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Abstract

Increasing interest in privacy-preserving machine
learning has led to new and evolved approaches
for generating private synthetic data from undis-
closed real data. However, mechanisms of privacy
preservation can significantly reduce the utility of
synthetic data, which in turn impacts downstream
tasks such as learning predictive models or infer-
ence. We propose several re-weighting strategies
using privatised likelihood ratios that not only mit-
igate statistical bias of downstream estimators but
also have general applicability to differentially
private generative models. Through large-scale em-
pirical evaluation, we show that private importance
weighting provides simple and effective privacy-
compliant augmentation for general applications
of synthetic data.

1 INTRODUCTION

The prevalence of sensitive datasets, such as electronic
health records, contributes to a growing concern for viola-
tions of an individual’s privacy. In recent years, the notion of
Differential Privacy (Dwork et al., 2006) has gained popular-
ity as a privacy metric offering statistical guarantees. This
framework bounds how much the likelihood of a random-
ised algorithm can differ under neighbouring real datasets.
We say two datasets D and D′ are neighbouring when they
differ by at most one observation. A randomised algorithm
g :M→R satisfies (ϵ, δ)-differential privacy for ϵ, δ ≥ 0
if and only if for all neighbouring datasets D,D′ and all
subsets S ⊆ R, we have

Pr(g(D) ∈ S) ≤ δ + eϵPr(g(D′) ∈ S).

The parameter ϵ is referred to as the privacy budget; smaller
ϵ quantities imply more private algorithms.

Injecting noise into sensitive data according to this paradigm
allows for datasets to be published in a private manner. With
the rise of generative modelling approaches, such as Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2014), there has been a surge of literature proposing gener-
ative models for differentially private (DP) synthetic data
generation and release (Jordon et al., 2019; Xie et al., 2018;
Zhang et al., 2017). These generative models often fail to
capture the true underlying distribution of the real data,
possibly due to flawed parametric assumptions and the in-
jection of noise into their training and release mechanisms.
The constraints imposed by privacy-preservation can lead to
significant differences between nature’s true data generating
process (DGP) and the induced synthetic data generating
process (SDGP) (Wilde et al., 2020). This increases the bias
of estimators trained on data from the SDGP which reduces
their utility.

Recent literature has proposed techniques to decrease this
bias by modifying the training processes of private al-
gorithms. These approaches are specific to a particular syn-
thetic data generating method (Zhang et al., 2018; Frigerio
et al., 2019; Neunhoeffer et al., 2020), or are query-based
(Hardt and Rothblum, 2010; Liu et al., 2021) and are thus
not generally applicable. Hence, we propose several post-
processing approaches that aid mitigating the bias induced
by the DP synthetic data.

While there has been extensive research into estimating mod-
els directly on protected data without leaking privacy, we
argue that releasing DP synthetic data is crucial for rigorous
statistical analysis. This makes providing a framework to
debias inference on this an important direction of future
research that goes beyond the applicability of any particu-
lar DP estimator. Because of the post-processing theorem
(Dwork et al., 2014), any function on the DP synthetic data
is itself DP. This allows deployment of standard statistical
analysis tooling that may otherwise be unavailable for DP
estimation. These include 1) exploratory data analysis, 2)
model verification and analysis of model diagnostics, 3)
private release of (newly developed) models for which no
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DP analogue has been derived, 4) the computation of con-
fidence intervals of downstream estimators through the non-
parametric bootstrap, and 5) the public release of a data set
to a research community whose individual requests would
otherwise overload the data curator. This endeavour could
facilitate the release of data on public platforms like the
UCI Machine Learning Repository (Lichman, 2013) or the
creation of data competitions, fuelling research growth for
specific modelling areas.

This motivates our main contributions, namely the formu-
lation of multiple approaches to generating DP importance
weights that correct for synthetic data’s issues. In particular:

• The bias estimation of an existing DP importance
weight estimation method, and the introduction of an
unbiased extension with smaller variance (Section 3.3).

• An adjustment to DP Stochastic Gradient Descent’s
sampling probability and noise injection to facilitate
its use in the training of DP-compliant neural network-
based classifiers to estimate importance weights from
combinations of real and synthetic data (Section 3.4).

• The use of discriminator outputs of DP GANs as im-
portance weights that do not require any additional
privacy budget (Section 3.5).

• An application of importance weighting to correcting
for the bias incurred in Bayesian posterior belief updat-
ing with synthetic data motivated by the results from
(Wilde et al., 2020) and to exhibit our methods’ wide
applicability in frequentist and Bayesian contexts (Sec-
tion 3.1).

2 BACKGROUND

Before we proceed, we provide some brief background on
bias mitigation in non-private synthetic data generation.

2.1 DENSITY RATIOS FOR NON-PRIVATE GANS

Since their introduction, GANs have become a popular tool
for synthetic data generation in semi-supervised and unsu-
pervised settings. GANs produce realistic synthetic data by
trading off the learning of a generator Ge to produce syn-
thetic observations, with that of a classifier Di learning to
correctly classify the training and generated data as real or
fake. The generator Ge takes samples from the prior u ∼ pu
as an input and generates samples Ge(u) ∈ X . The discrim-
inator Di takes an observation x ∈ X as input and outputs
the probability Di(x) of this observation being drawn from
the true DGP. The classification network Di distinguishes
between samples from the DGP with label y = 1 and distri-
bution pD, and data from the SDGP with label y = 0 and
distribution pG. Following Bayes’ rule we can show that the
output of Di(x), namely the probabilities p̂(y = 1|x) and

p̂(y = 0|x), can be used for importance weight estimation:

p̂D(x)

p̂G(x)
=

p̂(x|y = 1)

p̂(x|y = 0)
=

p̂(y = 1|x)
p̂(y = 0|x)

p̂(y = 0)

p̂(y = 1)
. (1)

This observation has been exploited in a stream of literat-
ure focusing on importance weighting (IW) based sampling
approaches for GANs. Grover et al. (2019) analyse how
importance weights of the GAN’s outputs can lead to per-
formance gains; extensions include their proposed usage
in rejection sampling on the GAN’s outputs (Azadi et al.,
2018), and Metropolis–Hastings sampling from the GAN
alongside improvements to the robustness of this sampling
via calibration of the discriminator (Turner et al., 2019). To
date, no one has leveraged these discriminator-based IW
approaches in DP settings where the weights can mitigate
the increased bias induced by privatised data models.

2.2 DIFFERENTIAL PRIVACY IN SYNTHETIC
DATA GENERATION

Private synthetic data generation through DP GANs is built
upon the post processing theorem: If Di is (ϵ, δ)- DP, then
any composition Di ◦ Ge is also (ϵ, δ)-DP (Dwork et al.,
2014) since Ge does not query the protected data. Hence, to
train private GANs, we only need to privatise the training
of their discriminators, see e.g. Hyland et al. (2018). Xie
et al. (2018) propose DPGAN, a Wasserstein GAN which is
trained by injecting noise to the gradients of the discrimin-
ator’s parameters. In contrast, Jordon et al. (2019) privatise
the GAN discriminator by using the Private Aggregation of
Teacher Ensembles algorithm, leading to a model architec-
ture called PATE-GAN. Recently, Torkzadehmahani et al.
(2019) proposed DPCGAN as a conditional variant to DP-
GAN that uses an efficient moments accountant. In contrast,
PrivBayes (Zhang et al., 2017) learns a DP Bayesian net-
work and does not rely on a GAN-architecture. Other gener-
ative approaches, for instance, include Chen et al. (2018);
Acs et al. (2018). See Abay et al. (2018); Fan (2020) for an
extensive overview of more DP generative approaches.

Differentially private bias mitigation In this paper, we
offer an augmentation to the usual release procedure for
synthetic data by leveraging true and estimated importance
weights. Most related to our work are the contributions
from Elkan (2010) and Ji and Elkan (2013) who train a
regularised logistic regression model and assign weights
based on the Laplace-noise-contaminated coefficients of
the logistic regression. In follow up work, Ji et al. (2014)
propose to modify the update step of the Newton-Raphson
optimisation algorithm used in fitting the logistic regression
classifier to achieve DP. However, neither of these generalise
well to more complex and high dimensional settings because
of the linearity of the classifier. Further, the authors assume
the existence of a public dataset while we consider the
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case where we first generate DP synthetic data and then
weight them a posteriori, providing a generic and universally
applicable approach. The benefit of learning a generative
model over using public data include on the one hand that
there is no requirement for the existence of a public data set,
and on the other hand the possibility to generate new data
points. This distinction necessitates additional analysis as
the privacy budget splits between the budget spent on fitting
the SDGP and the budget for estimating the IW approach.
Furthermore, we show that the approach from Ji and Elkan
(2013) leads to statistically biased estimation and formulate
an unbiased extension with improved properties.

3 DIFFERENTIAL PRIVACY AND
IMPORTANCE WEIGHTING

From a decision theoretic perspective, the goal of statistics is
estimating expectations of functions h : X 7→ R, e.g. loss or
utility functions, w.r.t the distribution of future uncertainties
x ∼ pD. Given data from {x′

1, . . . , x
′
ND
} =: x′

1:ND

i.i.d.∼ pD
the data analyst can estimate these expectations consistently
via the strong law of large numbers as Ex∼pD

(h(x)) ≈
1

ND

∑ND

i=1 h(x
′
i). However, under DP constraints the data

analyst is no longer presented with a sample from the true
DGP x′

1:ND

i.i.d.∼ pD but with a synthetic data sample x1:NG

from the SDGP pG. Applying the naive estimator in this
scenario biases the downstream tasks as 1

NG

∑NG

i=1 h(xi)→
Ex∼pG

(h(x)) almost surely.

This bias can be mitigated using a standard Monte Carlo
method known as importance weighting (IW). Suppose we
had access to the weights w(x) := pD(x)

pG(x) . If pG(·) > 0

whenever h(·)pD(·) > 0, then IW relies on

Ex∼pD
[h(x)] = Ex∼pG

[w(x)h(x)] . (2)

So we have almost surely for x1:NG

i.i.d.∼ pG the convergence

Ex∼pD
[h(x)] = Ex∼pG

[w(x)h(x)] .

So we have almost surely for x1:NG

i.i.d.∼ pG the convergence

IN (h|w) := 1

NG

NG∑
i=1

w(xi)h(xi)
NG→∞−→ Ex∼pD

[h(x)].

3.1 IMPORTANCE WEIGHTED EMPIRICAL RISK
MINIMISATION

A downstream task of particular interest is the use of
x′
1:ND

∼ pD to learn a predictive model, f(·) ∈ F , for
the data generating distribution pD based on empirical risk
minimisation. Given a loss function h : F ×X 7→ R com-
paring models f(·) ∈ F with observations x ∈ X and data

x′
1:ND

∼ pD, the principle of empirical risk minimisation
(Vapnik, 1991) states that the optimal f̂ is given by the
minimisation of

1

ND

ND∑
i=1

h(f(·), x′
i) ≈ Ex∼pD

[h(f(·), x)]

over f . Maximum likelihood estimation (MLE) is a special
case of the above with h(f(·), xi) = − log f(xi|θ) for a
class of densities f parameterised by θ. Given synthetic
data x1:NG

∼ pG, Equation (2) can be used to debias the
learning of f .

Remark 1 (Supplement B.5). Minimisation of the import-
ance weight adjusted log-likelihood, −w(xi) log f(xi|θ),
can be viewed as an M -estimator (e.g. Van der Vaart, 2000)
with clear relations to the standard MLE.

Bayesian updating. Wilde et al. (2020) showed that na-
ively conducting Bayesian updating using DP synthetic data
without any adjustment could have negative consequences
for inference. To show the versatility of our approach and
to address the issues they pointed out, we demonstrate how
IW can help mitigate this. The posterior distribution for
parameter θ given x̃′ := x′

1:ND
∼ pD is

π(θ|x̃′) ∝ π(θ)

ND∏
i=1

f(x′
i|θ) = π(θ) exp

(
ND∑
i=1

log f(x′
i|θ)

)

where π(θ) denotes the prior distribution for θ. This pos-
terior is known to learn about model parameter θKLD

pD
:=

argminθ KLD (pD||f(·|θ)) (Berk, 1966; Bissiri et al.,
2016) where KLD denotes the Kullback-Leibler divergence.

Given only synthetic data x̃ := x1:NG
from the ‘proposal

distribution’ pG, we can use the importance weights defined
in Equation (2) to construct the (generalised) posterior dis-
tribution

πIW (θ|x̃) ∝ π(θ) exp

(
NG∑
i=1

w(xi) log f(xi|θ)

)
. (3)

In fact, Equation (3) corresponds to a generalised Bayesian
posterior (Bissiri et al., 2016) with ℓIW (xi; θ) :=
−w(xi) log f(xi|θ), providing a coherent updating of be-
liefs about parameter θKLD

pD
using only data from the SDGP.

Theorem 1 (Supplement B.6). The importance weighted
Bayesian posterior πIW (θ|x1:NG

), defined in Equation
(3) for x1:NG

i.i.d.∼ pG, admits the same limiting Gaus-
sian distribution as the Bayesian posterior π(θ|x′

1:ND
)

where x′
1:ND

i.i.d.∼ pD, under regularity conditions as in
(Chernozhukov and Hong, 2003; Lyddon et al., 2018).

It is necessary here to acknowledge the existence of meth-
ods to directly conduct privatised Bayesian updating (e.g.
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Dimitrakakis et al., 2014; Foulds et al., 2016; Wang et al.,
2015) or M-estimation (Avella-Medina, 2021). We refer the
reader Section 1 for why the attention of this paper focuses
on downstream tasks for private synthetic data. We consider
the application of DP IW to Bayesian updating as a natural
example of such a task.

3.2 ESTIMATING THE IMPORTANCE WEIGHTS

The previous section shows that IW can be used to re-
calibrate inference for synthetic data. Unfortunately, both
the DGP pD and SDGP pG densities are typically unknown,
e.g. due to the intractability of GAN generation, and thus
the ‘perfect’ weight w(x) cannot be calculated. Instead, we
must rely on estimates of these weights, ŵ(x). In this sec-
tion, we show that the existing approach to DP importance
weight estimation is biased, and how the data curator can
correct it.

Using the same reasoning as in Section 2.1, we argue that
any calibrated classification method that learns to distin-
guish between data from the DGP, labelled thenceforth with
y = 1, and from the SDGP, labelled with y = 0, can be
used to estimate the likelihood ratio (Sugiyama et al., 2012).
Using Equation (1), we compute

ŵ(x) =
p̂(y = 1|x)
p̂(y = 0|x)

ND

NG

where p̂ are the probabilities estimated by such a classifica-
tion algorithm. To improve numerical stability, we can also
express the log weights as

log ŵ(x) = σ−1(p̂(y = 1|x)) + log
ND

NG
,

where σ(x) := (1 + exp(−x))−1 is the logistic function
and σ−1(p̂(y = 1|x)) are the logits of the classification
method. We will now discuss two such classifiers: logistic
regression and neural networks.

3.3 PRIVATISING LOGISTIC REGRESSION

DP guarantees for a classification algorithm g can be
achieved by adding noise to the training procedure. The
scale of this noise is determined by how much the algorithm
differs when one observation of the dataset changes. In
more formal terms, the sensitivity of g w.r.t a norm | · | is
defined by the smallest number S(g) such that for any two
neighbouring datasets D and D′ it holds that

|g(D)− g(D′)| ≤ S(g).

Dwork et al. (2006) show that to ensure the differential
privacy of g, it suffices to add Laplacian noise with standard
deviation S(g)/ϵ to g.

Possibly the simplest classifier g one could use to estimate
the importance weights is logistic regression with L2 regu-
larisation. It turns out this also has a convenient form for its
sensitivity. If the data is scaled to a range from 0 to 1 such
that X ⊂ [0, 1]d, Chaudhuri et al. (2011) show that the L2

sensitivity of the optimal coefficient vector estimated by β̂
in a regularised logistic regression with model

p̂(y = 1|xi) = σ(β̂Txi) =
(
1 + e−β̂T xi

)−1

is S(β̂) = 2
√
d/(NDλ) where λ is the coefficient of the

L2 regularisation term added to the loss during training.
For completeness, when the logistic regression contains an
intercept parameter, we let xi denote the concatenation of
the feature vector and the constant 1.

Ji and Elkan (2013) propose to compute DP importance
weights by training such an L2 regularised logistic clas-
sifier on the private and the synthetic data, and perturb
the coefficient vector β̂ with Laplacian noise. For a d di-
mensional noise vector ζ with ζj

i.i.d.∼ Laplace(0, ρ) with
ρ = 2

√
d/(NDλϵ) for j ∈ {1, . . . , d}, the private regres-

sion coefficient is then β = β̂ + ζ , akin to adding heterosce-
dastic noise to the private estimates of the log weights

logw(xi) = β
T
xi = β̂Txi + ζxi. (4)

The resulting privatised importance weights can be shown
to lead to statistically biased estimation.

Proposition 1 (Supplement B.1). Let w denote the import-
ance weights computed by noise perturbing regression coef-
ficients as in Equation (4) (Ji and Elkan, 2013, Algorithm
1). The IS estimator IN (h|w) is biased.

Introducing bias on downstream estimators of sensitive in-
formation is undesirable as it can lead to an increased ex-
pected loss. To address this issue, we propose a fast and
effective way for the data curator to debias the weights after
computation, without requirement for an additional privacy
budget.

Proposition 2 (Supplement B.2). Let w denote the import-
ance weights computed by noise perturbing the regression
coefficients as in Equation (4) (Ji and Elkan, 2013, Al-
gorithm 1) where ζ can be sampled from any noise dis-
tribution that ensures (ϵ, δ)-differential privacy of β. Define

b(xi) := 1/Epζ
[exp

(
ζTxi

)
],

and adjusted importance weight

w∗(xi) = w(xi)b(xi) = ŵ(xi) exp
(
ζTxi

)
b(xi). (5)

The importance sampling estimator IN (h|w∗) is unbiased
and (ϵ, δ)-DP for Epζ

[exp
(
ζTxi

)
] > 0.
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In Supplement B.2.4, we further show that our approach
does not only decrease the bias, but also the variance of the
importance weighted estimators.

For the case of component-wise independent Laplace per-
turbations ζj

i.i.d.∼ Laplace(0, ρ), we show that the bias
correction term can be computed as

b(xi) =

d∏
j=1

(
1− ρ2x2

ij

)
, provided |xij | < 1/ρ ∀j.

In practice, e.g. as we observe empirically in Section 4, the
optimal choice of the regularisation term λ is sufficiently
large such that ρ < 1. Since the data is scaled to a range of
0 to 1 (Chaudhuri et al., 2011), this bias correction method
is not limited by the restriction |xij | < 1/ρ,∀j. If the data
curator still encounters a case where this condition is not
fulfilled, they can choose to perturb the weights with Gaus-
sian noise instead, in which case the bias correction term
always exists (see Supplement B.2.2). Laplacian perturba-
tions are however preferred as the required noise scale can
be expressed analytically without additional optimisation
(Balle and Wang, 2018), and as they give stricter privacy
guarantees with δ = 0.

Alternatively, unbiased importance weighted estimates can
be computed directly by noising the weights instead of the
coefficients of the logistic regression. While this procedure
removes the bias of the estimates and can also be shown to
be consistent, it increases the variance to a greater extent
than noising the coefficients does, and is thus only sustain-
able when small amounts of data are released. Please refer
to Supplement A.1 for more details.

3.4 PRIVATISING NEURAL NETWORKS

If logistic regression fails to give accurate density ratio es-
timates, for example because of biases introduced by the
classifier’s linearity assumptions, a more complex discrimin-
ator in the form of a neural network can be trained. We can
train DP classification neural networks for the aim of likeli-
hood ratio estimation with stochastic gradient decent (SGD)
by clipping the gradients and adding calibrated Gaussian
noise at each step of the SGD, see e.g. Abadi et al. (2016).
The noised gradients are then added up in a lot before the
descent step where lots resemble mini-batches.

These optimisation algorithms are commonly formulated
for the case when the complete dataset is private. How-
ever, in our setting, ND observations are private and NG

observations are non-private. Thus, we can define a relaxed
version of DP SGD. Algorithm 1 provides an overview of
our proposed method. We highlight the modifications to
Algorithm 1 from Abadi et al. (2016) in blue.

Proposition 3. Each step in the SGD outlined in Al-
gorithm 1 is (ϵ, δ)-differentially private w.r.t the lot and

Algorithm 1: Relaxed DP SGD
Input: Examples x1:ND

, y1:ND
from the DGP and

xND+1:ND+NG
, yND+1:ND+NG

from the
SDGP, loss function
L(θ) = 1

NG+ND

∑
i L(θ, xi, yi). Parameters:

learning rate ηt, noise scale σ, expected lot size
L, gradient norm bound C.

1 Initialise θ0 randomly
2 for t ∈ [T ] do
3 Construct a random subset

Lt ⊂ {1, . . . , ND +NG} by including each index
independently at random with probability L

ND+NG

4 Compute gradient
5 For each i ∈ Lt, compute

gt(xi, yi)← ∆θtL(θt, xi, yi)
6 Clip gradient
7 gt(xi, yi)← gt(xi, yi)/max(1, ||gt(xi,yi)||2

C )
8 Add noise
9 g̃t ← 1

L

∑
i∈Lt

(gt(xi, yi) +N(0, σ2C2I)1(yi=1)),
where 1(yi=1) is 1 if yi = 1 and 0 otherwise

10 Descent
11 θt+1 ← θt + ηtg̃t

Output: θT and the overall privacy cost (ϵ, δ) using the
moment’s accountant of Abadi et al. (2016)
with sampling probability q = L

ND+NG
.

(O(qϵ), δ) differentially private w.r.t the full dataset where

q = L
ND+NG

and σ =
√

2 log ( 1.25δ )/ϵ.

The differential privacy w.r.t a lot follows directly from
the observation that the gradients of the synthetic data are
already private. Further, the labels of the synthetic data
are public knowledge. Lastly, the differential privacy w.r.t
the dataset follows from the amplification theorem (Kas-
iviswanathan et al., 2011), the fact that sampling one particu-
lar private observation within a lot of size L is q = L

ND+NG
,

and the reasoning behind the moment accountant of Abadi
et al. (2016). We still clip the gradients of the public dataset
as their influence will otherwise be overproportional under
strong maximum norm assumptions.

3.5 GAN DISCRIMINATOR WEIGHTS

The downside of the aforementioned likelihood ratio estim-
ators (Equation (4), Equation (5), and Algorithm 1) is that
their training requires an additional privacy budget which
has to be added to the privacy budget used to learn the SDGP.
If we however use a GAN such as DPGAN or PATE-GAN
for private synthetic data generation, we can use the GAN’s
discriminator for the computation of the importance weights.
According to the post processing theorem, these importance
weights can be released without requiring an additional pri-
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Figure 1: Kernel density plots of 100 observations sampled from a two dimensional uniform square distribution as SDGP
(bottom left) and a uniform triangle distribution as DGP (second figure in second row). The first row depicts histograms of
the computed weights starting with the true importance weights (True). The DP weights were privatised with ϵ = 1, and
the regularisation was chosen as λ = 0.1. The second row illustrates the importance weighted synthetic observations. We
observe that while BetaDebiased corrects the weights of the logistic regression, the complex nature of the MLPs allows a
better modelling of the DGP even in this simple setting.

vacy budget. In contrast to the weights computed from DP
classification networks, the weights from this approach are
thus more robust and require no additional hyperparameter
tuning (confer to Section 4).

4 EXPERIMENTS

We demonstrate the benefits of using debiased IW for
DP data release with a large-scale experimental study
comparing three different SDGPs (DPGAN, DPCGAN,
PrivBayes) on six real-world data sets (Iris, TGFB, Boston,
Breast, Banknote, MNIST) for two different privacy
budgets, ϵ ∈ {1, 6}. We stress that debiasing comes with
little overhead to the actual computations. As we see in
Supplement C.2, the computations of the logistic regression
and neural network importance weight estimates take less
than one and a half minutes to train, even on MNIST.
These weight estimators can be applied to any kind of
synthetic data generation model, while the importance
weights of the GAN discriminator can be computed
in a single line of Python code and do not require any
additional concerns regarding the privacy budget. Please
see https://github.com/sghalebikesabi/
importance-weighted-differential-privacy
for the implementation.

Computation of importance weights After fitting the
SDGP on the scaled true data, we weight each synthetic
observation with importance weights. Based on the train
and the synthetic data, we apply one of the following IW
approaches: weights computed from a non-private logistic
regression (LogReg), its DP alternative introduced by Ji
and Elkan (2013) (BetaNoised), or our debiased proposal
(BetaDebiased), and likelihood ratios estimated by a non-
private multi-layer perceptron (MLP), or a DP-MLP trained
using Algorithm 1. We also compare to the naive estimator
using uniform weights without IW (called ’None’).

Please refer to Supplement C.1 for more details on the imple-
mentation and the hyperparameters used in our experiments.
In Supplement C.8, we provide a comparison to the exper-
imental results reported by related papers. Because of the
large scale of our experimental study, we present only the
most important results in this section, and give a complete
overview in Supplement C. The code and data for all experi-
ments can be found online.

4.1 TOY EXAMPLE

We start our analysis with a simple example to illustrate
the benefits of the different weighting schemes. We assume
that the synthetic data is sampled from a two-dimensional
uniform distribution from 0 to 1 whereas the true data fol-
lows a uniform distribution on the lower triangle given by
x1 + x2 < 1 for x1, x2 ∈ [0, 1]. This illustrative toy ex-
ample was chosen for a fairer comparison of the logistic
regression and the neural network based approaches. As we
see in Figure 1, the weighted kernel density estimate (KDE)
of BetaDebiased is closer to the LogReg weighted KDE,
and also the true KDE compared to the BetaNoised KDE.

4.2 UCI DATA SETS

Datasets and preprocessing We performed additional
experiments on four UCI datasets of different characteristics
as decribed in Supplement C.1: Iris, Banknote, Boston, and
Breast. Similarly to Chaudhuri et al. (2011); Ji and Elkan
(2013), we scale all data to a feature range from 0 to 1. We
use a train-test split of 80%. In all experiments we fix δ to
N−1

D −10−6, and choose ϵ ∈ {1, 6}. We refer to Supplement
C.7 for a complete overview of the results.

Synthetic data generators We used DPCGAN (Torkz-
adehmahani et al., 2019), DPGAN (Xie et al., 2018), and
their corresponding non-DP analogues (CGAN and CGAN)
to generate DP synthetic data of the same size as the training
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Breast Banknote
IW DPGAN DPCGAN PrivBayes DPGAN DPCGAN PrivBayes

W
ST

↓

None 2.3665±0.0982 1.5853±0.1333 2.1117±0.1740 0.4746±0.0214 0.7442±0.0333 0.3237±0.0162

BetaNoised 1.4337±0.1114 2.2232±0.2325 1.2322±0.0823 0.2509±0.0436 0.4355±0.0456 0.2318±0.0035

BetaDebiased 1.8922±0.1237 1.9913±0.3507 1.1825±0.0933 0.4015±0.0766 0.4618±0.0832 0.2369±0.0061

DP-MLP 1.4570±0.1492 1.0315±0.1415 1.2190±0.0795 0.2035±0.0427 0.4298±0.0433 0.0456±0.0061

Discriminator 1.0007±0.0004 1.0001±0.0001 - 0.3382±0.0399 0.1087±0.0415 -
LogReg 1.6451±0.1168 2.2953±0.2121 1.4663±0.1152 0.2508±0.0432 0.4348±0.0460 0.2348±0.0034

MLP 1.6129±0.1404 1.0709±0.1579 1.4141±0.1216 0.0913±0.0259 0.3860±0.0452 0.0021±0.0004

β
M

SE
↓

None 2.0643±0.2012 4.9828±1.5701 2.3904±0.1050 11.0215±1.8377 19.3243±3.7708 8.1724±0.3987

BetaNoised 2.7532±0.2650 2.5025±0.3763 2.1144±0.2400 8.4298±1.0383 15.2862±4.0365 5.7001±0.1885

BetaDebiased 2.8337±0.3842 2.2324±1.0446 1.8266±0.2392 8.3508±2.3127 12.9909±5.9024 6.6862±0.1458

DP-MLP 2.3965±0.2083 3.8865±0.6043 2.3130±0.2195 17.1597±2.5448 16.4618±4.1011 3.5519±0.2895

Discriminator 1.4591±0.1837 4.0612±0.9523 - 12.5471±2.3124 10.9282±5.4283 -
LogReg 2.6934±0.2667 2.2156±0.3366 1.5333±0.2138 8.4760±1.0406 15.2964±4.0396 5.6751±0.1785

MLP 2.3999±0.2040 3.8343±0.7032 1.6581±0.2020 17.9390±2.4926 15.5211±4.2147 2.6286±0.3761

M
L

P
R

O
C

-A
U

C
↑ None 0.6374±0.0421 0.6791±0.0966 0.8366±0.0579 0.8546±0.0213 0.6863±0.0436 0.7630±0.0495

BetaNoised 0.6110±0.0477 0.6546±0.0727 0.7076±0.0983 0.8495±0.0274 0.6063±0.0510 0.8943±0.0173

BetaDebiased 0.6820±0.0510 0.7173±0.0842 0.8557±0.0765 0.8729±0.0310 0.5868±0.1005 0.7632±0.0517

DP-MLP 0.7942±0.0404 0.5686±0.0823 0.7353±0.0887 0.7697±0.0419 0.5657±0.0570 0.8953±0.0299

Discriminator 0.6992±0.0839 0.7290±0.0720 - 0.8695±0.0167 0.7114±0.0424 -
LogReg 0.6631±0.0469 0.6484±0.1081 0.7618±0.1019 0.8172±0.0327 0.6034±0.0534 0.9102±0.0129

MLP 0.7730±0.0412 0.7358±0.1017 0.7573±0.0738 0.8291±0.0333 0.5974±0.0627 0.8594±0.0231

Table 1: Mean and standard error over 10 runs for (ϵ = 1, δ = N−1
D − e−6) on the Breast and Banknote data. Best score out

of the private methods is marked in bold.

data set. Additionally we also consider PrivBayes (Zhang
et al., 2017), a DP Bayesian Network, as a potential SDGP.

Hyperparameter tuning Hyperparameter tuning is es-
sentially non-private, and has to be accounted for in the
privacy budget. Since hyperparemeter tuning in a DP setting
is an unresolved problem (Liu and Talwar, 2019; Rosenblatt
et al., 2020; Papernot and Steinke, 2021), we follow Jordon
et al. (2019) and tune the hyperparameters of the underly-
ing baselines on private validation data sets. However, we
propose default parameters for our methods. This leads to
an over-optimistic presentation of the baseline performance,
and a conservative presentation of our extensions.

Evaluation metrics In order to show that IW decreases
statistical bias, we train a linear prediction model on the
synthetic data and approximate its bias. Since the true DGP
is not known, we train the same linear predictor on the
test data and report the mean squared error (MSE) between
the test parameters and the parameters estimated on the
SDGP, as β MSE. We further analyse the divergence of the
weighted SDGP and the DGP in a similar way by comput-
ing the Wassertstein (WST) distance w.r.t the test data. As
one exemplary supervised downstream task, we consider
a linear downstream classifier or regressor trained on the
synthetic data. This downstream predictor is then assessed
by the error measured in the parameter vector compared
to the parameters learnt using the test set (beta MSE). Fi-
nally, we train a one-hidden-layer MLP on the training data,
and report the test prediction error as MLP ROC-AUC for

classification tasks, and MLP MSE for regression tasks.

Choice of budget split We only present results for ϵ = 1
in this section, and refer the reader to Supplement C.7 for
further results with ϵ = 6. If the weight computation proced-
ure requires a separate privacy budget (e.g. if the weights
are computed by a separate MLP or logistic regression), we
spend 10% of the ϵ-budget on fitting the SDGP and 30%
of the δ-budget on the weight computation; the complete
budget can be spent on fitting the SDGP if no weights, or
the weights of the discriminator are used. In Supplement
C.3, we evaluate a range of different privacy splits on the
Breast and Boston data.

Results In Tables 1 and 2, we see that the performance
of the models mostly improved when weighted with any
type of estimated weights. Although the best inference for
each data set is nearly always achieved after importance
weighting, we notice that there are some rare cases where no
importance weighting performs (insignificantly) better. For
instance, we observe that the SDGP obtained with PrivBayes
seems to be close to the true DGP of the Boston Housing
data, and that importance weighting is no longer helpful. In
settings where the SDGP and the DGP are really close, it is
possible that the effects of additional variance induced by
estimating and privatising the importance weights (where ap-
propriate) cancels out the reduction in bias. This effect might
be mitigated with hyperparameter tuning. Further, we note
that debiasing the logistic regression weights mainly results
in better performance. Even though we experience a slight
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IW DPGAN PrivBayes
W

ST
↓

None 2.2013±0.0945 1.3938±0.0231

BetaNoised 2.0922±0.0419 1.3009±0.0338

BetaDebiased 2.0930±0.0393 1.2705±0.0290

DP-MLP 2.0542±0.0184 1.0265±0.0035

Discriminator 2.0145±0.0141 -
LogReg 2.2051±0.0819 1.4078±0.0492

MLP 2.0350±0.0158 1.0072±0.0009

β
M

SE
↓

None 0.1867±0.0434 0.0011±0.0002

BetaNoised 0.1761±0.0948 0.0088±0.0028

BetaDebiased 0.0667±0.0188 0.0077±0.0022

DP-MLP 0.1530±0.0812 0.0048±0.0024

Discriminator 0.1567±0.1825 -
LogReg 0.0749±0.0279 0.0037±0.0016

MLP 0.1476±0.0804 0.0008±0.0002

M
L

P
M

SE
↓

None 1.8851±0.5262 0.1973±0.0108

BetaNoised 1.0057±0.1973 0.2200±0.0154

BetaDebiased 0.9024±0.1244 0.2139±0.0122

DP-MLP 0.9462±0.1702 0.1877±0.0174

Discriminator 1.6256±0.2394 -
LogReg 1.0606±0.2648 0.2515±0.0305

MLP 1.0979±0.2225 0.1697±0.0079

Table 2: Mean and standard error over 10 runs for (ϵ = 1,
δ = N−1

D − e−6) on the Boston Housing data. Best score
out of the private methods is marked in bold.

IW β MSE ↓ MLP ROC-AUC
↑

None 0.6605±0.0384 0.8502±0.0386

BetaNoised 0.6247±0.0184 0.8766±0.0086

BetaDebiased 0.6240±0.0179 0.8783±0.0093

DP-MLP 0.5813±0.0246 0.8683±0.0055

Discriminator 0.6242±0.0140 0.8631±0.0310

LogReg 0.6234±0.0183 0.8770±0.0092

MLP 0.5707±0.0207 0.8737±0.0058

Table 3: Mean and standard error over 10 runs with standard
errors for (ϵ = 9.64, δ = 60, 000−1 − e−6) on MNIST.

drop in performance from BetaNoised to BetaDebiased in
some rare cases, this can be explained by randomness in the
data set as we show in Supplement Table 3 that the weights
estimated by BetaDebiased are significantly closer to the
true LogReg weights than the importance weights given
by BetaNoised. If a GAN is used as SDGP, and the data
curator is hesitant to release additional importance weights,
the discriminator weights nearly always lead to an improve-
ment in results without requiring additional computations.
To further illustrate the practical meaning of debiasing, we
have included an exemplary case study in Supplement C.6.

4.3 BAYESIAN UPDATING WITH IW

We investigate the effectiveness of IW in a Bayesian learn-
ing setting as per Equation 3. We evaluated and compared
the performance of these weighted posteriors alongside the

standard non-weighted posterior by applying them to learn-
ing the parameters of models for various regression tasks.
Figure 2 shows the ROC-AUC scores associated with the
Bayesian predictive distribution arising from integration
over the posterior of a Bayesian logistic regression model fit
on synthesised versions of the Banknote dataset. We observe
that the ROC-AUC under PrivBayes’ synthetic data is sig-
nificantly improved upon across all IW methods, with sim-
ilar gains made to the median performance under CGAN’s
synthetic data. Additionally, most of the methods help in
decreasing variability in the results, especially DP-MLP
and MLP. See Supplement C.5 for a full specification of
the experimental details and for further results from fitting
Bayesian linear regression and multinomial logistic regres-
sion models on the TGFB and Iris datasets respectively.

4.4 MNIST

Additionally, we assessed how IW performs in a high-
dimensional setting such as a classification task on the
MNIST dataset. Since PrivBayes does not scale to large
data sets, we only evaluate DPCGAN as possible SDGP. For
this we follow the setup by Torkzadehmahani et al. (2019)
for ϵ = 9.64 and δ = 6000−1 − 10−6. We observe in Table
3 that all IW methods improve upon the state of the art.

ϵ =
 1

ϵ =
 6

None LogReg MLP BetaNoised BetaDebiased DP-MLP Discriminator

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

IW Method

R
O

C
-A

U
C

Synth Model CGAN DPCGAN PRIVBAYES

Figure 2: ROC-AUC score box plots calculated via chains
of parameters sampled from a Bayesian logistic regression
model fit on synthesised Banknote data across 10 seeds.

5 DISCUSSION

In this paper, we investigated importance weighting methods
to correct for biases in downstream estimation tasks when us-
ing differentially private synthetic data. While classification
algorithms can be used to estimate the required importance
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weights, noise must be added in order to maintain privacy.
We presented methods to debias inference based on privat-
ised weights estimated by logistic regression, developed
private estimation procedures allowing the complexity of
neural networks to be leveraged for weight estimation, and
proposed using inbuilt discriminator weights from GAN
data generation to avoid increases to the privacy budget.

Following these developments, we advocate that future re-
leases of DP synthetic data are augmented with privatised
importance weights to allow researchers to conduct unbiased
downstream model estimation. Future work will focus on
improved hyperparameter tuning practises to choose the
optimal IW approach for the task and dataset at hand. Fur-
ther improving upon the likelihood ratio estimates in a non-
private setting could simplify such a choice.
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