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FedProf: Selective Federated Learning based on
Distributional Representation Profiling
Wentai Wu, Member, IEEE, Ligang He, Member, IEEE, Weiwei Lin, Member, IEEE,

Carsten Maple, Member, IEEE

Abstract—Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that
are only accessible to end devices (i.e., clients). The data locality constraint offers strong privacy protection but also makes FL
sensitive to the condition of local data. Apart from statistical heterogeneity, a large proportion of the clients, in many scenarios, are
probably in possession of low-quality data that are biased, noisy or even irrelevant. As a result, they could significantly slow down the
convergence of the global model we aim to build and also compromise its quality. In light of this, we first present a new view of local
data by looking into the representation space and observing that they converge in distribution to Normal distributions before activation.
We provide theoretical analysis to support our finding. Further, we propose FEDPROF, a novel algorithm for optimizing FL over non-IID
data of mixed quality. The key of our approach is a distributional representation profiling and matching scheme that uses the global
model to dynamically profile data representations and allows for low-cost, lightweight representation matching. Using the scheme we
sample clients adaptively in FL to mitigate the impact of low-quality data on the training process. We evaluated our solution with
extensive experiments on different tasks and data conditions under various FL settings. The results demonstrate that the selective
behavior of our algorithm leads to a significant reduction in the number of communication rounds and the amount of time (up to 2.4×
speedup) for the global model to converge and also provides accuracy gain.

Index Terms—Federated Learning, Distributed Systems, Machine Learning, Representation Learning, Neural Networks.

✦

1 INTRODUCTION

W ITH the advances in Artificial Intelligence (AI), we
are seeing a rapid growth in the number of AI-

driven applications as well as the volume of data required
to train them. However, a large proportion of data used
for machine learning are often generated outside the data
centers by distributed resources such as mobile phones and
IoT (Internet of Things) devices. It is predicted that the
data generated by IoT devices will account for 75% of the
total in 2025 [1]. Under this circumstance, it will be very
costly to gather all the data for centralized training. More
importantly, moving the data out of their local devices (e.g.,
mobile phones) is now restricted by law in many countries,
such as the General Data Protection Regulation (GDPR)1

enforced in EU.
The restriction on data sharing brings unprecedented

challenges to the way machine learning models are built and
trained. Data-centralized training is not feasible in privacy-
sensitive situations, whilst traditional distributed training
methods often require non-exclusive access to local data,
incur heavy communication traffics, and risk the leakage
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of user privacy. In the meantime, the rapid development
of microprocessors and AI hardware have empowered a
variety of mobile devices and IoT devices. This further
pushes the trend that both data and computation are sinking
to the network edge, which calls for a new paradigm of
distributed training.

We face three main difficulties in learning from decen-
tralized data: i) massive scale of end devices; ii) limited
communication bandwidth at the network edge; and iii)
uncertain data distribution and data quality. As an promis-
ing solution, Federated Learning (FL) [2] is a framework
for efficient distributed machine learning with privacy pro-
tection (i.e., no data exchange). An FL system involves a
group of devices (called clients in the FL context) that are
in possession of private data and coordinated by a central
server to perform model training in a collaborative manner.
A typical process of FL is organized in rounds, and in each
round the devices and the server interact in the following
steps: (step 1) client sampling: the server selects a subset of
clients for this round of training; (step 2) model distribution:
the selected clients download the latest global model from
the server; (step 3) local training: the selected clients perform
local training on their data and then upload their updated
local models to the server; (step 4) model aggregation: the
server aggregates the local models into a new global model
(i.e., the federated model).

Compared to traditional distributed learning methods,
FL is naturally more communication-efficient at scale [3],
[4]. Nonetheless, the data locality constraint inevitably in-
troduces new challenges. On the one hand, the server has
no control over the data sources and is unaware of their dis-
tribution and quality. On the other hand, the heterogeneity
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Fig. 1: (Preliminary experiment, with more details in Section 3.1) The global model’s convergence in FL over 100 clients
on different data conditions where the data are 1) independent and identically distributed (IID): noiseless, class-balanced
and evenly distributed across the clients, 2) non-IID: locally class-imbalanced and globally heterogeneous, 3) low-quality:
blended with noise and irrelevant samples, or 4) non-IID and low-quality: heterogeneous in distribution and affected by
noise and useless samples.

of data in terms of distribution and quality largely impacts
the efficacy of FL and the generalization of the federated
model. These problems stand out especially in cross-device
FL scenarios such as crowdsourcing systems [5], [6] where a
large number of users are recruited and a strong discrepancy
in data quality is expected.

1.1 Motivation
1) FL is susceptible to biased and low-quality local data. Partial
participation is a common practice in FL [7], [8]. The stan-
dard FL algorithm FEDAVG[2] uses random selection (sam-
pling), which implies that every client (and its local data)
is considered equally important. This makes the training
process susceptible to local data with strong heterogeneity
and of low quality (e.g., user-generated texts [9] and noisy
photos). In some scenarios, local data may contain irrelevant
or even poisonous samples from malicious clients [10], [11].
Due to the lack of global knowledge, filtering or augmenting
local data may introduce noise and bias [12], [13] and risk in-
formation leakage [14], whilst simply excluding potentially
noisy clients is often impractical because i) the quality of the
data depends on the learning task and is difficult to gauge,
and ii) sometimes low-quality data are very common across
the clients.

In Fig. 1 we demonstrate the impact of involving low-
quality data by running FL over 100 clients to learn a
CNN model on MNIST using FEDAVG. The setup of this
preliminary experiment is detailed in Section 3.1. From the
traces we can see that training over clients with problematic
or strongly biased data can compromise the efficiency and
efficacy of FL, resulting in an inferior global model that takes
more rounds to converge.

2) Learned representations can reflect data distribution and
quality. Learned representations capture the intrinsic struc-
ture of data [15]. Their value lies in the fact that they
characterize the domain of the learning task and provide

global model

..
.

local datasets
representa!on distribu!on

global modelglobal model

Fig. 2: The heterogeneity and quality of local data can be
reflected by the distribution of representations.

task-specific knowledge. In the field of FL, recent studies
use raw representations for refining model update rules [16],
[17] or facilitating unsupervised learning [18], [19]. however,
the distributional difference between representations of het-
erogeneous data is not yet explored. On this point, our key
hypothesis is that local data distribution can be examined
in a consensus representation space as a byproduct of the
global model (Fig. 2). Our study is also motivated by a key
observation that representations from neural networks follow
the Normal Distribution (we demonstrate these patterns in
Section 3.2). This implies that it is theoretically possible
to condense the knowledge provided by representations
from a distributional perspective, which in turn facilitates
the examination of data quality and the estimation of their
training value to the FL system.
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1.2 Contributions
The aim of our research is to improve the performance
and efficiency of FL over a group of clients with unknown
conditions of data that can be heterogeneous in distribution
(i.e., non-IID) and/or comprised of low-quality samples.
Empirically, we first observe that the hidden layers of neural
networks generate representations that follow the normal
distribution. Theoretically, we prove our observations via
the Central Limit Theorem (CLT) and design a novel scheme
to statistically condense representations into profiles for fast,
secure comparison of representations. We further propose a
novel FL algorithm that features an adaptive client sampling
strategy which selects clients based on their profile dissim-
ilarity to avoid involving low-quality data. Experimental
evaluation of the proposed solution shows improvement in
the global model’s accuracy and a significant reduction in
the costs for convergence.

Our contributions are summarized as follows:

• We first provide theoretical proofs for the obser-
vation that data representations from neural nets
exhibit normality in distribution. To the best of our
knowledge, this is the first study on statistical distri-
bution of representations and its application to FL.

• We propose a representation profiling and matching
scheme based on the statistical distribution of raw
representations and the special property of Kull-
back–Leibler (KL) divergence when applied to nor-
mal distributions. This allows for fast, low-cost rep-
resentation comparison in a secure manner.

• We present a novel FL algorithm FEDPROF with
adaptive client sampling based on representation
profile dissimilarity.

• Through extensive experiments we show that FED-
PROF reduces the number of communication rounds
by up to 63%, shortens the overall training time (up
to 2.4× speedup) while improving the accuracy by
up to 6.8% over FEDAVG and its variants.

2 RELATED WORK

Different from traditional distributed training methods (e.g.,
[20], [21]), Federated Learning assumes strict constraints
of data locality and limited communication capacity [22].
Much effort has been made in optimizing FL and covers a
variety of perspectives including communication [23], [24],
update rules [25], [26], [27], [28], flexible aggregation [4], [29]
and personalization [30], [31].

The control of device participation is imperative in cross-
device FL scenarios [32], [33] where the quality of local data
is uncontrollable and the clients show varied value for the
training task [6]. However, little attention has been paid to
the problems caused by low-quality data and their impact
on FL’s efficiency and effectiveness. Tuor et al. [6] figure
out that clients of FL are likely to contain a lot of useless
data and only a subset of them is valuable for the task.
They further propose a data selection method based on loss
distribution in order to filter out noisy and irrelevant data
on local devices. However, their solution requires a baseline
loss distribution produced by a pre-trained model, which
could be difficult to set up without sufficient prior knowl-
edge. Evidence shows that the selection of clients is pivotal

to the convergence of FL over heterogeneous data and
devices [34], [35]. Non-uniform client sampling/selection is
widely adopted in existing studies and has been theoreti-
cally proven with convergence guarantees [36], [37]. Many
approaches sample clients based on their performance [38]
or aim to jointly optimize the model accuracy and training
time [39], [40], [41]. A popular strategy is to use loss as the
information to guide client selection [42], [43]. For example,
Goetz et al. [42] proposed a loss-oriented client selection
strategy, in which they prioritize the clients with higher loss
feedback. This strategy tends to select clients on which the
model yields higher error, but it is potentially susceptible to
noisy and unexpected data that yield illusive loss values, in
which case the holders of these low-quality data may turn
out to be in favor. Chai et al. [44] developed a tier-based FL
system called TiFL where clients are assigned to different
groups by performance (i.e., training speed). TiFL adopts
a tier-level client sampling strategy which dynamically ad-
justs the probability that each tier gets selected according
to the model accuracy. This strategy favors the tiers (of
clients) that report lower accuracy, which however, can be
misguided due to the existence of low-quality data.

Recent studies exploit data representations to facilitate
vertical FL [17], personalized FL [45] and unsupervised FL
[18]. Li et al. [16] introduces representation similarities into
local objectives. This contrastive learning approach uses
the raw representation vectors from multiple models to
regularize local training losses, which guides the direction
of local model update to avoid model divergence. However,
this solution can only apply to Cross Entropy loss whilst
the computation costs of high-dimensional representations
makes another problem. In this paper, we seek to utilize
the knowledge behind representations in a more secure and
efficient manner from a distributional perspective. To the
best of our knowledge, the study on the distribution of
data representations is still lacking whilst its connection to
clients’ training value is hardly explored either.

3 PRELIMINARY EXPERIMENT

3.1 Impact of Data Quality on FL
We set up an FL system to train a LeNet-5 model on
MNIST for demonstration purpose. We set up 100 clients
with a sampling fraction of 0.3, i.e., cohort size=30. For
local training, SGD with momentum is used as the local
optimizer. We experimented under both IID (Identical and
Independently Distributed) and non-IID data settings. More
specifically, we partitioned the MNIST dataset into 100
subsets in four different ways: 1) IID (black curve in Fig.
1): all the data are noiseless and evenly distributed across
the clients, which represents the ideal condition of local
data; 2) non-IID (magenta curve in Fig. 1): local datasets
are heterogeneous and class-imbalanced. On each client the
dominant class accounts for >50% of the samples; 3) low-
quality (blue curve in Fig. 1): low-quality data cover 65% of
the clients—15% with irrelevant images, 25% with blurred
images, and 25% with images affected by ”salt and pepper”
noise; 4) non-IID and low-quality (red curve in Fig. 1): all local
datasets are non-IID (i.e., as in the Non-IID case) while 65%
of them are filled with low-quality data (as in the low-quality
case).
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From Fig. 1 we can observe that the convergence of
the global model is greatly impacted by the distribution of
the training data as well as their quality. From a statistical
standpoint, the existence of low-quality samples (e.g., noisy
and irrelevant images) shifts the marginal distribution of
the corresponding domain, which could hinder the model
from learning the salient patterns and thus has negative
effect on its generalization. Training over clients with low-
quality data significantly undermines the effectiveness of
FL resulting in an inferior federated model that takes more
rounds to converge.

3.2 Distribution of Representations
We also ran preliminary experiment to demonstrate the
distribution of representations learned by two popular neu-
ral network models during and after training, respectively.
For representation extraction and profiling, we define a
structured tensor (initialized with the model) that caches
the representations in the forward pass.

Fig. 3 shows the distribution of fused representations
(in a channel-wise manner) extracted from a plain convo-
lutional layer and a residual block of ResNet-18. The model
has been trained till convergence on the CIFAR-100 dataset.
In a forward pass we extracted the output feature maps of
the corresponding layer/block and examine the distribution
of representations from a channel-wise perspective. It can be
observed that representations from both plain convolution
and residual block converged to normal distribution.
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Fig. 3: (Preliminary experiment) Demonstration of fused
representations from a standard convolution layer (1st row)
and a residual block (2nd row) of a ResNet-18 model trained
for 100 epochs on CIFAR-100. Ten (out of 64) channels for
each layer are displayed for brevity.

We also investigated the convergence (in distribution) of
representations and the impact of low-quality data. Fig. 4
visualizes the representations extracted from the first dense
layer (FC-1) of LeNet-5. The three rows in Fig. 4 correspond
to the model trained for 1 epoch, 6 epochs and 10 epochs,
respectively. We can observe clear patterns of normally
distributed representations for both under-trained models
and models already converged.2 Another key observation
is that the representations of high-quality data and those

2. LeNet-5 converges on MNIST after 10 epochs of training.

of noisy data exhibit obvious difference in distribution.
Representations learned on MNIST with noise3 have shifted
means and lower variances.

Fig. 4: (Preliminary experiment) Demonstration of pre-
activation representations from a dense layer of a LeNet-5
model after being trained for 1, 6 and 10 epochs on MNIST
(blue) and noisy MNIST (yellow). Representations from five
(out of 128) neurons in the layer are displayed for brevity.

We empirically found that tiny datasets can also exhibit
normal distribution patterns of representation using a sim-
ple model as the encoder (similar to the role of the global
model in FL). More details are provided in Appendix B.1.

4 DATA REPRESENTATION PROFILING AND
MATCHING

In this paper, we consider a typical cross-device FL setting
[32], in which multiple end devices collaboratively perform
local training on their own datasets Di, i = 1, 2, ..., n. Every
dataset is only accessible to its owner.

Considering the distributional pattern of data represen-
tations (Figs. 3 and 4) and the role of the global model in FL,
we propose to profile the representations of local data using
the global model. In this section, we first provide theoretical
proofs to support our observation that representations from
neural network models converge to normal distributions.
Then we present a novel scheme to profile data represen-
tations and define profile dissimilarity for fast and secure
representation comparison.

4.1 Normal Distribution of Representations
In this section we provide theoretical explanations for the
Normal patterns exhibited by the representations from the
hidden layers of neural networks. We first make the follow-
ing definition to facilitate our analysis.

Definition 4.1 (The Lyapunov’s condition). A set of random
variables {Z1, Z2, . . . , Zv} satisfy the Lyapunov’s condition if
there exists a δ such that

lim
v→∞

1

s2+δ

v∑
k=1

E
[
|Zk − µk|2+δ

]
= 0, (1)

where µk = E[Zk], σ2
k = E[(Zk − µk)

2] and s =
√∑v

k=1 σ
2
k.

3. Gaussian blur and pixel noise are applied to 60% of the data.
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The Lyapunov’s condition can be intuitively explained
as a limit on the overall variation (with |Zk − µk|2+δ being
the (2 + δ)-th moment of Zk) of a set of random variables.

Now we present Proposition 4.2 and Proposition 4.3. The
Propositions provide theoretical support for our represen-
tation profiling and matching scheme to be introduced in
Section 4.2.

Proposition 4.2. The representations from linear operators (e.g.,
a pre-activation dense layer or a plain convolutional layer) in a
neural network converge in distribution to a normal distribution
if the layer’s weighted inputs satisfy the Lyapunov’s condition.

Proposition 4.3. The fused representations4 from non-linear
operators (e.g., a hidden layer of LSTM or a residual block of
ResNet) in a neural network converge in distribution to a normal
distribution if the layer’s output elements satisfy the Lyapunov’s
condition.

We base our proofs on the Lyapunov’s CLT which as-
sumes independence between the variables. The assumption
theoretically holds by using the Bayesian network concepts:
let X denote the layer’s input and Hk denote the k-th
component in its output. The inference through the layer
produces dependencies X → Hk for all k. According to the
Local Markov Property, we have Hi independent of any Hj

(j ̸= i) in the same layer given X . Also, the Lyapunov’s
condition is typically met when the model is properly
initialized and batch normalization is applied.

For brevity, we present the proof of Propositions 4.2
for fully-connected layers in this section. We extend the
results to convolutional layers in Appendix A.1. The proof
of Proposition 4.3 is provided in Appendix A.2.

Proof. Let Ω = {neu1, neu2, ..., neuq} denote a dense layer
(with q neurons) of any neural network model and Hk

denote the pre-activation output of neuk in Ω. We first
provide the theoretical proof to support the observation that
the distribution of Hk converges to normal distribution.

Let χ = Rv denote the input feature space (with v
features) and assume the feature Xi (which is a random
variable) follows some distribution ζi(µi, σ

2
i ) with finite

mean µi = E[Xi] and variance σ2
i = E[Xi − µi]. For each

neuron neuk, let Wk = [wk,1 wk,2 . . . wk,v] denote the neu-
ron’s weight vector, bk denote the bias, and Zk,i = Xiwk,i

denote the i-th weighted input. Let Hk denote the output of
neuk. During the forward propagation, we have:

Hk = XWT
k + bk

=
v∑

i=1

Xiwk,i + bk

=
v∑

i=1

Zk,i + bk. (2)

Apparently Zk,i is a random variable because Zk,i =
Xiwk,i (where the weights wk,i are constants during a
forward pass), thus Hk is also a random variable according
to Eq. (2).

4. Fused representations refer to the sum of elements in the original
representations produced by a single layer (channel-wise for a residual
block).

We first consider a special case where the inputs vari-
ables X1, X2, . . . , Xv follow a multivariate normal distri-
bution, in which case Proposition 4.2 automatically holds
due to the property of multivariate normal distribution that
every linear combination of the components of the random
vector (X1, X2, . . . , Xv)

T follows a normal distribution [46].
In other words, Hk = X1wk,1+X2wk,2+ . . .+Xvwk,v + bk
is a normally distributed variable since wk,i and bk (k =
1, 2, . . . , v) are constants in the forward propagation. A
special case for this condition is that X1, X2, . . . , Xv are
independent on each other and Xi follows a normal dis-
tribution N (µi, σ

2
i ) for all i = 1, 2, . . . , v. In this case, by the

definition of Zk,i, we have:

Zk,i = Xiwk,i ∼ N
(
wk,iµi, (wk,iσi)

2
)
, (3)

where Z1, Z2, . . . , Zv are independent of each other. Com-
bining Eqs. (2) and (3), we have:

Hk ∼ N
( v∑
i=1

wk,iµi + bk,
v∑

i=1

(wk,iσi)
2
)
, (4)

For more general cases where X1, X2, . . . , Xv are not
necessarily normally distributed, we assume the weighted
inputs Zk,i of the dense layer satisfy the Lyapunov’s condi-
tion (see definition 4.1). As a result, we have the following
results according to the Central Limit Theorem (CLT) [47]
considering that Xi follows ζi(µi, σ

2
i ):

1

sk

v∑
i=1

(
Zk,i − wk,iµi

) d−→ N (0, 1) (5)

where sk =
√∑v

i=1

(
wk,iσi

)2
and N (0, 1) denotes the

standard normal distribution. Equivalently, for every neuk

we have:

v∑
i=1

Zk,i
d−→ N (

v∑
i=1

wk,iµi, s
2
k) (6)

Combining Eqs. (2) and (6) we can derive that:

Hk
d−→ N (

v∑
i=1

wk,iµi + bk, s
2
k), (7)

which means that Hk(k = 1, 2, . . . , v) converges in distribu-
tion to a random variable that follows normal distribution,
which proves our Proposition 4.2 for fully-connected layers.

We extend the result to the cases of convolutional layers
and non-linear operators in Appendices A.1 and A.2.

Next, we discuss the proposed representation profiling
and matching scheme.

4.2 Distributional Profiling and Matching

Based on the normal distribution of representations, we
compress the data representations statistically into a con-
densed form called representation profiles. The profile pro-
duced by a θ-parameterized global model on a dataset D,
denoted by RP (θ,D), is a vector of distributions:

RP (θ,D) =
(
N (µ1, σ

2
1),N (µ2, σ

2
2), . . . ,N (µq, σ

2
q )
)
, (8)
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where q is the profile length determined by the dimension-
ality of the representations. For example, q is equal to the
number of kernels for channel-wise fused representations
from a convolutional layer. The tuple (µi, σ

2
i ) contains the

mean and the variance of the i-th representation element.
Local representation profiles are generated by clients and

sent to the server for comparison (the cost of transmission is
negligible considering each profile is only q×8 bytes). In this
paper we also consider a reference dataset DV as a small
group of task-specific samples without quality issue.5 Let
RP k denote the local profile from client k and RPV the ref-
erence profile generated over DV . The dissimilarity between
RP k and RPV , denoted by div(RP k, RPV ), is defined as
the expectation of KL divergence between representations
E[KL(N (k)

i ||N V
i )] which can be approximated by:

div(RP k, RPV ) =
1

q

q∑
i=1

KL(N (k)
i ||N

V
i ), (9)

where KL(·) denotes the Kullback–Leibler (KL) divergence.
An advantage of our profiling scheme is that a much sim-
plified KL divergence formula can be adopted because of
the normal distribution property (see [48, Appendix B] for
details), which yields:

KL(N (k)
i ||N

V
i ) =

1

2
log

( σV
i

σ
(k)
i

)2

+
(σ

(k)
i )2 − (σV

i )2

2(σV
i )2

+
(µ

(k)
i − µV

i )
2

2(σV
i )2

, (10)

Eq. (10) computes the KL divergence without calculat-
ing any integral, which is computationally cost-efficient.
Besides, the computation of profile dissimilarity can be per-
formed under the Homomorphic Encryption for minimum
knowledge disclosure (see Appendix C.2 for details).

Low-quality data (e.g., with strong noise) deviates from
the true marginal distribution ζi(µi, σ

2
i )(i = 1, 2, . . . , v) and

misleads the model to learn a different set of representations
(see Fig. 4 for example). Mathematically this is reflected
on N (k)

i (i = 1, 2, . . . , q) with shifted µ
(k)
i and σ

(k)
i , which

increases the KL divergence and profile dissimilarity.

5 THE TRAINING ALGORITHM FEDPROF

Our research aims to optimize the global model over a
group of clients (datasets) of disparate training value. Given
the client set U and the local datasets {Dk}k∈U , we for-
mulate the optimization problem in (11) where the coeffi-
cient ρk differentiates the importance of the local objective
function Fk(θ) and depends on the data in Dk. Our global
objective is in a sense similar to the Agnostic Learning
scenario [49] where a non-uniform mixture of local data
distributions is implied.

argmin
θ

F (θ) =
N∑

k=1

ρkFk(θ), (11)

where N = |U | and θ denotes the parameters of the global
model hθ ∈ H : χ → Y over the feature space χ and target

5. We assume DV on the server, but practically one or several local
datasets can also serve the purpose.

space Y . The coefficients {ρk}Nk=1 add up to 1. Fk(θ) is
client k’s local objective function of training based on the
loss function ℓ(·):

Fk(θ) =
1

|Dk|
∑

(xi,yi)∈Dk

ℓ(hθ(xi), yi), (12)

Consider a task-specific domain D defined by its feature
space χ and the marginal distribution P (X). Our propo-
sitions imply that the change in P (X) (by low-quality
samples) leads to the distributional shift of representations.
Hence, using RPV as a reference, the dissimilarity between
representation profiles is a strong indicator of local data
condition. With this motivation we score each client with λk

each round based on the representation profile dissimilarity:

λk = exp
(
− αk · div(RP k, RPV )

)
, (13)

where RP k and RPV are generated by an identical global
model; αk is the penalty factor deciding how biased the
strategy needs to be against client k. With αk = 0 for all k =
1, 2, . . . N , our strategy is equivalent to random sampling.

The scores connect the representation profiling and
matching scheme to the design of the selective client sam-
pling strategy adopted in our FL algorithm FEDPROF, which
is outlined in Algorithm 1. The key steps of our algorithm
are local representation profiling (line 10), reference rep-
resentation profiling (line 15) and client sampling (lines 7
and 8). More technical details of the proposed algorithm are
provided in Appendix C.1.

Algorithm 1 the FEDPROF algorithm

Input: max number of rounds Tmax, number of iterations
per round τ , sampling fraction C;

1: Initialize global model θ
2: Broadcast the same seed to all clients for an identical

initial model
3: Generate reference profile RPV

4: Collect initial profiles {RP k}k∈U from all clients
5: for round T ← 1 to Tmax do
6: Distribute θ to the clients
7: Update scores {λk}k∈U and compute Λ =

∑
k∈U λk

8: S ← sample K = N · C clients by probability
distribution {λk

Λ }k∈U

9: for client k in S in parallel do
10: RP k ← UPDATEPROFILE(k, θ, T − 1)
11: θk ← LOCALTRAINING(k, θ, τ )
12: end for
13: Collect local profiles from the clients in S
14: Update θ via model aggregation
15: Update RPV

16: Evaluate hθ

17: end for
18: return θ

The convergence rate of FL algorithms with opportunis-
tic client sampling has been extensively studied in the
literature [50], [4]. We first make the following assumptions
to facilitate the analysis:

Assumption 5.1. F1, F2, . . . , FN are L-smooth, i.e., for any
k ∈ U , x and y: Fk(y) ≤ Fk(x)+(y−x)T∇Fk(x)+

L
2 ∥y−x∥

2
2
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It is obvious that the global objective F is also L-
smooth as a linear combination of F1, F2, . . . , FN with
ρ1, ρ2, . . . , ρN being the weights.

Assumption 5.2. F1, F2, . . . , FN are µ-strongly convex, i.e.,
for all k ∈ U and any x, y: Fk(y) ≥ Fk(x) + (y −
x)T∇Fk(x) +

µ
2 ∥y − x∥22

Assumption 5.3. The variance of local stochastic gra-
dients on each device is bounded: For all k ∈ U ,
E∥∇Fk(θk(t), ξt,k)−∇Fk(θk(t))∥2 ≤ ϵ2

Assumption 5.4. The squared norm of local stochastic
gradients on each device is bounded: For all k ∈ U ,
E∥∇Fk(θk(t), ξt,k)∥2 ≤ G2

These assumptions are commonly adopted in the liter-
ature [51], [52], [50]. Inspired by these studies, we present
Theorem 5.5 to guarantee the global model’s convergence
for our algorithm. The notations and key lemmas are for-
mally presented in Appendix D.

Theorem 5.5. Using partial aggregation and our client sampling
strategy, the global model θ(t) converges in expectation given an
aggregation interval τ ≥ 1, a decreasing step size (learning rate)
ηt = 2

µ(t+γ) , and the condition that αkE[KL(N (k)
i ||N V

i )] =

−ln(Λρk):

E
[
F (θ(t))

]
− F ∗ ≤ L

(γ + t)

(2(B + C)
µ2

+
γ + 1

2
∆1

)
, (14)

where t ∈ TA = {nτ |n = 1, 2, . . .}, γ = max{ 8Lµ , τ} − 1,
B =

∑N
k=1 ρ

2
kϵ

2
k + 6LΓ + 8(τ − 1)2G2, C = 4

K τ2G2, Γ =

F ∗ −
∑N

k=1 ρkF
∗
k , ∆1 = E∥θ̄(1) − θ∗∥2, Λ =

∑N
k=1 λk, and

K = |S(t)| = N · C.

The proof of Theorem 5.5 is provided in Appendix D.
Computationally, local profiling is performed in the for-

ward pass of inference and, similar to Batch Normalization,
only incurs arithmetic computation for means and vari-
ances, which is not costly. The memory space for caching
representations depends on the data size and the number
of neurons (or channels), which can be flexibly configured
for memory efficiency. Once encoded, the distribution-based
profiles, as plain arrays, are ultra-light for transmission.

6 EXPERIMENTS

We conducted extensive experiments to evaluate FEDPROF
under various FL settings. Apart from FEDAVG [2] as the
baseline, we also reproduced several FL algorithms for
comparison. These include CFCFM [29], FEDAVG-RP [50],
FEDPROX [25], FEDADAM [27], AFL [53], and CLUSTERED
SAMPLING [54] (based on model similarity). We also drew
comparison to FEDBN [55] on the learning task that uses
batch normalization. For fair comparison, the algorithms are
grouped by their aggregation method (i.e., full aggregation
and partial aggregation) and configured based on the pa-
rameter settings suggested in their papers. Note that our
algorithm can adapt to both aggregation methods.

6.1 Experimental Setup
We built a discrete event-driven, simulation-based FL sys-
tem and implemented the training logic under the Pytorch

framework (Build 1.7.0). To evaluate the algorithms in dis-
parate FL scenarios, we set up three different tasks using
three public datasets: GasTurbine6, EMNIST7 and CIFAR-10,
which are commonly used in the literature [8], [28]. With
GasTurbine the goal is to learn a carbon monoxide (CO)
and nitrogen oxides (NOx) emission prediction model over
a network of 50 sensors. Using EMNIST and CIFAR-10 we
set up two image classification tasks with different models
(LeNet-5 [56] for EMNIST and ShuffleNet v2 [57] for CIFAR-
10). We experimented at various scale—500 mobile clients
for EMNIST and 10 dataholders for CIFAR-10—to emulate
cross-device and cross-silo scenarios [32] respectively. The
penalty factors α are set to (a, a, . . . , a) where a=10.0, 10.0
and 25.0 for GasTurbine, EMNIST and CIFAR-10, respec-
tively.

In all the tasks, data sharing is not allowed between
any parties and the data are non-IID across the clients. We
made local data statistically heterogeneous by forcing class
imbalance or size imbalance. Each client has a dominant
class that accounts for 60% (for EMNIST) or 37% (for CIFAR)
of the samples. For GasTurbine, the sizes of local datasets
follow the normal distribution N (514, 1012). We introduce
a diversity of noise into the local datasets to simulate the dis-
crepancy in data quality: for GasTurbine, 50% of the sensors
produce noisy data (including 10% polluted); for EMNIST
and CIFAR-10, a certain percentage of local datasets are
irrelevant images or low-quality images (blurred or affected
by salt-and-pepper noise). Aside from data heterogeneity,
all the clients are also heterogeneous in performance and
communication bandwidth. Considering the client popula-
tion and based on the scale of the training cohort suggested
by [32], the sampling fraction C is set to 0.2, 0.05 and 0.5
for the three tasks, respectively. We use part of the source
data as the reference set DV . More experimental settings are
detailed in Appendix B.2.

Time and energy costs are two key indicators in the
evaluation. Apart from the costs of local training and device-
server communication, for FEDPROF we additionally con-
sider the time and energy consumed in generating and
uploading profiles. The overhead of our solution boils down
to the size of representation profiles. Recall that the size of a
profile is independent of the volume and dimensionality of
the source data. As formulated in Section 4, each profile is
a plain array of distribution parameters which is ultra-light
for storage (for instance, 192 Bytes for ShuffleNetv2 in our
experiment) and thus incurs minimal traffic in transmission.
More details on cost formulation are provided in Appendix
B.3.

6.2 Empirical Results
We evaluated the performance of our FEDPROF algorithm
in terms of the efficacy (i.e., best accuracy achieved) and
efficiency (i.e., costs for convergence) in establishing a global
model for the three tasks. Tables 1, 2 and 3 report the
averaged results (including best accuracy achieved and
convergence costs given a preset accuracy goal) of multiple
runs with standard deviations. In Figs. 5 and 6 we plot the

6. http://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+
NOx+Emission+Data+Set

7. https://www.nist.gov/itl/products-and-services/emnist-dataset
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Fig. 5: The traces of the global model’s accuracy (full aggregation group).
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Fig. 6: The traces of the global model’s accuracy (partial aggregation group).

traces of the test accuracy of the global model for the full
and partial aggregation groups, respectively.

1) Convergence in different aggregation modes: Our results
show a great difference in convergence rate under different
aggregation modes. From Figs. 5 and 6, we observe that par-
tial aggregation facilitates faster convergence of the global
model than full aggregation, which is consistent with the
observations made by Li et al. [50]. The advantage is espe-
cially obvious on EMNIST where FEDAVG-RP requires <30
communication rounds to reach the 90% accuracy whilst
the standard FEDAVG needs 100+. On all three tasks, our
FEDPROF algorithm significantly improves the convergence
speed in both groups of comparison especially for the full
aggregation mode.

2) Best accuracy of the global model: Throughout the FL
training process, the global model was evaluated each round
on the server who kept track of the best accuracy achieved.
As shown in the 2nd column of Tables 1, 2 and 3, our FED-
PROF algorithm achieved up to 1.8%, 1.7% and 6.8% accu-
racy improvement over the baselines FEDAVG and FEDAVG-
RP on GasTurbine, EMNIST and CIFAR-10, respectively. We
observe a significant gap of accuracy on CIFAR-10 where
the federated model converged at 73.5% accuracy using
FEDPROF, whilst none of the baseline algorithms reached
over 68%. This implies that the training of deep models
such as ShuffleNet is more sensitive to the quality of data.
In table 3 we also notice that localized batch normalization
(FEDBN) cannot improve the convergence or accuracy of the
federated model.

3) Communication rounds for convergence: The number of
communication rounds required for reaching convergence

is a key efficiency indicator. On GasTurbine, our algorithm
took less than half the communication rounds required by
other algorithms in most cases. On EMNIST, our algorithm
reached 90% accuracy within 60 rounds whilst FEDAVG and
CFCFM needed more than 100 with full aggregation. CLUS-
TERED SAMPLING and AFL select clients based on model
similarities and loss feedback, respectively. They showed
competitive convergence speed (but lower accuracy) on
EMNIST but failed to reach the 60% accuracy mark on
CIFAR-10. A possible explanation is that neither of them
is consistently effective in assessing the informativeness of
data, which will misguide the model update to local optima.

4) Total time needed for convergence: The overall time con-
sumption is closely related to total communication rounds
needed for convergence and the time cost for each round.
Algorithms requiring more rounds to converge typically
take longer to reach the accuracy target except the case of
CFCFM, which priorities the clients that work faster. By
contrast, our algorithm accelerates convergence by address-
ing the heterogeneity of data and data quality, providing
a 2.1× speedup over FEDAVG on GasTurbine and 2.4×
speedup over FEDAVG-RP on CIFAR-10. Our strategy also
has a clear advantage over CFCFM, FEDADAM and AFL
for all three tasks, yielding a significant reduction (up to
65.7%) in the wall-clock time consumption until conver-
gence.

5) Energy costs to end devices: A main concern for the
end devices, as the participants of FL, is their power usage
(in training and communications). Full aggregation methods
experience slower convergence and thus endure higher en-
ergy cost on the devices. For example, with a small fraction
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TABLE 1: Summary of the evaluation results on GasTurbine. The best accuracy is achieved by running for long enough.
Other metrics are recorded upon the global model reaching the 0.8 accuracy mark. Standard deviations of multiple runs
are shown after the ± symbol.

GasTurbine (full aggregation)

Best accuracy For accuracy@0.8
Rounds needed Time (minutes) Energy (Wh)

FEDAVG 0.817±0.005 82±73 47.7±42.3 4.59±4.11
CFCFM 0.809±0.006 167±147 68.9±60.8 8.15±7.17

FEDPROF (ours) 0.832±0.005 38±23 22.3±13.7 2.15±1.29
GasTurbine (partial aggregation)

FEDAVG-RP 0.820±0.007 28±11 16.8±7.1 1.62±0.68
FEDPROX 0.829±0.003 35±19 20.3±11.4 1.78±0.98

FEDADAM 0.828±0.006 46±35 27.2±21.2 2.59±1.98
AFL 0.818±0.003 54±51 30.2±27.1 2.99±2.81

CLUSTEREDSAMPLING 0.826±0.004 58±28 34.5±18.4 3.29±1.62
FEDPROF (ours) 0.838±0.005 19±9 11.0±5.5 1.07±0.53

TABLE 2: Summary of the evaluation results on EMNIST. The best accuracy is achieved by running for long enough. Other
metrics are recorded upon the global model reaching the 0.9 accuracy mark. Standard deviations of multiple runs are
shown after the ± symbol.

EMNIST (full aggregation)

Best accuracy For accuracy@0.9
Rounds needed Time (minutes) Energy (Wh)

FEDAVG 0.923±0.004 103±13 115.8±16.2 15.83±2.04
CFCFM 0.918±0.008 136±42 46.2±14.5 15.02±4.59

FEDPROF (ours) 0.940±0.004 59±5 67.1±12.4 9.49±0.66
EMNIST (partial aggregation)

FEDAVG-RP 0.941±0.003 23±3 26.5±4.3 3.60±0.37
FEDPROX 0.941±0.005 23±3 27.7±6.8 3.69±0.70

FEDADAM 0.941±0.003 26±3 29.1±4.3 3.99±0.47
AFL 0.939±0.005 19±4 22.4±6.8 2.93±0.57

CLUSTEREDSAMPLING 0.947±0.003 15±3 17.7±5.6 2.31±0.48
FEDPROF (ours) 0.957±0.003 15±1 16.1±3.3 2.43±0.25

TABLE 3: Summary of the evaluation results on CIFAR-10. The best accuracy is achieved by running for long enough.
Other metrics are recorded upon the global model reaching the 0.6 accuracy mark. Standard deviations of multiple runs
are shown after the ± symbol.

CIFAR (full aggregation)

Best accuracy For accuracy@0.6
Rounds needed Time (minutes) Energy (Wh)

FEDAVG 0.665±0.011 38±10 91.4±26.3 93.52±17.14
CFCFM 0.638±0.008 32±5 74.0±8.7 79.90±15.18

FEDPROF (ours) 0.733±0.003 14±1 38.8±3.7 39.67±1.14
CIFAR (partial aggregation)

FEDAVG-RP 0.674±0.004 24±2 56.7±3.5 59.73±9.88
FEDADAM 0.669±0.014 28±2 68.5±4.9 68.96±5.10

AFL 0.599±0.007 - - -
CLUSTEREDSAMPLING 0.591±0.009 - - -

FEDBN 0.645±0.005 44±6 105.4±18.4 108.68±6.70
FEDPROF (ours) 0.735±0.007 9±1 23.5±1.29 24.54±1.11
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Fig. 7: The frequency that clients get sampled by the proposed algorithm throughout the training on GasTurbine and
EMNIST. For clarity, clients are indexed according to their local data quality.

Page 9 of 24 Transactions on Parallel and Distributed Systems



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, AUGUST 2022 10

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Round index

client 1 (R)

client 2 (B)

client 3 (B)

client 4 (P)

client 5 (P)

client 6 (N)

client 7 (N)

client 8 (N)

client 9 (N)

client 10 (N)

S
c
o

re

Client score distribution by round (FedProf)

0

0.112

0.138

0.024

0.018

0

0.075

0.019

0.024

0.018

0

0.003

0.002

0.02

0.018

0

0.003

0.002

0.02

0.02

0

0.001

0.002

0.02

0.02

0

0.001

0.002

0.02

0.02

0

0.001

0.002

0.02

0.02

0

0.001

0.002

0.02

0.021

0

0.001

0.002

0.02

0.022

0

0.001

0.002

0.02

0.022

0

0.001

0.002

0.02

0.021

0

0.001

0.002

0.02

0.022

0

0.001

0.002

0.024

0.021

0

0.001

0.002

0.024

0.022

0

0.001

0.002

0.024

0.022

0

0.001

0.002

0.026

0.022

1

0.895

0.994

0.916

0.997

0.999

0.878

0.988

0.875

1

1

0.869

0.987

0.872

0.998

1

0.867

0.989

0.87

0.996

1

0.864

0.988

0.863

0.989

1

0.881

0.999

0.87

0.99

1

0.875

0.992

0.866

0.987

1

0.868

0.993

0.861

0.991

0.999

0.887

1

0.87

0.991

0.999

0.885

1

0.865

0.995

0.998

0.895

1

0.866

0.994

0.994

0.888

1

0.873

0.996

0.988

0.896

1

0.878

0.991

0.993

0.887

1

0.871

0.994

0.995

0.89

1

0.874

0.995

0.997

0.9

1

0.881

0.997

0

0.2

0.4

0.6

0.8

1

Fig. 8: A heatmap illustrating the dynamic distribution of client scores, i.e., normalized λ, for FEDPROF on CIFAR-10. The
annotations ’R’, ’B’ or ’P’ indicate the possession of image data that are irrelevant, blurred or affected by pixel-level noises
whilst ’N’ means that of normal data. All the data are non-IID across the clients.

TABLE 4: Average time and device energy costs of generat-
ing and transmitting representation profiles for FedProf.

GasTurbine EMNIST CIFAR
Time cost/round (s) 0.134 1.340 17.735
Energy cost/round (Wh) 4.24e-5 6.74e-3 3.99e-1

(C=0.05) and a large scale (N=500) for the EMNIST task,
FEDAVG and CFCFM consumed over 15 Wh to reach the
target accuracy, in which case our algorithm reduced the
energy cost by over 37%. Under the CIFAR-10 FL setting
with partial aggregation, the reduction by our algorithm
reached 58.9% and 64.4%—saving over 35 Wh—as com-
pared to FEDAVG-RP and FEDADAM, respectively. In Table
4 we show the overhead of our solution which comes from
local profiling and the upload of profiles. This part of cost is
minimal when compared to that of FL.

6) Differentiated participation with FEDPROF: In figs. 7 and
8 we visualize the behavior of our sampling strategy. Fig.
7 shows how many times clients were selected under the
GasTurbine and EMNIST settings. We can observe that the
clients with polluted samples or noisy data were signifi-
cantly less involved in the regression task (GasTurbine). On
EMNIST, our algorithm also effectively limited (basically
excludes) the clients who hold image data of poor quality
(i.e., irrelevant or severely blurred), whereas the clients
with moderately noisy images were selected with reduced
frequency as compared to those with normal data. Fig. 8
reveals the distribution of client scores by round through-
out the training process on CIFAR-10. Our strategy effec-
tively avoided the low-value clients since the initial round,
demonstrating that our profiling and matching scheme can
provide strong evidence of local data’s quality and informa-
tiveness. A potential issue of having the preference towards
some of the devices is about fairness. Nonetheless, one can
apply our algorithm together with an incentive mechanism
(e.g., [58]) to address it.

7 CONCLUSION

Federated learning provides a privacy-preserving approach
to decentralized training but is vulnerable to the hetero-

geneity and uncertain quality of on-device data. In this
paper, we use a novel approach to address the issue without
violating the data locality restriction. We first provide key
insights into the distribution of data representations and
then develop a dynamic data representation profiling and
matching scheme, which provides a new view of data in the
representation space and allows for fast, secure information
exchange and comparison. Based on the scheme we propose
a selective FL algorithm that features adaptive sampling
based on profile dissimilarity. We have conducted extensive
experiments on public datasets under various FL settings.
Evaluation results show that our algorithm significantly im-
proves the efficiency of FL and the global model’s accuracy
whilst reducing the time and energy costs for the global
model to converge.

Our future study may involve extending our selective
strategy to work with client reputation management and
incentive mechanisms. An important direction is to consider
dynamic data scenarios where the size, quality and distribu-
tion of local data vary over time.
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APPENDIX A
PROOF OF PROPOSITIONS

A.1 Proof of Proposition 1
Without loss of generality, we provide the proof of Proposition 4.2 for the pre-activation representations from dense (fully-
connected) layers and standard convolutional layers, respectively. The results can be easily extended to other linear neural
operators.

For fully-connected (dense) layers, please refer to the proof provided in Section 4.

Convolutional layers

Proof. Standard convolution in CNNs is also a linear transformation of the input feature space and its main difference
from dense layers rests on the restricted size of receptive field. Without loss of generality, we analyze the representation
(output) of a single kernel. To facilitate our analysis for convolutional layers, let C denote the number of input channels
and K denote the kernel size. For ease of presentation, we define a receptive field mapping function Θ(k, i, j) that maps
the positions (k for channel index, i and j for indices on the same channel) of elements in the feature map (i.e., the
representations) to the input features. For the k-th kernel, let Wk denote its weight tensor (with Wk,c being the weight
matrix for channel c) and bk its bias.

Given the corresponding input patch XΘ(k,i,j), The element Hk,i,j of the representations from a convolutional layer can
be formulated as:

Hk,i,j =
C∑

c=1

K∑
i′=1

K∑
j′=1

(
XΘ(k,i,j) ◦Wk,c

)
i′,j′

+ bk, (15)

where ◦ denotes Hadamard product. The three summations reduce the results of element-wise product between the input
patch and the k-th kernel to the correspond representation element Hk,i,j in the feature map. For ease of presentation, here
we use the notation Z

(k)
c,i′,j′ to replace

(
XΘ(k,i,j) ◦Wk,c

)
i′,j′

and let ζ(µc,i′,j′ , σ
2
c,i′,j′) be the distribution that Z(k)

c,i′,j′ follows.

Note that ζ can be any distribution since we do not make any distributional assumption on Z
(k)
c,i′,j′ .

With the notations, Eq. (15) can be rewritten in a similar form to Eq. (2):

Hk,i,j =
C∑

c=1

K∑
i′=1

K∑
j′=1

Z
(k)
c,i′,j′ + bk. (16)

We use the condition that the random variables Z(k)
c,i′,j′ satisfy the Lyapunov’s condition, i.e., there exists a δ such that

lim
C×K2→∞

1

s2+δ

C∑
c=1

K∑
i′=1

K∑
j′=1

E
[
|Z(k)

c,i′,j′ − µc,i′,j′ |2+δ
]
= 0, (17)

where s =
√∑C

c=1

∑K
i′=1

∑K
j′=1 σ

2
c,i′,j′ .

Then according to the Lyapunov CLT, the following holds:

Hk,i,j
d−→ N (

∑
c,i′,j′∈Θ(k,i,j)

µc,i′,j′ + bk,
∑

c,i′,j′∈Θ(k,i,j)

σ2
c,i′,j′), (18)

which proves our Proposition 4.2 for standard convolution layers.

A.2 Proof of Proposition 2
Without loss of generality, we prove Proposition 4.3 for the fused representations from the LSTM layer and the residual
block of ResNet models, respectively. The results can be easily extended to other non-linear neural operators.

LSTM

Proof. Long Short-Term Memory (LSTM) models are popular for extracting useful representations from sequence data for
tasks such as speech recognition and language modeling. Each LSTM layer contains multiple neural units. For the k-th
unit, it takes as input the current feature vector Xt = (Xt,1, Xt,2, . . .), hidden state vector Ht−1 and its cell state ct−1,k. The
outputs of the unit are its new hidden state ht,k and cell state ct,k. In this paper, we study the distribution of ht,k. Multiple
gates are adopted in an LSTM unit: by it,k, ft,k, gt,k and ot,k we denote the input gate, forget gate, cell gate and output
gate of the LSTM unit k at time step t. The update rules of these gates and the cell state are:

it,k = sigmoid(W(i)k[Ht−1, Xt] + b(i)k),

ft,k = sigmoid(W(f)k[Ht−1, Xt] + b(f)k),

gt,k = tanh(W(g)k[Ht−1, Xt] + b(g)k),

ot,k = sigmoid(W(o)k[Ht−1, Xt] + b(o)k),

ct,k = ft,k · ct−1,k + it,k · gt,k, (19)
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where the W(i)k, W(f)k, W(g)k and W(o)k are the weight parameters and b(i)k, b(f)k, b(g)k and b(o)k are the bias parameters
for the gates.

The output of the LSTM unit ht,k is calculated as the following:

ht,k = ot,k · tanh(ct,k). (20)

Using the final hidden states hT,k (with T being the length of the sequence) as the elements of the layer-wise
representation, we apply the following layer-wise fusion to further produce H over all the hT,k in a single LSTM layer:

H =
d∑

k=1

hT,k, (21)

where d is the dimension of the LSTM layer. Again, by ζ(µk, σ
2
k) we denote the distribution of hT,k (where the notation

T is dropped here since it is typically a fixed parameter). With {hT,k|k = 1, 2, . . . , d} satisfying the Lyapunov’s condition
and by Central Limit Theorem, H converges in distribution to the normal distribution:

H
d−→ N (

d∑
i=1

µk,
d∑

i=1

σ2
k), (22)

which proves the Proposition 4.3 for layer-wise fused representations from LSTM.

Residual blocks

Proof. Residual blocks are the basic units in the Residual neural network (ResNet) architecture [59]. A typical residual
block contains two convolutional layers with batch normalization (BN) and uses the ReLU activation function. The input
of the whole block is added to the output of the second convolution (after BN) through a skip connection before the final
activation. Since the convolution operators are the same as we formulate in the second part of Section A.1, here we use
the notation Ψ(X) to denote the sequential operations of convolution on X followed by BN, i.e., Ψ(X) ≜ BN(Conv(X)).
Again, we reuse the receptive field mapping Θ(k, i, j) as defined in Section A.1 to position the inputs of the residual block
corresponding to the element Zk,i,j in the output representation of the whole residual block.

Let X denote the input of the residual block and Zk,i,j denote an element in the output tensor of the whole residual
block. Then we have:

Zk,i,j = f
(
Xk,i,j +BN

(
Conv

(
f
(
BN(Conv(XΘ(k,i,j)))

))))
= f

(
Xk,i,j +Ψ

(
f(Ψ(XΘ(k,i,j)))

))
, (23)

where f is the activation function (ReLU).
We perform channel-wise fusion on the representation from the residual block to produce Hk for the k-th channel:

Hk =
dH∑
i=1

dW∑
j=1

Zk,i,j , (24)

where dH and dW are the dimensions of the feature map and k is the channel index.
Let ζ(µk,i,j , σ

2
k,i,j) denote the distribution that Zk,i,j follows. Then we apply the Lyapunov’s condition to the

representation elements layer-wise, i.e.,

lim
dW×dH→∞

1

s2+δ
k

dH∑
i=1

dW∑
j=1

E
[
|Zk,i,j − µk,i,j |2+δ

]
= 0, (25)

where sk =
√∑dH

i=1

∑dW

j=1 σ
2
k,i,j .

With the above condition satisfied, by CLT the distribution of Hk (the fused representation on channel k) converges to
the normal distribution:

Hk
d−→ N (

dH∑
i=1

dW∑
j=1

µk,i,j ,
dH∑
i=1

dW∑
j=1

σ2
k,i,j), (26)

which proves the Proposition 4.3 for channel-wise fused representations from any residual block.
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APPENDIX B
DETAILS OF THE EXPERIMENTS

B.1 Preliminary Experiments
(Preliminary experiment: the impact of data quality on the convergence of FL) We setup a simulation-based FL system based on
PyTorch (Build 1.7.0) to train a LeNet-5 model on MNIST for demonstration purpose. We set up 100 clients with a sampling
fraction of 0.3, i.e., cohort size=30. For local training, SGD with momentum is used as the local optimizer. We set the batch
size to 32 and learning rate to 0.01 with a decay of 0.99 per round. The global aggregation is performed every 5 epochs. In
the figure we trace the test accuracy of the global model.

We experimented under both IID (Identical and Independently Distributed) and non-IID data settings. More specifically,
we partitioned the MNIST dataset into 100 subsets in four different ways:

1) IID data (black curve in Fig. 1): all the data are noiseless and evenly distributed across the clients with identical
class distribution. This represents the best quality condition of local data.

2) Non-IID data (magenta curve in Fig. 1): by re-partitioning the data we force class imbalance for each local dataset. In
this case, each client has specific affinity to a particular class of samples, and in each local dataset the dominant class
accounts for >50% of the samples, which results in a strong class imbalance locally and statistically heterogeneity
globally.

3) Low-quality data (blue curve in Fig. 1): In this case we mix low-quality samples into local data by means of applying
the blurring filter and pixel noise to the source data or replacing them with task-irrelevant synthesized samples.
Low-quality data cover 65% of the clients—15% with irrelevant images, 25% with blurred images, and 25% with
images affected by ”salt and pepper” noise.

4) Non-IID and low-quality data (red curve in Fig. 1): all local datasets are non-IID (i.e., as in the biased case) while 65%
of them are filled with low-quality data (as in the noisy case). This represents the worst condition of data in our
preliminary experiments.

(Preliminary experiment: the distribution of representations) We also ran preliminary experiment to demonstrate the distribution
of representations learned during/after gradient-based training on MNIST (Fig. 4) and CIFAR-100 (Fig. 3). We adopt
the standard implementations of LeNet-5 (from PyTorch tutorial8) and ResNet-18 (from Github repository9) and use the
default data sources and data loaders in PyTorch. For representation extraction and profiling, we define a structured tensor
(initialized with the model) that caches the representations in the forward pass.

We also empirically found that small-scale datasets can also exhibit normal distribution patterns in the representation
space using a simple model as the encoder (similar to the role of the global model in FL). Fig. 9 shows the data
representations from the two hidden layers of a feed-forward network model after training (till convergence) on the
Boston Housing dataset10. Boston Housing is a textbook dataset for regression modeling. The dataset features 14 attributes
(avg. rooms per dwelling, crime rate, etc.) and we use the median of house price in the corresponding area as the prediction
target. The dataset is small containing only 506 samples. From Fig. 9 one can observe clear patterns of normal distribution
over the neurons’ output. It is worth noticing that the raw data is not normally distributed (dimension-wise), as visualized
in Fig. 10.

Moreover, Fig. 9 also exhibits the distributional distances between the representations from the training set (in blue) and
those from the test set (in orange), which in a sense supports our hypothesis that the difference of raw data distribution
can be examined in the representation space.

B.2 Evaluation Setup
Our evaluation environment is a simulation-based, discrete event-driven system built using Python 3.7 and PyTorch (Build:
1.7.0) on a dual-core (CPU model: Intel i5-8500) physical machine equipped with Nvidia GeForce GTX 1050Ti graphics
card. The client-side local training logic was implemented under the PyTorch framework with CUDA (version: 11.1)
support. Experimental statistics were collected through event processing. End devices were initialized with heterogeneous
performance specifications and heterogeneous local datasets. A star topology was established for this system. The client–
server communication was implemented via in-memory tensor exchange. The server maintains a simulated wall clock and
uses the equations provided in Section B.3 to calculate all the consumptions.

Detailed experimental settings are listed in Table 5. For GasTurbine, the total population is 50 and the data collected by
a proportion of the sensors (i.e., end devices of this task) are of low-quality: 10% of the sensors are polluted (with features
taking invalid values) and 40% of them produce noisy data. For EMNIST, we set up a relatively large population (500 end
devices) and spread the data (from the digits subset) across the devices with strong class imbalance—roughly 60% of the
samples on each device fall into the same class. Besides, many local datasets are of low-quality: the images on 15% of the
clients are irrelevant (valueless for the training of this task), 20% are (Gaussian) blurred, and 25% are affected by the salt-
and-pepper noise (random black and white dots on the image, density=0.3). For CIFAR-10, same types of noise are applied

8. https://pytorch.org/tutorials/beginner/blitz/neural networks tutorial.html
9. https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/resnet.py
10. https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html
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Fig. 9: An example of training a two-layer FNN (each layer corresponding to one row in the figure) on the Boston Housing
dataset till convergence. Depicted here are representations (blue for the training set, orange for the test set) extracted from
the model’s hidden layers in the form of density histograms.
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Fig. 10: The dimension-wise distribution of the raw features in the Boston Housing dataset. Most of them display long-tail
patterns before being encoded into the representation space.

but with lower percentages (10%, 20% and 20%) of clients affected. The class imbalance degree in local data distribution
for the 10 clients is set to 37%, i.e., each local dataset is dominated by a single class that accounts for approximately 37% of
the total size.

A sufficiently long running time is guarantee for all the three FL tasks. The maximum number of rounds Tmax is set
to 500 for the GasTurbine task. For EMNIST, Tmax is set to 240 for the full aggregation and 80 for partial aggregation
respectively considering their discrepancy in convergence speed. For CIFAR-10, Tmax is set to 150 for the full aggregation
and 120 for partial aggregation respectively, which are adequate for the global model to converge in our settings.

B.3 Details of Cost Formulation

In each FL round, the server selects a fraction (i.e., C) of clients, distributes the global model to these clients and waits for
them to finish the local training and upload the models. Given a selected set of clients S, the time cost and energy cost of a
communication round are:

Tround = max
k∈S
{T comm

k + T train
k + TRP

k }, (27)

Ek = Ecomm
k + Etrain

k + ERP
k . (28)
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TABLE 5: Experimental setup.

Setting Symbol Task 1 Task 2 Task 3
Model hθ MLP LeNet-5 ShuffleNet v2
Dataset D GasTurbine EMNIST digits CIFAR-10
Total data size |D| 36.7k 280k 60k
reference set size |DV | 11.0k 40k 10k
Client population N 50 500 10
Data distribution - N (514, 1012) non-IID, dominant≈60% non-IID, dominant>30%
Noise applied - pollution, Gaussian noise fake, blur, pixel fake, blur, pixel
Client specification (GHz) sk N (0.5, 0.12) N (1.0, 0.22) N (3.0, 0.42)
Comm. bandwidth (MHz) bwk N (0.7, 0.12) N (1.0, 0.32) N (2.0, 0.22)
Signal-to-noise ratio SNR 7 dB 10 dB 10 dB
Bits per sample BPS 11*8*4 28*28*1*8 32*32*3*8
Cycles per bit CPB 300 400 400
# of local epochs E 2 5 6
Batch size - 8, 32 32, 128 16, 32
Loss function ℓ MSE NLL CE
Learning rate η 5e-3 5e-3 1e-2
learning rate decay - 0.994 0.99 0.999

where T comm
k and T train

k are the communication time and local training time, respectively. The device-side energy
consumption Ek mainly comes from model transmission (through wireless channels) and local processing (training),
corresponding to Ecomm

k and Etrain
k , respectively. TRP

k and ERP
k estimate the time and energy costs for generating and

uploading local profiles and only apply to FEDPROF.
The time cost for communication T comm

k can be modeled by Eq. (29) according to [60], where bwk is the downlink
bandwidth of device k (in MHz); SNR is the Signal-to-Noise Ratio of the communication channel, which is set to be
constant as in general the end devices are coordinated by the base stations for balanced SNR with the fairness-based
policies; msize is the size (in MB) of the (encrypted) model; the model upload time is twice as much as that for model
download since the uplink bandwidth is set to 50% of the downlink bandwidth.

T comm
k = Tupload

k + T download
k

= 2× T download
k + T download

k

= 3× msize

bwk · log(1 + SNR)
, (29)

The local training time T train
k is modeled in Eq. (30), where sk is the device performance (in GHz) and the numerator

computes the total number of processor cycles required for processing E epochs of local training on Dk.

T train
k =

E · |Dk| ·BPS · CPB

sk
, (30)

TRP
k consists of two parts: TRPgen

k for generating the profile of Dk (through a forward pass) and TRPup
k for uploading

the profile. TRP
k can be modeled as:

TRP
k = TRPgen

k + TRPup
k

=
1

E
T train
k +

RPsize
1
2bwk · log(1 + SNR)

, (31)

where TRPgen
k is estimated as the time cost of one epoch of local training; TRPup

k is computed in a similar way to the
calculation of T comm

k in Eq. (29) (where the uplink bandwidth is set as one half of the total bwk); RPsize is the size of a
profile, which is equal to 4× 2× q = 8× q (four bytes for each floating point number) according to our definition of profile
in Eq. (8).

Using Eq. (28) we model the energy cost of each end device by mainly considering the energy consumption of the
transmitters for communication (Eq. 32) and on-device computation for local training (Eq. 33). For FEDPROF, there is an
extra energy cost for generating and uploading profiles (Eq. 34).

Ecomm
k = Ptrans · T comm

k (32)

Etrain
k = Pfs

3
k · T train

k (33)

ERP
k = Ptrans · TRPup

k + Pfs
3
k · T

RPgen
k , (34)

where Pfs
3
k is a simplified computation power consumption model [61] and Pf is the power of a baseline processor.

Ptrans is the transmitter’s power. We set Ptrans and Pf to 0.75 W and 0.7 W respectively based on the benchmarking data
provided by [62] and [63].
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APPENDIX C
TECHNICAL DETAILS OF OUR SOLUTION

C.1 FedProf Workflow
Algorithm 2 presents a complete pseudo-code of the proposed training algorithm FEDPROF. Our algorithm needs to take a
few steps for initialization (lines 1 to 4). First, the server initializes the global model and broadcasts the same seed to all the
clients. This is to ensure an identical base point in the parameter space. Then, the server communicates with the clients to
gather their initial representation profiles. These local profiles are used to ”bootstrap” the algorithm for calculating profile
dissimilarity (line 9) and scoring clients (line 10) in the very first round.

Algorithm 2 the FEDPROF algorithm (detailed version)

Input: maximum number of rounds Tmax, local iterations per round τ , client set U , client fraction C, reference dataset DV

Output: the global model θ
/* Server process: running on the server */

1: Initialize global model θ using a seed
2: v ← 0 ▷ version of the latest global model
3: Broadcast the seed to all clients for identical model initialization
4: Collect initial profiles {RP k}k∈U from all the clients
5: vk ← 0, ∀k ∈ U
6: Generate initial reference profile RPV (0) on DV

7: K ← |U | · C
8: for round T ← 1 to Tmax do
9: Calculate div(RP k(vk), RPV (vk)) for each client k

10: Update client scores {λk}k∈U and compute Λ =
∑

k∈U λk

11: S ← Choose K clients by probability distribution {λk

Λ }k∈U

12: Distribute θ to the clients in S
13: for client k in S in parallel do
14: vk ← v, ∀k ∈ S
15: RP k(vk)← UPDATEPROFILE(k, θ, v)
16: θk ← LOCALTRAINING(k, θ, τ )
17: end for
18: Collect local profiles from the clients in S
19: Update θ via model aggregation
20: v ← T
21: Evaluate hθ and generate RPV (v)
22: end for
23: Return θ

/* Client process: running on client k */
24: procedure UPDATEPROFILE(k, θ, v) ▷ Update a local profile
25: Generate RP k on Dk with the global θ received
26: Label profile RP k with version number v
27: Return RP k

28: end procedure
29: procedure LOCALTRAINING(k, θ, τ ) ▷ Local model training
30: θk ← θ
31: for step i← 1 to τ do
32: Update θk using gradient-based method
33: end forReturn θk
34: end procedure

In practice, we tag the global model with a version number (line 2, Algorithm 2). This is because profiles need to be
compared in a consensus representation space whilst the global model, as the data encoder, is evolving throughout the
FL process. The data representation profiles are associated to the global model and thus change over the rounds. Thus
we tag every profile (including local and reference profiles) with the version number of the global model so that profile
comparisons are version-aligned.

As the key of our algorithm, the server needs to take four steps in the stage of client sampling:

1) Calculate {λk}k∈U according to Eq. (13) to score each client according to the dissimilarity between local profiles
and the reference profile.

2) Select n ·C clients using the weighted random sampling function with λk being client k’s weight. More specifically,
given the sampling fraction C (or cohort size N · C), we use a weighted random sampling method, e.g., the
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random.choices(U, weights, N*C) function provided by the Python Standard Library, to sample a subset S of
N · C participants from the client set U . We use λk as client k’s weight in the sampling.

3) Collect the updated local profiles from the clients in S. Only the selected clients are required to update and upload
local profiles in each round.

4) Update the reference profile RPV after global aggregation. If the reference dataset DV is kept by the server, then the
server is responsible for updating the reference profile. Otherwise the owner of DV updates the reference profile
upon receiving the global model from the server.

Fig. 11 illustrates the main workflow of the proposed algorithm.
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Fig. 11: The workflow of the proposed FEDPROF algorithm.

C.2 Profile Dissimilarity under Homomorphic Encryption
The proposed representation profiling scheme encodes the representations of data into a list of distribution parameters,
namely RP (θ,D) = {(µi, σ

2
i )|i = 1, 2, . . . , q} where q is the length of the profile. Theoretically, the information leakage

(in terms of the data in D) by exposing RP (θ,D) is very limited and it is basically impossible to reconstruct the samples
in D given RP (θ,D). Nonetheless, Homomorphic Encryption (HE) can be applied to the profiles (both locally and on the
server) so as to guarantee zero knowledge disclosure while still allowing profile matching under the encryption. In the
following we give details on how to encrypt a representation profile and compute profile dissimilarity under Homomorphic
Encryption (HE).

To calculate (9) and (10) under encryption, a client needs to encrypt (denoted as [[·]]) every single µi and σ2
i in its profile

RP k(θ,Dk) locally before upload whereas the server does the same for its RPV (θ,DV ). Therefore, according to Eq. (10)
we have:

[[KL(N (k)
i ||N

V
i )]] =

1

2
log[[(σV

i )2]]− 1

2
log[[(σ

(k)
i )2]]

+
[[(σ

(k)
i )2]]− [[(σ

(V )
i )2]] + ([[µ

(k)
i ]]− [[µV

i ]])
2

2[[(σV
i )2]]

, (35)

where the first two terms on the right-hand side require logarithm operation on the ciphertext. However, this may not
be very practical because most HE schemes are designed for basic arithmetic operations on the ciphertext. Thus we also
consider the situation where HE scheme at hand only provides additive and multiplicative homomorphisms [64]. In this case,
to avoid the logarithm operation, the client k needs to keep every σ2

i in RP k(θ,Dk) as plaintext and only encrypts µi,
likewise for the server. As a result, the KL divergence can be computed under encryption as:

[[KL(N (k)
i ||N

V
i )]] =

[[1
2
log(

σV
i

σ
(k)
i

)2 +
1

2
(
σ
(k)
i

σV
i

)2 − 1

2

]]
+

1

2(σV
i )2

([[µ
(k)
i ]]− [[µV

i ]])
2 (36)
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where the first term on the right-hand side is encrypted after calculation with plaintext values (σk
i )

2 and (σV )2 whereas
the second term requires multiple operations on the ciphertext values [[µk

i ]] and [[µV ]].
Now, in either case, we can compute profile dissimilarity under encryption by summing up all the KL divergence values

in ciphertext:

[[div(RP k, RPV )]] =
1

q

q∑
i=1

[[KL(N (k)
i ||N

V
i )]]

(37)

APPENDIX D
CONVERGENCE ANALYSIS

In this section we provide the proof of the proposed Theorem 5.5. The analysis is mainly based on the results provided in
[50]. We first introduce several notations to facilitate the analysis.

D.1 Notations
Let U (|U | = N ) denote the full set of clients and S(t) (|S(t)| = K) denote the set of clients selected for participating. By
θk(t) we denote the local model on client k at time step t. We define an auxiliary sequence vk(t) for each client to represent
the immediate local model after a local SGD update; vk(t) is updated from θk(t− 1) with learning rate ηt−1:

vk(t) = θk(t− 1)− ηt−1∇Fk(θk(t− 1), ξk,t−1), (38)

where ∇Fk(θk(t − 1), ξk,t−1) is the stochastic gradient computed over a batch of data ξk,t−1 drawn from Dk with regard
to θk(t− 1).

We also define two virtual sequences v̄(t) =
∑N

k=1 ρkvk(t) and θ̄(t) = Aggregate({vk(t)}k∈S(t)) for every time step t
(Note that the actual global model θ(t) is only updated at the aggregation steps TA = {τ, 2τ, 3τ, . . .}). Given an aggregation
interval τ ≥ 1, we provide the analysis for the partial aggregation rule that yields θ̄(t) as:

θ̄(t) =
1

K

∑
k∈S(t)

vk(t), (39)

where S(t) (|S(t)| = K) is the selected set of clients for the round ⌈ tτ ⌉ that contains step t. At the aggregation steps TA,
θ(t) is equal to θ̄(t), i.e., θ(t) = θ̄(t) if t ∈ TA.

To facilitate the analysis, we assume each client always performs model update (and synchronization) to produce vk(t)
and v̄(t) (but obviously it does not affect the resulting θ̄ and θ for k /∈ S(t)).

θk(t) =

{
vk(t), if t /∈ TA

θ̄(t), if t ∈ TA
(40)

For ease of presentation, we also define two virtual gradient sequences: ḡ(t) =
∑N

k=1 ρk∇Fk(θk(t)) and g(t) =∑N
k=1 ρk∇Fk(θk(t), ξk,t). Thus we have E[g(t)] = ḡ(t) and v̄(t) = θ̄(t− 1)− ηt−1g(t− 1).

D.2 Key Lemmas
To facilitate the proof of our main theorem, we first present several key lemmas.

Lemma D.1 (Result of one SGD step). Under Assumptions 5.1 and 5.2 and with ηt <
1
4L , for any t it holds true that

E∥v̄(t+ 1)− θ∗∥2 ≤ (1− ηtµ)E∥θ̄(t)− θ∗∥2 + η2tE∥gt − ḡt∥2 + 6Lη2tΓ + 2E
[ N∑
k=1

ρk∥θk(t)− θ̄(t)∥2
]
, (41)

where Γ = F ∗ −
∑N

k=1 ρkF
∗
k .

Lemma D.2 (Gradient variance bound). Under Assumption 5.3, one can derive that

E∥gt − ḡt∥2 ≤
N∑

k=1

ρ2kϵ
2
k. (42)

Lemma D.3 (Bounded divergence of θk(t)). Assume Assumption 5.4 holds and a non-increasing step size ηt s.t. ηt ≤ 2ηt+τ for
all t = 1, 2, . . ., it follows that

E
[ N∑
k=1

ρk∥θk(t)− θ̄(t)∥2
]
≤ 4η2t (τ − 1)2G2. (43)
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Lemmas D.1, D.2 and D.3 hold for both full and partial participation and are independent of the client sampling strategy.
We refer the readers to [50] for their proofs and focus our analysis on opportunistic sampling.

Considering the condition that αkE[KL(N (k)
i ||N V

i )] = −ln(Λρk) for k = 1, 2, . . . N , the next two lemmas give
important properties of the aggregated model θ̄ as a result of partial participation and non-uniform client sampling.

Lemma D.4 (Unbiased aggregation). For any aggregation step t ∈ TA and with αkE[KL(N (k)
i ||N V

i )] = −ln(Λρk) in the
selection of S(t), it follows that

ES(t)[θ̄(t)] = v̄(t). (44)

Proof. Recall that we sample clients based on their divergence-based scores (Eq. 13). By taking the expectation over S(t),
we have

ES(t)

∑
k∈S(t)

vk(t) = KES(t)[vk(t)]

= K
N∑

k=1

λk

Λ
vk(t)

= K
N∑

k=1

exp
(
− αk · E[KL(N (k)

i ||N V
i )]

)
Λ

vk(t)

= K
N∑

k=1

exp
(
ln(Λρk)

)
Λ

vk(t)

= K
N∑

k=1

ρkvk(t). (45)

Take the expectation of θ̄(t) over S(t) and notice that v̄(t) =
∑

k∈U ρkvk(t):

ES(t)[θ̄(t)] = ES(t)

[ 1
K

∑
k∈S(t)

vk(t)
]

=
1

K
ES(t)

[ ∑
k∈S(t)

vk(t)
]

=
1

K
KES(t)[vk(t)]

=
∑
k∈U

ρkvk(t)

= v̄(t).

Lemma D.5 (Bounded variance of θ̄(t)). For any aggregation step t ∈ TA and with a non-increasing step size ηt s.t. ηt ≤ 2ηt+τ−1,
it follows that

ES(t)∥θ̄(t)− v̄(t)∥2 ≤ 4

K
η2t−1τ

2G2. (46)

Proof. First, one can prove that our strategy yields vk(t) as an unbiased estimate of v̄(t) for any k:

ES(t)[vk(t)] =
N∑

k=1

exp
(
− αk · E[KL(N (k)

i ||N V
i )]

)
Λ

vk(t)

=
N∑

k=1

exp
(
ln(Λρk)

)
Λ

vk(t)

=
N∑

k=1

ρkvk(t)

= v̄(t). (47)
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Then by the aggregation rule θ̄(t) = 1
K

∑
k∈S(t) vk(t), we have:

ES(t)∥θ̄(t)− v̄(t)∥2 =
1

K2
ES(t)∥Kθ̄(t)−Kv̄(t)∥2

=
1

K2
ES(t)∥

∑
k∈S(t)

vk(t)−
K∑

k=1

v̄(t)∥2

=
1

K2
ES(t)∥

∑
k∈S(t)

(
vk(t)− v̄(t)

)
∥2

=
1

K2

(
ES(t)

∑
k∈S(t)

∥vk(t)− v̄(t)∥2

+ ES(t)

∑
i,j∈S(t),i̸=j

⟨vi(t)− v̄(t), vj(t)− v̄(t)⟩

︸ ︷︷ ︸
=0

)
, (48)

where the second term on the RHS of (48) equals zero because {vk(t)}k∈U are independent and unbiased (see Eq. 47).
Further, by noticing t− τ ∈ TA (because t ∈ TA) which implies that θk(t− τ) = θ̄(t− τ) since the last communication, we
have:

ES(t)∥θ̄(t)− v̄(t)∥2 =
1

K2
ES(t)

∑
k∈S(t)

∥vk(t)− v̄(t)∥2

=
1

K2
KES(t)∥vk(t)− v̄(t)∥2

=
1

K
ES(t)∥

(
vk(t)− θ̄(t− τ)

)
−

(
v̄(t)− θ̄(t− τ)

)
∥2

≤ 1

K
ES(t)∥vk(t)− θ̄(t− τ)∥2, (49)

where the last inequality results from E[vk(t) − θ̄(t − τ)] = v̄(t) − θ̄(t − τ) and that E∥X − EX∥2 ≤ τ∥X∥2. Further, we
have:

ES(t)∥θ̄(t)− v̄(t)∥2 ≤ 1

K
ES(t)∥vk(t)− θ̄(t− τ)∥2

=
1

K

N∑
k=1

1

Λ
exp

(
− αk · E[KL(N (k)

i ||N
V
i )]

)
ES(t)∥vk(t)− θ̄(t− τ)∥2

=
1

K

N∑
k=1

1

Λ
exp

(
− αk · E[KL(N (k)

i ||N
V
i )]

)
ES(t)∥

t−1∑
i=t−τ

ηi∇Fk(θk(i), ξk,i)∥2︸ ︷︷ ︸
Z1

. (50)

Let im = argmaxi ∥∇Fk

(
θk(i), ξk,i

)
∥, i ∈ [t − τ, t − 1]. By using the Cauchy-Schwarz inequality, Assumption 5.4 and

choosing a non-increasing ηt s.t. ηt ≤ 2ηt+τ−1, we have:

Z1 = ES(t)∥
t−1∑

i=t−τ

ηi∇Fk(θk(i), ξk,i)∥2

=
t−1∑

i=t−τ

t−1∑
j=t−τ

ES(t)⟨ηi∇Fk

(
θk(i), ξk,i

)
, ηj∇Fk

(
θk(j), ξk,j

)
⟩

≤
t−1∑

i=t−τ

t−1∑
j=t−τ

ES(t)

[
∥ηi∇Fk

(
θk(i), ξk,i

)
∥ · ∥ηj∇Fk

(
θk(j), ξk,j

)
∥
]

≤
t−1∑

i=t−τ

t−1∑
j=t−τ

ηiηj · ES(t)∥∇Fk

(
θk(im), ξk,im

)
∥2

≤
t−1∑

i=t−τ

t−1∑
j=t−τ

η2t−τ · ES(t)∥∇Fk

(
θk(im), ξk,im

)
∥2

≤ 4η2t−1τ
2G2. (51)
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Plug Z1 back into (50) and notice that
∑N

k=1
1
Λexp

(
− αk · E[KL(N (k)

i ||N V
i )]

)
= 1, we have:

ES(t)∥θ̄(t)− v̄(t)∥2 ≤ 1

K

N∑
k=1

1

Λ
exp

(
− αk · E[KL(N (k)

i ||N
V
i )]

)
4η2t−1τ

2G2

=
4

K
η2t−1τ

2G2.

D.3 Proof of Theorem 5.5
Proof. Taking expectation of ∥θ̄(t)− θ∗∥2, we have:

E∥θ̄(t)− θ∗∥2 = ES(t)∥θ̄(t)− v̄(t) + v̄(t)− θ∗∥2

= E∥θ̄(t)− v̄(t)∥2︸ ︷︷ ︸
A1

+E∥v̄(t)− θ∗∥2︸ ︷︷ ︸
A2

+2E⟨θ̄(t)− v̄(t), v̄(t)− θ∗⟩︸ ︷︷ ︸
A3

(52)

where A3 vanishes because θ̄(t) is an unbiased estimate of v̄(t) by first taking expectation over S(t) (Lemma D.4).
To bound A2 for t ∈ TA, we apply Lemma D.1:

A2 = E∥v̄(t)− θ∗∥2 ≤ (1− ηt−1µ)E∥θ̄(t− 1)− θ∗∥2 + η2t−1E∥gt−1 − ḡt−1∥2︸ ︷︷ ︸
B1

+ 6Lη2t−1Γ + E
[ N∑
k=1

ρk∥θk(t− 1)− θ̄(t− 1)∥2
]

︸ ︷︷ ︸
B2

. (53)

Then we use Lemmas D.2 and D.3 to bound B1 and B2 respectively, which yields:

A2 = E∥v̄(t)− θ∗∥2 ≤ (1− ηt−1µ)E∥θ̄(t− 1)− θ∗∥2 + η2t−1B, (54)

where B =
∑N

k=1 ρ
2
kϵ

2
k + 6LΓ + 8(τ − 1)2G2.

To bound A1, one can first take expectation over S(t) and apply Lemma D.5 where the upper bound actually eliminates
both sources of randomness. Thus, it follows that

A1 = E∥θ̄(t)− v̄(t)∥2 ≤ 4

K
η2t−1τ

2G2 (55)

Let C = 4
K τ2G2 and plug A1 and A2 back into (52):

E∥θ̄(t)− θ∗∥2 ≤ (1− ηt−1µ)E∥θ̄(t− 1)− θ∗∥2 + η2t−1(B + C). (56)

Equivalently, let ∆t = E∥θ̄(t)− θ∗∥2, then we have the following recurrence relation for any t ≥ 1:

∆t ≤ (1− ηt−1µ)∆t−1 + η2t−1(B + C). (57)

Next we prove by induction that ∆t ≤ ν
γ+t where ν = max

{
β2(B+C)
βµ−1 , (γ + 1)∆1

}
using an aggregation interval τ ≥ 1

and a diminishing step size ηt =
β

t+γ for some β > 1
µ and γ > 0 such that η1 ≤ min{ 1µ ,

1
4L} and ηt ≤ 2ηt+τ .

First, for t = 1 the conclusion holds that ∆1 ≤ ν
γ+1 given the conditions. Then by assuming it holds for some t, one can

derive from (57) that

∆t+1 ≤ (1− ηtµ)∆t + η2t (B + C)

≤
(
1− βµ

t+ γ

) ν

γ + t
+

( β

t+ γ

)2

(B + C)

=
t+ γ − 1

(t+ γ)2
ν +

[β2(B + C)
(t+ γ)2

− βµ− 1

(t+ γ)2
ν
]

︸ ︷︷ ︸
≥0

≤ t+ γ − 1

(t+ γ)2
ν

≤ t+ γ − 1

(t+ γ)2 − 1
ν

=
ν

t+ γ + 1
, (58)

which proves the conclusion ∆t ≤ ν
γ+t for any t ≥ 1.
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Then by the smoothness of the objective function F , it follows that

E[F (θ̄(t))]− F ∗ ≤ L

2
E∥θ̄(t)− θ∗∥2

=
L

2
∆t ≤

L

2

ν

γ + t
. (59)

Specifically, by choosing β = 2
µ (i.e., ηt = 2

µ(γ+t) ), γ = max{ 8Lµ , τ} − 1 , we have

ν = max
{β2(B + C)

βµ− 1
, (γ + 1)∆1

}
≤ β2(B + C)

βµ− 1
+ (γ + 1)∆1

=
4(B + C)

µ2
+ (γ + 1)∆1. (60)

By definition, we have θ(t) = θ̄(t) at the aggregation steps. Therefore, for t ∈ TA:

E[F (θ(t))]− F ∗ ≤ L

2

ν

γ + t

=
L

(γ + t)

(2(B + C)
µ2

+
γ + 1

2
∆1

)
.

Remark. Random sampling cannot guarantee the convergence of the global model in our setting. This boils down to the
mismatch between sampling weights (i.e., an uniform probability distribution for random sampling) and the importance of
local data distributions to the global objective. The latter relates to the quality of data and is theoretically non-uniform [49].
Using random sampling to generate S(t) in this case leads to a biased aggregation [50]. The expectation of the aggregated
model θ̄(t) is:

ES(t)θ̄(t) = ES(t)
1

K

∑
k∈S(t)

vk(t)

= K
1

K
ES(t)[vk(t)]

=
N∑

k=1

1

N
vk(t). (61)

Recall that the global deterministic aggregation v̄(t) =
∑N

k=1 ρkvk(t) and typically ρk ̸= 1/N . This means the
aggregated model deviates in expectation from the deterministic aggregation result v̄(t) for each aggregation step, i.e.,
ES(t)θ̄(t) ̸= v̄(t),∀t = τ, 2τ, . . .. In other words, the aggregated model is biased. Hence, Lemmas D.4 and D.5 do not
hold true in this random sampling case and thus in Eq. (52), terms A1 and A3 are unbounded because of the bias in
the aggregated model θ̄(t) introduced by random sampling. As a result, the convergence of the global model cannot be
guaranteed.
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