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Abstract

Master protocol designs allow for simultaneous comparison of multiple treat-
ments or disease subgroups. Master protocols can also be designed as seamless
studies, in which two or more clinical phases are considered within the same
trial. They can be divided into two categories: operationally seamless, in which
the two phases are separated into two independent studies, and inferentially
seamless, in which the interim analysis is considered an adaptation of the study.
Bayesian designs are scarcely studied. Our aim is to propose and compare
Bayesian operationally seamless Phase II/III designs using a binary endpoint
for the first stage and a time-to-event endpoint for the second stage. At the
end of Phase II, arm selection is based on posterior (futility) and predictive (se-
lection) probabilities. The results of the first phase are then incorporated into
prior distributions of a time-to-event model. Simulation studies showed that
Bayesian operationally seamless designs can approach the inferentially seam-
less counterpart, allowing for an increasing simulated power with respect to the



operationally frequentist design.

Keywords: Bayesian Confirmatory trials, Different Outcomes, Operating Char-
acteristics, Treatment Selection.

1 Introduction

Master protocols, such as basket, umbrella and platform trials, have revolution-
ized the way clinical studies are conducted, especially in oncology(Woodcock &
LaVange 2017). A recent systematic review by Park et al. (Park et al. 2019)
identified 83 master protocols (49 basket, 18 umbrella, and 16 platform trials),
and the number of master protocols has been increasing rapidly over the last five
years. These studies provide an efficient and flexible methodology for the assess-
ment of multiple interventions in one or more diseases or conditions in a single
protocol, possibly in a continuous manner. The benefits of master protocols
include the use of a common control, the pooling of resources, and a reduction
of the investment required to evaluate additional interventions beyond those
initially studied. They also maintain a high quality standard for ongoing evalu-
ations through the establishment of a trial network and may positively impact
patient recruitment, as the trials are performed on sites that are continuously
learning and improving their performance. However, such studies also present a
number of challenges; the upfront investment is large, meaning that the number
of platform trials that can be conducted may be relatively limited, and more
insight into the prerequisites for the design to become efficient and sustainable
is needed. Renfro and Sargent (Renfro & Sargent 2017) have also highlighted
the “sample size” limitation versus “effect size”, where a small sample size is
used for each study arm in order to maintain the overall trial feasibility. This
implies that the targeted effect size could be larger than the expected effect size
leading to lower power and/or higher type I error than usual Phase II or III
trials.

Another interesting design class is composed of the so-called seamless design.
Traditionally, separate Phase IT and Phase III trials are carried out with specific
objectives during clinical drug development. For example, a late Phase II trial
may be used to estimate parameters to be used in sample size calculation for a
confirmatory Phase III trial. In contrast to traditional clinical trials, seamless
clinical trials allow for the combination of multiple trial phases inside a single
protocol (Bretz et al. 2006). If trial phases are done sequentially but separately,
they are called “operationally seamless”. Conversely, in the adaptive seamless
design, the final analysis uses data from patients enrolled in all phases, be-
fore and after adaptation, in an “inferentially seamless” approach (Maca et al.
2006). Decisions on how to “adapt” the study are made after taking planned
interim views of the data. Inferentially seamless designs come with statistical
challenges since multiple comparisons arise from both (possible) repeated in-



terim looks at gathered data and the selection process (selected data will also
be included in the final analysis) (Stallard 2011). This approach usually requires
that the familywise error rate be controlled in the strong sense since pairwise
tests are performed between the arms at the selection stage. To address these
challenges, many of the methods proposed in the literature are based on group
sequential approaches (Stallard 2011, Stallard et al. 2015), on combination test
approaches (Cui et al. 1999, Quan et al. 2020) or on the conditional error func-
tion method (Friede et al. 2012, 2020). Selection procedures based on utility
functions (Aouni et al. 2021), on benefit cost ratio perspective (Sun et al. 2020)
and/or on conditional power (Kimani et al. 2009) have also been explored.

Bayesian inference naturally fits seamless (and master) designs, permitting the
inclusion of Phase II data into prior distributions for the Phase IIT model param-
eters, sharing information between trial phases in operationally seamless designs,
or enabling frequentist multiplicity corrections but working on prior distribu-
tions Chang & Berger (2021) and/or on thresholds on posterior values Aupiais
et al. (2019) in inferentially seamless designs. Moreover, in Bayesian think-
ing, operationally seamless designs can mathematically approach inferentially
seamless ones. The information, whether added in prior distributions, as in the
operationally seamless, or in the likelihood function, as in the inferentially seam-
less, can have the same mathematical role in the Bayes formula. If the power
prior approach Ibrahim et al. (2015) is used it is straightforward to incorporate
Phase II data into Phase IIT analysis: if the power prior parameter is set to one,
all information is gathered, and if the same outcome is used in both phases,
the posterior distribution of an inferentially seamless and of an operationally
seamless coincide. However, while Bayesian inference has been widely used in
seamless Phase I/II, only a few attempts have been made to include Bayesian
inference in the seamless design of Phase ITI/III (Chapple & Thall 2019). For
example, Bayesian tools were proposed to perform treatment(s) (Schmidli et al.
2007, Kimani et al. 2009) or subpopulation(s) (Brannath et al. 2009) selection.
In Kimani et al. Kimani et al. (2012), Bayesian estimation of the dose-response
curve was adopted at the end of Phase II; however, frequentist analysis was then
used to test the Phase IIT hypotheses on treatment superiority.

Another important feature of seamless studies is the use of a generally shorter
term endpoint for the first stage of the study. Usually, this midterm endpoint
can be considered as a surrogate endpoint for the Phase III study. A few works
have studied the use of different but correlated endpoints in the two phases,
under a frequentist paradigm. Jenkins et al. (2010), Stallard (2010)

In this work, we propose and evaluate simple Bayesian operationally seamless
Phase II/III designs for survival analysis. As in the master protocol, the de-
sign allows for several treatments to be compared to a single control arm. As in
seamless design, selection rules are specified, and only the selected arm proceeds
to Phase III. Moreover, our work focuses on the situation where two different,
but related, endpoints are used in the two phases, that is, when a dichotomized



survival outcome, such as a survival rate at a fixed time point, is used to make
decision at the end of the Phase II. In this setting, we have developed two ways
of incorporating Phase II information into the Phase III analysis when end-
points differ but are related as in the case study used for this paper. Indeed, we
proposed to tune prior distributions based on the Effective Sample Size Morita
et al. (2008) or on a likelihood approach.  Since seamless designs plan sev-
eral phases in the same protocol that are usually done in similar populations
and environmental settings, we expect prior distributions on the latest phase to
include the maximum possible information from previous stages. Adding infor-
mation into prior distribution is usual in Bayesian framework, even if still not
explored in previous work on seamless design. We explore the performance of
several Bayesian methods, that is, with weakly informative prior distributions,
as well as with informative ones, in terms of frequentist operating characteris-
tics through extensive simulation studies. The aim is also to understand how
close Bayesian operationally seamless designs performances, in term of frequen-
tist operating characteristics, can get to Bayesian inferentially seamless ones.
Therefore, an inferentially seamless Bayesian design, that uses data from both
phases and with the true survival time of Phase II patients not dichotomized
for the Phase III analysis, is introduced for comparison only. A frequentist
operationally design is also introduced for comparison only.

In the next section, the motivating example is introduced. In Section 3, the
methods of each phase, selection rules and final claim rule are described. Sim-
ulation design setups and results are summarized in Section 4. A practical
example and discussion are then shown in Sections 5 and 6, respectively.

2 Motivating study

This work was motivated by the Atalante-1 clinical trial (NCT02654587). This
study on non-small-cell lung cancer was designed as an operationally seamless
Phase II/III trial comparing the efficacy of an experimental treatment (Tedopi)
against the best standard of care (Docetaxel or Pemetrexed). A frequentist
approach was used with a Fleming single-arm design (Fleming 1982) for the
Phase II stage, considering only the treatment arm. For the first stage, a binary
endpoint, the survival at 12 months, was chosen. With a type I error rate of
2.5% and a power of 80%, the study included 84 patients in its first stage. The
null hypothesis HO was a 25% survival rate, and the alternative hypothesis H1
was a 40% survival rate. If the null hypothesis was rejected at the end of Phase
II, the study could continue to the Phase III stage; otherwise, the trial would
be stopped due to futility. For the second stage, using a 2:1 randomization
and a survival endpoint (overall survival) with a two-sided log-rank test at the
5% significance level with a power of 80%, 363 new patients were planned to
be included in the trial, and 278 events were needed assuming median OS of 7
months in the control group and 10 months in the experimental group under
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Figure 1: Scheme of the seamless design, with a Phase II involving binary
outcomes, that is, mortality rate at a prespecified time, and a Phase III with a
time-to-event endpoint.

the alternative hypothesis. The Atalante-1 study was discontinued due to the
COVID-19 pandemic Kunz et al. (2020) based on the recommendations of the
DSMB, when 219 patients had been randomized and enrolled. Besse (n.d.) The
design proposed in this manuscript is based on a Bayesian generalization of the
Atalante-1 trial.

3 Methods

Based on the Atalante-1 case study, our proposed Bayesian designs use the same
endpoints, that is, binary outcomes at the Phase II stage and survival outcomes
at the Phase III stage. However, we propose extending the design to allow
for multiple treatment arms at the first stage, as shown in Figure 1. For the
sake of simplicity, we assumed a 1:1 randomization ratio in both stages. In the
following, notation is introduced along with the proposed mathematical models
and statistical rules at each stage.

3.1 Notation

Let k&, £ =0,..., K, be the index of the K treatments involved in the trial, with
k = 0 representing the control group. Let Nj be the maximum sample size of
the Phase II stage for each group and M}, the maximum sample size of Phase I11
for the selected arm, k = 1 and for the control arm, k = 0. Let tik,t=1,..., N,
and ¢, 7,4 = 1,..., M} be the time to event (death) for Phase II and Phase III,
respectively, and ¢; ;, and Cik be the censoring time for each individual. For each
patient in the trial, we will observe either the event or the censoring time (if the
patient is lost to follow-up or alive at the end of the observation window). For
each individual in Phase II, y; ;, denotes the time of the first occurrence of the
event or censoring, and v; i, is the event indicator, that is, y; , = min(¢; x, ¢ k)



with ti,k:u Cik > 0 and

v =4 L vie =tip = tip < cik
" Oif yip =i = tig > Cip

Let Dy, be the data from group k, Dy = {Ni, ¥k, Vi }k=o,...k, Where v and yi
are vectors of length N}, containing all values of y; , and v; j.

Similarly, D; is defined for k = 0,1 in Phase IIL.

3.2 Stage 1 - Phase II

A binary primary endpoint (the survival at t*, with ¢* = 12 months in our
example) is considered at the first stage. The two possible outcomes are dying
before t* or still being alive at that time. For simplicity, patients censored before
t* are excluded from the survival rate calculation.

Phase II analysis is planned when Ny patients are recruited in each k group
and have finished the follow-up period. In practice, the first stage sample size,
Ni, will depend on the maximum sample allowed for the study (usually de-
pending on external criteria) and on the design performance. After setting the
maximum Ny allowed for each arm, the sample size could be calibrated using
simulations to derive operating characteristics, of the stage and of the whole
trial, such as simulated type I error, power, percentage of correct arm selection,
etc.. Then, Ni could be chosen to maximize desired criteria, such as power
subject to sufficiently small simulated type I error.

Let y;, be the indicator of survival at time ¢* for patient ¢ in group k, that is,

o | Lify >t
yi,k - { 0 if Yik < t*, (1)

with ¢ € 1,..,ng, where np < Nk denotes the number of noncensored patients
in group k.

Let p € [0,1] be the probability of being alive at time ¢* in group k; then, we
have > y;, ~ Binomial(ng,py). We use the logit link function to study the
inference on pj as recommended by Albert and Hu Albert & Hu (2020). The
model can be written as py, = logit ' (6), with 6, = 0 + px, k= 1,..., K, and
where 6 is the parameter associated with the control arm (py = logitfl(ﬁo)).
To complete the Bayesian model, normal prior distributions can be given with
i ~ N (fi, 02), and 0y ~ N (o, 02). Hyperparameter values can be set using
historical data available for the control group, and fix could be set to 0 if a
conservative no-effect prior is preferred. Notably, a simpler beta-binomial model
could also be used for each arm at this stage. Similar results were found using



a beta-binomial conjugate distribution for the first stage of the study. However,
the proposed model enables a faster interpretation of the treatment effect and
for possible extensions (e.g., hierarchical model, adding doses within treatment
groups and a dose-response underlying curve for some groups, etc.), as discussed
in Section 6. All Bayesian methods presented in the following sections of this
paper use the same prior distribution for the Phase II stage and differ only in
the final analysis where prior and data specifications depend on the model used.

3.3 Interim selection rules

At the end of Phase II, we are interested in selecting the most promising arm
among the treatment groups. We propose a two-step algorithm: (i) applying
a futility rule and (ii) selecting the most promising arm among those retained
in the previous step. In the first step, all arms that did not reach a threshold
of 71 for the posterior probability of having a higher survival rate than the
control, that is, P(px — po > 0|Dg) < 71, were excluded from the study. In
the second step, among all remaining treatment arms, the one with the highest
predictive probability of success is selected for the survival part of the study.
This probability is defined as the probability that a future patient reaches at
least one year of survival in the arm (posterior expected value of py). If none of
the arms is selected because of the futility rule, the trial is stopped. The futility
rule cannot change the best arm selection, but it is used to stop the whole trial
if no evidence of benefit is gathered at the Phase II stage. Moreover, the two
steps can be reversed without changing the results.

3.4 Stage 2 - Phase III

After selection of the most promising arm, the study continues to Phase III with
a survival endpoint. As an example, we use the Weibull distribution to model
the survival time. Other parametric distributions could alternatively be used.
For regression purposes, we adopted the shape a and scale ; parametrization,
W (a,7;), that is:

a—1 «

t t ~

f(tloyg) = il () exp (— (> ) , witha > 0,7 >0,k=0,1
e \ V& V&

Here, k=0 and k = 1 denote the control arm and the selected treatment arm,
respectively. As usual in Weibull survival regression, the shape parameter is
considered shared by both arms, while each arm is associated with its corre-
sponding scale parameter, 7. For each arm, the associated survival function

is S(y, ilo,v;) = exp (— (y;—’“) ), and the likelihood of Mj accrued patients
) k

in the k-th arm, including censored data, can be written as L(«,v0,71|D) =



H,%IO Hf‘ﬁ (Ys ila, 7)o S(yi_’,;\a,*y,;)(l_”i,’?) , where y, 1, and v, ;, respectively
represents the time to event or censor of individual ¢ in the k group and its
event indicator. To make a stable inference, 8; = log(v;) is estimated for the
k-th arm.

To complete the Bayesian model, prior distributions on «, £y, 51 are needed. In
the following, two approaches that use Phase II results are proposed. In the
first one, called the ESS approach, following the suggestion of Ibrahim et al.
Ibrahim et al. (2001), m(«) = InverseGammal(p, x) with p,x > 0 and 7(5;) =
N (pg, 01) with the standard deviation oj, > 0 are chosen as prior distributions.
The hyperparameter pj, is derived from the Phase II results (at time t*) using

L\ O
the survival function relationship p; = exp (— (fy—) ), where p; denotes the
k

estimated survival rate of the k-th arm (usually the posterior mean or median).
Considering @ = &, with & denoting the expected value of the prior distribution
on « (usually set equal to 1),

pr = log <_t*>
’ log (5z) "/

Standard deviation parameters, oz, can be set corresponding to a desired ef-
fective sample size (ESS) (Morita et al. 2008). The ESS quantifies the amount
of information given by the prior distribution in terms of the number of po-
tential additional patients added to the analysis. Several ESS definitions are
available in the literature; see, for example, Morita et al. Morita et al. (2008),
Neuenschwander et al. Neuenschwander et al. (2020) or Wiesenfarth and Calder-
azzo Wiesenfarth & Calderazzo (2020); however, their application to time-to-
event models is challenging. Therefore, we suggest that a new ESS idea be built
on the unit information concept (Liang et al. 2008). The unit information, Z,,
in a frequentist setting, can be defined as the information contributed by a sin-
gle subject, that is, the Fisher information matrix divided by the sample size.
In the Bayesian setting, we can adopt a similar definition, that is, the inverse of
the variance of the posterior distribution divided by the sample size. Then, to
have the ESS equal to n., we simply have to multiply the obtained Z,, by n, and
return to the standard deviation scale, that is, set o = (n*Iu)ﬂ. The value of
T, is linked to the statistical model and, in our case, with a binary outcome at
Phase II to be translated into a prior distribution for Weibull parameters, was
obtained by studying the (expected) linear relationship between sample sizes
and posterior variance. However, in the survival setting, the censoring rate
(¢) can also impact the value of Z,,, making o; = (Z(n*,cy))”? a function of
both sample size and censoring rate. Details on the computation are given in
Appendix Al.

In the second approach, called the likelihood approach, the joint prior distribu-
tion on «, By, B1 is computed using the Weibull binary likelihood based on the



Phase II data, that is,

1

m(a, fo, A1) o H S(t"|or, exp(By)) e (1= S(#*|ov,exp(B7)) ™ — ygm()m(By),
(2)

k=0
with 7(a) and 7(53;) denoting noninformative priors (for example, in the same
families as in the ESS approach), and n; and y; = X:Q:‘]~€ the total number

of patients analyzed at Phase II and the number of survivors at ¢* in arm k,
respectively.

3.5 Final claim

The final claim is made considering the parameter associated with the treatment
effect, A = 81 — Byg. The treatment is considered superior to the control arm if
the posterior probability of A > 0 exceeds a prespecified 7 threshold, that is,

P(A>0) > 7. (3)

Alternatively, if a stronger treatment effect is desired or a noninferiority margin
is accepted, we could have P(A > (,) > 7. Details on how to fix the value of
Cy are given in Appendix A2.

4 Simulation Study

4.1 Simulation settings

We evaluated the operating characteristics of five designs via an extensive sim-
ulation study. A frequentist operationally seamless method (F-OP), that is,
with two stages written in the same protocol, done sequentially but with only
Phase III data used for the final claim (therefore, no type I error adjustment
is planned), is considered the main reference method and is included for com-
parison. The F-OP method uses a similar decision process as the Bayesian
ones. At the time of interim analysis, no test is planned, and treatments are se-
lected based on observed survival rates using a threshold approach (Friede et al.
2020), that is, the arm with the highest survival rate is selected to proceed to
the phase III stage so long as the estimated difference to control is at least (r,
with the trial stopped otherwise. For the final analysis, F-OP uses a one-sided
Wald test from a Weibull regression to estimate the impact of treatment, with
a significance level of 0.025. The analysis was performed using the flexsurvreg()
function in the flexsurv R package.

The Bayesian operational counterpart, which uses a weakly informative prior
at the second stage, with an ESS = 1 and p =10, kK = 9, will be denoted B-



OPwinf. An alternative Bayesian method with an informative prior based on
-2
the ESS approach, B-OPinfESS, where o7, = (I(n;c, ¢, ,;)) is computed using

all n;, Phase II patients who are not censored before 12 months in arm k and the
empirical censoring rate, ¢ e of Phase III of the same arm, is also considered.
As shown in Appendix 1, we used Z(nj, ¢ - i) =0. 932nk—10 105¢, ;—0.74Tn;c, &
(truncated at zero When negative values are given) when ¢é h = 0 making it a
conservative method. The fourth method, denoted B- OPlnLIK shares the same
ideas as B-OPinfESS, but the informative prior is built using the likelihood-
approach. Finally, the fifth method, added for comparison only, is a Bayesian
inferential design, B-INFER, where at the end of the trial true survival times
from all patients in both phases are analyzed; therefore, we assume to have
followed and stored time of death information for each patient from Phase 11
in the control and selected treatment arm and not only the dichotomised out-
comes used at the Phase II selections stage. Weakly informative priors, as for
B-OPwinf, are used in B-INFER. For all Bayesian designs, we used an efficacy
threshold 75 = 0.975. This threshold value is widely used when dealing with
Bayesian efficacy proof. Even if it is not completely analogous to the frequentist
0.025 1-sided counterpart, it often has very similar properties, as shown by com-
paring Bayesian non-informative and frequentist operational analyses. If one
desires a full equivalence between Bayesian and frequentist threshold, extensive
simulations are needed to find a threshold value that gives the same properties
as the frequentist significance level. Several futility thresholds, 71, are evaluated
along with corresponding thresholds (obtained by simulations, not shown) for
the F-OP.

Four main scenarios were selected and are presented in Figure 2 to evaluate the
operating characteristics (simulated type I error and power), and 1000 trials per
scenario were simulated. In the main simulation set, we simulated nine candi-
date therapies and the control group. Twenty patients per arm were simulated
at the Phase II stage, that is N = 20, Vk, and 150 per arm were simulated
at Phase III, that is Mj = 150, Vk. The sample size at the second stage was
computed from a frequentist point of view to have 80% power and a maximum
of 5% type one error rate when only Phase III was performed with two arms
(treatment vs. control). Patient survival times were drawn from a Weibull
distribution, and censoring time was drawn from a uniform distribution.

In the first scenario, no arm is better than the control arm; that is, for all
treatment arms, the hazard ratio (HR) is higher than or equal to one (equality
only for one arm). This scenario helped us to evaluate the simulated type I
error. In scenario 2, only one arm is truly superior to the control group, with a
HR of 0.7 corresponding to the initial assumption of the Atalante-1 study. All
other groups have a HR > 1. In the third scenario, two treatment arms are
truly superior to the control, with one having a HR of 0.7 and the other having
a HR of 0.8. Regarding the fourth scenario, only one arm is truly superior to
the control group, as in scenario 1, but the real HR of 0.75 is smaller than the
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expected HR = 0.7. The last three scenarios allow us to evaluate the simulated
power in several situations.

Simulations are carried out using R software, and the Bayesian model is written
using the Stan programming language Stan Development Team (2022). MCMC
chains are then computed using the rstan R package. We run four MCMC
chains using 4000 samples with a warm-up of 2000.

4.2 Simulation results

Figure 3 shows the results of the five designs in scenario 1. When a futility
threshold 7 = 0.4 or {7 = —0.025 is used at the selection stage, 22.1% and
26.7% of the trials are stopped at the interim analysis when using a Bayesian
(all Bayesian designs share the same Phase II outcome) or the frequentist de-
sign, respectively. The simulated one-side type I error rate ranges from 1.8%
for B-OPwinf to 2.4% for B-OPinfESS when no futility analysis is performed
(corresponding to 7 = 0 or {7 = —1). Otherwise, the type I error results are
lower, ranging from 1.4% to 2.2%.

Regarding the simulated power, Figure 4 shows the results in scenarios 2, 3
and 4. In the first column, the percentage of simulations in which the correct
arm is selected is given for the Bayesian and frequentist methods for the same
two futility thresholds as in scenario 1. Generally, futility stopping reduces the
percentage of correct claim with this reduction being of 5 points on average.
This is linked to the percentage of early stopped trials. In scenario 2, of 1000
studies with a futility threshold 7 = 0.4 or {y = —0.025, 102 studies are stopped
for all the Bayesian methods vs. 129 for the frequentist one, which results in a
slight loss of power in the frequentist analysis compared to the Bayesian ones.
B-OPwinf shows similar performances to F-OP, as expected. B-OPinfESS has
an equal or slightly lower percentage of correct claims than B-INFER, while
B-OPinfLIK performances are between the other two operationally Bayesian
designs.

We then investigated the situation when the total sample size, that is, that of
Phase II plus that of Phase I1I for the selected arms, was equal to 150. Figure 5
shows the results at the Phase III stage: the results at the first steps are identical
to Figures 3 and 4 since the same sample size and setting are adopted. For all
methods and scenarios, we observe a reduction of positive claims between 5%
and 10% due to the reduction of gathered data for the final analysis.

In the Supplementary material, we have also evaluated and reported the methods-
performance when the sample size at Phase II is increased up to 40 patients,

when a higher censoring rate (20%) is considered, or with other futility thresh-

olds.
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Table 1: Interim analysis results. pf refers to the frequentist estimation of survival
rate, AL to the difference of frequentist point estimations pf —pE’, 5 to the Bayesian
posterior mean of survival rate, A to the Bayesian mean posterior difference of
survival rates with respect to the control arm, P(Aj > 0) to the posterior probability
that A is higher than 0. Cl and Crl denote the confidence interval and the credible
interval, respectively.

Arm g/ pf 95%][Cl] (pi —pf) Pr 95%([Crl] A P(Ag>0)
Control 5/18 0.278 [0.107—0.536] 0.267 [0.096—0.481]

Arm 1 1/17 0.059 [0.003—0.308] -0.219 0.060 [0.002—0.207] -0.204 0.029
Arm 2 1/20 0.050 [0.003—0.269] -0.228 0.052 [0.002—0.177] -0.212 0.019
Arm 3 3/20 0.150 [0.040—0.389] -0.128 0.151 [0.035—0.333] -0.113 0.173
Arm 4 3/18  0.167 [0.044-0.423] -0.111  0.167 [0.039-0.362]  -0.096 0.212
Arm 5 6/18 0.333 [0.144—0.588] 0.056 0.334 [0.139—0.563] 0.071 0.676
Arm 6 11/17 0.647 [0.386-0.847] 0.369 0.645 [0.408-0.847] 0.385 0.990
Arm 7 0/17 0.000 [0.000—0.229] -0.278 0.006 [0.000—0.055] -0.258 0.001
Arm 8 2/17 0.118 [0.021—0.377] -0.160 0.119 [0.016—0.305] -0.145 0.115
Arm 9 1/16 0.062 [0.003—0.323] -0.215 0.064 [0.002—0.221] -0.201 0.034

5 Illustration

In this section, we present as an illustration a simulated study extracted from
scenario 2. Therefore, the sixth treatment is simulated as the efficacious one
with HR = 0.7, while all the others are simulated with HR> 1, as illustrated
in Figure 2. Ten percent was chosen as the censoring rate for each arm, and
twenty patients were randomly allocated to each of the ten arms (control and
nine treatment arms) at the Phase II stage. Table 1 shows the number of
survivors (3 y;,) among the noncensored patients analyzed in Phase II (ng);
the frequentist proportion estimation along with its 95% confidence interval; the
frequentist proportion difference; the Bayesian posterior mean of p; along with
its 95% credible interval; the mean of the posterior difference of each arm vs.
the control (A); and the probability that A is higher than zero.

According to the frequentist design, if a futility step is added at the end of
Phase II, only Arm 5 and Arm 6 would be considered for the selection (all
arms with (pf’ — pf’) < —0.025 will be excluded), and then Arm 6 should be
selected. The same arm is selected if no futility step is planned. Similar results
are achieved by the Bayesian methods since Arm 5 and Arm 6 are considered
for the selection (P(Aj > 0) > 0.4) and Arm 6 is selected for Phase III.

For Phase III, 150 patients were randomly allocated to the control arm and to
Arm 6, called the treatment arm. The survival times of the patients are shown
in a Kaplan-Meier plot, Figure 6.

Figure 7 shows the informative and weakly informative (winf) distributions
derived using the ESS approach (infESS) and the likelihood approach (infLIK)
for the selected treatment arm. Table 2 summarizes the results for all designs:
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in the second column, either the posterior mean of the treatment estimate 3, for
Bayesian models or the flexsurv estimation of the treatment regression factor
for the frequentist model is presented; and in the third column, A refers to
either the posterior difference with respect to the control for Bayesian models
or the flexsurv estimated difference for the frequentist method. The results are
relatively close for all the methods, but we observe narrower credible intervals for
Bayesian methods using Phase IT information. B-OPinfLIK, B-OPinfESS and
B-INFER designs conclude on a positive treatment effect since the lower bound
of their credible interval is higher than 0. The lower bounds of the B-OPwinf
and F-OP designs are very close to but lower than 0; therefore, those designs
do not provide informative conclusions on the treatment effect, illustrating the
benefit of incorporating the phase II results in the final analysis via the prior
distribution.

6 Discussion

In this work, we explored the use of the Bayesian framework in seamless designs
and how information could be transferred in the case of different but related
endpoints, taking an example from the Atalante-1 case study.

As inferential seamless clinical trial is not always feasible in practice, we pro-
posed two ways to set informative prior distributions (that can also be derived
from external data in non seamless trials). In the first one, the ESS approach,
we evaluated how much the unit information should be in a Weibull survival
regression. In our case, a linear relationship was found, even if, in principle, the
ESS could vary according to the survival rate in other models. In the second
approach, the likelihood approach, we added the information at the binomial
scale and not directly at the survival scale. As shown in Figure 7, using
the informative ESS approach for the prior usually leads to less dispersed, and
therefore more informative, prior distributions. Moreover, since possible loss to

Table 2: Final Analysis. [3; denotes either the posterior mean of the treatment
estimate for Bayesian models or the flexsurv estimation of the treatment regression
factor for the frequentist model, and A to either the posterior difference with re-
spect to the control for Bayesian models or the flexsurv estimated difference for the
frequentist method.

Design B1 [Crl or Cl] A [Crl or CI]

B-INFER 2515 [2.358-2.672]  0.271 [0.057-0.491]
B-OPInfESS 2528 [2.372-2.691]  0.277 [0.054-0.503]
B-OPinfLIK  2.501 [2.343-2.663]  0.246 [0.027-0.467]
B-OPwinf 2454 [2.201-2.618]  0.200 [-0.028-0.428]
F-OP 2.446 [2.058-2.835]  0.194 [-0.032-0.194]
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follow-up is only estimated using Phase III data, it can produce stronger infor-
mation than the information brought by real Phase II patients, as in the 150
patients simulation setting. This is because a censored patient comes with less
information than a patient who had the event in the survival likelihood. While
it can be useful to increase the power, it could come with a possible type one
error inflation with respect to the inferentially seamless designs. To be more
conservative, a possible action consists in decreasing the number of patients n,
used to build the prior distribution. To note, B-INFER, uses Phase II patients
in Phase III analysis. Since this method was added to comparison purpose only,
we did not consider any further correction in posterior distribution thresholds
to ensure type I error control. However, it should be considered in real practice
along with simulation studies.

The likelihood approach can be seen as an intermediate method between the
ESS informative and the ESS weakly informative approaches, which was ex-
pected since the information brought by a binary variable is known to be lower
than that of a continuous variable. Notably, while the binary-Weibull likeli-
hood could be seen as a nonwell-posed problem, it produces a proper prior
when coupled with noninformative proper distributions, as done in our appli-
cation. This prior can be seen as a power prior Ibrahim et al. (2015) where
the power parameter is set to 1 and the likelihood of historical trial, here the
Phase II data, and the actual trial, the Phase III, differs. When full data
are available for Phase II, that is, the actual survival times are known rather
than just whether they are less than or greater than t*, the power prior ap-
proach that shares the same likelihood across studies can be used. In this
case, setting the power parameter equal to 1 leads to a Bayesian operationally
seamless design that is exactly equal to a Bayesian inferentially seamless de-
sign. Even if the Phase II likelihood appears in different parts of the Bayes
formula, that is, in the prior for the operationally seamless design and in the
likelihood part for the inferentially seamless one, the two final formulas coin-
cide. Therefore, B-INFER can also be seen as an operationally seamless design
that uses a power prior approach with no discounting in historical data. As for
the ESS approach, to be more conservative, a possible action consists in gener-
alising the prior distribution using a power prior approach, that is 7(a, By, 1) x

- * ng—yz | 9k .
[Tk [ S0l exp(5))7% (1~ S(t o, exp(8)) ™| (o) (8, with 0 < gz <
1. Setting the g; parameter lower than 1 discounts the likelihood term.

Obviously, using a similar survival endpoint, even if not completely identical
if the follow-ups differ, for the two steps of the analysis benefits the prior con-
struction, making it easier to create informative prior distributions. In this case,
the posterior distributions of Phase II can be directly used as priors for Phase
1T parameters. For the frequentist F-OP design to control the type I error the
phase III part needs to include no patients with data used in the phase II part
even as censored observations. The advantage of the methods we proposed is
that they can also be used when Phase II is external to the trial (and therefore
not a seamless master protocol), and data can be found in the literature. In
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this case, if the trial conditions are not exactly the same between studies, we
suggest decreasing the ESS of the prior distributions or checking for prior-data
conflict Ollier et al. (2020), Wiesenfarth & Calderazzo (2020).

Increasing the sample size of the Phase II stage will increase, as expected, the
probability of selecting the correct arm and, therefore, the power of the whole
seamless study, as we can see in the Supplementary material.  If one wants
to include the censored patients of the first stage in the survival rate computa-
tion, multiple imputations methods could be considered. However, we did not
consider them relevant at this early stage of the trial. Another option, would
be to consider patients censored before t* as dead, but this choice would be,
in general, too conservative. In this case, a low and homogeneous censoring
rate among treatment groups should not affect the results of interim analysis
while a high censoring rate should increase the number of studies stopped for
futility. The futility step, which can be done before or after the selection step,
can benefit patients by terminating early studies that would have ended nega-
tively. However, since the Phase II stage involves a small sample size in each
arm, it could also stop a few studies that would have ended with confirmatory
results at the final analysis. Therefore, a proper tradeoff can be evaluated via
simulations at the protocol writing stage. In our example, we did not use a
strong threshold; for example, the Bayesian threshold on posterior probabilities
is lower than 0.5 and therefore lower than targeting at the median. For the sake
of comparability and interpretability, the threshold for the frequentist analysis
was fixed by previous simulations, trying to have similar selection results for
the different methods. However, a perfect threshold was not found, resulting in
slightly different results between Bayesian and frequentist methods.

Since Bayesian selection uses predictive probabilities via the MCMC approach,
heavy tails impacting the posterior expected value could occur, leading to a
different arm selection with respect to a simpler frequentist threshold approach.

A Phase IT model was constructed to allow for possible modifications and exten-
sions. We focused on a simple setting; however, several arms can be linked to
each other if the same treatment but different doses or regimens are evaluated.
In this case, if an efficacy-dose relation shape is expected, it can be added to
the Phase II model. Moreover, if the arms do not represent different treatments
but different populations or disease types, a correlation structure can be added
as an additional model level.

In conclusion, the Bayesian framework provides a powerful tool to transfer in-
formation between trial phases, and it is particularly adapted to a seamless
design. In our setting, where Phase II only aims at selecting the best treatment
arm or stopping the trial, we showed how using Phase II data can increase the
simulated power of the seamless design relative to an operationally seamless ap-
proach that uses only the phase III data in the final analysis, while still having
acceptable simulated type I error, provided a binding futility threshold is used.
In future work, the sample size needed to achieve a prespecified power while
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controlling the type I error should be evaluated in this Bayesian setting.

Supplementary information

All the codes will be available at the first author’s GitHub repository.
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Appendix

A.1 Information computation

To compute Z(nj, C,. i.), we studied the relationship between the expected inverse
of the variance of the 3 posterior distribution, the sample size and the censoring
rate. We first set the mortality rate estimated from Phase II, p, and then
compute the corresponding true 8, when « is set equal to 1, using the following

relationship:
" O\
p=exp|— .
< (exp(ﬁ)> )

The resulting values are then used as true scenario parameters. We simulated
time-to-event (with and without censoring) datasets drawing from the Weibull
distribution associated with the true scenario parameters, with increasing sam-
ple size, from 5 to 100 patients. For each sample size, 1000 replications were
simulated, and for each replication, a Bayesian Weibull analysis, as described
in Section 3.4, was performed using noninformative prior distributions, that is,

7(a) = InverseGamma(p, k), and 7(8) = N <log (ﬁ) , 10). The expected

inverse of the variance of S was approximated by the sampling mean over the
1000 replications. We studied three values for p, p € {0.3,0.5,0.8}, and since
all results were similar, we continued with only p = 0.5, and we performed lin-
ear regressions without intercepts. In our exploratory analysis, two regression
lines, depending on the sample size and censoring rate, were found, one when
no patient was censored and the other for all other cases, as shown in Figure 8.
Since Z(nj, ér’,;) cannot be negative, we truncated the equation to zero.

For other time-to-event parametrizations, Z,, could depend on the scenario pa-
rameters, such as p. In this case, a linear regression should be performed for each
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possible p. Even if it could be quite challenging in a simulation study, in real
practice, only the estimated Phase II p would be analyzed, reducing the compu-
tational effort. Using another parametric distribution for the phase III would,
in general, require modifications of some specific formulas in the manuscript. It
is straightforward to adapt the OPinfLIK method to the new parametric distri-
bution, since it would only change the survival distribution (S(¢|vy), where v
refers to the model parameters of the kth arm) that is used in the likelihood at
the prior level. Regarding the OPinfESS method, the process to obtain prior
distribution is the same but formula modifications needed will depend on the
number of model parameters v of the survival function. For example, using
an exponential distribution, with only one parameter, we could directly solve
equations shown in appendix A.1l, without having to fix any other parameter.
If the parametric model presents more than one parameter, as in the Weibull
model, one or more parameters need to be fixed to create informative prior
distribution on the parameter of interest (usually a location parameter). The
choice of the best parametric model to use could be done using some model
selection criteria, or multiple models can be introduced into a Bayesian Model
Averaging approach.

A.2 Computation of(,

The ¢, value is linked to the minimal improvement we wish to observe in terms
of survival in the treatment group. The median survival times of the control
group mg and the treatment group my are given by mg = log(2)'/* exp(,) and
my1 = log(2)'/* exp(f), respectively.

We can find the minimum (, that improves by ¢ times the median survival of
mg by solving the following steps:

mi1 = qgmo
log(2)"/* exp (1) = q(log(2)"/* exp(So))
exp(f1) = qexp(Bo)

B1 = log(q) + Bo
B — Bo = log(q).

Therefore, ¢, = log(q).
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Figure 2: Survival probability function of all arms in each scenario. Only the
control arm and the best arm (and the second-best arm for scenario 3) are
highlighted. The corresponding survival probability at 12 months is indicated
by horizontal lines.
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Figure 3: Results in terms of simulated type one error. On the left-hand side,
the percentage of trials that were stopped at the futility analysis at the end
of Phase II in scenario 1 is shown. On the right-hand side, the percentage of
trials where the treatment arm was erroneously claimed to be superior is shown.
Straight lines refer to no futility rule applied, that is, 7 = 0 and (7 = —1, while
dashed lines refer to 7 = 0.4 and {7 = —0.025.
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Figure 4: Results in terms of simulated power. Each plot line represents one
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end of Phase II are shown for the Bayesian methods and the frequentist one. In
the second column, the percentages of final Phase III correct claims associated
with each design are given. Straight lines refer to no futility rule applied, that
is, 7 =0 and (7 = —1, while dashed lines refer to 7 = 0.4 and {(y = —0.03.
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0 10 20 30 40 50 60
Time (months)
Number at risk

Control 150 52 14 6 1 0 0

Treatment 150 58 22 8 2 1 0

Figure 6: Kaplan-Meier survival curves of the control and treatment arms for
the illustrative example.
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Figure 7: Marginal prior distributions obtained using Phase II data for the
treatment arm in the illustrative example. The infESS was computed using
n, = 17 and a censoring rate of 14%.
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