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Reinforcement Learning-Based Wind Farm Control:
Towards Large Farm Applications via Automatic

Grouping and Transfer Learning
Hongyang Dong and Xiaowei Zhao

Abstract—The high system complexity and strong wake effects
bring significant challenges to wind farm operations. Con-
ventional wind farm control methods may lead to degraded
power generation efficiency. A reinforcement learning (RL)-based
approach is proposed in this paper to handle these issues,
which can increase the long-term farm-level power generation
subject to strong wake effects while without requiring analytical
wind farm models. The proposed method is significantly distinct
from existing RL-based wind farm control approaches, whose
computational complexities usually increase heavily with the
increase of total turbine numbers. In contrast, our method can
greatly reduce training loads and enhance learning efficiency via
two novel designs: (1) automatic grouping and (2) multi-agent-
based transfer learning (MATL). Automatic Grouping can divide
a large wind farm into small turbine groups by analyzing the
aerodynamic interactions between turbines and utilizing some
key principles from the graph theory. It enables the separated
conduction of RL algorithms on small turbine groups, avoiding
the complex training process and high computational costs of
applying RL on the entire farm. Based on Automatic Grouping,
MATL can further reduce the computational complexity by
allowing agents (i.e. wind turbines) to inherit control policies
under potential group changes. Case studies with a dynamical
simulator show that the proposed method achieves clear power
generation increases than the benchmark. It also dramatically
reduces computational costs compared with typical RL-based
wind farm control methods, paving the way for the application
of RL in general wind farms.

Index Terms—Reinforcement learning, wind farm control,
machine learning, wind energy, intelligent control.

I. INTRODUCTION

Wind energy is essential for the global effect in achieving
a resilient green transition, and it is now helping the world
avoid over 1.2 billion tonnes of CO2 annually [1]. It is the
primary and dominant renewable energy – the power generated
by wind is almost as much as the combination of all the
other renewable sources. The wind industry has been growing
dramatically in recent years, and many new wind farms have
been planned globally to meet the needs of net zero. Among
all the sub-systems, the wind farm control/operation system is
essential and directly decides wind farms’ power generation
process and economic profitability [2]. With the continuous
increase of global wind energy capacity, operating wind farms
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more efficiently and economically has become a key need in
the wind industry, especially for large offshore wind farms.
However, the high system complexity and strong aerodynamic
interactions between turbines render the design of wind farm
control systems challenging. Particularly, it is well-understood
and widely reported [2], [3], [4], [5] that the power generation
efficiency of downstream turbines in a wind farm can be
severely affected by the wakes (with reduced wind speeds
and increased turbulence levels compared to the free stream)
induced by upstream turbines. Currently, most wind farms
ignore such wake effects in practical operation. They usually
set all turbines to work under the local greedy control strategy
– all turbines focus on maximizing their own power generation
while omitting any potential influences on other turbines. Such
a control strategy is easy to implement but can be far away
from globally optimal, as demonstrated in a lot of works, e.g.,
Refs. [6], [7], [8]. Many recent studies have shown that, by
controlling all turbines in the farm via cooperative patterns,
wake effects can be potentially alleviated and the whole farm’s
total power generation can be increased compared with the
cases under the greedy strategy. Site test results in Refs. [9],
[10] proved this fact, showing that advanced wind farm control
methods are needed to optimize farm-level power generation.

A challenge in designing cooperative wind farm controllers
is modelling the interactions of wind farms with their flow
fields, which usually requires solving complex PDE equations,
e.g., the Navier-Stokes equations. The stochastic natures of
flow fields and wakes further increase the modelling tasks’
difficulty. An intuitive way to handle these issues is building
or employing simplified models and carrying out optimiza-
tion/control based on them. Some notable studies in this
direction are given in Refs. [6], [11], [12], [13], [14], and
typical methods include game-theoretic algorithm [6], [13],
Bayesian-based algorithm [12], particle swarm optimization
[11], random search [14], etc. However, most of these elegant
results rely on steady-state models or data collected/predicted
by steady-state models. The limited fidelity of steady-state
models may degrade these methods’ performance in practical
applications. In addition, achieving closed-loop adjustments
under time-varying environments is another challenge that
potentially decreases the applicability of these results. Model
predictive control (MPC) methods are proposed in [7], [15],
[16] to provide potential solutions for these issues. They are
able to carry out closed-loop wind farm control under dynamic
wind farm models/data and achieve better performance com-
pared to steady-state optimization. Nevertheless, these elegant
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results still highly rely on the accuracy of underlying wind
farm models (including wind flow and wake models), and their
performance can be influenced in the presence of inevitable
modelling errors and unmodelled dynamics.

The wind industry requires innovations to deal with these
limitations in wind farm control, for which reinforcement
learning (RL) has been proven to be a promising and effective
candidate. RL is a booming interdisciplinary technology that
has been developed dramatically in recent years [17], [18],
[19]. It can handle many complex tasks that are almost
impossible to be addressed by conventional control methods,
such as beating professional human players in the board game
GO [18]. RL methods have been applied to many areas, such
as robotics [20], [21], aerospace engineering [22], and so on.
One of the key ideas of RL is capturing the essential system
information and improving control policies via interacting with
the environment, allowing RL algorithms to handle optimal
control problems of black-box systems (i.e. systems with
unknown models). Applying RL in wind farm operations has
become a cutting-edge research area, and its feasibility has
been proved in recent studies [23], [24], [25], [26], [27],
[28], [29], [30], [31]. For example, a model-free approach for
wind farm power optimization was introduced in [23] via the
deep Q-network algorithm [32]. Ref. [24] employed physical
models to guide RL training and achieved wind farm power
maximization. Ref. [28] designed a robust RL method for
farm-level power tracking tasks. These results demonstrate that
RL algorithms can achieve complex wind farm control tasks
subject to uncertain/unknown system models, showing strong
robustness and adaptability compared with conventional wind
farm control methods.

However, several issues can hinder the application of RL-
based wind farm control methods. Specifically, the computa-
tional complexity of these algorithms increases exponentially
with the increase of action & state dimensions. Though
distributed structures are employed in some studies, they still
need to evaluate the long-term reward of the whole farm
(such as the long-term farm-level power generation), which
still requires the measurements and/or states of all turbines.
The training/learning stability, on the other hand, deteriorates
under large action & state spaces. Therefore, the computational
loads of existing RL-based wind farm control methods can
grow significantly with the increase of turbine numbers, while
the efficiency & stability of the training process are degraded.

All these facts motivate us to design new wind farm
control methods to overcome the limitations of current studies.
This paper develops an application-oriented RL method for
wind farm power maximization tasks subject to time-varying
environmental conditions and strong aerodynamic interactions
between turbines. We build upon a multi-agent actor-critic
structure. Specifically, each agent, i.e. each turbine in the farm,
employs an actor network to learn its own control policy, while
critic networks are designed to evaluate the long-term reward
functionals of special turbine groups. Deep neural networks
(DNNs) are employed in our design as information processors,
and the actor & critic DNNs are trained via the proximal policy
optimization (PPO) algorithm [33], [34] with only measurable
data at turbine rotors (instead of full states of the whole flow

field). In addition, two novel designs in our RL-based wind
farm control method are described in detail as follows.

(I) Automatic Grouping (AG). AG is designed to signif-
icantly reduce the proposed method’s overall computational
load, especially for large wind farm applications. It can divide
the whole wind farm into small turbine groups by analyzing
the aerodynamic interactions between turbines and employing
some fundamental ideas from the graph theory [35].

(II) Multi-Agent-based Transfer Learning (MATL). Based
on AG and some key properties of wind farm control problems,
MATL allows agents (i.e. turbines) to inherit the training
results of their actor DNNs as the initial settings under
potential grouping changes. Moreover, MATL also carries
out supervised-learning-style pre-training for critic DNNs of
newly formed groups.

In addition to these designs, some other key contributions
of the proposed method are summarised as follows.

(1) This paper develops a new reinforcement learning-based
wind farm control method that can overcome the limitations
of many existing methods, including high reliance on system
models, lack of robustness to stochastic environmental condi-
tions, and need for immeasurable data. The proposed method
is capable of achieving data-driven closed-loop control for
farm-level power maximization under time-vary wind speeds
& directions with only practically available measurements.

(2) The proposed method can significantly mitigate the high
computational loads & training costs associated with almost
all deep RL-based wind farm control approaches. Employing
AG and MATL allows users to execute RL on small turbine
groups, avoiding carrying out the complex training with the
whole farm. Moreover, AG also reduces the sizes of action
& state spaces, potentially improving training efficiency and
stability. All these enhance the applicability and scalability of
the proposed method to general and large wind farms.

(3) The proposed method has a general framework. AG
and MATL are designed to be “plug-and-play” modules to the
main RL structure. They can be applied to not only our RL
algorithm but also other RL-based wind farm control methods.
Moreover, given the data-driven feature, the proposed method
does not restrict the types of turbines and induction control
inputs - it allows different induction states, e.g., induction
factors and/or thrust coefficients, to be employed in different
scenarios.

We employ a dynamic wind farm simulator introduced in
[36] in case studies and consider yaw angles & thrust coeffi-
cients as control inputs to test the performance and advantages
of the proposed method. Nevertheless, the proposed method
can be applied to other simulators or real wind farms and
employ other relevant states as control inputs.

It is noteworthy that this paper is partially built upon the
conference version in [30], while significant new contributions
have been made from the following several aspects: (1) Based
on the adjacency matrix and a restricted depth-first search
approach, a solid method (Algorithms 1 & 2) is proposed in
this paper to generate turbine groups automatically - to our
best knowledge, this is for the first time an automatic grouping
strategy is proposed for wind farm operational tasks. In
contrast, Ref. [30] requires manual grouping. (2) Significantly
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different from [30], a new RL-based wind farm control method
is developed in this paper via multi-agent proximal policy
optimization. Compared with [30], this new method is more
suitable for handling wind farm control problems, especially
in cooperation with the automatic grouping algorithm. (3) As
a new design, the transfer learning strategy is employed in
this paper. It allows the proposed method to handle potential
grouping changes due to wind direction variations and reduce
training loads further.

In the remainder of this paper, the wind farm control
problem is introduced in Sec. II. Our RL-based control
method’s design details are given in Sec. III. Case studies
are demonstrated in Sec. IV to analyze the performance and
advantages of the proposed method. Finally, this paper ends
with some conclusive remarks in Sec. V.

II. PROBLEM FORMULATION

We consider a wind farm with n turbines to formulize the
control problem considered in this paper, and we use WT 1,
WT 2, ..., WT n to denote all the turbines. Without loss of
generality, for a turbine i (denoted as WT i) in the farm,
its power generation Pi can be described by the following
equation.

Pi = Fi(Ui, αi, γi) (1)

where Ui denotes the wind speed at the rotor of WT i, αi

denotes the induction state (such as the induction factor or
other relevant states, e.g. the thrust coefficient), and γi is the
yaw angle. Fi expresses the relationship of Ui, αi, γi with Pi.
The RL method that will be developed in the following section
is data-driven and does not require the specific expression
of Fi. In other words, Fi can be unknown for the proposed
method in this paper.

The primary goal of wind farm control is to maximize farm-
level power generation from a long-term point of view. Other
requirements should also be considered, such as avoiding
large structural loads and limiting control actions. Based
on that and following relevant studies [37], [24], [26], we
consider a reward/performance metric that can balance the
power generation and structural loads:

J =

∞∑
t=0

n∑
i=1

ξtCi(t) (2)

with
Ci(t) = w1Pi(t)− w2Lαi

(t)− w3Lγi
(t) (3)

Here t denotes the time step, 0 < ξ ≤ 1 is a discount factor,
and w1, w2 and w3 are user-defined constants for weighting
purposes. The terms in Ci are explained as follows.
(1) The first term w1Pi(t) in Eq. (3) is for farm-level power

generation maximization - the larger it is, the higher the
whole farm’s power generation.

(2) The term w2Lαi(t) in Eq. (3) is to consider loads caused
by wind farm control. We set

Lαi
(t) = |fi(t)− fi(t− 1)| (4)

with Lαi(0) = 0. Here fi is the axial force that the inflow
wind exerts on Turbine i, described by [36], [37]

fi =
1

2
ρAiU

2
i cos2(γi)c

′
Ti

(5)

where ρ is the air density, Ai is the rotor plane’s swept
area, and c′Ti

is called the modified thrust coefficient [36],
[37]. Based on Ref. [37], Lαi

is related to dynamical
turbine loading. Therefore, introducing Lαi into the per-
formance metric allows us to balance dynamical loads
and power generation.

(3) The third term Lγi
(t) is to avoid large yaw offsets and

yaw-induced structural loads, and we set Lγi
(t) = |γi(t)|.

Based on Eqs. (2) and (3), our objective is controlling αi and
γi to maximize J . This optimal control problem is challenging
due to the high system complexity and the wake effect (as
qualitatively illustrated in Fig. 1.(a)) associated with wind farm
control tasks. To be specific, many studies [6], [38], [28] and
real-world applications have shown that the wake induced by
an upstream wind turbine (with decreased wind speed and
increased turbulence level) can severely influence the power
generation of its downstream turbines. The traditional greedy
strategy (in which each turbine in a wind farm only focuses
on maximizing its own power generation while ignoring its
influence on other turbines due to wake effects) can be far
from optimal. Therefore, farm-level control strategies should
be considered to operate all turbines cooperatively in order to
mitigate wake effects and increase the whole farm’s power
generation. Moreover, wake effects commonly have time-
delayed features - it usually takes tens or hundreds of seconds
for a wake to propagate from an upstream turbine to a
downstream turbine. This means the wake generated by an
upstream turbine can influence the future power generation of
its downstream turbines. Thus wind farm control strategies
should not be short-sighted. It should be able to optimize
the long-term farm-level reward as given in (2). This paper
employs a novel RL strategy to achieve this goal.

(a) Wake Effect Illustration

Inflow Wind

(b) Influence Field Illustration

WT j

WT l

WT kWT i

Fig. 1: Illustrations of wake effect and influence field.
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III. REINFORCEMENT LEARNING-BASED WIND FARM
CONTROL

This section proposes an RL-based wind farm method to
maximize the long-term reward. As introduced in Sec. I, this
new method aims to overcome the limitations of conventional
methods and also current RL-based approaches. It contains
three key modules: (1) An automatic grouping approach; (2)
An RL structure via multi-agent proximal policy optimization;
(3) A multi-agent-based transfer learning strategy. Their spe-
cific designs are given in the following subsections.

A. Automatic Grouping

Automatic Grouping (AG) aims to reduce the overall com-
putational loads of our RL-based wind farm control method by
separating the wind farm into turbine groups. There are several
important observations & principles that guide the design of
AG:

(a) The influence of wake decays as it propagates. There-
fore, it is important to quantitatively analyze aerodynamic
interactions based on relative turbine positions.

(b) If the AG algorithm is too conservative and takes into
account all potential interactions between turbines, then some
groups can be large and contain many turbines, especially
considering the cascading effects. To mitigate this issue,
AG should justify the level of aerodynamic interactions and
potentially restrain the number of turbines in each group.

(c) It is noteworthy that for large wind farms, the most
downstream turbines in one group can be set as the most
upstream turbines in the following group along the inflow wind
direction. Such a design can help the AG algorithm take into
account the cascading effects and therefore fully reflect the
aerodynamic interactions between different groups.

Based on these observations and principles, the essential
steps in the AG strategy are introduced as follows.

Step 1: Calculating the Influence Factor. Here we define
a concept called the influence factor. It is a quantitative way
to show the influence of a single turbine’s power generating
process on the flow field around it. For any spatial position H
in the farm, we use IFWTi→H to denote the influence factor
of turbine WT i with respect to the position H . Following
[30], the specific definition of IFWTi→H is

IFWTi→H =
1

γmax − γmin

∫ γmax

γmin

wγ(γi) · δUH(γi)dγi (6)

In Eq. (6), γmin and γmax are the maximum and minimum
allowable yaw offsets of WT i with respect to the wind
direction, wγ(γi) is a non-negative function of the yaw angle
γi, providing the freedom for weighting aims. Moreover,
δUHj (γi) is the wind speed deficit rate when αi is under the
greedy strategy and the yaw offset w.r.t the wind direction is
set to be γi. Therefore, IF is essentially a weighted integral
of the deficit rates under different yaw offsets. It is noteworthy
that, compared with induction states, yaw angles have critical
influences on the direction of wakes and play a key role in
wake steering. These facts motivate us to employ the yaw
offset in the definition of IF . It should also be emphasized
that only essential wake features are needed to carry out AG.

Therefore, the calculation of δUH(γi) does not require high-
fidelity flow field models, and analytical steady-state models
already can satisfy the needs. As an example, Fig. 1.(b)
illustrates the distribution of influence factor of a turbine WF i,
in which the values of IFWTi→H (H indicates any position)
are calculated by the FLORIS model proposed in [6] under
the conditions γmin = −30◦, γmax = 30◦ and wγ(γi) ≡ 0.
In this figure, the darker the color, the higher the value of
IFWTi→H . One can see that the wake induced by WTi has
severe potential influences on WTj , while its influences on
WTk and WTl are at a much lower level.

Step 2: Getting the Influence Field by IF . The IF value
defined in (6) can quantitatively show a turbine’s influence on
the flow field. By setting a threshold (denoted as bIF ) to IF ,
one can further get an influence field of any turbine in the
farm, as shown by the envelopes (which indicate the edges
of influence fields under different thresholds) in Fig. 1.(b).
To bring flexibility for AG, bIF is set to be a user-defined
parameter. After setting bIF , for a turbine WT i, any other
turbines that are within its influence field are said to have
significant aerodynamic interactions with WT i.

Step 3: Building a Graph Based on Turbines’ Interactions.
We employ some fundamental ideas from the graph theory
[35] in the design of AG. Particularly, we treat each turbine
in the farm as a vertex in a graph. Suppose a downstream
turbine is within the influence field of an upstream turbine.
In that case, a directed edge from the upstream turbine to the
downstream turbine should be added to the graph, indicating
that the corresponding turbines have significant aerodynamic
interactions. Following that, all turbines’ interactions can be
described by a directed graph.

Step 4: Restricting the Depth of the Graph to Get Grouping
Results. As we discussed before, turbines may have cascading
interactions. We take Fig. 1.(b) as an example. If bIF is set
to be 0.3, WTk is outside the influence field of WTi. But,
WTk is within the influence filed of WTj , so WTk and
WTi are connected via WTj in the graph, rendering these
three turbines to be in the same group if no restrictions are
introduced. For large wind farms with long turbine rows (along
the wind direction), such cascading aerodynamic interactions
may lead to large turbine groups, which can be undesirable.
In our AG algorithm, the depth of the graph can be restricted
to break down large turbine groups into small sub-groups.
Moreover, the most downstream turbines in one group can be
set as the most upstream turbines in the following group. This
allows the algorithm to still consider the cascading effects in
the grouping. The final grouping results can be obtained by
carrying out a restricted depth-first search (RDFS) (modified
from DFS [35]) to get connected components.

Based on these designs and analyses, the automatic grouping
(AG) algorithm is summarized in Algorithm 1, and a restricted
depth-first search (RDFS) algorithm (which is employed in
Algorithm 1) is given in Algorithm 2. Please note “#” indicates
comments in Algorithms 1 and 2. Please note a recursive
function is employed in RDFS, as shown in Algorithm 2.
Particularly, the IF loop (Lines 6-8) in Part II of Algorithm
2 is key to the stop logic of the recursive function. Once the
corresponding vertex has been visited or its depth is beyond
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the user-defined limit, the IF condition cannot be satisfied and
no further recursive function for that vertex is carried out.
This, together with the visit-labelling law in Line 2 and the
depth-updating law in Line 5, forms the stop criteria of our
recursive function.

Algorithm 1 Automatic Grouping (AG) Algorithm.
Input: turbine labels and positions.
Output: lists of turbine labels - each list indicates a group of
turbines.

1: Set the threshold for IF (denoted by bIF ) and the depth
limit for grouping (denoted by bd).

2: Define a graph for the wind farm by an adjacency matrix
G[n][n], with n being the total turbine number. Each
turbine WT i is a vertex of the graph, denoted by vi.

3: All entries in G[n][n] are initialized to be zero.
4: Mark the most upstream turbines as root vertices.

# Initialization ends
5: for i = 0 to n do
6: for j ̸= i do
7: Calculate the influence factor IFWTi→WTj

via (6).
8: if IFWTi→WTj

≥ bIF then
9: Add a directed edge to the graph, i.e. set

G[vi][vj ] = 1.
10: end if
11: end for
12: end for
13: while the adjacency matrix G is not empty do
14: Based on the adjacency matrix G, carry out the re-

stricted depth-first search (RDFS) from root vertices
with the maximum depth being bd. See Algorithm 2
for more details.

15: Based on the result of RDFS, collect the vertices (i.e.
the turbine labels) of every unique connected compo-
nent and store it in a list as a turbine group.

16: Mark the vertices with depths being bd as root vertices.
17: Remove the vertices that have been searched with

depths less than bd from G.
18: end while
19: return lists of turbine labels.

Remark 1 (selection of bIF and bd): The parameters bIF
and bd are important in the AG algorithm. Their values are set
to be user-defined to meet different needs since they can vary
the grouping results. For example, if one sets bIF = 0.3 for
the case given in Fig. 1.(b), then the influence field is defined
by IFWTi→H ≥ 0.3, and WTj is within this influence field
while WTk & WTl are outside. One can see bIF can decide
the size of the influence field (as shown by the envelopes in
Fig. 1.(b), which are the edges of different influence fields
under different values of bIF ) - the smaller the bIF , the larger
the influence area, and vice versa. AG allows users to decide
bIF based on their own needs, therefore adapting to different
conditions and scenarios. As a quick guidance, [0.15, 0.4] is a
proper interval for setting bIF - this is based on the definition
in (6) (which is essentially a weighted wind speed deficit rate)
and the observations from extensive simulation results.
The parameter bd decides the maximum depth of each in-

Algorithm 2 Restricted Depth-First Search (RDFS).
I. Implementation

1: RDFS(G,RV list){
2: # G: adjacency matrix; RV list: list of root vertices.
3: Initialize a list to store results: Group list = [].
4: for each vertex vi in G do
5: Initialize a data structure for vi: Vi = { depth = 0;

visited = false; label = vi}.
6: end for
7: for each root vertex in RV list (denoted by vr) do
8: RF(G,Vr, bd) # as defined in Part II below.
9: end for

10: for each vertex vk in Group list do
11: if Vk.depth > bd then
12: Group list.remove(Vk.label)
13: end if
14: end for
15: return Group list}
II. Recursive Function

1: RF(G,Vr, bd){
2: Vr.visited = true # indicate Vr has been visited.
3: Group list.append(Vr.label)

# store the corresponding turbine label (i.e. the vertex label
of Vr) into the list.

4: for each Vj such that G[Vr.label][Vj .label] == 1 do
5: Vj .depth = max{Vr.depth+ 1,Vj .depth}

# update the depth of Vj .
6: if (Vj .depth ≤ bd) and (Vj .visited == false) then
7: RF(G,Vj , bd)
8: end if
9: end for}

dividual connected component in the implementation of AG
and therefore avoids large turbine groups due to the cascaded
aerodynamic interactions between turbines. It must be a non-
zero integer. In addition, setting bd = 0 will lead to only
single-turbine groups. Therefore, one should follow bd ∈ N+

and decide the value of bd based on their specific needs. As
explained in Step 4 in AG design, our algorithm can consider
cascading effects. Thus, a very large bd is unnecessary and
setting bd ∈ {2, 3, 4, 5} is reasonable and suggested.

B. Multi-Agent Reinforcement Learning

This subsection develops the RL-based wind farm controller
to be applied to each turbine group from the result of AG. We
set the total number of turbine groups from AG to be L.

Without loss of generality, we consider a group (denoted by
T Gl) with a total of m turbines. Each turbine in the group is
regarded as an agent. Therefore, the control problem of this
turbine group can be transformed into a cooperative game with
m agents, and the core objective is to design control policies
for all the turbines in the group to maximize the following
cumulative discounted reward from the time step t:

Rt =
∑

WT i∈T Gl

∞∑
h=0

ξt+hCi(t+ h) (7)
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where Ci follows the definition in (2).
We build our RL structure upon the multi-agent proximal

policy optimization (PPO) algorithm [34]. Particularly, we em-
ploy a multi-agent actor-critic structure. Each agent employs
an actor DNN (denoted by πi, parameterized by θi) to learn
its control policy, and there is a central critic DNN (denoted
by Vϕ, parameterized by ϕ) to learn the central state-value
function (which is defined based on (7)):

Vπ(s(t)) = E[
∑

WT i∈T Gl

∞∑
h=0

ξt+hCi(s(t+ h), πθ)] (8)

where s = {s1, s2, ...., sm} and πθ = {π1, π2, ..., πm} denote
the aggregated state and control policy of all agents, respec-
tively. Here si is the state of agent i, with i = 1, 2...,m,
and θ = {θ1, θ2, ..., θm}. One can see Vπ(s(t)) is actually
the cumulative reward from time t, with the initial aggregated
state to be s(t) and the control policy to be πθ at time t and
thereafter. Based on (8), the optimal control strategy can be
described by

π∗ = argmax
π

Vπ(s(t)) (9)

It is essential to decide the update laws for actor and critic
DNNs to approximate Vπ(s) and π∗, and we employ the PPO
method [33], [34] to achieve this aim. At each learning step, a
set of trajectories (denoted by D, with a size of N ) is employed
to carry out the update of θi and ϕ, and the corresponding
losses, L(θi) and L(ϕ) are defined as follows.

L(θi) =
1

NT

∑
τ∈Dτ

T∑
t=0

min{ πi(ai,t|si,t)
πi,old(ai,t|si,t)

Aπi,t, g(ϵ, Aπi,t)}

(10)

L(ϕ) =
1

NT

∑
τ∈Dτ

T∑
t=0

(Vϕ(st)− R̂t)
2 (11)

where τ indicates the trajectories in the set Dτ , T is the length
of each trajectory, πi,old is the old control policy of the agent
i from the previous learning step, ai,t is the control action of
the agent i at the time step t, si,t is the state of the agent i at t,
and st = {s1,t, s2,t, ..., sm,t}. Moreover, Aπi,t is calculated by
the general advantage estimation (GAE) [39], and the function
g(ϵ, Aπi,t) is defined by

g(ϵ, Aπi,t) =

{
(1 + ϵ)Aπi,t if Aπi,t ≥ 0
(1− ϵ)Aπi,t if Aπi,t < 0

(12)

and here ϵ is a small user-defined constant which indicates
how far away the new policy is allowed to go from the old
[33]. In addition, R̂t is the cumulative discounted reward from
t to the end of the trajectory, serving as an estimate of Rt.

With L(θi) and L(ϕ), the actor and critic DNNs can be
updated by maximizing L(θi) (i = 1, 2, ...,m) and minimizing
L(ϕ), respectively.

Then we are ready to mold the wind farm control problem
into this multi-agent RL structure. For a turbine WTi, its
control signals (i.e. the outputs of πi) are the changes of αi and
γi, denoted by δαi and δγi, respectively. In the RL algorithm,
the minimum and maximum values of αi, γi, δαi, and δγi

are restricted based on turbine specifications. The function Ci

that decides the reward is defined in (2), which is related to
the turbine’s power generation Pi, the yaw angle γi, and the
change of the induction state δαi. The local observations (i.e.
the inputs of πi to decide control signals) include the power
generation Pi, yaw angles γi, induction state αi, wind speed
at the rotor, wind direction, and turbine position.

Remark 2 (Addressing potential control policy conflicts):
AG allows the proposed multi-agent RL method to be carried
out in small turbine groups instead of the whole farm. As
discussed before, that can significantly mitigate the high
computation loads associated with deep RL and also enhance
training efficiency and stability by reducing state & action
spaces. To combine AG with multi-agent RL, we also need to
address the potential control policy conflicts induced by the
overlaps of different turbine groups (i.e. some turbines may
be included in more than one group.) Based on the design of
AG, only the most downstream turbines in one group have
the possibility to be included in other groups. Given this
important property, the RL method can directly set the most
downstream turbines in a group to always follow the greedy
strategy while learning the control policies for other turbines.
This is also a common practice in real wind farms because
the wakes induced by the most downstream turbines in a farm
have ignorable influences on the farm-level power generation.
But in our design, if these most downstream turbines are also
contained in other groups as the most upstream turbines, their
control policies should be decided by the learning results of
those other groups. This logic helps the proposed wind farm
control method address the potential control policy conflicts.

C. Multi-Agent Based Transfer Learning

The large change of free-flow wind directions (denoted by
δΥ) can vary the aerodynamic interactions between turbines
and the result of AG. When applying the proposed wind
farm control method, a threshold bΥ can be set to refresh
AG. If the new AG results do indicate the changes in some
groups, updates need to be made to adapt to the new situations.
Performing full re-training for the changed groups is feasible
but clearly time-costly. Here we employ a multi-agent based
transfer learning (MATL) strategy to smooth the re-training
process of the proposed RL-based wind farm control method
under AG changes.

The core idea of MATL is allowing agents (i.e. turbines) to
inherit the learning results of their actor DNNs and use them
as initial settings when their associated group is changed. In
addition, with the inherited actor DNNs, MATL also carries
out supervised-learning-style pre-training for the initilization
of the central critic DNNs of the changed groups. Therefore,
the full re-training is avoided, and only fine-tuning is needed
for new groups. The key principles that build the feasibility for
MATL are indicated in the proposed AG and multi-agent RL.
In particular, the multi-agent RL in Sec. III.B has a centralized
training decentralized execution (CTDE) structure. The actor
DNN for each agent only needs local observations to get
control signals, rendering it can be inherited after grouping
changes.
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Group
Changes

Training results of Actor DNNs
are inherited in initialization.

WT5

WT1 WT2

WT3 WT4 WT5

WT1 WT2

WT3 WT4

Actor 1 Actor 2

Actor 3 Actor 4

Actor 1 Actor 2

Actor 3 Actor 4Actor 5 Actor 5

Old Critic New CriticDue to group changes, the
critic DNN cannot be directly
inherited in initialization.

Supervised learning is
carried out to initialize
the new Critic DNN.

Old Group New Group

Fig. 2: An example of MATL.

An example showing the implementation procedure of
MATL is illustrated in Fig. 2. Assume there are five turbines
in a group, then AG updates and WT 5 is removed from this
group. Following the MATL rule, all the new group’s turbines
inherit their actor DNN training results from the old group.
Such an initialization process can help the RL’s training and
fine-tuning for the new group. However, we cannot do the
same thing directly for the new central critic because the critic
now aims to optimize the power generation of the new group
of turbines. Instead, the initialization of the new critic DNN
is carried out by supervised learning based on actor DNNs.
It should be emphasized that MATL targets the initialization
process of RL re-training after group changes. It allows the
RL algorithm to make a good initial guess based on the results
of trained DNNs (especially under mild main wind direction
variations), potentially enhancing learning effectiveness and
reducing training loads. But fine-tuning is still required after
group changes, particularly for situations with significant wind
direction changes.

Remark 3: The main structures of the proposed RL-
based wind farm control method are illustrated in Fig. 3. We
summarize connections between different parts and the main
implementation steps (as indicated in Fig. 3) of our method
in this remark. (1) Firstly, the AG algorithm (Algorithm 1)
proposed in Sec. III.A can divide the whole wind farm into
small turbine groups. (2) The multi-agent RL algorithm in
Sec. III.B takes the result from AG. Then, based on the
measurements and observations from the wind farm, our RL
algorithm aims to optimize the total power generation of
each turbine group. It employs DNNs to form a multi-actor
central-critic structure, and the corresponding update laws are
provided in Sec. III.B in detail. (3) Each turbine in the farm
receives control commands from its associated actor DNN and
provides measurements to the RL algorithm. (4) As discussed
in Sec. III.C, the AG result will be refreshed if the variation
of main wind direction exceeds the user-defined threshold bΥ.
The multi-agent based transfer learning (MATL) strategy is
triggered only when the AG result changes. As designed in
Sec. III.C, MATL allows the inheritance of DNN training

results in the initialization of re-training/fine-tuning.

IV. CASE STUDIES

The effectiveness, performance and advantage of the pro-
posed RL-based wind farm control method are evaluated
in this section with a dynamic wind farm simulator (called
WFSim) designed in [36].

A. Case Study I

In this case study, we employ a flow field with the size being
4818.8m × 2700m. The simulation time step is 1s. Following
the design of WFSim, the induction state αi is set to be the
modified thrust coefficient [36]. There are a total of 30 NREL
5MW turbines in this flow field. Fig. 4 illustrates the farm’s
layout, and the flow field (bird’s-eye view) is simulated under
the greedy strategy (i.e. αi ≡ 2, γi ≡ 0, i = 1, 2, ..., 30). The
wind speed across the flow field is indicated by the color bar.
Moreover, the wind direction along the x-axis is set to be the
benchmark, i.e. Υ = 0◦, with the clockwise direction to be the
positive direction. In the case study, we employ a stochastic
wind profile with wind speeds ranging from 9m/s to 13m/s,
and its wind direction follows Υ ∈ [−10◦, 10◦].

We employ Python (with PyCharm software) to program the
automatic grouping, multi-agent reinforcement learning and
multi-agent transfer learning methods developed in this paper.
We use the Keras API for deep neural network implementa-
tions and the MATLAB engine in Python to link with WFSim.
We denote the proposed control method as “RL with AG &
MATL”. The maximum and minimum allowable yaw offsets
(with respect to the free-stream wind direction) are set to be
γmax = 30◦ and γmin = −30◦, respectively, and the allowable
range of αi is set to be [0, 2]. The single-step restrictions on
control signals are set to be |δαi| < 0.05 and |δγi| < 0.1◦.

For AG, we set wγ(·) ≡ 0 and the threshold of IF to be
0.3. The wind change threshold to check potential AG result
changes is |δΥ| = 10◦. The depth limit is bd = 3 (the depth of
root vertices is 0). Moreover, for the multi-agent RL structure,
we have ξ = 0.99, T = 512, ϵ = 0.1, and λ = 0.95 (a
parameter in GAE). The actor DNNs for all agents have the
same structure. They have two hidden layers with 64 and 32
ReLU neurons, respectively, while the critic DNNs have three
hidden layers with neuron numbers adapted to group sizes.
In addition to the greedy strategy and the proposed control
method, we also employ a pure RL method that does not apply
AG and MATL for comparison purposes. We denote it as “RL
w/o AG & MATL” in the figures.

By carrying out AG for the 30-turbine wind farm, a unique
grouping result is obtained with the simulation settings given
above, as demonstrated in Fig. 5. Specifically, this figure
provides a bird’s-eye view of the wind farm & flow field
simulated in this case study. It is generated based on the
simulation results of WFSim with the proposed RL method.
In Fig. 5, each black bar indicates a wind turbine in the farm,
and color changes indicate variations of wind speeds across
the flow field. This figure provides an intuitive illustration of
wake effects and the wake steering ability of the proposed
method. In addition, it also allows us to mark and highlight
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Fig. 3: Main structures of the proposed RL-based wind farm control method with AG and MATL.

Fig. 4: The simulated flow field with a 30-turbine wind farm
under the greedy strategy.

the results of AG (Algorithms 1 & 2). We discuss that in detail
as follows.

Specifically, AG leads to four connected components (form-
ing a large directed graph), and the vertices in these connected
components (CC) are as follows.

CC1: {WT 1,WT 5,WT 6,WT 10,WT 14,WT 15,WT 19,
WT 20,WT 24}

CC2: {WT 2,WT 7,WT 11,WT 16,WT 21,WT 25,WT 28}
CC3: {WT 3,WT 8,WT 12,WT 17,WT 22,WT 26,WT 29}
CC4: {WT 4,WT 9,WT 13,WT 18,WT 23,WT 27,WT 30}
With these connected components, AG divides the whole

farm into eight turbine groups by carrying out RDFS with
bd = 3. We summarize the turbines in each group follows.

Group 1: {WT 1,WT 5,WT 6,WT 10,WT 14,WT 15}
Group 2: {WT 14,WT 15,WT 19,WT 20,WT 24}

Group 3: {WT 2,WT 7,WT 11,WT 16}
Group 4: {WT 16,WT 21,WT 25,WT 28}
Group 5: {WT 3,WT 8,WT 12,WT 17}
Group 6: {WT 17,WT 22,WT 26,WT 29}
Group 7: {WT 4,WT 9,WT 13,WT 18}
Group 8: WT 18,WT 23,WT 27,WT 30}
Based on that, RL can be executed on these small turbine

groups. After the training episodes are finished, we test the
performance of the proposed method by a long simulation
with the total running steps to be 6000. Moreover, to evaluate
the robustness against sudden wind direction changes, Υ is set
to be

Υ(t) =

 0◦ for 0 ≤ t ≤ 2000
5◦ for 2000 < t ≤ 4000
10◦ for 4000 < t ≤ 6000

Simulation results of the flow field at t = 2000s and t =
6000s are given in Figs. 5 and 6, respectively. These figures
indicate that the proposed method successfully achieves wake
steering under stochastic wind speeds and time-varying wind
directions.

The comparisons of farm-level power generations of dif-
ferent methods are provided in Fig. 7. This figure shows the
changes of regulated power generations over time (normalized
by the power production under the greedy strategy at t = 0s) of
Greedy, “RL w/o AG & MATL” and “RL with AG & MATL”.
One can see both the two RL-based wind farm control methods
(the blue and red curves in Fig. 7) lead to clear farm-level
power increases (22.23% and 20.29% on average, respectively)
in comparison with Greedy (the yellow curve). Moreover, the
proposed method has comparable performance to “RL w/o
AG & MATL”, though there exists inevitable negligence of
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Fig. 5: Grouping and simulation results of the proposed wind farm control method.

Fig. 6: The simulated flow field under the proposed method
(t = 6000s, Υ = 10◦).

Fig. 7: Normalized power generation under different methods.

RL with AG & MATL

Fig. 8: Performance comparison of RL and RL-AG-MATL.

Fig. 9: Wind profile for Case Study II.
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NewGroup 1

NewGroup 2

Fig. 10: Simulation results of the proposed wind farm control method with a 34-turbine wind farm.

aerodynamic interactions between groups. It even leads to
better performance than pure RL for 5200 < t ≤ 6000. The
performance of the two RL-based methods is further compared
in Fig. 8. One can see that though applying AG in the proposed
method results in a slight deficit (1.94%) in power increase
percentage, it leads to significant computation load reduction
(77.81%) in terms of the total training time (with Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GH, 96GB RAM).

Fig. 11: Normalized power generation under different methods
in Case Study 2.

B. Case Study II

This additional case study aims to test the scalability of the
proposed method and compare it with other relevant results.
We consider the situation that several new wind turbines
(WT 31-WT 34) are installed in the wind farm, and their
positions are indicated in Fig. 10. A wind profile based on the

Fig. 12: Performance comparison of “RL w/o AG & MATL”,
“RR-DDPG”, and “RL with AG & MATL”.

measurements of Anholt Offshore Wind Farm1 is employed
in this case study, as shown in Fig. 9 - one can see it has
a large wind speed range with sharp changes. In addition
to “Greedy”, “RL w/o AG & MATL” and “RL with AG
& MATL” methods, another approach developed in [31] is
employed in simulations for performance comparison. This
method also achieves data-driven wind farm control via deep
RL. We denote it by “RR-DDPG” - it was based on the
deep deterministic policy gradient (DDPG) algorithm [19] and
employed a reward regularization (RR) module to handle wind
speed changes. These features make it suitable to compare with
the method proposed in the present paper.

Fig. 10 shows the simulation result of the flow field under
the proposed method. An interesting observation is that AG

1https://orsted.com/en/our-business/offshore-wind
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TABLE I: Comparison of different RL-based wind farm control methods.

Items
Methods

PR-DRL [28] RR-DDPG [31] KA-DDPG [24] RL-AG-MATL (this work)

Data-driven & learning ability Yes Yes Yes Yes

Control target Power tracking Power maximization Power maximization Power maximization

Adaptability to wind changes Yes Yes No Yes

Reduced training costs No No No Yes

leads to two new turbine groups (as marked in Fig. 10) while
all the other groups remain the same as in Case Study 1. This
observation shows another advantage of the wind farm control
method proposed in this paper - it has scalability when the
size and layout of the wind farm change. In this case study,
one only needs to apply RL to the New Groups 1 & 2. The
control strategies of all the other turbines in the farm can be
inherited from previous results - this avoids full retraining and
significantly reduces training costs after size/layout changes.

The normalized power generations over time (normalized
by the power production under the greedy strategy at t = 0s)
under different control methods are depicted in Fig. 11. One
can see the power generations change sharply under the
wind profile in Fig. 9. Fig. 11 indicates that all three RL-
based wind farm control methods have better farm-level power
generations than the greedy strategy, showing the effectiveness
and feasibility of applying RL to wind farm control tasks. The
normalized power generation (w.r.t to Greedy) and computa-
tional time cost (w.r.t “RL w/o AG & MATL”) under “RL w/o
AG & MATL”, “RR-DDPG”, and “RL with AG & MATL” are
given in Fig. 12 to compare their performance further. The
proposed method leads to higher farm-level power generation
than “RR-DDPG” (112.09% and 108.90%, respectively), and
it has comparable performance to “RL w/o AG & MATL”
(114.87%). As shown in the right-hand side of Fig. 12, a key
feature of the proposed method is the significantly reduced
training time. In this example, it only needs 19.72% of the
training time of “RL w/o AG & MATL”, while the time
required by “RR-DDPG” is 7.44 times that of “RR with AG
& MATL”.

In addition, we summarize and compare the features of the
proposed method and recently developed RL-based wind farm
control approaches in Table I to provide more information.
These methods include the preview-based robust reinforcement
learning method (PR-DRL) proposed in Ref. [28], the RR-
DDPG method proposed in [31] (which is employed in Case
Study II), and the knowledge-assisted DDPG method (KA-
DDPG) proposed in [24]. In summary, case studies and Table
I show the performance and advantages of the proposed
method. It can mitigate wake effects and improve farm-level
power generation while significantly reducing the computa-
tional complexity associated with RL at the cost of mild
performance degradation.

V. CONCLUSION

This paper developed a new reinforcement learning (RL)-
based wind farm control method to improve the whole farm’s
power generation subject to strong aerodynamic interactions

between turbines and time-varying environmental conditions.
The proposed method had the ability to mitigate the high
computational complexity associated with RL & deep neural
network training via two novel designs: automatic grouping
and transfer learning. The main RL structure was built upon a
multi-agent actor-critic structure, allowing turbines to get con-
trol signals via local observations. Simulation results showed
that our method was able to trade off control performance
and computational loads. On the one hand, the resulting farm-
level power generation under our method was higher than the
conventional greedy strategy. On the other hand, compared
to directly implementing RL across the entire wind farm,
the proposed method could significantly reduce the training
time at the cost of slight performance degradation, laying a
foundation for RL’s applications in the operational tasks of
large wind farms. A limitation of the proposed method is
that it was data-driven and did not make full use of physical
information/models. Hybrid AI methods will be explored in
the future to combine helpful physical information with deep
RL algorithms and applied to wind farm control tasks. This
can potentially improve the initialization and decision-making
of RL, enhancing learning effectiveness and efficiency further.
Another meaningful research direction is employing automatic
grouping strategies in power tracking tasks, bringing flexibility
and adaptability to ancillary services with wind farms.
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N. Yadav, J. S. Chawla, V. Sivaram, and J. O. Dabiri, “Collective wind
farm operation based on a predictive model increases utility-scale energy
production,” arXiv preprint arXiv:2202.06683, 2022.

[11] N. Gionfra, G. Sandou, H. Siguerdidjane, D. Faille, and P. Loevenbruck,
“Wind farm distributed pso-based control for constrained power gener-
ation maximization,” Renewable energy, vol. 133, pp. 103–117, 2019.

[12] J. Park and K. H. Law, “Bayesian ascent: A data-driven optimization
scheme for real-time control with application to wind farm power
maximization,” IEEE Transactions on Control Systems Technology,
vol. 24, no. 5, pp. 1655–1668, 2016.

[13] J. Park and K. H. Law, “Cooperative wind turbine control for maximiz-
ing wind farm power using sequential convex programming,” Energy
Conversion and Management, vol. 101, pp. 295–316, 2015.

[14] M. A. Ahmad, M. R. Hao, R. M. T. R. Ismail, and A. N. K. Nasir,
“Model-free wind farm control based on random search,” in 2016 IEEE
international conference on automatic control and intelligent systems
(I2CACIS). IEEE, 2016, pp. 131–134.

[15] X. Yin and X. Zhao, “Deep neural learning based distributed predictive
control for offshore wind farm using high-fidelity les data,” IEEE
Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3251–3261,
2020.

[16] K. Chen, J. Lin, Y. Qiu, F. Liu, and Y. Song, “Model predictive control
for wind farm power tracking with deep learning-based reduced order
modeling,” IEEE Transactions on Industrial Informatics, 2022.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Machine Learning, 2016.

[20] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 14 413–14 423, 2020.

[21] Y. Yang, L. Juntao, and P. Lingling, “Multi-robot path planning based
on a deep reinforcement learning dqn algorithm,” CAAI Transactions on
Intelligence Technology, vol. 5, no. 3, pp. 177–183, 2020.

[22] H. Dong, X. Zhao, Q. Hu, H. Yang, and P. Qi, “Learning-based attitude
tracking control with high-performance parameter estimation,” IEEE
Transactions on Aerospace and Electronic Systems, 2021.

[23] Z. Xu, H. Geng, B. Chu, M. Qian, and N. Tan, “Model-free optimization
scheme for efficiency improvement of wind farm using decentralized
reinforcement learning,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 12 103–
12 108, 2020.

[24] H. Zhao, J. Zhao, J. Qiu, G. Liang, and Z. Y. Dong, “Cooperative wind
farm control with deep reinforcement learning and knowledge-assisted
learning,” IEEE Transactions on Industrial Informatics, vol. 16, no. 11,
pp. 6912–6921, 2020.

[25] P. Stanfel, K. Johnson, C. J. Bay, and J. King, “Proof-of-concept of a
reinforcement learning framework for wind farm energy capture maxi-
mization in time-varying wind,” Journal of Renewable and Sustainable
Energy, vol. 13, no. 4, p. 043305, 2021.

[26] H. Dong, J. Zhang, and X. Zhao, “Intelligent wind farm control via deep
reinforcement learning and high-fidelity simulations,” Applied Energy,
vol. 292, p. 116928, 2021.

[27] S. Vijayshankar, P. Stanfel, J. King, E. Spyrou, and K. Johnson, “Deep
reinforcement learning for automatic generation control of wind farms,”
in 2021 American Control Conference (ACC). IEEE, 2021, pp. 1796–
1802.

[28] H. Dong and X. Zhao, “Wind-farm power tracking via preview-based
robust reinforcement learning,” IEEE Transactions on Industrial Infor-
matics, vol. 18, no. 3, pp. 1706–1715, 2021.

[29] J. Xie, H. Dong, X. Zhao, and A. Karcanias, “Wind farm power gen-
eration control via double-network-based deep reinforcement learning,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp. 2321–
2330, 2021.

[30] H. Dong and X. Zhao, “Intelligent wind farm control via grouping-based
reinforcement learning,” in European Control Conference, 2022.

[31] H. Dong and X. Zhao, “Composite experience replay-based deep
reinforcement learning with application in wind farm control,” IEEE
Transactions on Control Systems Technology, vol. 30, no. 3, pp. 1281–
1295, 2021.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[34] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative, multi-agent games,” arXiv
preprint arXiv:2103.01955, 2021.

[35] B. Bollobás, Modern graph theory. Springer Science & Business Media,
2013, vol. 184.

[36] S. Boersma, B. Doekemeijer, M. Vali, J. Meyers, and J.-W. van Winger-
den, “A control-oriented dynamic wind farm model: WFSim,” Wind
Energy Science, vol. 3, no. 1, pp. 75–95, 2018.

[37] S. Boersma, B. Doekemeijer, S. Siniscalchi-Minna, and J. van Winger-
den, “A constrained wind farm controller providing secondary frequency
regulation: An les study,” Renewable energy, vol. 134, pp. 639–652,
2019.

[38] B. M. Doekemeijer, D. van der Hoek, and J.-W. van Wingerden, “Closed-
loop model-based wind farm control using floris under time-varying
inflow conditions,” Renewable Energy, vol. 156, pp. 719–730, 2020.

[39] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

Hongyang Dong is an Assistant Professor in the
School of Engineering, University of Warwick,
Coventry, UK. He worked as a Research Fellow
in Machine Learning and Intelligent Control at the
University of Warwick from 2019 to 2022, before
he became an assistant professor in November 2022.
He obtained a PhD degree in Control Science and
Engineering from Harbin Institute of Technology,
Harbin, China, in 2018. His current research interest
is control theories and machine learning methods
with their applications in complex systems, includ-

ing offshore renewable energy systems and autonomous systems.

Xiaowei Zhao received the Ph.D. degree in con-
trol theory from Imperial College London, London,
U.K., in 2010. He was a Postdoctoral Researcher
with the University of Oxford, Oxford, U.K., for
three years before joining the University of Warwick,
Coventry, U.K., in 2013. He is currently Professor
of Control Engineering and an Engineering and
Physical Sciences Research Council Fellow with
the School of Engineering, University of Warwick.
His main research interests include control theory
and machine learning with applications in offshore

renewable energy systems, smart grids, and autonomous systems.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3252540

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Warwick. Downloaded on April 03,2023 at 15:51:12 UTC from IEEE Xplore.  Restrictions apply. 


