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Abstract

Campylobacter jejuni (C. jejuni) is a zoonotic pathogen responsible for millions of

bacterial gastroenteritis cases each year worldwide. The World Health Organisa-

tion (WHO) has also highlighted Campylobacter as one of the pathogens with high

priority for research due to its emerging antibiotic resistance. One remarkable fea-

ture of C. jejuni is its persistence under various environmental stresses throughout

transmission. However, very little is known about its genetic regulatory network.

Annotation of the C. jejuni genome has only identified three sigma factors, suggest-

ing additional regulatory mechanisms.

One potential regulatory element that requires further investigation is small RNA

(sRNA). Studies in other pathogens have shown sRNA mediates post-transcriptional

regulation by affecting translation initiation and mRNA stability, regulating pro-

cesses involved in stress survival, virulence and antibiotic resistance. However, ex-

perimental discovery of C. jejuni sRNA is hindered by its fastidious nature and

difficulties of experimental investigation. Several published transcriptomic studies

on C. jejuni have discovered relatively few sRNAs, with limited insights into their

biological activities. Moreover, most published RNA-seq data were obtained from

standard laboratory conditions, limiting the exploration of stress adaptation by sR-

NAs.

This study aims to elucidate the condition-specific expression and activities of C. je-

juni sRNAs. sRNA prediction was carried out using multiple tools that detect sRNA

positions from genomic and transcriptomic data. The prediction produced a list of

putative sRNAs. Further analysis of putative sRNA binding targets was carried

xvi



out using in-house transcriptomic data, including 21 experimental conditions and

aids in understanding sRNA activities under non-standard conditions. The bioin-

formatics analysis has generated a global sRNA-target regulatory network, followed

by a detailed analysis of sRNAs related to food storage conditions and iron stress.

In order to complement the limitations of bioinformatics prediction, sRNA-target

interactions were identified experimentally using RNA crosslinking. The results

have identified interactions that are absent from the computational prediction. The

difference between RNA crosslinking and computational prediction may indicate dif-

ferent sRNA-regulatory mechanisms. Overall, this study has highlighted RNA-RNA

interactions for future detailed analysis.
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Chapter 1

Introduction

1.1 C. jejuni biology

Campylobacter jejuni (C. jejuni) is a leading cause of foodborne diarrhoea world-
wide. Infection with Campylobacter bacterium (campylobacteriosis) causes about
400 to 500 million cases of diarrhoea annually around the globe (Young et al.,
2007). Even well-resourced countries suffer from millions of cases of Campylobac-
teriosis each year. For example, the Centers for Disease Control and Prevention
records 1.3 million annual cases of Campylobacteriosis in the United States, while
an estimated half a million Campylobacter infections are reported in England and
Wales annually (EFSA, 2019). In addition, Campylobacter is the most common
cause of bacterial gastroenteritis in the European Union (EU), with nearly 250,000
confirmed cases in the European Union in 2018 (EFSA, 2019). The number of con-
firmed cases may not fully highlight the medical impact of Campylobacteriosis due
to the potential under-reporting of clinical Campylobacteriosis (O’Mahony et al.,
2011; EFSA, 2010).

While most C. jejuni infection induces self-limited diarrheal symptoms, Campy-
lobacteriosis can lead to chronic complications such as reactive arthritis (RA) or
Guillain-Barré syndrome (GBS) (Mishu and Blaser, 1993) and other long-term phys-
ical and cognitive impairments for children (Nataro and Guerrant, 2017). According
to a report in 1995, Campylobacter-associated GBS cost around 136 million to 1.3
billion US dollars (Buzby et al., 1997). Moreover, Campylobacter can cause fatal
dehydrating diarrhoea and dysentery, especially in poorer regions. Data from the
Global Burden of Disease Cause of Death (CoD) database showed Campylobacter
infection caused over 30,000 deaths in young children in 2015, mostly from less
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developed countries (COD, 2017).

C. jejuni infects the gastrointestinal (GI) tract by penetrating the intestinal epithe-
lial layer by reorganising microtubules and microfilaments (Monteville et al., 2003;
Oelschlaeger et al., 1993). The internalisation of C. jejuni enables immune evasion
and the induction of the MAP kinase signal pathway that leads to the production of
interleukin-8 (IL-8), a cytokine that activates the host immune response that results
in inflammatory diarrhoea (Hickey et al., 1999; Watson and Galan, 2005). IL-8 in-
duction is associated with a cytolethal distending toxin (CDT), for which the exact
molecular mechanism remains elusive (Hickey et al., 2000). The contribution of CDT
to Campylobacteriosis is questionable as some CDT-negative clinical isolates showed
no difference in clinical severity (Abuoun et al., 2005; Mortensen et al., 2011). The
induced signal transduction also activates the production of interleukin-10 (IL-10),
which facilitates intracellular survival during infection (Li et al., 2011).

While most cases of Campylobacteriosis are self-limiting, the rare GBS complica-
tions leads to an autoimmune response that damages peripheral nerves. The au-
toimmune response is due to the false recognition of lipopolysaccharide (LPS) by
host macrophages and T cells. The structural similarity between C. jejuni LPS and
the host ganglioside leads to the production of antibodies that falsely target the
host ganglioside as foreign agents, subsequently causing the damage of the periph-
eral nervous system (Rees et al., 1995). Moreover, the activated macrophages also
release cytokines and free radicals that contribute to demyelination which blocks
nerve conduction and triggers axon degeneration (Nyati et al., 2010). Demyelina-
tion is partly a result of the cytokines released from activated T cells (reviewed in
Nyati and Nyati, 2013).

Campylobacter also demonstrates differential pathogenicity in different hosts. Diar-
rhoea among avians as a result of C. jejuni infection only occurs sporadically (Sanyal
et al., 1984). Meanwhile, colonisation in pregnant sheep, goats and cattle leads to
abortion (Sahin et al., 2017), thus causing an economic loss for the farming industry.
In contrast, C. jejuni that has colonised the human gastrointestinal tract induces
inflammation, leading to bloody diarrhoea, fever and abdominal pain (Young et al.,
2007). On some less common occasions, the inflammatory response induced by C.
jejuni can also induce GBS (Rhodes and Tattershield, 1982).

1.1.1 C. jejuni reservoirs

Campylobacter excels at surviving in various environments along the transmission
cycle (Figure 1.1). Campylobacter species reside in broiler chickens as a primary
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reservoir that accounts for up to 80 % of infections (Sheppard et al., 2009; O’Mahony
et al., 2011; Gormley et al., 2014). In chickens, C. jejuni resides typically as a com-
mensal through colonisation of the mucosal layer of the gastrointestinal tract without
penetrating the intestinal epithelial layer (Beery et al., 1988), with the possibility
of spreading to extra-intestinal tissues through acquiring virulence factors (Laconi
et al., 2021). Chicken colonisation by Campylobacter is associated with the admin-
istration of antibiotics for poultry farming, as antibiotics disrupt the gut microbiota
and thus remove the protective barrier against Campylobacter colonisation (Han
et al., 2019).
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Figure 1.1: Summary of C. jejuni transmission route. Possible transmission
routes include direct transmission through contract or ingestion of animal hosts
(primarily chicken), or indirectly via external sources such as water or milk. Created
in BioRender.com.
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Other animal sources of Campylobacter include cattle. A study of Campylobac-
ter diversity has identified strains that specialise in cattle adaptation. The cattle
adaptation phenotype emerges as modern intensive livestock farming grows, allow-
ing faster horizontal gene transfer (Hull et al., 2021). For instance, several flagellin
O-linked glycosylation system genes are missing in the cattle specialised strains.
The absence of flagellin O-linked glycosylation genes coincides with reduced cell
hydrophobicity, autoagglutination and biofilm formation (Mourkas et al., 2020).
Such changes help Campylobacter attach to different intestinal surfaces. Moreover,
cattle strains acquired thiamine biosynthesis genes by recombination, which may
help maintain a sufficient amount of Vitamin B1, which is less abundant in cattle
intestines compared to poultry (Mourkas et al., 2020).

Apart from livestock, a recent genotyping study also identified Campylobacter in
nearly 40 % of tested domestic pets such as cats and dogs. Pets might have con-
tracted Campylobacter through direct contact with livestock or the environment
(Santaniello et al., 2021). Campylobacter in pets needs serious attention as pets are
responsible for 10–25 % of clinical cases (Thépault et al., 2020) while whole-genome
sequencing of C. jejuni isolates from diseased animals (cats, dogs and cattles) identi-
fied 41 and 61.1 % of fluoroquinolone-resistance and tetracyclines-resistance isolates,
respectively (Moser et al., 2020; Ma et al., 2021).

Campylobacter species transmit from animal reservoirs to human hosts mainly through
ingesting contaminated food, such as uncooked chicken meat. Campylobacter can
also migrate between animals and humans through the environmental route. For ex-
ample, bacterial cells from the oral-faecal route leave one animal host through faecal
particles before being ingested by another host. Such a route requires survival out-
side the hosts. For example, faecal chicken particles sometimes carry Campylobacter
into drinking water. While drinking water is low in nutrient content, C. jejuni can
survive in water for days at temperatures ranging from 4 to 25 °C. (González and
Hänninen, 2012). Based on samples from Czech Republic, Strakova et al. (2021)
has identified higher occurrence of C. jejuni and C. coli in wastewater compared to
surface water, especially during autumn and in the presence of ammonium (above
0.2 mg/L) and chloride ion (above 60 mg/L) (Strakova et al., 2022). Moreover,
different strains prefer different habitats. For example, C. jejuni strain 81116 and
81-176 are more adapted to water and milk, respectively (Trigui et al., 2017). C. je-
juni strains in milk have caused several Campylobacteriosis outbreaks via raw milk
consumption (Jaakkonen et al., 2020).
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1.1.2 Metabolic pathways

The whole C. jejuni genome sequence reveals some peculiar features. It is a compact
genome of about 1.6 Mb, in contrast to the genomes of Salmonella enterica and
Shigella flexneri, which are longer than 4.6 Mb. Moreover, the C. jejuni genome
distinguishes itself from model organism genomes (e.g. E. coli) with an AT content
of nearly 70 %. Genome annotation of C. jejuni has only identified three sigma
factors, namely sigma-70, sigma-54 and sigma-28 (Parkhill et al., 2000). That is
relatively few compared to the seven known sigma factors in the E. coli genome.
Comparison between C. jejuni and E. coli sigma-70 promoters showed similar -10
region but completely different -35 sequences (Wösten et al., 1998).

Several classical gene systems exhibit different genetic structures, which increases
the difficulty of gene function annotation by sequence homology. For example, C.
jejuni lacks the classical glycolysis pathway and other pathways for carbohydrate
catabolism. For instance, most C. jejuni genome does not encode glucokinase that
phosphorylates glucose to glucose-6-phosphate, nor the 6-phosphofructokinase that
irreversibly phosphorylates fructose 6-phosphate to fructose-1,6-biphosphate (Ve-
layudhan and Kelly, 2002). Other glucose metabolic pathways are also lacking or
scarcely populated. For instance, a recent systematic search revealed that only 1.7
% of over 6000 C. jejuni and C. coli genomes on the PubMLST database comprise
of a complete Entner-Doudoroff (ED) pathway (Vegge et al., 2016). All these are
evidence that C. jejuni metabolises alternative nutrients other than glucose.

Recent metabolomics data of C. jejuni demonstrated complete depletion of aspartic
acid, glutamine, methionine, proline, and serine from the growth medium within
four hours, while degradation products of fucose were also differentially enriched
upon L-fucose supplementation (van der Hooft et al., 2018). Amino acid utilisation
occurs sequentially, with aspartate and serine used preferentially before glutamate
(van der Hooft et al., 2018).

Another study also showed that C. jejuni utilised dipeptides and tripeptides by ex-
tracellular uptake using Cj0917 (homologous to carbon starvation protein A (CstA)
from Escherichia coli) (Rasmussen et al., 2013). These results confirm that fu-
cose and amino acids are the primary energy source for C. jejuni and fits previous
characterisation of the C. jejuni fucose and amino acid metabolic pathways.

The fucose permease FucP (Cj0486) imports free fucose from intestinal mucins and
host glycans produced by commensal bacteria. The impairment of fucose import
by Cj0486 mutation led to a competitive disadvantage when colonising birds and
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when used in piglet models (Stahl et al., 2011; Muraoka and Zhang, 2011). When
co-culturing with Bacteroides vulgatus, C. jejuni exhibited enhanced growth and
increased fucose uptake under the reduced concentration of amino acids, suggesting
C. jejuni may scavenge free fucose released by the fucosidase reaction from other
microbiota members (Garber et al., 2020). The crystal structure of fucose dehydro-
genase FucX also suggests it reduces L-fucose and D-arabinose into pyruvate and
other TCA cycle intermediates, indicating L-fucose and D-arabinose as alternate
carbon sources under amino acid shortage (Garber et al., 2020). Catabolism of
other sugars is rare among Campylobacter species.

Glutamate may also act as an entry point to the central metabolism of proline
and glutamine. After entering the cytosol, proline converts into glutamate through
the action of PutA before being further metabolised to aspartate. Both PutA and
PutP, which are responsible for proline utilisation and import, exhibited upregula-
tion during stationary phase entry (Wright et al., 2009). The result suggested that
proline metabolism persists throughout the stationary phase, contrary to aspartate
and serine consumption that ends after the mid-log phase.

In contrast, glutamate is metabolised throughout growth and more rapidly during
the stationary phase. That suggests proline and glutamate serve as substrates that
maintain stationary phase survival instead of growth (Wright et al., 2009). C. jejuni
81-176, but not strain NCTC11168, can also utilise glutamine for growth, as it en-
codes a secreted glutamyltranspeptidase (GGT) which metabolises periplasmic glu-
tamine to glutamate. The glutamate enters the cells by Peb1a, an aspartate/glutamate-
binding protein (Hofreuter et al., 2008). In addition to the central metabolism path-
way, the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport
system also contributes to acquiring leucine, isoleucine, and valine and promoting
chick colonisation (Ribardo and Hendrixson, 2011). In addition, Campylobacter
peptide transporter A (CptA) mediates sulphur metabolism by metabolising host-
derived cysteine-containing peptides (Vorwerk et al., 2014).

Besides amino acids and fucose, C. jejuni can also consume short-chain fatty acids,
including acetate, which is abundant in the lower chicken intestinal tracts. Acetates
are products of pyruvate acetogenesis during the exponential growth phase by the
AckA–Pta pathway and Acs gene. As serine and aspartate are depleted during
entry to the stationary phase, the reversed AckA–Pta pathway converts acetate to
acetyl-CoA to enter the TCA cycle (Wright et al., 2009). The increased acetate
level correlates to the upregulation of amino acid transporter genes such as peb1c
and ggt, suggesting microbiota-derived acetate may signal chicken lower intestine
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colonisation (Luethy et al., 2017). C. jejuni can also metabolise lactate. Microbiota-
derived lactate enters the cells via the lactate transporter LctP before conversion into
pyruvate by lactate dehydrogenases (l ldEFG/lutABC ) (Thomas et al., 2011).

1.1.3 Survival under external stress

Despite displaying metabolic pathways and genetic structure distinctive from other
bacterial species, C. jejuni remains a successful pathogen. Transmission from natu-
ral hosts to humans presents C. jejuni with environmental challenges. For instance,
the body temperature of humans and chickens are 37 and 42 °C, respectively. C.
jejuni may also encounter lower temperatures (4 to 10 °C) outside hosts such as in
natural water or refrigerated milk/food. C. jejuni showed growth at both 37 and 42
°C, while also able to persist at 4 to 10 °C for months (Haddad et al., 2009).

Apart from the temperature difference, C. jejuni is exposed to reactive oxygen
species (ROS) when external to host bodies or when subjected to ROS produced by
host cells during host colonisation. The exposure to ROS presents a challenge for
C. jejuni, which is a microaerophile prefering growth in low oxygen concentration
(Handley et al., 2015). Oxidative stress is associated with iron acquisition, as iron
regulates the level of ROS by the Fenton and Haber-Weiss reaction. Iron acquisition
inside the human intestine is not an easy process due to the competition from the
gut microbiota (Raines et al., 2016). Additionally, host iron usually forms complexes
with haemoglobin or myoglobin and becomes insoluble, thus increasing the difficulty
of bacterial iron uptake (Stintzi et al., 2008).

However, C. jejuni lacks genetic homology with specific and global regulators such
as SoxRS, OxyR or RpoS, while only carrying a single copy of superoxide dismutase
(SodB). Nevertheless, C. jejuni is resistant to oxidative stress due to the presence
of ROS regulators such as KatA catalase, alkyl hydroperoxide reductase (AphC)
and superoxide dismutase (SodB) (Flint et al., 2012, 2014). These stress regulators
are under the regulation of PerR and Fur. PerR and Fur regulate the expression of
KatA and the alkyl hydroperoxide reductase (AhpC) in response to the changes of
iron and ROS concentrations. (Christiansen et al., 2006; Sittka et al., 2008).

1.1.4 Flagella, secretion systems and antibiotic resistance

C. jejuni only has a few identified secretion systems. One characterised pathway
of virulence protein secretion is the type VI secretion system (T6SS). The T6SS
facilitates C. jejuni invasion, colonisation and survival during infection, including
tolerance to oxidative stress and bile salts (Lertpiriyapong et al., 2012; Liaw et al.,
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2019). Flagella also play an active role in C. jejuni virulence. A flagellar export
apparatus analogous to the type III secretion system is essential for Campylobacter
invasion antigens (Cia) excretion (Konkel et al., 2004). In particular, internalised
CiaD activates the host Erk 1/2 signalling pathway to promote host actin reorgan-
isation and bacterial internalisation (Negretti et al., 2021).

The regulation of C. jejuni flagellar biosynthesis is distinctive from model organ-
isms. Unlike E. coli and Salmonella where flagellum-associated genes are clustered
within the same operon, C. jejuni flagellar genes showed different hierarchies as they
are scattered throughout the genome in various operons (Wösten et al., 2004). In
addition, transposon mutagenesis showed that flagellar protein biogenesis is mainly
dependent on sigma-54 and sigma-28. The activation of both sigma factors depends
on the two-component system FlgR/FlgS, instead of the typical master regulator
like the E. coli flhDC (Hendrixson et al., 2001; Wösten et al., 2004, 2010a).

Other putative regulators of C. jejuni flagellar biosynthesis include FliW and CsrA.
Deleting FliW, a binding target to CsrA, resulted in the synthesis of shorter flag-
ellar, which indicates repressed FlaA synthesis (Radomska et al., 2016; Li et al.,
2018). The results suggested a negative feedback mechanism where free CsrA binds
to flaA mRNA and represses flaA translation when a high concentration of FlaA
sequesters FliW. When FlaA becomes less abundant, the released FliW sequesters
CsrA to remove the translational repression on FlaA (Radomska et al., 2016; Li
et al., 2018).

Moreover, the selection pressure from antibiotic administration in poultry farming
leads to increasing resistance against fluoroquinolone and tetracyclin. Such a trend
has prompted the World Health Organisation (WHO) to highlight Campylobacter on
the High Priority list for researching and developing novel antibiotics (WHO, 2017).
Genotyping of 283 stool specimens from hospitalised children in Iran suggested the
emerging antibiotic-resistance correlates with increased expression of the CmeABC
Efflux pump, the presence of the tetO gene and a point mutation of gyrA (Sharifi
et al., 2021).

1.1.5 Annotated ncRNAs

C. jejuni’s ability to persist under environmental stress and demonstrate diverse
virulence potential suggests a complicated genetic regulatory network. However, as
mentioned earlier, the C. jejuni genome is relatively small (1.5 Mb) and encodes only
three annotated sigma factors while also lacking standard stress response genes such
as rpoS (Parkhill et al., 2000). Such discrepancy suggests the presence of additional
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genetic and transcription regulatory elements.

Eukaryotic microRNA (miRNA) usually targets 3’-untranslated regions (3’-UTRs)
of mRNA targets and silences translation by promoting mRNA degradation (Lee
et al., 1993). Some reports also suggest miRNA binds to coding regions and 5’-
untranslated regions (5’-UTRs) (Forman et al., 2008; Zhang et al., 2018). Another
eukaryotic ncRNA family, namely long ncRNA (lncRNA), mediates gene expression
through recruitment of epigenetic effectors (Yap et al., 2010). In contrast to the
well-characterised eukaryotic ncRNAs, most insights into bacterial ncRNAs have
only emerged in the last two decades. For example, the riboswitch is a cis-acting
mRNA that undergoes secondary structural rearrangements upon ligand binding
to adjust translational efficiency and transcript stability. Translational control by
ligand binding enables feedback regulation of metabolic pathways according to the
availability of metabolites (Patterson-Fortin et al., 2013). Another example is the
small non-coding CRISPR RNAs (crRNAs), known for their involvement in the
genome editing CRISPR-Cas system. crRNAs mediate bacterial immunity against
viral infection through direct hybridisation and subsequent cleavage of foreign viral
nucleic acids (Barrangou et al., 2007) as well as regulating antibiotic resistance
(Sampson et al., 2014).

Rfam, a database containing collections of ncRNA families (Kalvari et al., 2018), has
identified C. jejuni non-coding RNAs including the thiamin pyrophosphate (TPP)
riboswitch, the bacterial signal recognition particle (SRP), tmRNA and the RNA
component of RNase P (Parkhill et al., 2000; Gundogdu et al., 2007). The TPP ri-
boswitch is an RNA aptamer that is the most widely distributed riboswitch among
bacterial species (Pavlova et al., 2019). The TPP riboswitch binds to thiamine
pyrophosphate and attenuates ThiC production, creating a negative feedback regu-
lation for thiamine pyrophosphate biosynthesis (Rodionov et al., 2002). Also, SRP
RNA is the RNA component of ribonucleoprotein that mediates co-translational
membrane-targeting by recognising signal peptide sequence emerging from the ribo-
some (Regalia et al., 2002; Rosenblad et al., 2003). Furthermore, transfer-messenger
RNA (tmRNA) forms complexes with small protein B (SmpB) to rescue ribosomes
stalled by truncated mRNA. The tmRNA attaches to the 3’ end of the nascent
peptides, enabling translation elongation to continue. The final translated peptides
undergo degradation to free up the stalled ribosomes (Weis et al., 2010). Moreover,
the RNA component of RNase P is responsible for catalysing tRNA maturation
(Kazantsev and Pace, 2006).

A recent study has identified CzcD at the 5’-UTR of the czcD gene, which encodes
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an ABC transporter for Zn(II) export. CzcD is an RNA thermometer (RNAT) that
senses temperature variation and undergoes secondary structure changes to regulate
translation. Under elevated host temperature, secondary structure rearrangement
of CzvD improves ribosome accessibility for czcD mRNA synthesis to confer Zn(II)
resistance (Barnawi et al., 2020).

C. jejuni also carries four copies of CRISPR RNAs (crRNA 1-4) and a copy of
trans-activating CRISPR RNA (tracrRNA). Similar to species such as Streptococ-
cus pyogenes, C jejuni also contains a Cas9-encoding operon (CjCas9 operon) which
has shown potential for in vivo genome editing for treating age-related muscular de-
generation (Kim et al., 2017). However, the CjCas9 operon only encodes small or
degenerate CRISPR arrays, thus having a relatively minor role in viral defence. Un-
like the commonly used Streptococcus pyogenes Cas9 (SpCas9), CjCas9 for genome
editing is less common as it leads to a higher rate of host DNA damage and more
apoptotic induction (Saha et al., 2020b). Transcriptomic analysis showed that Cj-
Cas9 activates DNA damage pathways, including p53, ATM (Ataxia Telangiectasia
Mutated Protein) and pro-inflammatory (Saha et al., 2020a). CjCas9 may also me-
diate endogenous mRNA stability. Co-immunoprecipitation followed by RNA-Seq
identified about 100 C. jejuni endogenous mRNAs bound to CjCas9, potentially
through base-pairing with crRNAs and tracrRNA. The mRNA binding precedes
mRNA cleavage mediated by the CjCas9 HNH domain (Dugar et al., 2018). In
a recent preprint paper, rationally engineered CjCas9 possessed increased cleavage
activity in vitro and in vivo. The engineered CjCas9 may serve as an alterna-
tive genome engineering tool, with the advantage of being smaller than spCas9
that allows it to fit easily into an adeno-associated virus vector (Nakagawa et al.,
2021).

1.2 sRNA biology of C. jejuni

1.2.1 Post-transcriptional regulation by sRNA

In addition to previously mentioned ncRNAs, computational and biochemical ap-
proaches have increasingly identified small non-coding RNAs (sRNAs) in recent
years (Mraheil et al., 2011). As the name suggests, sRNAs are short RNA molecules
between 50 to 500 nucleotides long and possess no protein-coding activities. Ex-
perimental evidence suggests that these small transcripts can impact the global
transcriptomic landscape. For example, deletion of ArcZ sRNA affects about 15
% of total mRNA expression in Photorhabdus and Xenorhabdus (Neubacher et al.,
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2020). Other earlier studies have shown that sRNAs are responsible for the post-
transcriptional regulation of at least half of E. coli and Salmonella total mRNA
expression (Melamed et al., 2016; Waters et al., 2017; Chao et al., 2012; Hör et al.,
2018).

External stimuli such as nutrient availability and cell density mediate differential
expression of sRNAs (Gurung et al., 2015). sRNAs fine-tune gene expression of bio-
logical pathways ranging from TCA cycle, amino acid uptake, heat shock, oxidative
traits, small toxic protein, DNA replication initiator to the heme uptake system
(Miyakoshi et al., 2015, 2018; Fritsch et al., 2018; Sharma et al., 2011; Andresen
et al., 2020; Li et al., 2020a; Wilson et al., 2021). Since C. jejuni lacks canonical
stress response regulators, sRNA becomes an alternative regulatory factor. Studies
in other bacterial species have demonstrated the potential of sRNAs to mediate the
global stress response. For example, Legionella pneumophila (Lp) sRNA Lpr10 acts
as a negative feedback regulator of the sigma factor RpoS, which is essential for
survival in water. A high level of RpoS increases Lpr10 expression, which then re-
presses the translation of RpoS mRNA, thereby optimising the level of RpoS protein
(Saoud et al., 2020).

Some sRNAs directly regulate bacterial virulence genes. In Pseudomonas aerug-
inosa, sRNA 179 and Hfq inhibit virulence factors such as the type III secretion
system (T3SS) and the cAMP-Vfr regulons (Janssen et al., 2020). Moreover, dele-
tion of MicC sRNA relieves repression of ompA and ompC, which encode an outer
membrane protein in Salmonella Enteritidis (AU - Meng et al., 2021). H. pylori, a
close relative of C. jejuni, also regulates virulence with sRNAs. H. pylori NikS sRNA
expression is under the control of nickel availability. When nickel availability is low,
NikS represses multiple virulence gene mRNAs and regulates host cell internalisation
and epithelial barrier disruption (Eisenbart et al., 2020). That agrees with a later
publication, which showed that NikS is regulated by T-repeats upstream of the NikS
coding region. T-repeat elongation during in vivo infection leads to decreased NikS
expression, which relieves the repression on outer membrane proteins (OMPs) and
the oncogene CagA that promotes host colonisation and may contribute to oncoge-
nesis. The possible link of NikS to oncogenesis matches the lower NikS expression of
clinical isolates from gastric cancer patients (Kinoshita-daitoku et al., 2021).

Notably, it is becoming increasingly clear that sRNAs also modulate bacterial-host
interactions, including survival within host cells (Gao et al., 2019), intestinal coloni-
sation (Melson and Kendall, 2019) and biofilm production (Sonnleitner et al., 2011;
Sonnleitner and Haas, 2011). In particular, modulation of the host immune response
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by sRNA facilitates symbiosis. A recent study showed that Vibrio fischeri (V. fis-
cheri) SsrA sRNA is one of the most highly expressed sRNA in the outer membrane
vesicle (OMV) during the infection of squid light organs, suggesting OMV delivers
SsrA sRNA to the host. An ssrA deletion mutant colonised the light organ initially
before declining in abundance (Moriano-Gutierrez et al., 2020). Also, deletion of
ssrA leads to lower host retinoic-acid inducible gene-I (RIG-I) expression. The re-
duced RIG-I expression activates the host immune response, which may explain the
decreased symbiotic colonisation (Moriano-Gutierrez et al., 2020). In addition to
promoting symbiosis, there are also examples of sRNA-mediated virulence through
modulating host gene expression. For example, dual RNA-Seq of infection assays of
Salmonella and HeLa cells showed Salmonella PinT sRNA regulates the expression
of Salmonella virulence effectors that perturb the host immune response (Wester-
mann et al., 2016).

Apart from targeting bacterial virulence mRNAs, bacterial sRNAs also regulate the
expression of host virulence mRNAs. For example, P. aeruginosa delivers sRNAs
into host epithelial cells to attenuate host immune response (de Bruijn and Ver-
hoeven, 2018; Koeppen et al., 2016). Such a mechanism also occurs in H. pylori.
Two sRNAs from H. pylori, sR-2509025 and sR-989262, are enriched in OMVs and
AGS cells exposed to OMV. Deletion of these two sRNAs leads to increased IL-8
secretion. Conversely, transfection of AGS cells with sR-2509025 and sR-989262
resulted in reduced IL-8 secretion by AGS cells. These observations suggested that
sR-2509025 and sR-989262 are delivered into host cells to modulate the host immune
response (Zhang et al., 2020). However, it remains unclear whether C. jejuni also
delivers sRNAs to the host via OMVs.

In addition to infectious pathways, some sRNAs are responsible for emerging antibi-
otic resistance (Sahni et al., 2019) or transient persistence against antibiotics. For
instance, transient upregulation of RyhB sRNAs during iron starvation conditions
lead to reduced biogenesis of respiratory complex responsible for gentamicin uptake
(Chareyre et al., 2019). Similarly, V. cholerae VadR sRNA post-transcriptionally
inhibits crvA mRNA and improves resistance against penicillin G through cell shape
maintenance (Peschek et al., 2020).

The impact of sRNAs on virulence and antibiotic resistance has led to clinical and
industrial applications. For instance, sRNAs can become the therapeutic targets
of RNA-based therapies against multidrug-resistant pathogens, with several studies
conducted on sRNAs from E. coli and Salmonella strains (reviewed in Parmeciano
et al., 2019). Secreted extracellular sRNAs that mediate host-pathogen communi-
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cations can serve as biomarkers for infectious diseases circulating in human tissue.
For industrial applications, metabolic engineering by sRNAs is more convenient and
less time-consuming than the conventional synthetic biology approach as it does not
involve building or rearranging large genetic elements such as promoters or gene
orders. Regulating multiple mRNAs by sRNAs is more effective than random mu-
tagenesis and recombination due to their low mutation rates. Metabolic engineering
by sRNAs is also easier to implement than CRISPR-Cas9 as sRNA engineering only
requires one genetic element, thus imposing a lower metabolic burden (Na et al.,
2013).

Moreover, metabolic engineering by sRNA does not require the fusion of scaffold
sequences as in synthetic riboswitches. Several studies have illustrated the potential
of fine-tuning gene expression with sRNAs. A protocol published in 2013 demon-
strated a constructed synthetic sRNA library that fine-tunes metabolic circuits in
E. coli (Yoo and Na, 2013). This protocol has facilitated tyrosine and cadaverine
production by E. coli (Na et al., 2013), using a small sRNA library with different
promoters to adjust expression levels. The sRNA library targeted six enzymes in
the beta-carotene production pathways, with different levels of promoter strength
for each sRNA. This sRNA-tuned system showed a higher beta-carotene production
rate than the T7-promoter tuned system. However, all designed sRNAs are repres-
sive. Thus, future work may include activating sRNAs into the pool (Ghodasara
and Voigt, 2017; Noh et al., 2017).

Plasmid expressed sRNAs, which carry complementary sequences that recognise
mRNA targets and a scaffold sequence that recruits Hfq, are also applicable to
other organisms. One example is improving glutamate production in Corynebac-
terium glutamicum through gene knockout, which is otherwise tricky due to the
genome stability of Corynebacterium glutamicum (Sun et al., 2019). Also, a recent
study modulated Pseudomonas putida gene expression for industrial purposes using
plasmid expression of sRNAs that regulate expression levels of endogenous and het-
erologous mRNAs via antisense interaction. The result showed both upregulation
and downregulation of target genes (depending on where it targets), which allows
the re-designing of P. putida metabolism (Apura et al., 2020).

Interestingly, sRNAs have demonstrated a potential application for novel antibi-
otic development. Most antibiotics are broad-spectrum compounds that unspecif-
ically eliminate multiple microbial species within the gut microbiota. Short anti-
sense oligonucleotides (ASO) provide an alternative to broad-spectrum antibiotics
by mimicking sRNAs to target specific mRNAs. ASO couples with a protein that
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carries the ASO into the cell and targets the mRNA of essential genes. The sRNA-
regulatory mechanisms can serve as a reference for ASO design (reviewed by Vogel,
2020). However, replacing broad-spectrum antibiotics with ASO faces technical
hurdles, such as optimising the ASO dosage and improving ASO stability.

1.2.2 sRNA mode of action

The genes encoding sRNAs are located in intergenic regions, 3’- and 5’-UTRs, anti-
sense of a protein-coding gene or even inside an open reading frame (Tsai et al., 2015;
Dar and Sorek, 2018). For example, in contrast to riboswitches and thermosensors,
some 5’-UTR derived sRNAs are transcripted as separate transcripts (Luo et al.,
2021). Moreover, a Pseudomonas aeruginosa 5’-UTR transcript RhlS is an sRNA
derived from the 5’-UTR of the rhll locus, which encodes an enzyme responsible
for synthesising AHL N-butanoyl-homoserine lactone (C4-HSL) for quorum sensing.
Disruption of the RhlS terminator reduced C4-HSL, and RhlS mutants exhibited
lower levels of Rhll (Thomason et al., 2019). The result suggests RhlS acts as a
positive regulator for Rhll, possibly by sequestering its antisense counterpart.

Similarly, 3’-UTRs of some mRNAs can be excised into separate short transcripts
by RNase digestion (Chao et al., 2017). For example, Salmonella Typhimurium
sRNAs DapZ sRNA is derived from the 3’-UTR of dapB and acts as a trans-acting
repressor of ABC transporters such as DppA and OppA (Chao et al., 2012). Another
example is CpxQ sRNA, an sRNA synthesised by RNase E cleavage of cpxP mRNA.
CpxQ sRNA is upregulated in response to inner membrane protein misfolding and
represses the synthesis of inner membrane proteins, which protect bacteria against
inner membrane damage (Chao and Vogel, 2016). 3’-UTR derived sRNAs can also
act in a cis-encoded manner. A recent TIER-seq analysis (transiently- inactivating-
an-endoribonuclease-followed-by-RNA-seq) featured Vibrio cholerae OppZ and CarZ
sRNAs from 3’-UTR of the OppABCDF and carAB operons. Both sRNAs act as
negative feedback regulators of their corresponding operons (Papenfort et al., 2020).
Meanwhile, a cis-acting sRNA in Clostridium tetani near the 3’-UTR regions of tent
gene (responsible for tetanus toxin (TeNT) production) carries a 14-nucleotide region
that is complementary to the 5’ end of the tent gene. Knockdown of that sRNA
resulted in a threefold increase of TeNT production (Brüggemann et al., 2021).

The interactions between an sRNA and an mRNA depend on the sequence com-
plementarity between the interacting base pairs. Cis-acting sRNAs are usually
antisense to their mRNA targets, allowing stable sRNA-mRNA duplex formation
through complete complementation to the neighbouring opposite stranded mRNA
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target (Zhang and Liu, 2019). In contrast to the sequence similarity and physical
proximity of the cis-acting sRNAs, trans-acting sRNAs target mRNAs from distant
genomic loci, which are only partially complementary and thus lead to less stable
base-pairing interactions (Vogel and Luisi, 2015). To compensate for the incomplete
complementarity, RNA chaperones such as Hfq or ProQ act as scaffolds for RNA
binding and provide extra stabilisation energy (Morita et al., 2005). The flexibility
of sRNAs to bind to both fully and partially complementary targets enables fine
adjustment of a wide range of molecular pathways under different conditions (Mai
et al., 2019).

While miRNAs can only inhibit translation by stimulating mRNA degradation, post-
transcriptional regulation by sRNAs both inhibit and activate translation initiation,
with or without regulation of mRNA degradation. sRNA can prevent translation
initiation by physically occupying the ribosomal binding site (RBS) (Nielsen et al.,
2009; Sievers et al., 2015) (Figure 1.2a) or through duplexing with target mRNAs
and promoting RNase E degradation (Figure 1.2b). An example of such a mecha-
nism includes RyhB sRNA, which regulates iron homeostasis by promoting degrada-
tion of transcripts encoding iron-binding proteins such as sodB (Massé et al., 2003;
Desnoyers et al., 2009; Ikeda et al., 2011; Bossi et al., 2012). Apart from acting as
translation inhibitors, sRNA-mRNA interactions can activate translation initiation
by exposing the RBS by disrupting secondary structures (Figure 1.2c) (Balbont́ın
et al., 2016; Quereda et al., 2014; Melson and Kendall, 2019). sRNAs can also act as
translation activators by blocking RNase cleavage sites and thus inhibiting RNase
digestion (Fröhlich et al., 2013; Richards and Belasco, 2019) (Figure 1.2d).

Furthermore, recent studies have revealed non-canonical mechanisms of sRNA-
mediated post-transcriptional regulation. Instead of targeting the RBS, E.coli GCV-
B sRNA targets the AC rich region upstream of the RBS to inhibit gltI mRNA
translation (Sharma et al., 2007). Similarly, Spot42 inhibits sdhC mRNA transla-
tion without causing degradation. However, its binding site is also too far upstream
from the RBS. Instead of blocking the RBS, Spot42 acts as a recruiter of Hfq,
which directly binds to the Hfq binding site near the RBS and prevents ribosome
attachment (Desnoyers and Massé, 2012). A more recent example is SgrS sRNA.
Under glucose-phosphate stress conditions, SgrS represses the translation of manY
mRNAs by adhering to the translation enhancer upstream of the RBS and Hfq to
interfere with S1-dependent translation. The example of SgrS sRNA suggests an
non-canonical mechanism of translation initiation inhibition that targets the en-
hancer sites instead of the RBS (Azam and Vanderpool, 2020).
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Figure 1.2: Canonical mechanisms of post-transcriptional regulation by
sRNAs. (a) Translation inhibition by RBS occupation. (b) Translation inhibition
by promoting RNase degradation. (c) Translation activation by structural rear-
rangement. (d) Translation activation by mRNA stabilisation. Created in BioRen-
der.com.
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Moreover, some sRNAs target protein-coding regions, such as Salmonella MicC
sRNA which silences ompC mRNA within the +67 to +78 position of the cod-
ing regions to promote mRNA degradation (Pfeiffer et al., 2009). Similarly, E.
coli OmrA/B sRNA binds to the +34 to +44 position of the fepA mRNA. This
sRNA-mRNA interaction destabilises a stem-loop structure that otherwise activates
translation initiation (Jagodnik et al., 2017).

Besides regulating translation initiation and mRNA degradation, sRNA can also
regulate transcriptional termination. In E. coli, sRNAs DsrA, ArcZ, and RprA are
upregulated under stress and act as anti-termination factors by binding the rpoS 5’-
UTR to suppress premature Rho-dependent transcription (Sedlyarova et al., 2016).
sRNAs can also provide a negative feedback mechanism for transcription termi-
nation. MS2-affinity purification coupled with RNA sequencing (MAPS), an ap-
proach that aims to identify all binding interactions of a specific sRNA, revealed
that Salmonella SraL sRNAs showed significant transcript enrichment transcrip-
tional termination factor Rho. Surprisingly, SraL acts as a positive regulator for
rho mRNA levels despite not having any significant impact on RNA stability. In-
stead, SraL sRNA prevents Rho-dependent termination of the rho transcript by
blocking the interaction between the nascent rho mRNA transcripts and Rho (Silva
et al., 2019).

A deeper layer of post-transcriptional regulation of sRNA involves titrating sRNAs
by sponge sRNAs. Sponge sRNAs can either sequester or degrade their sRNA
partners, or both. The first identified sponge RNA is the Salmonella chb transcript.
In the absence of chitooligosaccharide, the constitutively expressed ChiX sRNA
binds to the chiP mRNA 5’ end and represses the translation of chiP mRNA. The
presence of chitooligosaccharides induces the expression of chb transcript, which
binds to and promotes ChiX sRNA degradation, thus allowing ChiP synthesis for
more chitooligosaccharide uptake (Figueroa-Bossi et al., 2009).

Similarly in E. coli, while GcvB sRNA represses the Glu/Asp transporter expression
by promoting the degradation of gltl mRNA, the gltl 3’-UTR derived sponge sRNA
SroC sequesters and controls the level of GcvB (Miyakoshi et al., 2015). Besides,
AgvB mimics dipeptide transporter (dppA) to displace GcvB sRNA, which frees up
dppA transcript for translation E. coli (Tree et al., 2014). A more recent study
has identified the ArcZ sponge sRNA that inhibits CyaR sRNA expression, thus
controlling the level of CyaR during the transition phase and may contribute to
stationary phase/biofilm development (Iosub et al., 2020). Premature termination
is also a mechanism for sRNA sponges. 3’-end mapping has detected an E. coli sRNA
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sponge derived from 5’-UTR and internal ORF, suggesting premature termination
as a mechanism for deriving sRNA sponge. In particular, ChiX sRNA inhibits
chiP mRNA translation by blocking ribosome binding and inducing Rho-dependent
termination. The activity of ChiX sRNA generates ChiZ that act as sponges to
inhibit ChiX activity (Adams et al., 2021).

In addition to titrating other sRNA species, sRNAs can also act as proteins sponges.
For example, RsmY and RsmZ act as sponge sRNAs that sequester RNA binding
protein RsmA from its targeted mRNAs. The sequestration reduces the production
of the type III secretion system in Pseudomonas aeruginosa (Janssen et al., 2018).
Moreover, carbon catabolite induction of Pseudomonas aeruginosa leads to the over-
expression of the CrcZ sRNA. The overexpressed CrcZ sRNA associates with Hfq
protein and relieves the repression of catabolic genes like amiE (Sonnleitner and
Bla, 2014).

Another novel aspect of sRNA mechanisms is their spatial regulation. sRNA and Hfq
accumulate in the cell pole when under stress, which may increase post-transcriptional
regulation of polar-localised mRNAs. Upon overexpression, sRNAs such as SgrS,
GlmZ, OxyS, RyhB shows increased cytoplasmic localisation (Fei et al., 2015; Sheng
et al., 2017). Similarly, a polar transcriptome analysis of non-stressed E. coli demon-
strated the polar localisation of over 19 sRNAs, with two-thirds of them showing
enriched polar localisation under osmotic stress (Kannaiah et al., 2019).

1.2.3 C. jejuni sRNAs

Despite the biological significance of sRNAs, understanding of C. jejuni sRNAs is
insufficient compared to other pathogens due to technical and biological factors.
Firstly, C. jejuni is a fastidious organism to culture. Upon exposure to suboptimal
growth conditions, it enters the viable but nonculturable (VBNC) state, a physio-
logical state where cells remain alive yet metabolically inactive (Rollins and Colwell,
1986). Efficient growth requires specialised culture media, modified low oxygen at-
mospheric conditions, a narrow temperature range, and long doubling times (Davis
and DiRita, 2008). Another technical difficulty is the lack of effective in vitro and in
vivo models. Compared to other enteric bacterial pathogens, C. jejuni demonstrates
a lower in vitro human intestinal cell infection rate and lacks ideal animal models for
in vivo pathogenesis analysis (reviewed in Burnham and Hendrixson, 2018). More-
over, C. jejuni strains are genetically heterogeneous and non-clonal due to their
fast genome rearrangement and natural transformation. Such a genetic diversity
contributes to heterogeneous experimental data (Boer et al., 2002). In addition,
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limited genetic tools such as reporter systems for genetic manipulation are available
for C. jejuni (Davis et al., 2008; Buchanan et al., 2017). These factors have held
back experimental investigation of C. jejuni sRNA.

Global RNA-binding proteins such as Hfq and ProQ act as baits for high-throughput
sRNA discovery by co-immunoprecipitation in E. coli and Salmonella (Sittka et al.,
2008; Vogel et al., 2003; Zhang et al., 2003). However, this approach is currently
impossible for C. jejuni due to the lack of identified global RNA-binding proteins.
Due to the lack of protein baits for co-immunoprecipitation, current information on
C. jejuni sRNAs is mainly obtained from RNA-Seq datasets (Dugar et al., 2013;
Porcelli et al., 2013; Butcher and Stintzi, 2013; Taveirne et al., 2013). However,
northern blot has only confirmed relatively few sRNAs, with limited insights into
their biological implications. In addition, those RNA-Seq data convey limited in-
formation on condition-specific sRNA expression as these studies cultured C. jejuni
under a narrow range of conditions.

1.3 Published and in-house transcriptomic data

1.3.1 Published transcriptomic data

The primary transcriptome of four C. jejuni strains (NCTC11168, 81-176, 81116,
RM1221) in the standard laboratory condition (37 °C in the exponential phase) was
first identified by differential RNA-Seq, with transcription start sites (TSS) anno-
tated across all four genomes (Dugar et al., 2013). 3377 TSSs were detected, with
1035 and 1067 conserved among all four strains and 2 or 3 strains, respectively. The
list of TSSs consisted of 1905 from the standard laboratory strain NCTC11168. Sub-
sequent northern blot analysis has validated about 20 intergenic ncRNAs, including
some previously annotated ncRNAs such as SRP RNA, RnpB, tmRNA, crRNA2,
crRNA4 and TracrRNA. However, crRNA1 and crRNA3 of the minimal CRISPR
loci were only found in dRNA-Seq without northern blot validation (Dugar et al.,
2013). It is also noteworthy that BLASTn (McGinnis and Madden, 2004) analysis
suggested sequence conservation among ncRNAs is primarily limited in C. jejuni,
but not among other Campylobacter species. The lack of sequence conservation
increases the difficulty of predicting sRNA homologs.

Another dRNA-Seq has also characterised the C. jejuni transcriptomic landscape
(Porcelli et al., 2013) where a periodic signal for the -35 sequence of the sigma-70
promoter was identified and many mRNAs were designated as leaderless as they
lack recognisable RBS. Moreover, a comparison against the H. pylori transcriptome
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showed no conservation between these two closely related species. The species-
specificity is likely due to C. jejuni genome reorganisations and gene reshuffling.
Nonetheless, the study has identified 992 TSSs, and northern blot analysis has
confirmed the expression of eight sRNAs (Porcelli et al., 2013). All identified sRNAs
except CjNC9 are also found in Dugar et al., 2013.

Both dRNA-seq studies obtained expression data under standard laboratory con-
ditions. Another RNA-Seq study under iron-stress also discovered novel C. jejuni
sRNAs transcribed in intergenic regions, suggesting that iron availability also mod-
ulates C. jejuni sRNA expression. (Butcher and Stintzi, 2013). Another RNA-Seq
paper obtained transcriptomic data from chicken colonisation and in vitro culturing
of strain 81-176. The study has discovered several novel sRNAs, possibly due to
differences in experimental conditions (Taveirne et al., 2013). Similarly, RNA-Seq
on C. jejuni (NCTC11168) and its rpoN mutant identified five intergenic sRNA
candidates using evolutionary conservation and structural prediction of large inter-
genic regions (Chaudhuri et al., 2011). However, all sRNAs mentioned above lack
northern blot confirmation.

Some RNA-Seq datasets illustrate other C. jejuni stress adaptation mechanisms.
One study investigated the regulatory and phenotypic roles of PerR. PerR inactiva-
tion facilitated survival under hydrogen peroxides and aerobic conditions (Handley
et al., 2015) and increased the expression of peroxidase proteins, including KatA,
TrxB, Rrc and AhpC. However, contrary to previous microarray analysis (Palyada
et al., 2009), PerR inactivation did not affect motility and ability to kill wax moth
larvae. It is noteworthy that this study has identified eight novels TSSs, which might
represent transcription uniquely suppressed by PerR. In addition, some transcrip-
tomic datasets obtained microarray analysis (Xu et al., 2015; Hao et al., 2013). For
example, one microarray analysis under osmotic stress showed a crosstalk between
oxidative and osmotic stress response (Cameron et al., 2012).

1.3.2 In-house RNA-Seq data

Our laboratory previously generated a dataset that represented both the transcrip-
tional profiles (RNAtag-seq) and the primary transcriptome (Cappable-seq) of C.
jejuni in 21 growth and stress conditions (Lam, 2019). Those conditions were rel-
evant to colonisation in the chicken host as a commensal, human host infection, or
transmission between the hosts.

The in-house RNAtag-seq dataset covers the experimental conditions that model
the following environmental factors:
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Growth phase

Cells undergo rapid division in the exponential phase when nutrients are abundant.
The cells transition into the stationary phase as nutrients deplete. In the standard
laboratory setting, prolonged growth until nutrient shortage models the early and
late stationary phases.

Entry into the stationary phase involves physiological changes such as halted cell
replication. Transition into the stationary phase allows the cell to persist under
adverse environments, such as limited amino acid availability and accumulated toxic
metabolites (Jaishankar and Srivastava, 2017). Different growth phases also lead to
the rewiring of C. jejuni metabolic pathways. For instance, aspartate and serine
are metabolised throughout the exponential phase and depleted upon the entry of
the stationary phase, while proline metabolism occurs throughout the stationary
phase. Meanwhile, glutamate consumption takes place at both the exponential and
stationary phases. Glutamate utilisation is more rapid during the stationary phase
than exponential growth (Wright et al., 2009).

Also, upon stationary phase entry, C. jejuni showed increased cell membrane in-
tegrity under physical pressure, which coincides with the change in fatty lipid com-
position. That includes the increase in cyclopropane composition, which offers pro-
tection against acid stress, freezing damage and ethanol exposure in E. coli (Martı
and Mackey, 2005). However, increased resistance against acid or heat was absent
C. jejuni.

C. jejuni lacks the RpoS sigma factor responsible for stationary phase entry in other
Enterobacteriaceae species (Kelly et al., 2001). Instead, several other regulators
appear to promote the growth phase transition. That includes CosR, with a 4-fold
increase in protein expression but reduced transcript abundance in the stationary
phase compared to the exponential phase. That suggests negative autoregulation
through promoter regulation. CosR is also a DNA binding protein that regulates
protein expressions related to ROS detoxification, antibiotic efflux pump and biofilm
formation (Turonova et al., 2017). Other mechanisms involved in the stationary
phase entry include chemotaxis proteins that promote migration towards nutrient-
rich environments (Turonova et al., 2017). In addition, SpoT is another stringent
response regulator that may regulate stationary phase survival (Gaynor et al., 2005).
Moreover, the late stationary phase also coincided with reduced transcript levels
for six of seven genes directly influenced by the two-component system DccRS,
suggesting DccRS may also play a role in stationary phase survival (Wösten et al.,
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2010b).

Growth temperature

37 °C to 42 °C are the body temperatures of human and avian species respectively
(Haddad et al., 2009). Notably, C. jejuni demonstrated distinctive transcriptomic
landscapes under these two temperatures. 20 % of annotated genes experience differ-
ential expression due to temperature changes, most notably for energy metabolism
and macromolecules biosynthesis (Stintzi, 2003).

As mentioned earlier, C. jejuni is more virulent in humans than in avians. At human
body temperature, C. jejuni showed elevated chemotaxis and quorum-sensing com-
pared to avian body temperature (Khanna et al., 2006). Meanwhile, 59 out of 181
proteins in the outer membrane vesicle (OMVs) proteome showed differential expres-
sion. Among all differentially regulated proteins inside OMVs, virulence-associated
proteins showed more enrichment at 37 °C (Taheri et al., 2019).

Iron limitation and oxidative stress

Iron is necessary for bacterial growth as it acts as a cofactor for housekeeping
metabolic enzymes. However, host free iron availability is limited as free iron
tends to form an insoluble complex with host proteins. Iron-binding host pro-
teins, including haemoglobin and transferrin, leave limited free iron available to
the pathogens. Many bacterial species capture host iron by secreting siderophore
or recognising heme/haemoglobin by cell surface receptors. The high iron-binding
affinity of those iron-chelators allows siderophores to scavenge insoluble iron from
host protein and transport it to outer membrane receptors that translocate the
iron ions into the pathogen cytoplasm. The cells import captured iron via ABC
transporters or the siderophore receptors. Gram-negative pathogens also express
transferrin (TF) or lactoferrin (LF) binding proteins, which scavenge iron from host
TF and LF. Heme oxygenase degrades imported heme to release free iron (Cassat
and Skaar, 2013). However, C. jejuni do not produce siderophores. Instead, they
compete for siderophores from other species through multiple uptake systems for
different siderophores. For example, C. jejuni CfrA and CfrB complex with E .coli
enterobactin-Fe3+ to translocate the enterobactin-Fe3+ complex into the periplasm.
The periplasmic ABC transporter CeuE further translocates the iron complex into
the cytoplasm by binding to the hydrolysis product of enterobactin (Raines et al.,
2016)).

The insolubility of Fe3+ increases the difficulty of iron acquisition. The redox states
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of iron also promote the formation of reactive oxygen species (ROS) such as hydrogen
peroxide (H2O2) and superoxide radicals which damage proteins and DNA (Ezraty
et al., 2017). C. jejuni also experiences oxidative stress as the host immune system
counters infection by ROS production. ROS damages DNA, proteins and metal
cofactors. ROS damages protein structure by oxidising Cys and Met, causing non-
native disulphide bonds and conformational change (Ezraty et al., 2017). Hence
excessive intracellular iron tends to associate with oxidative stress.

A close relationship between iron availability and ROS generation leads to crosstalk
between iron and oxidative stress responses. Superoxide dismutase (SOD) inhibits
ROS accumulation by converting hydroxyl radical and hydrogen peroxide into oxy-
gen molecules. Other oxidative stress defence proteins such as catalase (Kat) and
Alkyl hydroperoxide reductase C (AhpC) also prevent ROS accumulation (Gare´naux
et al., 2008; Handley et al., 2015). In addition, the acquisition of Fe2+ also reduces
ROS. The abundance of Fe2+ acquisition and ROS inhibitors are under the control
of regulators responding to both iron availability and ROS accumulation. Unlike
well-studied aerobes, C. jejuni lacks specific global regulators such as SoxRS, OxyR
or RpoS and only a single copy of superoxide dismutase (SodB). Alternative genes
include the iron homeostasis pathway and PerR and Fur that regulate the expres-
sion of KatA and the alkyl hydroperoxide reductase (AhpC) (Gare´naux et al.,
2008; Handley et al., 2015). However, global differential gene expression remains
unexplored. A proteomic study under oxidative stress led to overexpression of pro-
teins related to iron homeostasis (Cft), virulence (CadF, FlaA) and general stress
response, as well as periplasmic protein Cj1371 (Gare´naux et al., 2008; Handley
et al., 2015).

Prolonged aerobic exposure increases the promoter activities of antioxidant genes
ahpC, katA, and sodB. PerR, which is downregulated upon exposure to oxidative
stress, promotes the expression of ahpC, katA, and sodB (Kim et al., 2015). PerR
activity is also regulated by Fe2+, which induces conformational change by binding
to three histidine residues and two aspartates which are highly conserved across
bacteria (Kim et al., 2011). Antioxidant genes are also regulated by Fur-Fe2+,
which inhibits the expression of iron uptake membrane proteins and regulates the
expression of KatA and PerR. In addition, co-immunoprecipitation of Fur leads to
enrichment of genes including iron transporters such as ceuB, chuA and cfbpA, and
transporters for other substrates such as kpsT, zupT and modB (Butcher et al.,
2012). That may suggest crosstalk between iron uptake and the acquisition of other
ions. Meanwhile, CosR, which is repressed by superoxide radicals except H2O2, reg-
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ulates the expression of both oxidative stress response genes (sodB, ahpC, katA) and
iron uptake regulators such as Cj1658 and Cj1659, dps (Hwang et al., 2011a) and
PerR (Park et al., 2021). CosR-knockdown also leads to a 1.7-fold downregulation of
iron katA and iron transporters such as Cj1658 and Cj1659 transcript (Hwang et al.,
2012). Another regulator, known as DNA binding protein from starved cells (Dps),
is similarly co-regulated by iron availability and ROS. Dps acts as DNA binding
protein under the presence of Fe2+ or H2O2, while also exhibiting protection for
DNA against oxidative damage and enzymatic degradation (Huergo et al., 2013).
Moreover, T6SS effector tssD promotes oxidative stress survival, putatively by up-
regulating expression of katA, sodB and ahpC, and facilitates survival and invasion
in chicken (Liaw et al., 2019). Other antioxidant proteins include thioredoxin (Trx)
or glutaredoxin (Grx). Both proteins reduce non-native disulphide bonds created
by ROS (Zheng et al., 1998; Arts et al., 2016).

Hyper-aerotolerant C. jejuni isolates also exhibit enhanced biofilm formation and
cross-protection against heat, osmotic and cold stress (Mouftah et al., 2021). In-
creased iron concentration leads to more biofilm and ROS formation, but not an-
tioxidants. That suggests iron stimulates biofilm formation by inducing oxidative
stress (Oh et al., 2018). Most iron acquisition genes also show increased expression
during biofilm growth (Tram et al., 2020).

Acid shock

Acid shock models the exposure to gastric pH, where food is retained for up to an
hour before reaching the infection site in the small intestine. Relatively little infor-
mation is available on how C. jejuni cope with such prolonged exposure to an acidic
environment. Current knowledge suggests several mechanisms are involved.

A study exposed C. jejuni to pH 3.5 and showed induced expression of sigma-54
regulated motility genes, including the flagellar basal body and hook (Le et al.,
2012; Askoura et al., 2016). Such increased motility may facilitate adhesion and
internalisation in Acanthamoeba polyphaga, standard transmission vehicles of gut
pathogens. Acanthamoeba polyphaga provides a protective environment for C. jejuni
against low pH (Axelsson-Olsson et al., 2010).

The acid stress response is also associated with iron homeostasis and ROS detox-
ification. Fur deletion mutants are more vulnerable to acid stress (Askoura et al.,
2016). Moreover, a microarray analysis on acidic and aerobic conditions showed up-
regulation of iron transporter genes including p19, Cj1660, Cj1662, Cj1663, cfbpA,
aphC, katA and dps, with P19 showing the largest upregulation Varsaki et al., 2015).
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Similarly, proteomic and qRT-PCR analysis with radioactively labelled methionine
was conducted on C. jejuni strains exposed to HCl. The acid stress causes increased
proteomic expression of proteins involved in iron homeostasis and oxidative stress,
such as P19, Dps, TrxB, SodB, AphC (Birk et al., 2012).

In addition, C. jejuni also copes with low pH by pumping out H+. Acidic and aerobic
conditions lead to upregulation of a putative Na+/H+ antiporter (Cj0832c) which
pumps out intracellular protons (Varsaki et al., 2015). Acid stress also appears to
affect other cellular stress responses, as shown by increased survival rates in other
stress conditions, including nutrient starvation and osmotic stress (Kumar-Phillips
et al., 2013).

Bile stress

Bile compounds influence the composition of the intestinal microbiome. They can
benefit the microbiota by acting as signalling molecules, nutrients and electron ac-
ceptors. However, they also destroy biomolecules, including membranes, proteins
and DNA, and chelate iron and calcium. They also affect expression of host genes
that mediate defence and immunity. Examples of bile compounds include cholic acid
and chenodoxycholic acid, primary bile acids synthesised in the liver. After entering
the intestine, they transform into secondary bile acids such as deoxycholic acid and
lithocholic acid (Urdaneta and Casadesús, 2017). Sodium deoxycholate also affects
other biological processes, such as chemotaxis, flagellin production and multidrug
efflux system production (Urdaneta and Casadesús, 2017).

Moreover, bile stress increases ROS, possibly because membrane disruption inhibits
electron transport chain activity (Negretti et al., 2017). It is also likely that bile salt
enhances C. jejuni virulence. Exposure to a low concentration of bile affects the
contents of outer membrane vesicles (OMVs), which increases adhesion to intestinal
epithelial cells. These OMVs further enhance intestinal epithelial cells adhesion and
invasion of other C. jejuni cells that have not experienced bile stress (Taheri et al.,
2018).

Pathogens have evolved defence mechanisms to survive under high bile concentra-
tion, including DNA repair, the downregulation of outer membrane porins and the
upregulation of efflux pump. Expression of the genes encoding the CmeABC mul-
tidrug efflux pump is repressed by a TetR family repressor CmeR. CmeR repression
is inhibited by bile salts, thus leading to the upregulation of CmeABC. In addi-
tion to pumping out bile salts, CmeABC can also confer antibiotic resistance and
other antimicrobial substances, leading to enhanced survival and chicken colonisa-
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tion (Lin et al., 2003, 2005). In addition, CmeDEF acts as a secondary efflux pump
that maintains bile resistance without CmeABC (Akiba et al., 2006). Bile expo-
sure also stimulates virulence mechanisms. Sodium deoxycholate induces C. jejuni
virulence by increasing Invasion antigen B (ciaB) gene expression without altering
adherence or motility (Malik-Kale et al., 2008). Deleting the two-component sys-
tem response regulator CbrR also leads to susceptibility to bile salt. However, the
mechanism by which CbrR confers bile resistance has yet to be elucidated (Raphael
et al., 2005).

Heat stress

Heat stress at 48 °C, and 55 °C, which models the defeathering and scalding steps
in poultry processing, decreases culturability and viability (Klančnik et al., 2014).
HspR and HrcA regulate the gene expression of heat shock proteins, including chap-
eronins, through their cooperative DNA binding activities (Palombo et al., 2020).
For instance, Expressions of GroES and GroEL, which are chaperonins that assist
protein folding, are repressed by heat shock regulator HspR (Holmes et al., 2010).
Under 37 °C, heat shock promoters are co-repressed by HrcA and HspR interac-
tions. Such interactions are removed when the temperature rises to 42 °C, where
HrcA, but not HspR, showed reduced DNA binding activity. Temperature rise may
alter HrcA conformation, which reduces its DNA binding capacity, thus allowing
the transcription of heat shock genes (Versace et al., 2021).

Anaerobic stress

C. jejuni experiences anaerobic conditions in the host intestine, especially in the
chicken caecum, which carries a high population of obligate anaerobes. Despite its
difficulty to grow under atmospheric oxygen levels, insufficient oxygen affects cell
electron transport as oxygen is a terminal electron acceptor (Kendall et al., 2014).
Among all electron acceptors, oxygen is the most preferred choice and is essential
for DNA synthesis (Sellars et al., 2002). The lack of oxygen as an electron acceptor
significantly hampered cell growth, ATP generation and motility (van der Stel et al.,
2017). The requirement for oxygen prompts C. jejuni to migrate to regions with
higher oxygen levels, including the mucous layer and intestinal crypt.

Nonetheless, anaerobic respiration in chicken caecum is possible in the presence
of alternative electron acceptors. For example, disruption of periplasmic electron
transport enzymes nitrate reductase napA and nitrite reductase nrfA leads to a
significant decrease in anaerobic growth (Weingarten et al., 2008). NapA receives
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electrons from the electron transport chain, which reduces nitrate to nitrite and
subsequently ammonium ion by NrfA (Pittman et al., 2007). Similarly, the ad-
dition of nitrate and nitrite alongside other electron acceptors such as fumarate,
trimethylamine-N-oxide (TMAO) and dimethyl sulfoxide (DMSO) increases both
the growth rate and final cell density (Sellars et al., 2002).

Starvation stress

Starvation stress involves growing cells to early-stationary phase followed by re-
suspension in Ringer’s solution (2.25 g/L NaCl, 0.08 g/L CaCl2.2H2O, 0.05 g/L
NaHCO3) for 5 hours. Such treatment models nutrient deprivation during the C.
jejuni transmission cycle. When compared against heat shock and oxygen expo-
sure, 15 hours of starvation stress lead to significantly more growth defects, lower
viability and reduced adhesion and invasion of Caco-2 cells (Mihaljevic et al., 2007).
Starvation increased the number of cells in the VBNC state and induced heat stress
resistance (Klancnik et al., 2009). Starvation stress also leads to upregulation of
Cj0917, which encodes a homologue of E. coli carbon starvation protein A (CstA)
(Rasmussen et al., 2013).

Cold stress and chicken exudate

C. jejuni must survive refrigeration during poultry processing before cooking (Bhaduri
and Cottrell, 2004). Oxygen solubility increases during low temperatures, thereby
increasing oxidative stress. Thus cold exposure is also related to the reduced ox-
idative metabolism TCA cycle, pentose phosphate pathway and electron transport,
or maybe by using secondary metabolites to bypass ROS intermediate (reviewed in
Tribelli and López, 2018)

Many bacteria species cope with cold stress by reducing fatty acid saturation to
maintain membrane fluidity while reducing stiffness during cold exposure. However,
C. jejuni exhibits no fatty acid alteration. When exposed to heat treatment after
treatment at 6 °C for 24 hours, C. jejuni showed better heat tolerance. That might
be due to less fatty acid alteration during cold exposure, preventing membrane
leakage during heating afterwards (Hughes et al., 2009). Such cold exposure also
leads to reduced electron transport activities (Hughes et al., 2010). In addition,
pebC was differentially downregulated when subjected to 46 °C heat stress after
exposing to 4 °C. That suggests a decrease in glutamate metabolism during cold
stress (Duqué et al., 2021).

The “chicken exudate” model mimics the cold stress and the food packaging environ-
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ment. The food packaging environment comprises organic materials (e.g. chicken
carcass and other foodstuffs) that provide nutrients for bacterial growth. The exu-
date was extracted and filtered from commercially frozen chickens after defrosting
at 4 °C, which is the equivalent temperature of refrigeration. Compared to C. je-
juni incubated in standard laboratory media brain–heart infusion (BHI), growth in
chicken juice is linked to increased biofilm formation and enhanced growth (Brown
et al., 2014)

Hyperosmotic stress

Food pathogens experience high salt concentrations during food processing. Food
preservatives such as NaCl increase the extracellular osmolarity, leading to water
efflux and cell dehydration (Burgess et al., 2016). The biological impact of hyper-
osmotic stress varies according to NaCl concentration. C. jejuni strain 81-176 dies
at 2.0 % NaCl, and displayed filamentation at 1.0 and 1.5 % NaCl. Examples of
C. jejuni osmotic stress regulator includes sigma-54 RpoN, as rpoN mutant showed
increased growth defect with abnormal elongated cell morphology and lower viabil-
ity under 0.8% NaCl (Hwang et al., 2011b). In addition, deletion of polyphosphate
kinase (ppk1 ), which is responsible for poly-phosphate accumulation, also reduced
survival at 0.25 M NaCl (Candon et al., 2007).

Nitrosative stress

C. jejuni encounters nitric oxide upon infection as the host macrophage uses nitric
oxide to eliminate pathogens. Nitric oxide reacts with metal centres such as haem
centres Fe-S clusters. Such reactivity leads to inhibition of enzymes such as terminal
oxidases and transcription regulators. C. jejuni counters nitrosative stress (induced
by nitrosating agents S-nitrosoglutathione (GSNO)) by expression of Campylobacter
globin (Cgb) and NssR (Cj0466) (Elvers et al., 2004, 2005).

1.3.3 Results of Cappable-seq and RNAtag-seq

Previous work in the host laboratory has generated Cappable-seq and RNAtag-
seq data for the conditions mentioned above (Lam, 2019). Cappable-seq labels
the 5’-triphosphates with biotinylated GTP. Streptavidin then captures labelled
5’-triphosphates for primary transcript enrichment (Ettwiller et al., 2016). Pool-
ing RNA from 21 conditions together allows identification of TSSs expressed in
non-standard conditions, which complement the published dataset obtained from
the standard laboratory condition (Dugar et al., 2013; Porcelli et al., 2013). The
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Cappable-seq data analysis identified 5197 TSSs after filtering with the control sam-
ple (the sample that lacks streptavidin enrichment) and clustering TSSs within ten
nucleotides away. Among them, 3613 TSSs were previously unknown (Figure 1.3a).
Those promoter motifs for sigma-70 and sigma-54 were similar to the motif found
in earlier reports (Dugar et al., 2013; Porcelli et al., 2013). However, sigma-28 dis-
played no clear consensus motifs. Most identified TSS are internal to protein-coding
genes. Other than that, antisense TSSs occur the most frequently, making up about
a quarter of sigma-70 and sigma-28 promoter motifs (Figure 1.3b).
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Figure 1.3: Summary of Cappable-seq analysis. (a) Number of identified TSSs
from published data and in-house Cappable-seq. (b) Distribution of TSS types
among promoter motifs. Adapted from previous Cappable-seq analysis from the
host laboratory (Lam, 2019).
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Analysis of the host research group predicted novel sRNAs from the Cappable-seq
output using toRNAdo, which searches for an expression peak 5-fold above the
background level (Hermansen et al., 2018). toRNAdo identified 371 putative sR-
NAs, including 208 absent in prior publications (Dugar et al., 2013; Porcelli et al.,
2013; Lam, 2019). The predicted sRNAs were included in subsequent differential
expression analysis, using transcriptomic data generated from RNAtag-seq. Instead
of pooling all samples together like Cappable-seq, the RNAtag-seq protocol involves
barcoding rRNA depleted RNA samples, enabling downstream demultiplexing to
distinguish transcriptional signals from individual replicates (Shishkin et al., 2015).
Replicates of the same biological conditions showed clustering of expression patterns,
with the nutrient deprived conditions demonstrating expression patterns distrinc-
tive from other conditions (Figure 1.4). Pairwise comparisons between 21 conditions
have highlighted significantly enriched pathways. For instance, ABC transporters
for iron(III) transporters showed significant differential expression across most con-
ditions, suggesting iron import plays a crucial role in stress adaptation.
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Figure 1.4: PCA analysis of RNAtag-seq results. Expression of annotated
genes and predicted sRNAs were included. Among them, nutrient-deprived condi-
tions showed distinctive expression patterns from the rest of the RNAtag-seq con-
ditions. Adapted from RNAtag-seq analysis from previous in-house research (Lam,
2019).
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1.4 Project outline

With the availability of published and in-house transcriptomic data, it becomes pos-
sible to predict novel sRNAs using gene expression coverage. Un-annotated regions
with high expression coverage may indicate the presence of an sRNA. Notably, the
in-house RNAtag-seq data covers a wide range of non-standard conditions, which
may help identifying sRNA expressed and sRNA-mRNA interactions in response to
specific biological conditions.

1.4.1 sRNA prediction based on genomic and transcriptomic data

In some of the above examples, sRNA prediction has been made using transcrip-
tomic data. Unannotated regions with high expression coverage are more likely to be
predicted as sRNAs. However, RNA-Seq coverage can be affected by spurious tran-
scription, which may lead to false sRNA prediction. Such kind of false prediction is
particularly likely from C. jejuni’s AT-rich genome sequence. Another difficulty is
to define the sRNA boundary accurately. toRNAdo determines the start and end of
the sRNA using an arbitrarily defined threshold, which is easily affected by spuri-
ous transcription and artefacts such as PCR duplication arising during sequencing
library preparation. Some publications define the sRNA boundary by manual visu-
alisation. Such an approach is not feasible when handling a large number of datasets.
Alternately, several published tools are available to predict sRNA from the whole
genome sequence. This study will attempt to identify sRNA using both genomic
and transcriptomic data and evaluate the result from different tools and generate a
finalised list of novel sRNAs.

1.4.2 Characterisation of predicted sRNAs by in vivo crosslink-
ing

The sRNA-mRNA interactome is another poorly characterised aspect of the C. je-
juni post-transcriptional network. In order bacterial species, intermolecular RNA
interactions have been identified using protein baits like Hfq (Iosub et al., 2020;
Melamed et al., 2016) and RNase R (Waters et al., 2017). However, due to the
lack of a characterised global RNA chaperon in C. jejuni, sRNA-mRNA interac-
tions need to be identified without using protein baits. To avoid disrupting the
native in vivo sRNA-mRNA interactome during experimental procedures, psoralen
and the psoralen derivative 4-aminomethyltrioxsalen (AMT) can be utilised to sta-
bilise the intracellular RNA duplex. Psoralen and AMT are crosslinking reagents
that promote the formation of a covalent linkage between uridine base pairs of two
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neighbouring RNA molecules (Wilms et al., 1997; Calvet and Pederson, 1981). The
crosslinking creates RNA duplexes that can be extracted using standard RNA ex-
traction, ligation and finally linearisation to create a linear chimeric RNA molecule.
The linearised RNA can serve as a template for RNA-Seq. Hence, this study will
also aim to perform and optimise the RNA crosslinking protocol in C. jejuni.

1.4.3 sRNA function prediction using in-house transcriptomic data

RNA crosslinking is unlikely to identify all condition-specific sRNA-mRNA inter-
actions. The expensive reagents cost and the time required for optimising individ-
ual experimental steps would limit the number of experimental conditions tested
throughout this project. Therefore, RNA crosslinking alone cannot identify the
sRNA-mRNA interactions in other conditions. Hence, analysis of transcriptomic
expression patterns and sequence complementarity can explore sRNA-mRNA net-
works under a broader range of conditions. The in-house RNAtag-seq results enable
an analysis of overall gene expression patterns across 21 conditions and associate
the constructed sRNA-mRNA network to particular stress conditions. Moreover, in
silico target prediction based on sequence complementarity and secondary structure
prediction can elucidate the binding mechanism. Moreover, exploring the transcrip-
tomic landscape under such a vast number of conditions allows the identification of
pathway crosstalks responsible for adapting to different biological conditions.

1.5 Aims and Objectives

This study will predict novel sRNAs from C. jejuni genome sequences and transcrip-
tomic data, followed by functional annotation of predicted sRNA using experimental
validation and computational prediction. In silico prediction of novel sRNAs will be
carried out using selected tools with various prediction parameters. The prediction
performance will be evaluated using validated C. jejuni sRNAs. Moreover, available
RNA-Seq data will be analysed to construct an sRNA-target regulatory network.
An in vivo RNA crosslinking protocol will further explore the sRNA-target network.
This information will be integrated to build a global sRNA-mRNA regulatory net-
work. Accomplishing these aims will answer questions regarding the regulatory role
of sRNAs in C. jejuni, an area that is currently poorly understood.
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Chapter 2

Materials and Methods

2.1 RNA crosslinking protocol

2.1.1 Culturing of C. jejuni

Motile clinical isolates of strain NCTC 11168 (donated by Professor Charles Penn)
were stored in Microbank bacterial preservation tubes (Fischer Scientific) at -80
°C. A loop of strain NCTC11168 was streaked and transferred onto a plate with
blood-free selective agar (CCD agar) containing charcoal ferrous sulfate, sodium
pyruvate, casein hydrolysates, cefazolin, and sodium deoxycholate (Bolton et al.,
1984). After growing on CCD agar plates overnight, the isolated cells were and
transferred to cation-adjusted Mueller-Hinton 2 (MH2) (Sigma-Aldrich) 1.5 % agar
(BactoTMAgar) plates for 24-48 hours. Then the cells were transferred to fresh
MH2 agar plates and cultured for another 24-48 hours. Afterwards, a loop of cells
was incubated into 5 mL of MH2 broth and cultured overnight for 12-13 hours at
a shaking speed of 250 rpm. The overnight culture was diluted into 30 ml of MH2
broth at an (optical density) OD600 value of around 0.2. The culture was then grown
by shaking at 250 rpm for 13 and 24 hours to the exponential and early stationary
phase, respectively. All incubations took place in a variable atmosphere incubator
(VAIN) (Whitley VA500 workstation cabinet) with 90 % N2, 6 % CO2, and 4 %
O2.

2.1.2 RNA crosslinking

C. jejuni cells were harvested from the liquid cultures by centrifugation for 20 min-
utes, 8000 x g at 4 °C. Cell pellets were resuspended in phosphate buffered saline
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(PBS) and 4’-aminomethyltrioxsalen hydrochloride (AMT) to a final concentration
of 1 mM of AMT and transferred to 6-well plates (Greiner).

RNA residues were covalently crosslinked inside an UV crosslinker (BIO-LINK BLX-
254), where cells were irradiated by 365 nm UV light for 5 minutes at an intensity
of 0.120 Jcm-2. During irradiation the 6-well plate was kept surrounded by ice to
prevent RNA degradation. After the crosslinking step, 1 ml of cold killing buffer (20
mM Tris-HCl (pH 7.5), 5 mM MgCl2, 20 mM NaN3) stored at 4°C was immediately
added to stabilize the cells. Bacterial cells were collected by centrifuging at 5000-
10000 x g for 5 minutes and snap frozen with liquid nitrogen prior to storage at
-20°C.

2.1.3 RNA extraction by a modified bead-beating protocol

The pellet was re-suspended in 600 µL of LETS buffer (0.1 M LiCl, 0.01 M Na2EDTA,
0.01 M Tris-Cl (pH7.4), 0.2 % SDS). The suspended solution was transferred to
Lysing Matrix B, 0.1 mm tubes (MP Biomedicals), which were then placed into
a FastPrepTM Homogenizer (MP Biomedicals) to perform three rounds of bead-
beating at a speed of 6.0 m/s for 40 sec, with 5 minutes of pause time between
each round. Afterwards, proteins and nucleic acids were separated from the cell
debris by centrifugation at 13000 rpm at 4 °C for 10 minutes. The RNA was phase-
separated by adding 1 volume phenol/chloroform/isoamyl alcohol (PCI) at the ratio
of 125:24:1 for two times, followed by another round of phase separation using chlo-
roform/isoamyl alcohol at the ratio of 24:1. The upper phase was transferred to a
new tube and mixed with 0.1 volume of 3M sodium acetate (pH 5.2) and 1 volume of
isopropanol. After mixing by inverting several times, the samples were precipitated
at -20 °C overnight.

Precipitated RNA was washed with 1 volume (600 µL) of 70 % ethanol after the
overnight precipitation. The ethanol was then removed by centrifugation at 13000
rpm at 4 °C for 15 minutes. After air-drying for 15 minutes, the pellets were dissolved
in 50 µL of nuclease-free water.

2.1.4 DNase treatment

The extracted RNA was treated with DNase following the protocol from the Pre-
cision DNase kit (by Primer Design, catalogue #DNASE-50). To minimise RNA
degradation, 1 µL of SUPERase InTM RNase Inhibitor (Invitrogen) was added to
each sample. The DNase-treated samples were purified using RNA Clean and
ConcentratorTM -5 kit (Zymo).
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To ensure no DNA was left after the DNase treatment, all samples were PCR am-
plified using forward primer Bac27F (AGAGTTTGGATCMTGGCTCAG) and reverse primer
Univ1492R (CGGTTACCTTGTTACGACTT) that targets 16S rRNA DNA sequences. The
following 25ul PCR reaction was set up: 12.5 µL of 2X GoTaq Green master mix
(Promega), 1 µL of 10 pM Bac27F, 1 µL of 10 pM Univ1492R, 1 µL of RNA sample
and 9.5 µL of nuclease-free water. The PCR mixture was amplified with the heat
cycles summarised in Table 2.1. The depletion of DNA in the PCR product was
confirmed by gel electrophoresis under 1% Tris-acetate-EDTA (TAE) gel.

Table 2.1: The heat cycle for PCR amplification of 16S rRNA sequences.
steps temperature duration number of

cycles
initial denaturation 95 °C 3 minutes 1

denaturation 95 °C 30s 30
annealing 55 °C 30s
extension 72 °C 1 min

final extension 72 °C 5 min 1
storage 10 °C infinite -

After ensuring complete DNA removal, RNA quality was examined by running the
Agilent 2100 Bioanalyzer RNA 6000 Pico kit (Agilent, UK). RNA samples with
RNA integrity number (RIN) equal to or above 8.0 were carried forward for further
processing.

2.1.5 Ribosomal RNA depletion with RiboMinus

Ribosomal RNA was removed from the DNase-treated RNA samples by following
the protocol from RiboMinus Transcriptome Isolation Kit, for bacteria (by Life
Technologies, Catalog # K155004). The efficiency of rRNA depletion was assessed
using the Agilent 2100 Bioanalyzer RNA 6000 Pico kit (Agilent, UK).

2.1.6 S1 digestion of linear RNA

400 ng of rRNA depleted RNA samples were denatured at 85 °C for 2 minutes
before mixing with 2 µL of S1 reaction buffer (Promega), 2 µL of 1/100 S1 nuclease
(Promega) and RNase-free water to make up 20 µL of reaction. The mixture was
incubated at 37 °C for 30 minutes and then RNA was purified with RNA Clean and
ConcentratorTM -5 (by Zymo Research, Catalog # R1013).
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2.1.7 Proximity ligation

50 ng of S1 digested RNA was mixed with 2 µL of CircLigase ssDNA ligase buffer and
RNase-free water to make up 18 µL of reaction mixture. After incubating at 85 °C for
2 minutes and on ice for 1 minute, 1 µL of 1 mM ATP and 1 µL of CircLigase ssDNA
ligase (by Lucigen,Catalog # CL4115K) were added and reaction was incubated for
1 hour at 60 °C.

2.1.8 RNase R treatment

Linear RNA was digested using RNase R by mixing the following: 0.5 µL of 1/33
RNase R (by Lucigen, Catalog # RNR07250), 2 µL of RNase-free water and 2.5 µL of
RNase R buffer. The reaction mixture was incubated at 37 °C for 10 minutes.

2.1.9 Reverse crosslinking

Crosslinked RNA was linearised by irradiation with 254 nm UV for 5 minutes in an
ice-cooled 96-well plate.

2.1.10 RNA concentration measurement

Throughout the steps mentioned above, RNA concentration was determined with
Qubit RNA broad-range assay or Qubit RNA high-sensitivity assay, depending on
the expected RNA concentration and following manufacturer’s instructions.

2.1.11 Library preparation for MiSeq and NextSeq

cDNA libraries were prepared using the Illumina TruSeq stranded mRNA library
preparation kit (Illumina, UK) and according to the manufacturer’s guidelines,.

2.2 rRNA depletion by Depletion of Abundant Sequences
by Hybridisation (DASH)

2.2.1 Designing sgRNA templates

As depicted in Figure 2.1, the single guide RNA (sgRNA) template consists of the
following components from the 5’ end to 3’ end: T7 promoter sequence (TTCTAATA

CGACTCACTATA), the guide RNA (gRNA) sequence, a scaffold sequence (GTTTTAGAG

CTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTT

TTTT) and a short fill-in sequence (ACGATGTCGCAGAGTATGCC) for primer binding in
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the later in-vitro transcription. All rRNA sequences of the C. jejuni NCTC11168
genome were aligned by Multiple Sequence Comparison by Log-Expectation (MUS-
CLE) (Edgar, 2004) to identify conserved rRNA regions. The alignment was visu-
alised in JalView (Clamp et al., 2004). Based on conserved sequences among rRNA
copies, a library of target sequences was obtained using the webserver of CRISPOR
(Concordet and Haeussler, 2018). 524 guide RNA (gRNA) sequences remained af-
ter removing candidates with off-target effects. To ensure efficient transcription, the
first 2 bp after the T7 -10 promoter sequence must be “G”. If the conserved gRNA
did not start with 2 “G” s, “G” (s) were added to the beginning of the template.
The sgRNA template library was ordered from Integrated DNA Technologies (IDT)
at 10 pmol/oligo concentration.

2.2.2 Synthesising sgRNA pools by PCR and in-vitro transcrip-
tion

The fill-in sequence (Figure 2.1) of the sgRNA templates was targeted by the fol-
lowing primer sequence: GGCATACTCTGCGACATCGT. Second strand synthesis of the
single-strand sgRNA template was carried out in the following PCR reaction:

• 2X KAPA HiFi HotStart ReadyMix (KAPA Biosystems): 12.5 µL

• 10 ng/ul fill-in primer :1 µL

• 10 ng/ul DNA template (oligo Pool) :1 µL

• Add nuclease-free water to make up 25 µL

The PCR was carried out for 1 cycle: denaturation at 95 °C for 3 minutes, annealing
at 60 °C for 20 seconds, and extension at 72 °C for 1 minute. The PCR product was
purified by following the QIAquick PCR Purification Kit protocol (Qiagen). 300
ng of the double-stranded template was transcribed with the MEGAshortscript T7
Transcription Kit (Thermo Fisher Scientific) following manufacturer’s recommended
protocol and then purified by Zymo Research Oligo Clean and ConcentratorTM -25
kit (Figure 2.1).

2.2.3 rRNA removal by DASH

DASH was used to remove remaining rRNA from the prepared cDNA Illumina
TruSeq libraries by setting up a reaction mixture consisting of a 35000:3500:1 molar
ratio of sgRNA:spCas9 (NEB Catalog # M0386T):cDNA. Cas9 and the sgRNA pool
were pre-incubated at 37 °C for 15 minutes. The purified cDNA library was then
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Figure 2.1: sgRNA template design and in-vitro transcription. Single-
stranded DNA templates were PCR amplifed by fill-in primers that targets the
fill-in sequence to form double-stranded DNA templates, which were then converted
into sgRNAs by in-vitro transcription reaction. Created in BioRender.com
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added to the pre-incubated Cas9-sgRNA complex and incubated for a further 2 hours
at 37 °C. After the rRNA digestion, spCas9 was removed by adding 1 µL of proteinase
K (NEB Catalog # P8107S) for 15 minutes at 37 °C followed by heat-inactivation for
15 minutes at 95 °C (Figure 2.2). The resulting DASH-treated samples were purified
using the mRNA TruSeq protocol with AMPure XP (Agencourt) beads.

Figure 2.2: Schematic illustration of rRNA removal by DASH. sgRNAs bind
DNA sequences encoding target of interest (rRNA in this case) and trigger Cas9-
mediated digestion. That enabled the non-target sequences (non-rRNA sequences
in this case) to be PCR amplified. Created in BioRender.com
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2.2.4 Estimating rRNA depletion efficiency

rRNA depletion efficiency by DASH was assessed through high-throughput sequenc-
ing using Illumina MiSeq Reagent Kit v2 Nano (2 x 151 cycles). This is described
in more detail in Chapter 5.

2.3 RNA crosslinking data analysis

2.3.1 RNA-Sequencing

Final cDNA libraries from the RNA-crosslinked samples were diluted to 4 nm (see
the “Denature and dilute libraries guide” of Illumina, UK). The libraries were se-
quenced using NextSeq 550 System using a high output cartridge (2 x 76 cycles)
(Illumina, UK) .

2.3.2 Read trimming

The NextSeq data was demultiplexed from BCL files to fastq files with bcl2fastq
v2.20.0.422 (Illumina) using the following command: bcl2fastq –no-lane-splitting.
The option “–no-lane-splitting” was included to prevent generating fastq files that
were split according to the flowcell lanes.

For the MiSeq data generated to assess DASH efficiency, the fastq files were au-
tomatically demultiplexed in BaseSpace during the sequencing run. The Illumina
adapter sequences were trimmed with Cutadapt (version 1.3) (Martin, 2011).

2.3.3 STAR alignment

STAR was selected as the alignment tool for analysing NextSeq data generated
by RNA crosslinking data (Version STAR 2.6.0c 08-11) (Dobin et al., 2013). This
tool was originally designed to analyse eukaryotic splicing events and the resulting
chimeric reads created from two distant RNA fragments. The forward and reverse
reads obtained from the paired-end sequencing, were mapped separately using the
single-end alignment mode. Any chimeric reads with over five nucleotides from the
shorter end should be detected by setting the “–chimSegmentMin” parameter as 5.
The “outFilterMismatchNoverLmax” parameter was adjusted to 0.05 to make the
mapping more stringent to ensure accurate mapping of the shorter ends of chimeric
reads..

43



2.3.4 Annotating and filtering sequence alignments

The output from STAR was then annotated using featureCounts (Liao et al., 2014).
The annotation for chimeric reads would lead to multiple annotations of the same
read, while the annotation for non-chimeric reads should only result in one feature,
except for those reads with multiple mapping or those that map to two adjacent
features.

2.3.5 Counting chimeric reads and statistical analysis

After the annotation, annotated features mapping to the same read would be con-
sidered interacting pairs. These features would be added to the interaction count
matrix, which summarises the total number of interactions between each pair of
features. A read map to both geneA and geneB will be counted as a geneA-geneB
duplex.

Read counts from all three replicates were pooled together to increase total read
counts for sRNAs and mRNAs. After the merging, the interaction count matrix
allowed for statistical analysis of each interacting pair using hypergeometric or bi-
nomial tests. Moreover, reads were also filtered out if they mapped to two adjacent
features or if the same RNA-RNA pairs also appeared in the negative controls (Fig-
ure 2.3).
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Figure 2.3: Summary of chimeric read alignment, annotation and down-
stream analysis. Sequencing reads were aligned by STAR followed by feature
annotation by FeatureCounts. Reads that were annotated by multiple features
at distinctive genomics coordinates were identified as chimeric reads, which were
subjected to further downstream validation by statistical tests, negative controls
and further bioinformatics tools such as BLASTn, IntaRNA and IGV. Created in
BioRender.com
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2.3.6 Downstream chimeric reads analysis

The chimeric junctions were visualised using Integrative Genomics Viewer (IGV)
(Thorvaldsdottir et al., 2012), with BAM files and the GFF file as the input. More-
over, the conservation of chimeric reads was analysed using BLASTn (McGinnis and
Madden, 2004) and RNACentral web servers (Consortium, 2017).

2.4 sRNA prediction

2.4.1 Bioinformatics tools for novel sRNA prediction

Novel sRNAs were predicted from the C. jejuni genome sequences using RNAdetect
(Chen et al., 2018), RNAz 2.0 (Gruber et al., 2010), RNAz (Washietl et al., 2005), a
SVM (support vector machine) tool based on trinucleotide composition (designated
as SVM-Tri in this study) (Barman et al., 2017) and StructRNAfinder (Arias-
Carrasco et al., 2018). For prediction that requires multiple sequence alignment
(RNAz 2.0, RNAdetect, RNAz), the genome sequence of strain NCTC11168 (NCBI
accession: AL111168.1) was aligned with sequences from strain 81-176 (NCBI acces-
sion: CP000538.1), strain 81116 (NCBI accession: CP000814.1), strain CJ017CCUA
(NCBI accession: CP012212.1) and strain RM1221 (NCBI accession: NC 003912.7).
The alignment was performed by either Clustalw2 (Larkin et al., 2007) (for RNAz
2.0) or with progressiveMauve (Darling et al., 2010) (for RNAdetect and RNAz).
SVM-Tri and StructRNAfinder only made use of the NCTC11168 genome sequence
for sRNA detection.

The sensitivity of each window size was compared by their ability to detect bench-
mark C. jejuni sRNAs. A window detected the sRNAs if the starts site and ends
site were within the window’s boundary.

2.4.2 Data source

The in-house Cappable-seq and RNAtag-seq data are available in the ArrayExpress
database (Parkinson et al., 2007), under the accession number E-MTAB-11308 and
E-MTAB-11309, respectively.

2.4.3 sRNA prediction by ANNOgesic and toRNAdo

ANNOgesic was executed using author’s guidelines at: https://github.com/Su

ng-Huan/ANNOgesic (Yu et al., 2018). ANNOgesic predictions were made using
wig files created from the sorted bam files of each sample, using bam2wig.py from
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RSeQC (Wang et al., 2012). The command used was: bam2wig.py -i [sorted BAM
files] -s [text file with the chromosome length and name] -o [output wig files] -t
100000000 -d “++,–” (for running single-end data). All sequencing coverage were
normalised with the -t value, which represents the specified wigsum. For instance,
-t 100,000,000 means coverage achieved by 1,000,000 reads that are 100 bp long.
This value needs to be the same for all RNA-Seq datasets to normalise sequencing
libraries with different depths.

The transcript boundaries were predicted using both the wig files (ie, expression
level) and the TSS positions, as derived by the in-house Cappable-Seq data (Lam,
2019) and data from Dugar et al., 2013, Porcelli et al., 2013 and Handley et al.,
2015, using the ANNOgesic transcript prediction function. The command used for
the ANNOgesic transcript boundary prediction was as follows:

annogesic transcript –project path annogesic/ –annotation files [GFF file] –modify transcript
merge overlap –tss files [File with all TSS positions] –frag libs [all input wig files]
–replicate frag all 1

The output file of transcript predictions was then included in the ANNOgesic sRNA
prediction function. The predictions were further filtered based on the normalised
coverage value computed by ANNOgesic. An example of ANNOgesic sRNA predic-
tion command is as following :

annogesic srna –project path annogesic/ –transcript files [ANNOgesic transcript
prediction output] –annotation files [GFF file] –fasta files [fasta file] –filter info
tss –tss files [File with all TSS positions] –frag libs [all input wig files] –replicate frag
all 1 –tss source –detect srna in cds –utr derived srna –tss intergenic antisense tolerance
500 –tss 5utr tolerance n 500 –tss 3utr tolerance n 500 –tss intercds tolerance n 500

Details of the commands are documented in https://annogesic.readthedocs.io

/en/latest/.

The toRNAdo source code and instructions were obtained from (Hermansen et al.,
2018). The sorted BAM files were first processed by running the provided script Pre-
pare for toRNAdo v2.py in the same directory, which converted BAM files into Bed-
tools 2.24.0. Bedtools output was processed by running the provided The toRNAdo script.py
to predict a list of ncRNAs.
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2.4.4 Sequencing read visualisation

Sequencing reads were visualised with Integrative Genomics Viewer (Thorvaldsdottir
et al., 2012), using the wig and GFF files as input.

2.4.5 Conservation analysis of predicted sRNAs

Using NCBI’s BLASTn tool, homologous sequences were searched for conservation
in predicted sRNAs. As part of the conservation analysis, the query sRNA sequences
were compared to those from the Epsilonproteobacteria strains used by Dugar et al.
(2013).

2.5 Building a post-transcriptional regulatory network

2.5.1 Co-expression analysis

The construction of co-expression networks was conducted using the Weighted cor-
relation network analysis (WGCNA) package (Langfelder and Horvath, 2008). The
co-expression network was then visualised using Cytoscape (Shannon et al., 2003).
All Cytoscape images were generated automatically using the Bioconductor package
RCy3 (Gustavsen et al., 2019).

2.5.2 Differential gene analysis and enrichment analysis

The differential gene analysis was conducted using the DESeq2 package (Love et al.,
2014). Functional enrichment analysis with Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) (including enrichment of KEGG PATHWAY, GO
and Pfam) was carried out for protein-coding genes from each co-expression module
using the STRINGdb Bioconductor package (Szklarczyk et al., 2019).

2.5.3 Genome-wide sRNA target prediction IntaRNA prediction

IntaRNA prediction was carried out using the input parameter “–personality= In-
taRNAsTar”. The parameter has been optimised using a set of benchmark sRNA-
target data, which optimise the value of seed, accessibility and interaction con-
straints for sRNA-target prediction Raden et al., 2020.

p-values of the predicted binding energies were estimated using IntaRNA CSV p-
value.R. The predicted binding sites were visualised using IntaRNA plotRegions.R.
Both scripts were provided in https://github.com/BackofenLab/IntaRNA/tree/

master/R.
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The 5’-UTR regions were estimated by linking TSS to protein-coding genes to in-
clude the 5’-UTR positions in the extracted mRNA sequences. The estimated 5’-
UTR areas were between the furthest primary or secondary TSS and the 5’ end of
the protein-coding region (Figure 2.4).

Figure 2.4: 5’-UTR estimation for mRNA genes for IntaRNA analysis. The
5’-UTRs were defined using the regions between the protein-coding genes and most
distant TSSs. Created in BioRender.com
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2.5.4 sRNA structure prediction

RNA structures were predicted using the RNAfold algorithm (Zuker and Stiegler,
1981; McCaskill, 1990) in the Vienna RNA Websuite (Gruber et al., 2008). The
input sequences were the same as the RNA sequences extracted for genome-wide
sRNA target prediction by IntaRNA.

2.5.5 Source code

The source code for transcriptomic analysis can be found in https://github.com/

StephenLi55/c.-jejuni-integrative-analysis if not specified otherwise.
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Chapter 3

Novel sRNA prediction from
genomic and transciptomic
data

3.1 Introduction

The number of identified sRNAs in C. jejuni is relatively low compared to organisms
such as E. coli. Due to the lack of recognised protein baits, limited availability of
molecular tools and the difficulty of culturing C. jejuni, the high-throughput ex-
perimental discovery of C. jejuni sRNAs is difficult. In C. jejuni sRNAs also lack
primary sequence conservation, making sRNA discovery by sequence homology im-
possible (Dugar et al., 2013). The publicly available RNA-seq data by and large have
been collected from samples grown in standard laboratory conditions and therefore
may have not detected sRNAs expressed explicitly under particular conditions. The
in-house Cappable-seq and RNAtag-seq data from 63 independent C. jejuni samples
exposed to 21 different conditions (186) has provided (Lam, 2019) has provided us
with a very large and invaluable dataset. But using only RNA-seq datasets for defin-
ing sRNAs, can fail to detect some sRNA with poor expression under one or more
conditions. Aiming to maximise the number of C. jejuni sRNAs captured by this
study, we decided to utilise in silico tools that predict sRNAs systematically from
genome features (e.g. secondary structures, nucleotide compositions) in combination
with the expression coverage information from our RNA-seq dateset.

sRNAs and other ncRNAs show structural stability and conservation (Bussotti et al.,
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2013) despite sequence divergence. Support vector machine (SVM) is a supervised
machine learning approach that separates the training data into positive and neg-
ative groups based on features of interest. The groups were classified by mapping
annotated training dataset (e.g. ncRNA VS random sequence) to high-dimension
space and separating two groups with a hyperplane using predictive features (e.g
structural stability). Then, the input testing dataset is mapped into the high-
dimension space and classified based on the position of the data points relative to
the hyperplane. For instance, data points that are closer to the side of the positive
traning dataset will be annotated as the positive group (e.g. ncRNAs).

In the case of ncRNA prediction, SVM tools attempt to classify the testing DNA
sequence as either ncRNA or not ncRNA. Minimal free energy (MFE) and structural
conservation index (SCI) are therefore widely utilised as predictive features among
existing ncRNA detection tools such as QRNA, MultiFind, RNAz and RNAz2.0
(Rivas and Eddy, 2001; Washietl et al., 2005; Gruber et al., 2010). In this study,
SVM-based models such as RNAz (Washietl et al., 2005), RNAz 2.0 (Gruber et al.,
2010) and RNAdetect (Chen et al., 2018) were selected. RNAz 2.0 further incor-
porates the dinucleotide content as another predictive feature. RNAdetect was also
included as its predictive features also include generalised ensemble defect (GED)
and the n-gram model (NGM), which enhance prediction performance by consider-
ing suboptimal secondary folding and nucleotide sequence similarities. This study
has also included another SVM model (designated as “SVM-Tri”) that discovers
novel sRNA sequences based on trinucleotide compositions (Barman et al., 2017).
This study will also compare the performance of supervised machine learning tools
against a knowledge-based tool, namely StructRNAfinder. StructRNAfinder is an
automatic pipeline that integrates Infernal and RNAfold. The pipeline searches
for consensus sequence and structural alignments for RNA families in the Rfam
database (Arias-Carrasco et al., 2018).

The majority of tools described above rely on databases populated by well char-
acterised sRNAs with known structures. On the other hand, transcriptomic data
enables sRNA detection from expression coverage and transcription start site (TSS)
positions, regardless of structural conservation and stability allowing for the iden-
tification of novel sRNAs with distinctive secondary structures. Initial analysis of
the in-house RNA-Seq and Cappable-Seq data was carried out with toRNAdo (Lam,
2019; Hermansen et al., 2018), which utilises sRNA expression by searching for inter-
genic regions where normalised expression levels are above a user-defined threshold.
The defined threshold and the genome annotation that defines intergenic regions
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help classify predicted sRNAs, with predicted sRNAs flanking protein-coding genes
assigned as UTR-derived sRNAs. Any predicted sRNAs within the intergenic region
that are not near any annotated genes are classified as intergenic sRNAs. Further-
more, toRNAdo also considers putative sRNAs in the reverse strand of annotated
genes as antisense sRNAs.

Another potential tool for sRNA prediction from transcriptomic data is ANNOgesic
(Yu et al., 2018). ANNOgesic is a versatile tool that can predict sRNA based on
sequence homology from ncRNA databases. It can also recognise non conserved
sRNA sequences using the coverage profile and TSS position. By default, all predic-
tions must be within 30 - 500 nt long or other user-selected values. Like toRNAdo,
ANNOgesic also looks for expression coverage above a threshold defined by the user.
ANNOgesic also integrates TSS locations to define the 5’ end of its prediction (Yu
et al., 2018) (Figure 3.1). The in-house produced Cappable-seq and RNAtag-seq
data (Lam, 2019), in-house data from Emily Stoakes (Stoakes, 2017) as well as pub-
licly available dRNA-seq data (Dugar et al., 2013; Porcelli et al., 2013; Negretti
et al., 2017; Dugar et al., 2016, 2018) will therefore be used in this study with
ANNOgesic to more accurately predict the 5’ ends of predicted sRNA.
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Figure 3.1: The difference between toRNAdo and ANNOgesic. Both toR-
NAdo and ANNOgesic discover sRNA by searching for RNA-seq coverage regions
above the user-defined threshold. In addition, ANNOgesic defines the 5’ end of the
predicted sRNA using the TSS in proximity. Created in BioRender.com.
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Chapter Aims:

• Predict sRNA using genome sequences and transcriptomic data

• Compare prediction of different tools and select the best prediction using
benchmark sRNAs

• Evaluate putative transcript boundaries by manual inspection

• Assess the conservation of predicted sRNAs.
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3.2 sRNA prediction from the genome sequences

3.2.1 Novel sRNA prediction using tools with various prediction
parameters and models

So far no systematic evaluation of available tools in predicting C. jejuni sRNA has
been carried out. As there is not a gold standard sRNA prediction tool for C. jejuni,
multiple prediction approaches were used in this study to enable direct comparisons.
The overall workflow of sRNA prediction using both transcriptomic and genomic
datasets is summarised in Figure 3.2. In order to discover sRNA sequences from
the C. jejuni genome sequence, predictions were made using five tools designed for
sRNA discovery from just the genome sequence (Table 3.1).

Figure 3.2: sRNA prediction using genomic and transcriptomic data.
ANNOgesic defines sRNA boundaries using both expression coverage and TSS posi-
tions, while toRNAdo prediction defines sRNA boundaries using expression coverage
alone. The genome sequence prediction (Genome Prediction) consists of five tools
that use different models or parameters. Created in BioRender.com.

56



Table 3.1: All selected Genome Prediction tools.

Tool name Prediction model Prediction parameter Reference
RNAz SVM MFE, SCI (Washietl et al., 2005)

RNAz 2.0 SVM MFE, SCI, dinucleotide content (Gruber et al., 2010)
RNAdetect SVM MFE, SCI, GED, NGM (Chen et al., 2018)
SVM-Tri SVM trinucleotide composition (Barman et al., 2017)

StructRNAfinder knowledge-based sequence and structure homology (Arias-Carrasco et al., 2018)

An accurate prediction set would demonstrate high detection sensitivity for real
sRNAs and high specificity with minimal false positives. This study estimated the
sensitivity of each tool by comparing the number of benchmark sRNAs detected.
Twenty-one sRNAs were selected from previous publications as the benchmark to
determine which set of predictions was the most accurate (Dugar et al., 2013; Por-
celli et al., 2013). All benchmark sRNAs have been detected by both C. jejuni
NCTC11168 dRNA-seq and northern blot, with defined 5’ and 3’ ends. The criteria
of a detected benchmark sRNA require that the prediction covers the entire region
of the benchmark sRNA. That means if the putative sRNA covered only part of the
benchmark sRNA, the benchmark sRNA is still considered as “not detected”. The
result showed that StructRNAfinder, RNAz 2.0 and RNAz identified less than half
of the benchmark sRNAs. StructRNAfinder showed particularly low sensitivity as it
found only two benchmark sRNAs. In contrast, RNAdetect and SVM-Tri displayed
better sensitivity as both of them covered more than half of the benchmark sR-
NAs (Figure 3.3). A closer look at benchmark sRNA detected by each tool further
revealed that none of the prediction tools found sRNAs such as rnpB, Cjnc30 or
CJnc21 (Figure 3.4).
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Figure 3.3: The number of benchmark sRNAs detected by each set of
predictions. The benchmark dataset consist of 21 sRNAs validated by northern
blots in previous publications (Dugar et al., 2013; Porcelli et al., 2013).
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Figure 3.4: The detection of benchmark sRNAs by each genome prediction
tool. A benchmark sRNA was considered as detected if its full sequence was covered
by predicted sRNAs. Only benchmark sRNAs fully covered by the prediction were
considered as detected. The stringent criteria was due to the lengths of the genome
prediction sRNAs, which can reach above 1000 nucleotides after merging overlapping
predictions.
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While RNAdetect and SVM-Tri detected more than half of the benchmark sRNAs,
such sensitivity may come with a more significant proportion of false positives as
predictions from both tools covered about 60 % of the whole genome sequence (Fig-
ure 3.5). Such percentages suggested excessive regions were predicted as sRNAs,
with most regions being false positives. Based on the estimation so far, it appeared
that neither of the selected tools showed sufficient sensitivity or specificity for ac-
curate sRNA prediction. Some benchmark sRNA was undetected, possibly because
the putative sRNA only covers part of the benchmark sRNA sequence. Meanwhile,
the predictions from RNAdetect and SVM-Tri may consist of lots of false positives.
Hence, results from all five tools have been merged to improve the detection sensi-
tivity of benchmark sRNAs (3.6).

Figure 3.5: The percentage of genome covered by each set of predictions.
The numbers were calculated by dividing the number of nucleotides covers by all
predicted sRNAs with the total number of nucleotides in the C. jejuni NCTC11168
genome sequence.
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Figure 3.6: The merging and filtering of consensus results from least 3
different tools. Only predicted sRNAs predicted by at least three tools were
retained for downstream evaluation.

61



The merged results detected 19 out of 21 sRNAs in total, with each benchmark sRNA
covered by results originating from at least three different tools. Notably, rnpB was
only detected after the merging. That means individual algorithms only covered
part of the rnpB sequence. The merged predictions from RNAdetect, RNAz2.0,
RNAz and StructRNAfinder mapped the entire rnpB sequence. However, CJnc30
and CJnc21 remain undetected even after the merging (Figure 3.7).

Only predictions from at least three different tools were retained to improve sen-
sitivity while filtering out false positives (Figure 3.7). The merging retained 1703
predictions, which is quite a lot compared to the Rfam database. For example, Rfam
showed 227 and 197 experimentally validated or homologously aligned sRNAs for
Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 and Escherichia
coli str. K-12 substr. MG1655, respectively (Kalvari et al., 2018). Moreover, some
merged predictions are over 1000 nucleotides long, casting doubts on the accuracy
of the predicted transcript boundaries. Further comparison against transcriptomic
prediction is required to decide if prediction using the genome sequence provides the
most accurate prediction set for C. jejuni.
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Figure 3.7: Benchmark sRNA detected after merging tools output. Pre-
dicted sRNAs with overlapping regions were merged into a longer sRNA. Note that
rnpB was detected by the merged prediction from RNAdetect, RNAz2.0, RNAz and
StructRNAfinder

.
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3.3 sRNA prediction from transcriptomic data

Despite detecting more benchmark sRNAs, merging results of at least three Genome
Prediction tools still led to over 1700 predictions. Moreover, SVM-Tri, RNAdetect,
RNAz and RNAZ 2.0 predicted sRNA sequencs from screening through the genome
sequence using a sliding window, with the window size and window length being 100
and 50, respectively. However, merging positive predictions from multiple overlap-
ping sliding windows created predicted sRNAs longer than 1000 bp, which means less
accurate transcript boundaries. Hence, it would be interesting to see if prediction
from transcriptomic data can provide a more accurate set of predictions with similar
or better sensitivity, less predicted sRNAs and more accurate transcript boundaries.
RNA-seq and TSS data were selected from published studies to identify sRNA ex-
pression from transcriptomic data (Dugar et al., 2013; Porcelli et al., 2013; Dugar
et al., 2018, 2016; Negretti et al., 2017). These datasets were used alongside our in-
house transcriptomic RNAtag-seq and Cappable-seq data which unlike the majority
of the publicly available data include mostly non-standard laboratory conditions
that can enable the detection of condition-specific sRNA expression.

Using published and in-house transcriptomic data, with both the ANNOgesic and
toRNAdo tools we detected 116 and 997 putative sRNAs, respectively. The accuracy
of the transcript boundary for all three approaches were assessed by TSS positions.
Predictions with TSS near the 5’ end of a putative sRNA (500 bp upstream or
50 bp downstream) indicated accurate starting position. Of the three approaches
used to predict sRNA, Genome Prediction and toRNAdo only have less than two-
thirds of their sRNA predictions associated with a TSS. In contrast, 103 out of 116
ANNOgesic sRNAs had 5’-terminals defined by TSS. That suggested that ANNO-
gesic predicted transcript boundaries were more accurate than Genome Prediction
and toRNAdo (Figure 3.8).
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Figure 3.8: The number of predictions with a TSS upstream. The numbers
following the prediction tools indicate the total number of predictions used for com-
parison.

To further evaluate the performance of each prediction approach, the three predic-
tion tools ANNOgesic, toRNAdo and Genome Prediction were further compared by
their detection sensitivity of the benchmark sRNAs used in Section 3.2.1. ANNO-
gesic detected 19 out of the 21 benchmark sRNAs, with all of them coupled to at
least one TSS within 500 bp upstream of the 5’ end (Table 3.2). While Genome Pre-
diction also detected 19 benchmark sRNAs, 6 of them did not have a TSS near the 5’
end. Meanwhile, toRNAdo only predicted 12 benchmark sRNAs (Figure 3.9).
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Table 3.2: All northern blot validated sRNAs from previous publications
and their corresponding predicted sRNAs.

validated sRNA predicted sRNA
CjNC9 CjSA4

SRP RNA CjSA9
CJnc10 CjSA14
CJnc20 CjSA22
rnpB CjSA51

CJnc60 CjSA64
CJnc110 CjSA88
CJnc120 CjSA90

6S RNA (CJnc130) CjSA91
CJnc140 CjSA93
tmRNA CjSA97
crRNA2 CjSA103
crRNA4 CjSA103

TracrRNA CjSA103
CJnc170 CjSA108
CJnc180 CjSA109
CJnc190 CjSA110
CJnc230 CjSA116

CJas Cj1667c CjSA112
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Figure 3.9: The estimated sensitivity of ANNOgesic, toRNAdo and
Genome Prediction. Among all three prediction approaches, ANNOgesic
showed better sensitvity than toRNAdo, while also showed better association with
Cappabble-seq TSSs.
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Apart from displaying the highest estimated detection sensitivity and accurate 5’
ends position, ANNOgesic output also demonstrated the best specificity. The pre-
diction specificity was calculated by dividing the total number of TSS-associated
predictions by the number of detected benchmark sRNA. As mentioned earlier, the
number of TSS-associated predictions from ANNOgesic, toRNAdo and Genome Pre-
diction were 103, 665 and 924, respectively (Figure 3.10). By dividing these numbers
by the number of detected benchmark sRNAs, the estimated specificity for ANNO-
gesic was 5.4. ANNOgesic’s output was more specific than Genome Prediction and
toRNAdo, which had an estimated specificity of 71.1 and 66.5, respectively (Figure
3.10). Taking all these together, 116 ANNOgesic-predicted sRNA were assigned the
CjSAX designation, where X is an integer between 1 and 116 (with 1 being closest
to the point of origin) and were all carried forward for subsequent analysis.

Figure 3.10: The estimated specificity of ANNOgesic, toRNAdo and
Genome Prediction. The total number of TSS-associated predicted sRNAs and
the number of predictions per detected benchmark sRNAs for each tool.
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3.4 Improving ANNOgesic prediction by IGV visuali-
sation

3.4.1 Improving sRNA 3’ ends of ANNOgesic prediction

While most ANNOgesic predictions were associated with a TSS, it remained un-
clear if their 3’ ends were defined correctly. Moreover, the 5’ end positions of many
sRNA were associated with multiple TSSs that were close to the starting point of
observed gene expression. Looking closer at the benchmark RNAs, most of the
ANNOgesic-predicted boundaries using the TSS position defined by our Cappable-
seq and dRNA-seq, shared identical or similar 5’ coordinates. Nonetheless, some 5’
ends were defined with less accuracy especially when several TSS were nearby. Fur-
thermore, the 3’ ends that were determined based on expression coverage, appeared
to be more affected by RNA-seq background noise. Hence, manual visualisation of
the genome and transcriptional coverage and profile at the 5’ and 3’ positions for
all 103 ANNOgesic-predicted sRNA was carried out to allow us to further refine
manually the quality of the predicted transcript boundaries.

The problem with defining transcript boundaries was exemplified by CjSA51 and
rnpB. CjSA51 was the ANNOgesic prediction responsible for detecting rnpB (Figure
3.11). Hence, it was reasonable to expect CjSA51 and rnpB start and end in similar
positions. The predicted 3’ end of CjSA51 was over 200 bp longer than the rnpB
3’ end. The normalised coverage of the region after the rnpB 3’ end was slightly
above the pre-defined threshold for ANNOgesic transcript boundary prediction (nor-
malised coverage > 10). The normalised coverage after the rnpB 3’ end was likely
to be background noise as the coverage was over 1000-fold lower than the expres-
sion peak for rnpB. Another uncertainty was that the CjSA51 5’ end was slightly
upstream of the rnpB 5’ end. The difference was possibly caused by an extra TSS
(TSS1 in Figure 3.11) upstream of the TSS responsible for rnpB expression (TSS2
in Figure 3.11). As a result, ANNOgesic assigned TSS2 as the 5’ end of CjSA51
(Figure 3.11). While such a difference may represent a mistake in ANNOgesic pre-
diction, it is also possible that TSS1 regulates rnpB expression in some conditions
and TSS2 in others.
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Figure 3.11: IGV visualisation the expression coverage and transcript
boundary of CjSA51 and rnpB. Only the expression coverage of the antisense
strand is shown here.

A similar approach used in the filtering step of toRNAdo for sRNA detection (ht

tps://github.com/pavsaz/toRNAdo) was applied to enable the removal of 3’ end
sequences originating from background noise. In the previous analysis, the default
setting of toRNAdo defined the background noise level to be 5-fold below the maxi-
mum expression level of the expression peak of a putative sRNA (Hermansen et al.,
2018). Hence, for each ANNOgesic prediction, the 3’ end was similarly trimmed
using the expression cut-off at one-fifth of the maximum expression value of the
prediction. Using this approach, the 3’ end of CjSA51 became shorter matching
more closely (within 10bp) the benchmark sRNA rnpB predicted sequence (Figure
3.12).

70



Figure 3.12: Transcript boundaries of rnpB and CjSA51 before and after
manual trimming. The predicted 3’ ends were trimmed by removing regions with
expression coverage below one-fifth of the maximum coverage of their corresponding
predicted sRNAs.

Similarly, the 3’ end trimming approach also further refined the transcript bound-
aries of CjSA9 and CJnc60, making them more similar to the transcript boundaries
of SRP RNA and CJnc60, respectively (Figures 3.13 and 3.14).

Figure 3.13: Transcript boundaries of SRP RNA and CjSA9 before and
after trimming. The predicted 3’ ends were trimmed by removing regions with
expression coverage below one-fifth of the maximum coverage of their corresponding
predicted sRNAs.
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Figure 3.14: Transcript boundaries of CJnc60 and CjSA64 before and af-
ter trimming. The predicted 3’ ends were trimmed by removing regions with
expression coverage below one-fifth of the maximum coverage of their corresponding
predicted sRNAs. The trimming step reduced the distance between the 3’ ends of
CjSA64 and the 3’ ends of CJnc60.
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The 3’ end trimming has also improved the accuracy of other predictions corre-
sponding to benchmark sRNAs. For example, CjSA109 and CjSA110 shared similar
genomic coordinates as the antisense pair CJnc180 and CJnc190. The predicted
lengths of CjSA109 and CjSA110 were both longer than CJnc180 and CJnc190 but
the trimming reduced the length of their 3’ ends (Figure 3.15).

Figure 3.15: Transcript boundaries of CJnc180/CJnc190 and
CjSA109/CjSA110 before and after trimming. The trimming step re-
duced the distance between the 3’ ends of CjSA109 and CjSA110 and the 3’ ends
of CJnc180 and CJnc190.
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The finalised details of CjSA1-116 can be downloaded from the following link: ht

tps://github.com/StephenLi55/c.-jejuni-integrative-analysis/blob/mai

n/ANNOgesic summary concatanated.xlsx. The table includes details of CjSA1-
116, including the finalised genome corrdinates and strands, samples which showed
expression that were responsible for the predictions The table has also highlighted
whether predictions retained for downstream analysis and annotations from previous
publications. A simplified version of the table is shown as Table 3.3.

Table 3.3: Details of CjSA1 - 116. That includes the
genome coordinates, strand and whether it was retained for
donwstream analysis. More details can be found in https:/

/github.com/StephenLi55/c.-jejuni-integrative-anal

ysis/blob/main/ANNOgesic summary concatanated.xlsx.

predicted sRNAs start end strand Excluded/retained
CjSA1 4604 4926 + Retained
CjSA2 8103 8214 + Retained
CjSA3 13572 13687 - Retained
CjSA4 38708 38814 - Retained
CjSA5 38883 39255 + Retained
CjSA6 40741 41056 + Excluded (Annotated features)
CjSA7 41200 41407 + Retained
CjSA8 44733 44881 - Excluded (lack of TSS)
CjSA9 66641 66825 + Retained
CjSA10 66653 66744 - Excluded (lack of TSS)
CjSA11 66840 67215 - Retained
CjSA12 81949 82219 + Retained
CjSA13 82804 83220 + Retained
CjSA14 94249 94352 + Retained
CjSA15 104350 104731 + Excluded (Annotated features)
CjSA16 132040 132347 - Retained
CjSA17 151672 152097 - Excluded (Annotated features)
CjSA18 165860 166263 + Retained
CjSA19 167067 167249 + Excluded (Annotated features)
CjSA20 213375 213470 - Retained
CjSA21 226840 227186 + Retained
CjSA22 245248 245380 - Retained
CjSA23 294365 294462 + Retained
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CjSA24 302735 303015 + Retained
CjSA25 303066 303437 + Retained
CjSA26 303794 304123 + Retained
CjSA27 308396 308657 + Retained
CjSA28 320722 320959 + Retained
CjSA29 339036 339285 - Excluded (lack of TSS)
CjSA30 376027 376101 + Retained
CjSA31 383248 383425 + Retained
CjSA32 385166 385420 + Retained
CjSA33 385545 385804 + Retained
CjSA34 385986 386298 + Retained
CjSA35 389864 390283 + Retained
CjSA36 390809 391031 + Retained
CjSA37 393758 394136 + Retained
CjSA38 395622 395936 + Excluded (Annotated features)
CjSA39 396081 396525 + Retained
CjSA40 399614 399764 - Excluded (lack of TSS)
CjSA41 399826 400227 + Retained
CjSA42 408877 409027 + Retained
CjSA43 418415 418534 + Retained
CjSA44 426501 426587 + Retained
CjSA45 430270 430366 + Retained
CjSA46 433752 434199 + Excluded (Annotated features)
CjSA47 437723 437881 + Retained
CjSA48 438698 438934 + Retained
CjSA49 460270 460371 + Retained
CjSA50 465478 465837 + Retained
CjSA51 513132 513500 - Retained
CjSA52 513143 513441 + Excluded (lack of TSS)
CjSA53 514272 514368 + Retained
CjSA54 528585 528700 - Retained
CjSA55 553074 553193 - Retained
CjSA56 588000 588357 + Retained
CjSA57 588920 589223 + Excluded (Annotated features)
CjSA58 639972 640124 + Retained
CjSA59 641848 641967 + Retained
CjSA60 644204 644648 + Retained
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CjSA61 649010 649160 + Retained
CjSA62 656881 656993 - Retained
CjSA63 661698 661794 - Retained
CjSA64 671463 671797 - Retained
CjSA65 688882 688979 + Retained
CjSA66 696054 696430 + Retained
CjSA67 697916 698117 + Retained
CjSA68 698375 698775 + Retained
CjSA69 701908 702058 - Excluded (lack of TSS)
CjSA70 722609 722739 - Retained
CjSA71 724144 724257 + Retained
CjSA72 761267 761368 - Retained
CjSA73 789955 790083 + Retained
CjSA74 826215 826569 + Retained
CjSA75 846940 847208 + Retained
CjSA76 849472 849893 - Retained
CjSA77 872433 872884 + Excluded (Annotated features)
CjSA78 911559 911866 + Retained
CjSA79 911995 912397 + Retained
CjSA80 917608 917811 - Retained
CjSA81 943278 943636 + Excluded (Annotated features)
CjSA82 943755 943943 + Retained
CjSA83 948661 948761 + Retained
CjSA84 1034188 1034336 - Retained
CjSA85 1088294 1088432 + Retained
CjSA86 1110862 1111049 - Retained
CjSA87 1119877 1120016 + Retained
CjSA88 1127993 1128134 + Retained
CjSA89 1149153 1149261 - Retained
CjSA90 1150936 1151405 + Retained
CjSA91 1179498 1179874 + Retained
CjSA92 1179602 1179763 - Excluded (lack of TSS)
CjSA93 1188925 1189104 + Retained
CjSA94 1193164 1193311 - Retained
CjSA95 1287685 1287980 - Excluded (Annotated features)
CjSA96 1293323 1293664 + Excluded (lack of TSS)
CjSA97 1293350 1293675 - Retained
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CjSA98 1323508 1323980 + Retained
CjSA99 1330420 1330500 - Retained
CjSA100 1353323 1353396 - Retained
CjSA101 1368654 1368947 + Retained
CjSA102 1450025 1450118 - Retained
CjSA103 1455167 1455608 + Retained
CjSA104 1493935 1494182 + Retained
CjSA105 1538468 1538684 + Retained
CjSA106 1543251 1543594 + Retained
CjSA107 1547379 1547889 + Retained
CjSA108 1559373 1559998 + Retained
CjSA109 1575015 1575130 + Retained
CjSA110 1575074 1575257 - Retained
CjSA111 1583112 1583492 + Excluded (Annotated features)
CjSA112 1589585 1589667 + Retained
CjSA113 1603941 1604093 - Retained
CjSA114 1626481 1626725 + Excluded (Annotated features)
CjSA115 1632050 1632391 - Retained
CjSA116 1637798 1638412 - Retained

3.4.2 Manual correction

After using the toRNAdo setting to trim the 3’ end of the ANNOgesic-predicted
sRNA by estimating background expression, a manual inspection and correction
where appropriate, was carried out. Some sRNAs were removed as they were likely to
be false predictions due to transcription signals from annotated genes. For example,
CjSA114 was derived based on three separate expression peaks, which shared similar
locations as tRNA-Ser, tRNA-Ala and tRNA-Val. Hence CjSA114 was removed as
it was likely to be a false prediction made from transcription signals from the three
tRNA copies (Figure 3.16). Similarly, CjSA95 was eliminated as it was predicted
based on the transcription signal from a tRNA-Ser copy (Figure 3.17).
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Figure 3.16: The visualisation of the CjSA114 transcript boundary. The
predicted sRNA was removed as its expression coverage corresponds to other anno-
tated features.
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Figure 3.17: The visualisation of the CjSA95 transcript boundary. The pre-
dicted sRNA was removed as its expression coverage corresponds to other annotated
features.
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Annotated boundaries of benchmark sRNAs were also used to correct some ANNO-
gesic outputs. For example, the anticipated length of CjSA90 was too long when
compared against CJnc120 in a similar position. The extra length was likely to be
a result of the transcription signals from the upstream groES-groEL operon and the
background noise downstream. While trimming regions with low expression cov-
erage corrected some 3’-terminals, the 5’ end was corrected manually using the 5’
end of CJnc120. The corrected CjSA90 shared the same transcript boundary as
CJnc120 (Figure 3.18).

Figure 3.18: The visualisation of the CjSA90 transcript boundary. The
transcript boundary of the predicted sRNA was corrected using the 5’ and 3’ ends
of the nearest benchmark sRNAs.
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3.5 Understanding the putative biological activities of
predicted sRNAs

toRNAdo boundary refinement and manual inspection of the original 103 ANNOgesic-
predicted sRNA, led to the rejection of seven sRNA and generated a final list of 96
high-confidence sRNAs. The biological significance of the majority of these is un-
known. Their activities can be further explored by identifying their mRNA targets
and co-expressed genes, as reported in chapters 4 and 5. Other than that, sRNA
activities can also be explored based on several factors, including their genomic
context, condition-specific expression, and sequence conservation.

3.5.1 Categories and data source of predicted sRNA

The genomic context of sRNA can be significant in their biological role. For instance,
antisense sRNA may regulate the activities of its antisense mRNA. Similarly, UTR-
derived sRNAs may regulate the same biological processes as their corresponding
coding genes. All predicted sRNAs were therefore further evaluated by manually
categorising them based on their genome position using IGV visualisation. Notably,
more than one-third of all predictions were antisense sRNAs, while 24 out of 96
predictions were inside an operon (a cluster of genes regulated by the same TSS).
Another 28 predictions were either 5’-UTR or 3’-UTR with only 9 predictions being
intergenic, while the remaining 2 were intragenic (Figure 3.19). Such an observations
are probably the result of the small C. jejuni compact genome which is only 1.64Mb
in length with a total of 1762 annotated genes, pseudogenes and RNA genes.
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Figure 3.19: The proportion of different sRNA categories for the 96 fi-
nalised predicted sRNAs. All sRNAs were categorised by IGV visualisation,
using their genomic positions relative to the genome annotation.
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Another way to understand the biological role of each sRNA is their data source.
Published dRNA-seq data (Dugar et al., 2013; Porcelli et al., 2013) was obtained
from standard laboratory conditions. In contrast, our in-house RNAtag-seq data
represented a more comprehensive range of non-standard laboratory conditions.
Hence, it would be interesting to investigate how many predictions were generated
from non-standard laboratory conditions, as those sRNAs might strongly influence
stress adaptation. The results indicated that 27 predicted sRNAs were made from
RNAtag-seq data alone, while 55 predicted sRNAs were obtained from ANNOgesic
output using published data from standard laboratory conditions. The remaining
14 predictions came from data from both standard and non-standard laboratory
conditions (Figure 3.20).

Figure 3.20: The data source of the 96 finalised predicted sRNAs. The
numbers indicate whether an ANNOgesic prediction was made using published data,
RNAtag-seq data or both.
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While ANNOgesic made 69 predictions from published datasets, not all of those
predictions were reported in those publications, possibly due to different prediction
approaches used. That suggested ANNOgesic may produce a novel set of predicted
sRNAs.

In order to confirm the novelty of our predicted sRNAs, it is worth checking if
they have already been postulated from the published dRNA-seq analysis. Besides
validated benchmark sRNAs, published dRNA-seq data have also suggested other
sRNAs without northern blot verification. Hence, any novel ANNOgesic predicted
sRNAs would neither be detected by northern blot nor dRNA-seq analysis. Among
all published and predicted sRNAs, 15 predicted sRNAs were found in all 3 studies.
Interestingly, 65 out of 96 ANNOgesic predictions were never detected in published
dRNA-seq studies. That means nearly two-thirds of the predicted sRNAs in this
study were novel (Figure 3.21).

84



Figure 3.21: Comparisons of ANNOgesic prediction against sRNAs de-
tected from published dRNA-seq studies (Dugar et al., 2013; Porcelli
et al., 2013. The comparison was made against published sRNAs, both the ex-
perimentally validated ones and those that have yet to be confirmed by northern
blot.
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3.5.2 Conservation of most sRNAs among C. jejuni strains

The biological roles of predicted sRNAs can also be anticipated based on their
sequence conservation. Some sRNAs play conserved regulatory roles across Campy-
lobacter and Helicobacter and thus may regulate conserved or housekeeping path-
ways (Dugar et al., 2013). Other sRNAs may affect processes in specific C. jejuni
strains only. Conservation analysis of all ANNOgesic predictions was conducted us-
ing BLASTn search against genomes from Campylobacter and Helicobacter strains.
The Campylobacter and Helicobacter strains were the same as those chosen for the
conservation analysis in Dugar et al. 2013.

The result of the BLASTn search (available at https://github.com/StephenLi

55/c.-jejuni-integrative-analysis/tree/main/blastn output) showed that
most of the 96 ANNOgesic output were conserved only among C. jejuni strains
and were poorly conserved or unconserved in other Campylobacter or Helicobacter
strains (Figure 3.22).

There were exceptions where some sRNAs were poorly conserved even among C.
jejuni strains other than NCTC11168. Examples of those included CjSA101 and
CjSA50. These sRNAs may play regulatory roles in a specific strain only. On the
other hand, several sRNAs were highly conserved among all selected Campylobacter
and Helicobacter strains. Examples of such included CjSA21 and CjSA90 (Figure
3.23). These candidates may be involved in regulatory pathways conserved among
Epsilonproteobacteria strains.
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Figure 3.22: Conservation of predicted sRNAs among that Epsilonpro-
teobacteria strains. All 96 sRNAs from ANNOgesic were included to compare
against genomes from Campylobacter and Helicobacter strains selected in Dugar et
al. 2013. The dark red boxes indicates that the absence of conserved sequences.
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Figure 3.23: Conservation of selected predicted sRNAs among Epsilon-
proteobacteria strains. Only a subset of sRNAs that highly conserved among
Epsilonproteobacteria strains or poorly conserved among C. jejuni strains were in-
cluded. The Epsilonproteobacteria strains were same as those selected for conser-
vation analysis in Dugar et al. 2013. The dark red boxes indicates that the absence
of conserved sequences.
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3.6 Discussion

3.6.1 Comparison between prediction tools

For species like C. jejuni, computational discovery of sRNAs is a challenging task
as C. jejuni is genetically distant from model organisms with the most abundant
discovered sRNAs such as E. coli. Moreover, C. jejuni sRNA sequences and struc-
tures are poorly conserved even among closely related species, including H .pylori
(Porcelli et al., 2013).

Several published tools used supervised machine learning classifiers (SVM) to predict
sRNAs from genome sequences. The SVM models were trained with training data
sets of validated ncRNA from model organisms such as E. coli and Salmonella.
However, SVM tools selected for this study displayed low detection sensitivity for
benchmark sRNAs. Moreover, predictions from tools such as RNAdetect covered
nearly 60 % of the genome sequence, which is likely to yield excessive false positives.
The poor performance of SVM tools was likely the result of over-fitting, as most
of the training data come from genetically distant species from C. jejuni. Such a
problem can theoretically be resolved by building a novel SVM model trained by
species that are more genetically related. However, such an approach is not feasible
at this stage. The number of experimentally confirmed sRNAs from C. jejuni and
closely related species is insufficient to train a reliable supervised machine learning
model.

In contrast, StructRNAfinder looked for conserved RNA families from the Rfam
database. While such an approach excels at picking out highly conserved RNA
sequences, results in this chapter showed that StructRNAfinder was less sensitive
to C. jejuni benchmark sRNAs, possibly due to the poor sequence and structural
conservation of C. jejuni sRNAs. Such an outcome indicated that a knowledge-
based approach is less capable of discovering new sRNAs from the C. jejuni genome
than machine learning algorithms.

This chapter also assessed the consensus results from at least three genome predic-
tion tools, alongside ANNOgesic and toRNAdo that include transcriptomic data in
their analysis. ANNOgesic showed the best performance among the three approaches
in terms of estimated sensitivity, estimated specificity, and transcript boundary ac-
curacy. Such an outstanding performance might be because ANNOgesic predictions
have considered TSS positions while also tolerating a few nucleotides below the
threshold expression level to prevent actual sRNA signals from being falsely omit-
ted due to transcriptional noise.
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Results in this chapter further confirmed ANNOgesic as an accurate tool for sRNA
detection among bacteria. Apart from C. jejuni NCTC11168, ANNOgesic has also
been used to predict sRNAs from H. pylori 26695 and C. jejuni 81116 (Sharma
et al., 2010; Bischler et al., 2015). ANNOgesic prediction followed by manual in-
spection is becoming more widely used in sRNA prediction for other species, such
as in Fusobacterium nucleatum, which makes up part of the oral microflora. One
of the conserved predictions, FoxI sRNA, was shown to be induced by molecular
oxygen and it repressed the major outer membrane porin FomA (Ponath et al.,
2021). Likewise, a transcriptomic study in 2020 on Bacteroides thetaiotaomicron
used ANNOgesic to map TSSs, promoter motifs, terminators, sORFs and regula-
tory RNAs (riboswitches, RNA thermometers, sRNA). Notably, this sRNA predic-
tion agreed with the subsequent northern blot analysis (Ryan et al., 2020). Similarly,
ANNOgesic has recently been used to predicted a list of sRNAs from B. pertussis
transcriptomic data, with ten selected predictions confirmed by northern blot (Moon
et al., 2021).

ANNOgesic’s sRNA prediction has been improved by visualisation of genomic fea-
tures and their genomic context, expression coverage and integrating the filtering
step from toRNAdo. While other sRNA prediction tools are available, ANNO-
gesic appears to be the optimal prediction tool for this study. A recent publication
comparing a number of sRNA prediction tools showed that APERO, ANNOgesic,
and TLA (from RNA-eXpress) performed better than other sRNA prediction tools.
ANNOgesic is the only tool that is capable of working with single-end sequencing
data (APERO can only work with paired-end sequencing data) and is designed ex-
plicitly for bacteria, whereas TLA was not tailored for predicting bacterial sRNA
(Leonard et al., 2019). Hence, to our current knowledge, ANNOgesic is still the most
effective tool available for predicting sRNAs from our transcriptomic dataset.

3.6.2 The challenge of accurately defining the transcript bound-
aries

The biggest challenge for identifying sRNAs in C. jejuni was to define the transcript
boundaries accurately. This is inherently difficult due to the very compact C. jejuni
genome, with very few intergenic spaces, and only 14 annotated loop structures
which could potentially act as transcriptional termination signals. Such difficulties
were partially addressed by trimming the predicted 3’ ends by estimating the back-
ground expression level. While there were still boundary differences after trimming
such differences might be the result of transcription readthrough due to the small

90



number of a transcription terminator sequences in C. jejuni, especially downsream
of highly expressed genes.

The presence of multiple TSS near the 5’ end of predicted sRNA occasionally per-
turbed the sRNA 5’ boundary.The high TSS density and background noise are partly
a result of the AT-rich C. jejuni genome, which is prone to spurious transcription
(Wade and Grainger, 2017). Moreover, Cappable-seq data analysis from Lam, 2019
on transcripts derived from 21 different growth conditions has identified over 3600
novel TSS, suggesting there might be condition-specific TSS activities under non-
standard laboratory conditions.

While refining and confirming predicted sRNA solely by visualising the expression
profile mapped to the genome as shown in this study, is possible, such an approach
will be highly time-consuming applied to all RNAtag-seq and published data. Hence
this study has narrowed down the choice of sRNA sequences with ANNOgesic before
refining the transcript boundaries by manual inspection.

3.6.3 Comparison between in-house datasets and published datasets

The ANNOgesic prediction in this study highlighted the importance of our in-house
RNAtag-seq generated from conditions absent in other published RNA-Seq data.
The in-house data set was responsible for 27 out of 96 ANNOgesic predictions that
published data have failed to identify. Notably, ANNOgesic has predicted 65 sRNAs
that were not found by either Dugar et al. (2013) nor Porcelli et al. (2013) which
only used C. jejuni growing under standard laboratory conditions to different growth
phases. That suggested that this study has discovered a repertoire of novel sRNAs
that could only be detected because of the increased sensitivity of the TSS detection
and the diverse growth conditions we used as well as the application for the first time
in C. jejuni NCTC11168 research of ANNOgesic, a relatively new tool published in
2018.

The final 96 sRNA ANNOgesic predictions were comprised predominantly of anti-
sense and intra-operon sRNAs. Inferences can be made with regards to sRNA bio-
logical functions based on their genomic context. However, such organisation could
merely be the result of the small compact C. jejuni genome or spurious transcription
from the AT-rich sequence. It has been suggested that spurious transcription plays
a role in the function of bacterial cells (Wade and Grainger, 2017) therefore more
research is required to understand the activity of these intragenic sRNA and their
associated TSS and promoters. Future work is also necessary to confirm expression
and investigate the condition-specific expression of the individual sRNAs in order

91



to elucidate their precise biological activities.

3.6.4 Conservation of predicted sRNA

BLASTn analysis in this study showed that most predicted sRNAs are only con-
served among C. jejuni strains, similar to the previous conservation analysis in
Dugar et al. 2013. Such a pattern suggests that C. jejuni genomes may carry a
unique repertoire of sRNAs absent in closely related species or other Campylobacter
species such as Campylobacter coli. This also means C. jejuni is an example that
demonstrates the diversity of bacterial sRNAs.

19 out of 21 annotated sRNAs were represented by the finalised list of ANNOgesic
predictions, for which there is limited information about their biological functions.
Other novel sRNAs such as CjSA21 and CjSA90 have primary sequences conserved
in H. pylori. Hence they may represent post-transcriptional regulatory pathways also
found in H. pylori sRNAs. Interestingly, most of these conserved sRNAs are UTR-
derived instead of antisense. That may illustrate the importance of the regulatory
roles of UTR-derived sRNAs across species.
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3.7 Summary

In this chapter, sRNAs were predicted from both genomic and transcriptomic data.
Results from different approaches were evaluated, which demonstrated the superior-
ity of ANNOgesic for detecting novel sRNAs for C. jejuni. The transcript boundaries
of ANNOgesic predictions were then refined by systematically trimming 3’ end se-
quences caused by background noise such as transcriptional readthrough. Further
refinements in sRNA prediction involved manually distinguishing genuine sRNA
expression from transcription readthrough from annotated features. The final list
of predicted C. jejuni sRNAs included candidates corresponding to previously an-
notated sRNAs, predictions made from RNA-seq data from our data-sets derived
non-standard laboratory conditions, novel sRNAs, and highly conserved sequences
among Campylobacter and Helicobacter. These sRNAs will be used for the fur-
ther exploration of our dataset in the chapters that follow: chapter 4 explores the
condition-specific expression patterns of these sRNA and other co-expressing genes
and chapter 5 aims to identify sRNA-mRNA interactions through in vivo RNA
crosslinking.
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Chapter 4

Integrating datasets from
complementary conditions to
predict sRNA-target
interactions

4.1 Introduction

The biological activities of sRNAs depend on their mRNA binding targets, which
are difficult to identify as C. jejuni does not contain any identified global RNA
binding proteins as scaffolds for co-immunoprecipitation. Moreover, sRNA-mRNA
interactions may vary upon biological conditions. Studying these transient binding
activities require data from multiple conditions. However, transcriptomic study of
C. jejuni are conducted under limited sets of conditions.

This study has predicted 96 sRNAs in C. jejuni strain NCTC11168, including 65
that have not been described in previous publications (refer to Chapter 3). However,
their mRNA binding activities in adapting to non-standard laboratory conditions re-
main largely unclear. To address this, the host laboratory has previously generated
an RNAtag-seq dataset for exploring stress adaptation mechanisms (refer to Chapter
1). The RNAtag-seq experiment covers 21 experimental conditions that model vari-
ous growth phases, growth temperatures, and environmental stresses throughout the
transmission and food processing cycle. This dataset allows simultaneous analysis
of multiple environments with minimal technical batch effects, as all RNA samples
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processing happened in the same laboratory setup. Hence, this chapter aims to anal-
yse the RNAtag-seq data to elucidate condition-specific sRNA-target interaction. A
previous study on the Staphylococcus aureus RNA-seq dataset, which constructed
an interaction network by combining co-expression analysis, differential expression
analysis and in silico genome-wide target prediction, has provided an example for
predicting the sRNA-target interactome (Subramanian et al., 2019).

Co-expression analysis predicts biological functions of novel genes by partitioning
genes with shared biological roles into the same co-expression module, which shows a
correlated expression pattern across all RNA samples. Here the co-expression analy-
sis was conducted using the widely used Bioconductor package WGCNA (Langfelder
and Horvath, 2008; Bordini et al., 2021; Lu et al., 2021). WGCNA is a standard
workflow that assumes a biological network follows a scale-free topology, where only
a few central nodes have many interactions (Barabási and Oltvai, 2004). Several ex-
amples constructed ncRNA-mRNA network by co-expression analysis. Some most
recent examples include the mRNA-lncRNA co-expression network during Severe
SARS-CoV-2 Infection (Mukherjee et al., 2021), the lncRNA-mRNA co-expression
networks to elucidate the potential role of lncRNA in myocardial infarction (Zhang
et al., 2021), and the lncRNA-mRNA co-expression in pre-eclampsia (He et al.,
2021). Here, WGCNA will cluster all C. jejuni genes into networks. Extracting
network edges connecting an sRNA and another gene will form an sRNA-target net-
work. WGCNA clustering can also help predict novel/uncharacterised gene function
by the Guilt-By-Association (GBA) principle, which assumes genes with similar bi-
ological functions would show expression correlation (Oliver, 2000; Ballouz et al.,
2015). The GBA principle suggests that novel sRNAs may share similar physiolog-
ical functions as other genes in the same cluster.

While WGCNA addresses the overall correlation between gene expression across
all samples, it provides less information on the functional significance of individual
genes under specific conditions. Hence this study will look for experimental condi-
tions where both a predicted sRNA and sRNA targets are differentially regulated
and whether the differential expression pattern matches the gene-gene correlation.
Differential expression analysis and co-expression analysis were integrated to identify
critical genes related to atrial fibrillation (Li et al., 2020b), mammalian lactation pro-
cesses (Farhadian et al., 2021) and idiopathic pulmonary fibrosis (Xia et al., 2020a).
For this study, an sRNA and its target might display negative co-expression. Condi-
tions of interest are those with one gene upregulated and the other downregulated.
For sRNA-target interactions showing positive co-expression, the desired differen-
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tial expression pattern involves both genes exhibiting differential upregulation or
downregulation together. This study looks for interactions with desired differen-
tial expression patterns in at least two biological conditions to ensure the predicted
interaction is biologically relevant.

Gene pairs may share similar or opposite co-expression and differential expression
patterns either because of direct binding interactions or being transcriptionally co-
regulated by other regulations. Several tools compute RNA-RNA base-pairing inter-
actions based on sequence complementarity and structural stability. A study com-
pared different RNA-RNA interaction prediction tools using benchmark RNA-RNA
interactions datasets from Archaea, Bacteria and Eukaryotes. The results showed
that RNAup, IntaRNA and RNAplex are the tools with the leading Matthews cor-
relation coefficient (MCC), the geometric mean of sensitivity and precision (Umu
and Gardner, 2017). IntaRNA showed a slightly higher area under ROC-like curve
(AUC) than RNAplex and RNAup (Pain et al., 2015) in another comparative study.
IntaRNA can also fit the binding energy values into a generalised extreme value
(GEV) distribution to compute the p-value and false discovery rate (FDR) based
on the distribution of binding energy values to identify the outstanding actual base
pairing from all background binding energy values. Another reason for selecting
IntaRNA is the availability of optimised parameters for sRNA-target prediction
(Raden et al., 2020). All these suggest IntaRNA is the optimal choice for comput-
ing sRNA-target from RNAtag-seq data.

To generate a list of putative sRNA-target interactions, the RNAtag-seq dataset
and predicted sRNAs from the previous chapter were analysed using WGCNA,
DESeq2 and IntaRNA. To understand the significance of the predicted interactions,
we further analysed some of the interactions of interest in-depth.

Chapter Aims:

• Identify pathways and genes that facilitate stress adaptations.

• Construct a global sRNA-target interaction network by integrating WGCNA,
DESeq2 and IntaRNA.

• Overview analysis of the sRNA-target interaction network to identify biological
conditions, biological pathways and co-expression modules of interest.

• Detailed analysis of some sRNA-target interactions as examples to understand
their biological significance.
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4.2 Overview of condition-specific transcriptional land-
scapes and predicted sRNA-target interactions

Previous work in the host laboratory investigated the C. jejuni transcriptional land-
scape under both standard and non-standard conditions. sRNA expression under
these conditions facilitates the transient sRNA-mRNA interactions under condition
of interests. Table 4.1 summarises all experimental conditions used in the RNAtag-
seq dataset and their corresponding abbreviation. All pairwise comparisons selected
from the RNAtag-seq dataset are shown in Table 4.2, covering comparisons related
to growth phases, growth temperatures, iron availability, bile salt availability and
various environmental stress.

Table 4.1: Experimental conditions for Cappable-seq and
RNAtag-seq. All conidtions involved growing cells in MH2
broth unless specified otherwise.

Sample name Initial growth Treatment
37 M Grow to exponential NA

phase at 37 °C
37 ES Grow to early stationary NA

phase at 37 °C
37 LS Grow to late stationary NA

phase at 37 °C
42 M Grow to exponential NA

phase at 42 °C
42 ES Grow to early stationary NA

phase at 42 °C
42 LS Grow to late stationary NA

phase at 42 °C
cold Grow to exponential then resuspended in MH2 broth

phase at 37 °C at 4 °C for 24 hours.
(Brown et al., 2014).

5% ce Grow to exponential incubated in MH2 broth
phase at 37 °C supplemented with 5% chicken

exudate at 4 °C for 24 hours
(Birk et al., 2004).

acid Grow to exponential resuspended in MH2 broth
phase at 37 °C at pH 3.5 for 10 minutes

97



(Le et al., 2012).
ana Grow to exponential incubate in anerobic chamber

phase at 37 °C for 1 hour
(Klančnik et al., 2014).

heat Grow to exponential incubated in 55 °C
phase at 37 °C for 3 minutes

(Klančnik et al., 2014).
iron lim M Grow to exponential the growth media was MEMα

phase at 37 °C supplemented with 10 M pyruvate
(Butcher and Stintzi, 2013).

iron lim ES Grow to early statioanry the growth media was MEMα

phase at 37 °C supplemented with 10 M pyruvate
(Butcher and Stintzi, 2013).

iron rep M Grow to exponential the growth media was MEMα

phase at 37 °C supplemented with 10 M pyruvate
and 40 M FeSO4

(Butcher and Stintzi, 2013).
iron rep ES Grow to early stationary the growth media was MEMα

phase at 37 °C supplemented with 10 M pyruvate
and 40 M FeSO4

(Butcher and Stintzi, 2013).
nacl Grow to exponential incubated in 1.5% NaCl

phase at 37 °C for 2 hours
(Cameron et al., 2012).

oxidative Grow to exponential added 3mM H2O2

phase at 37 °C for 10 minutes
(Klancnik et al., 2006).

starv Grow to early stationary resuspend in Ringer’s solution
phase at 37 °C for 5 hours

(Klancnik et al., 2009).
GSNO Grow to exponential then incubate in 1.5 mM

phase at 37 °C GSNO for 2 hours
(Elvers et al., 2005).

sod deoxy M Grow to exponential the growth media was supplemented
phase at 37 °C with 0.1 % sodium deoxycholate

(Malik-Kale et al., 2008).
sod deoxy ES Grow to early stationary the growth media was supplemented
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phase at 37 °C with 0.1 % sodium deoxycholate
(Malik-Kale et al., 2008).

Table 4.2: All pairwise comparisons selected from the RNAtag-seq dataset.

sample control stress conditions
37 ES 37 M growth phase
37 LS 37 M growth phase
37 LS 37 ES growth phase
5% ce 37 M temperature
acid 37 M acid
ana 37 M anaerobic
cold 37 M temperature
GSNO 37 M nitrosative
heat 37 M temperature
nacl 37 M hyperosmotic
oxidative 37 M oxidative
starv 37 ES starvation
42 ES 42 M growth phase
42 LS 42 M growth phase
42 LS 42 ES growth phase
42 M 37 M temperature
42 ES 37 ES temperature
42 LS 37 LS temperature
iron lim ES iron rep ES iron limitation
iron lim M iron rep M iron limitation
iron lim ES iron lim M growth phase
iron rep ES iron rep M growth phase
sod deoxy ES 37 ES bile salt
sod deoxy M 37 M bile salt
sod deoxy ES sod deoxy M growth phase
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4.2.1 The main driving force behind stress adaptation

sRNA-mRNA binding activities can alter the abundance of both the sRNA and the
mRNA. Such kind of interactions means sRNA expression may show significant cor-
relation with the expression of its mRNA partner. Therefore, co-expression analysis
was conducted to highlight sRNAs and mRNAs with correlated expression across
all RNAtag-seq conditions.

All 63 replicates from the RNAtag-seq data were included for the co-expression
analysis. The varianceStabilizingTransformation (vst) of the DESeq2 package nor-
malised the raw expression coverage of 63 RNAtag-seq replicates (Love et al., 2014).
The vst normalisation resulted in similar read distribution across all samples (Figure
4.1a). The biweight mid-correlation (bicor) of the WGCNA package then converted
the normalised expression coverage into a correlation coverage. The bicor correla-
tion matrix was power transformed to construct an adjacency network to suppress
background noise with low correlation. Scale-fit topology fit and the mean connec-
tivity suggested the optimal soft-threshold power for power transformation was 5
(Figure 4.1b and 4.1c). The adjacency network was an unsigned network, which ac-
counted for negative correlations equally as positive ones. Such an approach helps
to identify sRNA-mRNA interactions that led to mRNA degradation. WGCNA
then transformed the adjacency matrix into a Topology Overlap Matrix (TOM) to
account for network topology such as shared neighbours. Afterwards, unsupervised
hierarchical clustering and dynamic tree cutting partitioned genes into eleven co-
expression modules based on the TOM. WGCNA named each module as different
colours, which were later re-designated as modules I to XI for better clarity (Figure
4.1d).
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Figure 4.1: Co-expression analysis by WGCNA. (a) The read distribution of
all RNAtag-seq replicates after vst transformation. The power for soft-threshold
power transformation was determined using (b) Mean connectivity and (c) scale-fit
topology fit (threshold = 0.8). (d) Average linkage hierarchical clustering of eleven
co-expression modules. Originally marked with different colours, the module names
were replaced with the roman characters inside the bracket. The red line indicates
the default threshold for dynamic tree cut (0.25).
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Each co-expression module carry a list of genes that showed significant positive or
negative co-expression. Some modules, including module X and module II, carried
a larger portion of genes, thus may entail interactions between multiple pathways.
Meanwhile, module VIII and module V were relatively small and may only highlight
a few specific pathways (Figure 4.2).

Figure 4.2: The distribution of genes among co-expression modules. The
numbers above each bar indicate the number of genes in that module.
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Enrichment analysis of each co-expression module highlighted the biological path-
ways represented by each module. Some co-expression modules are predominated
by genes from one KEGG pathway, while some modules may reflect the crosstalk be-
tween multiple pathways. For instance, modules I and IX are only over-represented
with genes from the “Ribosome” pathway, while module VIII is only enriched with
ABC transporters genes. These modules may involve sRNA-target interactions that
regulate ribosomal biosynthesis or nutrient uptake. In contrast, module X, module
XI and module II consist of more genes that lead to statistical over-representation of
multiple biological pathways. For example, Module XI consisted of several pathways,
with some pathways like the “Citrate cycle (TCA cycle)” pathway being more statis-
tically significant. Some modules represent a variety of biologically related pathways.
For example, module II showed statistical enrichment of “Two-component system”,
“Bacterial chemotaxis” and several metabolite biosynthesis pathways (“beta-Alanine
metabolism”, “Lysine biosynthesis”, “Arginine and proline metabolism” and“ Fatty
acid biosynthesis”. That indicates module II may consist of sRNAs related to the
crosstalk between signal transduction, cell motility and metabolites utilisation (Fig-
ure 4.3).

Previous study from the host research group (Lam, 2019) highlighted that nutrient-
deprived conditions, including the early and late stationary phases and starvation
stress, are the main driving force of expression variation. Such pattern agrees with
the correlation between co-expression and experimental traits (Figure 4.4), which
showed a statistically significant correlation between several nutrient-deprived con-
ditions and co-expression modules. For example, iron-limitation under the early-
stationary phase (iron lim ES) demonstrates a statistically significant correlation
coefficient with all but one co-expression module. Other critical factors for ex-
pression change include food processing conditions, such as cold stress (cold), 5%
chicken exudate (5% ce) and NaCl stress (nacl). All of these conditions represent
food storage conditions prior to cooking. Cold stress and 5% chicken exudate both
represent refrigeration as both conditions involve placing the cells under 4 °C. NaCl
is a common food preservative that subjects the cells to hyperosmotic stress that
induces water efflux. In contrast, some environmental stress conditions like acid
stress (acid), heat stress (heat) and nitrosative stress (GSNO) showed no statisti-
cally significant correlation coefficient with any co-expression modules (Figure 4.4).
Thus it appears that nutrient deprivation and food storage conditions involve more
transcriptional rewiring than other conditions.

The differential expression analysis also showed that statistically overrepresented
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Figure 4.3: Statistical enrichment of KEGG pathways across co-expression
modules. The colour scale showed the -log10(FDR) of KEGG pathways enrichment.
FDR values that are statistically insignificant (> 0.05) are coloured white.
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Figure 4.4: The Pearson correlation between co-expression modules eigen-
genes and experimental traits. The eigengene is defined as the first principal
component of the gene expression matrix of the respective co-expression module. For
correlation coefficients with p-value above 0.05, their boxes are coloured as black.
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pathways varied among experimental conditions. Pairwise comparisons related to
stationary phases and food storage conditions yielded more enriched pathways than
other conditions. For example, the pairwise comparison with the most enriched
pathways was with iron limitation under the early-stationary phase (iron lim ES)
and iron limitation under exponential phase (iron lim M) as the control. In contrast,
several pairwise comparisons with the fewest enriched KEGG pathways included
heat stress (heat) and acid stress (acid), with exponential phase at 37 °C as their
controls (Figure 4.5).

Figure 4.5: The number of statistically enriched KEGG pathways among
pairwise comparisons. The threshold of statistical threshold is FDR < 0.05.
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Another question is which biological pathways are more involved in stress adap-
tation. This question was addressed by counting the pairwise comparisons that
each KEGG pathway exhibited differential enrichment. Some pathways, including
“Biosynthesis of amino acids”, “ABC transporters” and “Two-component system”,
were statistically enriched in most pairwise comparisons. In other words, these
pathways played a more crucial role in stress adaptations throughout the transmis-
sion cycle. In contrast, pathways such as “beta-Lactam resistance” and “Tyrosine
metabolism” displayed statistical enrichment in only one or two pairwise compar-
isons. Hence these pathways may only be involved in adjusting to a few specific
environments (Figure 4.6).
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Figure 4.6: The frequency of KEGG pathway enrichment among RNAtag-
seq conditions. (a) The ten most and (b) least frequently enriched KEGG path-
ways among all pairwise comparisons.
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4.2.2 Overview of sRNA-target network

WGCNA and DESeq2 identified the overall and condition-specific expression pat-
terns, highlighting genes, pathways, and conditions involved in adapting to various
environmental stresses. They also helped identify sRNA-target pairs that showed
significant co-expression and differential expression in particular conditions. How-
ever, such a pattern might result from either direct binding interactions or co-
regulation. Therefore, results from co-expression and differential expression were
integrated with genome-wide target prediction by IntaRNA to extract sRNA-target
pairs that may form direct RNA-RNA interactions. IntaRNA predicts binding en-
ergy values between each sRNA-target combination, based on the energy required
for unfolding secondary structures and the base-pairing stability. The distribution
of the binding energy values between each sRNA and all genes were used to com-
puted the p-values and FDR. That means stable interactions were more likely to
display lower p-values and FDR. sRNA-target interactions with p-values <= 0.05
and showing significant co-expression and differential expression patterns were rated
as high-confidence sRNA-target interactions (Figure 4.8a). As a result, the inte-
gration of these three approaches predicted 513 sRNA-target interactions (Figure
4.7).
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Figure 4.7: All sRNA-target interactions extracted after integrating
WGCNA, DESeq2 and IntaRNA. Dashed lines and solid lines indicate sRNA-
target pairs with negative and positive co-expression. Novel sRNAs, annotated
sRNAs and mRNAs are coloured in green, orange and purple, respectively.
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Table 4.3: All sRNA with more than 3 targets from a statistically enriched
KEGG pathway. Only KEGG pathways with less than 100 proteins are shown
here in order to focus on pathways with specific biological functions.

Sample Targets KEGG pathways Hits FDR
CjSA21 4 Bacterial chemotaxis 4 5.08E-8
CjSA21 4 Two-component system 4 4.71E-7
CjSA28 14 Bacterial secretion sys-

tem
3 2.25E-4

CjSA53 19 Purine metabolism 4 3.58E-3
CjSA53 19 Pyrimidine metabolism 3 1.09E-2
CjSA9 10 Purine metabolism 3 3.76E-3

To further extract sRNA-target interactions that may play an influential regulatory
role, KEGG pathways enrichment analysis was conducted on the targets of each
sRNA to identify sRNAs that bind explicitly to targets from the same biological
pathways. This approach is similar to published tools for analysing RNA-RNA
interactomes such as rNAV 2.0, which also searches for sRNA targets statistically
enriched for GO, KEGG and UniProt (Bourqui et al., 2017). Remarkably, CjSA21’s
potential targets were all involved in “Bacterial chemotaxis” and “Two-component
system”, leading to the lowest FDR values among all predicted sRNA-target inter-
actions. Targets of CjSA28, CjSA53 and CjSA9 were also significantly enriched in
“Bacterial secretion system”, “Purine metabolism” and “Pyrimidine metabolism”.
However, only 3 out of 14 CjSA28 targets belonged to the “Bacterial secretion sys-
tem”. Likewise, out of 19 targets of CjSA53, only 4 or less of them belonged to
“Purine metabolism” and “Pyrimidine metabolism”. Similarly, only 3 of the 10
CjSA9 targets were from “Purine metabolism” (Table 4.3). As a result, they were
less statistically significant than CjSA21 targets.

Interestingly, upon setting FDR <= 0.05 as the threshold for IntaRNA prediction,
CjSA21 targets were the only ones that showed KEGG pathway enrichment. CjSA21
targets in “Bacterial Chemotaxis” and “Two-component system” had FDR values of
5.65E-10 and 1.16E-08, respectively. That suggested CjSA21 also formed the most
stable binding interactions across the entire predicted sRNA-target network. Both
IntaRNA prediction (with FDR <= 0.05 as the threshold) and the combined output
from WGCNA, DESeq2 and IntaRNA had highlighted CjSA21 as a pathway-specific
regulator for signal transduction and chemotaxis. Hence the following section will
focus on understanding the regulatory role of CjSA21.
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4.3 CjSA21 and chemosensing genes

Figure 4.8: Summary of integrating WGCNA, DESeq2 and IntaRNA.
(a) The integration of co-expression analysis, differential expression analysis and
genome-wide sRNA-target prediction to predict sRNA-target interactions. Pre-
dicted sRNA-target interactions need to be clustered into the same WGCNA co-
expression modules and are connected by an edge in the WGCNA network. Those
gene pairs with a statistically significant correlation (FDR < 0.05) will be filtered
out. Moreover, genes with negative co-expression need to show opposite differen-
tial expression (one gene being differentially upregulated, one gene being differen-
tially downregulated) in at least two pairwise comparisons. Likewise, genes with
positive co-expression are required to show matching differential expression (both
genes being differentially upregulated or differentially downregulated together) in at
least two pairwise comparisons. Last but not least, their predicted binding energy
values must result in p-value <= 0.05. (b) Transcription start sites and annotated
genes in the proximity of CjSA21. (c) Highlighted sRNA-target interactions between
CjSA21 and tlp1-4. They are connected by dashed lines, which indicate negative
co-expression.
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The predicted targets of CjSA21 were Cj1506c, Cj0144, Cj1564 and Cj0262c, which
correspond to tlp1, tlp2, tlp3 and tlp4, respectively (Figure 4.8b). The negative co-
expression between CjSA21 and tlp1-4 suggested sRNA-mRNA interactions that
reduced the mRNA abundance. Interestingly, tlp1-4 were transcripts responsi-
ble for translating methyl-accepting chemotaxis proteins (MCPs), also known as
transducer-like proteins (Tlps), which sense external stimuli and induce chemotaxis.
Such an expression pattern suggests CjSA21 might be an inhibitor of chemosens-
ing.

CjSA21 locates downstream of rpmI and rplT. CjSA21, rpmI and rplT appear to
form an operon together. rpmI has a primary TSS that may regulate all three genes
in the operon. Nevertheless, an internal TSS and a TSS antisense to Cj0246c are
also present inside the operon (Figure 4.8c). The sequencing coverage of CjSA21,
rpmI and rplT (Figure 4.9) showed a more significant portion of reads aligned
to CjSA21 under NaCl stress (nacl) when compared to the standard laboratory
condition (37 M) (Figure 4.9). The antisense TSS might also influence CjSA21
expression under specific conditions based on the expression pattern.
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Figure 4.9: Sense strand sequencing coverage of CjSA21. The expression
coverage is from the standard laboratory condition (37 M) and hyperosmotic stress
(nacl) suggested condition-specific transcriptional activity of CjSA21.
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4.3.1 CjSA21 belongs to the same co-expression modules as chemo-
taxis genes

CjSA21 and tlp1-4 all belong to module II. As mentioned previously, module II is
correlated to pathways related to signal transduction, chemotaxis and metabolite
utilisation. As mentioned previously, the two-component system is enriched among
differentially expressed genes in almost every selected pairwise comparison. Hence
module II may provide valuable information on C. jejuni stress adaptation.

Gene expression of module II is negatively correlated with food storage conditions,
including hyperosmotic stress (nacl), 5% chicken exudate (5% ce) and cold stress
(cold). Module II expression is also positively correlated with nutrient deprivation
conditions, such as starvation stress (starv) and those related to the early stationary
phase. Those conditions were also conducted under 42 °C (42 ES), iron-limitation
(iron lim ES) and iron-repletion (iron rep ES) (Figure 4.10a and 4.4).
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Figure 4.10: Results of CjSA21 co-expression analysis. (a) The Pearson corre-
lation coefficient and p-values between the eigengene of modules II and experimental
traits. (b) KEGG Pathways enrichment on module II. Only the five pathways with
the lowest FDR are shown here. (c) The correlation between CjSA21 and tlp1-4
across all 63 RNA-Seq replicates.
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Due to the presence of tlp1-4, module II showed statistical enrichment for KEGG
pathways “Bacterial chemotaxis” and “Two-component system”. The enrichment of
these pathways can also be attributed to the presence of cheA and cheV in mod-
ule II. Other KEGG pathways enriched in module II include biosynthetic pathways
for amino acids and fatty acids (See Figure 4.10b and 4.11). Hence, module II
may illustrate the connection between sensing, migrating and metabolising vari-
ous metabolites. As WGCNA constructed an unsigned network, each co-expression
module consisted of genes that showed significant positive or negative correlations.
For instance, the expression of CjSA21 and tlp1-4 demonstrated moderate to sub-
stantial negative correlation, with bicor coefficients between -0.567 and -0.794. All
negative correlations led to significant adjusted p-values (padj) less than 0.05 (Figure
4.10c). That suggests CjSA21 may induce degradation of tlp1-4.
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Figure 4.11: KEGG Pathways enrichment analysis of module II. All KEGG
Pathways with FDR <= 0.05) of module II and less than 100 proteins are shown
here.
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Genes within module II were further separated into two clusters with opposite ex-
pression patterns. The separation assigned tlp1-4 into cluster 1, alongside other
genes from several other pathways, including “Propanoate metabolism”, “Lysine
biosynthesis” and “Cysteine and methionine metabolism”. Genes in cluster 1 showed
increased expression levels under the early-stationary phase and other starvation
conditions. Hence tlp1-4 and other metabolic pathways in cluster 1 are responsible
for the positive correlation with nutrient deprivation conditions (Figure 4.12 and
4.13).

Figure 4.12: The scaled vst score and complete linkage hierarchical clus-
tering of module II. The heat map is scaled by rows.
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Figure 4.13: Differential expression of module II genes. The blue and red
boxes showed the log2 fold-change of differentially expressed genes in module II.
White boxes indicate genes with insignificant FDR (> 0.05).

120



Cluster 2 genes, including CjSA21, showed high expression values and differen-
tial upregulation under food storage conditions (cold, 5% ce and nacl). Apart
from CjSA21, cluster 2 also included genes from the Tryptophan biosynthesis (Trp)
operon, which resulted in the enrichment of the KEGG pathways “Phenylalanine, ty-
rosine and tryptophan biosynthesis” and “Glycine, serine and threonine metabolism”.
The Trp operon was also differentially upregulated in other conditions like heat stress
(heat), anaerobic stress (ana) and nitrosative stress (GSNO).

4.3.2 CjSA21 showed an opposite differential expression pattern to
tlp1-4

Co-expression analyses have shown an overall negative correlation between CjSA21
and tlp1-4 RNA abundance. Subsequent differential expression analysis was re-
quired to understand the condition-specific regulation by CjSA21. Since CjSA21
and tlp1-4 displayed negative co-expression, the desired conditions were those where
CjSA21 and tlp1-4 show contrasting differential expression across all selected pari-
wise comparisons (Figure 4.14).
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Figure 4.14: log2 fold-change of CjSA21 and tlp1-4 across all selected pair-
wise comparisons. White boxes indicate FDR > 0.05.
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In some conditions, CjSA21 exhibited opposite differential expression with some but
not all of tlp1-4. Notably, an opposite differential expression pattern occurred under
the three food storage conditions (cold, 5% ce and nacl), with the standard labora-
tory condition (37 M) as their controls. Under these conditions, all four tlp genes
exhibited significant downregulation, while CjSA21 showed differential upregulation
(Figure 4.15a). Among the food processing conditions, DEseq normalised expression
of CjSA21 was the most upregulated under hyperosmotic stress (nacl) (Figure 4.15b
and 4.16).
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Figure 4.15: Expression of CjSA21 and tlp1-4 in food storage conditions.
(a) log2 fold-change of CjSA21 and tlp1-4. The red and blue boxes indicate dif-
ferential upregulation and differential downregulation respectively. (b) Normalised
expression levels of CjSA21 in food storage conditions (cold, nacl and 5% ce) and
the standard laboratory condition (37 M). All expression values were normalised by
DESeq2’s median of ratios.
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Figure 4.16: The normalised expression of CjSA21 across 21 experimental
conditions. All expression values were normalised using the DESeq2’s median of
ratios method.

Unsurprisingly, the “Bacterial chemotaxis” and “Two-component system” pathways
displayed statistical enrichment among differentially downregulated genes in the
above pairwise comparisons (Figure 4.17a). That further suggests the possibility of
CjSA21 inhibiting chemosensing under food storage conditions. Unexpectedly, the
“Flagellar assembly” pathway demonstrated statistical over-representation under
all three pairwise conditions (Figure 4.17b). That suggests that C. jejuni synthe-
sised more flagella under these conditions despite being less sensitive to chemotaxis.
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Figure 4.17: Enrichment of the KEGG pathway “Bacterial Chemotaxis”,
“Flagellar assembly” and “Two-component system” under food storage
conditions. (a) Statistical enrichment among upreulgated genes. (b) Statistical
enrichment among downreulgated genes. White boxes indicate FDR > 0.05.
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Similar opposite differential expression pattern was observed under early-stationary
phase at 42 °C, iron-limitation and iron-repletion (42°C, iron lim ES and iron rep ES).
Under these conditions, CjSA21 was downregulated while tlp1-4 was upregulated
(Figure 4.14).

4.3.3 IntaRNA predicted significant binding interactions between
CjSA21 and tlps

IntaRNA calculated the theoretical binding energy values were between CjSA21
and all possible targets, including annotated genes and predicted sRNAs. Among
them, 29 targets have predicted p-values <= 0.05 (Figure 4.18a). Most of their
energy values range between -20 to -40 kcal/mol. Interestingly, the binding energy
values between CjSA21 and tlp1-4 were around -45 kcal/mol, leading to significant
FDR (<= 0.05). Other targets with significant FDR were cetA and Cj0019c (Table
4.4). Interestingly, these two genes are tlp9 and tlp10, respectively, which are also
chemosensors that detect different subtracts from tlp1-4. The predicted energy
values between CjSA21 and tlp1-4 and tlp9-10 were remarkably stable compared
to other CjSA21-mRNA interactions, as most binding energy values were > -20
kcal/mol (Figure 4.18b).

Table 4.4: All IntaRNA-predicted targets of CjSA21. The FDR threshold is
0.05.

gene id gene name binding energies (kcal/mol) p-value FDR
Cj0144 tlp2 -44.91 1.97E-05 5.71E-03
Cj0262c tlp4 -44.91 1.97E-05 5.71E-03
Cj1506c tlp1 -45.69 1.52E-05 5.71E-03
Cj1564 tlp3 -44.91 1.97E-05 5.71E-03
cetA tlp9 -47.73 7.70E-06 5.71E-03

Cj0019c tlp10 -43.2 3.47E-05 8.62E-03
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Figure 4.18: Results of CjSA21 genome-wide target prediction. (a)
IntaRNA-predicted energy values of all CjSA21 targets. Only those with p-values
<= 0.05 are shown here. (b) The distribution of IntaRNA-predicted energy values
of all CjSA21-target pairs. The blue line indicates -45 kcal/mol (the approximate
predicted binding energies between CjSA21 and tlp1-4 ).
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IntaRNA predicted that CjSA21 used its 3’ end to target tlp1-4 and tlp9-10. In
particular, CjSA21 targets tlp2, tlp3 and tlp4 with identical nucleotides. It also
targets (tlp10 ) using a similar sequence, except missing the first two nucleotides
(Figure 4.19a).

Secondary structure prediction by RNAfold further shed light on the binding mech-
anism of CjSA21. The structural prediction located the binding sequences within
regions consisting of stem-loops and unpaired nucleotides, with relatively high nu-
cleotide entropy and lower intramolecular base pairing affinities (Figure 4.19b - c).
The results suggest CjSA21 may target tlp1-4 using unpaired regions

Figure 4.19: Results of CjSA21 structural prediction. (a)The distribution
of predicted optimal binding sites used by CjSA21. (b - c) RNAfold predicted
the secondary structure of CjSA21. The colour keys represent the intramolecular
binding probabilities and nucleotide entropies, respectively. (d) Correlation between
the expression values of ppk and CjSA21.
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Despite showing highlighted complementary sequences with CjSA21, neither tlp10
nor tlp9 belongs to module II, and their correlation against CjSA21 was less sig-
nificant (Figure 4.20). Both tlp9 and tlp10 also lack clear opposite differential
expression patterns under food storage conditions. Both genes showed opposite dif-
ferential expression with CjSA21 in one of three food processing conditions (Figure
4.21 and Figure 4.22). That suggests CjSA21 may regulate the translation of tlp9-10
without affecting mRNA abundance.

Figure 4.20: Pairwise correlation between CjSA21 and tlp9/tlp10. Scatter
plots that illustrate the correlation between the expression of CjSA21 against (a)
tlp9 and (b) tlp10.
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Figure 4.21: log2 fold-change of CjSA21, ppk, tlps and all annotated
RNases. Only pairwise comparisons with 5% ce, nacl and cold compared against
37 M are shown. RNases differentially expressed in all three conditions are high-
lighted in bold text.
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Figure 4.22: Differential expression between CjSA21 and tlp9/tlp10. All
log2 fold-change of CjSA21, tlp9 and tlp10. White boxes indicate FDR > 0.05.
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4.3.4 Regulators and RNases that may mediate CjSA21-tlp1-4 in-
teractions

In order to further understand the CjSA21 regulatory network, we asked the ques-
tions on which other factors promote survival under food storage conditions. One
potential candidate for promoting survival under food storage conditions is the
Polyphosphate kinase. Studies on ppk showed that it is involved in osmotic stress
survival and biofilm formation (Candon et al., 2007). If ppk is involved in the CjSA21
regulatory network, ppk and CjSA21 may display significant co-expression and/or
sequence complementarities. The co-expression analysis in this chapter suggested
strong negative co-expression between ppk and CjSA21 (bicor=-0.792). CjSA21 and
ppk also revealed opposite differential expression patterns under food storage condi-
tions (Figure 4.19d and 4.21). However, IntaRNA-predicted binding energy between
ppk and CjSA21 was statistically insignificant, with a p-value above 0.05. That sug-
gests co-regulation between ppk and CjSA21 instead of direct binding interactions.
Another possibility is that ppk inhibit the expression of CjSA21.

Other candidates for further investigations are RNases. Assuming CjSA21 regu-
lates tlp1-4 by promoting RNase degradation, the RNases involved may demon-
strate significant converse correlation with tlp1-4. Therefore, the most related
RNases are those found in module II, including Cj0121, rnc, rnhA, Cj1710c. All
4 of them showed negative co-expression (below -0.85) with tlp1-4 (Figure 4.23 and
4.24).
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Figure 4.23: Pairwise correlation between tlp1-4 and Cj0121 and Cj1710c.
Correlation of vst normalised expression values between tlp1-4 and (a) Cj0121 and
(b) Cj1710c.
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Figure 4.24: Pairwise correlation between tlp1-4 and rnc and rnhA. Cor-
relation of vst normalised expression values between tlp1-4 and (a) rnc and (b)
rnhA.
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Differential expression showed that rnc, rnhA, Cj1710c were differentially upreg-
ulated in the three food storage conditions (Figure 4.19d). Other likely RNases
candidates include Cj1388 and rnhB, as they were also differentially upregulated in
food storage conditions. However, Cj1388 exhibited no inverse co-expressed with
tlp1-4. Only rnhB had a weak/moderate negative correlation against tlp1-4 (-0.35
to -0.527) (Figure 4.25). These suggest the likely candidates for tlp1-4 degradation
were Cj0121, rnc, rnhA, Cj1710c and rnhB.
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Figure 4.25: Pairwise correlation between tlp1-4 and Cj1388 and rnhB.
Correlation of expression values between tlp1-4 and (a) Cj1388 and (b) rnhB.
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4.4 sRNA-target interactions related to iron transport

4.4.1 The enrichment of iron and oxidative stress response genes
in module VIII

CjSA21 was an outstanding sRNA for investigation. All of its predicted targets
were involved in chemosensing. Other sRNAs of interest include those regulating
processes crucial for stress adaptation. As mentioned earlier, several pathways dis-
played statistical enrichment in most pairwise comparisons (Figure 4.6a). Moreover,
previous in-house analysis (Lam, 2019) highlighted that iron ABC transporter genes
displayed the most apparent differential expression across all conditions. Hence the
sRNA-mRNA interactions in the co-expression module that carries the most iron
ABC transporters might play an important role in C. jejuni stress adaptation.

Notably, module VIII exhibited a statistically significant correlation with “ABC
transporters” specifically. Module VIII showed a significant positive correlation with
iron-limitation/repletion and nutrient deprivation conditions. For instance, module
VIII had a positive correlation with iron lim ES and iron lim M. It also showed a
negative correlation with iron rep ES, but the correlation coefficient was statisti-
cally insignificant with iron rep M (Figure 4.26). Interestingly, 37 M exhibited the
most negative correlation, possibly because the upregulation of iron transporters
occurred in most conditions. In contrast, some other modules positively correlated
to iron lim ES and iron lim M, but not both. That seems to suggest module VIII
may represent genes responsible for iron stress response (Figure 4.4).
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Figure 4.26: The Pearson correlation between the module VIII eigengene
and experimental traits.
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Further functional enrichment analysis of other databases enabled a more in-depth
investigation of the biological significance of module VIII. Notably, the results in-
dicated statistical overrepresentation of the Pfam domain “ABC transporters” as
well as several TonB-related domains, such as “TonB dependent receptor”, “Gram-
negative bacterial TonB protein C-terminal”, “TonB-dependent Receptor Plug Do-
main”), suggesting the involvement of TonB membrane receptors responsible for
iron siderophore uptake (Figure 4.27). Similarly, InterPro enrichment analysis also
highlighted statistical enrichment of features related to ABC transporters and TonB,
alongside with “Thioredoxin-like fold” (Figure 4.28).

Figure 4.27: Pfam enrichment of genes in module VIII. All Pfam domain
with with FDR <= 0.05, less than 100 proteins and at least three hits.
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Figure 4.28: InterPro enrichment of genes in module VIII. All InterPro
domain with with FDR <= 0.05, less than 100 proteins and at least three hits.
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The involvement of thioredoxin hinted towards an oxidative stress response linked
to the iron stress response. The involvement of oxidative stress response was further
supported by Gene Ontology (GO) term enrichment for molecular function, with
the most statistically significant terms being “peroxidase activity”, “oxidoreductase
activity, acting on peroxide as acceptor” and “antioxidant activity”. Ribonucleases
also appeared to be enriched in module VIII (Figure 4.29).

Figure 4.29: GO (Molecular Functions) enrichment of genes in module
VIII. All GO (Molecular Functions) terms with with FDR <= 0.05, less than 100
proteins and at least three hits.
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Since module VIII displayed statistical enrichment of pathways and protein domains
involved in iron and oxidative stress responses, one can expect module VIII contain
most iron ABC transporter genes. This expectation was confirmed in the distri-
bution of ABC transporter genes among WGCNA co-expression modules. None of
those ABC transporter genes belonged to module VII, among the 81 ABC trans-
porters selected from KEGG BRITE cje2000 and DAVID annotation. In compari-
son, module X comprised most ABC transporter genes, possibly because module X
carried the highest number of genes. Nonetheless, module VIII consisted of the most
iron ABC transporter genes, including cfbpABC, ceuBDE (but not ceuC ), chuBCD,
cj1661-1663 ) (Figure 4.30). Other annotated iron stress response genes such as p19,
cj1658, tonB123, exbBD were also partitioned into module VIII, which also included
oxidative stress response genes such as trxB, aphC, katA. The presence of iron and
oxidative stress response genes suggested the association between module VIII and
the crosstalk between iron homeostasis and oxidative stress response (Kim et al.,
2015; Palyada et al., 2009).
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Figure 4.30: Distribution of all ABC transporter genes across co-expression
modules. Most known iron transporter systems, including Cj1661-Cj1663,
chuABCD, cfbpABC and ceuBCDE, all belonged to module VIII.
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4.4.2 Key sRNAs in module VIII

The functional enrichment suggested novel and uncharacterised genes (including
predicted sRNAs) in module VIII might be associated with iron stress response and
oxidative stress response. Module VIII comprised four predicted sRNAs, namely
CjSA24, CjSA98, CjSA106 and CjSA110. CjSA24, CjSA98, CjSA106 all appeared to
be UTR-derived sRNAs of iron and oxidative stress response genes. That suggested
these three sRNAs were found in module VIII either because of their biological
functions or physical proximity to the module’s genes.

Interestingly, CjSA110 is an intergenic sRNA with no neighbouring genes from mod-
ule VIII. This putative sRNA shared almost identical genomic coordinates as an
annotated sRNA CJnc190 (Dugar et al., 2013). CjSA110 showed weak/moderate
yet significant negative correlation (bicor coefficient in between -0.3 to -0.5, FDR
< 0.05) with most genes from module VIII, including genes from known iron or
oxidative stress response pathways. The weak to moderate correlation value may
not be an issue, as eukaryotic miRNA-mRNA also forms a weak or moderate neg-
ative correlation (Dai et al., 2019). Indeed, bacterial sRNA-mRNA interactions do
not necessarily show a strong correlation as sRNA may only regulate the target’s
structure without changing the transcript abundance. Moreover, multiple sRNAs
or other factors can control the quantity of an mRNA species.

In addition to CjSA110, module VIII also comprised several poorly characterised
genes. For example, Cj0343c is a probable integral membrane protein designated as
“Function unknown” in KEGG BRITE. Cj0378c contains the Pfam domain PF017
(ferric reductase-like transmembrane component). Cj0378c showed increased ex-
pression in avian mucus relative to mammalian mucus (Looft et al., 2019). Interest-
ingly, a DNA microarray analysis that compared the erythromycin-resistant mutant
against the wild-type NCTC11168 strain showed a similar expression pattern be-
tween Cj378c and PerR (Hao et al., 2013). Similarly, several poorly characterised
proteins (Cj1383c, Cj1384c, Cj1627c, Cj1387c) (Looft et al., 2019; Butcher et al.,
2015; Palyada et al., 2004; Clark et al., 2014) displayed differential expression in
transcriptomic data related to iron limitation, despite not being annotated as iron
homeostasis proteins. Other poorly characterised proteins include Cj1386 (Crofts
et al., 2018) and Cj1725 (Hepworth et al., 2011; Bronnec et al., 2016).

The extracted sRNA-target interactions linked CjSA110 with tonB3 and Cj1384c.
tonB3 and Cj1384c belonged to module VIII and showed negative co-expression
against CjSA110 and opposite differential expression in several pairwise compar-
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isons. IntaRNA prediction also predicted binding energy values that lead to p-values
below 0.05. See below for more details.

4.4.3 Co-expression of CjSA110

Further exploration of the co-expression pattern within module VIII would help
understand the post-transcriptional regulatory mechanism of CjSA110. Similar to
the previous section, module VIII was subdivided into 2 clusters with contrasting
expression patterns. CjSA110 and genes including Cj0011c, rnhB, rrc and nhaA
belonged to cluster 2, while most genes including tonB3 and Cj1384c belong to
cluster 1. CjSA110 appeared to have the lowest expression under starvation stress
and high expression upon exposure to NaCl stress. Moreover, CjSA110 belonged to
the same cluster as Cj0011c, rnhB, rrc and nhaA, while also showing an opposite
pattern from other genes in module VIII. Genes in cluster 1 displayed high expression
under NaCl stress and standard laboratory conditions and low expression under
starvation stress.

Genes in cluster 2, including tonB3 and Cj1384c and most iron transport and oxida-
tive stress genes, were characterised by high expression values under iron limiting
conditions and early-stationary phases, possibly due to the increased expression of
various iron ABC transporters (Figure 4.31 and 4.32).
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Figure 4.31: Scaled heat maps for vst expression of all genes in module
VIII. The colour scale is based on the Z-Score of vst normalised values.
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Figure 4.32: log2 fold-change expressions and clustering all genes in module
VIII. All boxes with FDR > 0.05 are coloured in white.
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As CjSA110 and its predicted targets belonged to different clusters within module
VIII, it was not surprising that they displayed opposite expression patterns. Mod-
erately negative yet statistically significant correlation coefficients were observed
between CjSA110 and tonB3 and Cj1384c (Figure 4.33.) That suggests CjSA110
may negatively regulate the abundance of tonB3 and Cj1384c mRNAs by RNase
degradation.

Figure 4.33: The pairwise correlation between CjSA110 and tonB3 and
Cj1384c.
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4.4.4 Differential expression of CjSA110

After establishing a negative co-expression between CjSA110 and its targets, the
next step was to identify conditions that display converse differential expression
patterns. Displaying such a pattern under iron-related conditions would indicate
that CjSA110 is directly responsible for iron stress. Alternately, an opposite expres-
sion pattern may occur in other pairwise comparisons. This outcome may indicate
crosstalk between those conditions and iron limitation, which is reasonable given
the association between iron homeostasis and other stress response pathways.

CjSA110 showed the lowest normalised expression in the late stationary phase, early
stationary phase and starvation (Figure 4.34). As mentioned before, these conditions
were the main driving force of expression variation across the RNAtag-seq dataset.
That suggested CjSA110 followed a similar pattern as the overall transcriptomic
landscape.

Figure 4.34: Expression of CjSA110 across RNAtag-seq conditions. The
expression values were normalised using DESeq2’s median of ratios.
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CjSA110 showed no differential expression in most conditions, except in starv vs 37 ES.
Further investigation revealed that CjSA110 was usually downregulated under most
nutrient-deprived and starvation stress. Moreover, CjSA110 is upregulated for
nacl vs 42 LS and nacl vs 37 ES. In some conditions, CjSA110 shows opposite dif-
ferential expression to genes from module VIII. Further investigation of differential
expression patterns indicated that CjSA110 and tonB3 and Cj1384c showed oppo-
site differential expression in anaerobic stress, 5% chicken exudate, early-stationary
phase under 37 °C, late-stationary phase under 42 °C and cold stress (Figure 4.35).
Therefore, these conditions may have relationship with iron stress and oxidiative
stress

Figure 4.35: log2 fold-change expression CjSA110, tonB3 and Cj1384c. All
boxes with FDR > 0.05 are coloured in white.
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Table 4.5: IntaRNA output of Cj1384c and tonB3 .
gene id binding energies

(kcal/mol)
p-value FDR

Cj1384c -15.12 0.00297 0.837
tonB3 -12.77 0.02 0.929

4.4.5 Predicted binding mechanism of CjSA110

For tonB3 and Cj1384c, the binding energy values led to significant p-values but
insignificant FDR (Table 4.5). Indeed, only Cj1209 has FDR below 0.05, and the
energy above was still at -18.8 kcal/mol. Most other predicted targets with signif-
icant p-values also lacked insignificant FDR. Even CjSA109, which is antisense to
CjSA110, only had an energy level at -11.88 kcal/mol (Figure 4.36a). The total
energy distribution explained the statistical results (Figure 4.36b), as most energy
values were around -10 kcal/mol. That was different from CjSA21, which comprised
predicted targets with distinctive binding energy values from the rest of the tar-
gets. Thus, CjSA110 may form many background binding interactions unless RNA
chaperones are involved.
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Figure 4.36: Results of CjSA110 genome-wide target prediction. (a) Pre-
dicted binding energy of all targets with p-values <= 0.05. Those bars coloured
in light blue has FDR <= 0.05. (b) IntaRNA binding energy distribution of all
sRNA-mRNA pairs.
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Most IntaRNA-predicted interactions happened at two ends of CjSA110. For in-
stance, the tonB3 target site was near the 3’ end of CjSA110 and shared similar
binding sites as Cj1209 and CjSA109. In contrast, Cj1384c targets near the 5’ end of
CjSA110 (Figure 4.37). RNAfold computed a secondary structure with stem-loops
near both ends with stable base pairing in the centre. Both binding regions consist
of some base pairs with high nucleotide entropy and low intramolecular base-pairing
probability, especially for most nucleotides at the binding site for tonB3 (Figure
4.38). That may explain why both regions were predicted as binding sites.

Figure 4.37: The distribution of optimal binding sites of CjSA110 against
targets. All targets display p-value <= 0.05.

4.4.6 putative RNases involved

Similar to CjSA21, the mode of action of CjSA110 may involve RNase degradation.
Therefore, RNases in module VIII might be responsible for post-transcriptional
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Figure 4.38: Binding probabilities and entropies of CjSA110 predicted by
RNAfold centroid structure. Those arrows refer to the nucleotide positions of
CjSA110.

regulation by CjSA110. RNases in module VIII consisted of rnhB, an RNase HI
involved in DNA replication. Another RNase rnc is an RNase III that digests double-
stranded RNA structure and thus might be able to target sRNA-mRNA duplex.
They are both likely candidates recruited by CjSA110-tonB3/cj1384c duplex. It is
noteworthy that Cj1209, the only IntaRNA-predicted CjSA110 with FDR, is also an
RNase Y. RNase Y is similar to RNase E, which can degrade free RNA and regulate
the abundance of sRNAs or mRNAs. Interestingly, Cj1209 belonged to module VIII
but formed no connection with CjSA110 in the WGCNA network. This observation
could be due to Cj1209 expression being strongly correlated with other genes of
module VIII, but not CjSA110.

Under conditions where CjSA110 and tonB3 and Cj1384c showed opposite differ-
ential expression, Cj1209 also exhibited a similar differential expression pattern as
CjSA110 (Figure 4.39). Further co-expression analysis of Cj1209 revealed a weak
positive correlation with CjSA110. The weak correlation between CjSA110 and
Cj1209 may explain why they showed no connection in the WGCNA network de-
spite being clustered into the same co-expression module. The result showed a robust
negative correlation with tonB3 (Figure 4.40). This observation suggested Cj1209
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was the most likely candidate responsible for degrading tonB3 and Cj1384c.

Figure 4.39: log2 fold-change expression CjSA110, tonB3 and Cj1384c and
all annotated RNases. All boxes with FDR > 0.05 are coloured in white.
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Figure 4.40: Pairwise correlation between Cj1209 and CjSA110, Cj1384c
and tonB3. Cj1209 showed significant negative correlation with both CjSA110
predicted targets, and positive correlation with CjSA110.

4.5 Discussion

4.5.1 Overview of RNAtag-seq data

This chapter has simultaneously explored RNAtag-seq data across 21 conditions,
covering growth phases, temperatures, food storage stresses and other environmen-
tal stresses. Among the differentially enriched pathways are “ABC transporters” and
“Two-component system”, which appear in almost every pairwise comparison. The
significant enrichment of “ABC transporters” and “Two-component system” across
many conditions is reasonable as they are heavily involved in coping with external
stresses. In adverse conditions, especially during nutrient shortages, ABC and other
membrane transporters increase nutrient uptake. Meanwhile, a two-component sys-
tem senses environmental stresses, including nutrient deprivation and food storage
conditions, to stimulate cellular responses such as altering cell motility or biofilm
formation. This chapter has further predicted sRNA-target interactions related to
membrane transport and signal transduction and provided additional insights into
C. jejuni stress adaptations.
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4.5.2 Identification of CjSA21 as a chemotaxis inhibitor

CjSA21 inhibits the expression of tlp1-4

Tlps are chemoreceptors that sense amino acids, galactose, bile salt, complex sugars,
as well as organic ions such as iron and phosphate (Chandrashekhar et al., 2018;
Elgamoudi et al., 2021). The C. jejuni genome sequences show ten homologues
to Tlp and two aerotaxis receptor proteins. These receptors stimulate CheY phos-
phorylation. Phosphorylated-CheY binds to FliM and mediates a transition from
counter-clockwise to the clockwise flagellar rotation.

Group A Tlp receptors comprise the translated products of all CjSA21 targets (Tlp1-
4) and Tlp10 generated from tlp10 mRNA that showed statistically significant se-
quence complementarity with CjSA21. They share structural similarities to E. coli
MCP and H. pylori family A transducers, including the transmembrane domains
and a periplasmic ligand-binding domain. Tlp1 and Tlp 3 are frequently found
among C. jejuni strains (Clark et al., 2019). The periplasmic ligand-binding do-
main suggests that Group A receptors sense extracellular signals. Notably, Tlp2-4
share conserved C-terminal domains with 346 identical amino acid residues. That
explains why IntaRNA suggested CjSA21 targets tlp2-4 C-terminal with the same
sequence.

Chemoattractants for group A receptors include fucose, pyruvate, fumarate, aspar-
tate, and formate. However, the ligand-binding specificity of most Tlp remains
unclear, and their ligand-binding domains are not conserved. Amino acid array hy-
bridisation showed specific binding between Tlp1 and L-aspartate, while yeast two-
hybrid system and immunoprecipitation shows protein-protein interactions between
Tlp1 and CheV (Hartley-Tassell et al., 2010). However, the lack of aspartate in the
Tlp1 crystal structure suggests Tlp1 recognises aspartate indirectly via an unknown
periplasmic binding protein (Machuca et al., 2016). Deletion of tlp2 led to reduced
chemotaxis towards Asp, pyruvate, phosphate and FeSO4. Transcription of tlp2 is
induced by inorganic phosphate and iron (Chandrashekhar et al., 2018). Meanwhile,
Tlp3 is a multi-ligand receptor that interacts with the following chemoattractants
and chemorepellents: isoleucine, purine, malic acid and fumaric acid, lysine, glu-
cosamine, succinic acid, arginine and thiamine (Rahman et al., 2014). Tlp3 ligand
also includes other hydrophobic amino acids, including alanine, valine and pheny-
lalanine (Khan et al., 2020). Tlp3 and Tlp4 are necessary for sodium deoxycholate
chemoattraction. Antibodies blockage and disruption of tlp3/4 reduced chemoat-
traction towards sodium deoxycholate (Li et al., 2014). Interestingly, deletion of
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tlp1 and tlp3, but not tlp2, showed a 10-fold reduction of invasion of human Coco
205 epithelial cells and chicken embryo intestinal cells. However, none of the above
mutations affects chemotactic capacity. That may suggest alternative receptors that
target the same chemoattractants (Vegge et al., 2009).

Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of
chemoeffectors. Tlp10 detects aspartate, isoleucine, fumarate, malate, fucose, and
mannose for chemoattraction. It also senses arginine, galactose and thiamine as
chemorepellents (Elgamoudi et al., 2017). In addition, deletion of tlp6 and tlp10
in strain 81-176 decreased chemotaxis toward aspartate and glutamate and TCA
intermediates (Chandrashekhar et al., 2015a).

Another translated product of mRNA highly complementary to CjSA21, Tlp9, is a
group B receptor. Group B receptors are homologous to family B transducers in H.
salinarum, consisting of a cytoplasmic protein anchored to a transmembrane region
and lacks a periplasmic ligand-binding domain. As tlp9 locates between aer1 and
aer2, it might be an energy taxis system that senses the redox state of the electron
transport chain from the PAS-containing Aer2 (Hendrixson et al., 2001; Elliott and
DiRita, 2008). Tlp9 might also receive signal transduction from other energy taxis
response proteins like CetC and CetZ (Reuter and van Vliet, 2013).

The remaining Tlps, such as Tlp6 and Tlp8, belong to group C. None of the group
C tlp appeared to be CjSA21 targets. Group C Tlp only carries a signalling domain
and is similar to family C transducers in H. salinarum. The lack of transmembrane
domain suggested that group C receptors might respond to intracellular signals
instead of external stimuli (Marchant et al., 2002).

sRNA-mediated regulation of tlp translation has been observed in Helicobacter py-
lori. RepG sRNA targets the G-repeats of the leader sequence of the tlp gene and
regulates tlpB translation (Sharma et al., 2010; Pernitzsch et al., 2014). RepG also
represses the translation of HP0102, which is downstream of tlpB within the same
operon. Hp0102 is responsible for smooth LPS production, which confers mem-
brane stress protection and antibiotic resistance (Pernitzsch et al., 2021). Inhibiting
Helicobacter pylori chemotaxis away from autoinducer-2 (AI-2) promoted biofilm
formation. Disruption of tlpB and other AI-2 sensing proteins led to more adherent
cells. Conversely, the addition of AI-2 increased biofilm dispersal Anderson et al.,
2015. In a follow-up computational prediction by agent-based modelling, cells in-
sensitive to AI-2 chemotaxis could form more extensive biofilms, while strains with
over-expressed AI-2 formed smaller biofilms Sweeney et al., 2019.
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CjSA21 is one of the few predicted sRNAs conserved among all Helicobacter and
Campylobacter strains (see the BLASTn result in Chapter 3). Hence, this chapter
might have discovered a new chemotaxis regulatory mechanism among Epsilonpro-
teobacteria. BLASTx search showed that the translated sequences of tlp1-4 and
tlp9 match H. pylori TlpA, while the tlp10 translated sequence is similar to H.
pylori TlpB. However, there is no significant nucleotide conservation between tlp
genes of C. jejuni and H. pylori. Also, the CjSA21 sequence is absent from the
genome sequences of H. pylori and other species. That illustrated the possibility of
sRNA-mediated Tlp regulation in other species via alternative sRNA and mRNA
sequences.

Chemotaxis suppression by cold and hyperosmotic stress

One key observation from our result is that CjSA21 appears to regulate tlp1-4 ex-
pression under food storage conditions. The “Bacteria chemotaxis” pathway was
differentially downregulated under chicken exudate, cold, and hyperosmotic stress.
Under these conditions, CjSA21 showed differential upregulation. Similarly, C. je-
juni strain 81-176 showed impaired growth and complete loss of motility under
osmotic stress (1.5% NaCl) (Cameron et al., 2012). Other species demonstrate
similar gene expression patterns. Salt and low temperature suppress motility and
transcriptomic expression of flagella assembly and chemotaxis pathways in Liste-
ria monocytogenes. Other downregulated pathways include Branched amino acid
metabolism and Other/unknown amino acid-regulated metabolism (Durack et al.,
2013). Meanwhile, reducing NaCl concentration increases flagellar biosynthesis and
swimming motility in Escherichia albertii (Ikeda et al., 2020).

Apart from being less sensitive to external stimuli, the suppression of chemotaxis
may reduce biofilm dispersal and favour biofilm formation over a planktonic lifestyle.
Under food storage conditions, the flagellar assembly and the chemotaxis path-
way experienced upregulation and downregulation, respectively. Despite conferring
motility, flagellar activities without chemotaxis may not cause biofilm dispersion.
A study of nutrient-induced biofilm dispersion in Pseudomonas aeruginosa showed
that the dispersion is dependent on a chemotaxis regulator BdlA but not flagel-
lar activity. Mutation of flgB did not affect dispersion towards nutrients (Morgan
et al., 2006). Svensson et al. (2014) showed that C. jejuni 81-176 flagellar facilitates
biofilm formation through motility-driven adhesion and the secretion of extracellular
DNA.

The presence of 5% chicken exudate may promote additional biofilm formation,
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as observed even for the flaAB mutant. That suggests the content in the chicken
exudate may facilitate cell adhesion even in the absence of flagellar (Brown et al.,
2014). That also agrees with proteomic analysis of strain 11168, which showed
increased proteomic levels of flagellins, filament cap and basal body in biofilm cells
compared to planktonic cells in the stationary phase (Kalmokoff et al., 2006).

The relationship between C. jejuni chemotaxis and biofilm formation remains de-
batable. In some cases, chemotaxis and biofilm formation seem correlated. For
example, C. jejuni autoinducer 2 (AI-2)-mediated quorum sensing was inhibited
by (QS) 2(5H)-Furanone, epigallocatechin gallate, and a citric-based disinfectant.
The disruption of quorum sensing coincides with reduced biofilm formation (Castillo
et al., 2015). Biofilm formation of strain 81-176 was reduced by ∆tlp8, while no
significant change was observed was observed in ∆tlp6, ∆tlp4 and ∆tlp10 (Chan-
drashekhar et al., 2015a). Nonetheless, C. jejuni NCTC11168 forms showed chemo-
taxis towards fucose while also demonstrating less biofilm formation (Dwivedi et al.,
2016). In addition, ∆cheW and ∆cheV exhibited reduced chemotaxis and increased
biofilm formation (Tram et al., 2020). Both cheW and cheV exhibited downregu-
lation in hyperosmotic stress, chicken juice and cold stress. The downregulation of
cheW and cheV in these conditions further suggests the likelihood of biofilm for-
mation. In another study in strain 11168, mutation of Cj1564 (Tlp3), which leads
to reduced chemotaxis towards chemoattractants such as aspartate and isoleucine,
also resulted in increased autoagglutination and biofilm formation (Rahman et al.,
2014). All these suggested that different chemotaxis genes/substrates have different
effects on biofilm formation, and the effect varies across various strains.

Some biofilm cells may persist under the VBNC state. In cold stress, C. jejuni tran-
sition from a spiral and more motile form into an inactive, coccoid shape VBNC
state for long term survival (Rollins and Colwell, 1986). NCTC11168 strains incu-
bated at 4 °C, biofilm cells of NCTC 11168 V1 and NCTC 11168 V26 and16-2R
all enter VBNC at a faster rate than their planktonic counterparts (Magajna and
Schraft, 2015).

Biofilm formation under hyperosmotic stress requires further confirmation. In con-
trary to our suggested model, the addition of NaCl inhibits biofilm formation in
strain M129 (Reeser et al., 2007). However, that may not be true for strain NCTC11168.
Moreover, the cells were cultured using Muller-Hinton broth (Difco) which was not
cation adjusted, unlike the data in this study obtained from cation adjusted MH2
broth.

161



It remains unclear what signals the transcription of CjSA21. One possibility is that
the low temperature and water efflux perturb the cell envelope structure. The cells
sense the membrane stress and subsequently signal biofilm formation via CjSA21.
The TCS CprRS (Campylobacter planktonic growth regulation) senses cell envelope
stress and is essential for osmotolerance and oxidative stress tolerance. A deletion
mutant of cprS showed reduced survival under 1% NaCl. However, cprS muta-
tion leads to increased biofilm formation (Svensson et al., 2009). A previous study
suggested that the deletion of the CprRS regulon enhances biofilm formation by
inducing envelope stress. C. jejuni cannot form biofilm in the absence of CprR or
CprR phosphorylation residue Asp52. Meanwhile, deletion of CprS showed improved
biofilm formation when subjected to cell envelope stress and reduced expression of
cprR and htrA and peb4, which are involved in envelope biosynthesis. The enhanced
biofilm formation of cprS deletion is rescued by adding Mg2+, which stabilises the
cell envelope. This observation suggests that cprS deletion reduced CprR phos-
phorylation which perturbed envelope formation by htrA and peb4. The envelope
stress thus leads to enhanced biofilm formation. Hence CprRS regulon does not
directly contribute to biofilm formation but instead does so indirectly by causing
envelope damage (Svensson et al., 2015). That also suggested that an alternative
sensing mechanism is required to translate envelope stress to increased biofilm for-
mation. Moreover, whether CprRS can sense cold stress or chicken juice remains
unclear. Furthermore, if CjSA21 responds to cell envelope stress, then it is unclear
why CjSA21 was not particularly over-expressed under both sodium deoxycholate
conditions (sod deoxy M and sod deoxy ES).

Ppk may stabilise CjSA21 targets

Another putative component of CjSA21 signalling is ppk (Cj1359) which showed
strong negative co-expression against CjSA21. ppk belongs to the polyphosphate
kinase 1 (PPK1) family and catalyses the reversible poly-phosphate (poly-P) for-
mation from the ATP terminal phosphate. C. jejuni 81-176 ppk1 deletion mutants
demonstrated increased biofilm formation (Candon et al., 2007; Gangaiah et al.,
2009). Moreover, ppk deletion did not affect the motility of C. jejuni 81–176, de-
spite showing upregulation of several flagella-associated genes and flagellar glycosy-
lation genes (Chandrashekhar et al., 2015b). Thus ppk opposes CjSA21-regulated
biofilm formation under food storage conditions by repressing flagellar-mediated cell
adhesion.
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RNase in module II

The following RNase genes are within module II: Cj0121, rnc, rnhA, Cj1710c.
Apart from Cj0121, all other three RNases showed significant negative co-expression
against tlp1-4 and might be involved in CjSA21-mediated mRNA degradation.
Among these candidates, Cj1710c is an RNase J that consists of both RNase E–like
endoribonucleolytic and a 5’-to-3’ exoribonucleolytic activity responsible for messen-
ger RNA maturation and degradation. Crystal structures of Thermus thermophilus
RNase J showed similar active site orientation and C-terminal domain architecture
as RNase E (Li de la Sierra-Gallay et al., 2008). Interestingly, sRNA-mRNA du-
plexes can activate RNase E to cleave the mRNA (Bandyra et al., 2012), which can
explain the negative correlation between the abundance of CjSA21 and tlp mRNAs.
Similarly, the deletion of H. pylori RNase J (rnj) did not affect the abundance of
ncRNAs (Redko et al., 2016). Hence, Cj1710c appear to be the most likely candi-
dates that degrade tlp mRNAs without degrading CjSA21 together.

Rnc promotes sRNA maturation by cleaving premature sRNA. RNase III deletion
mutants of Streptococcus pyogenes with RNase III caused differential expression of
6 putative sRNAs with over +2 fold change and p-value <= 0.05. This result
suggests Rnc’s role in sRNA degradation. However, rnc abundance appeared to be
independent of CjSA21 degradation, as rnc was also upregulated by food storage
conditions (Rath et al., 2017). Hence, it is more likely that C. jejuni rnc promotes
maturation of CjSA21 (by cleaving off the upstream regions?) and thus allows
CjSA21 to target and destabilise tlp1-4 mRNAs.

Meanwhile, Cj0121 (YbeY) is a metallo-endoribonuclease that targets single-stranded
substrates precisely and plays a role in rRNA processing. YbeY is highly conserved
among bacteria and is also responsible for sRNA metabolism. Mutation of Endori-
bonuclease YbeY increases ReaL sRNA abundance in Pseudomonas aeruginosa (Xia
et al., 2020b). YbeY also regulates virulence-associated sRNAs in V. cholerae. Dele-
tion of ybeY leads to an altered abundance of virulence-associated sRNAs such as
Qrr1-4, MicX and TarB (Vercruysse et al., 2014). However, YbeY-mediated mRNA
degradation has yet to be observed in C. jejuni.

Another RNase, RnhB, is an RNase HII involved in DNA replication. Meanwhile,
RnhA is an RNaseHI that targets RNA-DNA hybrids and degrades the RNA. None
of them appears to be responsible for mRNA degradation.

This analysis discovered several putative sRNAs candidates and their potential reg-
ulatory mechanisms, one of which has a strong basis in chemotaxis regulation.
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Further experimental confirmation is needed to validate CjSA21’s role as a reg-
ulator of chemotaxis and stress response under food storage conditions. Figure
4.41 summarises a possible post-transcriptional regulatory mechanism mediated by
CjSA21.

Figure 4.41: A proposed model of CjSA21 upregulation by hyperosmotic
stress, cold stress and chicken exudate. CjSA21 then binds to tlp1-4 (and
maybe tlp9 and tlp10 ) and inhibits their translation by either speeding up mRNA
turnover or inducing structural rearrangement. Inhibiting tlp translation resulted
in lower chemosensing. That allows increased biofilm formation, which enhances
survival under stress. Cj1710c and rnc may promote mRNA degradation and sRNA
maturation, respectively. Stress may also promote biofilm formation by upregulating
flagellar biosynthesis and downregulating ppk. Created in BioRender.com
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4.5.3 CjSA110 may regulate iron stress response genes

Previous knowledge about CjSA110 (CJnc190)

CjSA110 shares similar coordinates as CJnc190 and is antisense to CjSA109 (CJnc180).
CJnc180 and CJnc190 regulate PtmG to regulate infection in a three-dimensional
intestinal tissue model (Alzheimer et al., 2020). SDS-PAGE shows that double dele-
tion of CJnc180 and CJnc190 leads to an increased level of PtmG. The WT level of
PtmG was restored upon complementation of CJnc190 alone. Gel-shift assay fur-
ther confirmed that a predicted C/U-rich loop region of CJnc190 directly block the
RBS of PtmG, as a mutation in either one the stem-loop region or the RBS leads
to increased PtmG level (Svensson and Sharma, 2021).

In this study, ptmG is not within module VIII. ptmG (Cj1324, a colonisation factor,
in module I) also shows moderate positive co-expression with CjSA14 (Cjnc10),
CjSA47 (3’ UTR of rplA) and CjSA48 (3’UTR of rplL). The absence of ptmG
in module VIII is possible because the regulation is based on translation instead
of mRNA turnover. IntaRNA prediction in this study also showed no significant
binding between CjSA110 and ptmG. Disparities could result from slightly different
sRNA boundaries or differences in 5’ UTR estimation from previous studies since
the 5’ UTR here was defined based on the Cappable-seq TSS data.

CjSA110 only shows a weak/moderate correlation with tonB3 and Cj1384c. Such
weak/moderate correlation values may not be an issue, as eukaryotic miRNA-mRNA
also form weak/moderate negative correlation (Dai et al., 2019). Indeed, bacterial
sRNA-mRNA interactions do not necessarily show a strong correlation as sRNA may
only regulate the target’s structure without changing the transcript abundance. An-
other reason for such correlation coefficients is that post-transcriptional regulation
by sRNA is multifactorial. For instance, post-transcriptional regulation by CjSA110
might be overridden by other sRNAs or other regulatory factors for iron stress re-
sponse (e.g. Fur and PerR), thus creating a discrepancy between co-expression
patterns and other datasets. In pairwise comparisons such as the late stationary
phase against early stationary phase under 37 °C (37 LS vs 37 ES), iron uptake
transporters showed no downregulation despite the lack of differential expression
for CjSA110.

RNase degradation in module VIII

It is known that rnc is the RNase responsible for CjSA110 maturation. Deletion of
rnc leads to a higher level of pre-Cjnc180 (the more extended version) and a complete
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absence of mature, shorter CJnc190 (Svensson and Sharma, 2021. As an RNaseIII,
rnc also cleaves double-stranded RNAs, including sRNA-mRNA hybrids.

Another intriguing candidate is Cj1209, which belongs to module VIII and is the
only mRNA with a predicted binding energy value against CjSA110 with significant
FDR. The weak correlation between CjSA110 and Cj1209 may explain why they
were not connected in the WGCNA network despite being clustered into the same
co-expression module. This overall pattern suggests the likelihood that Cj1209 is
responsible for the degradation of tonB3 and Cj1384c. That may indicate CjSA110
targets Cj1209 mRNA and stabilises it, leading to more Cj1209 production for de-
grading tonB3 and Cj1384c. CjSA110 may also target tonB3 and Cj1384c and
provide a scaffold for degradation. CjSA110 targeting multiple mRNAs may also
explain its relatively weak correlations with tonB3, Cj1384c and CjSA110.

Predicted binding mechanism of CjSA110

CjSA110 appears to bind to multiple targets using both ends. Both binding regions
appear to have relatively low probabilities of forming secondary structures. That
corresponds with the E. coli sRNA Spot 42. Deletion analysis showed Spot 42
targets multiple messenger RNAs. In silico prediction identified 3 binding sites
which are partially single-stranded (Beisel and Storz, 2011).

According to the integrative analysis, CjSA110 binds to the coding region or the 3’
end of the mRNAs of tonB3 and Cj1384c. That may further suggest the possibility
of sRNA-mediated RNase degradation. 3’-5’ degradation can result from sRNA in-
teracting with upstream elements such as the RBS. For instance, RyhB sRNA binds
to the sodB RBS and induces in vivo transcript degradation at over 350 nucleotides
downstream. That suggests RBS blockage might be followed by degradation, maybe
by recruiting the RNA degradation machinery (Prévost et al., 2011).

Our result suggests binding interaction at the mRNA coding regions or towards
the 3’ end. While that is contrary to examples that involve physical interactions
with the RBS, evidence also suggests that sRNA targets the coding regions or to-
wards the 3’ ends. For instance, the distribution of sRNA-mRNA interactions in E.
coli K-12 MG1655 showed that most sRNA-mediated interactions (both empirical
and predicted results) targeted the middle point of the coding regions), including
those that are empirical. Their binding energy distribution is mostly around -10
to -20 kcal/mol, based on empirical and IntaRNA predicted values (Tello et al.,
2018).
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All results together indicate CjSA110 may interact and stabilise Cj1209 mRNA,
leading to more translated Cj1209 for degrading tonB3 and Cj1384c. CjSA110 may
also target tonB3 and Cj1384c and provide a scaffold for degradation.

Crosstalks with other pathways

Fe2+ triggers the Fenton/Haber-Weiss reaction, as it reacts with hydrogen peroxide
to generate ROS such as the destructive hydroxyl radical. ROS production leads
to oxidative stress, which damages [Fe-S] clusters, DNA, Cys/Met residues, and
membrane lipid (Jang and Imlay, 2007). Also, under high oxidative stress, Fe2+ un-
dergoes oxidisation into insoluble Fe3+, which is more challenging to acquire. While
iron is responsible for ROS production, it also acts as cofactors for oxidative stress
response enzymes such as superoxide dismutase, superoxide reductase and heme iron
(Ueda et al., 2003). Apo-Fur acts as a repressor of the sodB gene. Fe2+ relieve re-
pression of H. pylori sodB (Carpenter et al., 2009). Hence it is reasonable to expect
crosstalk between the iron-uptake and the oxidative-stress resistance network.

CjSA110 showed opposite differential expression patterns under various stress con-
ditions other than iron limitation, despite being clustered together with other iron
ABC transporters. That suggests CjSA110 might be responsible for the crosstalk
between the iron limitation and other stress responses. Notably, CjSA110 and tonB3
and Cj1384c showed opposite differential expression under oxidative stress (oxida-
tive), as well as cold stress (cold) and 5% chicken exudate (5% ce). Both cold and
5% ce involved storing or culturing the cells at low-temperature where oxygen sol-
ubility increases. So such an observation may point to crosstalk between the iron
stress response and the oxidative stress response. The differential expression pat-
tern at cold stress and chicken exudate agree with (Bronowski et al., 2017), which
shows significant upregulation of katA and sodB in 4 °C. The result illustrated the
crosstalk between cold stress adaptation and iron acquisition.

4.5.4 Ways to improve sRNA-target network construction

While this chapter has highlighted a list of high-confidence sRNA-target interac-
tions, several improvements can improve the prediction. For instance, the predic-
tion requires finding an sRNA-target pair from the same co-expression module. The
assignment of co-expression modules can be improved further. WGCNA partition
genes with similar expression patterns and network topology using hierarchical clus-
tering. However, module assignment by hierarchical clustering is irreversible. As a
result, after incorrectly clustering a gene into a co-expression module, it is impos-
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sible to reassign that gene into a different module. For example, instead of being
assigned to module VIII, PerR was assigned to module II despite being functionally
related to oxidative stress and iron homeostasis. PerR shows weak or moderate
correlations with module II and module VIII genes. Hence it is arguable that PerR
can be reassigned to module VIII instead. In another example, ppk is assigned to
different modules as CjSA21 despite showing a strong negative correlation. The is-
sue with module assignment may prevent the discovery of some actual sRNA-target
interactions. Future work can improve WGCNA module assignment using a recently
published k-module algorithm, which adds a step to reassign co-expression modules
after the WGCNA hierarchical clustering step (Hou et al., 2021).

Another drawback of this chapter’s approach is that it relies on the target transcript
abundance changing according to sRNA expression. Such an assumption may not be
valid and may miss out on binding interactions that have no impact on transcript
stability. Examples include interactions that prevent ribosome access or induce
secondary structure rearrangement. Moreover, co-expression can result from co-
regulation or indirect transcriptional regulation instead of a direct sRNA-mRNA
physical interaction. Although such a problem can be addressed by RNA-RNA
binding prediction using IntaRNA, it may not be completely accurate as stable
binding energy may not be optimal for sRNA-mRNA interactions. For example,
transient and condition-specific binding may favour less stable binding. Therefore,
IntaRNA may fail to recognise partially complementary base-pairing mediated by
RNA chaperone.

The next chapter will identify more sRNA-target interactions experimentally by
RNA crosslinking to address the possible shortfall of in silico prediction of sRNA-
target interactions. The results will allow a comparison between experimental find-
ings and in silico predictions.
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4.6 Summary

This chapter has explored the in-house RNAtag-seq data and has identified path-
ways, conditions and gene clusters that play vital regulatory roles in stress survival.
Further integrative analysis has generated a putative global sRNA-target interaction
network. CjSA21 stood out for associating with mRNA targets for chemosensing.
A detailed analysis of CjSA21 suggested it may inhibit chemosensing under food
storage conditions. Gene expression patterns under food storage conditions further
hint towards increased biofilm formation, contributing to survival under adverse
conditions. This chapter also explored CjSA110 (CJnc190) that suggests crosstalk
between iron limitation and other stress responses. While this chapter has estab-
lished an sRNA-target regulatory network based on bioinformatics analysis, such
an approach may miss out on physical interactions that pose no effect on transcript
levels or involve partially complementary sequences. Such a limitation has been
complemented by in vivo RNA crosslinking in Chapter 5.
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Chapter 5

RNA crosslinking identifies
sRNA-mRNA interactome

5.1 Introduction

Among all validated C. jejuni sRNAs, only the interaction involving the CJnc190-
CJnc180 antisense pair has been experimentally confirmed (Svensson and Sharma,
2021). While the binding targets of most sRNAs remain unknown, no established
high-throughput experimental approaches are available for determining C. jejuni
sRNA binding activities.

Analysis of RNAtag-seq data highlighted sRNA-mRNA duplexes based on computa-
tional prediction (refer to chapter 4). The prediction identified sRNA-mRNA pairs
with significant overall co-expression and condition-specific differential expression
patterns. Moreover, the computational analysis also included genome-wide target
prediction that estimates optimal binding activities with stable base-pairing energy.
Despite identifying interactions that induce transcript stabilisation or degradation,
such an approach may overlook interactions that only induce structural changes
or prevent ribosome association or when the sRNA is degraded together with the
mRNA. The assumption of genome-wide target prediction may also neglect in vivo
interactions with nascent transcripts or binding activities facilitated by RNA chap-
erons.

This chapter involves performing and optimising in vivo RNA crosslinking to iden-
tify sRNA-mRNA interactions experimentally. The experimental results will com-
plement the information obtained from the computational prediction. RNA-RNA
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pairs identified in this chapter may highlight sRNA-mediated mechanisms that do
not alter mRNA stability.

5.1.1 Experimental and bioinformatics challenges for RNA crosslink-
ing

AMT crosslinking and proximity ligation methods are capable of detecting short-
and long-range RNA-RNA interactions. Briefly, after culturing cells under specific
growth conditions, the psoralen derivative AMT was added to the cells to induce
covalent linkage among native RNA-RNA duplexes upon exposure to 365 nm UV
light. The crosslinking precedes cell harvesting and total RNA extraction. The RNA
samples are then treated with DNase to remove all DNA contamination. Afterwards,
rRNA depletion and S1 nuclease digestion minimise rRNA and single-stranded RNA
background noise. The processed RNA undergoes proximity ligation to ligate both
ends of crosslinked RNA pairs. Proximity ligation produces chimeric RNA species
with hybrid sequences of more than one gene. Then, 254 nm irradiation reverses
the crosslinked duplex into linear chimeric RNA species. RNase R treatment re-
moves all linear RNA sequences in the samples before the library preparation step
that converts the remaining linear chimeric RNA into cDNA for sequencing (Figure
5.1).

This approach has revealed the global RNA-RNA interactome in several experimen-
tal models. For example, the LIGR-Seq protocol in human cells has revealed the
global interactions between novel small nucleolar (sno) RNAs and mRNAs (Sharma
et al., 2016). There are other variants of LIGR-Seq that map intermolecular RNA
duplex in eukaryotic cells, with similar steps except for different chimeric RNA en-
richment strategies. Examples of such variants include Psoralen Analysis of RNA
Interactions and Structures (PARIS) (Lu et al., 2016), and Sequencing of Psoralen
crosslinked, Ligated, and Selected Hybrids (SPLASH) (Aw et al., 2017). Similar ap-
proaches have also been deployed in E. coli (Liu et al., 2017) and in Bacillus subtilis
(Durand et al., 2021). However, no published studies have applied RNA crosslinking
on C. jejuni. Practical concerns include how efficiently AMT can permeate through
the C. jejuni membrane and the choice of rRNA depletion protocol. Furthermore,
chimeric reads are challenging to detect due to background noise from rRNA contam-
ination and uncrosslinked RNAs. Hence, a careful examination of AMT uptake and
rRNA depletion is required to avoid wasting resources on sequencing uncrosslinked
RNA samples or rRNA species.

Sequencing crosslinked RNA species results in chimeric reads that align to multiple
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Figure 5.1: A simplified overview of the RNA crosslinking protocol. Created
in BioRender.com.
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genes. Identifying chimeric reads is challenging due to the complexity of mapping
the reads to features distant from each other. Some chimeric reads may consist of
sequences from two genes with the hybrid junction towards one end. This pattern
results in a long sequence for one gene and a short sequence for the other gene. It
is easier to map the more extended sequence to its respective gene. However, the
shorter sequence is more likely to be clipped out without being aligned elsewhere.
Hence, bioinformatics analysis of crosslinking data requires alignment tools with
high sensitivity to reads with split sequences.

Various alignment tools have varied sensitivity for detecting chimeric reads. In
a study that evaluated the performance of intron-exon junction detection, STAR
stood out for being more accurate than other alignment tools such as GSNAP,
TopHat2 and HISAT2. That was not surprising as the primary purpose of STAR is
to detect intron-exon junctions (Dobin et al., 2013; Boratyn et al., 2019). STAR’s
chimeric read detection setting enhances chimeric read detection. In addition, re-
placing STAR’s pair-ended alignment mode with single-ended alignment mode can
improve the sensitivity of chimeric read detection (https://github.com/alexdob

in/STAR/issues/333).

Another difficulty with identifying chimeric reads is multi-mapping reads. Some
chimeric reads may align to repetitive sequences such as rRNA or conserved coding
regions. For example, as mentioned in chapter 4, the three Tlp proteins Tlp2, Tlp3
and Tlp4 all have identical C-terminal amino acid sequences. A read aligned to tlp2
can originate from tlp3 or tlp4 instead. Sample contamination from other species
may also introduce RNA species mistaken for hybrid sequences from multiple genes
or vice versa. Therefore, BLASTn analysis of identified chimeric reads is necessary
to ensure accurate read alignment.

The software featureCounts can quantify the STAR aligned reads mapped to ge-
nomic features and extract the number of sRNA-mRNA read pairs for downstream
statistical analysis and evaluation. The reads mapped to both an sRNA and an
mRNA are extracted for downstream statistical analysis and evaluation. This
pipeline has contributed to authorship for a publication on Bacillus subtilis (Durand
et al., 2021). Several differences exist between this study and Durand et al., 2021.
The pipeline for analysing the Bacillus subtilis data did not include any demulti-
plexing and adapter trimming steps. The previous study generated Bacillus subtilis
Illumina MiSeq data, which generated the data in a fastq format and automatically
processed to remove adapters. As the data in this study was generated using the
Illumina NextSeq platform, converting the data from BCL to fastq formats was
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necessary before demultiplexing and adapter trimming (See the method section).
Moreover, the two sets of data consist of different negative controls and numbers of
replicates. Hence, the previous pipeline needed some modifications to address the
data obtained from this study.

This chapter will discuss optimisation of both experimental protocols and data
analysis workflows for identifying RNA interactions in C. jejuni. The identified
sRNA-mRNA interactions will also be evaluated based on their co-expression and
differential expression patterns in our 21 conditions RNAtag-seq dataset using the
same analysis workflow as chapter 4. The experimentally obtained data will also be
compared with the computational predictions described in chapter 4 to determine
identical interactions or discrepancies.

Chapter Aims:

• Apply and optimise RNA crosslinking to C. jejuni culture and the subsequent
bioinformatics analysis.

• Identify sRNA-mRNA duplexes from crosslinking data.

• Compare the results of RNA crosslinking with computational predictions in
chapter 4.
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5.2 Optimising the RNA crosslinking protocol and bioin-
formatics analysis

5.2.1 Cell culturing and RNA extraction

LIGR-Seq aims to detect covalently-linked RNA pairs induced by AMT addition
followed by UV exposure (AMT + UV). However, such an approach is susceptible
to background noise. Background noise can arise in the absence of either UV illumi-
nation or AMT supplementation, as ligases can ligate uncrosslinked RNA close to
each other. Consequently, this study detected background ligation by omitting UV
light (+AMT) or AMT (+UV) from the protocol. All samples consisted of three
replicates.

Table 5.1: Qubit measurements of extracted total RNA. The amount of
extracted RNA was sufficient for the subsequent steps of RNA crosslinking.

sample concentration (ng/ul)
AU1 2640
AU2 2500
AU3 2270
A1 3650
A2 1140
A3 3210
U1 2580
U2 3930
U3 2680

The extracted RNA concentrations all exceeded 1000 ng/ul. Most samples except
A2 had concentrations above 2000 ng/ul (Table 5.1). All samples have sufficient
extracted RNA for the subsequent DNase treatment. The DNase treatment removed
most DNA contamination and retained RNA with concentrations above 250 ng/ul
(Table 5.2). The bioanalyzer results showed limited degradation of rRNA (Figure
5.2 and 5.3). The retained RNA concentration and integrity were both sufficient for
downstream processing.
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Table 5.2: Qubit mesurements of DNase treated RNA.
sample concentration (ng/ul)
AU1 296
AU2 368
AU3 340
A1 342
A2 538
A3 266
U1 322
U2 324
U3 290

Figure 5.2: Bioanalyzer gel of all samples after total RNA extraction. The
results indicated limited RNA degradation after DNase treatment, suggesting the
samples were in sufficient quality for downstream processing.
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Figure 5.3: Bioanalyzer electrograms of all samples after total RNA extrac-
tion. Similar to the previous figure, electrograms showed limited RNA degradation
after DNase treatment and RNA quality sufficient for downstream processing.

5.2.2 Confirming crosslinking with the Bioanalyzer

Successful crosslinking requires AMT entering the cytoplasm and inducing RNA
duplex formation. Not much was known about the ability of AMT to penetrate
the C. jejuni cell wall and induce crosslinking, as no publication has recorded AMT
crosslinking on C. jejuni to our current knowledge. Hence, this study applied RNase
R digestion on the RNA samples to estimate the efficiency of in vivo crosslinking.
RNase R selectively degrades linear RNAs. Hence, free RNAs are usually more
susceptible to RNase R digestion. In contrast, crosslinked RNA duplex is more
resistant to RNase R digestion (Sharma et al., 2016) (Figure 5.4).
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Figure 5.4: The evaluation of AMT crosslinking efficiency by RNase R di-
gestion. Crosslinking resulted in RNA duplexes that are more resistant to RNase
R degradation. Hence, the resistance against RNase R degration indicate the effec-
tiveness of RNA crosslinking.

Bioanalyzer estimated the extent of RNase R digestion. For the negative control
without AMT (+UV), the 16S and 23S rRNA peaks became visibly smaller after
RNase R digestion. The 5S rRNA peak, which corresponds to small RNA fragments,
became several folds larger than the 16S and 23S rRNA peaks. That suggested that
16S and 23S rRNAs exhibited more degradation in the absence of AMT. In com-
parison, 16S and 23S rRNA peaks of AMT + UV remained more intact and larger
(Figure 5.5). That indicated a heightened resistance to RNase R digestion due to
successful crosslinking after AMT penetrated through the C. jejuni cell wall.
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Figure 5.5: Bioanalyzer analyses of RNase R digestion in the absence
and presence of AMT crosslinking. The crosslinked samples showed increased
resistance against RNase R degradation, suggesting the RNA crosslinking step was
successful.
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5.2.3 Optimisation of the rRNA depletion step

The Illumina Ribo-Zero kit, a gold standard kit for rRNA depletion, was discon-
tinued during this project. Like Ribo-Zero, other stand-alone commercial kits also
capture and remove conserved rRNA sequences by hybridisation to DNA probes.
Examples include MICROBExpress (Ambion) and RiboMinus (Life Technologies).
In a comparative evaluation of rRNA removal kits, RiboMinus showed more effi-
ciency at bacterial rRNA removal and was more cost-effective than MICROBEx-
press (Petrova et al., 2017). Therefore, RiboMinus emerged as a cheaper and more
effective alternative to Ribo-Zero.

Ideally, rRNA depletion would remove as many ribosomal sequences as possible.
Hence, the Bioanalyzer results of rRNA depleted samples should significantly reduce
the sizes of the 5S, 16S and 23S peaks. After the RiboMinus treatment, all negative
controls displayed smaller 16S and 23S peaks. The Bioanalyzer result excluded U1
due to the low amount of remaining U1. Nonetheless, the results on U2 and U3
suggested rRNA depletion was efficient for the +UV samples. However, AU1-AU3
all retained taller rRNA peaks (Figure 5.6 and 5.7). The rRNA removal could be
less efficient due to secondary structures induced by crosslinking, which might mask
the RiboMinus probe recognition site.
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Figure 5.6: Bioanalyzer gel of all samples after RiboMinus rRNA deple-
tion. Crosslinked samples showed less rRNA removal than the uncrosslinked sam-
ples.
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Figure 5.7: Bioanalyzer electrogram of all samples after RiboMinus rRNA
depletion. Crosslinked samples showed less rRNA removal than the uncrosslinked
samples.

RNAseq of the samples processed by the crosslinking protocol provided a more
precise estimation of rRNA removal. In order to assess the efficiency of the ribosomal
RNA depletion, we looked at the distribution of mapped reads aligning to 5S, 16S,
23S, tRNA or any other genomic feature (sRNA or mRNA). The portion of reads
aligned to sRNA or mRNA was particularly crucial, as this study aimed to identify
sRNA-mRNA interactions. Hence, the expectation was that depletion of ribosomal
RNA would lead to enrichment of reads mapping to mRNA/sRNA. RNAseq results
demonstrated the incomplete removal of rRNA. 99.2 % of the reads for AMT + UV
were either rRNA or tRNA. In contrast, 5.11 % and 9.13 % of reads aligned to either
sRNAs or mRNAs in negative controls (Figure 5.8a). Since chimeric reads tend to
be rare, additional rRNA removal steps were crucial to detect more sRNA-mRNA
interactions.

Since RiboMinus did not remove rRNA efficiently, other approaches were needed.
One alternative was to target the rRNA after cDNA preparation, as cDNA is free
from crosslinked secondary structures and RNA degradation. Depletion of Abun-
dant Sequences by Hybridisation (DASH) is an example of a cDNA-based rRNA
depletion approach; DASH involves designing sgRNAs targeting human riboso-
mal cDNA and recruiting Cas9 proteins for cDNA cleavage. PCR cannot amplify
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cleaved cDNA fragments, thus only enriching non-ribosomal sequences (Gu et al.,
2016). Recent studies have also applied DASH to reduce rRNA contamination
from Salmonella enterica serovar Typhimurium and Bacteroides thetaiotaomicron
(Prezza et al., 2020).

Moreover, all commercially available probes were designed based on rRNA sequences
of model organisms, instead of specifically for C. jejuni. Hence, C. jejuni rRNA
sequences were not fully complementary to those commercial probes. Such an issue
could be overcome by DASH, as it can capture C. jejuni rRNA sequences by custom-
designed sgRNA. Later, Illumina released Ribo-Zero Plus, a modified version of
Ribo-Zero. However, Ribo-Zero Plus became available very late in the project,
after all the work optimising RiboMinus and DASH. Hence, instead of replacing the
other two methods, Ribo-Zero was included in addition to RiboMinus and DASH
to maximise rRNA sequence removal.

The inclusion of DASH and Ribo-Zero Plus led to a higher rate of rRNA removal.
Reads aligned to sRNA or mRNA accounted for nearly 10 % of total reads in AMT
+ UV. About half of the reads mapped to either sRNA or mRNA in both negative
controls (Figure 5.8b). Apart from increasing the proportion of sRNA reads and
mRNA reads, combining all three rRNA removal steps also increased the percentage
of chimeric reads. Most of the reads mapping to ribosomal RNA were expected not
to be hybrids. Therefore, ribosomal RNA depletion should result in the enrichment
of chimeric reads. Such changes were apparent for AMT + UV, with the proportion
of chimeric reads rising from 6.82 % to 44.8 %. More importantly, AMT + UV
consisted of a higher fraction of chimeric reads than +AMT and +UV, which carried
28.5 % and 26.2 % of chimeric reads, respectively (Figure 5.9a and 5.9b).
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Figure 5.8: The distribution of RNA read types from samples before and
after including DASH and Ribo-Zero Plus. The addition of DASH and Ri-
bozero Plus improved the enrichment of mRNAs and sRNAs, especially for the
crosslinked samples.
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Figure 5.9: The distribution of RNA read types from samples from samples
before and after including DASH and Ribo-Zero Plus. The addition of
DASH and Ribozero Plus increased the portions of chimeric reads, especially for the
crosslinked samples.

While adding DASH and Ribo-Zero Plus resulted in more sRNA and mRNA species,
it was unclear if that also led to more sRNA-mRNA interactions. Hence, the qual-
ity of sequencing data also depends on the abundance of sRNA-mRNA duplexes.
Among all chimeric reads, there was an elevation of sRNA-mRNA interactions.
AMT + UV showed a 4-fold increase in sRNA-mRNA chimeric reads from 0.03
% to 0.12 %. DASH resulted in about 20 fold increase from 0.04 % to around
0.8 % in both negative controls (Figure 5.10a and 5.10b). However, rRNA-rRNA
pairs remained the most abundant interactions among chimeric reads from all sam-
ples.
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Figure 5.10: The distribution of RNA read types from samples from sam-
ples before and after including DASH and Ribo-Zero Plus. The addition of
DASH and Ribozero Plus increased the portions of sRNA-mRNA duplexes among
chimeric reads.
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5.2.4 Sequencing data quality control

After treatment from RiboMinus, DASH and RiboZero-Plus, RNAseq data from one
of the crosslinked replicates (AU1) displayed millions of unmapped reads, with less
than 50 % of reads aligned to the C. jejuni genome (Table 5.3). The rest might either
be contamination from other species or hybrid sequences created by crosslinking
and ligation. In order to distinguish between contamination and chimeric RNA
molecules, all unmapped reads were processed by BLASTn. The BLASTn search
revealed the most unmapped reads of AU1 aligned to moth species such as Galleria
mellonella. These contaminations may come from research conducted in the host
laboratory, which involved infecting bacteria into Galleria worms. However, It was
still possible that those unmapped reads were chimeric RNA that shared similar
sequences as the Galleria mellonella. De novo assembly using SPAdes (Bankevich
et al., 2012) followed by BLASTn search rules out the possibility of chimeric reads.
Almost all assembled reads mapped to Galleria genomes but none to Campylobacter
genomes. Apart from the abundant sample contamination in AU1, AU3 also showed
a deficient number of reads, with only 15869 in total. Hence, read counts from
all three replicates of each condition were combined to ensure enough reads for
statistical analysis and quality control.

Table 5.3: Number of sequencing reads and alignment rate. The low
alignment rate of AU1 was associated with contamination of reads from Galleria
worms.

Samples Sequencing reads Read 1 alignment
(%)

Read 2 alignment
(%)

AU1 10473741 47.75 42.77
AU2 5109242 84.07 77.74
AU3 15869 81.49 75.09
A1 13594346 86.81 81.77
A2 5998528 86.95 82.3
A3 6701508 86.56 83.07
U1 13195283 88.23 85.2
U2 2789915 87.36 84.3
U3 10292631 86.53 79.34

5.2.5 PCR duplications

After merging the replicates, the statistical enrichment of chimeric reads were ex-
amined using hypergeometric test, just as in Durand et al., 2021. Hypergeometric
test assumed that the abundance of crosslinked RNA pairs is directly proportional
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to the number of aligned chimeric reads and hence more statistically significant.
However, it was unclear if the hypergeometric test was appropriate for this study.
Depleting rRNA in C. jejuni was more difficult than in Bacillus subtilis. More-
over, as mentioned earlier, the sequencing depth for the crosslinked samples was
relatively low, especially due to the sample contamination in one of the replicates
(AU1). Another replicate (AU3) also had very few sequencing reads. As a result,
the number of chimeric reads that represented sRNA-mRNA interactions was less
abundant for C. jejuni. Due to the low number of non-rRNA chimeric reads, some
sRNA-mRNA duplexes mapped to only 1 or 2 reads. Some sRNA-mRNA duplexes
were statistically significant even when mapped to only one or two reads. Replac-
ing the hypergeometric test with the binomial test, as suggested by Sharma et al.
(2016), produced less significant p-values from duplexes with very few reads com-
pared to the hypergeometric test. Nevertheless, a large number of RNA pairs with
only 1 or 2 reads showed significant p-values (Figure 5.11). Hence, both statistical
tests were prone to false positives.

Figure 5.11: The distribution of p-values for chimeric read counts. The
number of chimeric reads aligned to each sRNA-mRNA pair and their statistical
significance when the (a) hypergeometic or the (b) binomial test were used.

Another uncertainty with using statistical tests was whether statistical significance
represents the in vivo abundance of crosslinked RNA molecules. Compared to the
RNA crosslinking protocol of Durand et al. (2021), this protocol consisted of an
extra step using DASH, which removed rRNA sequences after cDNA synthesis and
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enrichment. The reverse transcription reaction may fail to convert some non-rRNA
species into cDNA in the crosslinked RNA saturated with rRNA. cDNA conversion of
samples saturated with rRNA would yield fewer non-ribosomal species for DASH and
the subsequent PCR amplification. After DASH digested most rRNA species, the
remaining non-rRNA sequences would be excessively amplified by PCR, leading to
more PCR duplicates in the sequencing outputs. As negative controls RNA samples
contained fewer rRNA molecules, removing rRNA by DASH would leave more non-
rRNA sequences as templates for subsequent PCR amplification. Therefore, there
should be fewer PCR duplicates in the negative controls compared to the crosslinked
samples. Nonetheless, introducing the DASH treatment prior to the PCR step would
still result in plenty of PCR duplicates as DASH may reduce the diversity of PCR
templates.

PCR duplicates with Samtools confirmed the hypothesis above. After removing
duplicate PCR reads, AU1 - AU2, which were more saturated with rRNA, retained
1 % of reads. AU3 retained about 10 % of all reads but might be an outlier due
to the meagre read count. In contrast, all negative controls had more than 1 %
of reads. Some replicates such as U2 maintained over 3 % of reads after duplicate
removal. Most other de-duplicated negative controls also carried over 2 % of their
original reads (Table 5.4).

Table 5.4: Number of sequencing reads before and after PCR duplicates
removal. The results suggested duplicates reads made up over 95% of all sequenc-
ing reads.

sample Read 1
before de-
duplication

Read 1
after de-
duplication

Read 2
before de-
duplication

Read 2
after de-
duplication

es-AU1 6615113 45499 6615113 54609
es-AU2 5781680 37292 5383317 42405
es-AU3 18292 1403 16090 1683
es-A1 14974194 191266 14325606 236146
es-A2 6695660 136587 6327947 171005
es-A3 7571508 204685 7213983 252928
es-U1 14740430 229994 14232119 281875
es-U2 3129377 107701 2975123 142727
es-U3 11298545 237916 10322626 309372

PCR duplication occured among sRNA-mRNA pairs aligned to multiple reads. For
example, four chimeric reads aligned to Cj0920c shared identical coordinates with
perfectly matched sequences. Such duplications led to some reads being more statis-
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Figure 5.12: The number of chimeric reads mapped to Cj0920c before and
after PCR duplicates removal. The bottom track was before removing the
duplicates, while the top track was after the duplicate removal.

tically significant simply because of PCR duplication instead of being more abundant
inside the cells. Other chimeric reads aligned to genes such as rplN also exhibited
similar duplications (Figure 5.12 and 5.13). To further confirm the extent of PCR
duplication, the reads were visualised again after duplicates removal using Samtools.
As a result, both Cj0920c and rplN were aligned into a single chimeric read (Figure
5.12 and 5.13).
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Figure 5.13: The number of chimeric reads mapped to rplN before and
after PCR duplicates removal. The bottom track was before removing the
duplicates, while the top track was after the duplicate removal.
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The abundnace of PCR duplicates challenged the assumption that statistical signifi-
cance represented the frequency of in vivo RNA-RNA binding events in this dataset.
For example, rnpB were mapped by three groups of chimeric reads, and each con-
sisted of 4, 2 and 2 reads (Figure 5.14). This result suggested that the chimeric read
counts could not accurately represent the in vivo quantity of rnpB-mRNA interac-
tions. Therefore, statistical tests were not optimal for analysing this dataset after
PCR duplicates removal, as most remaining sRNA-mRNA chimeric reads would
only have one read.
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Figure 5.14: The number of chimeric reads mapped to rnpB before and
after PCR duplicates removal. The bottom track was before removing the
duplicates, while the top track was after the duplicate removal.
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5.3 Understanding extracted sRNA-mRNA chimeric reads

5.3.1 Filtering chimeric reads with negative controls

Low read counts and PCR duplication were likely to hamper statistical analysis, so
this study identified background noise using negative controls. sRNA-mRNA inter-
actions in the crosslinked sample (AMT + UV) were filtered against interactions that
appeared in either or both negative controls (+AMT and +UV). The crosslinked
sample consisted of 285 sRNA-mRNA duplexes. Filtering with negative controls re-
moved 235 (Figure 5.15), leaving 50 extracted pairs for further investigation (Table
5.5).

Figure 5.15: Numbers of sRNA-mRNA duplexes in AMT + UV, +AMT
and +UV. 50 sRNA-mRNA pairs were retained for downstream analysis.
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Table 5.5: All extracted sRNA-mRNA pairs from
RNA crosslinking data. Their respective co-expression
and IntaRNA predicted binding affinities are also included.

sRNA mRNA bicor padj IntaRNA IntaRNA IntaRNA
energy p-value FDR
(kcal/mol)

CjSA24 guaA 0.316 0.0281 -7.47 0.38 0.95
CjSA24 rpsE 0.0913 0.583 -4.12 0.83 0.997
CjSA36 Cj1632c 0.594 2.76E-06 -5.91 0.763 0.943
CjSA39 atpG -0.046 0.794 -9.99 0.346 0.951
CjSA39 ccoO -0.205 0.178 -7.86 0.667 0.951
CjSA39 Cj0262c 0.269 0.0673 -9.89 0.36 0.951
CjSA39 Cj0447 0.136 0.393 -7.33 0.744 0.951
CjSA39 Cj0457c 0.424 0.00202 -7.96 0.652 0.951
CjSA39 Cj0488 -0.244 0.101 -5.33 0.943 0.993
CjSA39 Cj1309c -0.369 0.00877 -8.43 0.579 0.951
CjSA39 Cj1486c -0.357 0.0117 -10.5 0.28 0.951
CjSA39 Cj1621 -0.0516 0.768 -8.69 0.539 0.951
CjSA39 Cj1709c 0.193 0.207 -6.42 0.855 0.971
CjSA39 ffh 0.309 0.0324 -9.9 0.359 0.951
CjSA39 fliK 0.624 5.43E-07 -9.28 0.448 0.951
CjSA39 fur -0.219 0.147 -9.85 0.366 0.951
CjSA39 galU -0.364 0.0097 -10.2 0.316 0.951
CjSA39 glyS -0.333 0.0196 -9.34 0.439 0.951
CjSA39 guaB -0.616 8.80E-07 -11.4 0.186 0.951
CjSA39 hrcA 0.302 0.0368 -9.49 0.417 0.951
CjSA39 hslV -0.483 0.000311 -9.47 0.42 0.951
CjSA39 ilvC 0.268 0.0687 -7.77 0.681 0.951
CjSA39 ndk 0.433 0.00157 -7.53 0.716 0.951
CjSA39 putA -0.0838 0.617 -11 0.228 0.951
CjSA39 putP -0.342 0.0162 -8.6 0.553 0.951
CjSA39 rbfA -0.3 0.0386 -5.37 0.941 0.993
CjSA39 rplM 0.762 1.86E-11 -5.87 0.906 0.982
CjSA39 rpoD 0.486 0.000276 -12.6 0.0959 0.951
CjSA39 thiE -0.165 0.292 -8.14 0.624 0.951
CjSA49 Cj0760 0.401 0.00379 -9.95 0.0736 0.951
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Table 5.5: All extracted sRNA-mRNA pairs from
RNA crosslinking data. Their respective co-expression
and IntaRNA predicted binding affinities are also included.

sRNA mRNA bicor padj IntaRNA IntaRNA IntaRNA
energy p-value FDR
(kcal/mol)

CjSA49 fliK 0.347 0.0144 -6.02 0.417 0.954
CjSA51 gpsA 0.609 1.26E-06 -11.3 0.216 0.959
CjSA51 rplN -0.101 0.54 -7.34 0.729 0.96
CjSA56 cheV 0.589 3.55E-06 -11.5 0.226 0.945
CjSA74 Cj0715 -0.313 0.0299 -7.73 0.844 0.959
CjSA74 Cj0716 -0.403 0.00365 -9.88 0.612 0.913
CjSA74 Cj1026c -0.161 0.304 -12 0.376 0.913
CjSA74 Cj1207c -0.0432 0.807 -8.77 0.739 0.925
CjSA74 Cj1360c -0.222 0.141 NA NA NA
CjSA74 Cj1419c -0.408 0.00319 -13.5 0.257 0.913
CjSA74 groES -0.0168 0.927 -13 0.296 0.913
CjSA74 rpsU 0.126 0.432 -11.1 0.473 0.913
CjSA76 fabD -0.0679 0.691 -10.6 0.255 0.952
CjSA78 fusA 0.304 0.0357 -10.9 0.295 0.951
CjSA78 tuf 0.288 0.0484 -9.92 0.402 0.951
CjSA9 carB 0.108 0.51 -13.2 0.017 0.949
CjSA9 Cj0920c 0.143 0.366 -6.06 0.599 0.949
CjSA9 Cj1583c -0.0424 0.811 -6.07 0.597 0.949
CjSA9 rp10 -0.284 0.0517 -5.94 0.618 0.949
CjSA97 hypB 0.568 9.58E-06 -5.61 0.89 0.979

None of the extracted crosslinked interactions appeared in the predicted sRNA-
target network in chapter 4. This difference indicated different binding mechanisms.
A closer look into the co-expression and predicted binding stability showed some
crosslinked interactions showed significant co-expression but insignificant IntaRNA
binding energy values. Most duplexes with statistically significant co-expression,
such as CjSA56-cheV, CjSA51-gpsA and CjSA97-hypB that displayed positive co-
expression (Figure 5.16). CjSA74 expression negatively correlated with Cj0715,
Cj0716 and Cj1419c. These duplexes might involve suboptimal interactions facil-

196



itated by RNA chaperon or other RNA binding proteins. The binding activity
resulted in the stabilisation or degradation of mRNA targets.

Figure 5.16: Pairwise correlation of sRNA-mRNA duplexes with statisti-
cally significant correlation. None of them appeared in the computational pre-
dictions presented in Chapter 4, suggesting RNA crosslinking and computational
prediction had identified two distinct sets of sRNA-mRNA interactions.

CjSA9-carB was the only duplex that displayed significant IntaRNA p-value without
exhibiting significant co-expression. CjSA9-carB may be an interaction with strong
affinity and regulate translation initiation by blocking or exposing the RBS. Other
interactions showed neither significant co-expression nor predicted binding energy.
RNA chaperons might facilitate these interactions to regulate translation without
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altering mRNA stability.

5.3.2 Alignment quality and sequence conservation of chimeric reads

Most reads have a MAPQ score of 255, which indicates a unique alignment. While
CjSA39 was the most frequently occurring sRNA among all extracted interactions,
the MAPQ score for CjSA39 was 1, indicating alignment to three or four regions
(Table 5.6). The genomic coordinates of CjSA39 were upstream of a 5S rRNA copy
(Figure 5.17a), representing a region that is highly conserved in all three copies
of the ribosomal regions present in the C. jejuni genome. That also explains the
observed strong co-expression of CjSA39 with ribosomal RNAs such as rplM (Table
5.5). Hence the reads mapping to CjSA39 were likely to be multi-mapping across
all three 5S rRNA copies.

Table 5.6: Chimeric reads with MAPQ scores that were not 255.
sRNA mRNA MAPQ
CjSA39 ccoO 1
CjSA39 Cj0262c 1
CjSA39 Cj0447 1
CjSA39 Cj0457 1
CjSA39 Cj0488 1
CjSA39 Cj1309c 1
CjSA39 Cj1486c 1
CjSA39 Cj1621 1
CjSA39 Cj1709c 1
CjSA39 ffh 1
CjSA39 fur 1
CjSA39 glyS 1
CjSA39 guaB 1
CjSA39 hrcA 1
CjSA39 hslV, rplI 1
CjSA39 ilvC 1
CjSA39 ndk 1
CjSA39 putA 1
CjSA39 rbfA, infB 1
CjSA39 thiE 1
CjSA74 Cj1419c 3

One of the CjSA74-mediated interactions has a MAPQ score of 3, indicating align-
ment to two locations (Table 5.6). The ambiguous alignment might come from the
conserved sequence from the tRNA-Gly copy upstream (Figure 5.17b). The seven
remaining duplexes involving CjSA74 yielded the MAPQ score of 255, suggesting
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the reads mapped to unconserved sequence on CjSA74.

Figure 5.17: Genomic coordinates of sRNAs and mRNAs involved in multi-
ple alignments. (a) CjSA39 and a 5S rRNA copy and (b) CjSA74 and a tRNA-Gly
copy.

There is a possibility that those chimeric reads were contaminants from other species
instead of crosslinked RNA pairs. If they were contaminants, they would be found in
genomes from other species and showed only partial identity to the C. jejuni genome
sequence. Some chimeric read alignments revealed some soft-clipped portions, in-
dicating those regions may originate from contaminants of another species. These
possibilities were tested by conservation analysis of all extracted chimeric reads
(Table 5.5). 310 chimeric reads were involved in extracted interactions. Most ex-
tracted chimeric reads were PCR duplicates. 89 reads showed BLASTn hits for non-
Campylobacter genomes from various sources, with 71 of them involving CjSA39. A
further comparison between those 89 reads and the C. jejuni NCTC11186 genome
showed almost 100 % identity to the query sequences, including the soft-clipped
regions, suggesting they are highly conserved C. jejuni features such as rRNA and
housekeeping genes.

5.3.3 Crosslinked interactions with low RNAtag-seq expression

All pairs from Table 5.5, except those involving CjSA39, were carried forward for
further analysis. Some of the interactions observed might result from background
crosslinking and ligation, especially among pairs with highly expressed sRNAs and
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mRNAs. Conversely, any duplex with low sRNA and mRNA expression was more
likely to represent a true biological association.

During the crosslinking protocol, any RNA molecules that have not crosslinked
and are single-stranded are removed through a nuclease digestion step. Hence, the
crosslinking dataset cannot accurately estimate gene expression. We, therefore,
looked at the transcript abundance derived from the RNAtag-seq dataset (refer
to chapter 4). The RNAtag-seq sample grown at 37 °C to early stationary phase
(37 ES) (OD600 at around 1.575) was the closest to the RNA crosslinking sample. In
this sample, among all sRNAs, CjSA97, CjSA24 and CjSA51 exhibited the highest
TPM expression, indicating they were more likely to be background noise. Con-
versely, CjSA74 and CjSA9 exhibited the lowest TPM expression. Among the six
CjSA74 targets, Cj0760 (rpsU ) had the second-lowest TPM. In contrast, Cj0716
and Cj1419c displayed relatively high TPM levels above 1000. Notably, Cj1360c
and Cj0715, two of the CjSA74 crosslinked targets, displayed the two highest TPM
levels among all crosslinked mRNAs. On the contrary, all five CjSA9-crosslinked
targets had TPMs below 1000, with carB expression being the third-lowest of all
genes and carB (a carbamoyl-phosphate synthase large chain) and Cj1583c having
a TPM less than 10. These results suggested that CjSA9 interactions were the least
likely to originate from background noise (Figure 5.18 and 5.19).
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Figure 5.18: TPM expression of extracted sRNAs in 37 ES of the RNAtag-
seq samples. CjSA74 and CjSA9 showed the lowest expression levels in the 37 ES
condition of RNAtag-seq. That suggested that their presence in the crosslinking
data was the least likely to be the result of expression background noise.
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Figure 5.19: TPM expression of extracted mRNAs in 37 ES of the
RNAtag-seq samples. CjSA9 targets (Cj1583c, carB) were among the three
mRNA targets with lowest expression levels in the 37 ES condition of RNAtag-seq.
This further suggested interactions involving CjSA9 were the least likely to be re-
sults of expression background noise under the early-stationary phase.
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5.3.4 Common results between crosslinking and computational pre-
diction

When comparing the computational predictions from chapter 4 and results in Table
5.5, CjSA9 was also the most outstanding sRNA. In chapter 4, CjSA9 was one of the
four sRNAs with targets overrepresented in the KEGG pathway enrichment anal-
ysis. The presence of rpoC, purL and purH resulted in the statistical enrichment
of the “Purine metabolism” pathway (Table 5.7), which is an important pathway
for C. jejuni stress adaptation. For instance, exposure to oxygen and hyperosmotic
stress led to frequent genetic variation in two purine biosynthesis genes, purF and
apt (Cameron et al., 2015). Interestingly, one of the targets, Cj1110c, was a signal
transduction protein similar to tlp1-4. Cj1110c encodes Tlp8 (CetZ), a cytoplas-
mic sensor responsible for energy taxis. The CetZ orthologue AerC in A. brasilense
controls chemotaxis away from high redox potential to low redox potential, possi-
bly by monitoring cytoplasmic redox metabolites (Xie et al., 2010). In C. jejuni,
inactivation of tlp8 resulted in increased energy taxis, a phenotype opposite to
cetAB inactivation, suggesting that CetAB and CetZ are two PAS-domain sensors
that counteract each other in response to internal metabolic status. Both sensing
systems transduce redox signals to CheA and CheY to mediate flagellar rotation
(Reuter and van Vliet, 2013).

Table 5.7: All CjSA9 mRNA partners identified by the computational
prediction in chapter 4. CjSA9 targets identified by computational prediction
and RNA crosslinking were completely different.

mRNA Description
rpoC DNA-directed RNA polymerase β chain
ispH 4-hydroxy-3-methylbut-2-enyl diphosphate reductase
purH Bifunctional purine biosynthesis protein
purL Part of the phosphoribosylformylglycinamidine synthase complex

in the purines biosynthetic pathway
Cj0991c Probable oxidoreductase ferredoxin-type electron transport protein
Cj1110c Probable MCP-type signal transduction protein
cdsA Phosphatidate cytidylyltransferase
kpsC Possible polysaccharide modification protein
Cj1563c Probable transcriptional regulator
Cj1677 1 Putative lipoprotein
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In conclusion, the IntaRNA prediction, the abundance of sRNA and mRNA, and the
consensus result of computational and experimental approaches all pointed towards
CjSA9 as an exciting candidate for further exploration. Hence, the next section will
explore CjSA9 in more detail.

5.4 Detailed analysis of CjSA9

It is worth noting that CjSA9 shared similar genomic coordinates as the signal
recognition particle RNA (SRP RNA). Bacterial signal recognition particle RNA
recognises signal peptide sequences and co-translationally integrates nascent mem-
brane peptides to the cell membrane. The start site of CjSA9 was 66641, which was
five nucleotides upstream from the SRP 5’ end because of the position of the nearest
TSS. The 3’ end of CjSA9 was 81 nucleotides downstream of the SRP RNA 3’ end
(Figure 5.20).

Figure 5.20: Genomic coordinates of CjSA9 and SRP RNA. CjSA9 consisted
of the whole SRP RNA sequence, with an additional 5 nulcleotide at the 5’ end
and an extended 81 nuleotides at the 3’ end. Only features on the sense strand are
shown here.
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Given SRP RNA’s role in membrane-targeted translation, biological associations
of CjSA9 should include transcripts encoding membrane proteins. Among the
crosslinked targets, Cj0920c and Cj1583c encoded for a putative ABC-type amino-
acid transporter permease protein and putative peptide ABC-transport system per-
mease protein, respectively. Computational prediction also highlighted Cj1677 1
and Cj0991c, transcripts corresponding to lipoprotein and an electron transport
chain protein, respectively. Due to the compact C. jejuni genome, some targets
above belong to the same operon with other membrane protein genes. Hence, the
expression of those genes may also be affected by CjSA9. Interestingly, all four
crosslinked targets formed continuous transcripts with at least one membrane pro-
tein gene. For instance, Cj0920c was in the same operon as pebC (Amino-acid ABC
transporter ATCP-binding protein), peb1A (Bifunctional adhesin/ABC transporter
aspartate/glutamate-binding protein) and Cj0919c (probable ABC-type amino-acid
transporter permease protein). Meanwhile, Cj1583c was part of the Cj1584c-Cj1580c
operon encoding the ABC transporter complex NikZYXWV for nickel uptake. More-
over, carB was immediately downstream of mreC, an integral component of mem-
brane according to the GO cellular component annotation. Lastly, rp10 was im-
mediately upstream of Protein translocase subunit SecY that belongs to the inner
membrane. The prevalence of neighbouring membrane protein genes agreed with the
known biological role of SRP RNA for membrane-associated co-translation.

On the contrary, most computationally predicted targets were not in the same
operon as membrane protein genes. Hence, most computational targets may rep-
resent interactions irrelevant to the SRP RNA function. The only exception was
kpsC, which was immediately upstream of kpsS, a capsule polysaccharide modifica-
tion protein annotated as an integral component of the membrane according to GO
cellular component.

5.4.1 Expression patterns of CjSA9 and its putative binding tar-
gets

To understand the dissimilarity between the targets highlighted by RNA crosslinking
and computational prediction and the genomic coordinates of CjSA9 and SRP RNA,
the expression pattern and putative binding mechanism of CjSA9 were studied more
thoroughly. Once again, our RNAtag-seq data suggested that CjSA9 showed differ-
ential upregulation in conditions such as hyperosmotic stress (nacl), oxidative stress
(oxidative) and iron repletion in the early stationary phase (iron rep ES) (Figure
5.21).
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Figure 5.21: Differential expression of CjSA9 and its crosslinking tar-
gets. No clear differential expression correlation was observed among CjSA9 and
its crosslinked targets.
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CjSA9 and its computationally predicted targets belonged to co-expression module
X, which consisted of the most significant number of genes. In contrast, none of the
crosslinking targets was assigned to module X. WGCNA clustered Cj1583c and rp10
into module III and I, respectively. Both Cj0920c and carB were found in module
VI (Figure 5.22). As the computational prediction required all targets to show
a statistically significant correlation with their sRNA partners, these observations
are not surprising. Furthermore, no crosslinked targets statistically correlated with
CjSA9 (Figure 5.23).

Figure 5.22: Distribution of crosslinking targets across co-expression mod-
ules. CjSA9 belonged to co-expression module X. None of the four CjSA9
crosslinked targets belonged to module X.

As computational targets all belonged to the same co-expression modules, they
should display the same or opposite differential expression patterns with CjSA9
across many conditions. However, that may not be true for crosslinking targets, es-
pecially since none of them is from the same co-expression module as CjSA9. Hence,
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Figure 5.23: Pairwise correlation between CjSA9 and its crosslinking tar-
gets. No statistically significant (FDR < 0.05) co-expression was observed, sug-
gesting the CjSA9 interaction may regulate mRNA structure instead of stability.
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the differential expression pattern of CjSA9, crosslinked targets and computational
targets was observed. The result showed that none of the crosslinked targets ex-
hibited clear differential expression patterns compared to CjSA9 (Figure 5.21). On
the contrary, computational targets such as purine metabolism genes (purH, purL
and rpoC ), together with ispH, kpsC and Cj0991c, showed opposite differential ex-
pression in conditions including the late stationary phase, iron limitation and bile
stress. Under these conditions, CjSA9 and Cj1677 1, cdsA, Cj1110c and Cj1563c
had almost identical differential expression patterns (Figure 5.24).

The expression patterns above suggested that, unlike computationally predicted
interactions, RNA crosslinking suggested that CjSA9 may not directly affect the
transcript abundance of the four crosslinked interactions. Instead, CjSA9 or SRP
RNA binding may induce structural rearrangement and regulate translation initia-
tion or elongation. SRP RNA is expected to bind to RNA targets without affecting
transcript abundance. For instance, the SRP complex can stall nascent peptides and
anchor the ribosomal complex to the membrane before further translation elongation
(Mercier et al., 2017).
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Figure 5.24: Differential expression of CjSA9 and its computationally pre-
dicted targets. Unlike the crosslinking interactions, computationally predicted
targets of CjSA9 showed similar or opposite differential expression patterns.
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5.4.2 Binding interactions and mechanisms of CjSA9

Another question to address was whether the crosslinking targets formed stable
binding interactions with CjSA9 and if they shared similar interaction sites with
other predicted targets. Based on the genome-wide target prediction by IntaRNA
in chapter 4, all computationally predicted targets have significant p-values but in-
significant FDR. Among the four crosslinking targets, carB was the only gene that
showed significant p-values with the calculated affinity equalled -13.16 kcal/mol (Ta-
ble 5.8). In contrast, the other three crosslinked targets displayed binding energies
of around -5 or -6 kcal/mol.

Note that gltX was the only computationally predicted target with FDR <= 0.05,
with a -21.22 kcal/mol binding energy value. Apart from that, none of the other
energy values was more stable than -20 kcal/mol. Indeed, most predicted binding
energy values for CjSA9 ranged between -15 kcal/mol to 0 kcal/mol (Figure 5.25),
suggesting even those statistically significant (p-values <= 0.05) interactions were
not exceptionally stable compared to those that were statistically insignificant. The
unstable predicted binding energy of CjSA9 may facilitate the biological role of SRP
RNA, which form transient interactions with RNA targets to hold off translation
until reaching the membrane.

Figure 5.25: The distribution of IntaRNA-predicted energy values of all
CjSA9-target pairs. Most CjSA9-mRNA interactions showed predicted binding
energy values ranged between -15 kcal/mol to 0 kcal/mol.
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Table 5.8: The output of CjSA9 IntaRNA genome-
wide target prediction. Only targets with p-values <=
0.05 were shown here.

Gene
name

Binding
energy
(kcal/mol)

p-value FDR Source

rpoC -11.72 0.045293 0.9492869 computational
ispH -12.33 0.0304162 0.9492869 computational
purH -12.04 0.0368686 0.9492869 computational
purL -11.62 0.0482357 0.9492869 computational
Cj0991c -11.72 0.045293 0.9492869 computational
Cj1110c -11.65 0.0473366 0.9492869 computational
cdsA -13.26 0.015765 0.9492869 computational
kpsC -12.59 0.0254718 0.9492869 computational
Cj1563c -11.61 0.0485386 0.9492869 computational
Cj1677 1 -12.29 0.0312447 0.9492869 computational
carB -13.16 0.0169718 0.9492869 crosslinking
Cj1583c -6.07 0.5974823 0.9492869 crosslinking
Cj0920c -6.06 0.5990737 0.9492869 crosslinking
rp10 -5.94 0.618137 0.9492869 crosslinking
rrc -12.43 0.0284259 0.9492869 IntaRNA only
aspA -12.03 0.0371102 0.9492869 IntaRNA only
rpmA -15.85 0.0016881 0.4016814 IntaRNA only
Cj0128c -12.8 0.0219942 0.9492869 IntaRNA only
Cj0141c -12.88 0.0207805 0.9492869 IntaRNA only
Cj0162c -13.98 0.0090485 0.8530454 IntaRNA only
frr -15.82 0.0017398 0.4016814 IntaRNA only
secG -15.7 0.0019608 0.4016814 IntaRNA only
Cj0264c -11.77 0.0438791 0.9492869 IntaRNA only
cheA -14.37 0.0065723 0.749474 IntaRNA only
modA -12.82 0.0216853 0.9492869 IntaRNA only
cmeA -11.94 0.0393459 0.9492869 IntaRNA only
dapA 1 -14.1 0.008213 0.8314455 IntaRNA only
Cj0496 -12.02 0.0373532 0.9492869 IntaRNA only
alaS -13.06 0.0182569 0.9492869 IntaRNA only
htpG -12.08 0.0359152 0.9492869 IntaRNA only
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Table 5.8: The output of CjSA9 IntaRNA genome-
wide target prediction. Only targets with p-values <=
0.05 were shown here.

Gene
name

Binding
energy
(kcal/mol)

p-value FDR Source

Cj0541 -13.15 0.0170968 0.9492869 IntaRNA only
proS -11.57 0.049766 0.9492869 IntaRNA only
Cj0610c -11.71 0.0455803 0.9492869 IntaRNA only
uvrB -12.86 0.0210784 0.9492869 IntaRNA only
ackA -16 0.0014488 0.4016814 IntaRNA only
CjSA60 -16 0.0014488 0.4016814 IntaRNA only
Cj0736 -13.18 0.0167243 0.9492869 IntaRNA only
hrcA -13.37 0.0145231 0.9492869 IntaRNA only
Cj0777 -12.64 0.024604 0.9492869 IntaRNA only
ilvA -13.58 0.0123838 0.9492869 IntaRNA only
gltX -21.22 1.00E-07 0.0001721 IntaRNA only
Cj0846 -13.82 0.0102757 0.884224 IntaRNA only
pabA -16.13 0.0012658 0.4016814 IntaRNA only
serA -12.62 0.0249481 0.9492869 IntaRNA only
rpsA -13.4 0.0141993 0.9492869 IntaRNA only
Cj1004 -13.63 0.0119164 0.9492869 IntaRNA only
cjeI -11.83 0.0422315 0.9492869 IntaRNA only
mfd -15.63 0.0021006 0.4016814 IntaRNA only
argS -14.3 0.0069678 0.749474 IntaRNA only
Cj1199 -13.93 0.0094177 0.8530454 IntaRNA only
kefB -12.21 0.0329593 0.9492869 IntaRNA only
Cj1241 -14.43 0.0062488 0.749474 IntaRNA only
guaA -12.7 0.023596 0.9492869 IntaRNA only
Cj1287c -15.84 0.0017052 0.4016814 IntaRNA only
gltX2 -12.57 0.0258262 0.9492869 IntaRNA only
Cj1302 -13.42 0.013987 0.9492869 IntaRNA only
maf3 -11.63 0.0479344 0.9492869 IntaRNA only
Cj1365c -11.7 0.0458692 0.9492869 IntaRNA only
Cj1367c -12.03 0.0371102 0.9492869 IntaRNA only
carA -14.52 0.0057894 0.749474 IntaRNA only
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Table 5.8: The output of CjSA9 IntaRNA genome-
wide target prediction. Only targets with p-values <=
0.05 were shown here.

Gene
name

Binding
energy
(kcal/mol)

p-value FDR Source

rloH -14.31 0.0069101 0.749474 IntaRNA only
hsdR -12.28 0.0314548 0.9492869 IntaRNA only
sdaA -12.29 0.0312447 0.9492869 IntaRNA only
Cj1664 -12.72 0.023268 0.9492869 IntaRNA only
Cj1677 2 -12.29 0.0312447 0.9492869 IntaRNA only

Based on IntaRNA, CjSA9 contains two optimal binding sites for targets with p-
values <= 0.05. One is in position 50 -100, near the annotated 3’ end of SRP RNA.
The other one is at around position 100 - 150, located after the annotated 3’ end of
SRP RNA (Figure 5.26). The putative optimal binding sites of the four crosslinking
targets are near the 3’ end of SRP RNA. The carB binding site was longer than the
other three binding sites, which explained why the binding energy value for carB
was more stable than the other three binding energy values (Figure 5.27).
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Figure 5.26: The distribution of predicted optimal binding sites used by
CjSA9 against all IntaRNA predicted targets with p-values <= 0.05. The
results suggested two putative binding regions, one in between the 50th - 100th

nucleotides and the other near the 150th nucleotide.
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Figure 5.27: The distribution of predicted optimal binding sites used of
CjSA9 against all crosslinking targets. The numbers in the brackets indicate
the CjSA9 nucleotide positions involved in the base pairing.

216



IntaRNA also predicted the distance between the optimal interaction sites and the
target’s TSS (Figure 5.28). The predicted interaction sites of CjSA9 and its targets
can be compared with the actual position of their mapped chimeric reads. The align-
ment regions were likely to be located near the ligated ends. The actual positions of
ligated ends can be approximated using the locations of soft-clipped bases (shown in
rainbow colour in Figure 5.29). A closer look at the chimeric reads mapping to carB

Figure 5.28: The distribution of predicted optimal binding sites of the
crosslinking targets against CjSA9. The numbers in the brackets indicate the
crosslinked targets nucleotide positions involved in the base pairing.

showed that among the aligned paired-end reads, Read 2 was a split read. The first
21 bp of read 2 mapped from the 23th to the 43th nucleotides of CjSA9. The other
55 bp mapped to the middle of carB, more than 2000 bp downstream of the 5’ end.
Read 1 was fully aligned to 76 nucleotides around the middle of carB (Figure 5.29a).
That may hint towards a chimeric junction near the 43th nucleotide of CjSA9, and
somewhere near the middle of carB. That was different from the IntaRNA predicted
binding site, which was after the 59th nucleotide of CjSA9 and 1015 bp downstream
of the carB TSS.

Read 2 of CjSA9-Cj0920c was a chimeric read that mapped to CjSA9 twice. One
part of read 2 consisted of 34 bp that mapped to the 5’ end of CJSA9. The other part
included 40 nucleotides aligned near the SRP RNA 3’ end. Read 1 mapped to 74
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nucleotides around the middle of Cj0920c at about 800 bp downstream of the 5’ end
(Figure 5.29b). The chimeric read may result from the secondary structure folding
of SRP RNA 5’ end and 3’ end. The result may suggest binding interactions between
either end of SRP RNA and the region around the 800th bp of Cj0920c.

Read 1 of CjSA9-Cj1583c was a hybrid of two 38 bp sequences. Both sequences
aligned to a similar region on CjSA9, located near the annotated 3’ end of SRP
RNA. That might result from ligation between the 3’ ends of two different SRP
RNA molecules. Meanwhile, read 2 was a hybrid read with 47 bp aligned near the
SRP RNA 3’ end and 24 bp (plus 1 mismatched bp) mapped to the Cj1583c coding
region (Figure 5.29c). That suggested a chimeric junction between the 3’ end of
SRR RNA and the coding region of Cj1583c. Note that the alignment of Cj1583c
was slightly upstream of the IntaRNA prediction. The read alignment suggested
the interaction site was about 600 bp from the TSS of Cj1583c. However, based on
IntaRNA, the interaction took place between the 700th and 800th nucleotides from
the TSS.

Read 2 of CjSA9-rp10 consisted of 49 bp near the annotated 3’ end of SRP RNA
and the other 27 bp near the 5’ end of rp10. Read 1 almost aligned completely
to the 5’ end of rp10, except the first 8 bp being soft-clipped and unmapped to
anywhere else (Figure 5.29d). That indicated the binding site was near the 3’ end
of SRP and the 5’ end of rp10. Note that the crosslinked site of rp10 was contrary
to the target sequence estimated by IntaRNA. IntaRNA suggested the binding site
was in between 300th and 400th nucleotides from the TSS.
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Figure 5.29: Paired-end reads mapped to CjSA9 and its crosslinked targets.
Those targets were (a) carB (b) Cj0920c (c) Cj1583c (d) rp10. The numbers in the
following brackets were the length of mapping nucleotides.
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5.4.3 Expression change and Structural insights of CjSA9 and SRP
RNA

As mentioned earlier, IntaRNA suggested two optimal binding sites for CjSA9. One
was found around the SRP RNA 3’ end, while the other was downstream of the
SRP RNA 3’ end. Interestingly, many crosslinked sequences above were near the
annotated 3’ of SRP RNA. These observations suggested several possibilities. First,
the CjSA9 transcription signal after the SRP RNA 3’ end might result from back-
ground noise and non-specific transcriptional readthrough. The second possibility
was that CjSA9 represented the pre-processed version of SRP RNA. This process
may involve cleavage of the region downstream of the SRP RNA 3’ terminal during
SRP RNA maturation. During such a process, one can speculate that all three
molecules, pre-processed CjSA9, processed SRP RNA and the cleaved 3’ end can
potentially bind to different sets of targets under certain conditions. For instance,
the mature SRP RNA could target all four crosslinking targets, while the cleaved
sequence could bind to other targets, including purine metabolism genes including
rpoC, purH and purL.

The mapped read coverage of CjSA9 was visualised using the RNAtag-seq samples to
determine whether CjSA9 is merely background noise or an independent transcript.
Most conditions, such as acid stress (acid), showed limited expression coverage to-
wards the CjSA9 3’ end (Figure 5.30a). However, some conditions showed more
visible read coverage after the 3’ end of the SRP. For instance, a higher level of ex-
pression coverage was observed after the SRP RNA 3’ end among two out of three
replicates of the samples from the early stationary phase under 37 °C (37 ES) (Fig-
ure 5.30b). Likewise, expression coverage was observed in SRP RNA 3’ end in the
samples from the early stationary phase under 42 °C (42 ES) (Figure 5.30c). Hence,
the 3’ end of CjSA9 may exist as a transcript when the cell has been cultured to
the early stationary phase. However, note that the y axis scales of 37 ES and 42 ES
were smaller than acid. Hence, the CjSA9 3’ end might be more visible simply due
to the lower coverage of SRP RNA in the early stationary phase. Therefore, another
possibility is that SRP RNA exhibits a low expression level indistinguishable from
background noise upon stationary phase entry.

Assuming CjSA9 3’ end is an independent transcript from SRP RNA, it should
form a secondary structure independently from SRP RNA. Otherwise, SRP RNA
and CjSA9 3’ end sequences may form a hybrid RNA structure. Hence, the identity
of the CjSA9 3’ end was examined using the RNAfold computed structure of CjSA9
and SRP RNA. Secondary structure computed by RNAfold revealed two separate
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Figure 5.30: Expression coverage of CjSA9 under RNAtag-seq conditions.
Those conditions were (a) acid, (b) 37 ES and (c) 42 ES. The numbers in the brack-
ets indicate the y-axis scale of the wigsum normalised coverage.
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domains within CjSA9. The first domain of CjSA9 formed a linear hairpin struc-
ture. Most base pairs have medium to weak intramolecular binding probability and
medium to high nucleotide entropy. This pattern indicated flexibility of the hairpin
structure, allowing it to unfold and bind to other RNA molecules. The second do-
main consisted of mostly unpaired nucleotides. The 3’ end of SRP RNA was located
near the first and second domains interface. Thus, the second domain consisted of
only sequence after the SRP 3’ end (Figure 5.31a).

The CjSA9 3’ end alone (with the SRP RNA sequence removed) displayed an iden-
tical structure as when it was attached to the SRP RNA. The structural identity
suggested that the CjSA9 3’ end function independently from SRP RNA. Notably,
the CjSA9 3’ end region has a medium secondary structure formation probability
and nucleotide entropy, including the region involved in base-pairing according to
crosslinking and IntaRNA. That suggested some flexibility for base pairing with
other RNA species (Figure 5.31b). The subsequent conservation analysis showed
that CjSA9 3’ end had a secondary structure distinct from any templates or ncRNA
families on the RNACentral and Rfam databases. Such an observation indicates
CjSA9 3’ end exists as a novel sRNA.
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Figure 5.31: RNAfold prediction of CjSA9 and CjSA9 3’ end. Structures of
(a) CjSA9 and (b) CjSA9 3 end with the SRP RNA sequence removed. The result
suggested the extended CjSA9 3’ end structure was not affected by the SRP RNA
sequence.
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Removing the extra 3’ end region did not affect the structure of SRP RNA (Figure
5.32). The intramolecular binding probability increased after removing the CjSA9
3’ end sequence, possibly due to reduced base-pairing competition. This finding
suggests that the additional CjSA9 sequence may affect the SRP RNA structural
stability and thus its biological function. That also means SRP RNA is more likely
to retain its biological function if the CjSA9 3’ end was a separate transcript.

Figure 5.32: RNAfold structure of SRP RNA. The linear predicted structure
agreed with the published SRP RNA structure, and was not affected by the CjSA9
3’ end sequence. The result suggested CjSA9 3’ end and SRP RNA may function
independently.
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5.5 Discussion

5.5.1 Improvement and challenges of rRNA depletion

RiboMinus alone appeared insufficient for rRNA depletion, as demonstrated by the
presence of only 0.8 % of mRNAs or sRNAs in the crosslinked samples. The inclusion
of DASH and Ribo-Zero Plus increased the percentage of alignment to sRNA or
mRNAs to 9.70 % and yielded higher portions of chimeric reads and sRNA-mRNA
duplex. Nonetheless, rRNA removal of the crosslinked samples was still less efficient
than the negative controls, as demonstrated by the prominence of rRNA-rRNA
interactions among chimeric reads. Most rRNA-rRNA interactions may involve
alignment to two copies with identical rRNA sequences. In contrast, less than 1 %
of chimeric reads were sRNA-mRNA interactions.

As mentioned in the introduction methods, crosslinking may have introduced co-
valent linkages with rRNA sequences, preventing the rRNA from being captured
by the probes (Figure 5.33). Another issue with probes from RiboMinus and Ri-
boZero Plus is that they are not designed explicitly for specific species, leading to
lower efficiency at capturing C. jejuni rRNA. While DASH bypasses these issues by
targeting cDNA using customarily designed sgRNA, the Cas9 digestion step may
remove non-rRNA sequences from the cDNA library by off-target cleavage. Another
issue with DASH is that it can only enrich non-ribosomal sequences after cDNA li-
brary preparation. Reverse transcription reaction may fail to convert some RNA
species into cDNA. This drawback is especially problematic for crosslinked samples
as they are more saturated with rRNA species. As a result, more non-rRNA species
may not be reverse transcribed into cDNA. This issue may account for the observed
PCR duplications, which hampers the accuracy of statistical tests.
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Figure 5.33: The impact of crosslinked RNA folding on rRNA depletion.
The AMT adduct may prevent the rRNA probe from binding to the rRNA target
sequences, thus hampering the efficiency of probe-based rRNA removal. Created in
biorender.com.

Adding more probes to the rRNA depletion step prior to cDNA library preparation
can improve the diversity of non-ribosomal sequences. Examples of other approaches
include RNase H digestion of RNA-DNA hybrids (Huang et al., 2020) and RNAtag-
seq (Shishkin et al., 2015). Another possibility is to repeat RiboMinus and Ribo-Zero
several times. However, as mentioned before, these methods may also be hindered by
crosslinking rRNA secondary structures and the lack of probe sequence specificity.
Repeating rRNA depletion steps also exposes the RNA samples to longer processing
steps, which leads to more RNA degradation that hampers RNA integrity. RiboMi-
nus and Ribo-Zero probes have also demonstrated limited capacity on targeting 5S
rRNA sequences of C. jejuni, as suggested by the Bioanalyzer result. Hence, such an
approach may result in RNA samples saturated with 5S rRNA. While increasing the
sequencing depth may uncover more non-rRNA species, it may also yield more PCR
duplicates due to the low abundance of non-rRNA sequences. Instead, it may be
worth optimising the reverse transcription step to convert as much sRNA or mRNA
into cDNA as possible.
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5.5.2 Challenge of Statistical analysis of RNA crosslinking

Due to the low abundance of non-rRNA chimeric reads, few sRNA-mRNA interac-
tions were detected in the crosslinked samples, with most sRNA-mRNA pairs also
found in negative controls, suggesting background noise. RNA crosslinking is prone
to background noise because RNA pairs without biological associations can still un-
dergo ligation due to their physical proximity. This outcome is especially likely for
highly expressed RNA species.

PCR duplication affects the results of statistical analysis. Some published protocols
such as PARIS included a PCR duplicates removal step. However, previous stud-
ies showed that duplicates removal with Picard or SAMTools led to no or limited
improvement of the accuracy of statistical tests (Parekh et al., 2016; Ebbert et al.,
2016), possibly because these methods may also remove natural duplicates from
highly abundant RNA species. Tools like dupRader aim to distinguish between
PCR and natural duplicates by estimating the natural duplication rate and gene
expression dependency. However, using dupRader only caused a slight improvement
to the subsequent statistical analysis (Sayols et al., 2016). While multiple chimeric
reads mapped some sRNA-mRNA pairs, IGV visualisation showed they all showed
the exact coordinates and likely resulted from PCR duplication. As a result, this
study’s statistical power is weaker due to the low abundance of chimeric reads for
sRNA-mRNA interactions. Hence, the most appropriate approach was filtering out
pairs that appeared in negative controls.

5.5.3 Annotated ncRNA in the filtered results

After filtering using the negative controls, the remaining interactions included pre-
dicted sRNAs that shared similar or identical coordinates to published sRNA or
ncRNA. Among these are CjSA9 (SRP RNA), CjSA51 (rnpB) and CjSA97 (10Sa
RNA).

RnpB is a ribozyme that facilitates tRNA maturation by cleaving the tRNA precur-
sor’s 5’ end. CjSA51 crosslinked with glycerol-3-phosphate dehydrogenase (gpsA)
and 50S ribosomal protein L14 (rplN) in the RNA crosslinking data. That may
hint towards a novel role for rnpB in regulating the metabolism of non-tRNA
species.

10Sa RNA plays a diverse range of biological functions. Examples of known 10Sa
RNA activities include recycling stalled ribosomes, adding proteolysis-inducing tags
to unfinished polypeptides, and promoting the degradation of aberrant messenger
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RNA. CjSA97 crosslinked an mRNA that encodes probable hydrogenase isoenzymes
formation protein (hypB) (Zhang et al., 2005). Future work can confirm if CjSA97
affects the translation or stability of aberrant hypB mRNA.

5.5.4 Complementing the crosslinking and computational predic-
tion results

Of all predicted sRNAs that appeared in the filtered interactions, CjSA9 stood out as
a candidate for further investigation. Besides sharing a similar genomic coordinate
as SRP RNA, CjSA9 is the only sRNA highlighted by computational prediction and
RNA crosslinking. CjSA9-carB also showed the most statistical significance within
all extracted duplexes. Additionally, the expression levels of CjSA9 and two of its
crosslinked targets are among the lowest of all extracted sRNAs and mRNAs.

SRP RNA is highly conserved among eukaryotes, archaea and bacteria (Rosenblad
et al., 2009). Bacterial SRP RNA is responsible for incorporating membrane proteins
into the inner membrane co-translationally. Therefore, crosslinking or predicted
interactions between membrane protein transcripts and CjSA9 would be particularly
noteworthy. Two of the crosslinked mRNA targets, Cj0920c (Müller et al., 2007)
and Cj1583c (Hoang et al., 2012), encode an amino acid ABC transporter permease
and peptide ABC transporter permease, respectively. Notably, both Cj1583c and
CjSA9 showed low expression levels in the early stationary phase in the RNAtag-seq
dataset. Cj1583c also showed the lowest TPM value among all extracted mRNA.
These results suggested that CjSA9-Cj1583c interaction is more likely to be genuine
than background noise. Hence, of all CjSA9 crosslinked interactions, CjSA9-Cj1583c
is the most valuable candidate for future experimental validation.

Cj1583c also has significant relevance to food safety. Cj1584c-Cj1580c (nikZYXWV )
encodes an ABC transporter complex that transports nickel ions as cofactors for
hydrogenase activity, which oxidises H2 to donate electrons to electron transport
chains. High nickel concentration represses the expression of Cj1584c–Cj1580c
(Howlett et al., 2012). Free cytoplasmic nickel facilitates the periplasmic transloca-
tion of CueO, an enzyme that oxidises copper in the periplasm to remove copper
toxicity. The Ni-chelator dimethylglyoxime (DMG) abolishes CueO translocation
and makes C. jejuni more susceptible to copper toxicity. Oral administration by
chickens reduced C. jejuni colonisation. Hence, further understanding of CjSA9-
Cj1583c interactions may provide additional insights into nickel uptake, which is
vital to the safety of poultry products (Benoit and Maier, 2021).
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Some computationally predicted targets of CjSA9, such as Cj0991c and Cj1677 1
are putative membrane-associated proteins, which agrees with the role of SRP RNA
complex in membrane-targeted translation. While CetZ is a predicted cytoplasmic
protein that lacks a transmembrane domain, its role as a redox sensor may require
direct interaction with membrane proteins such as CheV, maybe via its PAS domain
(Parrish et al., 2007). Furthermore, an iLOV reporter assay showed both Tlp5 and
Tlp8 localised at the cell poles. Tlp5 accumulated mainly at one pole, while Tlp8
migrated to both poles. In contrast, the iLOV reporter negative control distributed
uniformly across the cytoplasm (Elgamoudi and Ketley, 2018). Such localisation
patterns further support the polar localisation of Tlp8 mediated by membrane pro-
tein interactions and may regulate the activities of membrane proteins. Hence, CetZ
may interact and affect electron transport chain activities. Proton motive force is
necessary for C. jejuni motility. The presence of electron acceptor-donor couples
increased the number of mobile cells with faster swimming speed (van der Stel et al.,
2017. Therefore, future investigation of CjSA9-Cj0991c may provide additional in-
sight into the association between redox potential and cell motility. However, it
remains unclear if targeted translation by CjSA9 plays any role in this process. Per-
haps CjSA9 mediates the redox sensing by fine-tuning Cj0991c translation.

CjSA9 also crosslinked with carB, which generates a precursor for arginine and
pyrimidine (carbamoylphosphate) using ammonia, bicarbonate and ATP (Mclennan
et al., 2008). This interaction is the only crosslinked interaction with significant
IntaRNA p-value. RNAtag-seq data also showed that carB has the third-lowest
expression level under the early stationary phase, meaning carB was likely an actual
CjSA9 target instead of background noise. The biological relevance of carB to SRP
RNA requires further investigation.

UV crosslinking and gel shift assay of E. coli demonstrated binding affinity be-
tween SRP RNA and ribosomal components, such as 16S rRNA and 23S rRNA
(Rinke-Appel et al., 2002). Notably, the protein product of rp10, one of the CjSA9
crosslinking targets, is a 50S ribosomal protein L15 that binds to the 23S rRNA.
Rp10 mediates the interaction between ribosomes and the translation factors at-
tached to GTF. It remains to be seen if rp10 mRNA also plays a structural role for
C. jejuni ribosome.

Further exploration showed no clear expression patterns between CjSA9 and its
crosslinking targets. That suggested the binding interactions may regulate trans-
lation by inducing secondary structure rearrangement without altering RNA sta-
bility. Furthermore, there was a clear distinction between sequencing read align-
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ment positions and predicted optimal binding sites. Such discrepancies might indi-
cate biological associations with nascent transcripts, which have different secondary
structures than complete transcripts. Moreover, the crosslinked sequences may rep-
resent suboptimal interactions rather than those optimal interactions anticipated
by IntaRNA. It was also possible that RNA chaperons facilitated the crosslinked
interactions. That is especially possible for Cj0920c, Cj1583c and rp10 as IntaRNA
output showed less stable optimal binding energy values to CjSA9, and hence the
formation of these duplexes was likely to require the help of RNA chaperons.

RNAfold prediction of SRP RNA showed a single RNA hairpin, which agrees with
the published structure. RNA hairpin is involved in the formation of RNA-protein
complexes and targeting translating peptides to the membrane (Draper, 1999; Rosen-
blad et al., 2009). Complex formation with SPR protein and membrane proteins
such as E. coli Ffh is part of the process that inserts nascent peptides into the mem-
brane upon GTPase activation (Voigts-Hoffmann et al., 2013; Estrozi et al., 2011).
Hence, the RNAfold result suggests that CjSA9 retains the hairpin structure of SRP
RNA, enabling it to complex with SPR and other proteins.

The involvement of RNA-protein complex formation may explain the discrepancy
between IntaRNA prediction and RNA crosslinking binding sites. SRP RNA com-
plexes with SRP protein by the induced-fit mechanism. Upon complexing with
proteins, the SRP RNA undergoes structural change and exposes some regions for
binding to increase affinity and specificity, as demonstrated by the example be-
tween rRNA and S15 (Agalarov et al., 2000; Nikulin et al., 2000) and UTR RNA
and U1A protein (Avis et al., 1996; Gubser and Varani, 1996). These interactions
occur between the RNA and the amino acid side chains through hydrogen bonds
and hydrophobic interactions. The RNA-protein associations result in the expo-
sure of the RNA recognition sequence (Strub et al., 1999; Draper, 1999; Kligun and
Mandel-Gutfreund, 2015). Such an induced structural change of SRP RNA has
been observed from crystal structure obtained from archeon Methanococcus jan-
naschii (Hainzl et al., 2005). This structural change exposes or covers some part
of the predicted secondary structure and enables interactions in regions that are
theoretically not optimal for target binding.

CjSA9 starts at a similar position as SRP RNA but is nearly 90 bp longer in length.
Genome-wide target prediction suggested one binding sequence at the SRP RNA
3’ end position and another at the region after the SRP RNA 3’ end. The SRP
RNA 3’ end targets rp10, Cj1583c, Cj0920c and carB. RNAfold also suggested that
the region after SRP RNA 3’ end formed a separate domain from the SRP RNA
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sequence. Under most RNAtag-seq conditions, the expression coverage ends at
the SRP RNA 3’ end. The expression extends beyond the SRP RNA 3’ end in
some early stationary phase conditions, accounting for the extra length of CjSA9.
These all hint towards SRP RNA and the CjSA9 3’ end function independently in
a condition-specific manner.

One possibility is that 3’ end cleavage processes CjSA9 to mature into the annotated
SRP RNA. The cleaved CjSA9 3’ end degraded less in the early stationary phase.
Another possibility is that CjSA9 3’ end is a product of transcription readthrough
or spurious transcription in the early stationary phase. In either case, CjSA9 3’ end
can target genes, including those responsible for purine metabolism.

231



5.6 Summary

This chapter has illustrated the experimental challenges for performing RNA crosslink-
ing in C. jejuni. The results have generated a novel list of putative sRNA-mRNA
interactions absent from computational prediction. The difference suggests that
RNA crosslinking provides a complementary set of interactions that lack changes in
transcription expression. Notably, CjSA9 appeared to use two distinct binding sites,
with the crosslinking taking place near the SRP RNA 3’ end. The CjSA9 3’ end
may play a more prominent role in the early stationary phase, as suggested by the
expression coverage and the computed secondary structure. A biological mechanism
was proposed based on these, which provided a novel insight into SRP RNA.
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Chapter 6

Discussion and future
directions

6.1 Limitation

The current study has evaluated multiple sRNA prediction tools, analyzed condition-
specific sRNA activities from 21 conditions, and conducted in vivo RNA crosslinking.
C. jejuni sRNA sequence and activity is difficult to examine due to the absence
of known global RNA binding proteins, and condition-specific transcriptomic data
is relatively limited. Published RNA-seq studies usually focus on relatively few
experimental conditions and are conducted in different laboratories, introducing
more technical batch effects. As a result, this study has overcome previous challenges
using the in-house Cappable-seq and RNAtag-seq data covering 21 experimental
conditions. Apart from computationally predicted sRNA-mRNA interactions, this
study has also performed RNA crosslinking to uncover RNA-RNA binding that may
not result in transcript abundance variation. This interdisciplinary approach has
highlighted a complementary set of sRNA-mRNA duplexes.

ANNOgesic has predicted 96 sRNA from the in-house and published transcriptomic
dataset. Further characterisation using in silico and molecular biology analysis have
suggested biological relevant interactions involving CjSA21, CjSA110 and CjSA9.
Despite this, the identity of novel predicted sRNA and the highlighted binding
interactions still require experimental validation. No previous publications have
described CjSA21 and the CjSA9 3’ ends. Moreover, it is unclear whether compu-
tational and experimental approaches accurately depict the sRNA-mRNA interac-
tions. Even if those interactions are genuine, their proposed binding mechanisms
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and biological functions remain unconfirmed.

In addition to the lack of in-depth validation of highlighted sRNAs and interactions,
hundreds of crosslinked and predicted interactions have yet to be studied. Investi-
gating all these interactions is not straightforward due to the number of conditions
and replicates involved in the in-house transcriptomic dataset. External researchers
and future students in the host research group may not have adequate computational
skills and insights into the dataset. Hence, future work by the broader research com-
munity may need analytic tools to extract biologically relevant information from the
dataset in this study more efficiently.

Constructing a post-transcriptional network for C. jejuni also requires a wider range
of NGS data. Additional sequencing data will fill in information missing from the
RNA-seq data in the current study. The RNAtag-seq analysis in this study focuses
on the change in RNA abundance but not the impact on protein translation or the
metabolic pathways. Also, none of the RNAtag-seq conditions contains informa-
tion on the in vivo interactions with the gut microbiota. Moreover, the crosslinking
experiment is limited to the early stationary phase at 37 °C only. Hence, the cur-
rent crosslinking data cannot fully complement the rest of the RNAtag-seq condi-
tions.

6.2 Future work

6.2.1 Experimental work

Chapters 4 and 5 have speculated on the binding activities mechanisms of CjSA21,
CjSA110 and CjSA9, making them attractive targets for detailed investigation. Fu-
ture work can conduct northern blot to verify the presence of CjSA21 and the
CjSA9 3’ end. On the contrary, CjSA110 shares an identical genomic coordinate as
an annotated sRNA and hence would not require northern blot verification. Their
interactions can be confirmed using a gel-shift assay. Furthermore, deleting or over-
expressing these sRNAs and their suggested targets will confirm their proposed
biological functions.

Computational prediction and crosslinking results lead to speculation on different
regulatory mechanisms. Different experimental methods can distinguish between
regulatory mechanisms. For instance, chapter 4 suggests that CjSA21 and CjSA110
bind to their respective targets and alter mRNA stability. On the contrary, chapter 5
indicated CjSA9 crosslinking with four messenger RNA targets. The result suggests
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CjSA9 may regulate translation initiation by structural rearrangement of crosslinked
targets. In order to identify different mechanisms, northern blot and RT-PCR of
the mRNAs can examine the alteration of mRNA stability by CjSA21 and CjSA110.
Meanwhile, the impact of CjSA9 on mRNA translation and the levels of protein
products can be elucidated using western blot.

Future experiments can also generate RNA-seq data from more conditions. For
example, RNA crosslinking can be repeated by culturing the cells to the same con-
ditions used in RNAtag-seq, thus allowing complete parallel comparisons between
two sets of expression data. Moreover, both RNA crosslinking and RNAtag-seq can
be performed by co-culturing with human intestinal cell lines to understand in vivo
interactions with the gut microbiota.

6.2.2 R Shiny app

Apart from conducting more experiments, the currently available NGS data also
need more thorough analysis. Repeating the RNAtag-seq analysis can be challeng-
ing for experimental researchers with limited programming experience, server access
or knowledge of the dataset. That includes future students in the laboratory or the
wider experimental microbial community. For example, generating gene expression
output across all possible combinations of genes, replicates and conditions is extraor-
dinarily time-consuming. Downloading output figures for all combinations will also
waste lots of computational memory for data storage, especially for non-biologically
relevant outputs. These factors can limit our data’s benefits to internal and external
users with limited bioinformatics expertise. Hence, one future direction is to build
an R Shiny app to make our analysis more accessible and applicable.

A preliminary version has been built, with features that enable users to query differ-
ent genes, pathways and conditions for gene co-expression and differential expression
output. The app can return figures for users to download in response. The app is
available here: https://stephenrengoku.shinyapps.io/RShiny/. So far, the
features of the apps only included co-expression and differential expression outputs
from Chapter 4. Possible next steps include adding more features, such as IntaRNA
and RNA crosslinking data. Another drawback is that the app can only generate
output from the input data parameters in chapter 4. Future improvement will also
allow users to repeat gene expression analysis using user-defined input and parame-
ters. Other directions of improvement are to improve the app layout, link to public
databases, and make better descriptions. These modifications will make the tool
more user-friendly for a wider audience.
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6.2.3 Integrating with other NGS dataset

Further exploration of transcriptomic data is still not sufficient as it will likely miss
out on mechanisms that do not change RNA abundance or RNA-RNA binding
activities. The shortcomings of transcriptomic data can be complemented using
other omics datasets. The rapid expansion of NGS technologies enables the faster
generation of different omics datasets. Hence, future work can aim to integrate
published or in-house C. jejuni omics datasets.

Genomics analysis can identify biomarkers responsible for environmental adapta-
tions. For instance, Campylobacter jejuni from patient samples displayed nonsyn-
onymous single nucleotide polymorphisms (SNPs) and frameshift mutations. Those
genetic changes occurred most frequently among COG groups for cell motility, sig-
nal transduction and the major outer membrane protein. Mutations of these gene
groups may enable C. jejuni to evade host defences (Bloomfield et al., 2021). These
biomarkers are similar to sRNA targets identified in this study, such as tlp1-4 for
signal transduction and cell motility. That suggests Campylobacter jejuni may ad-
just its signal transduction and motility at both genomic and transcriptomic levels.
Hence, future work can investigate genomic sequences from different sources to iden-
tify more biomarkers related to various environments and check if those biomarkers
also appear in the interactions depicted in chapters 4 and 5.

A metagenomics dataset helps to understand how the population of C. jejuni varies
according to the environment. 16S rRNA metabarcoding of faecal microbiota sam-
ples from C. jejuni infected patients showed a highly varied microbiome composition
in terms of both bacterial phyla and genera. These samples also demonstrated var-
ied proportions of C. jejuni subpopulations. These suggested that C. jejuni evolved
after colonizing the gastrointestinal tract in response to different microbiota popu-
lations (Bloomfield et al., 2021). Apart from exploring C. jejuni abundance, meta-
omics data can also explore the variation of sRNA expression. A recent study has
applied meta-omics approaches to explore sRNA activities in natural environments.
Metagenomic and metatranscriptomics were used to identify anaerobic methane oxi-
dizing archaea group 1 (ANME-1) sRNAs that are highly expressed in the Guaymas
Basin sample (Nawaz and Wang, 2021). A similar approach can correlate C. jejuni
strains abundance and their sRNA expression in the microbiota and other natural
environments. For example, our study predicted CjSA110 as a regulator of iron
uptake. C. jejuni scavenge iron siderophores from other bacteria species in the en-
vironment. Hence, future work can explore if CjSA110 expression varies according
to the microbiota composition of different patients’ samples.
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As mentioned, proteomic data from different conditions can elucidate the trans-
lational effect. Some published proteomics data covered similar conditions as our
RNAtag-seq conditions and thus were valuable for comparisons. Proteomics data
are available for exponential and early stationary phases (Turonova et al., 2017)
and under bile stress (Man et al., 2020). However, other RNAtag-seq conditions are
lacking among published proteomic datasets. Another study modelled infection by
obtaining proteomic datasets from C. jejuni cells co-cultured with human (INT-407)
and porcine (IPEC-1) intestinal cell lines were (Ayllón et al., 2017). Future work
can generate proteomic data in conditions covered by other RNAtag-seq conditions.
Conversely, RNA-seq data can be generated by co-culturing C. jejuni with the cell
lines used in the above publication. Genomic, transcriptomic and proteomic data
can identify gene groups or mutated pathways or differentially expressed under cer-
tain conditions. For example, our RNAtag-seq data showed differential expression of
motility and signal transduction genes under food processing conditions. However,
some phenotypes are more affected by metabolites such as carbohydrates and lipids.
None of the above omics data measures the abundance of those metabolites. Fu-
ture work can explore biological pathways in more detail by generating metabolomic
data.

6.3 Summary

In conclusion, this study has combined computational and experimental methods to
predict a list of sRNAs and their mRNA binding activities. CjSA21, CjSA110 and
CjSA9 have been explored in detail, with their mechanisms being proposed based
on their expression patterns or crosslinking interactions. More than 500 interactions
were also proposed and can be investigated further. Future work can experimentally
validate some highlighted interactions, develop an app for deeper data analysis,
and integrate the current transcriptomic data with other types of NGS data. All
these will further expand our understanding of C. jejuni stress adaptions by post-
transcriptional regulation.
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Desnoyers, G. and Massé, E. (2012). Noncanonical repression of translation initi-
ation through small RNA recruitment of the RNA chaperone Hfq. Genes and
Development, 26:726–739.

Desnoyers, G., Morissette, A., Prévost, K., and Massé, E. (2009). Small RNA-
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Vogel, È., Bartels, V., Tang, T. H., Churakov, G., Hu, A., and Slagter-ja, J. G.
(2003). RNomics in Escherichia coli detects new sRNA species and indicates
parallel transcriptional output in bacteria. Nucleic Acids Research, 31(22):6435–
6443.

275



Vogel, J. (2020). An RNA biology perspective on species-specific programmable
RNA antibiotics. Molecular Microbiology, 113:550–559.

Vogel, J. and Luisi, B. F. (2015). Hfq and its constellation of RNA. nat rev microbiol,
9(8):578–589.

Voigts-Hoffmann, F., Schmitz, N., Shen, K., Shan, S.-o., Ataide, S. F., and Ban, N.
(2013). The structural basis of FtsY recruitment and GTPase activation by SRP
RNA Felix. Mol Cell, 12(52):5.

Vorwerk, H., Mohr, J., Huber, C., Wensel, O., Schmidt-Hohagen, K., Gripp, E.,
Josenhans, C., Schomburg, D., Eisenreich, W., and Hofreuter, D. (2014). Utiliza-
tion of host-derived cysteine-containing peptides overcomes the restricted sulphur
metabolism of Campylobacter jejuni. Molecular Microbiology, 93(6):1224–1245.

Wade, J. T. and Grainger, D. C. (2017). Spurious transcription and its impact on
cell function. Transcription.

Wang, L., Wang, S., and Li, W. (2012). RSeQC: quality control of RNA-seq exper-
iments. Bioinformatics, 28(16):2184–2185.

Washietl, S., Hofacker, I. L., and Stadler, P. F. (2005). From The Cover: Fast and
reliable prediction of noncoding RNAs. Proceedings of the National Academy of
Sciences, 102(7):2454–2459.

Waters, S. A., McAteer, S. P., Kudla, G., Pang, I., Deshpande, N. P., Amos, T. G.,
Leong, K. W., Wilkins, M. R., Strugnell, R., Gally, D. L., Tollervey, D., and
Tree, J. J. (2017). Small RNA interactome of pathogenic E. coli revealed through
crosslinking of RNase E. The EMBO Journal, 36:374–387.

Watson, R. O. and Galan, J. E. (2005). Signal transduction in Campylobacter
jejuni-induced cytokine production Robert. Cellular Microbiology, 7(5):655–665.

Weingarten, R. A., Grimes, J. L., and Olson, J. W. (2008). Role of Campylobac-
ter jejuni respiratory oxidases and reductases in host colonization. Applied and
Environmental Microbiology, 74(5):1367–1375.

Weis, F., Bron, P., Rolland, J.-p., Thomas, D., and Felden, B. (2010). Accom-
modation of tmRNA – SmpB into stalled ribosomes : A cryo-EM study. RNA,
16:299–306.

Westermann, A. J., Förstner, K. U., Amman, F., Barquist, L., Chao, Y., Schulte,
L. N., Müller, L., Reinhardt, R., Stadler, P. F., and Vogel, J. (2016). Dual

276



RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature,
529(7587):496–501.

WHO (2017). WHO publishes list of bacteria for which new antibiotics are urgently
needed, howpublished = https://www.who.int/news-room/detail/27-02-2017-
who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed,
note = Accessed: 2010-09-30.

Wilms, C., Noah, J. W., Zhong, D., and Wollenzien, P. (1997). Exact determination
of UV-induced crosslinks in 16S ribosomal RNA in 30S ribosomal subunits.

Wilson, T., Mouriño, S., and Wilks, A. (2021). The heme binding protein PhuS
transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2
locus. Journal of Biological Chemistry.
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Wösten, M. M. S. M., Van Dijk, L., Parker, C. T., Guilhabert, M. R., Van Der
Meer-Janssen, Y. P. M., Wagenaar, J. A., and Van Putten, J. P. M. (2010b).
Growth phase-dependent activation of the DccRS regulon of Campylobacter je-
juni. Journal of Bacteriology, 192(11):2729–2736.
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