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Abstract

In this thesis, the fractional incompressible Stochastic Navier-Stokes (SNS) equation on
R2 and the fractional Anisotropic Kardar–Parisi–Zhang (AKPZ) equation on R2 are studied,
formally defined as

∂tv = −1
2(−∆)θv − λv · ∇v + ∇p− ∇⊥(−∆)

θ−1
2 ξ, ∇ · v = 0 , (1)

and

∂th = −1
2(−∆)θh− λ((∂1h)2 − (∂2h)2) + (−∆)

θ+1
2 ξ , (2)

respectively, where θ ∈ (0, 1], ξ is the space-time white noise on R+ × R2 and λ is the coupling
constant. For any value of θ both equations are ill-posed due to the singularity of the noise, are
critical for θ = 1 and supercritical for θ ∈ (0, 1). For θ = 1, the weak coupling regime for both
of the equations is shown, i.e. regularisation at scale N and coupling constant λ = λ̂/

√
logN ,

is meaningful in that the sequences {vN}N of regularised solutions of SNS and the sequences
{hN}N of regularised solutions of AKPZ are tight and the corresponding nonlinearities do not
vanish as N → ∞. Instead, for θ ∈ (0, 1) it is shown that the large scale behaviour of v and h is
trivial, as the nonlinearity vanishes and v is simply converges to the solution of (1) with λ = 0,
while h converges to (2) also with λ = 0. In order to further understand the limiting behaviour of
AKPZ as regularisation is removed a quantity called bulk diffusivity is investigated numerically
on a torus, with the aim of quantifying how different the limit is from stochastic heat equation.
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CHAPTER 1

Introduction

For a very long time mathematicians have been describing dynamics of nature via partial
differential equations (PDEs), explaining propagation of heat spreading through some medium or
propagation of waves, may it be sound waves, seismic waves or light waves. The equations have
moved our understanding of nature forward, not just on the scale we observe on day to day basis
but also on the quantum scale. However those were often describing ideal situations that do not
exist in reality. In reality we have plenty of small but significant disturbances, may it be friction,
wind or quantum phenomena that we have not accounted for. Sometimes the perturbations are
very sharp and may render description of a deterministic equations to be lacking. Therefore it is
extremely important to know how perturbations affect those models. A PDE with a stochastic
noise is referred as stochastic partial differential equation, those are often harder to treat as
in order to describe natures perturbation oneJacek: on->one often uses quiet irregular noise
term which posses great difficulties from analytical point of view. In fact often via adding the
irregular noise the equation itself becomes ill-defined these SPDEs are referred to as singular.
The ramifications often passed on from physics to the mathematical realm have been a great
interest to mathematicians, in recent years many approaches have been devised. A frequently
used approach is to consider an analogous equation where some or all terms have higher Fourier
modes artificially removed. This results in equation being smoothed out, which makes it possible
to work with. Once the results are obtained for the smoothed out equation one has to remove the
previously imposed Fourier cut-off in the limit to be able to describe how the original equation
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behaves, this often posses difficulties. Namely the equation may blow up, as such in order to
obtain a meaningful limit one has to add a term to the equation which scales as the Fourier
cut-off is is removed, this is referred to as renormalization. Although we are technically not
considering the same equation as originally intended, under appropriate renormalization we are
still describing the physical phenomena with a slight change perhaps, via different reference
frame for example. A lot of commonly studied SPDEs contain a non-linear term which is often a
source of many difficulties, heuristically speaking if the non-linearity matters on small scales we
call the regime super-critical, if it doesn’t we call it sub-critical the regime on the boundary of
those two is called critical. One can take an SPDE which is sub-critical and change it slightly to
increase the significance of the non-linearity on the solution making it of critical regime or even
super-critical regime, this can be caused by say, roughening the linear part of the equation. Often
we may consider an SPDE in different dimensions, this is the most common way to observe
different regimes occurring naturally. In recent years a great deal of development was achieved
in dealing with SPDEs in the sub-critical regime. Path-wise techniques such as rough paths
[Lyo98] [Gub04] which contributed to further development such as Paracontrolled distributions
[GIP15] and the Regularity Structures [Hai15b] [Hai15a] which has been built on from Rough
Paths which were used in solving the famous KPZ equation [Hai13]. Since then those methods
have been used countless times accelerating the development of this field of Mathematics. These
methods are restricted to the locally sub-critical regime as such different approach has to be taken
with SPDEs in critical regime. In critical regime often the behaviour is more subtle than that of
super-critical or sub-critical, even from the Physics perspective. In this thesis two SPDEs are
considered on the real plane in the critical regime, the super-critical analogous equations are
also considered. The notion of bulk diffusivity is used to quantify the limit in some sense, this
quantity is investigated numerically for AKPZ. Before proceeding a description of the models is
given.

1.1 Stochastic Navier-Stokes

The in-compressible Navier-Stokes equation is a partial differential equation (PDE) describing
the motion of an in-compressible fluid subject to an external forcing. It is given by

∂tv = 1
2∆v − λ̂v · ∇v + ∇p− f , ∇ · v = 0 , (1.1)
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where v = v(t, x) is the velocity of the fluid at (t, x) ∈ R+ × Rd, λ̂ ∈ R is the coupling
constant which tunes the strength of the non-linearity, p is the pressure, f the forcing and the
second equation is the in-compressibility condition. For f a random noise (which will be the
case throughout the paper), we will refer to the above as to the Stochastic Navier-Stokes (SNS)
equation.

The SNS equation has been studied under a variety of assumptions on f . Most of the
literature focuses on the case of trace-class noise, for which existence, uniqueness of solutions
and ergodicity were proved (see e.g. [FG95, DPD03, HM06, FR08, RZZ14] and the references
therein). The case of even rougher noises, e.g. space-time white noise and its derivatives,
which is relevant in the description of motion of turbulent fluids [MR04], was first considered
in d = 2 in [DPD02], and later, thanks to the theory of Regularity Structures [Hai14] and the
paracontrolled calculus approach [GIP15], in dimension three [ZZ15].

In the present work, we focus on dimension d = 2 and consider the fractional stochastic
Navier-Stokes equation driven by a conservative noise, which formally reads

∂tv = −1
2(−∆)θv − λ̂v · ∇v − ∇p+ ∇⊥(−∆)

θ−1
2 ξ , ∇ · v = 0 . (1.2)

Here, θ is a strictly positive parameter, (−∆)θ is the usual fractional Laplacian, ∇⊥ def= (∂2,−∂1)
and ξ is a space-time white noise on R+ × R2, i.e. a Gaussian process whose covariance is given
by

E[ξ(φ)ξ(ψ)] = ⟨φ, ψ⟩L2(R+×R2) , ∀φ, ψ ∈ L2(R+ × R2) . (1.3)

The choice of the forcing f = ∇⊥(−∆) θ−1
2 ξ in (1.2) ensures that, at least formally, the spatial

white noise on R2, i.e. the Gaussian process whose covariance is that in (1.3) but with R2-valued
square-integrable φ, ψ, is invariant for the dynamics.

A rigorous analysis of (1.2) has so far only been carried out for θ > 1, which in the language
of [Hai14, Ch. 8], corresponds to the so-called sub-critical regime - in [GJ13], the authors
proved existence of stationary solutions while uniqueness was established in [GT20]. The goal of
the present paper is instead to study the large-scale behaviour of the fractional SNS in the critical
and supercritical cases, i.e. θ = 1 and θ ∈ (0, 1) respectively. For both of those regimes the
classical stochastic calculus tools does not work. In the critical regime the path-wise theories of
Regularity Structures [Hai14] and paracontrolled calculus [GIP15] are not applicable, a different
approach is needed.

To motivate our results, let us first consider the Vorticity formulation of (1.2). Setting
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ω
def= ∇⊥ · v, ω solves

∂tω = −1
2(−∆)θω − λ̂ (K ∗ ω) · ∇ω + (−∆)

θ+1
2 ξ , (1.4)

where K is the Biot-Savart kernel on R2 given by

K(x) def= 1
2πι

∫
R2

y⊥

|y|2
e−ιy·x dy , (1.5)

for y⊥ def= (y2,−y1). Note that the neighbourhood of the origin cannot be recovered in the
transition back to the velocity v due to the cut off imposed. However the rest of the space can
be recovered from the Vorticity ω via v = K ∗ ω, so that (1.2) and (1.4) are equivalent when
excluding the origin neighbourhood.

Due to the roughness of the noise, as written (1.4) is purely formal for any value of θ ∈ (0, 1].
Therefore, in order to work with a well-defined object, we first regularise the equation. Let ϱ1

be a smooth spatial mollifier, the superscript 1 representing the scale of the regularisation, and
consider the regularised Vorticity equation

∂tω
1 = −1

2(−∆)θω1 − λ̂ · ϱ1 ∗
(
(K ∗ (ϱ1 ∗ ω1)) · ∇(ϱ1 ∗ ω1)

)
+ (−∆)

1+θ
2 ξ . (1.6)

Note in the equation above the noise is not regularised, indeed we only approximate the non-
linearity. Since we are interested in the large-scale behaviour of (1.4), we rescale ω1 according
to

ωN(t, x) def= N2ω1(tN2θ, xN) , (1.7)

The rescaled function solves

∂tω
N = −1

2(−∆)θωN − λ̂N2θ−2NN [ωN ] + (−∆)
1+θ

2 ξ , (1.8)

here the non-linearity NN is defined according to

NN [ω] def= div ϱN ∗
(
(K ∗ (ϱN ∗ ω))(ϱN ∗ ω)

)
. (1.9)

where ϱN(·) def= N2ϱ(N ·). Detailed calculations showing how the scaling is obtained can be
found in the the appendix, Proposition 3.3.5. The non-linarity in (1.9) is the same as one in (1.6)
except scaled (as it is present in the scaled equation whereas (1.6) is not). This can be shown to

4



be true by using integration by parts to obtain

div ϱN ∗
(
(K ∗ (ϱN ∗ ω))(ϱN ∗ ω)

)
= ϱN ∗

(
((∇ ·K) ∗ (ϱN ∗ ω)))(ϱN ∗ ω) + ((K ∗ (ϱN ∗ ω))∇ · (ϱN ∗ ω)

)
second term matches the form from (1.9), meanwhile the first term is equal to 0 since by definition
of Biot-Savart kernel we have

∇ ·K = ∂1K1 + ∂2K2 = 0 .

Note that as an effect of the scaling (1.7), the coupling constant λ̂ gains an N -dependent
factor which, for large N , is order 1 for θ = 1, i.e. in the critical regime, while it vanishes
polynomially for θ ∈ (0, 1), which instead is the supercritical regime. The goal of the present
paper is twofold. For θ ∈ (0, 1), we will show that the non-linearity simply goes to 0 and that
the equation trivialises, in the sense that ωN converges to the solution of the original fractional
stochastic heat equation obtained by setting λ̂ = 0 in (1.8). At criticality, i.e. θ = 1, instead the
situation is more subtle. Logarithmic corrections due to the nonlinear term are to be expected
(see [WAG71, LRY05] and [CET20, CHT21] for other models in the same universality class)
and need to be taken into account. In the present setting, we will do so by imposing that the
coupling constant vanishes at a suitable logarithmic order (see (1.11)). We will then show that
this is indeed meaningful since on the one hand sub-sequential limits for ωN exist and on the
other the nonlinear term does not vanish but is uniformly (in N ) of order 1.

Before delving into the details, let us state assumptions, scalings and results more precisely.
To unify notations, for N ∈ N let ωN be the solution of

∂tω
N = −1

2(−∆)θωN − λNN
N [ωN ] + (−∆)

1+θ
2 ξ , ω(0, ·) = ω0(·) (1.10)

where ω0 is the initial condition, the value of λN depends on both N and θ via

λN
def=


λ̂√

logN , for θ = 1

λ̂N2θ−2 , for θ ∈ (0, 1),
(1.11)

NN is defined according to (1.9) with ϱN satisfying the following, for all N ∈ N, we require
ϱN to be a radially symmetric smooth function such that ∥ϱN∥L1(R2) = 1 and whose Fourier
transform ϱ̂N is compactly supported on {k : 1/N < |k| < N}. Furthermore, there exists a
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constant cϱ > 0 such that

|ϱ̂N(k)| ≥ cϱ, ∀k ∈ {k : 2/N < |k| < N/2} . (1.12)

We also define ϱNy (·) def= ϱN(· − y).

1.2 Anisotropic KPZ

The second model that is considered is the Anisotropic KPZ which is a variant of the KPZ
equation. On R+ × Rd the KPZ is formally given by

∂th = ν
1
2∆h+ ⟨∇h,Q∇h⟩ +

√
Dξ , (1.13)

where ξ is the space-time white noise, Q is a d × d matrix, ν and D are real constants. The
equation itself describes universal phenomena of random growing interface [HZ95][BS95], with
applications varying greatly. For example the KPZ model can be used to describe propagation
of ink that has been dropped on a piece of paper. In addition in d = 1 it has connections to
Gaussian unitary ensemble Tracy-Widom distribution which is interesting in itself [TW94].
The equation is sub-critical in d = 1, in d = 2 it is critical, with the super-critical regime
being d ≥ 3. The KPZ equation has been extensively studied over the years in the sub-critical
regime (d = 1) where multiple approaches to deal with well-possednes were researched in
[BG97][GJ13][GP18b] [Hai14] [GIP15] [GP17]. In super-critical regime (d ≥ 3) the physicists
predict in [KPZ86] that if one imposes restrictions on ν,D and Q then the non-linearity should
not be impactful on large scales that is under appropriate re-scaling and re-normalisation (by
subtracting average growth) the fluctuations should match those of the solution of the stochastic
heat equation. Super-critical regime is still work in progress with some recent results forQ = λId

[CCM20] [DGRZ20]. In critical regime the path-wise approaches of Paracontrolled calculus and
Regularity Structures break down and hence we must work directly on the level of the equation
itself. [Wol91] showed that the behaviour in this regime is subtle and depends on the determinant
of Q. Two different universal behaviours occur depending on the sign of detQ, the universal
behaviour under detQ > 0 is referred to as isotropic KPZ class, while detQ ≤ 0 is referred to as

Anisotropic KPZ class. In the isotropic KPZ class with Q = λId and λ ∼
√

λ̂
logN where N being

the regularisation parameter multiple results are known. It has been shown there exists a phase
transition for one point distribution at λ̂ = 2π in [CSZ17], proving tightness of the sequence
of approximations for λ̂ > 0 sufficiently small in [CD20]. This was then improved to tightness,
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uniqueness and characterisation of the limit for all λ̂ ∈ (0, 2π) in [CSZ20]. In this thesis the
Anisotropic KPZ with , D = ν = 1, Q = diag(1,−1) is investigated. To motivate our results, let
us first consider the Burgers formulation of (1.13) with d = 2 and Q = diag(1,−1), ν = D = 1.
Starting with a substituting u = (−∆) 1

2h one obtains

∂tu = −1
2(−∆)θu+ λ(−∆) 1

2
(
(∂1(−∆)− 1

2u)2 − (∂2(−∆)− 1
2u)2

)
+ (−∆) θ

2 ξ , (1.14)

As with Vorticity equation the roughness of the noise causes the equation (1.14) to be purely
formal for any value of θ ∈ (0, 1]. We regularise equation in the same spirit as (1.4) with the
same restrictions on ϱ obtaining

∂tu
1 = −1

2(−∆)θu1 + (−∆) θ
2 ξ

− λ̂ϱ1 ∗ (−∆) 1
2
(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

)
.

(1.15)

Since we are interested in the large-scale behaviour of (1.4), we rescale

uN(t, x) def= N2u1(tN2θ, xN) , (1.16)

so that uN solves

∂tu
N = −1

2(−∆)θuN − λ̂N2θ−2ÑN [uN ] + (−∆) θ
2 ξ , (1.17)

and the non-linearity ÑN is defined according to

ÑN [u] def= ϱN ∗ (−∆) 1
2 ((∂1(−∆)− 1

2ϱN ∗ u)2 − (∂2(−∆)− 1
2ϱN ∗ u)2) . (1.18)

Detailed calculations showing how the scaling is obtained can be found in the the appendix,
Proposition 3.3.6. Before delving into the details, let us state assumptions, scalings and results
more precisely. To unify notations, for N ∈ N let uN be the solution of

∂tu
N = −1

2(−∆)θuN − λNN
2θ−2ÑN [uN ] + (−∆) θ

2 ξ , u(0, ·) = u0(·) (1.19)

where u0 is the initial condition, the value of λN depends on both N and θ via the coupling
constant given in (1.11). By [DPZ14, Theorem 7.23][DPZ14, Theorem 9.20] we know there
exists unique strong solution to (1.10) and to (1.19), both of which satisfy the strong Markov
property. [CES21] consider KPZ with the same matrix Q on the torus and they show that
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space-white noise is an invariant measure for any λN . Moreover they have shown that

{∫ t

0
λNÑ

N [uN ](s, φ) ds
}
t

converges to a process with finite non-zero energy.[CET20] prove that the stationary solution
to the equation (1.15) with θ = 1 on T2

1 at stationarity is super-diffusive, with the diffusion
coefficient diverging for large times as (log t)δ for δ ∈ (0, 1). In this article we develop results
for KPZ similar to those of [CES21] but on R2, expanding on the result. Furthermore similar to
[CET20] the notion of bulk diffusivity is used to compare the limit of AKPZ after the mollification
is removed to the stochastic heat equation corresponding to (1.13) with the non-linearity removed.

1.3 Results

The equations (1.10) and (1.19) are well-defined, we start by showing finding invariant measures
for both equations, which is essential for further results and is interesting in its own right. We
show that the case θ ∈ (0, 1) is trivialises the equation to an equivalent equation without the
non-linearity. Focusing on the critical case θ = 1 we show the following

Theorem 1.3.1 The spatial white noise η on R2 is defined by its covariance function which is
given by

E[η(φ)η(ψ)] = ⟨φ, ψ⟩L2(R2) ∀φ, ψ ∈ L2(R2) .

Let µ = (−∆) 1
2η. Then µ is invariant for the solution ωN of (1.10), while η is invariant for the

solution uN of (1.19) .

The question that one wants to understand is under what scaling λN can we expect to see a
non-trivial behaviour as N → ∞. That is what λN do we pick so that λNNN gives a non-trivial
limit.

Theorem 1.3.2 Let NN be the non-linearity defined in (1.9) and ÑN be the non-linearity defined
in (1.18) and λN is given in (1.11). Let φ ∈ S(R2), ω be a solution to (1.10) and u be a solution
to (1.19) with θ = 1. Then

E
[
sup
s≤t

|
∫ s

0
NN [ωNr ](φ) dr|p

]1/p

≲ (t 1
2 ∨ t)∥φ∥Ḣ2(R2) ,

E
[
sup
s≤t

|
∫ s

0
ÑN [uNr ](φ) dr|p

]1/p

≲ (t 1
2 ∨ t)∥φ∥Ḣ1(R2) .

(1.20)
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In addition for all κ > 0 we have

∫ ∞

0
e−κtE

([∫ t

0
λNN

N [ωNs ](φ) ds
]2)

dt ≳ 1
κ2 ∥φ∥2

Ḣ2(R2) ,∫ ∞

0
e−κtE

([∫ t

0
λNÑ

N [uNs ](φ) ds
]2)

dt ≳ 1
κ2 ∥φ∥2

Ḣ1(R2) .

.

Based on the result above tightness of {ωN}N∈N in CTS
′(R2,R) and that of {uN}N∈N in

CTS
′(R2,R) can be obtained for the same scaling factor λN .

Theorem 1.3.3 Let ωN and uN be solutions to (1.10) and (1.19) Both sequences {ωN}N∈N and
{uN}N∈N are tight in CTS′(R2,R) for λN given in (1.11).

Analogous results of the upper bound of the non-linearity and tightness are shown to be true
on the torus T2

M for SNS, while for AKPZ they’ve been shown to be true in [CES21] and are
only mentioned briefly. In [CET20] a further question was presented, namely how does the
limit of solution of the mollified AKPZ compare to the stochastic heat equation corresponding
to simply removing the non-linearity when λN is independent of N . As a quantity of interest
bulk diffusivity was used. It was conjectured that bulk diffusivity of the limit to the regularised
AKPZ grows at a rate of log(t) 1

2 . Although they were able to show that bulk diffusivity of the
Anisotropic KPZ equation grows as a power of the logarithm of time in a weak Tauberian sense
suggesting a super-diffusive behaviour they were not able to show that this power is indeed 1

2

, further development has occurred in version 3 which occurred after this work was complete
where they proved that the bulk diffusivity is non-trivial. A justification as to why it is believed
to be 1

2 has been given in [CET20] and is reviewed here along with numerical method to further
support the conjecture. Having applied the method to two models there is no doubt this method
is applicable to other equations in critical regime, as long as certain properties are present, such
as stationarity. At last, we consider the supercritical regime θ ∈ (0, 1). As previously anticipated,
in this case the non-linearity simply converges to 0 so that ωN trivialises.

Theorem 1.3.4 For N ∈ N and θ ∈ (0, 1), let ωN be the stationary solution of (1.10) with λN
defined according to (1.11) for λ̂ > 0, ϱN being as described in (1.12) and initial condition
ω0 = µ, for µ the Gaussian field with covariance as in (1.26). Then, the sequence {ωN}N
converges as N → ∞ to the unique solution of the fractional stochastic heat equation

∂tω = −1
2(−∆)θω + (−∆)

1+θ
2 ξ , ω0 = µ . (1.21)
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Analogous result follows for the stationary solution of (1.19).

1.4 Notations and function spaces

For M ∈ N let T2
M be the two dimensional torus of side length 2πM and Z2

M
def= (Z0/M)2 where

Z0
def= Z\{0}. Denote by {ek}k∈Z2

M
the usual Fourier basis, i.e. ek(x) def= 1

2πe
ik·x, which for all

j, k ∈ Z2 satisfes ⟨ek, ej⟩L2(T2) = 1 and for φ ∈ L2(T2
M) let the Fourier transform of φ be

FM(φ)(k) = φ̂(k) = φk
def=
∫
T2

M

φ(x)e−k(x) dx ,

in particular for all x ∈ T2
M we have

φ(x) = 1
M2

∑
k∈Z2

M

φ̂(k)ek(x) ,

note the π scalings are missing due to the chooice of the fourier basis. When the space considered
is clear, the subscript M may be omitted. The previous definitions straightforwardly translate to
R2 by replacing the integral over the torus to the full space and the Riemann-sum to an integral.
For θ ∈ R and T = T2

M or R2, we define the fractional Laplacian (−∆)θ via its Fourier transform,
i.e.

F((−∆)θu)(z) = |z|2θF(u)(z) ,

for φ ∈ L2(T ) and z ∈ T for θ ≥ 0 and z ∈ T\{0} otherwise.
We denote by S(R2), the classical space of Schwartz functions, i.e. infinitely differentiable

functions whose derivatives of all orders decay at faster than any polynomial, formally given by

S(R2) def= {φ ∈ C∞(R2) : ∥φ∥α,β = sup
x∈R2

∣∣∣xαDβφ(x)
∣∣∣ < ∞ ∀α, β ∈ N2} ,

where we used the multi-index notation xα = xα1
1 xα2

2 , Dβ = ∂β1
1 ∂

β2
2 . Similarly to [GT20,

Section 7], for s ∈ R, we say φ : (R2)n → R is in the homogeneous Sobolev space (Ḣs(R2))⊗n,
understood as a tensor product of Hilbert spaces, if there exists a symmetric tempered distribution
φ̃ ∈ S′((R2)n) such that

∥φ∥2
(Ḣs(R2))⊗n

def=
∫

(R2)n

(
n∏
i=1

|ki|2s
)

| ˆ̃φ(k1:n)|2 dk1:n < ∞ (1.22)
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for k1:n
def= (k1, . . . , kn), and

⟨φ, ψ⟩(Ḣs(R2))⊗n = ˆ̃φ
((

n∏
i=1

| ·i |2s
)
ψ̂

)
, ψ ∈ Ss((R2)n) , (1.23)

here Ss refers to symmetric schwarz functions. Note, left hand side of (1.23) is to be intepreted
as ψ tested against φ giving meaning to what it it. Clearly, for s ≥ 0, φ̃ can be taken to be φ
itself. The same conventions apply to Ḣs(T2

M), but in the definition of the norm the integral
is replaced by a weighted Riemann-sum. For s = 1, which will play an important role in what
follows, we point out that the norm on (Ḣ1(R2))⊗n can be equivalently written as

∥φ̃∥2
(Ḣ1(R2))⊗n

def=
∫

(R2)n
|∇φ(x1:n)|2 dx1:n .

here ∇ is defined as
∇φ(x1:n) = (∇x1φ,∇x2φ, . . . ,∇xnφ)(x1:n) (1.24)

where for xi = (xi1 , xi2) we have

∇xi
φ = (∂xi1

φ, ∂xi2
φ). (1.25)

We say that a function f on R2 is symmetric if for any permutation σ : {1, . . . , n} → {1, . . . , n}
we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) .

1.5 Preliminaries on Wiener space analysis

Let (Ω,F,P) be a complete probability space and H be a separable Hilbert space with scalar
product ⟨·, ·⟩. A stochastic processµ is called isonormal Gaussian process (see [Nua06, Definition
1.1.1]) if {µ(h) : h ∈ H} is a family of centred jointly Gaussian random variables with correlation
E(µ(h)µ(g)) = ⟨h, g⟩. Given an isonormal Gaussian process µ on H and n ∈ N, we define the
n-th homogeneous Wiener chaos Hn as the closed linear subspace ofL2(η) = L2(Ω) generated by
the random variables Hn(µ(h)), for h ∈ H of norm 1, where Hn is the n-th Hermite polynomial
defined recursively via

H0(x) = 1, Hn(x) = (−1)n
n! ex

2/2 dn

dxn
(
e−x2/2

)
.
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For m ̸= n, Hn and Hm are orthogonal and, by [Nua06, Theorem 1.1.1], L2(η) = ⊕nHn.
The isonormal Gaussian process µ we will be working with in chapter 2 is such that

H = Ḣ1(T ), T being either the 2-dimensional torus T2
M or R2, and has covariance

E[µ(φ)µ(ψ)] def= ⟨φ, ψ⟩H , φ, ψ ∈ H . (1.26)

Thanks to the results in [Nua06, Chapter 1], there exists an isomorphism I between the Fock
space ΓL2 def= ⊕n≥0Ḣ

1
sym(T n) and L2(η), where Ḣ1

sym(T n) is the space of functions in Ḣ1(T n)
which are symmetric with respect to permutations of variables. For n ∈ N, the projection In of
the isomorphism above to Ḣ1

sym(T n) is itself an isomorphism between Ḣ1
sym(T n) and Hn and,

by [Nua06, Theorem 1.1.2], for every F ∈ L2(η) there exists unique sequence of symmetric
functions {fn}n≥0 ∈ ΓL2 such that F = ∑∞

n=0 In(fn) and

E[F 2] =
∞∑
n=0

n!∥fn∥2
(Ḣ1(T ))⊗n . (1.27)

Since the Hilbert space on which µ is defined is Ḣ1(T ) (and not L2(T ) as in [CES21]), the
isomorphism I must be handled with care and the results in [Nua06, Ch. 1.1.2] applied
accordingly. In particular, in the present context [Nua06, Proposition 1.1.3] translates as follows.
Let f ∈ (Ḣ1(T ))⊗n and g ∈ (Ḣ1(T ))⊗m, then

In(f)Im(g) =
2∑
p=0

p!
(
n

p

)(
m

p

)
Im+n−2p(f ⊗p g) (1.28)

where

f ⊗p g(x1:m+n−2p) def=
∫
T p

⟨∇y1:pf(x1:n−p, y1:p),∇y1:pg(xn−p+1:m+n−2p, y1:p)⟩ dy1:p (1.29)

where ⟨·, ·⟩ denotes the usual scalar product in Rp, the gradient ∇y1:p is only applied to the
variables y1:p and, as in (1.22), x1:n = (x1, . . . , xn). In chapter 3 we will work with the same
framework but with H = L2(T ), η being an isonormal Gaussian process with covariance

E[η(φ)η(ψ)] def= ⟨φ, ψ⟩H , φ, ψ ∈ H . (1.30)

Note, throughout this thesis η and µ are the gaussian processes and not the measures with
respespect to which we define our probability space. For the measures bold equivalent is used η.
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We say that F : S′ → R is a cylinder function if there exist φ1, . . . , φn ∈ D such that

F [u] = f(u(φ1), . . . , u(φn)) , (1.31)

for some function f : Rn → R which is smooth and whose partial derivatives grow at most
polynomially at infinity. We denote the set of cylinder functions by C. We call a random
variable F ∈ L2(η) smooth if it is a cylinder function on S′ endowed with the measure η. The
Malliavin derivative of a smooth random variable F = f(η(φ1), . . . , η(φn)) is the H-valued
random variable given by

DF
def=

n∑
i=1

∂if(η(φ1), . . . , η(φn))φi , (1.32)

and we will denote by DxF the evaluation of DF at x and by DkF its Fourier transform at k. A
commonly used tool in Wiener space analysis is Gaussian integration by parts [Nua06, Lemma
1.2.2] which states that for any two smooth random variables F,G ∈ L2(η) we have

E[G⟨DF, h⟩H ] = E[−F ⟨DG, h⟩H + FGµ(h)] . (1.33)

We will frequently work with the Fourier transform of µ which is a family of complex valued
Gaussian random variables. Even though, strictly speaking, the results above do not cover this
case, in [CES21, Section 2] it was shown that one can naturally extend Ḣ0(T2,R) = L2(T2,R)
to L2(T2,C). Such extension can also be performed in the present context, and we are therefore
allowed to exploit (1.33) also in case of complex-valued h.
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CHAPTER 2

Stochastic Navier-Stokes on the real plane under critical regime

2.1 Invariant measures of the regularised equations

The goal of this section is to construct a stationary solution to the regularised critical Navier-Stokes
equation on R2. We will first consider the analogous equation on the torus of fixed size, where
invariance is easier to obtain. Subsequently, via a compactness argument, we will scale the size
of the torus to infinity and characterise the limit of the corresponding solutions via a martingale
problem.

2.1.1 The regularised Vorticity equation on T2
M

For θ ∈ (0, 1], we consider the periodic version on T2
M of (1.10) given by

∂tω
N,M = −1

2(−∆)θωN,M − λNN
N,M [ωN,M ] + (−∆)

θ+1
2 ξM , ωN,M(0, ·) = ωM0 , (2.1)

where ωM0 is the initial condition, ξM is a space-time white noise on R × T2
M and NN,M is the

non-linearity defined in (1.9). In Fourier variables, (2.1) becomes

d ω̂N,Mk = −1
2 |k|2θω̂N,Mk − λNN

N,M
k [ωN,M ] + |k|θ+1 dBk(t) , k ∈ Z2

M (2.2)
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where the complex-valued Brownian motions Bk are defined via Bk(t) def=
∫ t

0 ξ̂
M
k ( ds), ξ̂Mk being

the k-th Fourier mode of ξM , and N
N,M
k is the fourier transform of the non-linearity NN,M which

can be expressed in the following form

N
N,M
k [ωN,M ] = 1

M2

∑
ℓ+m=k

KN
ℓ,mω

N,M
ℓ ωN,Mm , (2.3)

for

KN
ℓ,m

def= 1
2π ϱ̂

N
ℓ,m

(ℓ⊥ · (ℓ+m))(m · (ℓ+m))
|ℓ|2|m|2

, with ϱ̂Nℓ,m
def= ϱ̂Nℓ ϱ̂

N
mϱ̂

N
ℓ+m . (2.4)

The proof of this can be found in the appendix, Proposition 3.3.3. As a first step in our analysis,
we determine basic properties of the solution of (2.1). Bringing the results of the calculations
above together we have

Proposition 2.1.1 Let M,N ∈ N and θ ∈ (0, 1]. Then, for every deterministic initial condition
ωN,M0 ∈ Ḣ−2(T2

M), (2.1) has a unique strong solution ωN,M ∈ C(R+, Ḣ
−2(T2

M)). Further,
ωN,M is a strong Markov process.

Proof. This proof is based on [GP18b, Lemma 2.1.], we start by splitting the solution as follows

ωN,M = ΠNω
N,M + (1 − ΠN)ωN,M , p (2.5)

here ΠN is the fourier cut-off at N that is

F(ΠNf)(k) = 1k≤NF(f)(k)

The second term in (2.5) is an Ornstein–Uhlenbeck process which is well-known to belong to
C(R+, Ḣ

−2(T2
M)).

Meanwhile the first term instead solves a non-linear SPDE with finite fourier modes. The
non-linear part of that equation satisfies ⟨NN [µ], µ⟩Ḣ−1(T ) = 0 by Lemma 2.1.2, since the linear
part also preserves the Ḣ−1 norm thus the equation as a whole preserves the Ḣ−1 norm. The
conclusion can therefore be reached arguing as in [GJ13, Section 7] (see also [CES21, Proposition
3.4]).

Lemma 2.1.2 Let T = T2
M or R2. Then for any schwarz distribution µ ∈ S′(T ) such that
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∇ · (K ∗ (µ ∗ ϱN)) = 0 we have

⟨NN [µ], µ⟩Ḣ−1(T ) = 0 .

Proof. Let ψN = K ∗ (µ ∗ ϱN) so that ∇ · ψN = 0. We will denote µN = µ ∗ ϱN . By definition
of NN from (1.9) we have

⟨NN [µ], µ⟩Ḣ−1(T ) = ⟨∇ · ϱN ∗ (ψNµN), µ⟩Ḣ−1(T )

= ⟨∇ · (ψNµN), µN⟩Ḣ−1(T )

= ⟨(∇ · ψN)µN , µN⟩Ḣ−1(T ) + ⟨ψN · ∇µN , µN⟩Ḣ−1(T )

Since ∇ · ψN = 0 the first term is equal to 0, focusing on the second term

⟨ψN · ∇µN , µN⟩Ḣ−1(T ) = ⟨ψN1 ∂1µ
N , µN⟩Ḣ−1(T ) + ⟨ψN2 ∂2µ

N , µN⟩Ḣ−1(T )

= ⟨ψN1 µN , ∂1µ
N⟩Ḣ−1(T ) + ⟨ψN2 µN , ∂2µ

N⟩Ḣ−1(T )

= −⟨∂1(ψN1 µN), µN⟩Ḣ−1(T ) − ⟨∂2(ψN2 µN), µN⟩Ḣ−1(T )

= −⟨ψN · ∇µN , µN⟩Ḣ−1(T ) ,

And hence the second term is also 0 proving the result.

Even though the generator LN,M of the Markov process ωN,M , is a complicated operator, its
action on cylinder functions F can be easily obtained by applying Itô’s formula and singling
out the drift term. By doing so, we deduce that for any such F , LN,MF can be written as
LN,MF = LM

θ F + AN,MF . For cylinder F [ω] = f(ω(φ1), . . . , ω(φn)) the operators LM
0 and

AN,M are given by

LM
θ F (ω) def= 1

2

n∑
i=1

ω(−(−∆)θφi)∂if + 1
2

n∑
i,j=1

⟨φi, φj⟩Ḣθ+1(T2
M ) ∂

2
i,jf,

AN,MF (ω) def= −λN
n∑
i=1

NN,M [ω](φi) ∂if,
(2.6)

where we abbreviated ∂if = ∂if(ω(φ1), . . . , ω(φn)). We are now ready to prove the following
proposition.

Proposition 2.1.3 Let µM be the Gaussian spatial noise on T2
M with covariance given by (1.26).

Then, for every θ ∈ (0, 1], µM is an invariant measure of the solution ωN,M of (2.1).
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Proof. The proof of this statement follows the steps of [GJ13, Section 7] but we provide it here for
completeness. Note the equation (2.1) on the torus is infinite dimensional, but the equation does
live in a locally compact space. In such case we are able to apply Echeverrìa’s criterion [Ech82].
Note this will not be possible on the real plane since there the the space on which the function
lives is not locally compact. Briefly speaking the criterion states that for an equation on locally
compact separable metric space for µM to be an invariant measure it suffices to show that

E[LN,MF (µM)] = 0 ,

for any cylinder function F = f(µM(φ1), . . . , µM(φn)), where E is the expectation taken with
respect to the law of η. Since, throughout the proof M is fixed, we will omit it as a superscript
to lighten the notation. We will use the Fourier representation of the operators LM

θ and AN,M ,
which can be deduced by (2.6) simply taking F depending on (finitely many) Fourier modes of µ
and is

LM
θ F (µ) = 1

2M2

∑
k

|k|2θ
(
−µ−kDk + |k|2D−kDk

)
F (µ) , (2.7)

AN,MF (µ) = − λN
M4

∑
i,j

KN
i,jµiµjD−i−jF (µ) . (2.8)

Let us first show that E[LM
θ F (µ)] = 0. Let k ∈ Z2

M . Exploiting |k|2ek = (−∆)ek and applying
Gaussian integration by parts (1.33) with h = ek, G = 1 and F = DkF , we obtain

E[|k|2D−kDkF (µ)] = E[⟨D(DkF (µ)), ek⟩Ḣ1 ] = E[µM−kDkF (µ)]

which immediately implies E[LθF (µ)] = 0. We now turn to E[AN,MF (µ)]. Let i, j ∈ Z2
M such

that i+ j ̸= 0. We apply once more Gaussian integration by parts, this time choosing G = µiµj

and h = ei+j , so that we have

E[µiµjD−i−jF (µ)] = − 1
|i+ j|2

E[µiµj⟨DF (µ), ei+j⟩Ḣ1(T2
M )]

= − 1
|i+ j|2

E[−F (µ)⟨D(µiµj), ei+j⟩Ḣ1(T2
M ) + µiµjµ−i−jF (µ)]

= E[−F (µ)D−i−j(µiµj)] − E
[(

1
|i+ j|2

µiµjµ−i−j

)
F (µ)

]

Now, D−i−j(µiµj) ̸= 0 if and only if either i or j are 0 in which case KN
i,j in (2.4) is 0. Hence,
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the first summand above does not contribute to E[AN,MF (µ)] and we obtain

E[AN,MF (µ)] = E

− λN
M4

∑
i,j

KN
i,j

|i+ j|2
µiµjµ−i−j

F (µ)


= E
[
⟨NN,M [µ], µ⟩Ḣ−1(T2

M )F (µ)
]

= 0

where the last equality follows by Lemma 2.1.2 so that the proof is concluded.

From now on, we will only work with the stationary solution of (2.1), i.e. the initial condition
will always be taken to be

ωN,M0
def= µM (2.9)

where µM is as in Proposition 2.1.3. In the following statements, we aim at obtaining estimates
on the solution ωN,M to (2.1) which are uniform in both N and M . A crucial tool is the so-called
Itô’s trick, first introduced in [GJ13]. To the reader’s convenience, we now recall its statement,
adapted to the present context.

Lemma 2.1.4 (Itô-Trick) Let θ ∈ (0, 1]. Let LN,M be the generator of the Markov process
ωN,M , solution to (1.10) started from the invariant measure µM in (2.9), and LM

θ and AN,M be
defined according to (2.6). Let T > 0 and F a cylinder function on S′(T2

M) as defined in (1.31).
Then, for every p ≥ 2, there exists a constant C > 0 depending only on p such that

E
[
sup
t≤T

∣∣∣∣ ∫ t

0
LM
θ F (ωN,Ms ) ds

∣∣∣∣p
]1/p

≤ CT
1
2E[E(F )]1/2 , (2.10)

where the energy E(F ) is given by

EM(F )(µM) def= 1
M2

∑
k∈Z2

M

|k|2+2θ|DkF (µM)|2 =
∫
T2

M

|(−∆x)
1+θ

2 DxF (µM)|2 dx , (2.11)

the Laplacian above clearly acting on the x variable. Here and throughout, E denotes the
expectation with respect to the law of the process {ωN,Mt }t∈[0,T ], while E that with respect to the
invariant measure µM .

Proof. This is proof is closely following that of [GP18a][CES21]. Let F be a cylinder function
on S′(T2

M) as defined in (1.31). Via Itô formula we get

F (ωt) = F (ω0) +
∫ t

0
(∂s+ LM

θ + AN,M)F (ωNs ) ds+Mt(F ) , (2.12)
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where∂s appears asF (ωNs ) depends on time (as well as space). HereMt(F ) =
∫ t

0(−∆) θ+1
2 DxFdBt

is a martingale with quadratic variation given by

d⟨M(F )⟩s = E(F )(ωNs ) ds .

For ω̃t
def= ωT−t the generator is the adjoint of the generator LM

θ + AN,M which by (2.2.1) we
know to be LM

θ − AN,M and so again by Itô formula we get

F (ω̃T ) − F (ωt)

= F (ω̃T ) − F (ω̃T−t)

=
∫ T

T−t
(∂s+ LM

θ − AN,M)F (ω̃s) ds+ M̃T (F ) − M̃T−t(F )

=
∫ t

0
((−∂s+ LM

θ − AN,M)F )(ωNs ) ds+ M̃T (F ) − M̃T−t(F ) ,

(2.13)

where
d⟨M̃(F )⟩s = E(F )(ω̃s) ds .

But F (ω̃T ) = F (ω0) hence by (2.13) and (2.12) we get

0 = 2
∫ t

0
LM
θ F (ωNs ) ds+Mt(F ) + M̃T (F ) − M̃T−t(F ) .

By Burkholder-Davis-Gundy inequality and the equation above we obtain

E
(

sup
t≤T

∣∣∣∣ ∫ t

0
LM
θ F (ωNs ) ds

∣∣∣∣p
)

≃ E
(

sup
t≤T

|Mt(F ) + M̃T (F ) − M̃T−t(F )|p
)

≲ E(⟨M(F )⟩p/2
T ) + E(⟨M̃(F )⟩p/2

T )

≃ E

(∫ T

0
E(F (ωNs ))ds

)p/2


≲ T p/2−1
∫ T

0
E
(
E(F (ω0))p/2

)
ds .

Here we used Gaussian hypercontractivity [Nua06, Theorem 1.4.1] to replace the p/2 moment at
the right hand with the square-root of the expectation of the energy.

The Itô’s trick allows us to upper-bound moments of the integral in time of certain functionals
of ωN,M in terms of the first moment of the energy Ewith respect to the law of ωN,M at fixed
time. Such a law is explicit and Gaussian making the bound particularly useful. In the following
proposition, we determine suitable estimates on the non-linearity.
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Proposition 2.1.5 Let θ ∈ (0, 1], T > 0 be fixed and p ≥ 2. For M, N ∈ N, let NN,M be
defined according to (2.3) and λN be as in (1.11). Then, there exists a constant C = C(p) > 0,
independent of M, N ∈ N such that for all φ ∈ S(T2

M) and all t ∈ [0, T ], we have

E
[
sup
s≤t

∣∣∣∣ ∫ s

0
ωN,Mr (−(−∆)θφ) dr

∣∣∣∣p
]1/p

≤ Ct
1
2 ∥φ∥Ḣ1+θ(T2

M ) , (2.14)

E
[
sup
s≤t

∣∣∣∣λN ∫ s

0
NN,M [ωN,Mr ](φ)] dr

∣∣∣∣p
]1/p

≤ CN θ−1(t ∨ t
1
2 )∥φ∥Ḣ2(T2

M ) . (2.15)

The proof of the previous proposition (and in particular of (2.15)) is based on the following
lemma.

Lemma 2.1.6 For M, N ∈ N, φ ∈ S(T2
M), let NN,M [µM ](φ) be the smooth random variable

defined according to (2.3), with µM replacing ωN,M . Then, NN,M
k [µM ](φ) belongs to the second

homogeneous Wiener chaos H2. Further, for all θ ∈ (0, 1] the Poisson equation

(1 − LM
θ )HN,M [µM ](φ) = λNN

N,M [µM ](φ) (2.16)

has a unique solution whose energy satisfies

E[EN,M(HN,M [µM ](φ))] = 4λ2
N

M4

∑
ℓ,m

|ℓ|2+2θ|m|2
(KN

ℓ,m)2

(1 + 1
2(|ℓ|2θ + |m|2θ))2 |φ−ℓ−m|2 . (2.17)

Proof. Note that, by (1.9) the non-linearity NN,M tested against φ can be written as

NN,M [µM ](φ) = −⟨µM(K ∗ ϱN· )µM(ϱN· ) , ∇φ ∗ ϱN· ⟩ , (2.18)

the scalar product at the right hand side being the usual L2 pairing. Now, thanks to our choice of
the mollifier ϱ in (1.12), and in particular the fact that its Fourier transform is 0 in a neighbourhood
of the origin, both K ∗ ϱN· and ϱN· live in S(T2

M) so that the expectation of the right hand side
of (2.18) is finite by (1.26). Hence, further using translation invariance, we have

E[NN,M [µM ](φ)] = ⟨E[µM(K ∗ϱN)µM(ϱN)],∇φ∗ϱN⟩⟩ = ⟨K ∗ϱN , ϱN⟩Ḣ1(T2
M )⟨1,∇φ∗ϱN⟩ ,

which is zero since, by integration by parts, ⟨1,∇φ∗ϱN⟩ = 0. Now, NN,M [µ](φ) is quadratic in µ
and its component in the 0-th chaos is 0, henceNN [µM ](φ) ∈ H2 andNN,M [µM ](φ) = I2(nN,Mφ ),
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for nN,Mφ such that
n̂N,Mφ (ℓ,m) = KN

ℓ,mφ−ℓ−m . (2.19)

Let hN,Mφ ∈ ΓL2
2 and HN,M [µM ](φ) = I2(hN,Mφ ). Then by the definition of (2.6) (also shown in

[GT20, Lemma 2.3]) we have

(1 − LM
θ )HN,M [µM ](φ) = (1 − LM

θ )I2(hN,Mφ ) = I2
(
(1 − 1

2(−∆)θ)hN,Mφ

)
.

Equating the right hand side above and λNI2(nN,Mφ ), we immediately deduce that (2.16) has a
unique solution which must necessarily satisfy

ĥN,Mφ (ℓ,m) = λN
λN

(2π)2
KN
ℓ,m

1 + 1
2(|ℓ|2θ + |m|2θ)φ−ℓ−m , for all ℓ,m ∈ Z2

M . (2.20)

In order to compute the energy of HN,M [µM ](φ), notice that by [Nua06, Proposition 1.2.7],

DxH
N,M [µM ](φ) = DxI2(hN,Mφ ) = 2I1(hN,Mφ (x, ·))

which implies, by linearity of I1,

EN,M(HN,M [µM ](φ)) = 4
∫
T2

M

∣∣∣I1
(
(−∆x)

1+θ
2 hN,Mφ (x, ·)

)∣∣∣2 dx .

Consequently, since I1 is an isometry from H1 and ΓL2
1 = Ḣ1(T2

M), we get

E[EN,M(HN,M [µM ](φ))] = 4
∫
T2

M

∥(−∆x)
1+θ

2 hN,Mφ (x, ·)∥2
Ḣ1(T2

M ) dx

by Plancherel’s identity and (2.20) we get

4
∫
T2

M

∥(−∆x)
1+θ

2 hN,Mφ (x, ·)∥2
Ḣ1(T2

M ) dx

= 4
∫

(T2
M )2

(−∆y)
(
(−∆x)

1+θ
2 hN,Mφ (x, ·)

)2
dx dy

= 4
(2π)2M4

∑
ℓ,m

|ℓ|2+2θ|m|2F(hN,Mφ )(ℓ,m) .

from which (2.17) follows.

Proof of Proposition 2.1.5. For both (2.14) and (2.15), we will exploit the Itô’s trick Lemma 2.1.4.
Let us begin with the former. SetKN,M [µM ](φ) def= µM(φ), and notice that by (2.6), it is immediate
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that

LM
θ K

N,M [µM ](φ) = µM
(
−1

2(−∆)θφ
)
,

By (2.11) we have

EN,M(KN,M [µM ](φ)) = 1
M2

∑
k

|k|2+2θ|Dkµ
M(φ)|2 = ∥φ∥2

Ḣ1+θ(T2
M ) .

Hence, the left hand side of (2.14) equals

2E
[

sup
s≤t

∣∣∣∣ ∫ s

0
LM
θ K

M [ωN,Mr ](φ) dr
∣∣∣∣p]1/p

≲ t
1
2 ∥φ∥Ḣ1+θ(T2

M ) , (2.21)

where in the last passage we applied (2.10).
We now turn to (2.15) for which we proceed similarly to [GP18a, Proposition 3.15]. Let

HN,M be the solution to (2.16) determined in Lemma 2.1.6. Then

E
[

sup
s≤t

∣∣∣∣ ∫ s

0
λNN

N [ωN,Mr ](φ) dr
∣∣∣∣p] 1

p

= E
[

sup
s≤t

∣∣∣∣ ∫ s

0
(1 − LM

θ )HN,M [ωN,Mr ](φ) dr
∣∣∣∣p] 1

p

≤ E
[

sup
s≤t

∣∣∣∣ ∫ s

0
HN,M [ωN,Mr ](φ) dr

∣∣∣∣p] 1
p

+ E
[

sup
s≤t

∣∣∣∣ ∫ s

0
LM
θ H

N,M [ωN,Mr ](φ) dr
∣∣∣∣p] 1

p

.

(2.22)

We will separately estimate the two summands above. For the second, we apply once more (2.10),
which, together with (2.17), gives

E
[

sup
s≤t

∣∣∣∣ ∫ s

0
LM
θ H

N,M [ωN,Mr ](φ) dr
∣∣∣∣p] 2

p

≲ t
λ2
N

M4

∑
ℓ,m

|ℓ|2+2θ|m|2
(KN

ℓ,m)2|φ−ℓ−m|2

(1 + 1
2(|ℓ|2θ + |m|2θ))2

≲ t
1
M2

∑
k

|k|4|φk|2
λ2
N

M2

∑
ℓ+m=k

(ϱ̂Nℓ,m)2 |ℓ|2θ

(1 + 1
2(|ℓ|2θ + |m|2θ))2

≲ t
1
M2

∑
k

|k|4|φk|2
λ2
N

M2

∑
ℓ

(ϱ̂Nℓ )2 1
1 + 1

2 |ℓ|2θ
≤ t∥φ∥2

Ḣ2(T2
M )
λ2
N

M2

∑
|ℓ|≤N

1
1 + 1

2 |ℓ|2θ

where we bounded |KN
ℓ,m| ≤ ϱ̂Nℓ |ℓ+m|2/(|ℓ||m|) and applied a simple change of variables. Now,

the remaining sum can be controlled via

λ2
N

M2

∑
|ℓ|≤N

1
1 + 1

2 |ℓ|2θ
≲ λ2

N

∫
|x|≤N

dx
1 + 1

2 |x|2θ
≲

λ
2
N logN ≲ 1 , if θ = 1,

λ2
NN

2−2θ ≲ N2θ−2 , if θ ∈ (0, 1),
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the last inequality being a consequence of (1.11).
Let us turn to the first summand in (2.22). We have

E
[

sup
s≤t

∣∣∣∣ ∫ s

0
HN,M [ωN,Mr ](φ) dr

∣∣∣∣p] 1
p

≤ E
[( ∫ t

0
|HN,M [ωN,Mr ](φ)| dr

)p] 1
p

≤ t1− 1
p E
[ ∫ t

0
|HN,M [ωN,Mr ](φ)|p dr

]1/p
= tE[|HN,M [µM ](φ)|p]

1
p

≲ tE[|HN,M [µM ](φ)|2] 1
2 ≲ t∥hN,Mφ ∥ΓL2

2

where, from the first to the second line we used Jensen’s inequality, from the second to the third
Gaussian hypercontractivity [Nua06, Theorem 1.4.1] and the last step is a consequence of (1.27)
and the fact that, as shown in the proof of Lemma 2.1.6, HN,M [µM ](φ) = I2(hN,Mφ ) for hN,Mφ

satisfying (2.20). In turn, the norm of hN,Mφ can be estimated via

∥hN,Mφ ∥2
ΓL2

2
= λ2

N

(2π)2M4

∑
ℓ,m∈Z2

M

|ℓ|2|m|2
(KN

ℓ,m)2

(1 + 1
2(|ℓ|2θ + |m|2θ))2 |φ−ℓ−m|2

≲
λ2
N

M2

∑
k∈Z2

M

|k|4|φk|2
1
M2

∑
ℓ+m=k

(ϱ̂Nℓ )2

(1 + 1
2(|ℓ|2θ + |m|2θ))2

≲
λ2
N

M2

∑
k∈Z2

M

|k|4|φk|2
∫

|x|≤N

dx
(1 + |x|2θ)2 ≲ ∥φ∥2

Ḣ2(T2
M ) ×


λ2
N , if θ > 1

2 ,

λ2
N logN , if θ = 1

2 ,

λ2
NN

2−4θ , if θ < 1
2 ,

and, for any value of θ ∈ (0, 1] the right hand side is bounded above by N2θ−2∥φ∥2
Ḣ2(T2

M ).

2.1.2 The regularised Vorticity equation on R2

In this section, we study the regularised Vorticity equation (1.10) on the full space R2. Our goal
is to show, on the one hand that, for N ∈ N fixed, it admits a solution and on the other that such
a solution has an invariant measure µ satisfying (1.26). Let us remark that, as noted in [FQ15,
Remark 3.1-(2)] in the context of the one-dimensional KPZ equation, for the latter purpose
Echeverria’s criterion [Ech82] is not directly applicable because the space we are working on
here is not locally compact. Instead, we will follow similar methodology of that in [FQ15].

Throughout this section, N ∈ N will be fixed. For T > 0 and θ ∈ (0, 1], we say that
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ωN ∈ C([0, T ],S′(R2)) is a weak solution of (1.10) starting at ω0 ∈ S′(R2) if for all φ ∈ S(R2)

ωNt (φ) − ω0(φ) = 1
2

∫ t

0
ωNs (−(−∆)θφ) ds+ λN

∫ t

0
NN [ωNs ](φ) ds−Mt(φ) . (2.23)

where NN is defined according to (1.9) and M·(·) is a continuous Gaussian process whose
covariance is given by

E[Mt(φ)Ms(ψ)] = (t ∧ s)⟨φ, ψ⟩Ḣ1+θ(R2) , φ, ψ ∈ Ḣ1+θ(R2) (2.24)

(so that, formally, “Mt(φ) =
∫ t

0 ξ( ds, (−∆) 1+θ
2 φ)” for a space-time white noise ξ on R+ × R2).

Further, if ω0 is distributed according to µ in (1.26), then we will say that the solution is stationary.
Note, in Navier-Stokes community this is often referred to as very weak solution.

Let us introduce the operator LN which is nothing but the R2 counterpart of LN,M in (2.6)
and formally represents the generator of (1.10).

Once again, it can be written as the sum of two operators, i.e. LN = Lθ + AN ,
whose action of cylinder functions F (ω) = f(ω(φ1), . . . , ω(φn)) is given by

LθF (ω) def= 1
2

n∑
i=1

ω(−(−∆)θφi)∂if + 1
2

n∑
i,j=1

⟨φi, φj⟩Ḣ1+θ(R2) ∂
2
i,jf , (2.25)

ANF (ω) def= −λN
n∑
i

NN [ω](φi) ∂if. (2.26)

Note that, thanks to the regularisation of the non-linearity i.e. the choice of mollifier , both
L0F [ω] and ANF [ω] are well-defined for any cylinder function F .

In the following definition, we present the martingale problem associated to LN .

Definition 2.1.7 LetT > 0, Ω = C([0, T ],S′(R2)) and G= B(C([0, T ],S′(R2))) the canonical
Borel σ-algebra on it. Let θ ∈ (0, 1], N ∈ N and µ be a measure on S′(R2). We say that a
probability measure PN on (Ω, G) solves the cylinder martingale problem for LN with initial
distribution µ, if for all cylinder functions F (as defined in (1.31)) the canonical process ωN

under PN is such that

Mt(F ) def= F (ωNt ) − F (µ) −
∫ t

0
LNF (ωNs ) ds (2.27)

is a continuous martingale.

As a first result, we determine the connection between the martingale problem in Defini-
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tion 2.1.7 and weak solutions of (1.10).

Proposition 2.1.8 Let θ ∈ (0, 1], N ∈ N and µ be a random field on S′(R2). Then, PN is a
solution to the cylinder martingale problem for LN with initial distribution µ if and only if the
canonical process ωN under PN is a weak solution of (1.10).

Proof. Notice first that if ωN is a weak solution of (1.10), then for any cylinder function F ,
the right hand side of (2.27) is a martingale by Itô’s formula. Hence, the law of ωN solves the
martingale problem of Definition 2.1.7. In order to show that the converse also holds, we follow
the strategy of [FQ15, Lemma 2.7]. Let PN be a solution to the martingale problem and ωN the
canonical process with respect to PN . Let φ ∈ S(R2) and Fφ be the linear cylinder function
defined as Fφ(ωN) def= ωN(φ). In view of (2.27), ωN satisfies

ωNt (φ) − µ(φ) =
∫ t

0
LNωs(φ) ds+ Mt(Fφ)

= 1
2

∫ t

0
ωNs (−(−∆)θφ) ds+ λN

∫ t

0
NN [ωNs ](φ) ds+ Mt(Fφ)

(2.28)

the second step being a consequence of the definition of LN in (2.25) and (2.26), and where
Mt(Fφ) is a continuous martingale. We are left to show that for all φ, Mt(Fφ) is Gaussian and
has covariance given as in (2.24). To do so, let φ, ψ ∈ S(R2), and consider the quadratic cylinder
function Fφ,ψ(ωN) def= ωN(φ)ωN(ψ). Exploiting (2.27) once more, we see that

Mt(Fφ,ψ) = ωNt (φ)ωNt (ψ) − µ(φ)µ(ψ) −
∫ t

0
LNFφ,ψ(ωNs ) ds (2.29)

is a martingale. Let bs(φ) def= LNωNs (φ) and notice that (2.25) and (2.26) give

LNFφ,ψ(ωNs ) = ωNs (φ)bs(ψ) + ωNs (ψ)bs(φ) + ⟨φ, ψ⟩Ḣ1+θ(R2) ,
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which, once plugged into (2.29), provides

Mt(Fφ)Mt(Fψ) − t⟨φ, ψ⟩Ḣ1+θ(R2)

=Mt(Fφ,ψ) −
∫ t

0

(
bs(ψ)δs,tωN· (φ) + bs(φ)δs,tωN· (ψ)

)
ds

− µ(φ)Mt(Fφ) − µ(ψ)Mt(Fφ) +
∫ t

0

∫ t

0
bs(φ)bs̄(ψ) ds ds̄

=Mt(Fφ,ψ) −
∫ t

0

(
bs(ψ)

∫ t

s
dMs̄(φ) + bs(φ)

∫ t

s
dMs̄(φ)

)
ds

− µ(φ)Mt(Fφ) − µ(ψ)Mt(Fφ)

=Mt(Fφ,ψ) −
∫ t

0

( ∫ s̄

0
bs(ψ) ds

)
dMs̄(φ) +

∫ t

0

( ∫ s̄

0
bs(φ) ds

)
dMs̄(ψ)

− µ(φ)Mt(Fφ) − µ(ψ)Mt(Fφ)

(2.30)

where we introduced the notation δs,tf·
def= f(t) − f(s) and exploited (2.28) in the second equality.

Now, all the terms at the right hand side are martingales so that, by definition, t⟨φ, ψ⟩Ḣ1+θ(R2)

is the quadratic co-variation of Mt(Fφ) and Mt(Fψ) and clearly (2.24) holds. For Gaussianity,
taking ψ = φ in (2.30), we deduce that Mt(Fφ) is a continuous martingale with deterministic
quadratic variation which, in view of [EK09, Theorem 7.1.1], implies that, for all φ, Mt(Fφ) is
Gaussian with independent increments so that the proof is concluded.

We now show that the martingale problem of Definition 2.1.7 starting from µ as in (1.26)
admits a solution. Together with the previous result, this implies the existence of a stationary
weak solution to (1.10) whose invariant measure is µ thus completing the proof of Theorem 1.3.1.

Theorem 2.1.9 LetN ∈ N be fixed, θ ∈ (0, 1] and µ the Gaussian process with covariance given
by (1.26). The cylinder martingale problem of Definition 2.1.7 for LN with initial distribution µ
has a solution PN . Further, the canonical process ωN under PN has invariant measure µ.

The proof of the previous theorem exploits the Galerkin approximation ωN,M of (1.4) studied
in the previous section. In the next lemma, we show that the sequence is tight in M (for N fixed).

Definition 2.1.10 We say a sequence of probability distributions {µM}M∈N is tight in X if for
any ε > 0 there exists M0 ∈ N and Kε ⊂ X such

µM(Kε) > 1 − ε ,

for every M > M0. We say a sequence of stochastic functions are tight in space if the
corresponding sequence of probability distributions are tight.
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Lemma 2.1.11 Let N ∈ N be fixed, θ ∈ (0, 1] and T > 0. With a slight abuse of notation, for
all M ∈ N, let ωN,M denote the periodically extended version of the stationary solution to (2.1)
on TM . Then, the sequence {ωN,M}M∈N is tight in C([0, T ],S′(R2)).

Proof. [Mit83, Theorem 3.1.] can be applied here, in this setting it states that a sequence of
continuous functions {ωN,M}M∈N mapping from a closed interval ([0, T ] in our case) to a Frechet
space, can be shown to be tight if for all φ ∈ S(R2) the sequence {t → ωNt (φ)}N is tight. To do
so, we will exploit Kolmogorov’s criterion, for which we need to prove that there exist α > 0 and
p > 1 such that for all 0 ≤ s < t ≤ T we have

E
[
|ωN,Mt (φ) − ωN,Ms (φ)|p

]1/p
≲φ (t− s)α , (2.31)

where the constant hidden into “≲” depends on φ. Since ωN,M is Markov and stationary, it is
enough to show (2.31) for s = 0. Notice first that, by construction, the time increment of ωN,M

satisfies

ωN,Mt (φ) − µM(φ)

= 1
2

∫ t

0
ωN,Ms (−(−∆)θφ) ds− λN

∫ t

0
NN [ωN,Ms ](φ) ds+

∫ t

0
ξM( ds, cφ)

and we will separately focus on each of the terms at the right hand side. Gaussian hypercontrac-
tivity [Nua06, Theorem 1.4.1] and the definition of ξ imply that the last term can be bounded
as

E
[∣∣∣∣ ∫ t

0
ξM(s, (−∆)

1+θ
2 φ) ds

∣∣∣∣p]1/p
≲ E

[∣∣∣∣ ∫ t

0
ξM(s, (−∆)

1+θ
2 φ) ds

∣∣∣∣2] 1
2

=
( ∫ t

0
⟨(−∆)

1+θ
2 φ, (−∆)

1+θ
2 φ⟩L2(T2

M ) ds
) 1

2
= t

1
2 ∥φ∥Ḣ1+θ(T2

M ) ≲ t
1
2 ∥φ∥Ḣ1+θ(R2) ,

(2.32)

where in the last step, we simply used the fact that the Ḣ1+θ(T2
M)-norm is simply a Riemann-sum

approximation of the Ḣ1+θ(R2) norm. For the remaining two terms, we exploit Lemma 2.1.5
and the same argument as above. Collecting what deduced so far, we see that (2.31) holds for
all φ, any p ≥ 2 and α = 1/2, so that, tightness of the sequence {ωN}N follows at once by
Kolmogorov’s criterion and [Mit83].

We are now ready to complete the proof of Theorem 2.1.9.

Proof of Theorem 2.1.9. Let PN,M denote the law of the periodically extended version of
the stationary solution ωN,M of (2.1) on C([0, T ],S′(R2)). In order to consider ωN,M on
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C([0, T ],S′(R2)) we must we must extend it, we do so by periodically repeating M distance. We
extend µM in the same fashion. Since by Lemma 2.1.11, the sequence {PN,M}M is tight, we
can extract, via Prokhorov’s theorem, a weakly converging subsequence that, slightly abusing
the notation, we will still denote by {PN,M}M . Let PN be its limit. Skorokhod’s representation
theorem ensures that we can realise the sequence on a proper probability space in such a way that
{ωN,M}M converges to ωN , PN almost surely in C([0, T ],S′(R2)) as M → ∞. We now want to
show that PN is a solution to the martingale problem for LN , which amounts to verify that for
any cylinder function F the right hand side of (2.27) is a continuous martingale.

As a preliminary step, note that since ωN,M → ωN almost surely in C([0, T ],S′(R2)), then,
for all t, ωN,Mt → ωNt almost surely in S′(R2). By assumption, ωN,Mt is distributed according
to µM and µM converges to µ. Hence ωNt is distributed according to µ. In other words, µ is an
invariant measure for ωN and, as µ is Gaussian, for any cylinder function G, G(ωNt ) has finite
moments of all orders.

Let φ1, . . . , φn ∈ S(R2) and F (ω) = f(ω(φ1), . . . , ω(φn)) be a cylinder function on S′(R2).
By Itô’s formula, for all t ∈ [0, T ],

F (ωN,Mt ) − F (µM) −
∫ t

0
LN,MF (ωN,Ms ) ds ,

is a square-integrable continuous martingale. Once we show that

MN,M
t (ωN,Mt ) −MN

t (ωN) = (2.33)(
F (ωN,Mt ) − F (µM) −

∫ t

0
LN,MF (ωN,Ms ) ds

)
−
(
F (ωNt ) − F (µ) −

∫ t

0
LNF (ωNs ) ds

)

goes to 0 in mean square with respect to PN we can show that MN
t (ωN) is a martingale, because

E
(
MN

t (ωN) −MN,M
t (ωN,M)|Fs

)
→ 0 and so

E
(
MN

t (ωN)|Fs
)

= E
(
MN,M

t (ωN,M)|Fs
)

− E
(
MN

t (ωN) −MN,M
t (ωN,M)|Fs

)
→M MN

s (ωN) .

We will first prove that (2.33) converges to 0 almost surely. Since ωN,M → ωN almost surely in
C([0, T ],S′(R2)), then almost surely for all r ∈ [0, T ] and n ∈ N both

∂(n)f(ωN,M(φ1), . . . , ωN,M(φn)) → ∂(n)f(ωNr (φ1), . . . , ωNr (φn)) ,

ωN,Mr (−(−∆)θφ) → ωNr (−(−∆)θφ)
(2.34)

hold. Further, for every i, j = 1, . . . n, ⟨φi, φj⟩Ḣ1+θ(T2
M ) → ⟨φi, φj⟩Ḣ1+θ(R2) deterministically
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as the Ḣ1+θ(T2
M)-norm is a Riemann-sum approximation of the Ḣ1(R2)-norm. Hence, by the

definitions of LM
0 and L0 in (2.7) and (2.25) respectively, it follows that almost surely

F (ωN,Mr ) → F (ωNr ), r ∈ {0, t} and
∫ t

0
LM

0 F (ωN,Ms ) ds →
∫ t

0
L0F (ωNs ) ds .

In light of (2.34), to show that the same convergence holds for the term containing AN,MF (ωN,Mr )
and ANF (ωNr ), it suffices to argue that almost surely, for all i = 1, . . . , n and r ∈ [0, T ],
NN,M [ωN,Mr ](φi) → NN [ωNr ](φi). This in turn is a direct consequence of the representa-
tion (2.18) and the fact that the almost sure convergence of ωN,M to ωN in C([0, T ],S′(R2))
ensures that both ωN,M(K ∗ ϱN· ) → ωN(K ∗ ϱN· ) and ωN,M(ϱN· ) → ωN(ϱN· ). Indeed, our choice
of the mollifier guarantees that Fourier transform of ϱN is supported away from the origin so that
K ∗ ϱN· ∈ S(R2).

In conclusion, (2.33) converges to 0 almost surely. Moreover, each of its summands has
finite moments of all orders as for all r ∈ [0, T ] the distribution of ωN,Mr and ωNr is Gaussian.
Therefore, by the dominated convergence theorem, (2.33) converges to 0 in mean square and the
proof is concluded.

2.2 The Vorticity equation on the real plane

Throughout this section, we will be working with a solution PN of the martingale problem for
LN with initial distribution µ, whose canonical process ωN is, by Proposition 2.1.8, a stationary
weak solution of the fractional regularised Vorticity equation (2.23) on R2.

The goal is to control the behaviour of ωN in the limit N → ∞. To do so, we first need
to deepen our understanding of the generator LN and, in particular, determine how it acts on
random variables in L2(η).

2.2.1 The operator LN

This section is devoted to the study of the properties of the operator LN on L2(η), which is given
by the sum of L0 and AN defined in (2.25) and (2.26), respectively. Recall that, as remarked
in Section 1.5, there exists an isomorphism I between L2(η) and the Fock space ΓL2. With a
slight abuse of notation, from here on we will denote with the same symbol any operator O acting
on L2(η) and the corresponding operator acting instead on ΓL2, where by “corresponding” we
mean any operator O such that OI(φ) = I(Oφ) for all φ ∈ ΓL2.
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Proposition 2.2.1 Let µ be the Gaussian process whose covariance function is given by (1.26).
Then, for any θ ∈ (0, 1], the operator Lθ is symmetric on L2(η), and for each n, it maps Hn to
itself. Further, for any f ∈ ΓL2

n, Lθf = −1
2(−∆)θf so that the Fourier transform of the left

hand side equals

F(Lθf)(k1:n) = −1
2 |k1:n|2θf̂(k1:n) , for all k1:n ∈ (R2)n, (2.35)

where |k1:n|2θ def= |k1|2θ + · · · + |kn|2θ. Instead, the operator AN is anti-symmetric on L2(η) and
it can be written as the sum of two operators AN

+ and AN
− , the first mapping Hn to Hn+1 while

the second Hn to Hn−1. Moreover, the adjoint of AN
+ is −AN

− and for any f ∈ ΓL2
n the Fourier

transform of their action on f is given by

F(AN
+f)(k1:n+1) = λNnK

N
k1,k2 f̂(k1 + k2, k3:n+1) (2.36)

F(AN
−f)(k1:n−1) = 2λNn(n− 1)

∫
R2
ϱ̂Np,k1−p

(k⊥
1 · p)(k1 · (k1 − p))

|k1|2
f̂(p, k1 − p, k2:n−1) dp

(2.37)

where KN was defined in (2.4) and k1:n+1 ∈ (R2)n+1. Strictly speaking the functions at the right
hand side need to be symmetrised with respect to all permutations of their arguments.

Proof. The properties of Lθ, including (2.35) have been shown in case θ = 1 in [GP18a, Lemma
3.7.], the generalisation to general θ is straightforward, we include it here for the convenience
of the reader. Consider a cylinder function F of the form F [ω](φ) = Hn(ω(φ)) with φ being a
Schwartz function such that ∥φ∥L2 = 1. Then

LθF [ω] = H ′
n(ω(φ))ω(−1

2(−∆)θφ) −H ′′
n(ω(φ))∥φ∥H1+θ

= nHn−1(ω(φ))ω(−1
2(−∆)−θφ) − n(n− 1)Hn−2(ω(φ))∥φ∥H1+θ .

By standard properties of Hermite polynomials we have Hk(I1(φ)) = Ik(φ⊗k). By (1.28) we
have

nHn−1(I1(φ))I1((−∆)θφ) = nIn−1(φ⊗(n−1))I1((−∆)θφ)

= nIn(−1
2(−∆)θφ⊗n) + n(n− 1)Hn−2(I1(φ))∥φ∥H1+θ .

Via polarisation we obtain Lθf = −1
2(−∆)θf and hence (2.35). Concerning AN , let F (µ) =
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f(µ(φ1), . . . , µ(φn)) be a generic cylinder function. By (2.26), we have

ANF (µ) = −λN
∑
i

NN [µ](φi)∂if = −λNNN [µ]
(∑

i

∂ifφi

)
= −λNNN [µ](DF ) = −λN

∫
R2

NN [µ](x)DxF dx
(2.38)

where we exploited the definition of the Malliavin derivative in (1.32).
Let us first show the decomposition in AN

+ and AN
− in (2.36) and (2.37), respectively. By

polarisation it suffices to take F (µ) = In(f) for f of the form ⊗nφ and φ ∈ Ḣ1(R2). Note that
the Malliavin derivative of F satisfies

DxF (µ) = nIn−1
(

⊗n−1 φ
)
φ(x)

(see e.g. [CES21, proof of Lemma 3.5]). Therefore, plugging the previous into (2.38), we get

ANF (µ) = −λN
∫
R2

NN [µ](x)DxF dx = −nλNNN [µ](φ)In−1
(

⊗n−1 φ
)
.

Arguing as in the proof of Lemma 2.1.6, it is not hard to see that NN [µ](φ) ∈ H2 and
NN [µ](φ) = I2(nNφ ), the Fourier transform of nNφ being given by the right hand side of (2.19)
(though for ℓ,m ∈ R2). Therefore,

ANF (µ) = −nλNI2(nNφ )In−1
(

⊗n−1 φ
)

= − nλNIn+1(nNφ ⊗0 ⊗n−1φ)

− 2n(n− 1)λNIn−1(nNφ ⊗1 ⊗n−1φ)

− n(n− 1)(n− 2)λNIn−3(nNφ ⊗2 ⊗n−1φ)

(2.39)

where the last equality is a consequence of (1.28). It is not hard to see, by taking Fourier
transforms and applying Plancherel’s identity, that the first term indeed equals AN

+ In(f), while
the second AN

− In(f), so that in particular AN
+ and AN

− map Hn into Hn+1 and Hn−1 respectively.
We claim that instead the last term vanishes. Indeed by (1.29), we have

nNφ ⊗2 ⊗n−1φ(x1:n−3) =
n−3∏
i=1

φ(xi)
∫

(R2)2
⟨∇nNφ (x, y),∇φ(x)φ(y)⟩ dx dy

Applying Plancherel’s identity and the definition of nNφ (x, y), we see that the integral above
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equals
∫

(R2)2
|k1|2|k2|2n̂Nφ (k1, k2)φk1φk2 dk1 dk2

=
∫

(R2)2
|k1|2|k2|2KN

k1,k2φ−k1−k2φk1φk2 dk1 dk2 = ⟨NN [(−∆φ)], (−∆)φ⟩Ḣ−1(R2)

and the right hand side is equal to 0 by Lemma 2.1.2.
We now show that AN

+ is the adjoint of −AN
− . For F = ∑

n In(fn) and G = ∑
n In(gn) we

have

E
[
AN

+FG
]

=
∑
n,m

E
[
In+1(AN

+fn)Im(gm)
]

=
∑
n

(n+ 1)!⟨AN
+fn, gn+1⟩ΓL2

n+1

E
[
FAN

−G
]

=
∑
n,m

E
[
In(fn)Im−1(AN

− gm)
]

=
∑
n

n!⟨fn,AN
− gn+1⟩ΓL2

n+1
,

which is a consequence of orthogonality of different Wiener-chaoses. Therefore, to prove that the
two right hand sides above are indeed equal, it suffices to verify that

(n+ 1)⟨AN
+fn, gn+1⟩ΓL2

n+1
= −⟨fn,AN

− gn+1⟩ΓL2
n
.

By (2.36) (modulo permutations), the left hand side is given by

4πλNn(n+ 1)
∫ (

Πn+1
i=1 |ki|2

)
KN
k1,k2 f̂(k1 + k2, k3:n+1)ĝn+1(k1:n+1) dk1:n+1 . (2.40)

Then, by a simple change of variables the previous integral is
∫ (

Πn+1
i=1,i ̸=2|ki|2

)
|k′

2 − k1|2KN
k1,k′

2−k1 f̂(k′
2, k3:n+1)ĝn+1(k1, k

′
2 − k1, k3:n+1) dk1 dk′

2 dk3:n+1

=
∫ (

Πn
i=1|ki|2

) |k1 − p|2|p|2

|k1|2
KN
p,k1−pf̂(k1:n)ĝn+1(p, k1 − p, k2:n) dp dk1:n

= 1
2π

∫ (
Πn
i=1|ki|2

)
f̂(k1:n)

∫
ϱ̂Np,k1−p

(p⊥ · k1)(k1 · (k1 − p))
|k1|2

ĝn+1(p, k1 − p, k2:n) dp dk1:n

= − 1
2π

∫ (
Πn
i=1|ki|2

)
f̂(k1:n)

∫
ϱ̂Np,k1−p

(p · k⊥
1 )(k1 · (k1 − p))

|k1|2
ĝn+1(p, k1 − p, k2:n) dp dk1:n ,

from which the result follows. Further, as an immediate corollary of (AN
+ )∗ = −AN

− , we also
deduce that AN is anti-symmetric so that the proof of the statement is completed.
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2.2.2 Tightness and upper bound

Following techniques similar to those exploited in Section 2.1.1, we establish tightness for the
sequence {ωN}N of solutions to the stationary regularised Vorticity equation under assump-
tion (1.11). For θ = 1, we also derive an order one upper bound on the integral in time of the
non-linearity.

Theorem 2.2.2 Let θ ∈ (0, 1]. For N ∈ N, let ωN be a stationary solution to (2.23) on R2 with
coupling constant λN chosen according to (1.11), started from the Gaussian process µ with
covariance given by (1.26). For φ ∈ S(R2) and t ≥ 0, set

BN
t (φ) def= λN

∫ t

0
NN
t [ωNs ](φ) ds . (2.41)

Then, for any T > 0, the couple (ωN ,BN) is tight in the space C([0, T ],S′(R2)). Moreover, for
θ = 1, any limit point (ω,B) is such that for all p ≥ 2 there exists a constant C = C(p) such
that for all φ ∈ S(R2)

E
[∣∣∣∣Bt(φ)

∣∣∣∣p] 1
p

≤ C(t ∨ t
1
2 )∥φ∥Ḣ2(R2) , (2.42)

while, for θ ∈ (0, 1), for all p ≥ 2 and φ ∈ S(R2)

lim
N→∞

E
[

sup
s≤t

∣∣∣∣BN
s (φ)

∣∣∣∣p] 1
p

= 0 . (2.43)

Remark 2.2.3 For θ = 1, the previous theorem proves both the tightness of the sequence
{(ωN ,BN)}N stated in Theorem 1.3.2 and the upper bound in (1.20). The latter can be directly
verified by considering (2.42) with p = 2 and applying the Laplace transform at both sides.

Proof. The proof follows the same steps and computations performed in Section 2.1 for
Lemma 2.1.11. More precisely, the statements of Lemma 2.1.4 (the Itô trick), Proposition 2.1.5
and Lemma 2.1.6 hold mutatis mutandis in the non-periodic case - it suffices to remove the
superscriptsM , replace every instance of T2

M with R2 and substitute the weighted Riemann-sums
with integrals. Hence, we deduce that for any φ ∈ S(R2) and any p ≥ 2

E
[

sup
s≤t

∣∣∣∣BN
s (φ)

∣∣∣∣p] 1
p

≲ N2θ−2(t ∨ t
1
2 )∥φ∥Ḣ2(R2) . (2.44)

which implies tightness for BN for θ ∈ (0, 1] by Mitoma’s and Kolmogorov’s criteria, and (2.43)
for θ ∈ (0, 1) and (2.42) for θ = 1. Moreover, arguing as in the proof of Lemma 2.1.11, one
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sees that (2.31) holds for ωN . By invoking once more Mitoma’s and Kolmogorov’s criteria we
conclude that tightness holds also for ωN .

2.2.3 Lower bound on the non-linearity for θ = 1

As shown in Theorem 2.2.2, the choice of the coupling constant λN in (1.11) ensures tightness of
the sequence {ωN}N of stationary solutions to (2.23) on R2 and, for θ = 1, provides an upper
bound on the integral in time of the non-linearity. In order to prove the lower bound the analogous
statements of [CES21, Lemma 5.1] and [CES21, Lemma 5.2] will be used. For connvinience of
the reader the statement and the proof for those is given below

Lemma 2.2.4 For N ∈ N, let BN be defined according to (2.41) then for any N ∈ N we have

∫ ∞

0
e−κtE

[∣∣∣∣BN
t (φ)

∣∣∣∣2] dt = 2λ2
N

κ2 E
[
NN [µ](φ)(κ− LN)−1NN [µ](φ)

]
. (2.45)

Moreover the above equals

2λ2
N

κ2 sup
G∈L2(η)

{
2E[λN,1NN [µ](φ)G] − E[G(κ− L0)G] − E[ANG(κ− L0)−1ANG]

}
= 2λ2

N

κ2 sup
g∈ΓL2

{
2⟨λN,1nNφ , g⟩ΓL2 − ⟨g, (κ− L0)g⟩ΓL2 − ⟨ANg, (κ− L0)−1ANg⟩ΓL2

}(2.46)

Proof. For (2.45) we start by reformulating E
[∣∣∣∣BN

t (φ)
∣∣∣∣2],

E
[∣∣∣∣BN

t (φ)
∣∣∣∣2] = 2λ2

N

∫ t

0
ds
∫ s

0
drE[NN [ωNr ]NN [ωNs ]]

= 2λ2
N

∫ t

0
ds
∫ s

0
drE[NN [ωNr ]E[NN [ωNs ]|Gr]] ,

here Gdenotes the natural filtration of {ωNt }t. ωN is a Markov process which here is denoted by
{etLN }t≥0, at a fixed time it is distributed according to µ. And so the above is equal to

2λ2
N

∫ t

0
ds
∫ s

0
drE

[
NN [µ]Eµ

[
NN [ωNs−r]

]]
= 2λ2

N

∫ t

0
ds
∫ s

0
drE

[
NN [µ]e(s−r)LN

NN [µ]
]

= 2λ2
N

∫ t

0
dr(t− s)E

[
NN [µ]erLN

NN [µ]
]
,

here Eµ denotes the expectation with respect to {ωNt }t conditioned to start at µ. The expectation
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above does not depend on t, inserting this back into left hand side of (2.45) one obtains

2λ2
N

∫ ∞

0

∫ t

0
(t− r)e−κ(t−r)E

[
NN [µ]e−r(κ−LN )NN [µ]

]
,

from which right hand side of (2.45) follows as
∫∞

0 dre−r(κ−LN ) = (κ− LN)−1.
To prove the above is equal to the variational problem stated in (2.46) one has to use statement

from [KLO12] which is stated here in this setting (and not one of [KLO12])

Lemma 2.2.5 Let LN be the generator of the Markov process {ωNt }t≥0 and let L0 and AN be
its symmetric and antisymmetric parts with respect to the white noise measure η. Let F ∈ L(η)
and denote by ⟨·, ·⟩η the product in L2(η), then for every λ > 0,

⟨F, (λ− LN)−1F ⟩ = sup
G

{
2⟨F,G⟩η − ⟨(λ− L0)G,G⟩η − ⟨ANG, (λ− L0)−1ANG⟩η

}
,

Here G ranges over a fixed core of LN .

To prove (2.46) one applies (2.45) to the above lemma twice.

In the proposition below, we determine a matching (up to constants) lower bound on its
Laplace transform thanks to which the proof of Theorem 1.3.2 is complete.

Proposition 2.2.6 In the same setting as Theorem 2.2.2, let θ = 1 and B be any limit point of
the sequence BN in (2.41). Then, there exists a constant C > 0 such that for all κ > 0 and
φ ∈ S(R2) the lower bound in (1.20) holds.

Proof. By the Lemma 2.2.4 the rest of the proof will be bounding below the following quantity

2
κ2 sup

G∈L2(η)

{
2E[λN,1NN [µ](φ)G] − E[G(κ− L0)G] − E[ANG(κ− L0)−1ANG]

}
= 2
κ2 sup

g∈ΓL2

{
2⟨λN,1nNφ , g⟩ΓL2 − ⟨g, (κ− L0)g⟩ΓL2 − ⟨ANg, (κ− L0)−1ANg⟩ΓL2

}

where nNφ is such that NN [µ](φ) = I2(nNφ ) and its Fourier transform is given by the right
hand side of (2.19) (for ℓ,m ∈ R2). We can further lower bound (2.46) by restricting to g to ΓL2

2

for which, by orthogonality of different chaoses of AN
+ and AN

− determined in Proposition 2.2.1
we have

⟨AN
+G, (κ− LN

0 )−1AN
−G⟩ = 0 ,
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⟨AN
−G, (κ− LN

0 )−1AN
+G⟩ = 0 .

hence, the last term of (2.46) equals

⟨ANg, (κ− L0)−1ANg⟩ΓL2
2

= ⟨AN
+ g, (κ− L0)−1AN

+ g⟩ΓL2
3

+ ⟨AN
− g, (κ− L0)−1AN

− g⟩ΓL2
1
.

Summarising, the left hand side of (2.45) is lower bounded by

2
κ2 sup

g∈ΓL2
2

{
2⟨λN,1nNφ , g⟩ΓL2

2
− ⟨g, (κ− L0)g⟩ΓL2

2

− ⟨g,−AN
− (κ− L0)−1AN

+ g⟩ΓL2
2

− ⟨g,−AN
+ (κ− L0)−1AN

− g⟩ΓL2
2

} (2.47)

where we further exploited that the adjoint of AN
+ is −AN

− and vice versa. The operators
−AN

− (κ− L0)−1AN
+ and −AN

+ (κ− L0)−1AN
− , even though explicit, are difficult to handle since

they are not diagonal in Fourier space, meaning that their Fourier transform cannot be expressed
in terms of an explicit multiplier. Nevertheless, the following lemma, whose proof we postpone
to the end of the section, ensures that they can be bounded by one.

Lemma 2.2.7 There exists a constant C > 0 independent of N such that for any g ∈ ΓL2
2, the

following bound hold

⟨g,−AN
− (κ− L0)−1AN

+ g⟩ΓL2
2

∨ ⟨g,−AN
+ (κ− L0)−1AN

− g⟩ΓL2
2

≤ C⟨(−L0)g, g⟩ΓL2
2
. (2.48)

Assuming the previous lemma holds, there exists a constant c > 1 independent of n such
that (2.47) is bounded below by

2
κ2 sup

g∈ΓL2
2

{
2⟨λN,1nNφ , g⟩ΓL2

2
− ⟨g, (κ− cL0)g⟩ΓL2

2

}

= 2
κ2 sup

g∈ΓL2
2

{
⟨λN,1nNφ , g⟩ΓL2

2
+ ⟨λN,1nNφ − (κ− cL0)g, g⟩ΓL2

2

}
.

(2.49)

Now, in order to prove (1.20), it suffices to exhibit one g for which the lower bound holds, and we
choose it in such a way that the second scalar product in the supremum is 0, i.e. we pick g = g,
the latter being the unique solution to

λN,1n
N
φ − (κ− cL0)g = 0 . (2.50)
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Notice that, by (2.35), g has an explicit Fourier transform which is given by

ĝ(k1:2) = λN,1
n̂φ(k1:2)

κ+ c
2 |k1:2|2

.

Plugging g into (2.47) we obtain a lower bound of the type

2
κ2 ⟨λNnNφ , g⟩ΓL2

2
=

2λ2
N,1

κ2

∫
R4

|k1|2|k2|2
|n̂φ(k1:2)|2
κ+ c

2 |k1:2|2
dk1:2

= 2
κ2

∫
R2

dk|φk|2
(
λ2
N,1

∫
R2

dk2|k − k2|2|k2|2
|KN

k−k2,k2 |2

κ+ c
2(|k − k2|2 + |k2|2)

) (2.51)

which is fully explicit and we are left to consider the inner integral. To do so, recall the definition
of KN in (2.4). We restrict the integral over k2 to the sector

CNk
def= {k2 : θk2 ∈ θk + (π/6, π/3) & N/3 ≥ |k2| ≥ (2|k|) ∨ 2/N & |k| ≤

√
N}

where, for j ∈ R2, θj is the angle between the vectors j and (1, 0). Then we have

k2 · k⊥ = |k2||k| cos(|θk⊥ − θk2|) ≥ |k2||k|
√

3
2 ,

k2 · k = |k2||k| cos(|θk − θk2 |) ≥ |k2||k|
√

3
2 .

(2.52)

Hence on Ck, we have

|KN
k−k2,k2|2 = 1

2π (ϱ̂Nk−k2,k2)2 |(k − k2)⊥ · k|2|k2 · k|2

|k2|4|k − k2|4
= 1

2π (ϱ̂Nk−k2,k2)2 |k2 · k⊥|2|k2 · k|2

|k2|4|k − k2|4

= 1
2π (ϱ̂Nk−k2,k2)2 |k|4

|k − k2|4
| cos(θ − θk)|2| cos(θ − θk⊥)|2 ≥ cϱ

|k|4

|k2|2|k − k2|2

for a constant cϱ depending only on ϱ but neither on k nor N . In the last step, we used that by
assumption (1.12) on ϱ, |ϱ̂N | is bounded below on [2/N,N/2] by a constant independent of N
and that on CNk we have

2
N

≤ |k|, |k2|, |k − k2| ≤ N
2 , and 3

2 |k2| ≥ |k − k2| ≥ 1
2 |k2| .

Hence, the right hand side of (2.51) is lower bounded, modulo a multiplicative constant only
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depending on ϱ, by

2
κ2

∫
2/N≤|k|≤

√
N

dk|k|4|φk|2
(
λ2
N,1

∫
CN

k

dk2

κ+ |k2|2
)
. (2.53)

It remains to treat the quantity in parenthesis, for which we pass to polar coordinates and obtain

λ2
N,1

∫
CN

k

dk2

κ+ |k2|2
≥ λ2

N,1

∫ N/3

2
√
N

ϱ dϱ
κ+ ϱ2 = λ

2 logN log
(
κ+N2/9
κ+ 4N

)
≳ 1 .

In conclusion, we have shown that for N large enough

∫ ∞

0
e−κtE

[∣∣∣∣BN
t (φ)

∣∣∣∣2] dt ≳ 1
κ2

∫
2/N≤|k|≤

√
N

dk|k|4|φk|2 , (2.54)

and it remains to pass to the limit asN → ∞. Now, thanks to (2.42) and tightness of BN , we can
apply dominated convergence to the left hand side, while the integral at right hand side clearly
converges to ∥φ∥2

Ḣ2(R2), so that the proof is completed.

Proof of Lemma 2.2.7. We will exploit the Fourier representation of the operators AN
+ and AN

−

in Proposition 2.2.1, which though still need to be symmetrised. Let aN+ be the operator defined
by the right hand side of (2.36) and S3 the set of permutations of {1, 2, 3}. Then,

⟨g,AN
− (κ− L0)−1AN

+ g⟩ΓL2
2

= ⟨AN
+ g, (κ− L0)−1AN

+ g⟩ΓL2
3

=
∑
s,s̄∈S3

∫ |k1|2|k2|2|k3|2

κ+ 1
2 |k1:3|2

F(aN+g)(ks(1):s(3))F(aN+g)(ks̄(1):s̄(3)) dk1:3

≲
∫ |k1|2|k2|2|k3|2

κ+ 1
2 |k1:3|2

F(aN+g)(k1:3)2 dk1:3

(2.55)

where in the last step we simply applied Cauchy-Schwarz inequality. Now, we bound |KN
k1,k2 | ≤
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ϱ̂Nk2 |k1 + k2|2/(|k1||k2|) so that the right hand side above can be controlled via

λ2
N,1

∫
R6
ĝ(k1 + k2, k3)2ϱ̂k2

|k3|2|k1 + k2|4

κ+ 1
2 |k1:3|2

dk1:3

≲
∫
R4

dk1:2

( 2∏
i=1

|ki|2
)

|k1|2|ĝ(k1, k2)|2
(
λ2
N,1

∫
R2

ϱ̂j dj
κ+ |j|2

)

≲
∫
R4

dk1:2

( 2∏
i=1

|ki|2
)

|k1|2|ĝ(k1, k2)|2

= 1
2

∫
R4

dk1:2

( 2∏
i=1

|ki|2
)

(|k1|2 + |k2|2)|ĝ(k1, k2)|2 = ⟨(−L0)g, g⟩ΓL2
2

(2.56)

where the second step follows by the fact that ϱ̂j ≤ 1|j|≤N and the definition of λN,1 in (1.11),
while the last by the symmetrisation of the integral.

We now turn to the other term, which is

⟨g,AN
+ (κ− L00)−1AN

− g⟩ΓL2
2

= ⟨AN
− g, (κ− L0)−1AN

− g⟩ΓL2
1
≲ λ2

N,1

∫ |k|2

κ+ 1
2 |k|2

F(AN
− g)(k)2 dk

= λ2
N,1

∫
R2

dk |k|2

κ+ 1
2 |k|2

( ∫
R2
ϱ̂Np,k−p

(k⊥ · p)(k · (k − p))
|k|2

ĝ(p, k − p) dp
)2

≲ λ2
N,1

∫
R2

dk
( ∫

R2
ϱ̂Np |p||k − p|ĝ(p, k − p) dp

)2
.

We now multiply and divide the integrand by |p| and apply Cauchy-Schwarz, so that we obtain an
upper bound of the form

( ∫
R4

dk1:2

( 2∏
i=1

|ki|2
)

|k1|2ĝ(k1, k2)|2
)(
λ2
N,1

∫
R2

(ϱ̂Np )2 dp
|p|2

)

from which (2.48) follows arguing as in (2.56).

2.2.4 Triviality of the fractional Vorticity equation for θ < 1

In this last section, we complete the proof of Theorem 1.3.4 and show that the re-scaled solution
of the regularised fractional Vorticity equation for θ ∈ (0, 1) converges to the fractional stochastic
heat equation obtained by simply setting the coupling constant λ in (1.10) to 0.

For the proof, recall that ω is a stationary (analytically) weak solution of (1.21) if for all
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φ ∈ S(R2), ω satisfies

ωt(φ) = µ(φ) +
∫ t

0
ωs(−(−∆)θφ) ds+

∫ t

0
ξ( ds, (−∆)

1+θ
2 φ)

where µ is the Gaussian process whose covariance is given by (1.26). It is not hard to see that ω
admits a unique stationary weak solution. This is the only tool we need for the proof, which is
then a simple corollary of Theorem 2.2.2.

Proof of Theorem 1.3.4. For N ∈ N, let ωN be a stationary weak solution to (1.10), i.e. for all
φ ∈ S(R2) ωN satisfies

ωNt (φ) − µ(φ) = 1
2

∫ t

0
ωNs (−(−∆)θφ) ds+ BN

t (φ) −
∫ t

0
ξ( ds, (−∆)

1+θ
2 φ) ,

where BN is defined according to (2.41). By Theorem 2.2.2, the sequence (ωN ,BN) is tight in
the space C([0, T ],S′(R2)) and, thanks to (2.43), BN → 0 as N → ∞. Hence, it immediate
to verify that every limit point of ωN is a weak stationary solution of (1.21). Since the latter is
unique, the result follows at once.
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CHAPTER 3

Anisotropic KPZ on the real plane under critical regime

3.1 Invariant measures of the regularised equations

Similarly to Chapter 3 the goal of this section is to construct a stationary solution to the
regularised critical Anisotropic KPZ equation on R2. Following similar approach to that of SNS.
Demonstrating this method can be applied to more than one model. Some calculations may be
very similar to those from Chapter 2 and as such will be omitted.

3.1.1 The regularised Burger equation on T2
M

For θ ∈ (0, 1], we consider the periodic version on T2
M of (1.19) given by

∂tu
N,M = −1

2(−∆)θuN,M − λNÑ
N,M [uN,M ] + (−∆) θ

2 ξM , uN,M(0, ·) = uM0 , (3.1)

where uM0 is the initial condition, and ÑN,M is the non-linearity defined in (1.18). In Fourier
variables, (3.1) becomes

d ûN,Mk = −1
2 |k|2θûN,Mk − λNÑ

N,M
k [uN,M ] + |k|θ dBk(t) , k ∈ Z2

M
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The Fourier transform of the non-linearity ÑN,M is of the form

Ñ
N,M
k [uN,M ](x) = 1

M2

∑
ℓ,m∈Z2

M
ℓ+m=k

K̃N
ℓ,mu

N,M
−ℓ uN,M−m eℓ+m(x) , (3.2)

for

K̃N
ℓ,m

def= 1
2π ϱ̂

N
ℓ,m|ℓ+m|c(ℓ,m)

|ℓ||m|
, c(ℓ,m)def= m2ℓ2 −m1ℓ1 , (3.3)

and the variables ℓ and m appearing in the previous equations range over Z2
M . The proof of this

can be found in the appendix Proposition 3.3.7. As a first step in our analysis, we determine basic
properties of the solution of (3.1).

Proposition 3.1.1 Let M,N ∈ N and θ ∈ (0, 1]. Then, for every deterministic initial condition
uN,M0 ∈ Ḣ−1(T2

M), (3.1) has a unique strong solution uN,M ∈ C(R+, Ḣ
−1(T2

M)). Further, uN,M

is a strong Markov process.

Proof. The proof is the same as in Proposition 3.1.1. This is because just as in SNS the
regularisation allows us to decouple the first N Fourier modes with the rest.

Lemma 3.1.2 Let T = T2
M or R2 then for any distribution η ∈ S′(T ) we have

⟨ÑN [η], η⟩L2(T ) = 0 .

Proof. This proof is done in [CES21, Appendix A], we include it here for completeness and
convenience for the reader. Let ψN = (−∆)− 1

2ϱN ∗ η then

⟨ÑN [η], η⟩L2(T ) = ⟨(−∆)
(
(∂1ψ

N)2 − (∂2ψ
N)2

)
, ψN⟩L2(T )

=
2∑
i=1

⟨∂i(∂iψN)2, ∂iψ
N⟩L2(T ) +

∑
i,j∈{1,2}
i ̸=j

(−1)i⟨∂i(∂jψN)2, ∂iψ
N⟩L2(T )

= 1
3

2∑
i=1

⟨∂i(∂iψN)3, 1⟩L2(T ) + 2
∑

i,j∈{1,2}
i ̸=j

(−1)i⟨∂iψN∂jψN∂i,jψN , 1⟩L2(T ) .

In the first inequality we moved ϱN and (−∆)− 1
2 to the right hand side of the product,in the
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second equality we expand all the terms. In the third equality we use the fact that

∂(∂ψN)3 = 3(∂ψN)2∂ψN

In the final equation the first sum is zero by integration by parts while the second sum is made of
two terms which cancel each other out giving the result.

Even though the generator L̃N,M of the Markov process uN,M , is a complicated operator, its
action on cylinder functions F can be easily obtained by applying Itô’s formula and singling
out the drift term. By doing so, we deduce that for any such F , L̃N,MF can be written as
L̃N,MF = L̃M

θ F + ÃN,MF , where L̃M
0 and ÃN,M are given by

L̃M
θ F (u) def= 1

2

n∑
i=1

u(−(−∆)θφi)∂if + 1
2

n∑
i,j=1

⟨φi, φj⟩Ḣθ(T2
M ) ∂

2
i,jf,

ÃN,MF (u) def= −λN
n∑
i=1

ÑN,M [u](φi) ∂if,
(3.4)

where we abbreviated ∂if = ∂if(u(φ1), . . . , u(φn)).

Proposition 3.1.3 Let ηM be the Gaussian spatial noise on T2
M with covariance given by (1.30).

Then, ηM is an invariant measure of the solution uN,M of (3.1).

Proof. The proof for M = 1 is given in [CES21, Lemma 3.1] where the [Ech82] result is used,
method is similar to that of Proposition 2.1.3. Generalisation of [CES21, Lemma 3.1] to general
M is trivial.

From now on, we will only work with the stationary solution of (3.1), i.e. the initial condition
will always be taken to be

uN,M0
def= ηM (3.5)

where ηM is as in Proposition 3.1.3. In the following statements, we aim at obtaining estimates on
the solution uN,M to (3.1) which are uniform in both N and M . Even though we are considering
a different equation lemma 2.1.4 still applies just the same, only difference being the energy. The
energy for AKPZ is given by

ẼN(F )(ηM) def= 1
M2

∑
k∈Z2

M

|k|2θ|DkF (ηM)|2 . (3.6)
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Proposition 3.1.4 Let θ ∈ (0, 1], T > 0 be fixed and p ≥ 2. For M, N ∈ N, let ÑN,M be
defined according to (3.2) and λN be as in (1.11). Then, there exists a constant C = C(p) > 0,
independent of M, N ∈ N such that for all φ ∈ S(T2

M) and all t ∈ [0, T ], we have

E
[
sup
s≤t

∣∣∣∣ ∫ s

0
uN,Mr (−(−∆)θφ) dr

∣∣∣∣p
]1/p

≤ Ct
1
2 ∥φ∥Ḣθ(T2

M ) , (3.7)

E
[
sup
s≤t

∣∣∣∣λN ∫ s

0
ÑN,M [uN,Mr ](φ)] dr

∣∣∣∣p
]1/p

≤ CN θ−1(t ∨ t
1
2 )∥φ∥Ḣ1(T2

M ) . (3.8)

The proof of the previous proposition (and in particular of (2.15)) is based on the following
lemma.

Lemma 3.1.5 For M, N ∈ N, φ ∈ S(T2
M), let [ηM ](φ) be the smooth random variable defined

according to (3.2), with ηM replacing u. Then, ÑN,M
k [ηM ](φ) belongs to the second homogeneous

Wiener chaos H2.Furthermore, the Poisson equation

(1 − L̃M
0 )H̃N,M [ηM ](φ) = λNÑ

N,M [ηM ](φ) (3.9)

has a unique solution whose energy satisfies

E[EN,M(H̃N,M [µM ](φ))] = 4λ2
N

M4

∑
ℓ,m

|ℓ|2θ
(K̃N

ℓ,m)2

(1 + 1
2(|ℓ|2θ + |m|2θ))2 |φ−ℓ−m|2 . (3.10)

Proof. By the Fourier representation for the ÑN,M in (3.2) we have

E
(
ÑN,M [ηM ](φ)

)
= 1
M2

∑
ℓ,m∈Z2

M

K̃N
ℓ,mE

(
ηM−ℓη

M
−m

)
φℓ+m = 1

M2

∑
ℓ∈Z2

M

K̃N
ℓ,−ℓφ0 = 0 ,

the last equality is a direct consequence of the definition of K̃N in (3.3). Since ÑN,M [ηM ](φ)
is quadratic and its component in the 0-th chaos is 0, it follows that ÑN,M

k [ηM ](φ) ∈ H2 and
ÑN,M [ηM ](φ) = W2(ñN,Mφ ), for ñN,Mφ such that

ˆ̃nNφ (ℓ,m) = K̃N
ℓ,mφℓ+m . (3.11)

Let h̃N,Mφ ∈ Ḣ1
sym((T2

M)2) and H̃N,M [ηM ](φ) = W2(h̃N,Mφ ). Then, [CES21, Lemma 3.5] implies
that

(1 − L̃M
θ )H̃N,M [ηM ](φ) = W2((1 − 1

2(−∆)θ))h̃N,Mφ ) .
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from which it is immediate to see that (3.9) has a unique solution which must necessarily satisfy

ˆ̃hN,Mφ (ℓ,m) = λN
K̃N
ℓ,m

1 + 1
2(|ℓ|2θ + |m|2θ)φ−ℓ−m , for all ℓ,m ∈ Z2

M . (3.12)

In order to compute the energy of H̃N,M [ηM ](φ), let us express W2(h̃N,Mφ ) in Fourier as

H̃N,M [ηM ](φ) = W2(h̃N,Mφ ) = λN
M2

∑
ℓ,m∈Z2

M

K̃N
ℓ,m

1 + 1
2(|ℓ|2θ + |m|2θ)η

M
ℓ η

M
m φ−ℓ−m .

Then, by (1.32),

DkH̃
N,M [ηM ](φ) = λN

M2

∑
ℓ,m∈Z2

M

K̃N
ℓ,m

1 + 1
2(|ℓ|2θ + |m|2θ)Dk(ηMℓ ηMm )φ−ℓ−m

= 2λN
M2

∑
m∈Z2

M

K̃N
k,m

1 + 1
2(|k|2θ + |m|2θ)η

M
m φk−m

Hence, ẼN,M(HN,M [µM ](φ)) is given by

ẼN,M(H̃N,M [µM ](φ)) = 4λ2
N

M6

∑
k,m1,m2

|k|2θ
2∏
i=1

K̃N
k,mi

1 + 1
2(|k|2θ + |mi|2θ)

µM(−1)imi
φ(−1)i(k−mi) .

Taking the expectation of the previous expression we get

E[ẼN(H̃N,M [ηM ](φ))]

= 4λ2
N

M6

∑
ℓ,k1,k2

|ℓ|2θ
K̃N
ℓ,k1−ℓ

κ+ |ℓ|2θ + |k1 − ℓ|2θ
K̃N
ℓ,k2−ℓ

κ+ |ℓ|2θ + |k2 − ℓ|2θ
E[ηMℓ−k1η

M
ℓ−k2 ]φ−k1φ−k2

= 4λ2
N

M2

∑
ℓ

|ℓ|2θ 1
M2

∑
k

|φk|2
(K̃N

ℓ,k−ℓ)2

(κ+ |ℓ|2θ + |k − ℓ|2θ)2

= 4λ2
N

M4

∑
ℓ,m

|ℓ|2θ
(K̃N

ℓ,m)2

(1 + 1
2(|ℓ|2θ + |m|2θ))2 |φ−ℓ−m|2 .

(3.13)

Proof of Proposition 3.1.4. For both (2.14) and (2.15), we will exploit the Itô’s trick Lemma 2.1.4.
Let us begin with the former. Set K̃N,M [ηM ](φ) def= ηM(φ), then as in SNS we have

L̃θ
M
K̃N,M [ηM ](φ) = ∥φ∥2

Ḣθ(T2
M ) .
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Hence, by (2.10)

2E
[

sup
s≤t

∣∣∣∣ ∫ s

0
L̃M

0 K̃M [uN,Mr ](φ) dr
∣∣∣∣p]1/p

≲ t
1
2 ∥φ∥Ḣθ(T2

M ) .

We now turn to (3.8), just as in proof of Proposition 2.1.5 it suffices to bound two terms

E
[

sup
s≤t

∣∣∣∣ ∫ s

0
H̃N,M [ωN,Mr ](φ) dr

∣∣∣∣p] 1
p

, E
[

sup
s≤t

∣∣∣∣ ∫ s

0
LM

0 H̃N,M [ωN,Mr ](φ) dr
∣∣∣∣p] 1

p

(3.14)

For the second, we apply once more (2.10), which, together with (3.10), gives

E
[

sup
s≤t

∣∣∣∣ ∫ s

0
L̃M

0 H̃N,M [uN,Mr ](φ) dr
∣∣∣∣p] 2

p

≲ t
λ2
N

M4

∑
ℓ,m

|ℓ|2θ
(K̃N

ℓ,m)2

(1 + 1
2(|ℓ|2θ + |m|2θ))2 |φ−ℓ−m|2

≲ t
1
M2

∑
k

|k|2|φk|2
λ2
N

M2

∑
ℓ+m=k

ϱ̂Nℓ,m
|ℓ|2θ

(1 + 1
2(|ℓ|2θ + |m|2θ))2

≲ t
1
M2

∑
k

|k|2|φk|2
λ2
N

M2

∑
ℓ

ϱ̂Nℓ
1

1 + 1
2 |ℓ|2θ

= t∥φ∥2
Ḣ1(T2

M )
λ2
N

M2

∑
ℓ

ϱ̂Nℓ
1

1 + 1
2 |ℓ|2θ

≲ t∥φ∥2
Ḣ1(T2

M ) ,

where we bounded |KN
ℓ,m|2 ≤ ϱ̂Nℓ,m|ℓ + m|2 and applied a simple change of variables. The

last inequality being a consequence of (1.11) and Riemann approximation. Let us turn to the first
summand in (3.14), in the same spirit as in SNS we have

E
[

sup
s≤t

∣∣∣∣ ∫ s

0
H̃N,M [uN,Mr ](φ) dr

∣∣∣∣p] 1
p

≤
√

2t∥h̃N,Mφ ∥(L2(T2
M ))⊗2

which is due to Jensen’s inequality and Gaussian hypercontractivity [Nua06, Theorem 1.4.1].By
Lemma 3.1.5, H̃N,M [ηM ](φ) = W2(h̃N,Mφ ) for h̃N,Mφ satisfying (3.12). In turn, the norm of h̃N,Mφ

can be estimated via

∥h̃N,Mφ ∥2
(L2(T2

M ))⊗2 = λ2
N

M4

∑
ℓ,m∈Z2

M

(KN
ℓ,m)2

(1 + 1
2(|ℓ|2θ + |m|2θ))2 |φ−ℓ−m|2

≲
λ2
N

M2

∑
k∈Z2

M

|k|2|φk|2
1
M2

∑
ℓ+m=k

1
(1 + 1

2(|ℓ|2θ + |m|2θ))2
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≲
λ2
N

M2

∑
k∈Z2

M

|k|2|φk|2
∫
R2

dx
(1 + |x|2θ)2 ≲ ∥φ∥Ḣ1(T2

M )

where the second bound follows by |KN
ℓ,m| ≤ |ℓ+m| and the same change of variables as above.

Theorem 3.1.6 LetN ∈ N be fixed and η be a space white noise on R2. The cylinder martingale
problem for L̃N with initial distribution η in Definition 2.1.7 has a solution P. Further, the
canonical process uN under P has invariant measure η.

Proof. The proof is analogous to that of Theorem 2.1.9. Indeed one uses the Proposition 3.1.4 to
obtain tightness via the use of Kolmogorov and [Mit83]. Following this a Martingale problem is
formed in which almost sure convergence is trivial and is used to show mean square convergence
via the fact that we know that the limiting distribution is Gaussian in nature.

3.2 The Burger equation on the real plane

Throughout this section, we will be working with a solution P̃N of the martingale problem for
L̃N with initial distribution η, whose canonical process uN is, by Proposition 3.1.3, a stationary
weak solution of the regularised burger equation (1.19). Similarly to SNS, the goal is to control
the behaviour of uN in the limit N → ∞. We start by deepening our understanding of the
generator L̃N and, in particular, determine how it acts on random variables in L2(η).

3.2.1 The operator L̃N

Let us introduce the operator L̃N which is nothing but the R2 counterpart of L̃N,M and formally
represents the generator of (1.19). Once again, it can be written as the sum of two operators, i.e.
L̃N = Lθ + ÃN , whose action of cylinder functions F (ω) = f(ω(φ1), . . . , ω(φn)) is given by

L̃θF (u) def= 1
2

n∑
i=1

u(−(−∆)θφi)∂if + 1
2

n∑
i,j=1

⟨φi, φj⟩Ḣθ(R2) ∂
2
i,jf , (3.15)

ÃNF (u) def= −λN
n∑
i

ÑN [u](φi) ∂if. (3.16)

This section is devoted to the study of the properties of the operator L̃N on L2(η), (η being
the Gaussian process with covariance (1.30)) which is given by the sum of L̃0 and ÃN defined
in (3.15) and (3.16), respectively.
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Proposition 3.2.1 Let η be the Gaussian process whose covariance function is given by (1.30).
Then, on L2(η), the operator L̃0 is symmetric and for each n, it maps Hn to itself. Further, for
any f ∈ ΓL2

n, L̃θf = −1
2(−∆)θf so that the Fourier transform of the left hand side equals

F(Lθf)(k1:n) = −1
2 |k1:n|2θf̂(k1:n) , for all k1:n ∈ (R2)n, (3.17)

where |k1:n|2θ def= |k1|2θ + · · · + |kn|2θ. Instead, the operator ÃN is anti-symmetric on L2(η) and
it can be written as the sum of two operators ÃN

+ and ÃN
− , the first mapping Hn to Hn+1 while

the second to Hn−1. Moreover, the adjoint of ÃN
+ is −ÃN

− and for any f ∈ ΓL2
n the Fourier

transform of their action on f is given by

F(ÃN
+ g)(k1:n+1) = 4πλNK̃N

k1:2 ĝ(k1 + k2, k3:n+1) , (3.18)

F(ÃN
− g)(k1:n−1) = 4λN

∫
|k|ϱ̂Nk,k1−k

c(k1 − k, k1)
|k1 − k||k1|

ĝ(k, k1 − k, k2:n−1) dk , (3.19)

where K̃N was defined in (3.3) and k1:n+1 ∈ (R2)n+1. Strictly speaking the functions at the right
hand side need to be symmetrised with respect to all permutations of their arguments.

Proof. The proof is analogous to the proof of Proposition 2.2.1, only difference being the noise
with respect to which the Wiener chaos is used and instead of using Lemma (2.1.2) here we use
Lemma (3.1.2).

3.2.2 Tightness, upper bound and lower bound

Following techniques similar to those exploited in Section 3.1.1, we establish tightness for the
sequence {uN}N of solutions to the stationary regularised Vorticity equation under assump-
tion (1.11). For θ = 1, we also derive an order one upper bound on the integral in time of the
non-linearity.

Theorem 3.2.2 Let θ ∈ (0, 1]. For N ∈ N, let uN be a weak stationary solution to (1.19) on R2

with coupling constant λN chosen according to (1.11), started from the Gaussian process η with
covariance given by (1.30). For φ ∈ S(R2) and t ≥ 0, set

B̃N
t (φ) def= λN

∫ t

0
ÑN
t [uNs ](φ) ds . (3.20)

Then, for any T > 0, the couple (uN , B̃N) is tight in the space C([0, T ],S′(R2)). Moreover, for
θ = 1, any limit point (u, B̃) is such that for all p ≥ 2 there exists a constant C = C(p) such
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that for all φ ∈ S(R2)

E
[∣∣∣∣B̃t(φ)

∣∣∣∣p] 1
p

≤ C(t ∨ t
1
2 )∥φ∥Ḣ1(R2) , (3.21)

while, for θ ∈ (0, 1), for all p ≥ 2 and φ ∈ S(R2)

lim
N→∞

E
[

sup
s≤t

∣∣∣∣B̃N
s (φ)

∣∣∣∣p] 1
p

= 0 . (3.22)

Proof. Just like in SNS the proof on R2 is very similar to the proof on T2
M - it suffices to

remove the superscripts M , replace every instance of T2
M with R2 and substitute the weighted

Riemann-sums with integrals. We can then apply Mitoma’s and Kolmogorov’s criteria to obtain
(3.21) and tightness.

We now proceed to proving the lower bound of Theorem 1.3.2 for the AKPZ, note here we take
θ = 1.

Proposition 3.2.3 In the same setting as Theorem 3.2.2, let B̃ be any limit point of the sequence
B̃N in (3.20). Then, there exists a constant C > 0 such that for all κ > 0 and φ ∈ S(R2), we
have ∫ ∞

0
e−κtE

[∣∣∣∣B̃t(φ)
∣∣∣∣2] dt ≥ C

κ2 ∥φ∥2
Ḣ1(R2) . (3.23)

Proof. For N ∈ N, let B̃N be defined according to (3.20), By [CES21, Lemma 5.1], for N ∈ N
we have ∫ ∞

0
e−κtE

[∣∣∣∣B̃N
t (φ)

∣∣∣∣2] dt = 2
κ2E

[
ÑN [η](φ)(κ− L̃N)−1ÑN [η](φ)

]
. (3.24)

Thanks to [CES21, Lemma 5.2] and the isometry W introduced in Section 1.5, the right hand
side above equals

2
κ2 sup

G∈L2(η)

{
2E[λNÑN [η](φ)G] − E[G(κ− L̃0)G] − E[ÃNG(κ− L̃0)−1ÃNG]

}
= 2
κ2 sup

g∈ΓL2

{
2⟨λN ñNφ , g⟩ΓL2 − ⟨g, (κ− L̃0)g⟩ΓL2 − ⟨ÃNg, (κ− L̃0)−1ÃNg⟩ΓL2

} (3.25)

where ñNφ is such that ÑN [η](φ) = W2(ñNφ ) and its Fourier transform is given by the right hand
side of (3.11). We can further lower bound the above by restricting to g to ΓL2

2 for which, by
orthogonality of different chaoses of ÃN

+ and ÃN
− determined in Proposition 3.2.1 we have

⟨ÃN
+G, (κ− L̃N

0 )−1ÃN
−G⟩ = 0 ,
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⟨ÃN
−G, (κ− L̃N

0 )−1ÃN
+G⟩ = 0 .

hence, the last term of (3.25) equals

⟨ÃNg, (κ− L̃0)−1ÃNg⟩ΓL2
2

= ⟨ÃN
+ g, (κ− L̃0)−1ÃN

+ g⟩ΓL2
3

+ ⟨ÃN
− g, (κ− L̃0)−1ÃN

− g⟩ΓL2
1
.

Summarising, we showed that the left hand side of (3.24) is lower bounded by

2
κ2 sup

g∈ΓL2
2

{
2⟨λN ñNφ , g⟩ΓL2

2
− ⟨g, (κ− L̃0)g⟩ΓL2

2

− ⟨g,−ÃN
− (κ− L̃0)−1ÃN

+ g⟩ΓL2
2

− ⟨g,−ÃN
+ (κ− L̃0)−1ÃN

− g⟩ΓL2
2

} (3.26)

where we further exploited that the adjoint of ÃN
+ is −ÃN

− and vice versa. Similarly to SNS
model the operators −ÃN

− (κ− L̃0)−1ÃN
+ and −ÃN

+ (κ− L̃0)−1ÃN
− can be bounded by one.

Lemma 3.2.4 There exists a constant C > 0 independent of N such that for any g ∈ ΓL2
2, the

following bound hold

⟨g,−ÃN
− (κ− L̃0)−1ÃN

+ g⟩ΓL2
2

∨ ⟨g,−ÃN
+ (κ− L̃0)−1ÃN

− g⟩ΓL2
2

≤ C⟨(−L̃0)g, g⟩ΓL2
2
. (3.27)

Thanks to (3.27), there exists a constant c > 1 independent of n such that (3.26) is bounded
below by

2
κ2 sup

g∈ΓL2
2

{
2⟨λN ñNφ , g⟩ΓL2

2
− ⟨g, (κ− cL̃0)g⟩ΓL2

2

}

= 2
κ2 sup

g∈ΓL2
2

{
⟨λN ñNφ , g⟩ΓL2

2
+ ⟨λN ñNφ − (κ− cL̃0)g, g⟩ΓL2

2

}
.

(3.28)

Now, in order to prove (3.23), it suffices to exhibit one g for which it holds, and we choose it in
such a way that the second scalar product in the supremum is 0, i.e. we pick the solution g to

λN ñ
N
φ − (κ− cL̃0)g = 0 .

Notice that, by (3.17), g has an explicit Fourier transform which is given by

ĝ(k1:2) = λN
ˆ̃nφ(k1:2)

κ+ c
2 |k1:2|2

.
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Plugging g into (3.26) we obtain a lower bound of the type

2
κ2 ⟨λN ñNφ , g⟩ΓL2

2
= 2λ2

N

κ2

∫
R4

|ˆ̃nφ(k1:2)|2
κ+ c

2 |k1:2|2
dk1:2

= 2
κ2

∫
R2

dk|φk|2
(
λ2
N

∫
R2

dk2
|K̃N

k−k2,k2|2

κ+ c
2(|k − k2|2 + |k2|2)

) (3.29)

which is fully explicit and we are left to consider the inner integral. To do so, recall the definition of
K̃N in (3.3). For arbitrary k = (k1, k2) ∈ R2 let k′ def= (−k1, k2) then c(k1, k−k1) = k1(k−k1)′.
We restrict the integral over k2 to the sector

CNk
def= {k2 : θk2 ∈ θ(k−k2)′ + (0, π/6) & N/3 ≥ |k2| ≥ (2|k|) ∨ 2/N & |k| ≤

√
N}

where, for j ∈ R2, θj is the angle between the vectors j and (1, 0). Then we have

k2 · (k − k2)′ = |k2||k − k2| cos(|θ(k−k2)′ − θk2 |) ≥ |k2||k|
√

3
2 .

Hence on Ck, we have

|K̃N
k−k2,k2|2 = 1

(2π)2 (ϱ̂Nk−k2,k2)2|k|2 c(k2, k − k2)2

|k2|2|k − k2|2
= 1

(2π)2 (ϱ̂Nk−k2,k2)2|k|2 |k2 · (k − k2)′|2

|k2|2|k − k2|2

= 1
(2π)2 (ϱ̂Nk−k2,k2)2|k|2 cos(|θ(k−k2)′ − θk2|)2 ≥ cϱ|k|2

for a constant c depending only on ϱ but neither on k nor N . In the last step, we used that by
assumption 1.12 on ϱ, |ϱ̂N | is bounded below on [2/N,N/2] by a constant independent of N .
Hence, the right hand side of (3.29) is lower bounded, modulo a multiplicative constant only
depending on ϱ, by

2
κ2

∫
2/N≤|k|≤

√
N

dk|k|2|φk|2
(
λ2
N

∫
CN

k

dk2

κ+ |k2|2
)
. (3.30)

The quantity in parenthesis is bounded from below by a constant as in SNS hence for N large
enough ∫ ∞

0
e−κtE

[∣∣∣∣B̃N
t (φ)

∣∣∣∣2] dt ≳ 1
κ2

∫
2/N≤|k|≤

√
N

dk|k|2|φk|2 , (3.31)

and it remains to pass to the limit asN → ∞. Now, thanks to (2.42) and tightness of B̃N , we can
apply dominated convergence to the left hand side, while the integral at right hand side clearly
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converges to ∥φ∥2
Ḣ1(R2), so that the proof is completed.

Proof of Lemma 3.2.4. We will exploit the Fourier representation of the operators ÃN
+ and ÃN

−

in Proposition 3.2.1, which though still need to be symmetrised. Let ãN+ be the operator defined
by the right hand side of (3.18) and S3 the set of permutations of {1, 2, 3}. Then,

⟨g, ÃN
− (κ− L̃0)−1ÃN

+ g⟩ΓL2
2

= ⟨ÃN
+ g, (κ− L̃0)−1ÃN

+ g⟩ΓL2
3

=
∑
s,s̄∈S3

∫ 1
κ+ 1

2 |k1:3|2
F(ãN+g)(ks(1):s(3))F(ãN+g)(ks̄(1):s̄(3)) dk1:3

≲
∫ 1
κ+ 1

2 |k1:3|2
F(ãN+g)(k1:3)2 dk1:3

(3.32)

where in the last step we simply applied Cauchy-Schwarz inequality. By bounding |K̃N
k1,k2| ≤

ϱ̂Nk2 |k1 + k2| and the bound above, one obtains

⟨g, ÃN
− (κ− L̃0)−1ÃN

+ g⟩ΓL2
2
≲ ⟨(−L̃0)g, g⟩ΓL2

2
. (3.33)

We now turn to the other term, which is For the term containing ÃN
− g we need to carefully

consider the c function. We have

⟨g, ÃN
+ (κ− L̃0)−1ÃN

− g⟩ΓL2
2

= ⟨ÃN
− g, (κ− L̃0)−1ÃN

− g⟩L2

≲ λ2
N

∫
|k|<N

1
κ+ |k|2

( ∫
1/N<|k1|<N

1/N<|k−k1|<N

|k1|ĝ(k1, k − k1)
c(k, k − k1)
|k||k − k1|

dk1

)2

dk .

By changing integration variable to k′
1 = k − k1 and using bi-linearity of c we have that

∫
|k1|ĝ(k1, k − k1)

c(k, k − k1)
|k||k − k1|

dk1

= c(k, k)
|k|

∫
ĝ(k1, k − k1)

|k1|
|k − k1|

dk1

+ 1
|k|

∫
ĝ(k1, k − k1)c(k, k1)

(
|k − k1|

|k1|
− |k1|

|k − k1|

)
dk1 ,

(3.34)

the integrals above are over {k1 : 1/N < |k1|, |k − k1| < N} .Using c(k, k) ≤ |k|2 and
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Cauchy-Schwarz, for the first term we have

c(k, k)
|k|

∫
ĝ(k1, k − k1)

|k1|
|k − k1|

dk1

≤ |k|
∫
ĝ(k1, k − k1)

|k1|
|k − k1|

dk1

≤ |k|
(∫

ĝ(k1, k − k1)2|k − k1|2 dk1

∫ 1
|k1|2

dk1

) 1
2

.

(3.35)

For the second term we use c(k, k1) ≤ |k||k1| to get

1
|k|

∫
ĝ(k1, k − k1)c(k, k1)

(
|k − k1|

|k1|
− |k1|

|k − k1|

)
dk1

≤
∫
ĝ(k1, k − k1)|k1|

(
|k − k1|

|k1|
− |k1|

|k − k1|

)
dk1

=
∫
ĝ(k1, k − k1)

(
|k − k1|2 − |k1|2

|k − k1|

)
dk1 .

Using |k − k1|2 − |k1|2 ≤ |k|2 and Cauchy Schwarz we get

∫
ĝ(k1, k − k1)

(
|k − k1|2 − |k1|2

|k − k1|

)
dk1

≲ |k|2
∫
ĝ(k1, k − k1)

1
|k − k1|

dk1

≤ |k|2
(∫

ĝ(k1, k − k1)2 dk1

∫ 1
|k1|2

dk1

) 1
2

≲ |k|2(logN) 1
2

(∫
ĝ(k1, k − k1)2 dk1

) 1
2
.

And so

⟨ÃN
− g, (κ− L̃0)−1ÃN

− g⟩L2

= ⟨F(ÃN
− g),F((κ− L̃0)−1ÃN

− g)⟩

≲ λ2
N log(N)

∫ (∫
ĝ(k1, k − k1)2|k − k1|2 dk1 + |k|2

∫
ĝ(k1, k − k1)2 dk1

)
dk

≲ ⟨(−L̃0)g, g⟩ΓL2
2
.
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3.3 Bulk diffusivity on the torus

It is of great interest to understand large scale properties of the solution of (1.13) with Q =
diag(1,−1). A sensible question is to ask how does it compare with the equation where λ = 0 i.e
the additive stochastic heat equation. In this section we will be comparing AKPZ with a Fourier
cut-off of size 1 imposed on the non-linearity (i.e N = 1) at large times, that is we investigate the
following equation

∂th = 1
2∆h+ λΠ1

(
(Π1∂1h)2 − (Π1∂2h)2

)
+ ξ , (3.36)

which as before can be transformed into a Burgers equation of the following form

∂tu = 1
2∆u+ λÑ1,M [u] + (−∆) 1

2 ξ

Ñ
1,M
t [u](x) = Π1

(
(Π1∂1(−∆)− 1

2ut)2 − (Π1∂2(−∆)− 1
2ut)2

)
(x) ,

(3.37)

One way to compare stochastic heat equation corresponding to (3.36) with λ = 0 with the
equation (3.36) itself is to look at the observable called bulk diffusivity which measures how the
correlations of a process spread in space as a function of time. The classical definition of bulk
diffusivity is

∫
T2

M
|x|2E[ut(x)u0(0)] Under mild assumptions it was shown in [CET20, Appendix

A] gave a heuristic explanation as to why the classical definition above and the Green-Kubo
formula are equivalent, we will be working with the Green-Kubo formulation stated below.

Definition 3.3.1 The bulk diffusivity of the process for the solution u to (3.37) is defined as

DM(t) = 1 + 2λ
2

t

∫ t

0

∫ s

0

∫
T2

M

E
[
Ñ1,M
r [u](x)Ñ1,M

0 [u](0)
]

dx dr ds (3.38)

For a stochastic heat equation corresponding to removing the non-linear term it is clear that
DM(t) ≡ 1. Bulk diffusivity of the AKPZ equation (3.36) were extensively investigated in
[CET20] where a lower and upper bounds of the Laplace transform of bulk diffusivity of solution
to (3.36) were found it is stated here for reference.

Theorem 3.3.2 Let λ > 0 and, for M ∈ N, DM be defined in (3.38) and DM be the Laplace
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transform of DM given by

DM(µ) = µ
∫ ∞

0
e−µttDM(t) dt .

For lightness of notation let

L(x, 0) def= 1 + λ2 log
(

1 + 1
µ

)
.

Then, there exists δ ∈ (0, 1
2 ] and a constant cbulk ≥ 1 such that for every M ∈ N and any µ > 0

sufficiently small

limsup
N→∞

DM(µ) ≤
(1 + cbulk)

µ
L(µ, 0)1−δ

and

liminf
N→∞

DM(µ) ≥
(1 + c−1

bulk)
µ

L(µ, 0)δ .

Moreover, the exponent δ is bounded away from zero for λ → 0.

An interesting question to ask for large times t does there exist a δ such that

lim
N→∞

DM(µ) = C

µ
L(µ, 0)δ ,

for some constant C, or one might directly ask a similar question about bulk diffusivity itself
namely does there exist δ > 0 such that

lim
M→∞

DM(t) = C log(t)δ

It has been conjectured in [CET20, Appendix B] that in fact δ = 1
2 . This result was the main

motivation of this numerical work. Since then further development has occurred as a result an
improved version of [CET20] was released where the bounds are of the form

limsup
N→∞

DM(µ) ≤
(cbulk)
µ

L(µ, 0) 1
2 log(L(µ, 0))5+δ
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and

liminf
N→∞

DM(µ) ≥
(1 + c−1

bulk)
µ

L(µ, 0) 1
2 log(L(µ, 0))−5−δ .

This result somewhat weakness the importance of numerical results that are to follow,
nevertheless it is a nice exposition of the numerical approach and the technology used to achieve
it. The rest of this subsection is structured as follows, firstly the heuristics as to why it is believed
that δ = 1

2 is described, closely following [CET20, Appendix B]. Afterwards we verify this
conjecture numerically using the pure spectral method.

Heuristic reason for δ = 1
2

To describe heuristic reasoning behind the δ = 1
2 conjecture the classical definition will be

used= To draw a distinction between the definition of bulk diffusivity defined previously and the
classical definition the (a) superscript will be used to denote the classical definition. That is

D(a)(t) def= 1
2t

∫
T2

M

|x|2S(t, x) dx ,

S(t, x) def= E[ut(x)u0(0)] . (3.39)

By translation invariance we have

Ŝ(t, k) = E
[
u0(0)

∫
e−k(z)ut(z) dz

]
= 1

(2π)2 E
[∫

u0(0)ek(z̄)
∫
e−k(z + z̄)ut(z) dz dz̄

]
= 1

(2π)2 E
[∫

u0(z̄)ek(z̄)
∫
e−k(z + z̄)ut(z + z̄) dz dz̄

]
= 1

(2π)2 E[ût(k)û0(−k)] .

Based on (3.36) we have

∂tût(k) + 1
2 |k|2ût(k) = λÑ1,M

k [ut] + |k|ξt(k) ,

in particular

∂tŜ(t, k) + 1
2 |k|2Ŝ(t, k) = λ

(2π)2 E
[
û0(−k)Ñ1,M

k [ut]
]

+ |k|
(2π)2 E[û0(−k)ξt(k)]

56



= λ

(2π)2 E
[
û0(−k)Ñ1,M

k [ut]
]

= λ

(2π)2E
[
η̂(−k)eL̃tÑ1,M

k [η]
]
.

In second equality the term |k|
(2π)2 E[û0(−k)ξt(k)] vanishes since its a product of two independent

Gaussian’s. As mentioned before the generator L̃ of u can be broken down into two elements Ã
and L̃0 as given in Proposition 3.2.1 (with N = 1). The semi-group associated to L̃ satisfies

eL̃t = eL̃0t +
∫ t

0
eL̃0(t−s)eL̃ds .

eL̃0t corresponds to the semi-group of Ornstein–Uhlenbeck process and Ñ
1,M
k [η] is quadratic thus

E
[
η̂(−k)eL̃0tÑ

1,M
k [η]

]
= 0 .

For the remaining term we use the fact that adjoint of Ã is −Ãgiving us

− λ

(2π)2

∫ t

0
e− 1

2 |k|2(t−s)E
[
(Ãη̂)(−k)eL̃NsÑ

1,M
k [η]

]
ds .

We now use the fact that Ãη̂(−k) = λÑ1,M
−k [η] and the Fourier representation from (3.2) to get

− λ2

(2π)2

∫ t

0
e− 1

2 |k|2(t−s)E
[
Ñ

1,M
−k [η]eL̃NsÑ

1,M
k [η]

]
ds

= −λ2

(2π)4 |k|2
∫ t

0
e− 1

2 |k|2(t−s)
∫

dℓ
∫

dℓ′K1
ℓ,k−ℓK

1
ℓ′,k−ℓ′

× E[ûs(ℓ)ûs(k − ℓ)û0(ℓ′)û0(−k − ℓ′)] ds

One now uses the mode-coupling approximation which was used in [Spo14] and recently
[KNSS18]. Starting with Gaussian approximation of the average of the product of four u’s and
then applying Wick’s rule. Translation invariance gives

E[ûs(ℓ)û0(m)] = 0, for ℓ ̸= −m

Via the Wick contraction we also have

|k|2E[ûs(ℓ)ûs(k − ℓ)]E[û0(ℓ′)û0(−k − ℓ′)] = 0, ∀k ,
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All together we get
(
∂t + 1

2 |k|2
)
Ŝ(t, k)

≈ −2|k|2 λ2

(2π)4

∫ t

0
e− 1

2 |k|2(t−s)
∫

dℓ(K1
ℓ,k−ℓ)2Ŝ(s, ℓ)Ŝ(s, k − ℓ) ds .

(3.40)

We now make an ansatz

Ŝ(t, k) = Ŝ(0, 0)e− 1
2 |k|2−c|k|2t(log t)δ

,

Aim is now to use the ansatz in (3.40) to find δ. The left hand side is given by(
∂t + 1

2 |k|2
)
Ŝ(t, k) ≈ −c|k|2(log t)δŜ(0, 0) . (3.41)

For the right hand side we approximate e− 1
2 |k|2(t−s) ≈ 1 and k − ℓ ≈ −ℓ so that k → 0 and

t → ∞, this gives

−|k|2λ2
∫ t

0
ds
∫

dℓ(K1
ℓ,−ℓ)2e−2c|ℓ|2s(log s)δ ≈ −|k|2λ2(log t)1−δ , (3.42)

comparing (3.42) with (3.41) and using (K1
ℓ,−ℓ)2 ≈ 1 one obtains δ = 1

2 .

Numerical simulations of the bulk diffusivity

When aiming to approximate such quantities one resides to approximating solution to an SPDE.
A most obvious way to approach this is to approximate time derivative and the Laplacian via
finite differences and imposing Fourier cut-off via fast-Fourier transform. Although easiest in
execution this approach generates errors that propagate with time as such we have no hope to
obtain accurate results for large t, indeed stability of the resulting equation prevents it from
behaving well for very small t as well.

Another, recently more popular method is to approach the SPDE from spectral perspective.
This involves viewing (3.37) as a system of ODEs in Fourier space given by

∂tût(k) = 1
2 |k|2ût(k) + Ñ

1,M
k [ut] + |k|∂tBt(k), û0(k) = η̂(k) ∀k ∈ Z2

M (3.43)

The aim is now to approximate Ñ
1,M
k [ut] on [0, T ] with T large and then use the Green-Kubo
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formula (3.38) to obtain bulk diffusivity. Since we are going to approximate matters numerically
we must discretise time, we do so uniformly between 0 and T where T is some large value.
Denoting the i-th point by ti and the distance between two points by ∆t. In order to solve such
system one considers a finite difference in time derivative

∂tû → 1
∆t

(ûti+1(k) − ûti(k)) .

The noise term is also approximated

∂tBt(k) d≈ 1
∆t

(
Bti+1 −Bti

)
d= 1

∆t

N(0,∆t) d= ∆
1
2
t N(0, 1) .

From now on we denote the N(0, 1) variable approximation of the noise at (ti, k) by Ξti(k). The
two approximations result in the following system of ODEs

ûti+1(k) = (1 − 1
2∆t|k|2)ûti(k) + Ñ

1,M
k [uti ] + ∆−0.5

t |k|Ξti(k),

û0(k) = η̂(k), ∀k ∈ Z2
M .

(3.44)

We are not interested in solving this for every k ∈ Z2
M as to calculate bulk diffusivity we only

need to know Ñ
1,M
k [uti ] and due to the Fourier cut-off at 1 we only need to calculate Ñ1,M

k [uti ] for
k ∈ Z2

M , |k| ≤ 1. Hence it suffices to calculate inductively for every ti over all k ∈ Z2
M such that

|k| ≤ 1. This still poses difficulty from computational stand point because the nonlinear term
is effectively a convolution (as given in (3.2)) and hence its computationally costly to calculate
it for every ti and for every k ∈ Z2

M , |k| ≤ 1. One approach to this is to use a pseudo-spectral
method that utilises the fact that Fourier transform of a convolution of two terms is equal to
Fourier transform of one term times the Fourier transform of another term. This may not seem
so useful however calculating convolution comes at a computational cost of O(N2) where as
Fourier transform comes at a computational cost of O(N log(N)), here N describes the size of
the array we are working with. In our case we can utilise the fact that the Fourier transform of
the non-linearity Ñ

1,M
k [uti ] is a convolution of ûti . We can then multiply uti’s which we already

have, one can then Fourier transform the product to obtain to obtain Ñ
1,M
k [uti ] with some error

which one can then partially eliminate by applying Orszag’s Two-Thirds rule which results in
setting Ñ

1,M
k [uti ] to 0 for |k| > 2/3 or calculating û up to |k| = 3

2 and then applying cut-off
at 1. This method is superior from computational efficiency standpoint. Sadly upon review it
turns out that the logarithmic nature of the bulk diffusivity is too fragile for such approximations.
Although one obtains a clear logarithmic curve for bulk diffusivity, the error causes the power to
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be uncertain. Thankfully the process of solving (3.44) via calculating the convolution directly is
highly pararellizable that is we can perform a lot of calculations simultaneously. In our case for
each time increment every space point can be calculated at the same time because each space
point only requires the value of the solution from previous time increment and not the current.
Recent development in technological sector allows one to use the graphic computing unit (GPU)
rather than the central processing unit (CPU) which was the common way to compute such
matters in the past. This provides vastly improved performance for such highly pararellizable
tasks, in this case the computations are approximately 1000 times faster than via classical CPU
computations, it is important to stress that such programming is significantly more difficult as
one has to manipulate the connection between system memory and the GPU memory and decide
which parts of the code to run on CPU and which on GPU. From now on we will use alternative
expression for the bulk diffusivity given by

tDM(t) = t+ E
[(∫

λÑ1,M
0 [us] ds

)2
]

Approximating E via classical Monte Carlo and discretising time and the integral we have

D(t) = 1 + 1
t
E


∫ t

0

∑
ℓ=(ℓ1,ℓ2) : |ℓ|≤1

(ℓ2)2 − (ℓ1)2

|ℓ|2
ûs(ℓ)ûs(−ℓ) ds

2


≈ 1 + 1
t

1
M

M∑
i=1


∫ t

0

∑
ℓ=(ℓ1,ℓ2) : |ℓ|≤1

(ℓ2)2 − (ℓ1)2

|ℓ|2
ûs(l)ûs(−ℓ) ds

2


≈ 1 + 1
t

1
M

M∑
i=1


∑

ti

∆t

∑
ℓ=(ℓ1,ℓ2) : |ℓ|≤1

(ℓ2)2 − (ℓ1)2

|ℓ|2
û(ti, ℓ)û(ti,−ℓ) ds

2
 .

The greater N is the closer we are to the real expectation, due to small changes after 1000
iterations and diminishing error a total of 10000 instances were calculated up to time T = 20000.
Before moving the code specifics first, the code is written in python 3.8 although it is compatible
with 3.9 and the newest 3.10 and likely backward compatible with other python 3 versions. Python
often offers a way to write code quickly and clearly, sometimes at cost of performance when
compared to other languages such as C++. In this case this performance issue was addressed by
using python packages that actually execute C++ code in the background making performance
loss insignificant while preserving the simplicity, one might further try to simplify the matters by
using Matlab, the performance penalty is to grand sadly. Google Colab made it possible to have
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access to professional grade GPUs for free, downside being that one can only run on 3 machines
12 hours at a time after which a 6 hour lock is administered, as such the code was written with
the intent to calculate instances over 12 hour windows and save it to a file, after having enough
instances we gather them all together and plot the graph, this has no impact on the final outcome,
only on the way the code was written. As such the code is broken in two parts, first part computes
instances and second part uses the precomputed instances to plot. Starting with the code for
computing instances

1

2 # pip3 install --upgrade numba

3 # pip3 install --upgrade tbb

4 # pip3 install --upgrade cupy -cuda110

5 # pip3 install --upgrade gupload

6

7 #@title Load packages.

8 import math

9 import csv

10 import multiprocessing as mp

11 import matplotlib.pyplot as plt

12 import numpy as np

13 #import cupy as cp

14 import scipy

15 from numba import njit , prange , cuda , jit

16 from timeit import default_timer as timer

17 import random

18 from tqdm import tqdm

19 import os

20 from numba.cuda.random import create_xoroshiro128p_states ,

xoroshiro128p_uniform_float32 , xoroshiro128p_normal_float64 ,

xoroshiro128p_normal_float32

21 from scipy.optimize import curve_fit

22

23

24

25 #Asking user for parameters.

26 batchsize = 10

27 number_of_instances = int(input("How many instances would you like to run ?

:" ))

28 R = float(input("Pick radius of the tours R :" ))

29 Time_Sample_Rate = float(input("Pick time sample size :"))

30 T = int(input("Time will be over [0,T], T (T should be at least R^2 ) : "))
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31 la = float(input("Lambda : "))

32

33 #Calculating useful sets based on the parameters.

34 TTerms = int(T*Time_Sample_Rate)

35 RLen = int(2*R)

36 FSpace=int(RLen /2) #The above happens due to NyquistâĂŞShannon sampling

theorem. (we only get half the points of original space)

37 Ts = np.linspace (0.0 , T, TTerms)

38 TsError = np.linspace (0.0 , T, T)

39

40

41 filenamestart = int(input("What filenumber would you like to start with? ")

)

42

43 seednumber = 1007 # Pick a different number on each rerun

44

45 @cuda.jit()

46 def GPUSolver(gpuU ,gpuN ,rng_states ,gpuInt , t, a ):

47 #Assinging thread position to variables k and inst where k is the fourier

term we are currently working on and inst is the instance

48 k,inst = cuda.grid (2)

49 k1, k2 = int(k % RLen - int(R)), int((k - k % RLen)/RLen)

50

51 #Initializing if t = 0

52 if t == 0:

53 gpuU [0+2* inst][k1][k2] = 0

54 gpuU [0+2* inst][-k1][-k2] = 0

55

56 #Working out noise terms

57 ReNoise = xoroshiro128p_normal_float64(rng_states , k+inst*int(R*R*2) )

58 ImNoise = 1j*xoroshiro128p_normal_float64(rng_states , k+inst*int(R*R*2)

)

59

60 #Working out non -linearity

61 gpuN[inst][k1][k2] = 0

62 gpuN[inst][-k1][-k2] = 0

63 if k1**2 + k2**2 < R**2:

64 for l1 in range(-R,R):

65 for l2 in range(-R,R):

66 if (l1**2 + l2**2 > 0) and (l1**2 + l2**2 < R**2) :

67 if ((k1-l1)**2 + (k2-l2)**2 < R**2 ) and ((k1-l1)**2 + (k2-l2)**2
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> 0):

68 gpuN[inst][k1][k2] += pow(R,-2) * pow(l1**2+l2**2,-0.5) * pow

((k1-l1)**2 + (k2-l2)**2,-0.5) *(a[0][0]*( -l1*k1 + l1*l1) + a[1][1]*( l2*

l2-l2*k2) + (a[0][1]+a[1][0]) *(l1*l2-l1*k2) )*gpuU[t%2+ 2*inst][l1][l2]

* gpuU[t%2+ 2*inst][k1-l1][k2-l2] #1/R^2 for scaling , 1/R for 1/|k| then

scaling of 1/|k-l| and 1/|l| cancels with the l2k2 ... stuff

69 if ((k1+l1)**2 + (k2+l2)**2 < R**2 ) and ((k1+l1)**2 + (k2+l2)**2

> 0) and (k1 != 0 or k2!= 0):

70 gpuN[inst][-k1][-k2] += pow(R,-2) * pow(l1**2+l2**2,-0.5) * pow

((k1+l1)**2 + (k2+l2)**2, -0.5) *( a[0][0]*( l1*k1 + l1*l1) + a[1][1]*( l2*

l2+l2*k2) + (a[0][1]+a[1][0]) *(l1*l2+l1*k2) )*gpuU[t%2+ 2*inst][l1][l2]

* gpuU[t%2+ 2*inst][-k1-l1][-k2-l2] #1/R^2 for scaling , 1/R for 1/|k|

then scaling of 1/|k-l| and 1/|l| cancels with the l2k2 ... stuff

71

72 #Adding 0-th fourier term to the Int

73 if k1 == 0 and k2 == 0:

74 gpuInt[inst][t] = gpuInt[inst][t-1] + 0.5*( gpuN[inst ][0][0])*pow(

Time_Sample_Rate ,-1) #its double counted so dividing by two.

75

76 #Bringing it all together to calculate the next time -increment at k

77 gpuU[(t+1)%2 + 2*inst][k1][k2] = (1 -0.5* pow(Time_Sample_Rate ,-1)*(k1**2 +

k2**2)*pow(R,-2))*gpuU[t%2+ 2*inst][k1][k2] + pow(Time_Sample_Rate ,-1)*

la*gpuN[inst][k1][k2]*pow(k1**2 + k2**2, 0.5) *(1/R) + pow(

Time_Sample_Rate ,-0.5) *(1/R)*pow(k1**2+k2**2 ,0.5)*( ReNoise + ImNoise )

78 gpuU[(t+1)%2 + 2*inst][-k1][-k2] = (1 -0.5* pow(Time_Sample_Rate ,-1)*(k1**2

+k2**2)*pow(R,-2))*gpuU[t%2+ 2*inst][-k1][-k2] + pow(Time_Sample_Rate

,-1)*la*gpuN[inst][-k1][-k2]*pow(k1**2 + k2**2, 0.5) *(1/R) + pow(

Time_Sample_Rate ,-0.5) *(1/R)*pow(k1**2+k2**2 ,0.5)*( ReNoise - ImNoise )

79

80

81 def Dcounter(Dsum , Ds, Int ,size ,Time_Sample):

82 for inst in range(size):

83 for t in prange(1,TTerms):

84 nonlinsq = (Time_Sample/float(t))*pow(Int.real[inst][t],2)

85 if t % int(Time_Sample) == 0:

86 Ds[inst][int(t/Time_Sample)] =1+ nonlinsq

87 Dsum[t] += nonlinsq

88 return Dsum , Ds

89

90

91 rng_states = create_xoroshiro128p_states(int(2*R*R)*int(batchsize), seed=
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seednumber)

92 b = np.zeros ((2,2), dtype = np.float64)

93

94 #Choosing non -linearity

95 b[0][0] ,b[0][1] = 1,0

96 b[1][0] ,b[1][1] = 0,-1

97

98

99

100 for batch in range(int(number_of_instances/batchsize)):

101 #Fourier of U created and sent to the GPU.

102 gpuU = cuda.to_device(np.zeros ((2* batchsize ,RLen ,RLen), dtype=np.

complex128))

103 gpuInt = cuda.to_device(np.zeros((batchsize ,TTerms), dtype = np.

complex128))

104 gpuN = cuda.to_device(np.zeros((batchsize ,RLen ,RLen), dtype=np.complex128

))

105

106 Dsum = np.ones(TTerms , np.float64)

107 Dsum = Dsum*batchsize

108 Ds = np.ones((batchsize ,T), np.float64)

109

110

111 start = timer()

112

113 if hasattr(tqdm , '_instances '): tqdm._instances.clear() # clear if it

exists

114 for t in tqdm(range(TTerms -1)):

115 GPUSolver [(int(R*R/5),int(batchsize /10) ), (10 ,10) ](gpuU ,gpuN ,

rng_states , gpuInt , t,b) #we send the works to the GPU for it to crunch

this time step.

116 print("\n Took", timer() - start , " seconds.")

117

118 Int = gpuInt.copy_to_host ()

119 Dsum , Ds = Dcounter(Dsum ,Ds,Int ,batchsize ,Time_Sample_Rate)

120 with open(str(filenamestart + batch) + ".npy", 'wb') as f:

121 np.save(f, batchsize)

122 np.save(f, Dsum)

123 np.save(f, Ds)

124 print("Saved: " + str(filenamestart + batch) + ".npy")

Listing 3.1: Computing instances
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The code above first asks user for certain inputs, how many instances to compute overall how
many at once, time increment and so on. Two functions are then defined, first one computes the
instances at a specific time increment using GPU, second sums up final results, this functions
are not executed just yet. We then create variables pass them to the GPU memory and initiate
computation of instances, one time increment at a time, after completing batch size number of
instances we then compute sum of bulk diffusivities for each instance and their average and save
it into a file. Moving onto plotting code we have

1 import matplotlib.pyplot as plt

2 from scipy.optimize import curve_fit

3 import math

4 import numpy as np

5 import scipy

6 from timeit import default_timer as timer

7 import random

8 from tqdm import tqdm

9 import os

10

11 #Asking user for parameters.

12 batchsize = 10

13 Time_Sample_Rate = float(input("Pick time sample size :"))

14 T = int(input("Time will be over [0,T], T (T should be at least R^2 ) : "))

15 TTerms = int(T*Time_Sample_Rate)

16 TsError = np.linspace (0.0 , T, T)

17

18 location= str(input("File location?"))

19 filelist = range (0,99) # what file numbres do we want to go over?

20 def Dfilereader(n):

21 with open(location + str(n) + ".npy", 'rb') as f:

22 batchsize = np.load(f)

23 Dsum = np.load(f)

24 Ds = np.load(f)

25 return batchsize , Dsum , Ds

26

27 def Dfit(t,delta ,c):

28 return c*pow(np.log(t),delta)

29

30

31 Dsum = np.zeros(TTerms , dtype = np.float64)

32 number_of_instances = 0.0

33 Ds = []
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34 for i in filelist:

35 batchsize , Dsumtemp ,Dstemp = Dfilereader(i)

36 Dsum += Dsumtemp

37 if len(Ds) == 0:

38 Ds = Dstemp

39 else:

40 Ds = np.concatenate ((Ds, Dstemp), axis =0)

41 number_of_instances += batchsize

42 print(number_of_instances)

43 Davg = Dsum/number_of_instances

44 print(Davg [100])

45

46 @njit(parallel = True)

47 def ErrorCalc(number_of_instances ,Davg ,Ds):

48 StdError = np.zeros(T, dtype = np.float64)

49 SampleVar = np.zeros(T, dtype = np.float64)

50 for t in prange(2,T):

51 SampleVar[t] = -pow(number_of_instances ,1)*pow(Davg[int(t*

Time_Sample_Rate)],2)

52 for inst in range(int(number_of_instances)):

53 SampleVar[t] += pow(Ds[inst][t],2)

54 SampleVar[t] = pow(number_of_instances -1,-1)*SampleVar[t]

55 StdError[t] = pow(number_of_instances ,-0.5)*pow(SampleVar[t],0.5)

56 StdError = StdError *1.96 #This is the 95 % confidence interval

57 return StdError ,SampleVar

58 StdError ,SampleVar = ErrorCalc(number_of_instances ,Davg ,Ds)

59 print(number_of_instances)

60

61

62

63

64 approxstart =250

65 start = 250

66

67 plt.figure(dpi =300)

68

69 plt.plot(TsError[approxstart :], Dfit(TsError[approxstart :], 0.5 ,0.5), '-',

color='purple ' , label='Conjecture delta =0.5, c=0.5 ')

70

71 Dhighavg =Davg [::20]+ StdError

72 popt , pcov = curve_fit(Dfit , TsError[approxstart :], Dhighavg[approxstart :],
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bounds = ([0,-2.5], [1 ,2.5]) )

73 plt.plot(TsError[approxstart :], Dfit(TsError[approxstart :], *popt), 'r-',

label='HIGH delta =%5.5f, c=%5.5f ' % tuple(popt))

74

75 Dlowavg =Davg [::20] - StdError

76 popt , pcov = curve_fit(Dfit , TsError[approxstart :], Dlowavg[approxstart :],

bounds = ([0,-2.5], [1 ,2.5]) )

77 plt.plot(TsError[approxstart :], Dfit(TsError[approxstart :], *popt), 'b-',

label='LOW delta =%5.5f, c=%5.5f ' % tuple(popt))

78

79 popt , pcov = curve_fit(Dfit , Ts[int(1+ approxstart*Time_Sample_Rate):-1],

Davg[int(1+ approxstart*Time_Sample_Rate):-1], bounds = ([0,-25], [2 ,25])

)

80 plt.plot(Ts[int(1+ start*Time_Sample_Rate):-1], Dfit(Ts[int(1+ start*

Time_Sample_Rate):-1], *popt), 'g-', label='delta =%5.5f, c=%5.5f' %

tuple(popt))

81

82

83 plt.plot(Ts[int(start*Time_Sample_Rate):-1], Davg[int(start*

Time_Sample_Rate):-1], linewidth =1 , label="Bulk diffusivity at lambda="

+ str(la))

84

85 plt.errorbar(TsError[int(start)::1000] , Davg[int(start*Time_Sample_Rate)::

int(Time_Sample_Rate)*1000] , fmt=' ' ,markersize =1, elinewidth =0.5,

color='tab:blue' ,capsize =2 , yerr=StdError[int(start)::1000])

86 plt.legend ()

87 #plt.xscale ("log")

Listing 3.2: Graph plotting

We first ask user where the files are then we load the files. Compute error bars using data we have
and then plot variety of graphs. Below we plot best fit of calculated bulk diffusivity, calculated
bulk diffusivity and error bars
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Figure 3.1: Blue line is the numerically computed bulk diffusivity while the green line is a line
of best fit of the form c log(t)δ.

To put the error in perspective, below is a graph best fitting the numerically computed bulk
diffusivity plus the error and numerically computed bulk diffusivity minus the error
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Figure 3.2: Blue line is the numerically computed bulk diffusivity. The red line is a line best fit
of the form c log(t)δ of the numerically computed bulk diffusivity plus error while the green line
is a line of best fit of the form c log(t)δ of the numerically computed bulk diffusivity minus error.

Here one can look at the blue line as what is the slowest growth scenario while red line is
the fastest growth scenario with respect to the error. These deviations when compared to the
computed bulk diffusivity in fact vary c and δ by very little, a margin of error one expect to occur
with the approximations one had to make to compute such quantity placing δ in the (0.49, 0.51)
range, this suggests that δ = 1

2 conjecture is likely to be true.
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Appendix

Proposition 3.3.3 For N,M ∈ N let NN,M be the non-linearity defined in (2.2) and N
N,M
k be

its corresponding fourier transform. Then

N
N,M
k [ωN,M ] = 1

M2

∑
ℓ+m=k

KN
ℓ,mω

N,M
ℓ ωN,Mm ,

for

KN
ℓ,m

def= 1
2π ϱ̂

N
ℓ,m

(ℓ⊥ · (ℓ+m))(m · (ℓ+m))
|ℓ|2|m|2

, with ϱ̂Nℓ,m
def= ϱ̂Nℓ ϱ̂

N
mϱ̂

N
ℓ+m .

Proof. Starting with definition of non-linearity given in (1.9)

N
N,M
k (ωN,M) = F

(
div ϱN ∗

(
(K ∗ (ϱN ∗ ωN,M))(ϱN ∗ ωN,M)

))
(k)

= F
(
∂1ϱ

N ∗
(
(K1 ∗ (ϱN ∗ ωN,M))(ϱN ∗ ωN,M)

))
(k)

+ F
(
∂2ϱ

N ∗
(
(K2 ∗ (ϱN ∗ ωN,M))(ϱN ∗ ωN,M)

))
(k) ,

here K = (K1, K2) is the Biot-Savart kernel defined in (1.5). We now consider the two terms in
the last equation separately. Starting with the first term

F
(
∂1ϱ

N ∗
(
(K1 ∗ (ϱN ∗ ωN,M))(ϱN ∗ ωN,M)

))
(k)

= F(∂1ϱ
N)(k)F

(
(K1 ∗ (ϱN ∗ ωN,M))(ϱN ∗ ωN,M)

)
(k)

= 2πιk1ϱ̂
N
k

∑
ℓ+m=k

F(K1 ∗ (ϱN ∗ ωN,M))(ℓ)F(ϱN ∗ ωN,M)(m)

= 2πιk1ϱ̂
N
k

∑
ℓ+m=k

F(K1)(ℓ)F(ϱN ∗ ωN,M)(ℓ)F(ϱN ∗ ωN,M)(m)

= 2πιk1ϱ̂
N
k

∑
ℓ+m=k

F(K1)(ℓ)ϱ̂Nℓ ϱ̂Nmω
N,M
ℓ ωN,Mm

=
∑

ℓ+m=k

[
2πιk1F(K1)(ℓ)

]
ϱ̂Nℓ,mω

N,M
ℓ ωN,Mm .

Similarly

F
(
∂2ϱ

N ∗
(
(K2 ∗ (ϱN ∗ ωN,M))(ϱN ∗ ωN,M)

))
(k) =

∑
ℓ+m=k

[
2πιk2F(K2)(ℓ)ϱ̂Nℓ,m

]
ωN,Mℓ ωN,Mm .
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Given (1.5) we can calculate F(K1)(ℓ) as follows

F(K1)(ℓ) = Fz

(
1

2πι

∫
R2

y2

|y|2
e−ιy·z dy

)
(ℓ) = 1

2πι
ℓ2

|ℓ|2
,

similarly

F(K2)(ℓ) = Fz

(
1

2πι

∫
R2

−y1

|y|2
e−ιy·z dy

)
(ℓ) = 1

2πι
−ℓ1

|ℓ|2
.

Bringing the results of the calculations above together we have

N
N,M
k (ωN,M) = 2πι

∑
ℓ+m=k

[k1F(K1)(ℓ) + k2F(K2)(ℓ)]ϱ̂Nℓ,mω
N,M
ℓ ωN,Mm

= 2π
∑

ℓ+m=k
[k1F(K1)(ℓ) + k2F(K2)(ℓ)]ϱ̂Nℓ,mω

N,M
ℓ ωN,Mm

= 1
2π

∑
ℓ+m=k

ℓ2k1 − ℓ1k2

|ℓ|2
ϱ̂Nℓ,mω

N,M
ℓ ωN,Mm

= 1
2π

∑
ℓ+m=k

ℓ⊥ · k
|ℓ|2

ϱ̂Nℓ,mω
N,M
ℓ ωN,Mm

= 1
2π

∑
ℓ+m=k

ℓ⊥ ·m
|ℓ|2

ϱ̂Nℓ,mω
N,M
ℓ ωN,Mm

By the Lemma 3.3.4 the proof is concluded.

Lemma 3.3.4 For k ∈ Z2
M and v ∈ L2 we have

∑
ℓ+m=k
ℓ,m∈Z2

M

ℓ⊥ ·m
|ℓ|2

vℓvm =
∑

ℓ+m=k
ℓ,m∈Z2

M

(ℓ⊥ · (ℓ+m))(m · (ℓ+m))
|ℓ|2|m|2

vℓvm .

Proof. By splitting into two same terms and exchanging m with ℓ in the second term we get

∑
ℓ+m=k

ℓ⊥ ·m
|ℓ|2

vℓvm = 1
2

∑
ℓ+m=k

ℓ⊥ ·m
|ℓ|2

vℓvm + 1
2

∑
ℓ+m=k

m⊥ · ℓ
|m|2

vℓvm

=
∑

ℓ+m=k

1
2

(
(ℓ⊥ ·m)(m ·m) + (m⊥ + ℓ)(ℓ · ℓ)

|ℓ|2|m|2

)
vℓvm .
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Focusing on numerator part of the fraction and using m⊥ · ℓ = −ℓ⊥ ·m we get

(ℓ⊥ ·m)(m ·m) + (m⊥ + ℓ)(ℓ · ℓ) = (ℓ⊥ ·m)(m ·m− ℓ · ℓ)

= (ℓ⊥ ·m)(m · (ℓ+m)) − (ℓ⊥ ·m)(ℓ · (ℓ+m))

= (ℓ⊥ ·m)(m · (ℓ+m)) + (m⊥ · ℓ)(ℓ · (ℓ+m)) ,

note the second term is in fact the first term with ℓ and m swapped, a swapping we can do within
the sum as everything else is symmetric,

∑
ℓ+m=k

1
2

(
(ℓ⊥ ·m)(m · (ℓ+m)) + (m⊥ · ℓ)(ℓ · (ℓ+m))

|ℓ|2|m|2

)
vℓvm

= 1
2

∑
ℓ+m=k

(ℓ⊥ ·m)(m · (ℓ+m))
|ℓ|2|m|2

vℓvm + 1
2

∑
ℓ+m=k

(m⊥ · ℓ)(ℓ · (ℓ+m))
|ℓ|2|m|2

vℓvm

=
∑

ℓ+m=k

(ℓ⊥ ·m)(m · (ℓ+m))
|ℓ|2|m|2

vℓvm

=
∑

ℓ+m=k

(ℓ⊥ · (ℓ+m))(m · (ℓ+m))
|ℓ|2|m|2

vℓvm ,

last equality holds as ℓ⊥ · ℓ = 0.

Proposition 3.3.5 Suppose ω1 solves the equation from (1.6). For N ∈ N the rescaled function
given by

ωN(t, x) def= N2ω1(tN2θ, xN) ,

solves

∂tω
N = −1

2(−∆)θωN − λ̂N2θ−2NN [ωN ] + (−∆)
1+θ

2 ξ ,

here the non-linearity NN is defined according to

NN [ω] def= div ϱN ∗
(
(K ∗ (ϱN ∗ ω))(ϱN ∗ ω)

)
.

where ϱN(·) def= N2ϱ(N ·).
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Proof. We now focus on proving (1.8). By (1.7) we know that
(
∂tω

N
)
(t, x) is equal to

N2∂t
(
ω(N2θt, Nx)

)
= N2+2θ(∂tω)(N2θt, Nx)

= N2+2θ
(

−1
2(−∆)θω − λ̂ϱ1 ∗

(
(K ∗ (ϱ1 ∗ ω)) · ∇(ϱ1 ∗ ω)

)
+ (−∆)

1+θ
2

)
(N2θt, Nx)

=
(
ξ̃ − 1

2(−∆)ωN
)
(t, x) −N2+2θλ̂

(
ϱ1 ∗

(
(K ∗ (ϱ1 ∗ ω)) · ∇(ϱ1 ∗ ω)

))
(N2θt, Nx) ,

(3.45)

here ξ̃ is different white-noise of the same distribution as ξ. In particular the only term that is left
to be considered is the last one. Firstly notice that for a smooth function F ∈ R≥0 × R2 we have

(ϱ1 ∗ F )(N2θ, Nx) =
∫
R2
ϱ1(Nx− τ)F (N2θt, τ) dτ

=
∫
R2
N2ϱ1(N(x− τ̄))F (N2θt, Nτ̄) dτ̄

=
∫
R2
ϱN(x− τ̄)F (N2θt, Nτ̄) dτ̄ .

(3.46)

Here in the second passage the τ = Nτ̄ substitution was used. Focusing on the last term from
(3.45) and using (3.46) we have

(
ϱ1 ∗

(
(K ∗ (ϱ1 ∗ ω)) · ∇(ϱ1 ∗ ω)

))
(N2θt, Nx)

=
∫
R2
ϱN(x− τ)

(
(K ∗ (ϱ1 ∗ ω)) · ∇(ϱ1 ∗ ω)

)
(N2θt, Nτ) dτ

=
∫
R2
ϱN(x− τ)(K ∗ (ϱ1 ∗ ω))(N2θt, Nτ) · (∇(ϱ1 ∗ ω))(N2θt, Nτ) dτ .

We will firstly focus on ∇(ϱ1 ∗ ω)(N2θt, Nτ) and then (K ∗ (ϱ1 ∗ ω))(N2θt, Nτ). Once again
using (3.46) we have

∇(ϱ1 ∗ ω)(N2θt, Nτ) = 1
N

∇((ϱ1 ∗ ω)(N2θt, Nτ))

= 1
N

∇
( ∫

R2
ϱN(τ − τ̄)ω(N2θt, Nτ̄) dτ̄

)
= 1
N3 ∇

( ∫
R2
ϱN(τ − τ̄)ωN(t, τ̄)

)
= 1
N3 ∇(ϱN ∗ ωN)(t, τ) .

(3.47)

Focusing (K ∗ (ϱ1 ∗ ω))(N2θt, Nτ) we once again apply (3.46)

(K ∗ (ϱ1 ∗ ω))(N2θt, Nτ)
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=
∫
R2
K(τ̄)(ϱ1 ∗ ω)(N2θt, Nτ − τ̄) dτ̄

=
∫
R2
K(Nz)N2(ϱ1 ∗ ω)(N2θt, N(τ − z)) dz

in similar fashion as in (3.47) the above is equal to
∫
R2
K(Nz)(ϱN ∗ ωN)(t, τ − z) dz

=
∫
R2

1
N
K(z)(ϱN ∗ ωN)(t, τ − z) dz

= 1
N

(
K ∗ (ϱN ∗ ωN)

)
(t, τ) ,

the first passage holds because

K(Nz) = 1
ι

∫
R2

y⊥

|y|2
e−y·Nz dy = 1

ι

∫
R2

1
N2

(x/N)⊥

|(x/N)|2 e
−x·z dx = 1

N
K(z) .

In the calculation above x = Ny substitution was used.

Proposition 3.3.6 Suppose u1 solves the equation from (1.15). For N ∈ N the rescaled function
given by

uN(t, x) def= N2u1(tN2θ, xN) , (3.48)

solves

∂tu
N = −1

2(−∆)θuN − λ̂N2θ−2ÑN [uN ] + (−∆) θ
2 ξ ,

here the non-linearity ÑN is defined according to

ÑN [u] def= ϱN ∗ (−∆) 1
2 ((∂1(−∆)− 1

2ϱN ∗ u)2 − (∂2(−∆)− 1
2ϱN ∗ u)2) .

where ϱN(·) def= N2ϱ(N ·).

Proof. We start by directly imposing the scaling onto the original equation (1.15)

∂tu
N(t, x) = N2+2θ(∂tu1)(tN2θ, xN)

= N2+2θ
(

− 1
2(−∆)θu1 + (−∆) θ

2 ξ

− λ̂ϱ1 ∗ (−∆) 1
2
(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

))
(tN2θ, xN)
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= −1
2(−∆)θuN(t, x) + (−∆) θ

2 ξ(t, x)

−N2+2θ
(
λ̂ϱ1 ∗ (−∆) 1

2
(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

))
(tN2θ, xN) .

The second equality is strictly speaking not true, in fact its not the same space-time white noise
in the previous equation but a different space-time white noise of the same distribution which
is sufficient here. The (t, x) on the space-time white noise are of course not formal as its a
distribution its only there to signal that the scaling was already accounted for. Focusing on the
nonlinearity now

N2+2θλ̂(−∆) 1
2

(
λ̂ϱ1 ∗

(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

))
(tN2θ, xN) (3.49)

N2+2θλ̂(−∆) 1
2

∫
ϱ1(Nx− y)

(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

)
(tN2θ, y) dy

N2+2θλ̂(−∆) 1
2

∫
N2ϱ1(Nx−Nȳ)

(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

)
(tN2θ, Nȳ) dȳ

N2+2θλ̂(−∆) 1
2

∫
ϱN(x− ȳ)

(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

)
(tN2θ, Nȳ) dȳ ,

here we used substitution Nȳ = y on R2 (hence the N2 appearing). Focusing now on the second
term within the integral above

(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

)
(tN2θ, Nȳ)

= ((∂1(−∆)− 1
2ϱ1 ∗ u1)(tN2θ, Nȳ))2 − ((∂2(−∆)− 1

2ϱ1 ∗ u1)(tN2θ, Nȳ))2 ,

in particular obtaining formulation in terms of uN of (∂1(−∆)− 1
2ϱ1 ∗ u1)(tN2θ, Nȳ) will give

us the analogous expression for (∂2(−∆)− 1
2ϱ1 ∗ u1)(tN2θ, Nȳ) which in turn will be sufficient

to express the equation above in therms of uN .

(∂1(−∆)− 1
2ϱ1 ∗ u1)(tN2θ, Nȳ)

= ∂1(−∆)− 1
2

∫
ϱ1(Nȳ − z)u1(tN2θ, z) dz

= ∂1(−∆)− 1
2

∫
N2ϱ1(Nȳ −Nz̄)u1(tN2θ, Nz̄) dz̄

= ∂1(−∆)− 1
2

∫
ϱN(ȳ − z̄)u1(tN2θ, Nz̄) dz̄

= 1
N2∂1(−∆)− 1

2

∫
ϱN(ȳ − z̄)uN(t, z̄) dz̄
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= 1
N2∂1(−∆)− 1

2 (ϱN ∗ uN)(t, ȳ) .

Bringing it all together we can now express (3.49) as

N2+2θλ̂(−∆) 1
2

(
λ̂ϱ1 ∗

(
(∂1(−∆)− 1

2ϱ1 ∗ u1)2 − (∂2(−∆)− 1
2ϱ1 ∗ u1)2

))
(tN2θ, xN)

= N2+2θλ̂(−∆) 1
2

(
λ̂ϱN ∗

( 1
N2∂1(−∆)− 1

2 (ϱN ∗ uN)
)2

−
(

1
N2∂2(−∆)− 1

2 (ϱN ∗ uN)
)2
)(t, x)

= N2θ−2λ̂(−∆) 1
2

(
λ̂ϱN ∗

(
(∂1(−∆)− 1

2 (ϱN ∗ uN))2 − (∂2(−∆)− 1
2 (ϱN ∗ uN))2

))
(t, x) .

Proposition 3.3.7 For N,M ∈ N let NN,M be the non-linearity defined in (3.1) and ÑN,M be
its corresponding fourier transform. Then

Ñ
N,M
k [uN,M ](x) = 1

M2

∑
ℓ,m∈Z2

M
ℓ+m=k

K̃N
ℓ,mu

N,M
−ℓ uN,M−m eℓ+m(x) ,

for

K̃N
ℓ,m

def= 1
2π ϱ̂

N
ℓ,m|ℓ+m|c(ℓ,m)

|ℓ||m|
, c(ℓ,m) def= m2ℓ2 −m1ℓ1 ,

and the variables ℓ and m appearing in the previous equations range over Z2
M .

Proof. We will start by directly considering the Fourier transform of the expression of the
nonlinearity from (1.18). For the sake of clarity in this I will ommit the M,N subscripts in this
proof.

Ñk[u] = F
(
ϱ ∗ (−∆) 1

2
(
(∂1(−∆) 1

2 (ϱ ∗ u))2 − (∂2(−∆) 1
2 (ϱ ∗ u))2

))
(k)

= ϱk|k|
(
F((∂1(−∆) 1

2 (ϱ ∗ u))2)(k) − F((∂2(−∆) 1
2 (ϱ ∗ u))2)(k)

)
.

(3.50)

We will focus on calculating F((∂1(−∆) 1
2 (ϱ∗u))2)(k) realising the term F((∂2(−∆) 1

2 (ϱ∗u)))(k)
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can be obtained analogously.

F((∂1(−∆) 1
2 (ϱ ∗ u))2)(k)

= 1
2πM2

∑
ℓ+m=k

|ℓ1|
|ℓ|
ϱℓuℓ

|m1|
|m|

ϱmum

= 1
2πM2

∑
ℓ+m=k

|ℓ1||m1|
|ℓ||m|

ϱℓϱmuℓum .

(3.51)

Bringing (3.50) and (3.51) together gives us the result.
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