
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/174586                           

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
mailto:wrap@warwick.ac.uk


Scalable Marked Point Processes for Exchangeable and Non-Exchangeable
Event Sequences

Aristeidis Panos Ioannis Kosmidis Petros Dellaportas
University of Cambridge University of Warwick

The Alan Turing Institute
University College London

Athens University of Economics and Business
The Alan Turing Institute

Abstract

We adopt the interpretability offered by a paramet-
ric, Hawkes-process-inspired conditional proba-
bility mass function for the marks and apply vari-
ational inference techniques to derive a general
and scalable inferential framework for marked
point processes. The framework can handle both
exchangeable and non-exchangeable event se-
quences with minimal tuning and without any
pre-training. This contrasts with many paramet-
ric and non-parametric state-of-the-art methods
that typically require pre-training and/or careful
tuning, and can only handle exchangeable event
sequences. The framework’s competitive compu-
tational and predictive performance against other
state-of-the-art methods are illustrated through
real data experiments. Its attractiveness for large-
scale applications is demonstrated through a case
study involving all events occurring in an English
Premier League season.

1 INTRODUCTION

Point processes have been extensively used in a wide range
of domains such as seismology (Hawkes, 1971; Hawkes and
Oakes, 1974; Ogata, 1998), computational finance (Bacry
et al., 2015, 2016), criminology (Mohler et al., 2011), ex-
amining insurgence in Iraq (Lewis et al., 2012), astron-
omy (Gregory and Loredo, 1992), neuroscience (Cunning-
ham et al., 2007), sports (Gudmundsson and Horton, 2017)
to name a few.

There is a voluminous literature on modelling event se-
quences with a vast proportion of it focusing on Hawkes
process models (Hawkes, 1971) and their variants (Marsan

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

and Lengline, 2008; Zhou et al., 2013; Iwata et al., 2013;
Lemonnier and Vayatis, 2014; Hansen et al., 2015; Xu et al.,
2016; Bacry and Muzy, 2016; Wang et al., 2016; Lee et al.,
2016; Eichler et al., 2017; Yuan et al., 2019; Okawa et al.,
2019; Zhang et al., 2020b; Donnet et al., 2020). Most
of these methods are concerned with parametric forms of
the intensity functions which generalize Hawkes processes.
They aim to learn, non-parametrically, the so-called trigger-
ing kernels which model the dependencies between events.
There are works where the whole conditional intensity func-
tion is learned non-parametrically based on Gaussian pro-
cesses (Rasmussen and Williams, 2006), allowing the cap-
ture of complex events’ dynamics (Liu and Hauskrecht,
2019; Lloyd et al., 2016; Ding et al., 2018). Nevertheless,
interpretability is further reduced in tandem with scalabil-
ity due to the computationally demanding linear algebra
required for training these models.

A more scalable solution that maintains flexibility and has
produced state-of-the-art results is based on the introduction
of deep learning techniques (Du et al., 2016; Mei and Eisner,
2017; Xiao et al., 2017; Li et al., 2018; Zhang et al., 2020a;
Shchur et al., 2019). The majority of these methods model
the intensity function of a point process through variants of
recurrent neural networks (RNN). Recently, Shchur et al.
(2019) has proposed a method that, instead of modelling the
CIF, models the conditional distribution of the inter-arrival
times using a log-normal mixture density network. Their
model, though, assumes independence between occurrence
times and marks, which is a strong assumption for the mod-
elling of real-world event-sequence data. Interpretability in
these methods is once again limited due to the black-box
nature of the neural networks. Another class of models is
Graphical event models (Didelez, 2008; Gunawardana et al.,
2011; Bhattacharjya et al., 2018) where a graphical repre-
sentation of multivariate point processes is used, offering
interpretability but suffering from scalability issues due to
their squared time complexity over the number of events.
A recent work (Narayanan et al., 2021) introduced a new
family of fully-parametric marked point processes, which
provides both flexibility and interpretability through a de-
composition of the joint distribution over times and marks,
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while the resulting model had directly interpretable param-
eterization. Nevertheless, the inference process has been
based on a Hamiltonian Monte Carlo algorithm (Duane et al.,
1987) in a high-dimensional space after a data wrangling
procedure that eliminates parameter pre-training. Such an
inference process quickly gets computationally prohibitive
for large-scale event data sets.

Most of the aforementioned state-of-the-art (SOTA) meth-
ods for modelling event-sequence data are limited by the
assumption of exchangeable event sequences. Despite the
computational gains the exchangeability of event sequences
delivers, such an assumption may considerably reduce the
flexibility of the model, failing to capture complex dynamics
between event sequences.

In this work, we inherit the interpretability offered by the
conditional PMF for the marks in Narayanan et al. (2021),
and we introduce an inferential framework based on vari-
ational inference (VI) (Blei et al., 2017) that successfully
deals with the aforementioned scalability limitations. We
also generalize the model through a latent autoregressive
structure over the parameters, which relaxes the exchange-
ability assumption. The proposed model with the autoregres-
sive component is general, and it could find various applica-
tions where the modelling of successive event sequences is
required. We demonstrate the competitive performance of
our VI framework against other SOTA baselines for marked
point processes on a series of real-world datasets. We also
use our method to extract valuable insights over the dynam-
ics of association football teams using all events in a whole
association football season, which is a substantially larger
data set than Narayanan et al. (2021) considered. More im-
portantly, the computational time is reduced to a few hours
for data sets where Narayanan et al. (2021) would require
several months of computation.

Our main contribution is a VI-based, scalable framework
for modelling marked point processes with either exchange-
able or non-exchangeable event sequences. Specifically, we
provide the following:

• A scalable, general, VI-based inferential framework
that can handle exchangeable and non-exchangeable
event sequences requiring no pre-training parameter
elimination and minimal tuning;

• Competitive performance against strong SOTA base-
lines (e.g. based on VI and deep learning) in terms of
performance, facility of training, and interoperability;

• A large-scale case study of events from a whole associ-
ation football season.

2 MARKED TEMPORAL POINT
PROCESSES FOR EXCHANGEABLE
EVENT SEQUENCES

2.1 Preliminaries

A marked temporal point process (MTPP) (Reinhart et al.,
2018) can be seen as an ordered sequence of event times
ti ∈ [0, T ) over an observation interval [0, T ), accompa-
nied by event marks ui ∈ U , which may include infor-
mation about the event types or marks (discrete), location
(continuous) or other event attributes. Our development
focuses on discrete (multivariate temporal point process)
mark spaces U , however, extension to continuous spaces
(marked spatiotemporal point process) is straightforward.
An MTTP is fully determined by its conditional intensity
function (CIF) λ(t, u|Ft) which gives the probability of ob-
serving an event in the space [0, T )× U given the filtration
Ft = {(ti, ui) | ti < t}, i.e. λ(t, u | Ft) ||Bdu(u)|| dt =
E [N([t, t+ dt]×Bdu(u)) | Ft], where N(A) is the count-
ing measure of events over the set A ⊆ [0, T ) × U and
||Bdu(u)|| is the Lebesgue measure over the open ball of
radius du > 0 in U . Given a dataset D = {ys}Ss=1, where
ys = {(t(s)i , u

(s)
i )}Ns

i=1 is the sth event sequence consist-
ing of Ns time-mark pairs (t

(s)
i , u

(s)
i ), and under an ex-

changeability assumption about the event sequences, the
log-likelihood of D is written as

L(D) =

S∑
s=1

`s, (1)

where the log-likelihood of each sequence s is `s =∑Ns

i=1 log λ(t
(s)
i , u

(s)
i | F

t
(s)
i

) −
∫ T
0

∫
U λ(t, u | Ft(s))dudt.

Ft(s) = {(t(s)i , u
(s)
i ) | t(s)i < t(s)} is the filtration of the

sth sequence; the dependence of `s on the parameters and
the data has suppressed for notational convenience. In what
follows, we also suppress the dependence on the s-th se-
quence to reduce clutter in the notation, unless otherwise
stated. Multivariate Hawkes process Hawkes (1971) is a
well-studied MTPP, where past events contribute additively
to the intensity of the current event, allowing in that way to
capture mutual excitation (clustering) behaviour between
events. The CIF of a multivariate Hawkes process with mark
space U = {1, · · · , U} is given by

λ(t, u | Ft) = µδu + η
∑
j:tj<t

βuj ,ue
−βuj,u

(t−tj)γuj ,u,

(2)

where µ > 0 is a constant background intensity, δu >
0 is the background probability for event type u with∑U
u=1 δu = 1, γuj ,u > 0 is the probability of triggering an

event type u from the excitation of an event type uj where∑U
u=1 γuj ,u = 1, ∀uj ∈ U , while βuj ,u > 0 is the exponen-

tial decay rate of that excitation. The parameter η ∈ (0, 1)
is called the excitation factor.
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2.2 Decoupled MTPP

Despite their widespread applicability in modelling event se-
quences (Ogata, 1981; Mohler et al., 2011; Bowsher, 2007),
Hawkes processes perform poorly in cases where event
times do not exhibit clustering behavior. An example of
such a setting is football event sequences, where the inter-
arrival times tend to be under-dispersed relative to a Poisson
process which is the limit of a Hawkes process when η in (2)
approaches zero. The drawbacks of Hawkes processes in
this setup are discussed in Section 3.3 of Narayanan et al.
(2021). These limitations are circumvented by considering
the decomposition of the log-likelihood of a marked point
process,

` =

N∑
i=1

{log f(ui | ti,Fti ;θf ) + log g(ti | Fti ;θg)}

+ log (1−G(T | FtN ;θg)) , (3)

where f(·| · ;θf ) and g(·| · ;θg) are the conditional proba-
bility mass function (PMF) of the event types and the condi-
tional density for the occurrence times, respectively, param-
eterized by vectors θf and θg , and G(u | ·) =

∫ u
0
g(t | ·)dt.

The last term in (3) is the logarithm of the survival function
that accounts for the fact that the unobserved occurrence
time tN+1 must be after the end of the observation interval
(0, T ). The dependence of ` in (3) on θf and θg has been
suppressed to simplify notation and it is omitted henceforth
in f(· | ·) and g(· | ·) unless required. All likelihood contri-
butions in (3) share the same parameters θf and θg , which,
in turn, are assumed to have prior distributions. Therefore,
the event sequences are independent conditional on θf and
θg , and, hence, exchangeable but not necessarily marginally
independent. See, for example, Section 1 in Blei et al. (2003)
for a discussion about the concept of exchangeability.

This decomposition allows defining an MTPP in terms of
f(· | ·) and g(· | ·) instead of the CIF λ(t, u | Ft), providing
extra flexibility to the specification of the model, and thus,
added expressibility. For example, a gamma or a log-normal
density could be chosen as g(· | ·) to capture non-clustering
relations among time occurrences, like under-dispersion.

In the current work, we adopt the same functional form of
f(ui | ti,Fti−1

) as in Narayanan et al. (2021), i.e.

f(ui|ti,Fti) =
δui

+ η
∑
j:tj<ti

γuj ,ui
e−βuj,ui

(ti−tj)

1 + η
∑
j:tj<ti

e−βuj,ui
(ti−tj)

,

(4)
where η > 0. Expression (4) is obtained by converting (2)
into a PMF by normalising across all possible values of u.
We define the probability vector δ = (δ1, · · · , δU )>, the
stochastic matrix Γ ∈ [0, 1]U×U with Γu,u′ = γu,u′ , the
decay matrix B ∈ RU×U+ where Bu,u′ = βu,u′ . Hence, the
model parameters are θf = {δ,Γ, B, η}.

The PMF of marks in (4) possesses a natural interpretation

of its parameters. Large values of η correspond to higher
dependence of each mark on its past events since η can be
viewed as a scaling factor over the contributions of past
events to the current event mark probability. The probabili-
ties γuj ,u can be interpreted as the conversion rates for the
transition from an event type uj to an event type u while the
decay rate βu,u′ quantifies the exponential rate at which the
excitation from a previous event with mark u decays over
time given the current event with mark u′. The background
probability δu gives the probability an event has a mark u
given this event is triggered exclusively by a background
process. In this way, we can extract useful information re-
garding the cross-excitations between the event types and
the corresponding excitation decay rates.

2.3 Proposed Model for Exchangeable Event
Sequences

Despite the flexibility of (4), the implementation in
Narayanan et al. (2021) is based on an MCMC algorithm
that scales poorly with the number of time events after a data
wrangling procedure that eliminates parameter pre-training,
thus limiting its applicability only to small data sets. We
address this limitation through a VI implementation strat-
egy that maintains the desirable properties of the model in
Narayanan et al. (2021), such as producing approximate
posterior distributions over the parameters, while delivering
vast computational speed-up over its MCMC counterpart.
We focus on the PMF in (4), which, despite all the inter-
pretability that brings into the model, is the computational
bottleneck for the inference process.

Variational inference. By considering a variational dis-
tribution qξ(θf ), parameterized by the variational parame-
ters ξ, we aim to find these parameters that minimize the
Kullback-Leibler divergence between the variational dis-
tribution qξ(θf ) and the true posterior pξ(θf |D). This is
equivalent to maximizing the evidence lower bound (ELBO)
(Blei et al., 2017; Zhang et al., 2018) defined as

ELBO(ξ,ν) := Eqξ
[
log

p(D | θf )pν(θf )

qξ(θf )

]
, (5)

where p(D|θf ) :=
∏S
s=1

∏Ns

i=1 f(u
(s)
i | t(s)i ,F (s)

ti ;θf ) is
the data likelihood, and pν(θf ) is the prior with hyperpa-
rameters ν, which are also chosen to maximize ELBO.

Regarding the variational distribution qξ(θf ), we follow
the mean-field approach where qξ factorizes over θf , i.e.
qξ(θf ) = qξ(δ)qξ(Γ)qξ(B, η), where each constituent dis-
tribution is defined as

qξ(δ) = Dir(α0), qξ(Γ) =

U∏
u=1

Dir(αu), (6)

qξ(B, η) =

U2+1∏
p=1

Lognormal(µp, σ2
p). (7)
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In the above expressions, αp ∈ RU+, p = 0, 1, · · · , U
are the concentration parameters of each Dirichlet dis-
tribution and {µp, σ2

p}U
2+1

p=1 are the means and vari-
ances of the log-normal distributions, and thus, ξ =

{{αp}Up=0, {µp, σ2
p}U

2+1
p=1 }.

In order to maximize ELBO with respect to both ξ,ν, we
adopt a similar procedure as in Salehi et al. (2019) where
a variational EM algorithm is employed to iteratively op-
timize (5). For calculating ELBO, we refer to black-box
variational inference (BBVI) optimization (Ranganath et al.,
2014; Kingma and Welling, 2013) where Monte Carlo in-
tegration is used to approximate the bound. The reparam-
eterization trick in Kingma and Welling (2013) allows us
to obtain unbiased gradient estimates of the ELBO for the
parameters of the log-normal distributions in (7). However,
the reparameterization trick is not applicable to the concen-
tration parameters αi. To overcome this issue, we make use
of pathwise gradients (Jankowiak and Obermeyer, 2018),
allowing us to obtain an estimate of ELBO, given by

ELBO(ξ,ν) ≈ 1

L

L∑
l=1

log
p(D | θ(l)f )pν(θ

(l)
f )

qξ(θ
(l)
f )

, (8)

for L Monte Carlo samples θ
(l)
f generated from

the variational distribution using the reparameterization
trick/pathwise gradients. Following Salehi et al. (2019),
we maximize (8) with respect to the variational parameters
ξ in the E-step while in the M-step we maximize with re-
spect to the hyperparameters ν. The updated ν can be found
in closed form when certain priors are utilized (Salehi et al.,
2019). In this work, we consider a zero-mean Gaussian
prior over η and the entries of B, and thus, we need U2 + 1
hyperparameters to describe them. Furthermore, by impos-
ing Dirichlet priors over Γ and δ, updating the concentration
parameters of these priors is not required. This can be seen
by writing

Eqξ
[
log

p(D | θf )pν(θf )

qξ(θf )

]
= Eqξ [log p(D | θf )]− KL[qξ(θf ) || pν(θf )],

where KL[q||p] is the Kullback-Leibler (KL) divergence
between distribution q and p. The above expression is maxi-
mized when the KL divergence is zero, which is true for two
Dirichlet distributions when they share the same concentra-
tion parameters. Hence, these Dirichlet priors can be safely
ignored from the ELBO and no hyperparameter update is
required at the M-step. Details on the derivation of ELBO
and the optimization procedure can be found in Section A
of Appendix.

Computational speed-up. The above model, despite its
flexibility, still suffers from scalability issues due to the
log-likelihood term log p(D | θf ) which scales as O(SN2)
where N = maxs=1,··· ,S |ys|. To circumvent the problem,

we assume that past events do not contribute to the evalu-
ation of the summation term in (4) up to a point, and thus,
they can be ignored from the computation. Specifically, we
use the following assumptions (Liu and Hauskrecht, 2019):

Assumption 1. ∀u = 1, · · · , U , ∃Bu > 0 such that if
0 < Bu < ti − tu, where tu ∈ {tj > 0 : tj < ti, uj = u}
then these events do not contribute to the sum in (4).

Assumption 2. ∀u = 1, · · · , U , ∃ Cu : R>0 → N such
that for any finite interval A = [tstart, tend), |A| = tend −
tstart, the number of events of type u in this interval Nu(A)
are bounded above by Cu(|A|) <∞.

Theorem 1 (Proof in Liu and Hauskrecht (2019)). Under
assumptions 1 and 2, ∃ Q ∈ N such that the sum in (4) only
requires the last Q events of Fti .

Theorem 1 allows us to reduce the time complexity
to O(SQN) rendering inference feasible for large-scale
datasets. This assumption can be justified by the fact that
large time intervals ti− tj lead to near to zero contributions
for past events tj in (4), and hence, their absence would
not affect the final log-likelihood value. Q is a tunable
hyperparameter that can be determined by inspecting the
values of the log-likelihood on a validation dataset. Similar
cut-off assumptions to speed up computations have been
also considered in Liu and Hauskrecht (2019) and Zhang
et al. (2020b), while a Bayesian treatment is considered in
Linderman and Adams (2015).

The overall complexity is affected by the number of Monte
Carlo samples M . However, M = 1 is usually suffi-
cient for BBVI applications as previous studies indicate
(Kingma and Welling, 2013; Salehi et al., 2019). Finally, to
further reduce the computational burden, we approximate
the log-likelihood (1) by randomly selecting batches of se-
quences B ⊆ {1, 2, · · · , S}, and taking unbiased estimates∑S
s=1 `s ≈ S

∑
s′∈B `s′/|B|.

Time modelling. Time occurrences are modelled by log-
normal distributions, i.e. g(ti | Fti ;θg) = p(ri |
ui−1, µ̃, σ̃), where ri := ti − ti−1, t0 = 0, µ̃ ∈ RU , σ̃ ∈
RU+ are the means and standard deviations of the log-normal
distributions, respectively, with density p(ri). Therefore, the
inter-arrival times ri are log-normally distributed where the
distribution’s parameters depend on the value of the previous
mark ui−1, i.e. ri ∼ Lognormal(µ̃ui−1

, σ̃2
ui−1

). In a similar
way, we could consider any continuous distribution with
support on the positive reals for the inter-arrival times, such
as gamma. However, we found that log-normal distributions
are sufficient for the real-world datasets considered in Sec-
tion 2.4. Note also that the distribution over inter-arrival
times allows for the easy and fast prediction of the time of
future events. This is in contrast to prediction for CIF-based
models, which requires computationally demanding pro-
cedures, like Ogata’s modified thinning algorithm (Ogata,
1981). Specifically, for a point process with CIF λ(t), a
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prediction of the next time occurrence t∗ is computed as f
t∗ = E[t̃|Ft] =

∫∞
t
t̃ λ(t̃ | Ft) exp

(
−
∫ t̃
t
λ(u | Ft)du

)
dt̃,

which is intractable, and Monte Carlo sampling via Ogata’s
algorithm is used to estimate it. In our formulation, we sim-
ply use the mode of the log-normal distribution to predict
the next time occurrence.

2.4 Experiments on Real-World Data

We investigate the predictive performance of the pro-
posed model under the exchangeability assumption in
the previous section, which we term VI-Decoupled
Point Process (VI-DPP), over four real-world datasets
and compare the results to state-of-the-art baselines.
Our code, based on PyTorch (Paszke et al., 2019),
is available at https://github.com/aresPanos/
Interpretable-Point-Processes.

We consider four real-world datasets with a range of charac-
teristics, such as the number of sequences S, total number
of events, mean sequence length etc; see Table 4 in Ap-
pendix. A detailed description of each of the datasets can
be found in Section C of Appendix. Our method is trained
on these four datasets and results are compared to those
of three other baselines. We pick, for comparison, the VI-
based Hawkes process variant in Salehi et al. (2019) due
to its state-of-the-art performance over other MLE-based
methods. We use both a parametric version with an exponen-
tial triggering function (VI-EXP) and a non-parametric one
with a mixture of Gaussians triggering function (VI-SG).
This method resembles ours in the way that inference is
performed, however, it is limited to a parameterized form of
a Hawkes process CIF and it requires careful hyperparame-
ter tuning which is usually computationally demanding for
large-scale applications. We also include in our comparisons
the Self-Attentive Hawkes Process (SAHP) (Zhang et al.,
2020a), which is the state-of-the-art NN-based method that
uses the self-attention mechanism (Vaswani et al., 2017) to
address the effect of long-range/non-linear dependencies.
Note that comparison with the STAN HMC implementation
in Narayanan et al. (2021) is infeasible to the real-world
datasets and the case study in Section 3.2 due to extremely
high running times; see pages 80, 98 of Narayanan (2020).

We randomly split each dataset into ten train/validation/test
(70%/10%/20%) sets. The train data set is used for infer-
ence, the validation dataset is used for tuning the hyperpa-
rameters, and the predictive performance is evaluated on
the test dataset. Predictive performance is assessed by three
different metrics: (i) mean log-likelihood (LLKL) for the
ability of each method to model event sequences, (ii) root-
mean-square error (RMSE) for the ability of each method to
predict future time events, and (iii) F1 score for the ability
of each method to predict future marks. RMSE is computed
as in Zhang et al. (2020a), i.e. the square root of the sum of
the squares of εi = (t∗i+1 − ti)/(ti+1 − ti)− 1, where t∗i+1

is the predicted time of the next event. F1 score is chosen
to take into account possible mark imbalances. Regarding
mark prediction, since our VI method gives a distribution
over the parameters θf and not a point estimate, the PMF
in (4) is computed using the mode of the log-normal distri-
bution in (7) and the mean of the Dirichlet distributions in
(6); see Table 1 and more details in Section B of Appendix.

We see that VI-DPP consistently outperforms the other base-
lines in terms of both RMSE and F1, providing evidence for
the flexibility of the decoupled MTPP. SAHP scores higher
values of LLKL due to the flexibility of the NN which is
based on. The superior performance of VI-DPP compared
to the other methods in RET, MIMIC, and MOOC is due to
the fact that these datasets have small inter-arrival times (or
zero, to which we have to add a small positive constant as
Zhang et al. (2020a) do in their codebase) and/or large het-
erogeneity in those, resulting in either small sample means
µ̂ of the log of the inter-arrival times and/or high variance σ̂2

of those. Hence, our mark-specific conditional log-normal
models for the inter-arrival times are often trained to have
modes that are very close to zero (the estimated mode of
the log-normal is exp(µ̂− σ̂2), which results in test RMSE
that is very close to 1. We also notice a significant speed-
up of our method over the rest competitors for all datasets
but the Retweets. This is because a small number of cut-
off points Q is enough to achieve good results for the first
three datasets while for Retweet a larger Q is required; see
Section B of Appendix. It is worth mentioning that our
method required minimal hyperparameter tuning in contrast
to the other three baselines where meticulous hyperparame-
ter tuning was crucial for achieving competitive results. This
process leads to considerably higher computational times,
especially for large-scale datasets, something that is not di-
rectly revealed in Table 1. Fig. 3 of Appendix explores how
Q affects the performance of our model in terms of RMSE,
F1 score, and training time over the Retweets dataset. Val-
ues of Q > 20 do not provide any significant performance
boost for both RMSE and F1, while training time, as ex-
pected, increases linearly with respect to Q. Ignoring events
in the far past, as we do for our method, cannot be applied
to SAHP due to its dependence on the self-attention mecha-
nism, and it would not improve the VI-EXP and VI-GAUSS
training times because of their pre-processing steps.

3 NON-EXCHANGEABLE EVENT
SEQUENCES

3.1 Relaxing Exchangeability

We can relax the assumption of exchangeable event se-
quences in (2.1) by making one or more of the parameters
in α, δ,Γ, B in (4) depend on the event sequences or on a
set of event sequences. Then, we can assume autoregressive
latent processes for those parameters. Here, we focus on
placing autoregressive latent processes on the conversion

https://github.com/aresPanos/Interpretable-Point-Processes
https://github.com/aresPanos/Interpretable-Point-Processes
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Table 1: Performance comparison between our proposed model (VI-DPP) and three other baselines over the four real-world
datasets of Section 2.4. The best results across the four competing approaches are in bold.

METHODS METRICS MIMIC SOF MOOC RET

LLKL -3.072 (0.148) -2.523 (0.022) -1.387 (0.024) -0.733 (0.005)
VI-EXP RMSE 3.075 (0.897) 71.175 (9.970) 112.805 (6.951) 332.604 (83.590)

F1 82.28 (5.54) 5.52 (0.60) 10.10 (0.38) 41.21 (0.52)
TIME (MIN) 116.53 (15.29) 99.92 (21.78) 842.44 (133.20) 67.19 (10.85)

LLKL -3.070 (0.144) -2.461 (0.022) -4.260 (0.041) 0.238 (0.011)
VI-GAUSS RMSE 5.190 (1.817) 53.778 (10.098) 5436.984 (486.614) 319.599 (37.234)

F1 80.77 (4.59) 5.64 (0.86) 5.57 (0.41) 40.78 (0.82)
TIME (MIN) 248.94 (118.58) 586.13 (49.86) 1400.96 (128.93) 61.57 (17.65)

LLKL 1.534 (0.215) -0.506 (0.006) 1.289 (0.136) 0.621 (1.670)
SAHP RMSE 10.896 (2.447) 44.968 (4.450) 28.409 (12.342) 354.880 (26.162)

F1 63.60 (6.38) 8.45 (0.31) 14.07 (0.95) 41.31 (0.70)
TIME (MIN) 63.09 (1.64) 398.21 (21.17) 528.34 (26.81) 80.54 (24.70)

LLKL -2.520 (0.103) -2.483 (0.025) -0.369 (0.014) 1.063 (0.020)
VI-DPP RMSE 0.969 (0.043) 5.508 (1.235) 0.997 (0.000) 1.000 (0.000)

F1 57.42 (3.82) 10.04 (0.24) 19.52 (1.04) 41.15 (0.07)
TIME (MIN) 3.45 (0.17) 83.99 (6.03) 127.32 (1.98) 682.23 (2.05)

Table 2: Size of the association football dataset (leftmost table) and a performance comparison between our proposed model
(VI-DPP) and three other baselines on the same dataset (rightmost table).

# OF TEAMS 20
# OF GAMES 380
# OF SEQUENCES 760
# OF EVENTS 524,160
U 30

VI-EXP VI-GAUSS SAHP THP VI-DPP

RMSE 15.6430 14.9554 0.7206 0.6754 0.4855
F1 2.43 2.40 5.64 16.98 18.73
TIME (MIN) 203.77 145.61 >1200 >1200 139.91

rates Γ because of the facility to incorporate process- or
event-specific covariate information whose effect is directly
interpretable in terms of log-odds of triggering an event type
from the excitation of another event type.

The event-sequence-specific conversion rates can be linked
to covariate vectors (xt1, . . . , xtp)

> observed at time t by
letting

log
γu,u′(t

(s))

γu,U (t(s))
= φu,u′ +

p∑
j=1

ω
(s)
ju′xt(s)j ,

∀ u′ ∈ {1, · · · , U − 1}, u ∈ {1, · · · , U}. We then assume
that the covariate effects follow independent autoregressive
processes with ω(1)

ju′ ∼ N (µju′ , σ
2
ju′/(1−ρ2ju′)) and ω(s)

ju′ |
ω
(s−1)
ju′ ∼ N (µju′+ρju′ω

(s−1)
ju′ , σ2

ju′) (s = 2, . . . , S). The
log-likelihood is given by

log

∫
ω

S∏
s=1

L(s)(F (s),ω(s)) dP (ω), (9)

which, in contrast to (1), is not tractable because we need
to integrate out the latent parameters. L(s)(F (s),ω(s)) is

the event-type likelihood from all events in the s-th event
sequence defined by the mass function in (4), and F (s) is
all the information available up to and including the s-th
event sequence. The prior probability measure P (ω) is
a p × (U − 1) × S-dimensional Gaussian measure with
mean vector defined by µju′ and covariance matrix fully
described by ρju′ and σju′ ; more details about autoregres-
sive processes can be found in Section 2 of Rue and Held
(2005). The logarithm is outside the integral in (9), making
its computation numerically unstable. Hence, we resort to
Jensen’s inequality to obtain a lower bound on (9),

S∑
s=1

∫
ω(s)

log
(
L(s)(F (s) | ω(s))

)
dP (ω(s)), (10)

which holds due to logarithm properties and conditional
independence of ω(s)

ju′ . By treating {µju′ , σju′ , ρju′} as
hyperparameters, we can naturally apply the VI framework
of Section 2.3 by plugging (10) into (8) and maximize the
new variational lower bound with respect to hyperparame-
ters, the variational parameters, and the whole vector ω, and
thus, deriving an approximation over the posterior mode of
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ω given all the association football data.

Notice that the ELBO is regularized by the log-Gaussian
density over the latent ω. The optimization procedure is
now identical to the one followed in Section 2.3 while the as-
signed variational densities and priors for θf = {δ,Γ, B, η}
hold the same as well. The p× (U − 1)-dimensional Gaus-
sian integrals in (10) are approximated by Monte Carlo
integration since the convenient structure of the inverse
covariance matrix of an autoregressive process allows sam-
pling with linear time complexity (Rue and Held, 2005).

As is done in the application of the next section, the above
applies unaltered if the non-exchangeable event sequences
are replaced by non-exchangeable sets of event sequences.

3.2 Association Football Data

Over the last decade, the importance of analysing associ-
ation football matches, in tandem with the availability of
spatiotemporal data from these matches, have sparked the
development of many research works focusing on the sta-
tistical modelling of teams’ and/or players’ performance.
Recent works on the analysis of spatiotemporal data from
team sports, such as football, have been developed with a
primary focus on each player’s performance or the pattern
extraction in the team plays. These works use for their
analysis, as we do in this section, event data streams from
various team sports where each event can be fully described
by the occurrence time, its location, its type (goal, pass,
etc.), and the involved players, and team information. For
instance, Passos et al. (2011); Grund (2012); Duch et al.
(2010); Clemente et al. (2015) focus on modelling player
interaction through network analysis. Other works aim to
identify patterns from pass sequences (Wang et al., 2015;
Van Haaren et al., 2016) or other patterns that lead to a goal
event (Decroos et al., 2017).

Another stream of literature relies on the extraction of game
states from event sequences in order to numerically assess
in-game player actions (Routley and Schulte, 2015; De-
croos et al., 2019) or to predict goal probabilities given
the current game state (Robberechts et al., 2019). Gud-
mundsson and Horton (2017) provides a detailed survey
of the use of spatiotemporal analysis in team sports. A
more recent work (Narayanan et al., 2021) followed a dif-
ferent direction where they studied the dynamics of asso-
ciation football matches by modelling all event sequences
within a game through a marked point process. The frame-
work in Narayanan et al. (2021) relies on MCMC in a high-
dimensional space after a data wrangling procedure that
eliminates parameter pre-training, and can only handle ex-
changeable event sequences like most of the state-of-the-art
(SOTA) methods for modelling event-sequence data. This
poses severe computational and conceptual limitations in
the realistic modelling of large-scale event-sequence data.

The data1 used in this study consists of all touch-ball
events recorded in all English Premier League (EPL) games
throughout the season 2013/2014. Each sequence includes
the touch events from one of the two halves of each game.
Hence, we have 760 sequences for 380 games between 20
teams for the season and more than half a million touch-
ball events. The dataset consists of triplets (t, u, z), where
t is the time when the touch-ball event occurred, u is the
event type with u ∈ {1, . . . , 30} and z ∈ {1, 2, 3} denotes
the spatial location, or zone, in the football field that the
event took place. There are 15 distinct types labeled by
which team (home or away) triggered the event; see Table
3 in Appendix and Narayanan et al. (2021) for a detailed
description of the data and pre-processing steps.

In association football, the process ends immediately after
the last event in each half of the game. Hence, the last
term in (3) is not part of the likelihood; see Section 4.2 of
Lindqvist (2006).

We consider a generalization of (4) from Narayanan et al.
(2021) where

f(ui|ti, zi,Fti) =
δziui

+ α
∑
j:tj<ti

γziuj ,ui
e−β

zi
uj,ui

(ti−tj)

1 + α
∑
j:tj<ti

e−β
zi
uj,ui

(ti−tj)
,

(11)

that accounts for the zone information.

The parameters δ,Γ, B are now location specific, i.e. δzu =
δzu,Γ

z
u,u′ = γzu,u′ , and Bzu,u′ = βzu,u′ . Team information

is incorporated in the model via the baseline-category logit
representation log{γzu,u′(t)/γzu,U (t)} = φzu,u′ + ω

(w(t))
c(t)u′

∀ u′ = 1, · · · , U − 1, c = 1, · · · , 20, where c(t) is the
index of the team associated with the touch-ball event at
time t, w(t) ∈ {1, · · · ,W} is the game week of the event
at time t, where W is the number of game weeks in the
season, φzu,u′ is a location-specific base parameter, and ωcu′
reflects the ability of the team c to complete a conversion to
an event of type u′. For the autoregressive latent process,
we assume that ω(1)

c,u′ ∼ N (µc,u′ , σ
2
c,b(u′)/(1 − ρ

2
c,b(u′))),

and ω(w)
c,u′ | ω

(w−1)
c,u′ ∼ N (µc,u′ + ρc,b(u′)ω

(w−1)
c,u′ , σ2

c,b(u′)),
and b(u′) = max(1, u′ mod 16), i.e. we choose different
means µc,u′ for both home and away event types while the
15 distinct (home and away) event types share common ρc,b
and σc,b. This choice is justified from the fact that each
team, typically, plays one game home and one away in the
next game week.

3.3 Experimental Results

We trained the new extended model using the full association
football dataset (Table 2) with 33, 932 parameters being

1The football dataset used in Section 3.2 is proprietary and we
do not have the license to make it publicly available.
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Figure 1: Values of Spearman’s rank correlation coefficient between ω(w)
·,u′ ∈ R20, w = 1 · · · , 38, for each event type u′ and

the accumulated points awarded to each team at the end of the season, throughout the 38-week season.

learned. We obtained the optimized ω, which has a natural
interpretation, and we investigated possible patterns of its
values throughout the whole season. We probed whether the
various abilities are related to the final ranking of the teams
at the end of the season by computing Spearman’s rank
correlation coefficient between each one of the abilities and
the final accumulated points earned by each team. Figure 1
illustrates that event types such as Goal and Pass_U seem
to be strongly correlated with the final league table of the
championship from the very first game weeks.

Figure 2 illustrates that abilities are more informative than
the raw frequencies of the event type Pass_U for each game
week. While noisy frequencies are hard to interpret across
the season, the evolution of the Pass_U ability clearly indi-
cates that teams with low ability of unsuccessful passes are
found in the top ranks of the championship for each game
week. Manchester City (MC) seems to have a more variable
ability in the first game weeks of the season, possibly due
to the alternate home/away games, but its ability stabilizes
after the 20-th game week. Notice the strong correlation
of Pass_U with the final ranking where teams with higher
ranks (lighter colors) are close to the championship winner
MC. Similar patterns for other event types are illustrated in
Figure 4 of Appendix.

We have extended the code of the three competing methods
of Section 2.4 so that the log-survival term is not included
in their log-likelihood computations and we compare their
performance with our proposed method on the association
football dataset. We have also added another baseline (THP)
based on transformer architecture Zuo et al., 2020 in our
comparisons on the football dataset. We use the first 37
game weeks for training and the last game week for model
evaluation, see Table 2; VI-DPP outperforms all the base-
lines across all three metrics. Out-of-sample log-likelihood

values are not presented since the computation of (9) is in-
tractable for our model and thus, no direct comparison to the
other baselines would be possible. We attribute the superior
performance of the non-exchangeable version of VI-DPP
over its competitors to the fact that the competing methods
either assume that the event sequences are independent, e.g.
see Section 5 in Zhang et al. (2020a) for SAHP, or that
there is a single event sequence, e.g. see Salehi et al. (2019)
for VI-EXP and VI-Gauss. Assuming exchangeability or
independence effectively ignores the ordering of the event
sequences, which is a restrictive assumption in settings like
the analysis of football games, where it is reasonable to
expect that team abilities vary during the season.

Our model can also produce event genealogies, which allow
the probabilistic identification of the events in the past that
are most likely to trigger a present event of interest, such
as a goal. Section F of Appendix provides a detailed dis-
cussion about the computation and visualization of event
genealogies post-training. Furthermore, interpretable results
for association football games are presented based on the
corresponding computed event genealogies. These results
are supported by links to the actual footage of these games
in the data, which confirms the insights extracted by our
method.

4 DISCUSSION

We have proposed a novel inferential framework for a flex-
ible family of interpretable MTPPs based on VI enjoying
scalability benefits, under the assumption of exchangeable
event sequences. We have also presented an extension of
this model that accounts for successive event sequences, and
thus, generalizing the work of Narayanan et al. (2021), with
the goal of modelling association football in-game events.
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Figure 2: Top panel shows the evolution of unsuccessful passes (Pass_U) ability ω(t)
c,3 for each team across the season while

the bottom one illustrates the same information using the raw frequencies of Pass_U from the association football dataset.
The blue and black dashed lines correspond to Manchester City and Cardiff, the winner and bottom-ranked teams of the
2013/2014 Premier league respectively. The colors for the rest of the teams have been assigned according to their final rank,
with brighter colors associated with teams with higher ranks at the end of the championship.

Nevertheless, other applications of the model could be con-
sidered where modelling of successive event sequences is
required. A case study based on a large volume of asso-
ciation football events data has been demonstrated where
the scalability and interpretability of our method has lead to
valuable insights of event and team dynamics for the whole
season. Experiments on real-world datasets illustrate that
our framework has competitive performance over recent
baselines, some of which involve neural network specifi-
cations. The usefulness of the framework becomes more
apparent due to its minimal hyperparameter tuning, which
is in contrast to the other three baselines where meticulous
hyperparameter tuning is crucial for achieving competitive
results.

The main limitation of the VI-DPP model, as defined here,
is that it cannot capture inhibition behavior (Costa et al.,
2020; Chen et al., 2017; Bonnet et al., 2021), i.e. having the
occurrence of an event decrease the likelihood of another
event to occur. This mainly concerns the mark space, where
due to the additive nature of (4), the appearance of a mark
increases the likelihood of another one triggering. Neverthe-
less, our experimental evaluation shows that our model is
flexible enough to capture the dynamics of various complex
real-world data.
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A ON THE DERIVATION OF VI-DPP

The ELBO defined in (5) can be also seen as a lower bound on the log-marginal likelihood

log p(D;ν) := log

∫
p(D|θf )pν(θf ) dθf ,

where a direct application of Jensen’s inequality gives

log p(D;ν) ≥ ELBO(ξ,ν).

Maximizing ELBO with respect to ξ gives a tighter bound on the log-marginal likelihood. Hence, a variational EM algorithm,
similar as the one described in Salehi et al. (2019), can be used to efficiently optimize the variational parameters ξ and the
hyperparameters ν. At the E-step, the ELBO is maximized with respect to ξ, giving in that way a better approximation to the
log-marginal likelihood, and then, at the M-step, the updated ELBO is maximized with respect to ν. Nevertheless, we found
empirically that the optimization of ELBO converges faster to a local maximum when the M-step is ignored and no prior
information is incorporated into our VI framework. We postulate this behavior stems from a large amount of data available
in our experiments which provides enough information to train our model efficiently without any prior information needed.
Hence, the only parameters we need to optimize are the variational parameters ξ using the following objective function

Eqξ [log p(D|θf )] ≈ 1

L

L∑
l=1

log p(D|θ(l)f ). (12)

This objective function is the same as the ELBO in (8) without the regularization term KL[qξ(θf ) || pν(θf )], which can
be obtained when the chosen prior pν(θf ) is identical to the variational distribution qξ(θf ). Since the choice of prior has
negligible importance in the presence of large amount of data and empirical evidence showed that faster convergence is
attained by ignoring the KL-term, we opted to optimize only the variational parameters using (12).

Unlike typical Bayesian inference, in variational inference, it is customary to optimize over the prior parameters, instead
of fixing them before seeing the data. Specifically, this is achieved through optimizing the ELBO in (5) over the prior
parameters and variational parameters jointly; for example, see Eq. (12) in Salehi et al. (2019), where their work concerns a
similar context. In our formulation, the variational and prior distributions for δ are both Dirichlet with different parameters.
Hence, during the M-step of the ELBO maximization procedure, for any fixed ξ the KL divergence of qξ(δ) from pν(δ)
achieves its global minimum of zero when the sub-vector of ν corresponding to δ is exactly equal to the sub-vector of ξ
corresponding to δ. The same holds for Γ.

B EXTRA EXPERIMENTAL DETAILS

The exact experimental setups for each of the methods used in Section 2.4 are discussed here.

All methods were trained for 2000 epochs using batches of size 32 and setting as default optimizer Adam Kingma and
Ba (2014). We also used the log-likelihood of the validation dataset for early stopping a method that does not improve its
log-likelihood for a hundred consecutive epochs. This was not necessary for the three VI-based methods since no sign of
overfitting was observed. However, this was crucial for the NN-based SAHP where overfitting was common in all four
datasets.

Regarding hyperparameter tuning, each method has its own set of hyperparameters that requires thorough tuning. The choice
of each set of hyperparameters was based on the configuration that maximized the log-likelihood on the validation dataset
by grid-searching over the parameter space. More accurately, for each method we have:

VI-EXP. For each dataset, we tried decay ∈ {0.1, 0.5, 1, 2, 4, 8, 16, 32}. We chose decay = 2 for MIMIC dataset,
decay=0.1 for SOF, decay=16 for MOOC, and decay=0.1 for Retweets.

VI-GAUSS. Here we had to tune two hyperparameters, the number of Gaussian basisM and the cut-off time Tc. The center
of them-th Gaussian kernel is tm = Tc ·(m−1)/M and its scale is given by s = Tc/(πM); see Salehi et al. (2019) for more
details. For each dataset, we tried M ∈ {1, 2, 4, 10, 15, 20, 30} and Tc ∈ {M/4,M/2,M, 2M, 3M, 4M, 5M, 8M, 16M}.
We chose M = 2, Tc = 4 for MIMIC dataset, M = 20, Tc = 60 for SOF, M = 4, Tc = 64 for MOOC, and M = 30, Tc =
150 for Retweets.
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Figure 3: The values of log-likelihood (left panel, blue dotted line), F1 score (left panel, red dashed line), and training time
(right panel, black solid line) as a function of the number of cut-off points Q for our model VI-DPP trained over the Retweet
dataset. The log-likelihood computation here takes into account only the marks.

SAHP. Hyperparameter tuning was the most challenging one for this model since it comes with a large number of
hyperparameters due to its neural net dependence. For example, we have the number of hidden units, number of layers,
number of attention heads and dropout ratio for the neural net’s weights. We also found it important to set a warm-up
schedule to increase and then reduce the learning rate throughout optimization as suggested in Zhang et al. (2020a). We
found that four hidden layers, four attention heads, dropout=0.1, and initial learning rate equals to 3× 10−5 worked well
across all datasets and thus we kept that values fixed. We chose 32 hidden units for the MIMIC dataset, 128 for both SOF
and MOOC, and 64 for Retweets.

VI-DPP. For our method the only parameter needed tuning was the number of cut-off points Q. We chose Q = 1 for
all datasets except Retweets where Q = 15 was used. Other parameters such as momentum term and the number of MC
samples L were set as in Salehi et al. (2019), i.e. 0.5 for momentum term and L = 1.

Regarding the learning rate for VI-EXP/GAUSS, it was set 0.05 and kept fixed over all datasets. Similarly, for VI-DPP a
common learning rate was used with a value 0.03

C DATASETS

We provide a short description on the four real-world datasets used in Section 3.4 of the main paper while quantitative
characteristics of these datasets are given in Table (4).

MIMIC-II (MIMIC). The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-II) is a medical dataset
consisting of clinical visit records of intensive care unit patients for seven years. There are records of 650 patients/sequences
where each one contains the time of the visit and the diagnosis result of this visit. There are U = 75 unique diagnosis results.
The goal is to predict the time and the diagnosis result of a patient.

Stack Overflow (SOF). The data comes from the well-known question-answering website Stack Overflow2 where users
are encouraged to answer questions so they can earn badges. There are U = 22 different types of badges. The data have
been obtained from 01/01/2012 to 01/01/2014. Each sequence corresponds to a user and each event gives the time and the
type of budge a user has been awarded.

MOOC. This dataset consists of the interactions of students on a massive open online course (MOOC) on XuetangX3,
one of the largest MOOC platforms in China. The interactions are U = 98 in total, and some examples are video viewing,
answer submission etc. A sequence contains the interactions with their corresponding occurrences of a given user.

Retweets (RET). The Retweets dataset includes retweets sequences, each commencing with an original tweet. Each
retweet is described by the time it occurs and the type of this retweet; we have U = 3 retweet types: small, medium and

2https://archive.org/details/stackexchange
3http://moocdata.cn/challenges/kdd-cup-2015

https://archive.org/details/stackexchange
http://moocdata.cn/challenges/kdd-cup-2015
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Table 3: Mark type description for the association football data. The value of p can be either “H” or “A” depending on
whether an event is triggered by the home or away team, respectively. The events with the “H” prefix have u ∈ {1, · · · , 15}
while “A” events have u ∈ {16, · · · , 30}. If u is a “H” event then u+ 15 is the corresponding “A” event, and thus, we have
U = 30 distinct event types.

u Label Name Description
1 or 16 p_Win A player of the p team regains possession of the ball from the

opponent.
2 or 17 p_Dribble A player of the p team takes the ball forward with repeated slight

touches.
3 or 18 p_Pass_S A player of the p team gains possession of the ball from a pass

coming by one of his teammates.
4 or 19 p_Pass_U A player of the p team failed to pass successfully the ball to one of

his teammates.
5 or 20 p_Shot A player of the p team shots the ball at the opponent’s goal. Attempts

where the ball misses the target are also included.
6 or 21 p_Keeper The goalkeeper of the p team takes possession of the ball into their

hands by picking it up or claiming a cross.
7 or 22 p_Save The goalkeeper of the p team prevents a shot from crossing the

goal line.
8 or 23 p_Clear A player of the p team moves the ball away from his goal area to

safety.
9 or 24 p_Lose A player of the p team loses possession of the ball.
10 or 25 p_Goal A player of the p team scores a goal.
11 or 26 p_Foul A player of the p team executes a free-kick due to a previously

occurred foul.
12 or 27 p_Out_Throw A player of the p team sends the ball out-of-play.
13 or 28 p_Out_GK The goal keeper of the p team sends the ball out of play.
14 or 29 p_Out_Corner A player of the p team sends the ball out of play over the p team’s

goal line.
15 or 30 p_Pass_O A pass from a player of the p team to one of his teammates who is

judged guilty of the offside offence.

large ones, depending on the popularity (number of followers) of the retweeter. The aim is to predict when the next retweet
will be and how popular the next retweeter will be.

Table 4: Characteristics of the real-world datasets. U , S, #, are the numbers of marks, sequences, and events (in thousands),
respectively. TR, VA, and TE are training, validation, and test, respectively.

DATASET U SEQUENCE LENGTHS S #

MIN MAX MEAN TR VA TE TR VA TE

MIMIC JOHNSON ET AL. (2016); DU ET AL. (2016) 75 2 33 4 454 66 130 1.6 0.25 0.5
SOF DU ET AL. (2016) 22 41 736 72 4643 663 1327 336 47 95
MOOC KUMAR ET AL. (2019) 97 4 493 56 4932 705 1410 279 37 79
RET ZHAO ET AL. (2015) 3 50 264 109 16800 2400 4800 1825 262 522

D ASSOCIATION FOOTBALL DATA

A concise description of the marks u used for our football case study in Section 4.1 is provided in Table 3 while more details
can be found in Narayanan et al. (2021).
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E EXTRA EXPERIMENTAL RESULTS FOR THE FOOTBALL CASE-STUDY

We also illustrate similar results with Figure 2 of the main paper where now the event type “Lose” is taken into account.
We see in top panel of Figure 4 that almost all the teams have non-varying abilities through the season while their values
are strongly related to final ranking of the teams. For instance, Manchester city, the winner of the championship, has the
lowest ability values constantly across seasons. On the other hand, teams with the darkest colors which represent teams with
low rank are found in the top positions. Once again as in the main paper, such patterns cannot be distinguished by the raw
frequencies of the event per game week in the bottom panel.

Figure 4: Top panel shows the evolution of losing the possession of the ball (Pass_U) ability ω(t)
c,9 for each team across

the season. The blue dashed line corresponds to Manchester city, winner of 2013/2014 Premier league while the black
dash-dotted line is for the bottom-ranked team Cardiff City. The colors for the rest of the teams have been assigned according
to their final rank, with brighter colors associated with teams with a high rank at the end of the championship and darker
ones to those having inferior ranks.

F THE BRANCHING STRUCTURE

We use our proposed model of Section 3.1 to recover event genealogies using its hidden branching structure Hawkes and
Oakes (1974). The branching structure categorizes the events into immigrants and offsprings. Offspring events are triggered
by previous events while immigrant events are not linked with a parent event. Let w(s)

i be the random variable indicating
whether the i-th event of the s-th sequence is an immigrant (w(s)

i = 0) or an offspring (w(s)
i = j) of a previous event

indexed by j, we can calculate analytically the conditional branching structure probabilities as
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0, otherwise.

The above probabilities are based on the model in (11) and their computation allows us to gain insights over the causality of
the event occurrences by assuming a causal constraint that any event is triggered by exactly one of the previous events or
the background. Hence, this calculation of probabilities attains the recovering of the hidden branching structure w(s)

i . We
choose four different matches of the 2013/14 EPL winner Manchester City (MC) and we build the branching structure taking
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Figure 5: Branching structure of the last 10 events before the first goal scored by Manchester City in the first half of
the game from four different matches played by Manchester City (MC). The games are MC vs Newcastle United on
19/08/2013 (leftmost panel) and Arsenal vs MC on 29/03/2014 (rightmost panel). Each plot reads bottom-up with each
column representing a probability vector which gives the probability the event on the x-axis is triggered by an immigrant or
by an offspring that occurred at most 5 events in advance. The last column always depicts the sequence of the last 5 events
(event types in red) before the MC scores. The prefixes ‘H’ or ‘A’ indicates whether MC is the home or away team and the
suffixes ‘U’ and ‘S’ indicate whether the passes were unsuccessful or successful, respectively.

into account the last ten events before a MC’s player scores the first goal in the first half of the game. More details are given
in the caption of Figure 5. To gain better intuition of how this experiment is related to the real matches we provide the links
of the videos with the goals scored from these four matches in the supplementary material. For the leftmost panel of Figure
5, we observe that our model suggests the events "A_Clear“ and "H_Dribble“, the first and third event, respectively, before
the first goal is scored, are the most probable event that leads to this goal. Interestingly, by watching the corresponding video,
we observe that these two events play a crucial role for scoring this goal since MC’s player Silva by dribbling/conveying the
ball closer to the opponent’s goal area creates the right circumstances for scoring the goal himself. The event "A_Clear“,
which is the most probable event that lead to a goal, is not unexpected since the main reason this goal was scored because a
(failed) attempt of the opponent to move the ball away from his goal area. In the rightmost panel, the branching structure
suggests that the goal was primarily a result of a player regaining possession of the ball from the opponent, i.e. the event
"A_Win“. The event "H_Save“ also contributed to the triggering of the goal event. The video of the goal interestingly
verifies that this goal was scored after MC’s player Jesús Navas gained possession of the ball, leading to a fast counter-attack
which was the main reason of the goal. The other event is also important since after the opponent’s goalkeeper prevented a
goal by the shoot of Edin Džeko, the ball landed at Silva’s feet allowing him to easily score. It is encouraging that our model
is able to capture such a level of detail in football dynamics while preserving interpretability.

F.1 Links of videos

The links of the videos for the two matches of Figure 5 accompanied with the right time interval of the goal in the video in
parentheses, the date of the match, the name of the MC’s player who scored the first goal, and the final score.

MC vs Newcastle United. Url: https://www.youtube.com/watch?v=ycnM_V273Zc&ab_channel=
HDKoooralive (see 0:00 - 1:00) Date: 19/08/2013 Scorer’s name of first goal: Silva Final score: 4-0

Arsenal vs MC. Url: https://www.youtube.com/watch?v=PQQqlGVb0Lk&ab_channel=mrszippy
(see 0:00 - 0:57) Date: 29/03/2014 Scorer’s name of first goal: Silva Final score: 1-1

https://www.youtube.com/watch?v=ycnM_V273Zc&ab_channel=HDKoooralive
https://www.youtube.com/watch?v=ycnM_V273Zc&ab_channel=HDKoooralive
https://www.youtube.com/watch?v=PQQqlGVb0Lk&ab_channel=mrszippy
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