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Abstract 

Technical developments and improved access to neuroimaging techniques has brought us 
closer to understanding the neuropathological origins of schizophrenia. Using data-driven 
disease progression modelling on cross-sectional MRIs from 1124 schizophrenia patients, 
we characterize two distinct but stable ‘trajectories’ of brain atrophy, separately beginning 
in the Broca’s area (subtype1) and the hippocampus (subtype2). The two ‘trajectories’ are 
replicated in cross-validation samples. Individuals within each subtype are further classified 
into two stages (‘pre-atrophy’ and ‘post-atrophy’). These subtypes show different atrophy 
patterns and symptom profiles. Longitudinal data from 523 schizophrenia patients treated 
by antipsychotics only (APM) or adjunct transcranial magnetic stimulation (TMS) reveal 
that APM effects relate to phenotypic subtype (more effective in the subtype1) while TMS 
effects relate to the stage (superior outcomes in the ‘pre-atrophy’ stage). These findings 
suggest distinct pathophysiological processes underlying schizophrenia that potentially 
yield to stratification and prognostication – a key requirement for personalizing treatments 
in enduring illnesses. 
This study was registered in the Chinese Clinical Trials Registry (number: 
ChiCTR2000041106). 
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1. Introduction 

Schizophrenia is a highly disabling psychiatric disorder with a life-time prevalence of 
1%, affecting about 26 million people worldwide1. The pathophysiological basis of 
schizophrenia is unclear, but more than one mechanism is suspected to play a role, given 
the substantial heterogeneity in clinical course2, treatment efficacy3, and the levels of 
putative biological markers4,5. Given this unsolved heterogeneity, currently available 
treatments cannot be matched to pathophysiological pathways, leading to limited long-term 
benefits. For more than a century, attempts have been made for clinical subtyping based 
on signs and symptoms6, but this has been either unreliable or of limited therapeutic utility7. 
Biological stratification that maps on prognostic trajectories is urgently needed to promote 
individualized treatment decisions in schizophrenia. 

At a group level, individuals with schizophrenia display compromised brain structure 
characterised by ventricular enlargement, cortical thinning and reduced subcortical 
volumes in thalamus, hippocampus and amygdala8,9, with notable worsening of these 
structural aberrations being reported in the early stages10. However, substantial inter-
individual differences exist among individuals with schizophrenia, with no consistent 
abnormalities at an individual level evident in radiological examinations5,11. These inter-
individual differences in brain structure results from two distinct sources of variation: first, 
mechanistic differences that result in subtly different clinical features (i.e., mechanistic 
heterogeneity) and second, relative differences between subjects in the stage of dynamic 
progression (i.e., temporal heterogeneity). For example, progressive reductions in gray 
matter volume (GMV) are associated with longer disease duration in schizophrenia12. 
Degree of cortical thinning is linked with different illness stages13. First-episode patients 
with schizophrenia showed subtle cortical thinning mainly in frontotemporal lobes14, 
whereas chronic patients showed pronounced reductions spread across the parietal and 
occipital cortices13. Furthermore, brain atrophy associated with a range of clinical 
syndromes in schizophrenia have also been postulated to uncover underlying distinct 
pathophysiological processes15,16. Altogether, this evidence suggests that the complex 
pathological progress of schizophrenia may not be explained to a single unifying 
pathophysiological process, but a multitude of partially independent pathophysiological 
profiles. Hence, a systematic characterization of brain atrophy progression which accounts 
for variability on an individual level is an urgent need. 

Machine learning approaches are increasingly used to parse the heterogeneous 
features of mental disorders17-20. Of these, unsupervised clustering techniques and semi-
supervised methods, such as HYDRA21, provide powerful tools for disease subtyping17-

19,22. In schizophrenia, previous subtyping studies have exclusively focused on either 
phenotypic heterogeneity23,24 (i.e., individuals are clustered into distinct subgroups without 
considering disease stage) or temporal heterogeneity13,25 (i.e., individuals are in different 
stages of disease progression without subtype differences), but not both. A novel data-
driven disease progression model named Subtype and Stage Inference (SuStaIn), that 
requires only cross-sectional data, was proposed to identify subtypes with common 
patterns of disease progression and achieve individualized inference26. Using SuStaIn, a 
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recent neuroimaging study successfully detected four distinct ‘trajectories’ of tau deposition 
in Alzheimer’s disease27. 

This work investigated a systematic characterization of heterogeneity in brain atrophy 
patterning using structural magnetic resonance imaging (MRI) from 1124 schizophrenia 
patients (Supplementary Table 1). The aims (Extended Data Fig.1) were (1) to identify 
distinct ‘trajectories’ of brain atrophy in schizophrenia using SuStaIn and assign individuals 
to biological subtypes based on their atrophy patterning; (2) to examine the associations 
of specific subtypes with clinical symptoms; and (3) to examine treatment response to 
antipsychotic medication (APM) and transcranial magnetic stimulation (TMS) in subtypes. 
Supplementary Fig.2 provides a flow of statistical analyses. Such brain subtyping may 
provide meaningful insights into the putative pathophysiological mechanisms in subsets of 
patients with schizophrenia. Ultimately, accurate stratification of this enduring illness 
requires addressing both temporal and phenotypic heterogeneity; if successful, this 
approach may inform designing clinical trials differently in the future.  
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2. Results 

2.1 Two distinct pathophysiological pathways of brain atrophy 
Using the 2-folds cross-validation, the optimal clusters were determined at k=2 

(Supplementary Fig.3-5), indicating two distinct ‘trajectories’ of pathophysiological 
progression in schizophrenia (Fig.1b). Regional volume loss at each stage for each 
subtype is visualized in Fig.1c, which shows a progressive pattern of spatial extension that 
is distinct for each ‘trajectory’. Briefly, ‘trajectory’ 1 exhibited a cortical-predominant 
phenotype (i.e., cortical primacy) where atrophy began in the Broca’s area while ‘trajectory’ 
2 exhibited a subcortical-predominant phenotype (i.e., subcortical primacy) where atrophy 
began in the hippocampus (Fig.1b and Supplementary Table 5-6). Supplementary Fig.7 
also displays the ‘trajectories’ of cortex and subcortex across SuStaIn stages. The 
differences of ‘trajectories’ of atrophy in specific brain regions highlights potential 
phenotypic heterogeneity, suggesting there may be two different neuropathological 
pathways with distinct sites of origin in schizophrenia. 
 
2.2 Stability of SuStaIn subtypes 

Cross-validation shows that the pathophysiological progression of GMV changes in 
the two subtypes are reproducible, revealing a high consistency of the observed ‘trajectory’ 
(Supplementary Fig.4) and SuStaIn stability for the individual subtyping using different 
features (Supplementary Method S6). 
 
2.3 Subtype-specific atrophy patterns 

By disentangling both temporal heterogeneity and phenotypic heterogeneity, we 
further defined four subtypes (Fig.2a). A total of 631 (56.1%) patients with schizophrenia 
were assigned to ‘trajectory’ 1 and further classified into two phases of ‘pre-atrophy’ (S1pre, 
n=259) or ‘post-atrophy’ (S1post, n=372). The remaining 593 patients (43.9%) were 
assigned to ‘trajectory’ 2 with ‘pre-atrophy’ (S2pre, n=212) and ‘post-atrophy’ (S2post, n=281). 
The z-scores of GMV images were mapped to a glass brain template for visualization of 
atrophy patterns in each subtype (Fig.2a). Comparisons of ROI-wise z-scores between 
S1post and S2post showed significantly higher z-scores of cortical regions and significantly 
lower z-scores of subcortical regions in S1post compared to S2post (P<0.001, Bonferroni 
correction) (Fig.2b). In addition, comparisons between subtypes (S1pre vs. S2pre, S1 vs. S2) 
are shown in Supplementary Fig.8. These results indicated more cortical reductions in 
subtype1 and more subcortical reductions in subtype2. 

 
2.4 Longitudinal examination of SuStaIn trajectories 

In the preceding analyses, we used SuStaIn on cross-sectional individual MRI data to 
make pseudo-longitudinal inferences about the pathophysiological ‘trajectories’ of brain 
atrophy. To verify the truth, we collected longitudinal samples from our previous study14 
that included a total of 127 individuals who were drug-naive FES and scanned MRI at both 
baseline and 12-weeks follow-up (Supplementary Methods S7). Longitudinal data show 
that the S1pre (i.e., schizophrenia patients whose baseline GMV belong to the earliest stage 
of ‘trajectory’ 1 [before stage I]) had the fastest GMV reduction in the Broca’s area and 
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insula (Supplementary Fig.9). In the S2pre individuals (i.e., their baseline GMV belong to 
the earliest stage of ‘trajectory’ 2), the fastest GMV reduction occurred in the hippocampus 
(Supplementary Fig.9). These findings are consistent with the expectation that these 
S1pre/S2pre individuals were going from before stage I to stage I. Remarkably, mirroring the 
cross-sectional findings, the longitudinal observations support the ground of SuStaIn 
‘trajectories’ (mainly the early part of the ‘trajectory’) of brain atrophy in schizophrenia. 

 
2.5 Relationships between regional atrophy and clinical symptoms 

We examined the relationships between regional atrophy and clinical symptoms for 
each subtype. As expected, higher z-score of GMV (that is, more reduction of GMV) was 
positively associated with increasing PANSS negative subscale score (that is, worse 
negative symptoms) in many cortical, subcortical and cerebellar regions (Extended Data 
Fig.2, Supplementary Table 7-8). Negative relationships between GMV z-scores, positive 
symptoms and general psychopathology were observed in subtype 1, indicating a lower 
burden of non-negative symptoms in individuals with more atrophy. Interestingly, this 
pattern of relationship with non-negative symptoms was reversed in individuals within 
subtype2 (Extended Data Fig.2, Supplementary Table 7-8), suggesting that associations 
between brain atrophy and symptoms are subtype-specific in schizophrenia. 
 
2.6 Different clinical profiles among subtypes 

We compared demographic, clinical and brain variables (Table 1) across the two 
stages and the two subtypes. The pre-atrophic subjects with subcortical-primacy subtype 
(S2pre) had shorter illness duration compared to all other individuals including the S1post 
and S2post (Fig.3a). The pre-atrophic subjects with cortical-primacy subtype (S1pre) had 
worse positive symptoms compared to all other individuals including the S1post and S2post 
(Fig.3b). Further, as expected, the S1post and S2post showed smaller total GM volume and 
larger total CSF volume compared to S1pre and S2pre (Table 1). We also compared the 
differences between the subtype1 (S1pre and S1post) and subtype2 (S2pre and S2post) and 
found worse positive symptom in subtype1 compared with subtype2 (Supplementary 
Table 9). 

We also found a relationship between SuStaIn stage scores and illness duration, 
symptoms, GM and CSF volume. As expected, increasing SuStaIn stage scores was 
positively associated with longer illness duration (r=0.208, P<0.001, Fig.3c), higher burden 
of negative symptoms (r=0.127, P=0.008, Fig.3d), larger CSF volume (r=0.353, P<0.001, 
Fig.3e) and smaller GM volume (r=-0.250, P<0.001, Fig.3f) were observed. 

In addition, we compared the differences of positive and negative symptoms among 
individuals belonging to different SuStaIn stages using the ANOVA and post-hoc tests. In 
the cortical-primacy subtype, individuals belonging to the later stage VI (higher atrophy) 
showed a higher score of negative symptoms compared to individuals in stages I, II, III and 
pre-stage I (i.e., individuals without atrophy in any regions) (corrected P<0.05) (Fig.3g). In 
subcortical-primacy subtype, individuals belonging to pre-stage I (no atrophy) showed a 
higher score of positive symptoms compared to stage I individuals (corrected P<0.05) 
(Fig.3h). 
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2.7 Treatment outcomes and subtypes 
We examined whether subtype classification will relate to differential treatment 

response to APM and TMS using a longitudinal independent cohort. As for APM sample, 
we found a significant positive correlation between the probability belong to subtype1 and 
PANSS positive score reduction ratio (r=0.127, P=0.014, Fig.4a), indicating that individuals 
who have a higher probability assigned to subtype1 showed better treatment outcomes. 
This significant correlation remained consistent even controlling the factors including 
baseline PANSS scores, sites, education, sex, age, illness stage and CPZ 
(Supplementary Table 11). As for TMS follow up sample, we observed a significant 
negative correlation between the SuStaIn stages and PANSS reduction ratio in terms of 
positive score (r=-0.370, P<0.00001, Fig.4b), general score (r=-0.237, P=0.003) and total 
score (r=-0.279, P<0.001), indicating that individuals who have an earlier SuStaIn stage 
showed better treatment outcomes. The significant correlation between SuStaIn stage and 
symptom remission remained consistent even controlling the factors including baseline 
PANSS scores, sites, education, sex, age and illness stage (Supplementary Table 12), 
and was observed in both subtype1 (r=-0.351, P=0.001) and subtyp2 (r=-0.395, P<0.001). 

We also compared the differences of follow up PANSS between the subtype1 and 
subtype2. For individuals who were treated with APM, we found that compared with the 
subtype2, the subtype1 showed significant better positive symptoms remission after 
controlling the baseline PANSS (Fig.4c, Supplementary Table 10). This difference 
remained consistent even after controlling the effects of CPZ and illness stage. However, 
as for the individuals who were treated with TMS, we did not observe a significant 
difference in symptom reduction between two subtypes. 

In addition to the two phenotypic subtypes, we compared the differences of follow up 
PANSS among the four subgroups (S1pre, S1post, S2pre and S2post). As for APM, the S1pre 
exhibited better treatment outcomes, especially to the positive and general symptoms 
(Table 2, Fig.4d), compared with the other subgroups after controlling the baseline PANSS, 
CPZ and illness stage. As for TMS, the S1pre and S2pre showed more PANSS positive score 
reduction compared with the S1post and S2post (Supplementary Table 13, Fig.4e), 
indicating better TMS outcome to treating positive symptoms for these individuals with less 
brain atrophy. These findings remained consistent even controlling the factors of baseline 
PANSS, illness stages and TMS targets. We observed that in the S2pre, TMS exhibited 
better improvement to treat negative symptoms (Supplementary Table 13, Fig.4e). 

Altogether, antipsychotics are more effective in the cortical-primacy type (subtype1) 
while superior outcomes with TMS is seen in pre-atrophic stage (for both S1pre and S2pre). 
One specific case where TMS may benefit is the treatment of negative symptoms in 
subcortical-primacy type before atrophy sets in (S2pre). Once ‘atrophy’ sets in, 
antipsychotics work better for reducing positive symptoms.  
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3. Discussion 

Using a data-driven modelling technique, we show that pathological atrophy of 
schizophrenia is better characterized by two distinct pathophysiological ‘trajectories’: a 
cortical-predominant phenotype that begins in the Broca’s area/frontoinsular cortex and a 
subcortical-predominant phenotype that begins in the hippocampus. These subtypes 
showed different illness duration, symptom profiles and treatment outcomes. These 
findings raise critical research questions for stratified clinical trials in schizophrenia and 
indicate biological plausibility and therapeutic relevance of the identified subtypes. 

Two distinct pathophysiological ‘trajectories’ of brain atrophy were identified as 
cortical-predominant phenotype and subcortical-predominant phenotype, indicating two 
possible sites of pathophysiological origin: cortical atrophy begins in the Broca’s area and 
the frontoinsular cortex while subcortical atrophy begins at the hippocampus. Broca’s area 
abnormalities have been widely found in schizophrenia28. Further, our previous studies 
found that individuals at high risk of psychosis exhibited functional connectivity changes 
primarily in the Broca’s area29, suggesting that dysfunction of Broca’s area, possibly 
influenced by distinct genetic pathways30, has emerged even before the first psychotic 
episode. Current results also provide direct structural imaging evidence that the Broca’s 
area and adjacent frontoinsular cortex may be one of the ‘site of origins’ of brain 
abnormalities in schizophrenia. These findings contribute to a key neuropathological role 
of Broca’s area, in line with Crow’s linguistic primacy hypothesis31 and the frontoinsular-
cingulate cortex, in line with the salience network model32.  

In subtype2, subcortical atrophy began at the hippocampus, another possible ‘site of 
origin’ identified here. Some studies have highlighted hippocampal atrophy as one of the 
first regions to show volumetric loss in schizophrenia8,33. Recently, a longitudinal clinical 
high-risk psychosis study reported that for individuals who experience a prodromal stage 
to syndromal psychosis, hippocampal pathology (such as glutamate excess and 
hypermetabolism) leads to volume loss and expands to other regions of the hippocampal 
circuit and other connected areas along with illness progress34. Together, these findings 
challenge the notion that there is a single unifying pathophysiological process in 
schizophrenia, although this will require validation. 

We note that as the degree of atrophy progresses with longer illness, individuals 
exhibited worse negative symptoms irrespective of their subtypes. Interestingly, both the 
cortical- and subcortical-primacy subtypes showed worse positive symptoms when atrophy 
was limited (positive symptom correlation in subtype1 [Extended Data Fig.2]; pre-stage I 
vs stage I comparison for subtype2, [Fig.3h]). While this may appear counterintuitive at the 
outset, this lends support to the emerging notion that the progressive grey matter changes 
in schizophrenia may indeed be a feature of cortico-subcortical reorganization in response 
to positive symptoms10,14. Thus, unlike a degenerative process in which tissue reduction 
will predict worse clinical symptoms, in schizophrenia such reduction may alleviate the 
positive symptoms, at the cost of worsening negative symptoms35. This notion may also 
contribute to understanding why, in general, antipsychotic exposure hastens brain tissue 
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loss in schizophrenia14,36, although it is still a complex and fiercely debated topic. We also 
found that patients with longer illness duration had lower positive subscale and higher 
negative subscale. It was consistent with a previous longitudinal work37, revealing that the 
positive symptoms exhibited a general pattern of improvement while negative symptoms 
showed less reduction over time. We also noticed the inconsistency of inter-subtype 
symptom difference between the cross-sectional and longitudinal samples, which may be 
due to the heterogeneity of psychotic symptoms and stages of illness38,39. 

The combined subtyping and staging approach employed here also highlights the 
prognostic potential of MRI. By MRI subtyping, we found that ‘what kind of brain’ and ‘at 
which stage’ is more likely to benefit from specific treatments, providing preliminary support 
for the prognostic potential of schizophrenia biotypes. Our data revealed that 
antipsychotics outcome is related to phenotypic subtype while TMS is associated with 
stage subtype. These results are consistent with studies reporting that schizophrenia 
patients with specific brain features may benefit from specific interventions. For example, 
volume increase in the hippocampus predicted negative symptom improvement for TMS40. 
Our study observed that patients who better respond to APM had stronger cortico-cortical 
connectivity compared to non-responders14. But it should be noted that medication use of 
the current sample is highly heterogeneous, involving monotherapy and combined therapy, 
and including up to ten antipsychotic drugs. Although identifying potential mechanisms is 
still challenging, the subtypes we report parse the heterogeneity of the brain features, and 
map them to specific treatments. These results suggest that prediction of treatment 
outcome may benefit from stratification based on biological subtypes of schizophrenia. 

This study has several limitations. First, the SuStaIn create pseudo-longitudinal 
sequences using cross-sectional data. The fitted pathophysiological ‘trajectories’ do not 
directly reflect the real illness progression. Although longitudinal data support the truth of 
SuStaIn ‘trajectories’ (mainly the early stage of the ‘trajectory’), future work needs to verify 
the pathophysiological ‘trajectories’. Not all individuals with schizophrenia had quantitative 
medication information, which limited to eliminate the medication impact. Second, it is 
unclear if MRI-based estimates reflect true tissue atrophy. In addition to GMV, cortical 
thickness or gyrification could also be considered. The current mixed sample had 
confounding factors from different cohorts, scanners and sites. Harmonization methods41 
should be used to alleviate differences across MRI acquisition protocols. Patients 
undergoing TMS also received APM. Ideally, randomizing individuals with comparable 
illness duration to APM or TMS, and reducing variations in medication choice and the site 
of TMS stimulation would have improved the out-of-sample generalizability of our findings. 
Robust demonstration of clinical utility of the subtypes requires prospective trials in the 
future. Finally, while clustering/subgrouping may aid in stratified interventions, considerable 
variability may still exist among individuals within a cluster; dimensional approaches to 
personalisation may be more appropriate to address this issue42. We have not tested the 
extent to which the subtypes identified here could account for the heterogeneity; a 
continuous representation of neurobiological changes may be superior in this regard, but 
this needs to be tested. 
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In conclusion, we describes two distinct but stable pathophysiological ‘trajectories’ of 
brain atrophy of schizophrenia, separately beginning in Broca’s area and the hippocampus. 
These subtypes exhibit different atrophy patterns, clinical symptom profiles and treatment 
outcomes. Antipsychotics are more effective in the cortical-primacy type while superior 
outcomes with TMS are seen in the pre-atrophic stage of illness irrespective of the 
phenotypic subtypes. These findings suggest distinct pathophysiological processes 
underlie schizophrenia and they potentially yield to stratification and prognostication which 
are key requirements for personalizing treatments in enduring illnesses.
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4. Methods 

4.1 Sample characteristics. 
Cross-sectional sample. The primary sample consisted of cross-sectional T1-weighted 
magnetic resonance imaging (MRI) scans from 2239 individuals (1168 patients with 
schizophrenia) from 4 hospitals including Shanghai Mental Health Centre (dataset #1), 
First Affiliated Hospital of Zhengzhou University (dataset #2), Taipei Veteran General 
Hospital (dataset #3) and Clinical Hospital of Chengdu Brain Science Institute in Chengdu 
(dataset #4) and from another 5 publicly available datasets, i.e., COBRE (dataset #5), 
NMorphCH (dataset #6), FBIRN (dataset #7), NUSDAST (dataset #8) and DS000115 
(dataset #9). All individuals with schizophrenia were diagnosed according to the Diagnostic 
and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Individuals were 
excluded from the study if they were (1) diagnosed with schizoaffective disorder, mood 
disorders, or other major medical or neurologic disorders; (2) alcohol/drug dependence; (3) 
had a history of electroconvulsive therapy within six months; (4) other contraindications to 
MRI scanning. Individuals with illness duration less than 2 years were defined as first-
episode schizophrenia (FES). The data quality control steps are described in the 
Supplementary Method S4. After data quality control, 2170 individuals were included, of 
which 1124 were schizophrenia patients (479 females, age=31.1±12.8 years) and 1046 
healthy subjects (498 females, age=32.6±12.4 years). Symptom severity was assessed 
with the Positive and Negative Syndrome Scale (PANSS) for individuals from datasets #1, 
#2, #3, #4 and #5, with the Brief Psychiatric Rating Scale (BPRS) for individuals from 
dataset #8, or with the Scale for the Assessment of Positive Symptoms (SAPS) and Scale 
for the Assessment of Negative Symptoms (SANS) for individuals from datasets #6, #8 
and #9. Detailed information of each cohort is provided in the Supplementary Method S1. 
A summary of demographics of subjects are shown in Supplementary Table 1. 
 
Longitudinal sample. A total of 373 patients with schizophrenia (190 females, age=26.4
±9.0 years), from four hospitals (Shanghai Mental Health Center [Shanghai], N=180; 
Peking University People's Hospital [Beijing1], N=102; Peking University Sixth Hospital 
[Beijing2], N=65; Clinical Hospital of Chengdu Brain Science Institute [Chengdu], N=26), 
were treated with antipsychotic medication (APM) and included in the longitudinal analyses 
(Supplementary Table 2). All individuals met DSM-IV diagnostic criteria for schizophrenia, 
and no other comorbid Axis I disorders. Inclusion and exclusion criteria of subjects are 
provided in our previous study14. At baseline, 294 of them were treatment-naïve FES. 
Following baseline MRI, schizophrenia patients received antipsychotic medications. 300 of 
373 received monotherapy: amisulpride (n=26), aripiprazole (n=58), blonanserin (n=3), 
clozapine (n=7), olanzapine (n=85), paliperidone (n=15), paliperidone palmitate injection 
(n=4), quetiapine (n=8), risperidone (n=87), ziprasidone (n=3), unknown (n=4). 73 received 
combined therapy (≥two antipsychotic drugs). The daily dosage of drugs was converted 
to chlorpromazine equivalents (CPZ). The mean CPZ during medication was 378.9±210.0 
mg/day. The severity of symptoms was evaluated based on PANSS administered by the 
same psychiatrist. Symptom relief indicated in PANSS total and subscale scores (reduction 
ratio = (baseline-follow up)/baseline x 100%) were used to measure treatment response. 
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The average duration of PANSS follow up was 9.6 weeks. At follow up, 267 of 373 (71.6%) 
were considered as APM responders whose symptoms relief (percentage of reduction ratio 
in PANSS total score) >25%. Information on antipsychotic medication usage is provided in 
Supplementary Table 3. 
A total of 150 patients with schizophrenia (66 females, age=30.1±12.3 years), from four 
hospitals (First Affiliated Hospital of Anhui Medical University [Anhui], N=38; Fourth Military 
Medical University [Xi'an], N=36; Clinical Hospital of Chengdu Brain Science Institute 
[Chengdu], N=27; Harbin First Specialized Hospital [Harbin], N=49), were treated with TMS 
under stable dosage of antipsychotics and included in the longitudinal analyses. At 
baseline, 100 of them were treatment-naïve FES. The inclusion criteria and TMS 
parameters are detailed in the Supplementary Method S3. In brief, stimulation target was 
set at the left temporoparietal junction (TPJ) for 74 individuals and the left dorsolateral 
prefrontal cortex (DLPFC) for 27 individuals and the right orbitofrontal cortex (OFC) for 49 
individuals. PANSS assessments were performed at baseline and at follow-up by the same 
psychiatrist. The average duration of PANSS follow up was 4.0 weeks. At follow up, 82 of 
150 (54.7%) were considered as TMS responders whose percentage of reduction ratio in 
PANSS total score >25%. A summary of demographics of subject who treated by 
antipsychotic medication or TMS are shown in Supplementary Table 2. We use the 
naturalistic data from APM and TMS samples collected during routine clinical care; this is 
not a report of a randomized trial. The TMS study was registered in the Chinese Clinical 
Trials Registry (number: ChiCTR2000041106) and the TMS protocol was available 
(http://www.chictr.org.cn/showproj.aspx?proj=65566). Written informed consent was 
obtained from all participants and/or their legal guardians. Participants received travel 
compensation and remuneration up to 300 Chinese Yuan based on the study they 
participated in. 
 
Ethics and Inclusion statement.  
The study included local researchers throughout the research process - study design, 
study implementation, data ownership, intellectual property and authorship of publications. 
The relevant roles and responsibilities were agreed amongst collaborators ahead of the 
research. The study has been approved by the Medical Research Ethics Committees of 
the local hospitals (ethics number: 2017-36R[dataset#1], 2018-KY-88[dataset#2], 
YM105091F[dataset#3], CDFH2014030501[dataset#4], 2017-36R[Shanghai], 2008-
2[Beijing1], 2017-16[Beijing2], CDFH2014030501[Chengdu], 2016003[Anhui], XJYYLL-
2015047[Xi’an] and IRB2019-004[Harbin]). 
 
4.2 Image acquisition and processing. 

T1-weighted MRI acquisition procedures (including the longitudinal sample) for each 
cohort have been described previously12,14,43,44. T1-weighted images were processed 
using the Computational Anatomy Toolbox (http://www.neuro.uni-jena.de/cat/) within 
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Briefly, a fully automated 
procedure for standard voxel-based morphometry (VBM) (including spatial registration, 
tissue segmentation and bias correction of intensity non-uniformities) was conducted, 
resulting in GMV images. The GMV images were parcellated based on the automated 
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anatomical (AAL) atlas. These parcellations were used to extract mean GMV values within 
different regions of interest (ROIs) for each subject. 
 
4.3 SuStaIn. 

Traditional data-driven subtyping of brain imaging in schizophrenia has low 
replicability due to the confounding effect of illness stage. Most clustering methods classify 
individuals based on their symptoms, cognitive scores or structural or functional 
neuroimaging features. All of these features change with disease progression; thus, the 
assumption that all individuals are at the same stage of illness when measurements are 
obtained is fallacious. Here, we model disease progression in schizophrenia as a linear 
deviation from normality of brain structure (see Supplementary Method S5 for further 
discussion on this assumption). A novel approach–SuStaIn generates clustering solutions 
across subjects while accounting for disease progression26 (Fig.1a). SuStaIn has 
demonstrated ability to identify diverse but distinct progression patterns using cross-
sectional neuroimaging data for brain disorders26,27. 

The SuStaIn approach has been presented in detail in a previous publication26; we 
briefly describe the major features here. The z-score model underlying SuStaIn is a 
development of the original event-based model45. Event-based model regards disease 
progression as a series of events, where each event corresponds to a switch from a normal 
to an abnormal level for a biomarker/feature45. The linear z-score SuStaIn model 
reformulates the events that represent the continuous linear accumulation (more 
biologically plausible) of a biomarker/feature from one z-score to another, rather than a 
discrete event-related transition towards an abnormal state26. Please see Supplementary 
Method S5 for a discussion on the validity of this assumption in schizophrenia. 
 
4.3.1 z-scores 

The data for SuStaIn needs to be z-scored relative to a control population. The z-
scores represent the severity of an abnormality for a specific feature/biomarker of interest, 
in this case MRI-derived grey matter volume (GMV). Higher z-scores represent larger 
deviations from the normal (i.e., more severe atrophy in this case). In this study, the ROI-
wise GMV values were first adjusted by regressing out the effects of sex, age, the square 
of age, total intracranial volume (TIV) and sites as dummy covariates using a regression 
model. We did not include ethnicity into the regression model due to similar covarying 
tendencies of ethnicity and site (dataset#1-4 for Han Chinese; dataset #5-9 for not Han 
Chinese). Subsequently, the adjusted GMV values were normalized relative to control 
population using z-scores. Finally, these z-scores representing normative deviations were 
multiplied by -1 so as the regional brain volumes decrease in patients with schizophrenia, 
the z-scores increase. 
 
4.3.2 Input Features 

Input for SuStaIn requires an M x N z-score matrix. M represents the number of 
patients with schizophrenia (M=1124 in this study). N represents the number of SuStaIn 
features/ROIs (N=17 here). In this case, SuStaIn features represent the mean z-scores of 
GMV within different ROIs. Due to computational complexity (Supplementary Method S6) 
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and sufficient power of sample size, SuStaIn models typically used approximately 15 ROIs 
in previous studies26,27. Here, all of the AAL ROIs of whole brain were separated into 17 
features (frontal lobe, temporal lobe, parietal lobe, occipital lobe, insula, cingulate, 
sensorimotor, Broca’s area, cerebellum, hippocampus, parahippocampus, amygdala, 
caudate, putamen, pallidum, nucleus accumbens and thalamus) (Supplementary Fig.1a). 
See Supplementary Table 4 for a summary of the features used in the SuStaIn modelling. 
On the basis of previous literature26, we used z-scores = 1 (that is 1 s.d. from normal), 2 
and 3 as severity cutoffs indicating waypoints of disease progression for the included 
features. 
 
 
4.3.3 Sequence estimation (i.e., the trajectories of pathophysiological progression) 

We imported 17 ROIs, each ROI having 3 severity cutoffs (z=1, 2, 3), to the model of 
SuStaIn, yielding a total of 51 events to be sequenced. The most probable sequence 
(Sk=[e1, e2, … , e51]) of spatial progression (i.e., ‘trajectory’) for each subtype was then 
evaluated using SuStaIn (see details in26). SuStaIn assumes a uniform prior that all 
combinations of subtype and stage equally likely. The model is initialized with an 
expectation–maximization algorithm and repeated for 25 different random start points to 
find the maximum likelihood solution. The number of all possible sequences is too large so 
we evaluated the relative probability (uncertainty) of all possible sequences for each 
subtype using a 10,000 Markov Chain Monte Carlo (MCMC) sampling (see details in26). 
The cumulative probability for each feature/ROI to reach a particular z-score over time is 
presented in Fig.1b. 
 
4.3.4 Number of subtypes 

To establish the clustering tendency within the data, we employed Hopkins statistics46 
which provided a robust support for the existence of clusters (H=0.8026, indicating a high 
clustering tendency at the 90% confidence level). SuStaIn could identify the potential 
distinct ‘trajectories’ of pathophysiological progression with a given subtype number K. 
Prior clustering studies without progression-based modelling have reported 2 to 6 
morphological subtypes of schizophrenia19,47,48. We used this range to estimate SuStaIn 
models separately. To determine the optimal number of subtypes with distinct trajectories, 
we measured the reproducibility of SuStaIn subtype by a 2-fold cross-validation method. 
Specifically, the cohort was randomly split into two non-overlapping subfolds (50% of the 
patients as one subfold and left 50% as the other subfold). Above procedure was repeated 
ten times to avoid the occasionality of one split. For each non-overlapping subfold, the 
SuStaIn model was trained on one of non-overlapping folds, separately for each k=1-6 
subtypes, and further tested using the other non-overlapping subfold. The optimal subtype 
number was determined using three metrics: (1) Consistency of individual subtype 
assignment (Supplementary Fig.3). For each individual, the subtype label was estimated 
separately in two non-overlapping subfolds. As the classification label may change for 
independent SuStaIn modelling (For example, Label 1 of train set may correspond to Label 
6 of test set), the subtype label vector was transformed to an adjacent matrix. Dice 
coefficient was used to measure the consistency of the adjacent matrix between two non-
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overlapping subfolds. (2) Consistency of the SuStaIn ‘trajectory’ (Supplementary Fig.4). 
In each non-overlapping subfold, SuStaIn estimated the ‘trajectory’ (i.e., the most probable 
sequence (Sk) of regions) for each subtype. The mean Kendall’s tau coefficient between 
the Sk from paired subfolds was used to quantify the consistency in the SuStaIn ‘trajectory’. 
(3) Silhouette clustering evaluation criterion (Supplementary Fig.5). In each non-
overlapping subfold, Silhouette value was used as another evaluation indicator for subtype 
number range from 2 to 6. Supplementary Fig.3-5 show that the optimal subtype number 
K=2 is consistency by cross-validation, indicating the best fit to the data included two 
subtypes with two distinct pathophysiological progressions of GMV changes in 
schizophrenia. The two-cluster model of SuStaIn was fitted to the whole sample. 
 
4.3.5 Visualization of distinct trajectories of gray matter atrophy  

To visualize the pathophysiological progression of gray matter atrophy across SuStaIn 
stages, we calculated the mean z-score images for individuals belonging to the following 
stage bins: I(e1, e2); II(e3, e4); III(e5, e6); IV(e7, e8) for both subtypes; the last two bins were 
comprised of V(e9, e10) and VI(e11 to e51) for subtype1, V(e9 to e12) and VI(e13 to e51) for 
subtype2. Regions with mean z-score > 0.7 for regional volume loss are displayed. Two 
distinct trajectories of gray matter atrophy are displayed in Fig.1c. 
 
4.3.6 Subtyping and staging at the individual level 

For each individual with schizophrenia, SuStaIn calculated the likelihood of belonging 
to a subtype, and a stage based on the average position over the posterior distribution on 
the sequence via 10,000 MCMC iterations. Individuals were assigned to their maximum 
likelihood subtype first, and then the stage with the highest likelihood was determined. The 
proportion in each subtype and stage is provided as Supplementary Fig.1b. Note that 
SuStaIn assigned individuals who do not deviant GMV in any feature/ROI (here z scores 
of all features < 1) into ‘stage 0’, which was defined as a ‘pre-atrophy’ stage. As the SuStaIn 
classifies all individuals into clusters according to distinct sequences of GMV reductions in 
different brain regions, rather than clustering the individuals based on their current atrophy 
degree, SuStaIn can categorize these individuals with similar atrophy sequences, even if 
the brain of some of these individuals has not atrophied to a significant degree (i.e., z=1 
defined in this study). Supplementary Fig.6 provides an example showing how ‘pre-
atrophy’ and ‘post-atrophy’ individuals could be classified into the same subtype. 
 
4.4 Subtype characterization 
4.4.1 Subtype-specific atrophy patterns 

To visualize atrophy patterns of whole gray matter for each subtype, we calculated the 
mean z-score of GMV for each AAL atlas ROI. We compared the ROI-wise z-scores 
between subtypes using independent samples t-test (two sided). Multiple comparisons 
were corrected by Bonferroni correction P<0.001. The ROI-wise z-score images were 
further mapped to a glass brain template for visualization using BrainNetViewer 
(https://www.nitrc.org/projects/bnv/). 
 
4.4.2 Association between regional atrophy and clinical symptoms 
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Within each subtype, we examined the relationships between regional atrophy and 
symptoms by deriving the Spearman coefficient between PANSS (positive, negative and 
general psychopathology subscales) and mean z-score of GMV for each ROI, after 
adjusting for sex, age, square of age, TIV and sites. To correct for multiple comparisons, a 
permutation-based procedure was applied to control the family wise error (FWE) rate49. 
 
4.4.3 Distinct clinical profiles between subtypes 

Demographic, clinical and global brain variables available for our discovery cohort 
included age (n=1124), sex (n=1124), illness duration (n=388), PANSS (n=750), TIV 
(n=1124), total GM volume (n=1124), total white matter (WM) volume (n=1124) and total 
cerebrospinal fluid (CSF) volume (n=1124). To determine subtype-specific characteristics, 
these variables were statistically compared between subtype1 and subtype2 by using a 
regress model with sex, age, age2, site and SuStaIn stage as covariates. Furthermore, 
individuals within each subtype were further divided into two subgroups (‘pre-atrophy’ and 
‘post-atrophy’) based on the degree of atrophy. Thus, the statistical comparison among the 
four subgroups (S1pre, S1post, S2pre and S2post) involved two steps: (1) comparison to all 
other subgroups (one-versus-all comparison). A one-versus-all approach was used to 
compare each subgroup to all individuals of other three subgroups to determine the 
subgroup-specific characteristics, and (2) each subgroup was compared directly to each 
other subgroup (one-versus-one comparison) to assess the differences between 
subgroups. After testing for assumptions of normality and equal variances, the statistical 
comparisons were conducted using ANOVA with appropriate post-hoc tests (two sided), 
with FDR correction for the number of variables assessed.  

We also investigated the relationship between the staging scores from SuStaIn and 
age, illness duration, symptoms, total GM volume and total CSF volume using Spearman’s 
correlation across the whole sample and stratified by subtype. Two sided p values were 
FDR-corrected for the number of variables assessed. 
 
4.5 Treatment outcomes across subtypes 

In this exploratory analysis, we examined whether subtype classification based on 
baseline brain features will relate to differential treatment response to antipsychotic 
medications (APM) and TMS. A total of 373 patients with schizophrenia treated by APM 
and 150 patients with schizophrenia treated by TMS were included in the longitudinal 
analyses (Supplementary Table 2). 

Based on the baseline MRI data, the SuStaIn model first assigned each individual with 
schizophrenia to one of two subtypes (i.e., phenotypic subtype1 or subtype2) according to 
the probability belong to which ‘trajectory’. Then, individuals within each phenotype were 
further assigned to one of the stages based on the SuStaIn ‘trajectory’. The SuStaIn 
probability score of subtype1 membership and the estimated SuStaIn stages were used as 
two quantitative indicators to measure their association with follow up treatment outcomes. 
Following baseline MRI, individuals with schizophrenia received APM or TMS (Details in 
the Supplementary Method S3). At follow up, treatment outcome was measured by the 
reduction ratio (reduction ratio=(baseline-follow up)/baseline x 100%) for PANSS total and 
subscale scores. Spearman correlation analysis between the above SuStaIn quantitative 
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indicators and treatment outcomes was performed after controlling the baseline PANSS. 
We also compared the differences of follow up treatment outcomes between the two 
phenotypic subtypes (i.e., subtype1 and subtype2) using the one-versus-all and one-
versus-one statistical comparisons. In addition to the two phenotypic subtypes, we further 
classified individuals within each phenotype into two subgroups (‘pre-atrophy’ and ‘post-
atrophy’), based on the intra-phenotypic differences (i.e., temporal subtype). By 
disentangling both temporal heterogeneity and phenotypic heterogeneity, we further 
obtained four subgroups (S1pre, S1post, S2pre and S2post). After testing for assumptions of 
normality and equal variances, we compared the differences of follow up treatment 
outcomes among the four subgroups using ANOVA with appropriate post-hoc tests (two 
sided). A permutation-based FWE procedure was employed for controlling for multiple 
comparisons49. 
 
4.6 Replication analysis 

To establish the SuStaIn validity for an alternative atlas, another three commonly used 
atlases (BN246 atlas, Schaefer200 atlas, and HCPMMP360 atlas) were applied for ROI 
extraction and SuStaIn modelling. To evaluate the stability of SuStaIn at a relative higher 
spatial resolution, the 17 AAL features were expand to 22 and 27 features (AAL22 and 
AAL27) by a data-driven hierarchical clustering procedure. A total of five validation sets of 
features were generated to further verify the stability of SuStaIn (Supplementary Method 
S6). In addition, we also examined the stability of SuStaIn ‘trajectories’ using leave one-
site out resampling (Supplementary Fig.10). Finally, we performed post-hoc power 
analyses for the primary results of this study using G*Power 
(https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-
arbeitspsychologie/gpower) (Supplementary Method S9).  
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Data availability 
Data of COBRE, NMorphCH, FBIRN and NUSDAST were obtained from the 

SchizConnect, a publicly available website 
(http://www.schizconnect.org/documentation#by_project). The NMorphCH dataset and 
NUSDAST dataset were download through a query interface at the SchizConnect 
(http://www.schizconnect.org/queries/new). The COBRE dataset was download from the 
Center for Biomedical Research Excellence in Brain Function and Mental Illness (COBRE) 
(https://coins.trendscenter.org/). The FBIRN dataset was download from 
https://www.nitrc.org/projects/fbirn/. The DS000115 dataset was download from OpenfMRI 
database (https://www.openfmri.org/). Data from the other datasets (cross-sectional 
datasets #1, #2, #3, #4, longitudinal AMP and TMS data) are not publicly available for 
download, but access requests can be made to the respective study investigators: cross-
sectional data (dataset #1, #2, #3, #4) -- J.Feng; APM data -- J.Wang, X.Yu, W.Yue and 
C.Luo; TMS data -- J.Wang, G.Ji, L.Cui and C.Luo. Requests for raw and analyzed data 
can be made to the corresponding author (J.Feng, jffeng@fudan.edu.cn) and will be 
promptly reviewed by the Fudan University Ethics Committee to verify whether the request 
is subject to any intellectual property or confidentiality obligations. 

 

Code availability 
Python of the SuStaIn algorithm are available on the UCL-POND GitHub 

(https://github.com/ucl-pond). T1-weighted images were processed using the 
Computational Anatomy Toolbox (http://www.neuro.uni-jena.de/cat/) within SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The visualization of ROI-wise z-score 
images was conducted using BrainNetViewer (https://www.nitrc.org/projects/bnv/). 
Statistical analyses, including correlation analysis, t-test, ANOVA etc., were conducted 
using MATLAB (version: R2018b) and SPSS Statistics (version: 26.0). Other custom codes 
developed in the current study are available at GitHub 
(https://github.com/YuchaoJiang91/Disease-Progress-Model).  
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Table 1. Comparison of variables between subtypes in the cross-sectional discovery 
sample. 

 Subtype1 (n=631) Subtype2 (n=493) 

 Pre-atrophy 
(S1pre) 

Post-atrophy 
(S1post) 

Pre-atrophy 
(S2pre) 

Post-atrophy 
(S2post) 

Number 259 372 212 281 

Age (year) 31.1(12.1) 31.8(13.1) 30.0(12.2) 31.1(13.3) 

Sex (female/male) 115/144 155/217 94/118 115/166 
Ethnicity(Han 
Chinese/Hispanic/Not Han 
Chinese & Not 
Hispanic/Unknown) 

187/8/38/26 251/20/69/32 163/8/33/8 213/8/43/17 

Race(Black or African 
American/Asian/White/Others/
Unknown) 

14/188/38/3/16 36/252/57/3/24 13/163/28/2/6 18/215/33/2/13 

Illness duration(year) (n=388) 9.1(10.2) 12.2(11.7) c 7.4(10.5) *,b,d 11.1(11.7) c 

PANSS scores (n=750)     

Positive scale # 18.5(6.8) *,b,d 16.9(7.0) a 17.2(6.7) 16.1(7.0) a 

Negative scale # 15.1(7.4) 16.3(7.7) 15.9(7.8) 16.0(8.1) 

General Scale # 34.2(11.1) *,b,d 33.3(10.4) a 33.8(10.8) 32.7(11.3) c 

Total scores # 67.9(22.0) *,d 66.5(20.80) 66.9(21.0) 64.9(22.1) a 

Total intracranial volume (cm3) 1500.8(163.1) 1498.6(162.6) 1500.1(168.3) 1488.4(177.2) 

Total GM volume (cm3) 674.2(72.4) *,b,d 635.3(72.2) *,a,c 687.3(82.6) *,b,d 643.8(74.2) *,a,c 

Total WM volume (cm3) 516.6(59.6) *,d 509.6(65.6) 512.4(59.5) d 500.7(64.4) *,a,c 

Total CSF volume (cm3) 308.0(65.7) *,b,d 354.2(71.8) *,a,c 299.3(62.8) *,b,d 343.6(79.9) *,a,c 

# Variables statistically compared among four groups after controlling sex, age, age2, site and illness stage. * Corrected 

P<0.05 (versus all other subtypes); a Corrected P<0.05 (versus pre-atrophy of subtype1); b Corrected P<0.05 (versus 

post-atrophy of subtype1); c Corrected P<0.05 (versus pre-atrophy of subtype2); d Corrected P<0.05 (versus post-

atrophy of subtype2). P values are two-sided and corrected by multiple comparisons. Standard deviations are given in 

parentheses where relevant. GM, gray matter; WM, white matter; CSF, cerebrospinal fluid.  
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Table 2. Comparisons of treatment outcomes among four SuStaIn subgroups in a 
longitudinal sample of 373 schizophrenia patients treated with antipsychotic medications. 

 Subtype1 (n=202) Subtype2 (n=171) 

 Pre-atrophy 
(S1pre) 

Post-atrophy 
(S1post) 

Pre-atrophy 
(S2pre) 

Post-atrophy 
(S2post) 

Number 96 106 70 101 

Age (years) 25.0(7.5) d 26.4(9.0) 25.1(7.7) d 28.5(10.6) a,c 

Sex (female/male) 49/47 54/52 36/34 51/50 

Education (years) 12.9(2.7) 13.2(2.8) 12.6(2.7) 12.8(3.0) 
Illness duration (years) 2.8(4.7) d 4.7(7.3) 3.3(5.1) 5.2(8.3) a 
CPZ (mg/day) 384.8(219.3) 383.9(200.6) 368.9(229.7) 375.3(207.1) 

Responders (%) # 79.17% 66.98% 71.43% 69.31% 

Baseline PANSS     
   Positive subscale 22.5(5.1) 22.4(7.0) 23.3(4.7) 22.6(6.4) 

   Negative subscale 17.9(6.1) *,c,d 19.4(7.4) 20.1(6.5) a 21.1(6.9) *,a 

   General subscale 38.2(6.8) 38.8(8.6) 39.9(7.2) 40.2(8.4) 

   Total score 78.6(12.9) *,c,d 80.5(18.3) 83.3(12.7) a 84.2(15.5) *,a 

Follow up PANSS     
   Positive subscale 11.6(4.6) 11.3(4.7) c 13.1(4.5) *,b 12.5(4.5) 

   Negative subscale 13.2(5.4) *,c,d 14.8(8.4) 15.0(5.2) a 16.3(6.4) *,a 

   General subscale 25.3(6.0) *,c,d 26.3(6.6) 27.8(6.4) a 27.6(5.9) a 

   Total score 50.1(13.3) *,c,d 52.1(14.5) d 56.0(13.5) a 56.2(13.6) *,a,b 

PANSS Reduction Ratio (%)     
   Positive subscale 46.7(20.1) *,c,d 45.2(23.4) d 42.3(20.7) a 41.1(22.1) *,a,b 

   Negative subscale 22.1(30.8) 15.5(46.1) 23.1(20.3) 19.9(28.5) 

   General subscale 32.7(15.6) *,c,d 29.6(20.3) 29.6(14.0) a 29.5(16.4) a 

   Total score 35.6(15.5) *,c,d 32.9(20.5) 32.4(14.2) a 31.9(16.5) a 

* Corrected P < 0.05 (versus all other subtypes); a Corrected P < 0.05 (versus pre-atrophy of subtype1); b Corrected 

P < 0.05 (versus post-atrophy of subtype1); c Corrected P < 0.05 (versus pre-atrophy of subtype2); d Corrected P < 0.05 

(versus post-atrophy of subtype2); P values are two-sided and corrected by multiple comparisons. Standard deviations 

are given in parentheses where relevant. CPZ, Chlorpromazine equivalence for antipsychotic dose; PANSS, Positive 

and Negative Syndrome Scale. # At follow up, patients whose symptom burden measured as percentage reduction 

ratio in PANSS total score dropped > 25% were defined as responders.  
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Figure Legends/Captions 
 
Fig.1| Pathophysiological progression of brain atrophy in schizophrenia. (a) Data-
driven disease progression model (i.e., SuStaIn) was used to identify population subtypes 
with common pattern of pathophysiological ‘trajectory’ by disentangling phenotypic 
heterogeneity and temporal heterogeneity on cross-sectional individual data. (b) Atrophy 
sequences of specific brain regions obtained using SuStaIn. The positional variance 
diagrams visualize the cumulative probability that each brain region has reached a 
particular z-score using different colors. The color indicates the level of severity of gray 
matter volume (GMV) loss: red is mildly affected (z-score=1, i.e., 1 standard deviation unit 
from healthy control average); magenta is moderately affected (z-score=2); and blue is 
severely affected (z-score=3). Colour in density represents the proportion of the posterior 
distribution in which events (y-axis) appear in a particular position in the sequence (x-axis). 
f is the proportion of individuals assigned to each phenotype. Arabic Numbers 1-10 marked 
against brain regions in the variance diagram indicate the order of the first ten events with 
brain region atrophy, estimated by the SuStaIn. (c) Pathophysiological ‘trajectory’. The 
mean z-score images of GMV were derived across schizophrenia patients belonging to 
stage bins (I, II, III, V, IV and VI) and mapped to a glass brain template for visualization 
using BrainNetViewer (https://www.nitrc.org/projects/bnv/). Regional volume loss at each 
stage bin shows a progressive spatial expansion pattern but differs between trajectories. 
In ‘trajectory’ 1, volume loss is first observed in Broca’s area and the insula (stage I), and 
then the anterior cingulate, prefrontal, and lateral temporal cortices (stage II), and then the 
orbitofrontal and sensorimotor cortices (stage III), and then the occipital, parietal and 
temporal cortices (stage IV and V), and finally to the cerebellum and subcortical regions 
(stage VI). In ‘trajectory’ 2, volume losses occur first to the hippocampus and amygdala 
(stage I) and then involve the parahippocampus, thalamus and accumbens (stage II), and 
then the caudate and insula (stage III), followed by the putamen, cingulate, frontal and 
temporal lobe (stage IV and V), and finally to the other cortical areas (stage VI). 

 
Fig.2| Atrophy patterns in four subtypes of schizophrenia. (a) All individuals with 
schizophrenia were firstly classified into two phenotypes by distinct ‘trajectories’ from 
SuStaIn, based on the inter-phenotypic differences (i.e., phenotypic heterogeneity). 
Individuals within each phenotype were further assigned into two subgroups according to 
which stage of the ‘trajectory’ they belong to, based on the intra-phenotypic differences 
(i.e., temporal heterogeneity). By disentangling temporal heterogeneity and phenotypic 
heterogeneity, we identified four subtypes of ‘trajectory’ 1 pre-atrophy (S1pre, n=259), 
‘trajectory’ 2 pre-atrophy (S2pre, n=212) and ‘trajectory’ 2 post-atrophy (S2post, n=281). The 
atrophy pattern of whole gray matter (revealed by the mean z-score of GMV) in four 
subgroups was mapped to a glass brain template for visualization. (b) Comparison of the 
mean z-score of GMV across all ROIs, after adjusting for sex, age, the square of age, total 
intracranial volume and sites. The adjusted GMV values were normalized relative to the 
control population to derive z-scores (i.e., a value of z=0 represents the normal level in the 
control population). These z-scores were multiplied by -1 so that the z-scores would 
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increase as the regional volumes decrease in patients with schizophrenia. Note that a 
higher z-score (or T-value) indicates a larger reduction of GMV; cortical GMV is extensively 
reduced post-atrophy in S1post than S2post; but subcortical GMV reduction is more 
pronounced post-atrophy in S2post than S1post. Data are presented as mean values +/- 
SEM. * Indicates significant differences between the S1post (n=372) and S2post (n=281) 
using two-sample t-test (two-sided P<0.001, Bonferroni correction). Exact p values are 
provided in the Supplementary Table 14. CING, cingulate cortex; INS, insula; SM, 
sensorimotor; BA, Broca’s area. 
 

 
Fig.3| Subtypes characterized by clinical variables. (a) Subtype differences of disease 
duration among the S1pre(n=77), S1post(n=124), S2pre(n=83) and S2post(n=104). Data are 
presented using a box-plot (center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5×interquartile range [IQR]; points, outliers). (b) Subtype differences of positive 
symptom burden among the S1pre(n=167), S1post(n=242), S2pre(n=153) and S2post(n=188). 
Data are presented as mean values +/- SD. Increasing SuStaIn stage was associated with 
(c) longer illness duration (r=0.208, p=4.6×10-4), (d) worse negative symptoms (r=0.127, 
p=0.008), (e) larger CSF volume (r=0.353, p=1.7×10-22) and (f) less GM volume (r=-0.250, 
1.1×<10-11) across all subtypes, by FDR correction. (g) In ‘trajectory’ 1 (pre-stage I, n=167; 
stage I, n=71, stage II, n=39, stage III, n=37, stage IV-V, n=46, stage VI, n=49), individuals 
belonging to stage VI showed a higher score of negative symptoms compared to 
individuals belonging to stage I, II, III and pre-stage I (S0, i.e., individuals without obvious 
atrophy in any regions) (corrected P<0.05). Data are presented as mean values +/- SEM. 
(h) In ‘trajectory’ 2 (pre-stage I, n=153; stage I, n=62, stage II, n=39, stage III, n=24, stage 
IV-V, n=35, stage VI, n=28), individuals belonging to later stages (especially stage I; 
corrected P<0.05) showed a lower score of positive symptoms compared to the stage 
before any atrophy is detectable. Data are presented as mean values +/- SEM. The 
asterisk (*) in figures (b, c, h and i) indicates significant differences between the two 
subgroups using ANOVA with post-hoc tests (two sided P<0.05, correction for multiple 
comparisons). 
 
 
Fig.4| Treatment outcome and subtypes of schizophrenia in patients with follow-up 
data. (a) The SuStaIn probability of belonging to subtype 1 correlates significantly with the 
reduction ratio of PANSS positive symptoms scores when using antipsychotic medications 
(APM) by Spearman correlation test (r=0.127, p=0.014, two-sided). (b) The progressive 
SuStaIn stages relate to a significantly lower PANSS positive symptoms reduction ratio 
when administering TMS by Spearman correlation test (r=-0.370, p=3.1×<10-6, two-sided). 
(c) Differences in APM-related PANSS reduction ratio across domains (p=0.003 for PANSS 
positive scale; p=0.019 for PANSS total score) between the subtype1 (n=202) and 
subtype2 (n=171) in schizophrenia. (d) Differences in APM-related PANSS reduction ratio 
among the S1pre (‘pre-atrophy’ stage of subtype1, n=96), S1post (‘post-atrophy’ stage of 
subtype1, n=106), S2pre (‘pre-atrophy’ stage of subtype2, n=70) and S2post (‘post-atrophy’ 
stage of subtype2, n=101). From left to right, the significant differences are marked by the 
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asterisk (PANSS positive subscale: p=0.033 for S1pre>S2pre, p=0.005 for S1pre>S2post, 
p=0.037 for S1post>S2post; PANSS general subscale: p=0.038 for S1pre>S2pre, p=0.017 for 
S1pre>S2post; PANSS total score: p=0.028 for S1pre>S2pre, p=0.006 for S1pre>S2post). (e) 
Differences in TMS-related PANSS reduction ratio among the S1pre(n=47), S1post(n=38), 
S2pre(n=29) and S2post(n=36) for patients with schizophrenia receiving TMS. From left to 
right, the significant differences are marked by the asterisk (PANSS positive scale: 
p=0.0004 for S1pre>S1post, p=0.0006 for S1pre>S2post, p=0.004 for S2pre>S1post, p=0.005 for 
S2pre>S2post; PANSS negative scale: p=0.037 for S2pre>S1pre; p=0.003 for S2pre>S2post; 
PANSS total score: p=0.019 for S1pre>S2post, p=0.037 for S2pre>S1post, p=0.005 for 
S2pre>S2post). Data in figures (c, d and e) are presented as mean values +/- SD. The 
asterisk (*) in figures (c, d and e) represents significant difference between the two 
subgroups using ANOVA with post-hoc tests (two sided P<0.05, correction for multiple 
comparisons). P, PANSS positive subscale; N, PANSS negative subscale; G, PANSS 
general subscale; T, PANSS total score. 
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