

Figure 4

The lattice admits a 2-coloring, such that all dark gray nodes are conditionally independent of one another
and can be updated in parallel. Likewise, all the light gray nodes can be updated in parallel.

410 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

In a modern high-performance computing environment with many cores, the three forms of
parallelization can yield important improvements in run time. Goudie et al. (2020) cite the ex-
ample of a large GLMM with 425,112 observations and 20,426 random effects. Using 48 cores,
MultiBUGS was faster than OpenBUGS by a factor of 64.

4. JAGS

JAGS (Just Another Gibbs Sampler) is a clone of BUGS that has a completely independent code
base but aims for similar functionality (Plummer 2017). JAGS is written in C++ and runs on
Windows, MacOS, and Linux. It is published under the GNU General Public License, version
2. JAGS would not have been possible without the R math library, which provides high-quality
algorithms for randomnumber generation and calculation of quantities associatedwith probability
distributions. At least four interfaces between JAGS and R exist (Su & Yajima 2015, Denwood
2016, Kellner 2021, Plummer 2021).

JAGS has a modular structure. A module may be loaded at run time that adds new functions
and distributions to the BUGS language. A module may also define new sampling methods and
new monitors, which are ways of summarizing the streaming data generated by the Markov chain.
Modules contributed by third parties include the wiener module (Wabersich & Vandekerckhove
2014) for inference on Wiener processes and the pexm module (Mayrink et al. 2021) for models
using piecewise-exponential distributions.

The workhorse sampling method for JAGS is slice sampling (Neal 2003), which can be applied
to both continuous- and discrete-valued nodes. The glm module, which comes with the JAGS dis-
tribution, incorporates efficient samplers for GLMMs. These samplers are based on the principle
of data augmentation, a commonly used technique to simplify the structure of a graphical model
by adding new nodes (Hobert 2011). In this case, data augmentation reduces GLMMs with binary
outcomes (Albert & Chib 1993, Holmes & Held 2006, Polson et al. 2013) or binary and Poisson
outcomes (Frühwirth-Schnatter et al. 2009) to a linear model with normal outcomes.

This reduction to a normal linear model allows block updating of all the parameters in the
linear predictor, which is much more efficient than Gibbs sampling. The underlying engine for
the linear model uses sparse matrix algebra (Davis 2006), which handles fixed and random effects
simultaneously.

Block updating solves one of the disadvantages of Gibbs sampling. It is strongly dependent
on the parameterization of the model. If two variables have a high posterior correlation but are
updated independently using Gibbs sampling, then the Markov chain will exhibit high autocor-
relation for both variables. Practitioners can learn to recognize situations where high posterior
correlation is likely to occur and reparameterize the model to avoid the problem. A better solution
is to do block updating of correlated parameters so that they move together.

5. NIMBLE

NIMBLE (Numerical Inference for statistical Models for Bayesian and Likelihood Estimation) is
another engine for Bayesian modeling (de Valpine et al. 2017, 2022). NIMBLE uses a dialect of
BUGS language with an extended syntax. One of these extensions is the use of named arguments
for distributions. This feature allows distributions to have multiple parameterizations, freeing the
user from the historical restriction to parameterizations that were convenient for conjugacy but
not convenient for understanding (de Valpine et al. 2022).

The extended BUGS syntax can be illustrated with the Eight Schools example (Listing 2),
which can be compared with the BUGS version (Listing 1). In the NIMBLE version, the user can
specify directly that σ i is the prior standard deviation of yi, removing the need for a transformation.

www.annualreviews.org • Simulation-Based Bayesian Analysis 411

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Likewise, the prior distribution of µ is defined in terms of its large standard deviation rather than
its small precision.

Listing 2 NIMBLE BUGS code for the Eight Schools example

NIMBLE is built on top of R, and it brings the flexibility and transparency of the R language
to Bayesian modeling.Model objects can be queried and modified, and the choice of samplers can
be customized. NIMBLE users can also extend the scope of the BUGS language by writing their
own functions and distributions. New samplers can also be defined in a simplified version of the
R language.

Running MCMC models in R is too slow to be practically useful. In order to overcome this
limitation,NIMBLE has a back end that converts R code to C++ and then compiles it into object
code. The details of this compilation process are hidden from the user, who continues to use the
R interface and does not need any understanding of C++. The NIMBLE compiler is not tied
to the use of Bayesian models but can be used to speed up any numerical code written in R as
long as it is compatible with the simplified version of R supported by the compiler. The NIMBLE
compiler allows familiar control flow statements from R and supports linear algebra through the
Eigen library (Guennebaud et al. 2010).

NIMBLE’smodular design creates a cleaner separation between the front end and the back end.
Models defined in the BUGS language do not have to be analyzed usingMCMC for inference but
can in principle be analyzed with any algorithm. Sequential Monte Carlo algorithms (bootstrap
particle filter, auxiliary particle filter, ensemble Kalman filter, iterated filter2, and particleMCMC)
are provided in the nimbleSMC package (Michaud et al. 2021, NIMBLE Dev. Team 2021).

6. GRADIENT-BASED METHODS

Gradient-based methods for MCMC may be motivated by analogy with optimization problems.
Suppose that we are interested only in finding the posterior mode, not the full posterior distri-
bution. In this case, we could use an optimization method to find the maximum value of the log
density. This could be done with direct search optimization methods, which rely only on function
evaluations. However, it is more efficient to use optimization methods that use the gradient of the
log density, such as gradient ascent.

Returning to the problem of finding the full posterior distribution, MCMC methods that rely
only on evaluating the log density without using gradient information are inefficient. This in-
efficiency manifests as random walk behavior, where the Markov chain tends to go back over a
previously explored area of the sample space instead of moving to a new one, thus providing no
new information about the posterior distribution while using computation time.

Random walk behavior can cause long excursions into the tail of the distribution, where the
density is low and the chain is supposed to spend only a small proportion of time. When tail
excursions occur, practical remedies such as extending the run time and increasing the thinning
interval will not, in general, be effective, as the run time will be too long to be practically useful.

412 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Gradient-based MCMC methods rely on evaluating the gradient of the log density at each
step. The implementation of gradient-based methods relies heavily on automatic differentiation
(autodiff), a methodology from computer algebra for efficiently calculating the derivatives of func-
tions expressed as computer programs (Baydin et al. 2018). Briefly, autodiff takes a function that
evaluates the log density, analyzes the syntax of the function body, and creates a new function that
returns the gradient. This process needs to be done only once, and then the gradient function can
be called at each iteration. Autodiff works with functions of multiple arguments and can there-
fore calculate the partial derivatives of the log density with respect to all continuous parameters,
allowing block updating of all of these parameters.

6.1. Langevin Diffusions

Langevin diffusions are continuous-time Markov processes based on the Langevin stochastic
differential equation,

dθt = 1
2
∇ log p(θt)dt + dWt , 8.

whereWt is a Wiener process or Brownian motion. A Langevin diffusion has p(θ) as its stationary
distribution but has a tendency to drift toward areas of higher density. The drift term ∇ log p(θ)dt
suppresses some, but not all, of the random walk behavior contributed by the Brownian motion.

For MCMC, a discrete-time approximation to the Langevin dynamics is used with a time step
of size τ :

θ(t+1) = θ(t) + τ

2
∇ log p

(
θ(t)
)

+ √
τϵ(t),

ϵ(t) ∼ N (0, Id).

This approximation requires the use of a Metropolis–Hastings acceptance step after each move in
order to correct for any errors in the discrete-time approximation. Therefore, the corresponding
algorithm is called the Metropolis-adjusted Langevin algorithm (MALA).

MALA has a single parameter, the step size τ , which needs to be tuned for optimal perfor-
mance. Note that the aim is not to accurately reproduce the Langevin dynamics of Equation 8
but rather to efficiently explore the parameter space while preserving p(θ) as the stationary distri-
bution. Therefore, there is a compromise between large values of τ , which permit larger moves
at each time step, and smaller values of τ , which have higher acceptance probabilities. In high
dimensions, the optimal acceptance rate is 0.574, and τ should be adaptively tuned to attain this
target (Roberts &Rosenthal 1998).MALA has been somewhat superseded byHamiltonianMonte
Carlo, which contains MALA as a special case.

6.2. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), or hybrid Monte Carlo (Duane et al. 1987, Neal 2011,
Betancourt 2017), is based on Hamiltonian dynamics for physical systems. In the statistical im-
plementation of Hamiltonian dynamics, the parameter space θ ∈ Rd is supplemented with a set
of momentum parameters ϕ ∈ Rd . The joint coordinates (θ,ϕ) define the state of the dynamical
system in phase space.

The Hamiltonian

H = − log p(θ) + ϕTMϕ

2
,

= K (θ) +V (ϕ)

www.annualreviews.org • Simulation-Based Bayesian Analysis 413

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

represents the total energy of the system as the sum of potential energy K (θ) and kinetic energy
V(ϕ). The mass matrixM is usually taken to be the identity matrix Id.

The evolution of the dynamical system in time is determined by the Hamiltonian equations

dθ
dt

= Mϕ,

dϕ
dt

= −∇ log p(θ),

which determine the transfer of energy between potential and kinetic energy while keeping total
energy (H) constant. Hamiltonian dynamics are time reversible and preserve volumes in phase
space.

Hamiltonian dynamics can be used for MCMC. At the start of each iteration, new momentum
variables are drawn at random ϕ ∼ Nd (0,M−1). Then the process evolves according to Hamil-
tonian dynamics for a given time T. The transition in the position parameters θ is a reversible
MCMC transition in detailed balance with p(θ). Refreshing the momentum variables at the start
of each iteration ensures that the chain is ergodic. Without refreshment, Hamiltonian dynamics
is periodic and will follow a closed loop back to its starting point.

As with the Langevin diffusion, Hamiltonian dynamics in continuous time cannot be exactly
simulated on a computer.For this reason, a discretized version is used forMCMC,which alternates
updates to the position parameters (Equation 9) and the momentum parameters (Equation 10) in
discrete time steps of size h:

θ(t+1) = θ(t) + hϕ, 9.

ϕ(t+1) = ϕ(t) − h∇ log p(θ). 10.

Each HMC move runs for L steps, simulating Hamiltonian dynamics for time T = Lh. The dis-
cretization process introduces errors, of which the most important is that the discretized version
of Hamiltonian dynamics does not preserve volumes in phase space. As a consequence, the dis-
cretizedHamiltonian dynamics will either collapse to a single point or tend to infinity (Neal 2011).
This serious problem can be solved using the Störmer–Verlet or leapfrog integrator, in which each
HMCupdate begins and ends with a half-update of themomentum parameters (Equation 10) with
step size h/2 instead of h (Neal 2011). The shortest leapfrog path, which contains a single update
to the position parameters (Equation 9), is equivalent to MALA whenM = Id.

HMC has two parameters: the step size h and the number of steps L. The step size h needs to be
sufficiently small to ensure a high acceptance probability, but not so small that the complex density
and gradient calculations are wasted without advancing the dynamics. The current standard is to
choose h during an adaptation phase to reach a target acceptance probability of 0.65, derived by
Beskos et al. (2013) for the high-dimensional limit of HMC.

The choice of integration time T is considerably harder especially when the variance of the
target distribution is heterogeneous between different parameters θ1. . . θ d. In this case, use of a
constant T can lead to arbitrarily poor mixing (Neal 2011). This problem can be mitigated by
drawing T from an exponential distribution (Bou-Rabee & Sanz-Serna 2017).

The breakthrough in adaptively choosing the integration time T came from the No U-Turn
Sampler (NUTS) (Hoffman & Gelman 2014). NUTS exploits the periodicity of Hamiltonian
dynamics to find a maximum integration time T. To maximize the efficiency with which HMC
explores the parameter space, the path should go as far as possible without turning back on itself,
that is, without executing a U-turn. NUTS can be thought of as a stopping rule for HMC.

The subtlety of the NUTS algorithm lies in the way it preserves reversibility. From the current
point, NUTS explores discretized Hamiltonian dynamics (Equations 9 and 10) in both forward

414 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

and backward directions, randomly choosing the direction and doubling the number of leapfrog
steps at each iteration. This process continues until the ends of the path start to turn back toward
each other. The next NUTS sample is drawn at random from the points on the path.

The NUTS path is constructed in such a way that the probability of constructing the given
path is the same starting from any one of the points it contains. This uniform distribution ensures
reversibility of the chain.

7. STAN

Stan (Stan Dev. Team 2022), named in honor of the physicist Stanislaw Ulam (1909–1984), who
coinvented the Monte Carlo method (Metropolis & Ulam 1949), is the latest general-purpose
software for Bayesian modeling. Stan is designed for scalability and speed and was written from
the start to exploit a multicore computing environment. Stan is written in C++ and published
under the 3-clause BSD license.

Stan takes a different approach to model building from BUGS,NIMBLE, and JAGS by having
a different language to define the model. Rather than creating a VGM, the Stan language defines
the terms contributing to the log density of the joint distribution of the parameters log p(θ). Users
can use built-in density functions for common distributions, but they can also define their own
functions in the Stan language to calculate contributions to the log density.

Listing 3 shows the Eight Schools example coded in the Stan language. Unlike the BUGS
language, the Stan language is very explicit about the distinction between data and parameters,
which must be declared in separate blocks. Deterministic functions of other variables are declared
in a third block. Each variable declaration declares the data type, possibly including bounds, and
the dimensions for vector or matrix quantities.

Although the declarationsmake the Stan codemuch longer than the BUGS code, the definition
of the model itself is very succinct, due to the vectorization of the Stan language. The model is
defined by three lines.Two lines in the model block show the contributions of the variables η and y
to the log density (target), and the declaration of θ also defines it as a linear function of µ, τ , and η.

Listing 3 Stan code for the Eight Schools example

Another difference between the BUGS and Stan code is that Stan does not require all parame-
ters to have a proper prior distribution. In the Eight Schools example, there is no prior distribution
for the parameters theta and tau. Implicitly, these parameters have an improper flat prior.

Stan uses a C++ compiler to compile the model description into object code, which can then
be executed with any data set as input. This property distinguishes Stan from BUGS and JAGS,

www.annualreviews.org • Simulation-Based Bayesian Analysis 415

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

which need to reinterpret the model description and create a new VGM if there are any changes to
the data. This difference makes Stan ideal for MCMC analysis of simulated data, as the expensive
compilation step needs to be run only once.

Themain inference engine for Stan is HMCwithNUTS.TheHMC/NUTS algorithm is used
to update all parameters of the model simultaneously. In contrast, BUGS, NIMBLE, and JAGS
may use different sampling methods for different parameters. As a consequence of this approach,
Stan does not admit discrete-valued parameters.Models that use discrete-valued parameters in the
BUGS language may be rewritten in Stan to remove the discrete parameters by marginalization.

Like NIMBLE, Stan allows different forms of inference. In addition to NUTS for MCMC,
Stan allows penalized maximum-likelihood estimation as well as approximate Bayesian inference
with variational inference (Blei et al. 2016).

Stan has interfaces to R (Stan Dev. Team 2021) and Python (Riddell et al. 2021), among others.
In addition, the rstanarm (Goodrich et al. 2020) and brms (Bürkner 2017) packages allow users to
define regression models using the compact Wilkinson–Rogers-style notation used by the (g)lm
and (g)lmer functions and still have access to the Stan HMC sampler as a back end.

8. INLA

INLA (Rue et al. 2009) is an alternative methodology for Bayesian inference applicable to a large
class of models. Unlike MCMC, INLA is a deterministic approximation to the posterior.

INLA can be used for latent Gaussian models. These are two-level hierarchical models where
the observable data y1. . .yn are conditionally independent given a set of latent random variables η

and possibly a set of hyperparameters θ1:

p(y | η) =
n∏
i=1

p(yi | ηi, θ1). 11.

The latent variables η are expressed in terms of other latent quantities as a linear predictor,

ηi = α +
nb∑
j=1

β jz ji +
n f∑
k=1

f (k)(uki) + ϵi, 12.

where β is a vector of coefficients for covariates z j ∈ Rnb , f (1) . . . f (n f) are unknown functions of
the covariates ui ∈ Rn f , and ϵ1. . .ϵn represent unstructured variation.

Let x be the collection of all latent quantities in the model:

x = (α,β1 . . . βnb , f
(1) . . . f (n f), ϵ1, . . . ϵn).

Then, x has a prior Gaussian distribution with mean zero and precision matrix Q(θ2) depending
on hyperparameters θ2.

Practical restrictions are that the full set of hyperparameters θ = (θ1, θ2) is of low dimension
and the precision matrixQ is sparse. If Equation 12 seems abstract and difficult to understand, that
is because it is written in a way that admits the full generality of models that can be analyzed by
INLA. This class includes time series models, generalized additive models, generalized additive
mixed models, geoadditive models, and univariate volatility models.

INLA provides fast and accurate deterministic approximations to the marginal posteriors
p(xi | y) and p(θ | y). It does not provide the joint posterior distribution of x, but the correla-
tions are often not of interest. INLA is distinguished by being exceptionally fast compared with
MCMC. Rue et al. (2009, p. 322) suggested that INLA “outperforms MCMC algorithms to such
an extent that, for latent Gaussian models, resorting to MCMC sampling rarely makes sense in
practice.”

416 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

TheR-INLA software (see https://www.r-inla.org) provides an implementation of INLA as an
R package. The INLAmethod has been extremely successful in a wide range of applied problems.
Its success illustrates that there is an alternative to the approach taken by most Bayesian software.
Instead of trying to provide a universal solution to an unlimited class of Bayesian models, it is
possible to conduct inference accurately and efficiently on a prescribed class of models.

9. PROBABILISTIC PROGRAMMING LANGUAGES

In the last 10 years, a convergence of interests in machine learning and computer science has
given rise to the concept of probabilistic programming. This statistical modeling tool takes con-
cepts from programming language design and applies them to the design and analysis of statistical
models.

A full survey of probabilistic programming languages is beyond the scope of this review. No-
table probabilistic programming languages include Church, based on Scheme (Goodman et al.
2008); Figaro, based on Scala (Pfeffer 2016); and PyMC3, based on Python (Salvatier et al. 2016).
Notably, PyMC3 provides an implementation of the NUTS algorithm for HMC. The Stan de-
velopers describe Stan as a probabilistic programming language (Gelman et al. 2015). Arguably,
NIMBLE is a probabilistic programming language that extends R.

10. FUTURE PERSPECTIVES

10.1. Robustness Versus Efficiency

The optimal behavior of MCMC methods in high dimensions has been well studied for the case
when the joint probability distribution of the parameters θ factorizes into independent and identi-
cally distributed (i.i.d.) components (Gelman et al. 1997, Roberts & Rosenthal 1998, Beskos et al.
2013),

p(θ) =
d∏
i=1

f (θi), 13.

for some density function f () common to all dimensions. This scenario is somewhat simplistic,
especially when compared with the complex distributions to which MCMC is applied in practice.
Nevertheless, it permits analysis of the optimal step size for each algorithm and the way it scales
with dimension d.Table 1 summarizes the results. For all methods, the optimal step size decreases
with d, so the Markov chain becomes less efficient with increasing dimension of the parameter
space. However, the rate at which the optimal step size decreases is slower for MALA compared
with random walk Metropolis–Hastings, and slower for HMC than for MALA.

Since the i.i.d. limit in Equation 13 is somewhat artificial, the behavior of all these methodsmay
be very poor in practice.The robustness ofMCMCmethods has attracted increasing interest.The
question of robustness is extremely important for general-purpose software for Bayesian inference,
which aims to efficiently solve a large class of applied problems.

Table 1 Optimal scaling of MCMC methods as a function of d, the dimension of the
parameter space

Method Optimal step size Reference
Random walk M-H O(d−1) Gelman et al. (1997)
MALA O(d−1/3) Roberts & Rosenthal (1998)
HMC O(d−1/4) Beskos et al. (2013)

Abbreviations: HMC, Hamiltonian Monte Carlo; MALA, Metropolis-adjusted Langevin algorithm; MCMC,Markov chain
Monte Carlo; M-H, Metropolis–Hastings.

www.annualreviews.org • Simulation-Based Bayesian Analysis 417

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://www.r-inla.org

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

The word “robust” is an overloaded word in statistics, and its application to MCMC methods
is no different. There are different ways to interpret the notion of robustness in this context.
One is to consider which kinds of distributions an MCMC method can efficiently address. For
heavy-tailed distributions, MALA and HMC are not geometrically ergodic (Roberts & Tweedie
1996, Livingstone et al. 2019). If the gradient of the log density goes to zero in the tails, then
gradient-based methods no longer have useful additional information for efficiently exploring the
parameter space and the randomwalk behavior that gradient-basedmethods aremeant to suppress
reappears. Conversely, for light-tailed distributions, the calculation of the gradients required by
MALA and HMCmay break down (Roberts & Tweedie 1996, Livingstone et al. 2019), rendering
these methods unusable when simpler methods remain applicable.

Another way of thinking about robustness is to consider how well MCMC methods can be
adaptively tuned for optimal performance.HMC exhibits poor behavior when the posterior distri-
bution is heterogeneous, with much higher variance in some dimensions than others (Neal 2011).
The mixing behavior of the worst component can be arbitrarily poor (Riou-Durand & Vogrinc
2022). In certain applications, this problem can be alleviated by some form of preconditioning.
This might be straightforward manipulation of the data, such as standardizing predictor variables,
as recommended by Gelman et al. (2014, section 16.3) for logistic regression.

Livingstone & Zanella (2022) have proposed an alternative to MALA, called the Barker pro-
posal, which maintains the d−1/3 scaling with dimension of MALA but has improved robustness
to tuning. The Barker proposal uses a proposal distribution that is skewed in the direction of the
gradient of the log density. In contrast,MALA has separate deterministic and random noise terms
in each step.

10.2. Nonreversible Markov Chain Monte Carlo

Recent developments in MCMC have focused on nonreversible Markov chains as a way of sup-
pressing random walk behavior and thus providing more efficient samples (Neal 1999, Diaconis
et al. 2000, Bierkens 2016). Figure 5 shows a mixture of two normals with a bimodal distribution,

Figure 5

A bimodal distribution constructed from a mixture of two Gaussians.

418 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Figure 6

Trace plots for a random walk Metropolis algorithm and a guided walk on the bimodal target density shown in Figure 5. Red
horizontal lines indicate the two modes of the distribution.

and Figure 6 shows two Markov chains exploring this distribution. The first is a random walk
Metropolis–Hastings sampler, which is reversible. The second is a guided walk (Gustafson 1998),
which is the same as the random walk except that the direction of each step is the same as the
previous iteration until a proposal is rejected. The guided walk then changes direction at the next
iteration. The modified sampler is nonreversible. As shown by the trace plots, the nonreversible
sampler is more efficient at switching between the two modes of the distribution. The momentum
of the guided walk allows it to cross the gap between the two modes.

This an example of a so-called lifted Markov chain that has been augmented by a velocity
variable taking values in {−1, 1} (Chen et al. 1999, Turitsyn et al. 2011). Lifted Markov chains
are easier to study in the continuous-time limit when we make the step size smaller and smaller,
adjusting the timescale accordingly.

Figure 7 shows the effect of reducing the step size by a factor of 10. As the figure suggests, in
the limit, the sampler becomes a piecewise-deterministic process. Change points are determined
by a nonhomogeneous Poisson process in which the rate depends on the gradient of the log density
in the direction of travel. Notably, the rate of change is zero when the process is moving toward a
higher-density area.The chain always crosses one of themodes of the distribution before changing
direction.

There are two multivariate generalizations of this process: the zig-zag sampler (Bierkens et al.
2016) and the bouncy particle sampler (Bouchard-Côté et al. 2018). In the zig-zag sampler, each
component changes direction independently, whereas in the bouncy particle sampler, the whole
path reflects off a tangent to the log density. Reference implementations of these samplers can be
found in the R package RZigZag (Bierkens 2019).

The zig-zag and bouncy particle samplers are examples of piecewise-deterministic Markov
processes (PDMPs) (Davis 1984). These are continuous-time stochastic processes that evolve

www.annualreviews.org • Simulation-Based Bayesian Analysis 419

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Figure 7

Continuous-time limit of the guided walk shown in Figure 6 as the step size decreases.

deterministically in between change points that occur randomly in time. The events that occur
at change points may also be stochastic. For example, the momentum vector may either change
in a deterministic way or be refreshed by random sampling to ensure irreducibility. The first use
of PDMPs for MCMC simulation was in the computational physics literature (Peters & de With
2012).

Like HMC, PDMPs augment the parameter space with additional parameters representing
momentum. The momentum component allows a PDMP to quickly reach the mode of the dis-
tribution when the initial value is far away (Bierkens et al. 2016). Unlike HMC, however, the
velocity is always constant. The simpler deterministic dynamics of PDMPs are easy to model on
a computer without approximation error. In particular, PDMPs have no rejection step.

Fearnhead et al. (2018) note that PDMPs are a large class of MCMCmethods whose potential
has not yet been fully explored. A promising feature of PDMPs in the era of big data is that the log
gradient ∇ log p(θ) does not need to be calculated exactly but can be estimated from a subsample
of data points. Unlike other MCMCmethods, the subsampling of the gradient does not cause any
bias, so the stationary distribution of the PDMP remains the same (Bierkens et al. 2016). This
attribute makes PDMPs highly suitable for “tall” data with a very large number of observations.

PDMPs have no tuning parameters. As such, they are highly promisingmethods for implemen-
tation in general-purpose MCMC software. However, there is an additional layer of complexity
in implementing PDMPs, which is sampling from a nonhomogeneous Poisson process to find the
change-point times. Such sampling is feasible only if a suitably tight upper bound can be found
for the gradient of the log density, which determines the rate of the Poisson process. The bound
can be piecewise constant and thus needs to be calculated only in the range (t, t + δ) for some
fixed value δ. When a bound on the gradient is determined, the next change point can then be
simulated from a time-homogeneous Poisson process and thinned by rejection sampling (Lewis
& Shedler 2012). For general-purpose Bayesian software, the outstanding problem is how to com-
pute a bound on the gradient for an arbitrary posterior distribution. This may require the use of
optimization methods to find the maximum of the log gradient within the time window (t, t + δ).

The practical challenge of implementing PDMPs into existing software is that existing frame-
works are based on discrete-time MCMC.The latest generation of software, including NIMBLE

420 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

and Stan, has separated the inference algorithm from the model description and hence could, in
principle, incorporate continuous-time Markov processes as an alternative back end to discrete-
timeMCMC.Alternatively, it may be possible to have a discrete-time analog of PDMPs (Sherlock
& Thiery 2022, Bertazzi et al. 2021). However, it is not certain whether the advantages of PDMPs
can be retained in discrete time.

11. SUMMARY

As noted in Section 1, the high-dimensional integrals required for Bayesian inference are not gen-
erally tractable. However, several compromises that give approximate solutions are available. For
MCMC, the main compromise is the time required to get a sufficient number of samples to ac-
curately approximate the posterior distribution. INLA offers another compromise for the wide
class of latent Gaussian models. INLA gives up on estimating the full posterior but provides fast
and accurate approximations to the posterior margins. Users who require only a point estimate
of the posterior mode may turn to the fast approximations provided by variational Bayes meth-
ods (Blei et al. 2016). In summary, different methods offer a range of compromises to applied
Bayesian statisticians. The enduring popularity of MCMC suggests that it currently offers the
most favorable compromise in many applications. Whether this will remain true as the demand
for analyses of larger data sets increases remains to be determined. Green et al. (2015) conclude
that approximate methods will be at the heart of future progress in statistical computing. It is
notable that many of the theoretical innovations in MCMC methodology have come from appli-
cations in physics (Metropolis et al. 1953, Duane et al. 1987, Peters & deWith 2012) before being
adapted more widely. This observation suggests that methodologists should keep a weather eye
on the computational physics literature.

Over the history of Bayesian software for MCMC, there has been a shift away from Gibbs
sampling on a graph toward block-updating methods that act simultaneously on all parameters
and are capable of scaling to high-dimensional parameter spaces. MCMC methods continue to
be developed along these lines. PDMP methods are interesting but have not yet bridged the gap
between theoretical development and practice.There are also promising innovations in robustness
of MCMC methods that will improve the user experience when implemented in software.

The existence of freely available statistical software is essential for propagating statistical
methods. For example, the R language and its associated CRAN repository (see https://cran.r-
project.org), as of late 2022, have 19,000 third-party packages. Among these are reference
implementations of some of the methods discussed in this review.While Bayesian software has not
matched this level of developer engagement, it has allowed scientific problems in many different
domains to be addressed by Bayesian methods. This level of engagement with applied statisticians
needs to be maintained.

DISCLOSURE STATEMENT

The author is not aware of any affiliations,memberships, funding, or financial holdings that might
be perceived as affecting the objectivity of this review.

LITERATURE CITED

Albert J,Chib S. 1993. Bayesian analysis of binary and polychotomous response data. J.Am. Stat. Assoc. 88:669–
79

Andrieu C, Thoms J. 2008. A tutorial on adaptive MCMC. Stat. Comput. 18(4):343–73
Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. 2018. Automatic differentiation in machine learning: a

survey. J. Mach. Learn. Res. 18:1–43

www.annualreviews.org • Simulation-Based Bayesian Analysis 421

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://cran.r-project.org
https://cran.r-project.org

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Bertazzi A, Bierkens J,Dobson P. 2021. Approximations of piecewise deterministic Markov processes and their
convergence properties. arXiv:2109.11827 [math.PR]

Beskos A, Pillai N, Roberts G, Sanz-Serna J, Stuart A. 2013. Optimal tuning of the hybrid Monte Carlo
algorithm. Bernoulli 19:1501–34

Betancourt M. 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434 [stat.ME]
Bierkens J. 2016. Non-reversible Metropolis–Hastings. Stat. Comput. 26:1213–28
Bierkens J. 2019. RZigZag: Zig-Zag sampler. R Package Version 0.2.1. https://cran.r-project.org/

package=RZigZag
Bierkens J, Fearnhead P, Roberts G. 2016. The Zig-Zag process and super-efficient sampling for Bayesian

analysis of big data. Ann. Stat. 47(3):1288–320
Blei DM, Kucukelbir A,McAuliffe JD. 2016. Variational inference: a review for statisticians. J. Am. Stat. Assoc.

112(518):859–77
Bou-RabeeN,Sanz-Serna JM.2017.RandomizedHamiltonianMonteCarlo.Ann.Appl. Probab.27(4):2159–94
Bouchard-Côté A, Vollmer SJ, Doucet A. 2018. The bouncy particle sampler: a nonreversible rejection-free

Markov chain Monte Carlo method. J. Am. Stat. Assoc. 113(522):855–67
Breslow NE,Clayton DG. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc.

88(421):9–25
Brooks S, Gelman A, Jones G, Meng XL, eds. 2011.Handbook of Markov Chain Monte Carlo. Boca Raton, FL:

CRC
Bürkner PC. 2017. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80:1–28
Chen F, Lovász L, Pak I. 1999. Lifting Markov chains to speed up mixing. In Proceedings of the 31st Annual

ACM Symposium on Theory of Computing (STOC ’99), pp. 275–81. New York: ACM
Cowles MK, Carlin BP. 1996. Markov chain Monte Carlo convergence diagnostics: a comparative review.

J. Am. Stat. Assoc. 91(434):883–904
Davis MHA. 1984. Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic

models. J. R. Stat. Soc. B 46(3):353–88
Davis TA. 2006.Direct Methods for Sparse Linear Systems. Philadelphia: SIAM
de Valpine P, Paciorek C, Turek D,Michaud N, Anderson-Bergman C, et al. 2022.NIMBLE: MCMC, particle

filtering, and programmable hierarchical modeling. R Package Version 0.12.2. https://r-nimble.org
de Valpine P,Turek D,Paciorek C,Anderson-Bergman C,Temple LangD,Bodik R. 2017. Programming with

models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat.
26(2):403–13

Denwood MJ. 2016. runjags: an R package providing interface utilities, model templates, parallel computing
methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71(9):1–25

Diaconis P, Holmes S, Neal RM. 2000. Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab.
10(3):726–52

Duane S, Kennedy A, Pendleton BJ, Roweth D. 1987. Hybrid Monte Carlo. Phys. Lett. B 195(2):216–22
Fearnhead P, Bierkens J, Pollock M, Roberts GO. 2018. Piecewise deterministic Markov processes for

continuous-time Monte Carlo. Stat. Sci. 33(3):386–412
Frühwirth-Schnatter S, Frühwirth R, Held L, Rue H. 2009. Improved auxiliary mixture sampling for

hierarchical models of non-Gaussian data. Stat. Comput. 19(4):479–92
Garey MR, Johnson DS, Stockmeyer LJ. 1976. Some simplified NP-complete graph problems.Theor. Comput.

Sci. 1(3):237–67
Gelfand AE, Smith AFM. 1990. Sampling-based approaches to calculating marginal densities. J. Am. Stat.

Assoc. 85(410):398–409
Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2014. Bayesian Data Analysis. Boca Raton,

FL: CRC. 3rd ed.
Gelman A, Gilks WR, Roberts GO. 1997.Weak convergence and optimal scaling of random walk Metropolis

algorithms. Ann. Appl. Probab. 7(1):110–20
Gelman A, Lee D, Guo J. 2015. Stan: a probabilistic programming language for Bayesian inference and

optimization. J. Educ. Behav. Stat. 40(5):530–43
Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4):457–

72

422 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://cran.r-project.org/package=RZigZag
https://cran.r-project.org/package=RZigZag
https://r-nimble.org

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.
IEEE Trans. Pattern Anal. Mach. Intell. 6:721–41

Gilks WR. 1992. Derivative-free adaptive rejection sampling for Gibbs sampling. In Proceedings of the 4th
Valencia International Meeting (Bayesian Statistics 4), ed. J Bernardo, J Berger, AP Dawid, AFM Smith,
pp. 641–49. Oxford, UK: Clarendon

Gilks WR, Best NG, Tan KKC. 1995. Adaptive rejection Metropolis sampling within Gibbs sampling. J. R.
Stat. Soc. C 44(4):455–72

Gilks WR, Clayton DG, Spiegelhalter DJ, Best NG, McNeil AJ, et al. 1993. Modelling complexity:
applications of Gibbs sampling in medicine. J. R. Stat. Soc. B 55(1):39–52

Gilks WR, Thomas A, Spiegelhalter DJ. 1994. A language and program for complex Bayesian modelling. J. R.
Stat. Soc. D 43(1):169–77

Gilks WR,Wild P. 1992. Adaptive rejection sampling for Gibbs sampling. J. R. Stat. Soc. C 41(2):337–48
GoodmanND,Mansinghka VK,Roy D, Bonawitz K,Tenenbaum JB. 2008.Church: a language for generative

models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI’08), pp. 220–29.
Arlington, VA: AUAI

Goodrich B,Gabry J, Ali I, Brilleman S. 2020. rstanarm: Bayesian applied regression modeling via Stan. R Package
Version 2.21.1. https://mc-stan.org/rstanarm

Goudie RJB, Turner RM, De Angelis D, Thomas A. 2020. MultiBUGS: a parallel implementation of the
BUGS modeling framework for faster Bayesian inference. J. Stat. Softw. 95(7):1–20

Green PJ. 1995. Reversible jumpMarkov chainMonte Carlo computation and Bayesian model determination.
Biometrika 82(4):711–32

Green PJ, Latuszyński K, Pereyra M, Robert CP. 2015. Bayesian computation: a summary of the current state,
and samples backwards and forwards. Stat. Comput. 25:835–62

Guennebaud G, Jacob B, et al. 2010. Eigen, version 3. Template Library. http://eigen.tuxfamily.org
Gustafson P. 1998. A guided walk Metropolis algorithm. Stat. Comput. 8:357–64
Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika

57(1):97–109
Hobert J. 2011. The data augmentation algorithm: theory and methodology. See Brooks et al. 2011, pp. 253–

94
Hoffman MD, Gelman A. 2014. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian

Monte Carlo. J. Mach. Learn. Res. 15:1593–623
Holmes C, Held L. 2006. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian

Anal. 1(1):145–68
Kellner K. 2021. jagsUI: a wrapper around ‘rjags’ to streamline JAGS analyses. R Package Version 1.5.2.

https://CRAN.R-project.org/package=jagsUI
Lauritzen SL, Dawid AP, Larsen BN, Leimer HG. 1990. Independence properties of directed Markov fields.

Networks 20(5):491–505
Lauritzen SL, Spiegelhalter DJ. 1988. Local computations with probabilities on graphical structures and their

application to expert systems. J. R. Stat. Soc. B 50(2):157–224
Lewis PAW, Shedler GS. 2012. Simulation of non-homogeneous Poisson processes by thinning. Naval Res.

Logist. Q. 26(3):403–13
Livingstone S, BetancourtM,Byrne S,GirolamiM. 2019.On the geometric ergodicity of HamiltonianMonte

Carlo. Bernoulli 25(4):A3109–38
Livingstone S, Zanella G. 2022. The Barker proposal: combining robustness and efficiency in gradient-based

MCMC. J. R. Stat. Soc. B 84(2):496–523
Lunn D. 2003.WinBUGS development interface (WBDev). ISBA Bull. 10(3):10–11
Lunn D, Best N, Whittaker J. 2009. Generic reversible jump MCMC using graphical models. Stat. Comput.

19:395
Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. 2012. The BUGS Book: A Practical Introduction to

Bayesian Analysis. London: CRC/Chapman & Hall
Lunn D, Thomas A, Best N, Spiegelhalter D. 2000. WinBUGS, a Bayesian modeling framework: concepts,

structure and extensibility. Stat. Comput. 10:325–37

www.annualreviews.org • Simulation-Based Bayesian Analysis 423

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://mc-stan.org/rstanarm
http://eigen.tuxfamily.org
https://CRAN.R-project.org/package=jagsUI

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Lunn DJ, Wakefield J, Thomas A, Best N, Spiegelhalter D. 1999. PKBugs: an efficient interface for population
PK/PD within WinBUGS. Stat. Softw., Cambridge Univ., Cambridge, UK. https://www.mrc-bsu.cam.
ac.uk/software/bugs/the-bugs-project-winbugs/winbugs-development/pkbugs-an-efficient-
interface-for-population-pk-pd-within-winbugs

MayrinkVD,Duarte JDN,Demarqui FN.2021. pexm: a JAGSmodule for applications involving the piecewise
exponential distribution. J. Stat. Softw. 100(8):1–28

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of state calculations by
fast computing machines. J. Chem. Phys. 21(6):1087–92

Metropolis N, Ulam S. 1949. The Monte Carlo method. J. Am. Stat. Assoc. 44(247):335–41
Michaud N, de Valpine P, Turek D, Paciorek CJ, Nguyen D. 2021. Sequential Monte Carlo methods in the

nimble and nimbleSMC R packages. J. Stat. Softw. 100(3):1–39
Neal RM. 1999. Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. In

Learning in Graphical Models, ed. MI Jordan, pp. 205–28. Cambridge, MA: MIT Press
Neal RM. 2003. Slice sampling. Ann. Stat. 31(3):705–67
Neal RM. 2011. MCMC using Hamiltonian dynamics. See Brooks et al. 2011, pp. 113–62
NIMBLE Dev. Team. 2021. nimbleSMC: sequential Monte Carlo methods for ‘nimble.’ R Package Version 0.10.1.

https://cran.r-project.org/package=nimbleSMC
Peters EAJF, de With G. 2012. Rejection-free Monte Carlo sampling for general potentials. Phys. Rev. E

85:026703
Pfeffer A. 2016. Practical Probabilistic Programming. Shelter Island, NY: Manning
Plummer M. 2017. JAGS Version 4.3.0 User Manual. https://sourceforge.net/projects/mcmc-jags/files/

Manuals/4.x
Plummer M. 2021. rjags: Bayesian graphical models using MCMC. R Package Version 4-13. https://CRAN.R-

project.org/package=rjags
PlummerM,BestN,Cowles K,Vines K. 2006.CODA: convergence diagnosis and output analysis forMCMC.

R News 6(1):7–11
Polson NG, Scott JG, Windle J. 2013. Bayesian inference for logistic models using Pólya–Gamma latent

variables. J. Am. Stat. Assoc. 108(504):1339–49
Riddell A, Hartikainen A, Carter M. 2021. PyStan version 3.5.0. PyPI. Statistical Software. https://pypi.

org/project/pystan
Riou-Durand L, Vogrinc J. 2022. Metropolis adjusted Langevin trajectories: a robust alternative to

Hamiltonian Monte Carlo. arXiv:2202.13230 [stat.CO]
Roberts GO,Rosenthal JS. 1998.Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat.

Soc. B 60(1):255–68
Roberts GO, Tweedie RL. 1996. Exponential convergence of Langevin distributions and their discrete

approximations. Bernoulli 2(4):341–63
Rubin DB. 1981. Estimation in parallel randomized experiments. J. Educ. Behav. Stat. 6(4):377–401
Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using

integrated nested Laplace approximations. J. R. Stat. Soc. B 71(2):319–92
Salvatier J,Wiecki T, Fonnesbeck C. 2016. Probabilistic programming in Python using PyMC3.PeerJ Comput.

Sci. 2:e55
Sherlock C, Thiery AH. 2022. A discrete bouncy particle sampler. Biometrika 109(2):335–49
Spiegelhalter D, Thomas A, Best N, Gilks W. 1996a. BUGS 0.5—Bayesian Inference Using Gibbs Sampling

(Version II). Cambridge, UK: Inst. Public Health
Spiegelhalter D, Thomas A, Best N, Gilks W. 1996b. BUGS Examples—Version 0.5. Vol. 1. Cambridge, UK:

MRC Biostat. Unit
Spiegelhalter D, Thomas A, Best N, Gilks W. 1996c. BUGS Examples—Version 0.5. Vol. 2. Cambridge, UK:

MRC Biostat. Unit
Spiegelhalter D, Thomas A, Best N, Lunn D. 2003. WinBUGS User Manual, Version 1.4. Cambridge, UK:

MRC Biostat. Unit. https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs
Stan Dev. Team. 2021. RStan: the R interface to Stan. R Package Version 2.21.3
Stan Dev. Team. 2022. Stan User’s Guide and Reference Manual 2.30. https://mc-stan.org/users/

documentation

424 Plummer

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/winbugs-development/pkbugs-an-efficient-interface-for-population-pk-pd-within-winbugs
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/winbugs-development/pkbugs-an-efficient-interface-for-population-pk-pd-within-winbugs
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/winbugs-development/pkbugs-an-efficient-interface-for-population-pk-pd-within-winbugs
https://cran.r-project.org/package=nimbleSMC
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x
https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rjags
https://pypi.org/project/pystan
https://pypi.org/project/pystan
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs
https://mc-stan.org/users/documentation
https://mc-stan.org/users/documentation

ST10CH17_Plummer ARjats.cls February 14, 2023 12:44

Sturtz S, Ligges U, Gelman A. 2005. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw.
12(3):1–16

Su YS, Yajima M. 2015. R2jags: using R to run JAGS. R Package Version 0.5-7. https://CRAN.R-project.org/
package=R2jags

Thomas A. 2006. The BUGS language. R News 6(1):17–21
Thomas A, Best N, Lunn D, Arnold R, Spiegelhalter D. 2004.GeoBUGS User Manual. Cambridge, UK: MRC

Biostat. Unit. https://www.mrc-bsu.cam.ac.uk/software/bugs/thebugs-project-geobugs
Thomas A, O’Hara B, Ligges U, Sturtz S. 2006. Making BUGS open. R News 6(1):12–17
Turitsyn KS,ChertkovM,VuceljaM. 2011. IrreversibleMonte Carlo algorithms for efficient sampling.Physica

D 240(4):410–14
Vats D, Knudson C. 2021. Revisiting the Gelman–Rubin diagnostic. Stat. Sci. 36(4):518–29
Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC. 2021. Rank-normalization, folding, and

localization: an improved R̂ for assessing convergence of MCMC (with discussion). Bayesian Anal.
16(2):667–718

Wabersich D, Vandekerckhove J. 2014. Extending JAGS: a tutorial on adding custom distributions to JAGS
(with a diffusion model example). Behav. Res. Methods 46:15–28

Wakefield JC, Aarons L, Racine-Poon A. 1999. The Bayesian approach to population pharmacokinetic/
pharmacodynamic modelling. In Case Studies in Bayesian Statistics, Vol. 4, ed. BP Carlin, AL Carriquiry,
C Gatsonis, A Gelman, RE Kass, et al., pp. 205–65. New York: Springer

Wetzels R, Lee M, Wagenmakers E. 2010. Bayesian inference using WBDev: a tutorial for social scientists.
Behav. Res. Methods 42:884–97

www.annualreviews.org • Simulation-Based Bayesian Analysis 425

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

https://CRAN.R-project.org/package=R2jags
https://CRAN.R-project.org/package=R2jags
https://www.mrc-bsu.cam.ac.uk/software/bugs/thebugs-project-geobugs

ST10_TOC ARjats.cls December 13, 2022 14:23

Annual Review of
Statistics and
Its Application

Volume 10, 2023
Contents

Fifty Years of the Cox Model
John D. Kalbfleisch and Douglas E. Schaubel � 1

High-Dimensional Survival Analysis: Methods and Applications
Stephen Salerno and Yi Li �25

Shared Frailty Methods for Complex Survival Data: A Review
of Recent Advances
Malka Gorfine and David M. Zucker �51

Surrogate Endpoints in Clinical Trials
Michael R. Elliott �75

Sustainable Statistical Capacity-Building for Africa:
The Biostatistics Case
Tarylee Reddy, Rebecca N. Nsubuga, Tobias Chirwa, Ziv Shkedy, Ann Mwangi,
Ayele Tadesse Awoke, Luc Duchateau, and Paul Janssen �97

Confidentiality Protection in the 2020 US Census of Population
and Housing
John M. Abowd and Michael B. Hawes � 119

The Role of Statistics in Promoting Data Reusability
and Research Transparency
Sarah M. Nusser � 145

Fair Risk Algorithms
Richard A. Berk, Arun Kumar Kuchibhotla, and Eric Tchetgen Tchetgen � � � � � � � � � � � � � � � � 165

Statistical Data Privacy: A Song of Privacy and Utility
Aleksandra Slavković and Jeremy Seeman � 189

A Brief Tour of Deep Learning from a Statistical Perspective
Eric Nalisnick, Padhraic Smyth, and Dustin Tran � 219

Statistical Deep Learning for Spatial and Spatiotemporal Data
Christopher K. Wikle and Andrew Zammit-Mangion � 247

Statistical Machine Learning for Quantitative Finance
M. Ludkovski � 271

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10_TOC ARjats.cls December 13, 2022 14:23

Models for Integer Data
Dimitris Karlis and Naushad Mamode Khan � 297

Generative Models: An Interdisciplinary Perspective
Kris Sankaran and Susan P. Holmes � 325

Data Integration in Bayesian Phylogenetics
Gabriel W. Hassler, Andrew F. Magee, Zhenyu Zhang, Guy Baele,
Philippe Lemey, Xiang Ji, Mathieu Fourment, and Marc A. Suchard � � � � � � � � � � � � � � � � 353

Approximate Methods for Bayesian Computation
Radu V. Craiu and Evgeny Levi � 379

Simulation-Based Bayesian Analysis
Martyn Plummer � 401

High-Dimensional Data Bootstrap
Victor Chernozhukov, Denis Chetverikov, Kengo Kato, and Yuta Koike � � � � � � � � � � � � � � � � � � 427

Innovation Diffusion Processes: Concepts, Models, and Predictions
Mariangela Guidolin and Piero Manfredi � 451

Graph-Based Change-Point Analysis
Hao Chen and Lynna Chu � 475

A Review of Generalizability and Transportability
Irina Degtiar and Sherri Rose � 501

Three-Decision Methods: A Sensible Formulation of Significance
Tests—and Much Else
Kenneth M. Rice and Chloe A. Krakauer � 525

Second-Generation Functional Data
Salil Koner and Ana-Maria Staicu � 547

Model-Based Clustering
Isobel Claire Gormley, Thomas Brendan Murphy, and Adrian E. Raftery � � � � � � � � � � � � � � � 573

Model Diagnostics and Forecast Evaluation for Quantiles
Tilmann Gneiting, Daniel Wolffram, Johannes Resin, Kristof Kraus,
Johannes Bracher, Timo Dimitriadis, Veit Hagenmeyer,
Alexander I. Jordan, Sebastian Lerch, Kaleb Phipps, and Melanie Schienle � � � � � � � � � � � 597

Statistical Methods for Exoplanet Detection with Radial Velocities
Nathan C. Hara and Eric B. Ford � 623

Statistical Applications to Cognitive Diagnostic Testing
Susu Zhang, Jingchen Liu, and Zhiliang Ying � 651

Player Tracking Data in Sports
Stephanie A. Kovalchik � 677

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

ST10_TOC ARjats.cls December 13, 2022 14:23

Six Statistical Senses
Radu V. Craiu, Ruobin Gong, and Xiao-Li Meng � 699

Errata

An online log of corrections to Annual Review of Statistics and Its Application articles may
be found at http://www.annualreviews.org/errata/statistics

A
nn

u.
 R

ev
. S

ta
t.

A
pp

l.
20

23
.1

0:
40

1-
42

5.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s

pr
ov

id
ed

 b
y

90
.2

46
.2

48
.4

2
on

 0
3/

16
/2

3.
 S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d
us

e.

