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Abstract

In their youth, protoplanetary discs are expected to be massive and self-gravitating.

A characteristic feature of such discs are non-axisymmetric spiral structures. How-

ever recent observations of young protoplanetary discs with the Atacama Large

Millimeter/submillimeter Array (ALMA) have revealed that discs with large-scale

spiral structure in the mid-plane are rarely observed. Instead, axisymmetic discs

with ring & gap structures are more commonly observed. Using 3D smoothed par-

ticle hydrodynamic simulations, the aim of this thesis is to explore how additional

physical processes occurring in a gravitationally unstable protoplanetary disc can

explain this phenomenon.

The first process considered is planet-disc interactions. I first show the im-

portance of modelling the disc thermodynamics for studying the fate of planet mi-

gration. In contrast to previous work using a simpler cooling model, I show that

planets are able to slow their migration and survive in the gravitationally stable

inner regions of the disc. I then show that if the planet is sufficiently massive, the

spiral wakes of the planet can heat up the disc causing it to become gravitationally

stable, suppressing spiral structures due to gravitational instability.

The second process considered is warps. An idealised warp is used to isolate

the effect of the warp on the gravitational instabilities present in the disc. As with

planet-disc interactions, I show that the warp is able to heat up the disc rendering

it gravitational stable.

The results of this thesis provide a plausible explanation for why gravita-

tionally unstable discs are rarely seen – physical processes that are likely to occur

in these discs will alter its evolution from an unstable to a stable disc.
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1
Introduction

Accretion discs are ubiquitous in astronomy. At the smallest scale, they can be
found as rings around planets like Saturn. At the largest scale, they are found
around supermassive black holes. Somewhere between these massive scales lies the
subject of this thesis, protoplanetary discs around stars.

1.1 Formation of protoplanetary discs

The story of a protoplanetary disc begins in the early stages of star formation in a
molecular cloud made up of gas and small dust grains. As the cloud cools, a proto-
star begins to form as gravitational forces seeking to collapse the cloud eventually
overcomes thermal pressure preventing collapse. The initial cloud is neither homo-
geneous nor static. Hence, there is always some angular momentum present which
prevents the entire infalling cloud collapsing onto the protostar. As the protostar
accretes material, the rotation of the cloud increases due to conservation of angu-
lar momentum, preventing further infall onto the protostar. The gas loses energy
through collisions as it orbits, while maintaining its angular momentum. Since a
circular orbit is favoured for the lowest energy state, the infalling material adopts
a circular orbit (Pringle, 1981). The gas also has a range of angular momenta and
energy and so these orbits also occur at a range of radii from the central star. This
structure that forms around the protostar is a protoplanetary disc (see simulations
by Bate, 1998, 2011). The evolutionary phases of forming a planetary system from
a giant molecular cloud is illustrated in Figure 1.1. While a useful cartoon, it is
limited as stars do not form in isolation. They form in clusters where dynamic
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Figure 1.1: Cartoon of the evolution from a cloud to a disc to a planetary system.
Figure by Magnus Vilhelm Persson.

interactions influence disc evolution, e.g. Bate (2018), such that most stars form in
pairs called binaries.

Protoplanetary discs are typically classified by the shape of their infra-red
(IR) spectral energy distribution (SED) as originally proposed by Lada (1987) and
Adams et al. (1987) which categorised protoplanetary discs into three classes, I-
II-III respectively based on the slope of their SED. This classification scheme was
extended by Andre et al. (1993) to include Class 0 discs, the earliest evolutionary
phase of a protoplanetary disc. The four classes and their corresponding SEDs are
illustrated in Figure 1.2.

In the Class 0 phase, the disc is beginning to form and the protostar is still
collapsing with the emission being dominated by its envelope. The SED peaks in
the far IR or sub-mm without any flux measured in the near and mid IR due to
light being absorbed by circumstellar dust and re-emitted at longer wavelength.

Next, we enter Class I, the accretion phase of protostellar evolution. During
this phase, the envelope accretes onto the forming disc which is then in turn accreted
onto the star. The disc mass increases substantially and emission from both the star
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Figure 1.2: Cartoon of the SED associated at each stage of protoplanetary disc
formation. Figure by Magnus Vilhelm Persson.

and disc is detectable. The star heats up the inner regions of the disc which will emit
at a wavelength of ∼1µm. Most of this light will be absorbed by the now optically
thinner cloud and re-emitted at longer wavelengths. Hence, the SED peaks in the
mid or far-IR with a rising slope in the near-IR.

Most of the observed protoplanetary discs are in the Class II phase. The
envelope has now completely disappeared and the protostar, now classified as a T
Tauri or a Herbig Ae/Be star, continues to accrete material from the surrounding
protoplanetary disc. The SED now peaks in the near-IR, though excess IR emission
from the disc is still present, but it has declined from the Class I phase (Andrews
& Williams, 2005). Recent observations of substructures in Class I (eg. Segura-Cox
et al., 2020) and Class II discs (eg. Andrews et al., 2018; Long et al., 2018) strongly
implies that planet formation is connected to disc formation.

Although total disc masses are difficult to obtain, an insight to the mass
loss at each stage can be gained by comparing dust mass estimates. Using ALMA
Tychoniec et al. (2020) measured a median dust mass of 47M⊕ for a population
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of Class 0 discs in the Perseus star forming region. While for Class I, the mass
dropped to 12M⊕. However, these discs are still a lot more massive compared to
the more evolved Class II discs in the Lupus star forming region which has a median
dust mass of only 3M⊕ (Ansdell et al., 2016). The work in this thesis focuses on
the earlier phases of the disc’s evolution when they are still massive enough to be
gravitationally unstable.

The final phase (Class III) is when only remnants of the protoplanetary disc
is left in the form of solids, usually referred to as debris disc. There is little to none
of the gaseous disc left as most of it has been accreted onto the central star (see
review by Matthews et al., 2014). The SED peaks in the near-IR with little to no IR
excess due to the lack of disc material. However, discs do not necessarily evolve in a
steady evolutionary sequence as described above. Dynamical interactions can result
in Class III discs in the earliest stages of star formation (Kurosawa et al., 2004).

1.2 Observations of protoplanetary discs

The dust and gas dynamics in a protoplanetary disc provides valuable insight on
the observed structures and their origins.

1.2.1 Dust substructures

Assuming the composition of protoplanetary discs is similar to that of the Milky
Way, which has a dust-to-gas mass ratio of 1:100 (Bohlin et al., 1978), then it follows
that dust makes up only a tiny portion of the disc. Despite the disc mass — and
hence its evolution — being dominated by gas, the more readily observed dust is
used to reveal the processes occurring in protoplanetary discs. While all the work
in this thesis involves gas only simulations, connections to observations are made
by using the above dust-to-gas mass ratio, and by assuming the dust is perfectly
coupled to the gas. The latter assumption is valid as long as the Stokes number, the
ratio of the stopping time to the orbital timescale (Weidenschilling, 1977), is low.
This occurs when the gas mass is sufficiently high compared to the the dust size
(Kwok, 1975; Laibe & Price, 2012), which is the case for the massive discs in this
thesis. However, the grain size is still important for decoupling. Observations of
young discs such as HL Tau (ALMA Partnership et al., 2015; Dipierro et al., 2015)
already show evidence of decoupling from a mm-emitting dust disc with H/R . 0.01.

Figure 1.3 shows how different dust grain sizes distribute themselves in the
disc (see review by Testi et al., 2014). Observations of the dust in protoplanetary
discs either trace scattered light emitted by the host star, or the thermal continuum
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Figure 1.3: Illustration of dust dynamics and structure in a protoplanetary disc.
Various processes governing the dust dynamics is shown on the left. The distribution
of different grain sizes is shown on the right. The left edge of the horizontal bars
represent the highest angular resolution achieved by different instruments at the
typical distance (∼140pc) to a protoplanetary disc. Image from Testi et al. (2014).

emitted by the dust. Scattered light observations probe the upper layers of the
disc atmosphere, which is dominated by small µm-sized grains. Although the dust
thermal continuum covers wavelengths from 1µm to cm, at short wavelengths the
stellar radiation is absorbed by the dust. Therefore, it traces the upper layers and
is a temperature diagnostic. The density structure is revealed by observations of
the dust continuum at sub-mm or mm wavelengths where the disc is expected to be
optically thin, since optical depth decreases with wavelength. At these wavelengths,
the observations trace the larger grains which are well-settled (Weidenschilling, 1980;
Nakagawa et al., 1981) and probe the disc mid-plane, where planet formation is
thought to occur.

Rings & gaps

One of the more common type of substructures seen in observations of protoplan-
etary discs are axisymmetric rings & gaps. They are routinely observed in both
the mm continuum and scattered light as shown by a collection of discs in Figure
1.4. Even amongst just these subset of discs, their morphology is varied. The rings
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Ring/Cavity

Rings/Gaps

Arcs

Spirals

AS 209 HL Tau V1094 Sco DL Tau HD 169142 RU Lup

GO Tau Elias 24 RX J1852.3-3700 RX J1615.3-3255 V4046 Sgr HD 163296

Figure 1.4: A collection of protoplanetary discs exhibiting ring & gap structure
(adapted from Andrews, 2020). AS 209 (Guzmán et al., 2018), HL Tau (ALMA
Partnership et al., 2015), V1094 Sco (van Terwisga et al., 2018), DL Tau (Long
et al., 2018), HD 169142 (Pérez et al., 2019), RU Lup (Andrews et al., 2018), GO
Tau (Long et al., 2018), Elias 24 (Andrews et al., 2018), RX J1852.3-3700 (Villenave
et al., 2019), RX J1615.3-3255 (Avenhaus et al., 2018), V4046 Sgr (Avenhaus et al.,
2018), and HD 163296 (Monnier et al., 2017).

can be narrow in some discs (eg. AS 209, Guzmán et al., 2018) or wide in others
(eg. GO Tau, Long et al., 2018). Likewise, the gaps appear deep and fully depleted
in some discs (eg. Elias 24, Andrews et al., 2018) or faint in others (eg. RU Lup,
Andrews et al., 2018).

There are a few mechanisms to explain the origin of the rings & gaps. As
planets must form in protoplanetary discs, they are a natural choice as a mecha-
nism which can alter the disc structure to form rings & gaps. Once a planet becomes
massive enough, it begins interacting with disc through the spiral waves generated
by the planet through constructive interference of waves launched at Lindblad reso-
nances (Ogilvie & Lubow, 2002). The exchange of angular momentum between the
planet and the disc results in disc material being repelled away from the planet’s
orbit, thus carving open a gap in the disc (Lin & Papaloizou, 1979, 1986). The width
and depth of the gap carved open by the planet depends on its mass, and the disc
properties (Kley & Nelson, 2012). The resulting pressure maxima produced outside
the gap can trap inwardly drifting solids resulting in bright rings (Rice et al., 2006;
Zhu et al., 2012b; Kanagawa et al., 2021). Planet-disc interactions are discussed
in more detail in §1.4. If the disc viscosity is low enough, multiple rings & gaps
can be formed by a single planet (Zhang et al., 2018; Miranda & Rafikov, 2019).
The migration of planets can also complicate the signatures of ring & gap structure
(Nazari et al., 2019; Meru et al., 2019). Alternatively, MHD turbulence has been
found to produce narrow rings & gaps (Dittrich et al., 2013; Suriano et al., 2019),
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as well as wider gaps (Flock et al., 2015). Concentric concentrations of magnetic
flux modify the gas dynamics by repelling gas from regions of peak magnetic stress
resulting in rings & gaps. Dust growth near condensation fronts or snowlines is yet
another mechanism which can explain the ring & gap structures (van der Marel
et al., 2018b; Zhang et al., 2015). However, by measuring the radii of the predicted
main freeze-out temperatures, no correlation was found between the location of dust
gaps and the snowlines (van der Marel et al., 2019).

Ring/Cavity

Figure 1.5 shows a collection of discs characterised by a primary ring around a
central cavity. These cavities tend to be completely or partially depleted, resulting
in a deficit in the infra-red SED emission (Espaillat et al., 2007; van der Marel et al.,
2016), and thus these discs are often considered to be transition discs (Espaillat et al.,
2014). Numerical simulations have shown outflows from MHD-driven winds (Suzuki
et al., 2016; Takahashi & Muto, 2018) or photoevaporative flows (Alexander et al.,
2014; Ercolano & Pascucci, 2017) are possible mechanisms for creating a cavity with
a ring exterior to it. Alternatively, as with rings & gaps, dynamical interactions with
planetary (Zhu et al., 2011) or stellar companions (HD 142527, Price et al., 2018b)
can deplete the inner regions of the disc. However, dynamical clearing (by planets
Zhu et al., 2011) is unable to explain the high mass accretion rates observed (Manara
et al., 2014).

Spirals

Figure 1.6 shows that large scale spiral structures are seen in both scattered light
and in the mm continuum, although far less frequently in the latter. Planets are,
as usual, a popular choice as an explanation for the spiral structures. Dong et al.
(2015a) and Zhu et al. (2015) have shown that a giant planet at large radii can
generate spiral arms interior and exterior to the planet’s orbit. The inner arms are
able to match the morphology of the spirals seen in observations.

If the disc is sufficiently massive and cold enough, the self-gravity of the gas
drives the evolution of the disc resulting in gravitational instabilities in the form
of large-scale spiral structures (Boss, 1997; Dong et al., 2015b; Meru et al., 2017;
Forgan et al., 2018b). These two mechanisms can be distinguished by the shape of
the spiral structures. Planet-induced spirals are expected to be asymmetric with
variable pitch angles (Bae & Zhu, 2018), whereas gravitational instability forms
symmetric spirals with a constant pitch angle (Forgan et al., 2018b). Contrast
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CIDA 9 Sz 91 SR 24 S HD 34282 IP TAU SR 21

RX J1604.3-2130 RX J1604.3-2130DM Tau DoAr 44 IRS 48 HD 142527

Figure 1.5: A collection of protoplanetary discs exhibiting a depleted cavity sur-
rounded by a ring (adapted from Andrews, 2020). CIDA 9 (Long et al., 2018), Sz
91 (Tsukagoshi et al., 2019), SR 24 S (Pinilla et al., 2017), HD 34282 (van der Plas
et al., 2017), IP Tau (Long et al., 2018), SR 21 (van der Marel et al., 2018a), RX
J1604.3-2130 (Pinilla et al., 2018a), DM Tau (Kudo et al. 2018), DoAr 44 (Pinilla
et al., 2018a), IRS 48 (Follette et al. 2015), HD 142527 (Avenhaus et al., 2014), and
RX J1604.3-2130 (Pinilla et al., 2018b).

curves can also be used to rule out giant planets at large radii as proposed for
MWC758 (Ren et al., 2018). The morphology of the spiral structures has been used
to propose gravitational instabilities as the origin of the spiral structures in Elias
2-27 (Paneque-Carreño et al., 2021).

Arcs

A few protoplanetary discs exhibit asymmetries either as a lone incomplete ring
around a central cavity or as an additional brightness asymmetry in ring & gap
structures as seen in Figure 1.7. A potential explanation are vortices resulting
from Rossby wave instabilities driven – once again – by a planet. At the edge of a
gap opened by a planet, material can pile up resulting in a localised over-density.
Eventually, the accumulation of gas triggers the Rossby wave instability (Lovelace
et al., 1999; Lyra et al., 2009). However, this model is not favoured by observations
(van der Marel et al., 2021; Garg et al., 2021). Instead, the preferred model is a
planetary or stellar companion creating a pressure maxima where grains concentrate
(Ragusa et al., 2017; Price et al., 2018b; Calcino et al., 2019; Ragusa et al., 2020,
2021).
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SAO 206462 MWC 758 HD 100453

Figure 1.6: A collection of discs featuring large-scale spiral structures (adapted from
Andrews, 2020). IM Lup, WaOph 6, Elias 2-27 (all from Huang et al., 2018b), SAO
206462 (Stolker et al., 2017), MWC 758 (Benisty et al., 2015), and HD 100453
(Benisty et al., 2017).

Shadows

Recent observations suggest that not all discs have coplanar geometry with respect to
their central star. The complex geometry is revealed by scattered light observations
where shadowing effects are visible as shown in Figure 1.8. The shadows cast either
appear as narrow lanes spanning a few degrees in azimuth (Avenhaus et al., 2014;
Benisty et al., 2017; Ginski et al., 2021), or as broad shadows spanning around half
the disc (Benisty et al., 2018). The shadowing effects are often associated with
misaligned or warped discs (Facchini et al., 2018). The narrow shadows are cast by
an inner disc that is strongly misaligned (and perhaps broken) relative to the outer
disc (Marino et al., 2015). Broad extended shadows are in general caused by small
misalignments or warps (Benisty et al., 2018). Planets or stellar companions on
misaligned orbits are a popular explanation for the misalignment of the inner and
outer disc (Larwood et al., 1996; Facchini et al., 2013; Nixon et al., 2013; Nealon
et al., 2018, 2020b; Ballabio et al., 2021). A recent observation highlighting this is
the triple star system GW Ori (Kraus et al., 2020). Alternatively, infalling material
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Figure 1.7: A collection of protoplanetary discs exhibiting extended aximuthal asym-
metries (adapted from Andrews, 2020). MWC 758 (Dong et al., 2018), SAO 206462
(Cazzoletti et al., 2018), HD 143006 (Pérez et al., 2018), HD 163296 (Isella et al.,
2018), V1247 Ori (Kraus et al., 2017), HD 142527 (Casassus et al., 2013).

with independent angular momentum is also a plausible mechanism which has been
seen in star forming simulations (Bate, 2018), and at late stages as in the Class II
disc SU Aur (Ginski et al., 2021).

1.2.2 Gas substructures

While the dust reveals a diverse variety of substructures with many possible origins,
we now turn to the gas. Although ∼ 99% of the disc mass is in gas, most of
it is molecular hydrogen which is unobservable due to it not having a permanent
dipole moment and not emitting efficiently over most of the disc volume. Instead,
observations rely on rarer molecules which have rotational transitions at sub-mm
wavelengths. As with different sized dust grains, different molecules trace different
parts of the disc. Optically thick isotopologues of molecules such as CO2, the second
most abundant molecule, trace the upper layers of the disc which underestimates
the disc mass (Bergin & Williams, 2017). Optically thin molecules such as 13C17O
probe the disc mid-plane and are a robust tracer of the disc mass if the abundance
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Figure 1.8: A collection of protoplanetary discs exhibiting shadowing effects. HD
142527 (Avenhaus et al., 2014), HD 100453 (Benisty et al., 2017), GG Tau, GW
Orionis, HD 143006 (Benisty et al., 2018), RX J1604.3-2130 (Pinilla et al., 2018b).

ratio relative to H2 is known (Booth et al., 2019; Booth & Ilee, 2020).
The gas emission lines also allow the disc kinematics to be measured (see

review by Pinte et al., 2022). The line-of-sight velocities are determined by calcu-
lating the frequency shift of a line due to the Doppler effect caused by the rotation
of the disc. Since material moving towards/away from the observer is blue/red-
shifted, the velocities at every region of the disc can be determined. Data cubes are
then produced composed of channel maps showing the disc emission at a specific
velocity (or frequency). Figure 1.9 illustrates how the molecular line emission can
be viewed. The individual channel maps are shown in the centre. Summing over
all the channel maps shows the overall morphology of the line emission (top right
of Fig 1.9). A velocity weighted summation of the channel maps reveals the overall
velocity structure of the disc (middle right of Fig 1.9).

In the absence of any processes altering the disc structure, the rotation of
the disc is expected to show a Keplerian (“butterfly”) pattern, i.e. opposite sides
of the disc at a specific velocity are symmetric and smooth (Horne & Marsh, 1986).
Any deviations from Keplerian rotation, as will be discussed below, can then be at-
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Figure 1.9: This figure shows the multiple ways to view a molecular data cube using
12CO J=2-1 ALMA observations of HD 163296 (Isella et al., 2016; Andrews et al.,
2018) as an example. From the individual channel maps at a given velocity shown
in the center of the figure, a single channel map can be extracted, the local line
profile can be obtained by integrated the flux from a given region, moment maps
can be computed by integrating along the velocity axis, and a global spectrum can
be obtained by spatially integrating over all the pixels. Image from Pinte et al.
(2022).

tributed to some of the processes that are the origin of the dust structures mentioned
in §1.2.1.

Kinks due to a planet

As mentioned earlier in §1.2.1, planets are often used to explain many of the observed
substructures. However, they are not a unique explanation, and often cannot be
distinguished from non-planet explanations based on the continuum data alone. If
the planet is massive enough it will generate spiral wakes perturbing the velocity
structure of the disc. The presence of the planet can then be detected in the gas
emission by localised deviations from the Keplerian rotation of the disc in specific
channel maps (Perez et al., 2015) as shown recently by Pinte et al. (2018b, 2019,
2020). These deviations are referred to as kinks.

An example of a kink due to a planet in HD 97048 is shown in Figure 1.10
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Figure 1.10: ALMA observations of 13CO in HD 97048 at velocity +0.96km/s from
the systemic velocity. The presence of a planet is inferred from kink which is marked
by a dotted circle. The location of the kink is coincident with the gap detected in
the continuum, strengthening the evidence of planet-disc interactions (Pinte et al.,
2019).

(Pinte et al., 2019). Here, both the continuum emission and channel maps showing
iso-velocity curves are visible. If the disc was perfectly Keplerian, then the butterfly
pattern of the channel maps would be symmetric and smooth. However in Fig 1.10,
only the left side of the disc shows a smooth iso-velocity curve. On the right side, a
kink is seen in the iso-velocity curve which lines up with the gap seen in the contin-
uum data. Since the kink is asymmetric and localised to a small region, alternative
mechanisms such as snowlines or zonal flows could be ruled out. The combined
signatures strengthen the evidence of planet-disc interactions being responsible for
ring & gap structure in HD 97048.
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Figure 1.11: Left – A simulation of a 0.25M� disc around a 1M� star where spirals
due to gravitational instability are clearly present. Right – The channel map at
systemic velocity showing the GI wiggle, the kinematic signature of gravitational
instability, which is present at all radii. Image adapted from Terry et al. (2022).

GI wiggles

A characteristic signature of massive discs are large scale spiral structures due to
gravitational instabilities. However, spiral structures can also be explained by plan-
ets and can appear morphologically similar (Dong et al., 2015a,b). While the pitch
angles of the spiral arms allow the two scenarios to be distinguished from each other,
it requires high spatial resolution, and can be made more difficult by deprojection
effects or low contrast ratios between spiral arms (Forgan et al., 2018b). The gas
kinematics offer another method to distinguish these two scenarios. Kinks due to
the planet follow the planet-induced spiral wake (Bollati et al., 2021; Calcino et al.,
2021; Verrios et al., 2022). However, spirals due to GI are global and continuously
perturb the disc velocity. Inside/outside the spiral arms the velocity relative to
average background velocity is increased/decreased. Hence, the emission is shifted
to an adjacent channel map with a larger/smaller velocity. This results in a zig-
zag pattern, or a GI wiggle, that is present at all azimuths and radii as shown in
Figure 1.11 (Hall et al., 2020). The global nature of the deviations from Keplerian
velocity reveals the presence of GI in a disc. Recently, the kinematics of Elias 2-27
have revealed large global deviations (Paneque-Carreño et al., 2021) hinting at the
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presence of GI consistent with previous theoretical predictions (Meru et al., 2017;
Forgan et al., 2018b; Hall et al., 2018).

1.2.3 Disc mass estimates

Accurate measurements of the disc mass is necessary in understanding both disc
evolution and planet formation. However, the estimates from observations are often
poorly constrained as the majority of the disc is composed of unobservable molecular
hydrogen. Hence, the disc mass can only be inferred indirectly based on the small
fraction of the disc that is observable.

A common method to infer the total mass is to measure the dust mass from
the integrated continuum emission which is more easily observable. Assuming the
continuum emission is from an optically thin, isothermal part of the disc, the first
measures of the disc mass, Mdisc was directly calculated from the flux density Fν

using (Beckwith et al., 1990; Andre & Montmerle, 1994)

Mdisc = d2Fν
κνBν(Tdust)

, (1.1)

where d, is the distance, κν is the opacity which assumes a dust-to-gas mass ratio,
Bν(Tdust) is the Planck function at a constant dust temperature, Tdust. The typical
dust-to-gas mass ratio used for this calculation is 0.01, which is the same as that
of the Milky Way (Bohlin et al., 1978). Furthermore, this often assumes the dust
distribution traces the gas, and does not take into account dust evolution. Hence,
the mass estimates remain uncertain due to the many assumptions that go into the
disc radius, dust-to-gas mass ratio, dust opacities, distribution of grain sizes, or local
over/under-densities (Testi et al., 2014; Andrews, 2015, and references therein).

While a more direct tracer is an option with hydrogen deuteride (HD), it has
only been detected in three protoplanetary discs (Bergin et al., 2013; McClure et al.,
2016). Although HD is an independent tracer of the gas mass, the vertical structure
of the disc influences the HD J = 1−0 flux, which leads to increasingly uncertain disc
mass for higher mass discs. This uncertainty can be decreased by complementary
observations of HD J = 2 − 1, which is less influenced by disc mass, and with
knowledge of the vertical structure (Trapman et al., 2017). An alternative is to use
carbon monoxide (CO) as a tracer for the disc mass. It’s the second most abundant
molecule, and its rotational transitions are bright at millimeter wavelengths. The
total mass is found by assuming a constant CO/H2 abundance ratio. However,
it’s not without its issues: CO and some of its more common isotopologues are
optically thick which can result in an underestimated disc mass (Bergin & Williams,
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Figure 1.12: The exoplanet population showing both detected exoplanets (grey dots)
and the planets inferred (blue markers) from disc substructures (encircled dots) and
kinematics (stars). Larger symbols represent the confirmed planets in protoplane-
tary discs: PDS 70b and PDS 70c, HD 97048b and HD 163296b. Image from Pinte
et al. (2022).

2017). Additionally, the abundance of CO and its isotopologues can be depleted by
freeze-out onto icy grains in the cold mid-plane (van Zadelhoff et al., 2001), and
photodissociation by far UV radiation in the upper parts of the disc (Reboussin
et al., 2015). These issues can result in large discrepancies of mass estimates from
CO. Using 13CO and C18O Ansdell et al. (2016) found gas masses to be low relative
to the dust mass, and from estimates using HD, indicating a large amount of CO
depletion has occurred. However, using the rarest stable CO isotopologue, 13C17O,
Booth et al. (2019); Booth & Ilee (2020) found disc masses to be much higher
compared to optically thicker CO isotopologues. By using N2H, a tracer of CO
poor gas, combined with C18O to measure the CO/H2 ratio, Trapman et al. (2022)
measured disc masses more in line with estimates from HD. In general, the disc
masses tend to be higher for more direct and robust tracers. However, disc masses
remain a major source of uncertainty.

1.3 Planet formation

If planets are assumed to be cause of the substructures observed in protoplanetary
discs, their masses can be estimated. Using a combination of simulations and an-
alytics Zhang et al. (2018); Lodato et al. (2019) obtained planet mass estimates
from analysis of gap widths and depths in the DSHARP discs (Andrews et al.,
2018). A majority of the planet masses were found to be in the giant planet regime,
i.e. around a Saturn mass or larger. Similarly, planet mass estimates in some of
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the DSHARP discs were also obtained from the analysis of the kinematics (Pinte
et al., 2020) which were found to be 4-10 times larger, i.e. Jupiter masses or larger.
Figure 1.12 shows the inferred planet mass from disc substructures and kinematics
compared to the detected exoplanets.

If the hypothesis of planets is correct, how they formed is vital for under-
standing the evolution of the disc, and the planet especially if they ultimately have
to evolve from the coloured dots to the grey dots in Figure 1.12. However, it is
also possible that the population of observed exoplanets are not the same as in-
ferred planets in protoplanetary discs. There are two main mechanisms for planet
formation: core accretion (Pollack et al., 1996); and gravitational instability (Boss,
1997).

1.3.1 Core accretion

The core accretion model describes a bottom up method of building giant planets. It
begins with small micron sized dust grains in the disc. By colliding, coalescing, and
growing larger, the small grains become planetesimals. Gravitational interactions
then produce a planetary embryo of a fraction of an Earth mass. The process of
building a giant planet can then be described in three phases (Pollack et al., 1996;
Alibert et al., 2005; Helled et al., 2014). In phase 1, the core is formed by accreting
planetesimals within a few Hill radii (the feeding zone) of the growing planet. The
accretion rate of solids during this phase is much higher than the gas accretion
rate. This phase ends when there are no more planetesimals available for the planet
to accrete. Once in phase 2, the mass increase is much slower due to the lack of
planetesimals. Instead the planet slowly gains mass by accreting gas in the envelope.
While gaining mass, the feeding zone of the planet also increases which allows it to
accrete further planetesimals. This phase ends when the mass of the accreted gas is
comparable to mass of the accreted planetesimals. At this point the escape velocity
of the gas around the core is large enough to prevent gas from escaping. Thus phase
3 begins with runaway gas accretion during which time the mass also increases
substantially.

Recent observations of protoplanetary discs pose a challenge to traditional
core accretion models. One issue is the timescale required to form giant planets,
which requires ∼106 − 108 years (Lissauer et al., 2009; Goldreich et al., 2004). As
giant planets are often used to explain the observed substructures, the formation
timescale is problematic as it exceeds protoplanetary disc lifetimes which is only
a few million years (Williams & Cieza, 2011; Kimura et al., 2016). There is an
increasing amount of evidence indicating that planet formation begins much earlier
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in the disc’s lifetime. Ring & gap structures have been found in Class I discs, such as
HL Tau (ALMA Partnership et al., 2015), which are still surrounded by an external
envelope. Simulations have suggested multiple giant planets as the cause of the
structures in HL Tau (Dipierro et al., 2015). Even discs that are less than half
a million years old reveal ring & gap structure (IRS 63, Segura-Cox et al., 2020).
Given the youth of these discs, and the masses and radial location of the proposed
planets, core accretion struggles to form these planets fast enough. This is referred
to as the timescale problem.

A second issue involves the growth of small dust grains to the kilometer sized
planetesimals which are the starting point in typical simulations of core accretion
(Helled et al., 2014). While dust grains can grow to millimeter sized grains by stick-
ing, it is less straightforward for the grains to continue to grow and form kilometer
sized planetesimals. This is due to the bouncing barrier. Once grains reach a cer-
tain size (which depend on the disc properties), they no longer stick to similar sized
grains. Instead they bounce off each other. Hence further growth becomes difficult
(Windmark et al., 2012). However, the large grains can still grow by sticking to
smaller grains.

A popular mechanism to bypass this barrier is the streaming instability
(Youdin & Goodman, 2005; Johansen & Youdin, 2007; Youdin & Johansen, 2007;
Simon et al., 2016) which is an instability of aerodynamically coupled system of gas
and dust particles. The instability arises from speed difference of gas and dust. As
gas is pressure supported against the radial component of stellar gravity, it will orbit
at sub-Keplerian velocities. However, the dust orbits at Keplerian velocity as it is
not pressure supported. A consequence of different velocities is the dust experiences
a headwind and loses angular momentum resulting in inward migration of the dust
(Adachi et al., 1976; Weidenschilling, 1977). Migration accelerates as dust grains
grow larger. However, if there are any density enhancements (dust clumps), back-
reaction from the particle onto the gas will result in the clumps migrating slower.
Dust further out will continue drifting inwards and eventually pile on top of the
clump, increasing its mass and further slowing its migration. This positive feed-
back can result in planetesimals growing quickly and is the basis of the streaming
instability.

1.3.2 Gravitational instability

When protoplanetary discs are massive enough the self-gravity of the disc plays a key
role in the disc’s evolution resulting in gravitational instabilities. A key difference
in relation to the core accretion model is that it does not require building a solid
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core bottom up from small grains. Instead, gravitational instabilities in the disc
can form clumps of gas and dust, which then contract and collapse to form giant
planets (Boss, 1997). Traditionally, gravitational instability has been primarily used
to explain the formation of giant planets, however recent work in MHD simulations
have shown that this model can also form intermediate mass planets, ranging from
Super-Earth to Neptune-sized planets (Deng et al., 2021). A major advantage over
core accretion is that it can form planets much more rapidly on dynamical timescales
(Gammie, 2001).

To analytically understand the conditions required for gravitational instabil-
ity, some assumptions must first be made. Any perturbations must be small enough
to be described by linear perturbation theory. The spiral density waves resulting
from these small perturbations must be tightly wound (the WKB approximation),
allowing the long-range effects of gravity to be negligible. Assuming an infinites-
imally thin disc, the dispersion relation D(ω, k,m), can be described by the wave
frequency ω, the azimuthal wavenumber m, and the radial wavenumber k = 2π/λ,

D(ω, k,m) = (mΩ− ω)2 − κ2
ep + 2πGΣ|k| − k2c2

s = 0 (1.2)

or
(mΩ− ω)2 = κ2

ep − 2πGΣ|k|+ k2c2
s (1.3)

where Ω is the angular velocity, κep is the epicyclic frequency, cs is the sound speed,
Σ is the surface mass density, and G is the gravitational constant. The middle term
on the right side of Eq. 1.3 is the destabilising gravitational forces, and the first
and last term are the stabilising rotational and pressure forces. For axisymmetric
disturbances m = 0, giving

ω2 = κ2
ep − 2πGΣ|k|+ k2c2

s. (1.4)

If ω2 > 0, the solution is real and the disc is stable. For an unstable disc, the most
unstable wavelength is when dω2/dk = 0. Hence, by directly differentiating, this is
when

|k| = πGΣ
c2
s

. (1.5)
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Substituting this back into Eq. 1.4 and requiring ω2 > 0 then gives

κ2
ep − k2c2

s > 0

κep > kcs

Q = κepcs
πGΣ > 1

(1.6)

where Q is known as Toomre stability parameter (Toomre, 1964). For a marginally
stable disc Q ≈ 1. For a Keplerian disc, κep = Ω and hence Q can be rewritten as

Q = csΩ
πGΣ (1.7)

where Ω =
√
GM/R3 is the orbital Keplerian frequency of the disc. The WKB

approximation is valid when the radial wavelength is much smaller than the radius
(|kR| � 1 or λ/R� 1). Typical protoplanetary discs are thin with aspect ratios of
H/R ≈ 0.1. The largest wavelength possible in a disc is λ = ζH, where the constant
ζ = O(1). Hence, the stability criterion is still valid for protoplanetary discs which
have a finite thickness, despite the derivation assuming a razor-thin disc.

This model requires two conditions to be fulfilled in order to work. First,
the self-gravity of the disc needs to be comparable to the gravitational effects of
the central star. The second condition is that the cooling timescale tcool must
be comparable to the orbital timescale Ω−1. A simple prescription satisfying this
condition is (Gammie, 2001),

tcool = βΩ−1, (1.8)

where β is of order unity. Cooling must be efficient enough for instabilities to be able
to further collapse into fragments. If cooling is too slow, increasing temperatures in
the instabilities provide strong enough pressures to prevent further collapse.

1.4 Planet-disc interactions

Planets being hypothesised as the origin of many of the substructures in §1.2.1
necessitates understanding how planets interact with disc. Any planet that forms
in a disc will result in the exchange of angular momentum between the disc and the
planet via the spiral wakes generated by the planet (Lin & Papaloizou 1979, also
see review by Kley & Nelson 2012). Exactly how the planet interacts with the disc
depends on both the planet and disc properties, and can be divided into several
regimes as outlined below (see review by Paardekooper et al., 2022).
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1.4.1 Type I migration

The regime of Type I migration is the realm of low mass planets in discs with larger
turbulent viscosities. For planetary sized objects the dominant source of torques
comes from gravitational interaction with the disc – the wave torque (Goldreich &
Tremaine, 1980; Artymowicz, 1993), and the corotation torque (Ward, 1991). Type
I migration is defined by an unsaturated corotation torque due to turbulent viscosity
(Masset, 2001). If the planet mass is not high enough or the disc viscosity is large,
then coorbital material lost by the disc to the planet is refilled by the disc viscosity,
i.e. the planet is unable to carve open a gap in the disc.

1.4.2 Type II migration

Type II migration is characterised by the ability of the planet to open up a gap. In
this regime, the disc viscosity is unable to replenish the coorbital material lost by the
disc to the planet. Traditional Type II migration assumed that the gap carved by the
planet was devoid of gas. Thus the planet migrates at the viscous evolution time of
the disc (Lin & Papaloizou, 1986). However, more recent hydrodynamic simulations
have shown that gas flowing across the gap is not negligible (Artymowicz & Lubow,
1996; Bryden et al., 1999; Kley, 1999; Lubow et al., 1999; Masset & Snellgrove,
2001). Additionally, gap-crossing flow has been shown to cause the planet to migrate
independently of disc accretion (Duffell et al., 2014; Dürmann & Kley, 2015, 2017).
Type II migration does not necessarily require a massive planet. If instead the disc
viscosity is sufficiently low (α < 10−4), even a Neptune mass planet can open up
a gap in a disc (Duffell & MacFadyen, 2013). An updated gap-opening criteria
(Kanagawa et al., 2018) can be derived by requiring the angular momentum flux
due to the spiral wakes of the planet to exceed the angular momentum flux of the
viscous accretion disc (see Duffell & MacFadyen, 2013; Kanagawa et al., 2015). A
planet is able to open up a gap if its mass ratio planet/star, q exceeds

q & 5h3/2
(

ν

r2
pΩp

)1/2

= 5h5/2α1/2, (1.9)

where h = H/R is the disc aspect ratio, ν = αcsH is the kinematic viscosity, and
rp is the planet’s radial location.

1.4.3 Type III migration

In the Type III regime, the flow of material in the coorbital region plays a dominant
role in the migration of the planet. As a planet migrates, an asymmetry can develop
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in the coorbital region between the leading and trailing side of the planet, resulting
in a non-cancellation of torques. This can lead to very rapid migration in either
direction depending on the gas flow near the planet (Masset & Papaloizou, 2003;
Pepliński et al., 2008a,b,c). The fate of the planet in this regime depends on whether
it’s on the slow or rapid Type III rate (both types are faster than Type I and II). If
it’s slow Type III, then once migration is slow enough that the planet can begin to
carve open a gap, it can transition to Type II. If it’s fast Type III, then the planet
migrates too quickly for it to be able to open up a gap.

1.4.4 In the context of GI discs

In their youth, discs can be massive enough that they become gravitationally un-
stable developing large scale spiral structures throughout the disc. Studies of planet
migration usually assume a GI-stable disc (Paardekooper et al., 2022, and references
therein), which tend to be smooth and axisymmetric. In contrast, the spiral struc-
tures due to gravitationally instabilities create a far more turbulent environment
where planets simply migrate rapidly inward (Baruteau et al., 2011; Malik et al.,
2015). Even giant Jupiter sized planets were unable to open up a gap.

The treatment of the thermodynamics changes how the disc evolves, and
hence how a planet migrates. In Baruteau et al. (2011) and Malik et al. (2015) the
thermodynamics was treated using a simple constant β model (see §2.2.5). This
resulted in a globally turbulent gravitationally unstable disc. However, with more
realistic thermodynamics, the inner regions of the disc remains gravitationally stable
and smooth. Stamatellos & Inutsuka (2018) found that the planets are able to slow
down and open up a gap in the inner regions of the disc after an initial phase of
rapid inward migration in the outer unstable parts of the disc. However, in those
simulations the planet accreted a significant amount of material growing to beyond
the brown dwarf limit. Thus, it’s unclear which had a bigger role in the planet’s
ability to open up a gap, the planet’s mass or the thermodynamics. This aspect is
investigated in detail in Chapter 3.

1.5 Warp theory

Simulations of gravitationally unstable protoplanetary discs are often done with a
disc around a single star isolated from the effects of its star forming environment.
Additionally, the angular momentum vectors of the star and disc are assumed to be
parallel. While this simplified approach allows for an easier analysis of the physics of
interest, it neglects the chaotic star forming environment which can alter the disc’s
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evolution.

1.5.1 Star forming environment

Contrary to the simplified picture presented earlier, observational and theoretical
studies strongly suggest that protoplanetary discs do not evolve in isolation (Lada &
Lada, 2003). From observations we see that a majority of stars are part of multi-star
systems (Fischer & Marcy, 1992; Frankowski et al., 2007; Raghavan et al., 2010; Luo
et al., 2022). These systems can either be formed by disc fragmentation (Adams
et al., 1989; Kratter et al., 2010a; Backus & Quinn, 2016) or from turbulent frag-
mentation (Bate, 2018). Disc fragmentation primarily results in close in multiples
(Tobin et al., 2016a; Ilee et al., 2018) at ∼100s of au in scale, while turbulent frag-
mentation initially produces multiples at wider separations, which can also migrate
in (Bate, 2018).

Theoretical studies have shown that if a companion is misaligned relative
to the orbital plane of the disc, the disc can become warped. The companion can
either be internal (Facchini et al., 2013) or external (Xiang-Gruess & Papaloizou,
2014). A disc is considered to be warped if it’s angular momentum vector varies with
radius. There are a few mechanisms that can result in warped discs which are more
relevant when discs are young, and hence more likely when they are gravitationally
unstable. Multiples formed at wide separation as a result of turbulent fragmentation
accrete gas where the net angular momentum vectors are in different directions. A
consequence of this is misaligned stellar spins and accretion discs (Bate, 2018; Offner
et al., 2022).

While discs are young enough to still be influenced by their star forming
environment, stellar encounters are also more prevalent (Vincke & Pfalzner, 2016;
Bate, 2018). The rate of encounters diminishes over time (Pfalzner, 2013). Recent
estimates indicate a Sun like star has roughly a 20% probability of encountering a
flyby within 3Myrs in star clusters of various densities (Winter et al., 2018). Flybys
can approach the disc from any direction and if misaligned relative to the disc, the
flyby provides a misaligned torque which warps the disc (Clarke & Pringle, 1993;
Nealon et al., 2020a).

In these early times, infalling material can also play a role in the disc’s
evolution (Bate, 2018; Sakai et al., 2019). If the angular momentum vector of
the infalling material is different to that of the disc, i.e. if it’s misaligned relative
to the disc, then interaction with the infalling material will result in the angular
momentum vector no longer being constant with radial location. Figure 1.13 from
Bate (2018) shows the outcome of a disc after it has interacted with both misaligned
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Figure 1.13: The formation of a strongly misaligned circumbinary disc due to the
chaotic star forming environment. Initially, the two protostars had their own circum-
stellar disc around them. After interacting with each other, a larger circumbinary
disc was formed. Later on, the disc captured cloud material with angular momen-
tum completely misaligned relative to binary resulting in a strongly misaligned disc
(Bate, 2018).

cloud material and a stellar companion. Initially the two protostars had their own
separate discs of around 0.1M� around them. After they encountered each other,
the product was a larger circumbinary disc. Later, the binary captured additional
cloud material with angular momentum completely misaligned relative to the binary.
This resulted in a strongly misaligned disc as shown in Fig 1.13.

1.5.2 Important timescales

In aligned discs there are a couple of important timescales. The first is the dynamical
timescale which is defined by

tdynamical = 1
Ω(R) , (1.10)

where Ω is the angular frequency at radius R. It is defined as the time taken for
material to complete an orbit. This is useful for understanding the timescale of
various physics such as the cooling timescale in self-gravitating discs in §2.2.5. The
second is the sound-crossing timescale which describes how long it takes for material
to communicate over distance R. It is defined using the sound speed cs as

ts = R

cs(R) . (1.11)

For warped discs an important timescale is how long it takes for a warp to be
damped. The timescale depends on whether it is in the diffusive or wave-like regime.
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Figure 1.14: A schematic view of a warped disc (Lodato & Pringle, 2007). The grey
boxes represent the pressure between neighbouring rings of gas. The arrows show
the direction of the radial pressure gradient induced by the warp. As gas orbits, it
will feel an oscillating pressure gradient that varies with the vertical height.

In gravitationally unstable discs, α can be larger thanH/R implying the warp propa-
gates diffusively. However, in the regions of interest α is comparable to H/R. Hence,
the warp is in the intermediate regime where the warp propagates diffusively in the
inner regions, and wave-like in the outer regions. Hence, as the outer gravitationally
unstable parts of the disc are the regions of interest in this thesis, the warp is con-
sidered to be in the wave-like regime (Martin et al., 2019). The damping timescale
is defined by the disc viscosity α, and is proportional to the orbital timescale,

tdamp ∼
1

αΩ(R) . (1.12)

With these timescales, we can understand how warps can affect the behaviour of
protoplanetary discs, as done in Chapter 6.

1.5.3 Warp propagation

To visualise how a warp propagates in a disc, consider Figure 1.14 from Lodato
& Pringle (2007) which shows a schematic view of a warped disc. The grey boxes
represent the pressure between neighbouring annuli of gas. At this moment in the
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orbit, adjacent rings of gas are strongly misaligned. As a result a radial pressure
gradient is induced by the warp which depends on the vertical height, as indicated
by the arrows. After the material completes another quarter of an orbit the neigh-
bouring annuli of gas will be almost aligned. Hence, the radial pressure gradient
induced by the warp will be weak. Thus, as material orbits in a warped disc, it
will feel an oscillating radial pressure gradient that depends on the amplitude of the
warp. This oscillating radial pressure gradient results in epicyclic motion in the gas
orbits, which in turn launches a wave that propagates the warp. Since the warps in
this thesis are located in the outer parts of the disc, they are considered to be in
the wavelike regime and so propagates through the disc as a wave which is damped
non-locally. However, as the warps are in the intermediate regime, the further in the
warp is located, the more they act in a diffusive manner where the warp is locally
damped.

1.6 Thesis focus

The focus of this thesis explores how the evolution of young, massive, gravitationally
unstable discs is influenced by physical processes occurring in the disc. Recent
continuum observations of protoplanetary discs (eg. Andrews et al., 2018) reveal that
large scale spiral structures are rarely seen. From these observations, one could fairly
say that discs in general may not be massive enough to be gravitationally unstable.
In this thesis, we instead explore whether evidence of gravitational instability can
be hidden. To investigate this question, two processes that are plausible when discs
are young are considered: planet-disc interactions; and warps.

Before the impact of planet-disc interactions on the structure of the disc
could be investigated, the fate of planet migration in a gravitationally unstable disc
had to be studied. In Chapter 3, I investigate whether planets can survive in a
gravitationally unstable disc if the disc thermodynamics is modelled in a way that
mimicked a realistic gravitationally unstable disc. The aim is to see whether the
gravitational stable inner disc was a region where the planet would be able to slow
its migration.

In Chapter 4, I introduce the concept of how a planet interacts with a gravi-
tationally unstable disc. Mock observations were made to study the resulting impli-
cations on the observability of evidence of gravitational instability. This is initially
shown for a single planet and disc mass, but is extended to a suite of simulations
in Chapter 5. By carrying out a grid of simulations with different planet and disc
masses, I explore when planet-disc interactions dominate the disc’s evolution over
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gravitational instability and vice-versa.
In Chapter 6, I explore how a warp alters the evolution of a gravitationally

unstable disc. As warps had not been previously considered in discs in this mass
regime, I start with a warp that was numerically introduced to isolate the impact
of the warp on the disc structure. As with planet-disc interactions, the aim is to
explore whether a warp could hide evidence of gravitational instability.

In Chapter 7, I describe how the results in this thesis could be further ex-
tended. Finally, I conclude the work in Chapter 8.
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2
Numerical Methods

Studies of hydrodynamic problems in astrophysics are investigated using numerical
simulations. There are two methods that are typically used to perform these simu-
lations: grid-based, and particle-based hydrodynamics codes. Grid-based codes use
an Eulerian grid which is generally fixed. In the Eulerian approach, individual fluid
particles are not followed. Instead the evolution of the fluid properties is considered
at all grid cells. In contrast, particle based codes use a Lagrangian approach that
follows individual particles of fixed mass which describe the fluid properties. Due
to their fundamental difference in how they solve the fluid equations, both methods
have their advantages and disadvantages depending on the specific problem at hand.

This thesis focuses on the evolution of gravitationally unstable protoplane-
tary discs where gravitational instabilities result in regions of high density contrasts.
While grid-based codes can use adaptive meshes or nested grids to resolve the high
density regions, particle-based codes by their nature have higher resolution in the
denser regions of the disc. Grid-based codes require all cells to have non-zero mass,
wasting computational time in low density regions where nothing of interest is oc-
curring. Whereas particle-based codes can save computational time in these regions
to instead focus on the high density areas. This thesis also features warped gravita-
tionally unstable protoplanetary discs where the complex geometry of the system is
naturally suited to particle-based codes as by its formulation, conservation of prop-
erties such as linear and total angular momentum is as accurate as time-stepping
methods allow and is independent of the disc orientation. Thus given the nature of
the problems studied in this thesis, I have used Phantom (Price et al., 2018a), a
smoothed particle hydrodynamics (SPH) code for the advantages it provides over



2.1. Smoothed Particle Hydrodynamics 29

grid-based codes.

2.1 Smoothed Particle Hydrodynamics

2.1.1 Representing a fluid with particles

SPH was originally independently developed by Lucy (1977) and Gingold & Mon-
aghan (1977) for simulations of astrophysical fluids (also see reviews by Monaghan,
1992, 2005). It is a Lagrangian particle method that solves the equations of hydro-
dynamics. Although SPH is a particle based method that computes fluid properties
at a particular point, the particles do not represent individual point masses. In-
stead, the concept behind SPH is that each particle represent a volume of fluid with
properties representative of the surrounding region.

There are two important concepts that determine how the properties of the
fluid is calculated. The first is the kernel W , which is a weighting function that
determines how much each neighbouring particle should contribute based on the
distance ra − rb, where ra and rb are the positions of particle a and b, respectively.
The second is the smoothing length h, which defines the length-scale over which
contribution of particles are weighted.

To illustrate these concepts, consider calculating the density of example par-
ticles in Figure 2.1. As we shall see, measuring the density at the location of a
particle is crucial to our calculations. The density is simply mass divided by vol-
ume, hence the relative positions and masses of the particles is used to determine the
local density. In Fig 2.1, assuming equal mass particles the more closely packed red
region represents an area of higher density compared to the loosely packed particles
in the blue region. The closer a neighbouring particle is to a particular particle, the
more influence it has on the calculations. Therefore a weighting function is required
so that the closest neighbours contribute the most while the further away particles
have little influence. This weighting is represented by the colour gradient in Fig
2.1. The size of the shaded regions represents the smoothing length. Bringing these
concepts together, the density ρ at the location of particle a can be calculated in
SPH form as

ρa =
∑
b

mbW (ra − rb, ha), (2.1)

where the subscript b refers to all the neighbour particles. A good choice of smooth-
ing length should ensure that the size of region being considered, over which the
fluid properties are calculated, must be
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Figure 2.1: A set of particles representing the density distribution of a fluid based on
Figure 1c of Price (2012). A high and low density region is indicated at the red and
blue particle respectively. The shaded regions shows the particles that contribute to
the density calculation and how the influence of each particle is considered. The size
of the shaded region represents the size of the region considered for the calculation
and is dependent on the smoothing length. The gradient represents the weighting
function which weights the particle according to their distance from the indicated
particle.

1. Smaller than the length-scale over which a variable evolves.

2. Large enough that the number of neighbours involved in the calculations rep-
resent a fluid.

3. Dynamic so that it can resolve both dense and sparse regions.

For the simulations in this thesis, the smoothing length is set as

ha = hfact

(
ma

ρa

)1/3
, (2.2)

where ma is the mass of the particle, and hfact = 1.2 is a dimensionless parameter
such that, for kernels extending to 2h, the average number of neighbours for any
particle is ∼ 60 (e.g. Price, 2012). The mass of the particle is derived from the
properties of the fluid being modelled, for equal mass particles this is the total
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physical mass divided by the number of particles. For equal mass particles, the
smoothing length is then dependent on the density. Thus, it’s evident that Eq 2.2
satisfies the criteria outlined above. A good choice for the kernel (hereafter referred
to as Wab(ha) ≡W (ra − rb, ha)) must satisfy the following criteria:

1. The kernel must be strictly positive, smoothly decrease towards zero with
increasing distance, and have smooth derivatives.

2. The kernel must not be influenced by the particle position. It must depend on
the distance between two particles rather than whether the kernel is calculated
on particle a or b. Thus a symmetric kernel is required, Wab = Wba.

3. At close distances, the gradient of the kernel must be shallow so that small
movements by the closest neighbours do not greatly change the density esti-
mate.

4. Conservation of mass requires the magnitude of the kernel function to be
normalised using ∫

V
Wab(ha)dV ′ = 1. (2.3)

A Gaussian kernel is a natural choice that satisfies all the above criteria. However,
it is impractical as even at very large distances the kernel will never exactly equal
zero. Hence, the density calculation becomes expensive as every particle will have
to be considered regardless of how little the furthest away particles contribute. A
more useful kernel is one that has a similar profile to a Gaussian, but truncated to
zero beyond a couple of smoothing lengths. The kernel is set as

Wab(ha) = Cnorm
hda

f(q) (2.4)

where the normalisation constant Cnorm depends on the number of dimensions d.
For three dimensions (as we will use in all our calculations), Cnorm = 1/π. The
parameter q is defined as

q ≡ |ra − rb|
ha

. (2.5)

The kernel function used for the simulations in this thesis is the M4 cubic spline
from the Schoenberg (1946) B-spline family given by

f(q) =


1− 3

2q
2 + 3

4q
3, 0 ≤ q < 1

1
4(2− q)3, 1 ≤ q < 2
0, q ≥ 2.

(2.6)
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By only considering particles within a couple of smoothing lengths, only the nearby
particles that influence the density the most are considered, decreasing the computa-
tional cost for this kernel to O(NneighboursN) compared to the O(N2) of a Gaussian
kernel.

2.1.2 General expressions in SPH

The calculation of the density and the concepts behind it in §2.1.1 are the core of
SPH since other fluid properties such as the pressure, energy, and velocity depend
on the density. However, the concept of smoothing can also be generalised for
any property. For a scalar variable A, the approximate value at position r can be
interpolated using

A(r) =
∫
V
A(r′) δ(r − r′) d3r′ (2.7)

where δ is the Dirac delta function and V is the volume of the region. The delta
function can be replaced by the kernel function,

A(r) =
∫
V
A(r′)W (r − r′, h) d3r′ +O(h2), (2.8)

if W → δ as h→ 0. This expression is accurate to second order for positive kernels,
where the last term is the error due to a finite kernel. For any finite density within
the volume element, the above equation is equivalent to

A(r) =
∫
V

A(r′)
ρ(r′) W (r − r′, h) ρ(r′)d3r′ +O(h2), (2.9)

which can be discretised to a set of particles of mass m = ρ(r′)d3r′ allowing the
scalar field to be calculated using

A(ra) ≈
N∑
b

mb
Ab
ρb
Wab(ha) (2.10)

where the summation is done for all b particles, and Ab = A(rb), mb, and ρb = ρ(rb)
are the scalar value, mass, and density of the bth particle at its position rb. In
this form, the only variable that depends on ra is the smoothing kernel. Thus, the
gradient of the scalar field is given by (Monaghan, 1992; Price, 2012)

∇A(ra) ≈
N∑
b

mb
Ab
ρb
∇Wab(ha). (2.11)



2.1. Smoothed Particle Hydrodynamics 33

The usefulness of the general form of eq. 2.10 is further emphasised by being easily
extended to vector quantities resulting in the following identities,

A(ra) ≈
N∑
b

mb
Ab

ρb
Wab(ha), (2.12)

∇ ·A(ra) ≈
N∑
b

mb
Ab

ρb
· ∇Wab(ha) (2.13)

Using Eq 2.1 and the generalised equations above, many of the other physical prop-
erties required to model a fluid can be calculated.

2.1.3 Equation of state

All simulations use an ideal gas equation of state,

P = (γ − 1)ρu (2.14)

which relates the pressure P , to the density and internal energy, u. Here γ = 5/3 is
the adiabatic index and the speed of sound, cs is given by

cs =
√
γP

ρ
. (2.15)

The internal energy can be related to the gas temperature, T using

P = ρkBT

µmH
, (2.16)

and hence,
T = µmH

kB
(γ − 1)u, (2.17)

where kB is the Boltzmann constant, µ is the mean molecular weight, and mH is
the mass of hydrogen.

2.1.4 Hydrodynamic equations

For simplicity, I shall first consider the equations of compressible hydrodynamics
for an inviscid fluid in the absence of any gravitational forces and external heating
or cooling. The smoothing lengths will be considered constant, and equal for all
particles which further simplify the equations. In Lagrangian form, the three main
equations that need to be solved for hydrodynamic simulations at their simplest are



2.1. Smoothed Particle Hydrodynamics 34

the continuity equation,
dρ
dt = −ρ(∇ · v), (2.18)

the momentum equation,
dv

dt = −∇P
ρ
, (2.19)

and the energy equation,
du
dt = −P

ρ
∇ · v. (2.20)

Starting with the continuity equation for a particular particle a,

dρa
dt = −ρa(∇ · v)a

= va · ∇ρa −∇a · (ρava),
(2.21)

which using the general identities in §2.1.2 gives the discretised version of the con-
tinuity equation as

dρa
dt = va ·

∑
b

mb∇aWab(h)−
∑
b

mb
(ρbvb)
ρb

· ∇aWab(h)

=
∑
b

mb(va − vb) · ∇aWab(h).
(2.22)

Similarly, the momentum equation for a particle a,

dva
dt = −(∇P )a

ρa
,

= −∇a
(
Pa
ρa

)
− Pa
ρ2
a

∇aρa
(2.23)

where the identity, ∇(ψ/φ) = (φ∇ψ − ψ∇φ)/φ2 was used. The above expression is
then similarly discretised as

dva
dt = −

∑
b

mb
Pb
ρ2
b

∇aWab(h)− Pa
ρ2
a

∑
b

mb∇aWab(h)

= −
∑
b

mb

(
Pa
ρ2
a

+ Pb
ρ2
b

)
∇aWab(h)

(2.24)



2.1. Smoothed Particle Hydrodynamics 35

Finally, using Eq 2.18 the energy equation for a particle a can be written as,

dua
dt = −Pa

ρa
(∇ · v)a

= Pa
ρ2
a

dρa
dt

(2.25)

and can be discretised into SPH form using Eq 2.21 as

dua
dt = −Pa

ρ2
a

∑
b

mb(va − vb) · ∇aWab(h). (2.26)

2.1.5 Errors and accuracy

The discretisation of the governing equations of SPH in §2.1.4 include errors arising
from the integral (Eq 2.9), and from incomplete sampling of the smoothing kernel.
While accurate to second order in h2, they are not the equations that would naturally
arise from kernel interpolation theory (Eq 2.10 – 2.13). The errors can be illustrated
by considering a constant scalar field f(r) = 1. For such a field, the gradient must
clearly be zero, ∇f(r) = 0. However, using the basic SPH approximation for the
gradient (Eq 2.11),

∇f(ra) = 0 ≈
N∑
b

mb
1
ρb
∇Wab(h). (2.27)

As there are no identities that result in the the right hand side of the above equation
to equal zero, it’s clear that using the basic gradient estimate directly results in
errors. However, using vector calculus identities, a better gradient estimate can be
found,

∇(1f(ra)) = 1∇f(ra) + f(ra)∇1 (2.28)

and hence
∇f(ra) = ∇(1f(ra))− f(ra)∇1. (2.29)

Since the SPH approximation for ∇1 6= 0, we can define a different estimate for
∇f(r) as

∇f(ra) =
∑
b

mb

ρb
f(rb)∇Wab(h)− f(ra)

∑
b

mb

ρb
∇Wab(h)

=
∑
b

mb
f(rb)− f(ra)

ρb
∇Wab(h),

(2.30)
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which has the advantage of being exactly zero for a constant f(r). More generally,
the improved gradient estimate comes in two forms,

∇A = 1
φ

[∇(φA)−A∇φ] ≈
∑
b

mb

ρb

φb
φa

(Ab −Aa)∇aWab, (2.31)

and

∇A = φ

[
A

φ2∇φ+∇
(
A

φ

)]
≈
∑
b

mb

ρb

(
φb
φa
Aa + φa

φb
Ab

)
∇aWab, (2.32)

where φ is any arbitrary, differential scalar field defined on the particles. Using
φ = 1, Eq 2.31 reduces to Eq 2.30, which is exact. Identities such as above can
be used to get the equations of SPH into more useful forms. For example, using
φ = ρ in the gradient estimate given by Eq 2.32 for (∇P )/ρ results in the momentum
equation (Eq 2.24). Although Eq 2.32 no longer vanishes for constant A, it does have
the advantage of being pairwise symmetric, ensuring conservation of momentum.
Similar expressions can be derived for the other vector derivatives.

2.1.6 Variable smoothing length

While a constant smoothing length is useful for deriving the equations of motion
in SPH form, it is not ideal for simulations with a large dynamic density range.
If the smoothing length was held constant such that the high density regions were
accurately modelled, the small smoothing length required would result in the low
density regions being poorly resolved with few particles within a couple of smoothing
lengths. Similarly, if the constant smoothing length was chosen to model low density
regions accurately, then the simulation becomes extremely expensive due to particles
in high density regions having extremely large number of neighbours. Hence, a
smoothing length for each individual particle that varies with density (Hernquist &
Katz, 1989; Benz, 1990), as in Eq 2.2, is a natural choice for more accurate modelling
of both high and low density regions as it ensures the number of neighbours for all
particles are roughly the same. However, the temporal and spatial gradients of the
smoothing length are no longer zero and cannot be ignored. Hence, the equations
in §2.1.4 must be written in a form that self-consistently accounts for the variation
in smoothing length, ensuring conservation of energy.
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Continuity equation

Taking the full time derivative for the density (Eq 2.1),

dρa
dt =

∑
b

mb
dWab(ha)

dt . (2.33)

In 3 dimensions, Wab(ha) = Cnorm f(q)/h3
a. Substituting into the above gives,

dρa
dt =

∑
b

mbCnorm

h3
a

df(q)
dt − f(q)dh3

a
dt

h6
a


=
∑
b

mb
Cnorm
h6
a

[
h3
a f
′(q)dq

dt − f(q)dh3
a

dρa
dρa
dt

]
.

(2.34)

Recalling that q = |rab|/ha, which gives

dq
dt =

ha
d|rab|

dt − |rab|
dha
dt

h2
a

= r̂ab · vab
ha

− q

ha

dha
dρa

dρa
dt ,

(2.35)

where vab ≡ va − vb. Substituting the above back into Eq 2.34 gives

dρa
dt =

∑
b

mb
Cnorm
h4
a

f ′(q) r̂ab · vab −
∑
b

mb
Cnorm
h6
a

[
f ′(q)h3

a

q

ha

dha
dρa

+ f(q)dh3
a

dρa

]
dρa
dt

=
∑
b

mb vab · ∇aWab(ha)−
∑
b

mb
Cnorm
h6
a

[
h2
a qf

′(q)dha
dρa

+ 3h2
a f(q)dha

dρa

] dρa
dt

=
∑
b

mb vab · ∇aWab(ha)−
∑
b

mb
Cnorm
h4
a

[
qf ′(q) + 3f(q)

] dha
dρa

dρa
dt

=
∑
b

mb vab · ∇aWab(ha) + dha
dρa

dρa
dt

∑
b

mb
∂Wab(ha)
∂ha

,

(2.36)

where the following identities have been used (Price, 2012)

∇aWab(ha) = Cnorm
h4
a

f ′(q) r̂ab, (2.37)

and
∂Wab(ha)
∂ha

= −Cnorm
h4
a

[
3f(q) + qf ′(q)

]
. (2.38)
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Finally, grouping like terms in Eq 2.36 gives the discretised form of the continuity
equation as

dρa
dt = 1

Ωa

∑
b

mbvab · ∇aWab(ha), (2.39)

where the Ωa is a convenient term for variable smoothing lengths relating to the
temporal gradient of the smoothing length, and is given by

Ωa = 1− dha
dρa

∑
b

mb
∂Wab(ha)
∂ha

= 1 + ha
3ρa

∑
b

mb
∂Wab(ha)
∂ha

,

(2.40)

using Eq 2.2 for dha/dρa. For a constant smoothing length Ωa = 1 giving the
standard expression for the continuity equation in Eq 2.21.

Momentum equation

The Lagrangian of a fluid, defined as the difference total kinetic energy and total
internal energy, is given by (Morrison, 1998)

L(r,v) =
∫
V

(1
2ρv · v − ρu(ρ, s)

)
d3r, (2.41)

which is discretised to a set of particles of mass m = ρ(r)d3r as

L(r,v) =
∑
b

mb

(1
2vb · vb − ub(ρb, sb)

)
. (2.42)

The momentum equation is derived from the equations of motion through the Euler-
Lagrange equations, written for particle a as

d
dt

(
∂L
∂va

)
− ∂L
∂ra

= 0 (2.43)

Now, all that is needed is to determine the derivatives as a function of the particle ve-
locity and position coordinates. The first term in Eq 2.43 is found by differentiating
the Lagrangian with respect to the velocity as

∂La
∂va

= ∂

∂va

∑
b

mb

(1
2vb · vb − ub(ρb, sb)

)
= mava,

(2.44)
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since u does not depend on the velocities and because the velocities are independent,
resulting in the differential becoming zero unless b = a. Similarly, the second term
in Eq 2.43 is given by

∂La
∂ra

= − ∂

∂ra

∑
b

mbub(ρb, sb)

= −
∑
b

mb
∂ub
∂ρb

∂ρb
∂ra

,

(2.45)

where the assumption of a dissipationless fluid means the entropy is constant, and
hence only the partial derivative with respect to the density is needed. From the
first law of thermodynamics we have,

dU = TdS − PdV, (2.46)

where, δQ ≡ TdS is the energy added to the system as heat (per unit volume),
and δW ≡ PdV is the work done by expansion and compression of the fluid. As
before, the volume is estimated as V = m/ρ, and thus the change in volume is
dV = −m/ρ2dρ. Dividing by mass gives Eq 2.46 in quantities per unit mass as

du = Tds+ P

ρ2 dρ. (2.47)

Hence, as entropy is constant, we have

∂ub
∂ρb

= P

ρ2 , (2.48)

giving
∂L
∂ra

= −
∑
b

mb
Pb
ρ2
b

∂ρb
∂ra

. (2.49)

From Eq 2.1, the gradient of the density at particle b with respect to the coordinates
of particle a is

∂ρb
∂ra

=
∑
c

mc
∂Wbc(hb)
∂ra

=
∑
c

mc

[
∂Wbc

∂rbc

∂rbc
∂ra

+ ∂Wbc(hb)
∂hb

∂hb
∂ra

]
,

(2.50)

where rbc = |rbc|, and using the fact that the kernel is spherically symmetric. Di-
rectly differentiating rbc with respect to ra is only non-zero when b or c is equal to
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a,
∂rbc
∂ra

= (δba − δca)r̂bc. (2.51)

Substituting this back into the previous equation gives

∂ρb
∂ra

=
∑
c

mc

[
∂Wbc(hb)
∂rbc

(δba − δca)r̂bc + ∂Wbc(hb)
∂hb

dhb
dρb

∂ρb
∂ra

]
=
∑
c

mc

[
∇bWbc(hb)(δba − δca) + ∂Wbc(hb)

∂hb

dhb
dρb

∂ρb
∂ra

]
.

(2.52)

Finally grouping like terms we find that

∂ρb
∂ra

= ∇aρb = 1
Ωb

∑
c

mc∇bWbc(hb)(δba − δca) (2.53)

where Ωb, the term for the spatial gradient of the smoothing length, is identical to
that for the temporal gradient. Now, Eq 2.49 can written as

∂L
∂ra

= −
∑
b

mb
Pb
ρ2
b

1
Ωb

∑
c

mc∇bWbc(hb)(δba − δca)

= −ma
Pa
ρ2
a

1
Ωa

∑
c

mc∇aWac(ha) +
∑
b

mb
Pb
ρ2
b

1
Ωb
ma∇bWba(hb)

= −ma

∑
b

mb

[
Pa
ρ2
aΩa
∇aWab(ha) + Pb

ρ2
bΩb
∇aWab(hb)

] (2.54)

where the final expression is obtained by changing the summation index of the first
term from c to b, and by noting that the gradient of the kernel is antisymmetric,
∇aWab = −∇bWba. Finally, substituting Eq 2.44 and 2.54 back into Eq 2.43, and
dividing by the common factor ma gives the discretised form of the momentum
equation as

dva
dt = −

∑
b

mb

[
Pa
ρ2
aΩa
∇aWab(ha) + Pb

ρ2
bΩb
∇aWab(hb)

]
. (2.55)

For a constant smoothing length ha = hb ≡ h the above expression reduces to Eq
2.24, since Ωa = Ωb = 1, and Wab(ha) = Wab(hb) ≡Wab(h).

Energy equation

All that is required to derive the energy equation 2.20 is the time derivative of the
density, which has already been derived in Eq 2.39. Thus, the discretised form of
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the energy equation accounting for a variable smoothing length is

dua
dt = Pa

ρ2
aΩa

∑
b

mbvab · ∇aWab(ha). (2.56)

Conservation properties

As shown above, the equations that govern SPH can be derived from just the den-
sity and the Lagrangian. The time, translational, and rotational invariance of the
Lagrangian gives conservation of total energy, total linear momentum, and total
angular momentum, respectively. Thus allowing the SPH algorithm to be fully
conservative in the absence of dissipation terms.

2.2 Phantom

We now turn to methods and implementations that are specific to our SPH code of
choice, Phantom. We choose Phantom because because it has been extensively
used for studies of protoplanetary discs (for e.g., but not limited to Lodato & Price,
2010; Price et al., 2018b; Hall et al., 2020; Nealon et al., 2020a; Terry et al., 2022),
and accretion discs in general.
In particular, Phantom has tried and tested methods for sink particles, external
torques, thermodynamics and time-stepping that are advantageous for our study.
We introduce each of these in turn. A more detailed introduction to Phantom can
be found in Price et al. (2018a).

2.2.1 Self-gravity

Self-gravity between particles can be be included with an additional acceleration
term in the equation of motion

aselfgrav = −∇Φ, (2.57)

which is done by solving Poisson’s equation,

∇2Φ = 4πGρ(r) (2.58)

where Φ is the gravitational potential and ρ represents a continuous fluid density.
Care must be taken when solving Eq 2.58 to prevent unphysically large accelerations
when particles get too close to each other. The problem arises due to SPH particles
representing interpolation points in a continuous density field rather than individual
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point masses. Thus, to avoid this issue gravitational softening is used for SPH
particles that are too close to each other. The proximity at which gravitational
softening is applied is defined later (see equations 2.66 and 2.67). The gravitational
potential with softening is given by Price & Monaghan (2007)

Φa = −G
∑
b

mb φ(|ra − rb|, εa), (2.59)

where φ is the gravitational softening kernel, and εa is the softening length, which
is typically set to the smoothing length. As the smoothing length is variable, an
average of the kernel has to be taken to satisfy energy conservation,

Φa = −G
∑
b

mb

[
φab(εa) + φab(εb)

2

]
. (2.60)

The gravitational softening kernel is related to the density kernel by

W (r, ε) = 1
4πr2

∂

∂r

(
r2∂φ

∂r

)
(2.61)

where r ≡ |r − r′|. Integrating Eq 2.61 once gives the gravitational force softening
kernel, φ′. Integrating a second time gives the gravitational potential softening
kernel, φ. The resulting additional term in the equations of motion due to self-
gravity can now be written as

aaselfgrav = −∇Φ

= −G
∑
b

mb

[
φ′ab(εa) + φ′ab(εb)

2

]
r̂ab

− G

2
∑
b

mb

[
ζa
Ωε
a

∇aWab(εa) + ζb
Ωε
b

∇aWab(εb)
]
,

(2.62)

where Ωε
a,b and ζa,b are correction terms required to satisfy energy conservation for

a variable smoothing length and are defined by

Ωε
a,b = 1− ∂εa

∂ρa

∑
c

mc
∂Wac(εa)
∂εa

(2.63)

and
ζa,b = ∂εa

∂ρa

∑
c

mc
∂φac(εa)
∂εa

. (2.64)
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In Phantom, the calculation of Eq 2.62 is split into ‘short-range’ and ‘long-range’
contributions,

aaselfgrav = aashort + aalong. (2.65)

Phantom uses a kd-tree to efficiently include self-gravity. The tree is built by
recursively splitting the particles at the centre of mass and bisecting the longest
axis at each level, grouping particles into cells. This process is repeated until every
cell contains less than Nmin = 10 particles, referred to as a ‘leaf node’ (see Price
et al., 2018a). The short-range acceleration is evaluated by direct summation of
Eq 2.62 for all particles in the leaf node n over the trial neighbour list obtained by
node-node pairs, n−m, which satisfy either the tree opening criteria,

θ2 <

(
sm
rnm

)2
, (2.66)

or if the smoothing spheres of the nodes intersect,

r2
nm < [sn + sm + max(Rkernh

n
max, Rkernh

m
max)]2, (2.67)

where rnm is the separation between the nodes, s is the node size which is the
smallest radius about the center of mass containing every particle in the node,
Rkern = 2 is the dimensionless cutoff radius of the smoothing kernel, and hmax is the
maximum smoothing length of the particles in the node. The node size is defined
as the minimum radius about the center of mass which contains all the particles.
For any particles pairs that are outside each other’s softening radius, gravitational
softening is unnecessary. In this case, the short range interaction reduces to

aashort = −G
∑
b

mb
ra − rb
|ra − rb|3

, (2.68)

avoiding unnecessary calculations of the softening kernel. If neither of Eq 2.66 or
2.67 is satisfied, the particles are considered to be distant from each other where
ζ = 0, while the first term in Eq 2.62 reduces to 1/r2.

2.2.2 Artificial viscosity

So far, the equations introduced that govern SPH do not include any dissipation
terms. In a real fluid, as particles approach a shock front discontinuities can arise in
the fluid properties (such as pressure, density, and energy) due to bulk kinetic energy
being instantaneously converted to heat. In numerical schemes, discontinuities are
problematic as the flow becomes multivalued. They are fundamentally unresolved
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as a discontinuity will always occur on a length-scale smaller than the resolution
length of the particles. Hence to accurately capture shocks in any numerical method
including SPH, artificial viscosity is essential to smooth shocks, allowing it to be
resolved and preventing multivalued flows. Additionally, artificial viscosity in SPH
can damp particle motion and prevent particle interpenetration. Artificial viscosity
introduces two more dissipative terms, Πshock and Λshock in the momentum and
energy equation respectively, to give a correct increase in entropy at the shock
front.

The artificial viscosity term qAV
a is defined using two artificial viscosity pa-

rameters αAV and βAV and is described as

qAV
a =

{
−1

2ρavsig, a vab · r̂ab, vab · r̂ab < 0,
0, vab · r̂ab ≥ 0,

(2.69)

where vsig, a is the signal velocity, the maximum velocity at which particles can
exchange information and is given by

vsig, a = αAV
a cs, a + βAV|vab · r̂ab|. (2.70)

In the early days of SPH, artificial viscosity was modelled using a fixed αAV ∼ 1 and
βAV = 2 (see review by Monaghan, 1992). Capturing shocks using a fixed artificial
viscosity is far from ideal as all shocks are treated equally regardless of their strength
leading to poor modelling of strong shocks, overdamping of convergent flows, or both.
To overcome this, Morris & Monaghan (1997) introduced a time dependent switch
based on the local convergence of the flow which evolved αAV according to

dαAV
a

dt = Sa −
αAV
a − αAV

min
τa

. (2.71)

Here, the first term is a source term

Sa = max(−∇ · va, 0) (2.72)

that increases αAV
a as the particle approaches a shock. The second term exponen-

tially decays αAV
a to αAV

min beyond the shock over the timescale τ ≡ h/(σdecayvsig),
with σdecay = 0.1. Typically, an αAV

min = 0.1 is used to correctly model shocks.
Compared to the fixed artificial viscosity approach, this method reduces αAV

a by
an order of magnitude to αAV

min away from shocks where it’s not needed, whilst still
modelling shocks properly. Despite the improvements of the Morris & Monaghan
(1997) method, a background αAV

min = 0.1 was still required to remove the ripples
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bedind the shock arising due to the switch on of αAV
a being slightly delayed with

respect to the shock front.
To eliminate artificial viscosity completely (αAV

a → 0) except within the
shocked regions, Cullen & Dehnen (2010) introduced a new shock indicator using
the time derivative of the velocity divergence, d(∇ · v)/dt ≡ ∇̇ · v. An advantage to
using ∇̇ · v as a shock indicator is that it distinguishes between pre- and post-shock
regions, as well as velocity discontinuities (shocks) from convergent flows, which is
evident from differentiating the continuity equation,

− ∇̇ · v = d2 ln ρ
dt2 . (2.73)

When ∇̇ · v < 0, it indicates density is increasing non-linearly and a steepening of
flow convergence, typical of pre-shock regions. Conversely, ∇̇ · v > 0 for the post-
shock regions. Thus, the shock indicator need only to consider the negative values
and takes an analogous form to Eq 2.72,

Aa = ξa max
[
− d

dt(∇ · va), 0
]

(2.74)

where
ξ = |∇ · v|2

|∇ · v|2 + |∇ × v|2
(2.75)

is a modified version of the Balsara (1995) viscosity limiter for shear flows. This is
used to set αAV according to

αAV
loc, a = min

(
10h2

aAa
c2
s, a

, αAV
max

)
, (2.76)

where αAV
max = 1. If αAV

loc, a > αAV
a , then αAV

a = αAV
loc, a. Otherwise, αAV

a is evolved
according to

dαAV
a

dt = −
αAV
a − αAV

loc, a
τa

, (2.77)

where τ is defined identically as in the Morris & Monaghan (1997) method. In
Phantom, the second artificial viscosity parameter, βAV = 2 by default. It is
used to prevent interpenetration of approaching particles and is independent of αAV

(Price & Federrath, 2010; Meru & Bate, 2012).
Finally, the additional dissipative term in the momentum equation used to

capture shocks correctly can be written as
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Πa
shock = −

∑
b

mb

[
qAV
a

ρ2
aΩa
∇aWab(ha) + qAV

b

ρ2
bΩb
∇bWab(hb)

]
. (2.78)

A similar dissipative term is added to the energy equation and is given by

Λashock = − 1
Ωa

∑
b

mbvsig, a
1
2(vab · r̂ab)2Fab(ha)

+
∑
b

mbαuv
u
sig(ua − ub)

1
2

[
Fab(ha)
Ωaρa

+ Fab(hb)
Ωbρb

]
,

(2.79)

where the first term provides viscous shock heating, and the second term is the
thermal conductivity necessary for dissipating the jump in energy at a shock. For
the thermal conductivity, αu = 1, and it uses a different signal velocity from Eq
2.70. As all the problems in this thesis include self-gravity, the signal velocity is
given by

vusig = |vab · r̂ab|. (2.80)

All simulations in this thesis use the Cullen & Dehnen (2010) method for artificial
viscosity with αAV

a ∈ [0, 1] and βAV = 2 to correctly capture shocks without excess
dissipation away from shocks.

2.2.3 Sink particles

Sink particles were introduced by Bate et al. (1995) to follow the evolution of star
forming molecular clouds after fragmentation. Once a fragment forms, calculations
grind to a halt due to the extremely small timesteps required to accurately model
particles in this high density region. To circumvent this issue, a sink particle is
used to represent all the SPH particles within this high density region. The only
properties of a sink particle are its mass, and spatial and velocity coordinates. Thus,
it only interacts with other particles gravitationally.

The acceleration on any particular sink particle i of mass Mi is given by

dvi
dt = −

Nsink∑
j=1

GMjφ
′
ij(ε) r̂ij −

Npart∑
b=1

Gmbφ
′
ib(εib) r̂ib (2.81)

where φ′ is the gravitational force softening kernel defined in §2.2.1, Npart and Nsink

are the total number of gas and sink particles respectively. The sink-gas softening
length is defined as εib ≡ max(ε, εb), the maximum of the softening length for the
sink particles ε, and the gas particle εb. The acceleration on a particular gas particle
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from a sink particle is given by

aasink−gas = −
Nsink∑
j=1

GMjφ
′
aj(εaj) r̂aj . (2.82)

If the softening length of the sink particles is set to zero, as is the default behaviour,
then sink-gas interactions are not softened. In which case, the above expression
reduces to

aasink−gas = −
Nsink∑
j=1

GMj

|ra − rj |3
raj . (2.83)

For a sink particle interacting with other sink particles, interactions are unsoftened
by default, giving the acceleration on a sink particle from other sink particles as

aisink−sink = −
Nsink∑
j=1

GMj

|ri − rj |3
rij . (2.84)

Accretion onto sink particles

Sink particles are able to accrete gas particles under certain circumstances. In
Phantom, gas particles are accreted if they approach too close to a sink radius or
if they are close and bound to the sink. The numerical implementation is as fol-
lows: the criteria for accretion depends on two parameters, the accretion radius
of the sink particle racc, and facc which determines when further checks are re-
quired, where 0 ≤ facc ≤ 1. If the gas particle is within faccracc of the sink particle,
then it gets accreted without any further checks. If the particle is instead within
faccracc ≤ r ≤ racc, then a particle is only accreted if:

1. Its specific angular momentum is less than that of a Keplerian orbit at racc,

|Lai| < |Lacc|, (2.85)

where the relative specific angular momentum of the gas-sink pair, Lai is given
by

|Lai|2 ≡ |rai × vai|2 = r2
aiv

2
ai − (rai · vai)2, (2.86)

while |Lacc| = r2
accΩacc and Ωacc =

√
GMi/r3

ai are the specific angular momen-
tum and Keplerian angular speed at racc, respectively, and rai and vai are the
relative position and velocity, respectively.

2. It is gravitationally bound to the sink particle, which is when the total energy
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is negative,

e = v2
ai

2 −
GMi

rai
< 0 (2.87)

3. It has the smallest value of e when compared with all the other sink particles,
i.e., it is most gravitationally bound to this specific sink particle.

When a particle is accreted onto a sink, the position, velocity, acceleration, spin
angular momentum, and mass of the sink particle is updated to

ri = rama + riMi

Mi +ma

vi = vama + viMi

Mi +ma

ai = aama + aiMi

Mi +ma

Si = Si + maMi

Mi +ma
[(ra − ri)× (va − vi)]

Mi = Mi +Ma.

(2.88)

During this process, total mass, total linear and angular momentum is conserved,
however total energy is not. In Phantom, accreted particles are tagged to be ig-
nored in all subsequent calculations by setting their smoothing length to be negative.

2.2.4 External forces

An alternative method to model the central star instead of a sink particle is to use
an external force describing a point mass, M at the origin, where the gravitational
potential and acceleration is given by

Φa = GM

ra
; aext = −∇Φa = −GM

|ra|3
ra. (2.89)

As with a sink particle, gas particles that are within Racc from the origin can be
accreted. However, unlike a sink particle, the properties of the accreted particles are
not added to the central mass when an external potential is used. While this formally
breaks the conservation laws, the error can be considered negligible as long the mass
of the central potential is the dominant mass in the system. An external potential
can be favourable to use instead of sink particles in certain scenarios as in the warped
GI discs in Chapter 6. In those simulations, the artificial introduction of the warp
in a disc with non-axisymmetric structure due to gravitational instabilities would
influence the sink particle, which would in turn influence the disc making analysis
more complicated. However, using an external potential avoids such complications.
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2.2.5 Thermodynamics

In §2.2.2 and 2.1.6, the heating effects due to viscous heating, and work done by
expansion and compression of the fluid were included as additional terms in the
energy equation. Similarly, cooling the disc requires an additional cooling term
Λcool. The simulations in this thesis use the straightforward ‘β-cooling’ prescription
of Gammie (2001),

Λcool = ρu

tcool
. (2.90)

Where in the standard implementation, the cooling timescale is proportional to the
orbital time by a constant factor of β,

tcool = βΩ−1, (2.91)

where Ω is defined using the spherical distance r from the central star. However,
β can also be defined to vary with radial location. The constant β implementation
is used in Chapters 3 and 6, while the variable β implementation is introduced and
used in Chapters 3 – 5.

2.2.6 Timestepping

To evolve the fluid properties Phantom uses a Leapfrog integrator in the ‘Velocity
Verlet’ form. It is time-reversible, and conserves both total linear and angular
momentum. The particle positions and velocities are updated from tn to tn+1 based
on the previous half time-step,

vn+ 1
2 = vn + 1

2∆tan, (2.92)

rn+1 = rn + 1
2∆tvn+ 1

2 , (2.93)

an+1 = a
(
rn+1

)
, (2.94)

vn+1 = vn+ 1
2 + 1

2∆tan+1, (2.95)

where ∆t ≡ tn+1 − tn. However, a complication arises from the accelerations due
to the shock capturing dissipation terms which depend on the velocity, making Eq
2.95 implicit. To resolve this, a first order prediction of the velocity is calculated as
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follows,

vn+ 1
2 = vn + 1

2∆tan, (2.96)

rn+1 = rn + 1
2∆tvn+ 1

2 , (2.97)

v∗ = vn+ 1
2 + 1

2∆tan, (2.98)

an+1 = a
(
rn+1,v∗

)
, (2.99)

vn+1 = v∗ + 1
2∆t

[
an+1 − an

]
(2.100)

Timestep constraints

To determine how frequently the fluid properties have to be calculated for numerical
accuracy and stability, there are various constraints that have to be considered.
In addition to being accurate, the code must also be numerically stable, which
is achieved by constraining the timestep to be smaller than the maximum stable
timestep. For a particular particle a, this is given by (Monaghan & Lattanzio, 1986;
Monaghan, 1992)

∆tC, a = CCour
ha

vdt
sig,a

, (2.101)

where CCour = 0.3, and vdt
sig,a is taken as the maximum of Eq 2.70 over particle neigh-

bours assuming αAV = max(αAV, 1). For particles that suffer large accelerations, a
constraint is applied based on the accelerations (the ‘force condition’) where

∆tf, a = Cforce

√
ha
|aa|

, (2.102)

with Cforce = 0.25. Separate constraints are also applied for external forces,

∆text = Cforce

√
h

|aext,a|
, (2.103)

and for accelerations due to sink-gas interactions,

∆tsink−gas, a = Cforce

√
ha

|asink−gas,a|
. (2.104)
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For external forces defined as Φ → 0 as r → 0, such as for a point mass in §2.2.4,
an additional constraint is

∆tΦ, a = Cforce ηΦ

√
|Φa|
|∇Φ|2a

, (2.105)

where η = 0.05. A final constraint is applied to ensure the cooling does does not
decouple from the other equations, and to avoid cooling instabilities from numerical
errors,

∆tcool, a = Ccool

∣∣∣∣ u

(du/dt)cool

∣∣∣∣ , (2.106)

where Ccool = 0.3 (Glover & Mac Low, 2007). In practice, for a given particle all
applicable constraints from above are checked and the smallest time-step from these
is adopted. All the constants stated above are standard values (see Price et al.,
2018a).

2.2.7 Summary of the complete governing equations of SPH

A summary of the equations that control the movement of particles and the evolution
of their properties as implemented in Phantom are described here. The equation
describing the density of a particle at any position, and its smoothing length,

ρa =
∑
b

mbWab(ha) and ha = hfact

(
ma

ρa

)1/3
. (2.107)

The continuity equation,

dρa
dt = 1

Ωa

∑
b

mb(va − vb) · ∇aWab(ha). (2.108)

The equation of motion,

dva
dt = −

∑
b

mb

[
Pa
ρ2
aΩa
∇aWab(ha) + Pb

ρ2
bΩb
∇aWab(hb)

]
+ Πshock + aext(r, t) + asink−gas + aselfgrav,

(2.109)

and the energy equation,

dua
dt = Pa

ρ2
aΩa

∑
b

mbvab · ∇aWab(ha) + Λshock −
Λcool
ρ

. (2.110)
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The accelerations from self-gravity (§2.2.1), sink particles (§2.2.3), and external
forces (§2.2.4) are given by aselfgrav, asink−gas, and aext, respectively. The dissipative
terms introduced by artificial viscosity (§2.2.2) to give a correct increase in entropy
at the shock front are given by Πshock and Λshock. Lastly, Λcool is a cooling term
(§2.2.5).

2.3 Post-processing SPH simulations

While hydrodynamic simulations enable the testing of various theories, they cannot
be compared to observations directly. To make proper comparisons to understand
whether the theory matches reality, radiative transfer modelling is necessary to
produce synthetic observations. Examples of using this approach can be found in
Terry et al. (2022); Ballabio et al. (2021); Hall et al. (2020). Here we introduce the
fundamentals of the radiative transfer code mcfost (Pinte et al., 2006, 2009) that
is used to generate the synthetic observations presented in this work.

2.3.1 The radiative transfer problem

In a dusty protoplanetary disc the radiative transfer equation involves solving for the
(polarised) specific intensity, Iλ(r,n) at every point r, and direction n, of the volume
at all wavelengths λ. Assuming time independent radiation transport, randomly
orientated dust particles, and adopting Stokes formalism we can write the radiative
transfer equation as (e.g. Pinte et al., 2009)

dIλ(r,n)
ds =− κext

λ (r)Iλ(r,n) + κabs
λ (r)Bλ(T (r))I0

+ κsca
λ (r) 1

4π

∫∫
Ω

Sλ(r,n′,n) Iλ(r,n′) dΩ′,
(2.111)

where Iλ(r,n) = (I,Q, U, V ) is the Stokes vector, and s is distance along the di-
rection of propagation. The total intensity is represented by I, the linearly po-
larised intensities by Q and U , and the circularly polarised intensity by V . The
absorption, scattering, and extinction opacities are given by κabs

λ (r), κsca
λ (r), and

κext
λ (r) = κabs

λ (r) + κsca
λ (r), respectively. The 4 × 4 Mueller matrix, Sλ(r,n′,n)

describes how the Stokes vector changes when light is scattered from the direction
n′ → n. The Planck function is Bλ(T (r)), and unpolarised emission is represented
by I0 = (1, 0, 0, 0). By assuming the dust is at local thermal equilibrium, and the
radiation field is the only source of energy, the temperature, T (r), can be calculated
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Figure 2.2: A schematic diagram of how photon packets propagate (image from
Pinte, 2015). Photons undergo a random walk due to absorption, scattering, and
re-emission events until it has escaped the circumstellar environment.

by solving ∫ ∞
0

κabs
λ (r)Bλ(T (r)) dλ =

∫ ∞
0

κabs
λ (r)Jλ dλ, (2.112)

where Jλ is the specific intensity averaged over all solid angles.

2.3.2 The Monte-Carlo method

In mcfost, the radiative transfer equations are solved numerically using a stochas-
tic, statistical approach. The technique relies on numerous packets of energy, here-
after referred to as photon packets, emitted by the star that interact with the dust.
The temperature distribution and optical properties of the medium dictate the jour-
ney of the photons through absorption, scattering, and re-emission events. The
random journey of a photon is illustrated in Figure 2.2. As the interactions are
statistical in nature, the results can become noisy if the number of photons used is
low. This can be overcome by increasing the amount of photons used at the cost of
computational expense.
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2.3.3 Computing the temperature

The temperature is determined as follows. Photon packets are generated by the
stellar photosphere and the dust grains. The interactions of each photon is tracked
individually until it exits the protoplanetary disc. The distance a photon travels
until an interaction event with a dust grain depends on the optical depth τ , and
thus the probability of interaction is given by

P (τλ) = e−τλ . (2.113)

Integrating the optical depth gives the distance between two interactions l,

τλ =
∫ l

0
κext(λ, r)ρ(r)ds. (2.114)

Once the position of interaction is found, the interaction is determined probabilis-
tically by the local albedo to either be a scattering or absorption event. If a photon
is scattered, the propagation vector is altered, but its wavelength is unchanged. If
a photon is absorbed, it is immediately re-emitted at a frequency wavelength in-
situ and isotropically. The new frequency is chosen by the frequency redistribution
approach of Bjorkman & Wood (2001)

dPi
dν = κν

K

(dBν
dT

)
T=Ti

, (2.115)

where dPi/dν is the probability of re-emitting a photon between frequencies ν and
ν + dν, and K =

∫∞
0 κν(dBν/dT ) dν is the normalisation constant. Once all the

photons have been propagated, the mean intensity Jλ, can be determined as (Lucy,
1999).

Jλ = 1
4πVi

∑
γ

εγ∆Iγ . (2.116)

where γ indicates a photon packet, εγ is the packet luminosity, Vi is the volume of
the cell, and ∆Iγ is the distance the photon propagated through the cell i. The final
dust temperature can then be calculated using Eq 2.112.

2.3.4 Making synthetic images

To produce an image (to compare with observations), the basic Monte Carlo method
places detectors in a given direction. A major disadvantage is the low probability of
a photon to reach this detector, which is compensated for by using a large number
of photons to ensure enough reach the detector. However, for certain disc and
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wavelength configurations (like an edge-on disc in the mid infra-red), the probability
of a photon reaching the observer is so small that the computational time required
becomes impractical.

An alternative method is to use ray-tracing to produce the images. Only the
mean specific intensity and temperature structure is required to build the image.
Both of these quantities can be estimated from the Monte Carlo method. First
there is an initial calculation with a multi-wavelength Monte Carlo run to get the
temperature structure. Then monochromatic Monte Carlo runs estimate the specific
intensity at every point in the model for a particular wavelength. Ray-tracing is then
used to produce the image at the required wavelength by numerically integrating
the solution to radiative transfer equation along the observer’s line of sight.

2.3.5 Line radiative transfer

The method of determining the mean intensity Jν for the gas differs to the method
used for the dust. This is because for gas line emission the absorption and emission
coefficients, αulν and julν (gas), are determined from transitions between energy levels
u and l with number densities nu and nl. The Einstein coefficients, Aul, Blu, and
Bul determine the transition probabilities for spontaneous emission, absorption, and
stimulated emission respectively between two adjacent energy levels with an energy
difference of ∆E = Eu − El = hν0, where h is Planck’s constant. The absorption
and emission coefficients are given by

αulν (gas) = hν0
4π (nlBlu − nuBul)φ(ν) (2.117)

julν (gas) = hν0
4π nuAul φ(ν). (2.118)

Here, ν0 is the rest frequency of the transition, and φ(ν) is a line-broadening function
that depends on frequency. The level populations are determined through collisions
and radiation with the equation of statistical equilibrium,

nl

∑
k<l

Alk +
∑
k 6=l

(BlkJν + Clk)

 =
∑
k>l

nkAkl +
∑
k 6=l

nk(BklJν + Ckl) (2.119)

where Ckl is the collision rates. However, this equation cannot be solved directly due
to the mutual dependence of Jν and nl. Hence, it must be solved iteratively starting
by guessing the initial level populations. Then Jν is calculated, and statistical
equilibrium is solved resulting in new level populations. This is repeated through
Monte Carlo integrations until the radiation field and populations converge on a
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solution (see Hogerheijde & van der Tak, 2000, for more detail on solving radiative
transfer and molecular excitation).

2.3.6 MCFOST

The synthetic continuum images and gas kinematics for all the work in this thesis
are produced by post-processing the simulations using the 3D radiative transfer code
mcfost. It is optimised for Phantom as it uses the location of the SPH particles
to create a Voronoi mesh where each mcfost cell corresponds to an individual SPH
particle. For gas only simulations, like the ones presented in this thesis, mcfost gen-
erates the synthetic continuum images using the radiative transfer schemes outlined
above and by assuming the dust is perfectly coupled to the gas. The gas kinemat-
ics for specific transitions are created using the velocity information from the SPH
simulations along with an abundance ratio of the chosen gas species. In addition to
studies such as Terry et al. (2022); Ballabio et al. (2021); Hall et al. (2020) which
post-process Phantom simulations with mcfost to make observational predictions
and comparisons, mcfost can also be coupled directly with Phantom to calculate
the temperature structure on the go (see Nealon et al., 2020b).
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3
Planet Migration in

Self-Gravitating Discs: Survival
of Planets

3.1 Introduction

During the last couple of decades the number of exoplanets discovered has increased
drastically thanks to advances in technology. As of current writing 4154 exoplanets
have been confirmed according to the NASA Exoplanet Archive1, and this number
will continue to increase significantly with ongoing missions such as TESS and future
missions such as PLATO

Over the last few years, advances in imaging have resulted in surveys of high-
resolution images of young protoplanetary discs. A large number of these discs have
substructures, such as rings and gaps (ALMA Partnership et al., 2015; Andrews
et al., 2016, 2018; Huang et al., 2018a; Dipierro et al., 2018; Booth & Ilee, 2020). A
common explanation for their presence is planets (Dipierro et al., 2015, 2016; Long
et al., 2018; Zhang et al., 2018; Dullemond et al., 2018). However, many of these
discs appear to be quite young, which would require giant planets to form very early
in the lifetime of the disc. Ansdell et al. (2017) also find that even in the younger
discs, there it not enough material to form the core of a giant planet. This suggests
that if planets are the source of gaps and rings, then planet formation must occur

1https://exoplanetarchive.ipac.caltech.edu/

https://exoplanetarchive.ipac.caltech.edu/
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at a much faster timescale. In the early stages of disc evolution, the disc is expected
to be quite massive and large in size. However, there is a growing body of evidence
that such discs can exist (Tobin et al., 2016b; Pérez et al., 2016).

In the GI model, giant planet formation is caused by disc fragmentation. This
first involves the breakup of the massive protoplanetary disc into self-gravitating
clumps at distances of tens to hundreds of AU inside 104 − 105 years. The initial
masses of protoplanets formed by these clumps are expected to be in the range
of 1MJup − 10MJup (Boley et al., 2010). Disc fragmentation is dependent on two
criteria. The first is the Toomre criterion,

Q = csΩ
πGΣ . 1, (3.1)

where G is the gravitational constant, cs and Σ are the disc sound speed and surface
mass density respectively, and Ω is the angular frequency. This criteria requires the
disc to be massive enough so that self gravity plays a role in its evolution. The
second criteria is the cooling timescale. This requires that disc must cool fast on a
timescale comparable to the dynamical timescale to avoid clumps being disrupted.

An issue with this model is whether planets that form early on in these discs,
when the discs are potentially gravitationally unstable, can survive. Previous stud-
ies such as Baruteau et al. (2011) have found that giant planets in self-gravitating
discs rapidly migrate inwards with no signs of gap opening. It is much harder to
open up gaps in self-gravitating region of a disc due to the high levels of turbulence.
Malik et al. (2015) also found it difficult to open up gaps, even with 30MJup compan-
ions. However, these studies used a simple dimensionless globally constant cooling
parameter β, to cool the disc, where β is defined as the ratio between the cooling
time and the local orbital time. Although this method is quick as it gives a simple
expression for the cooling time, it does have its issues. The main one being that
as the disc evolves, spiral structure is formed throughout the disc. This behaviour
is not expected from realistic discs where they should only be gravitationally un-
stable in the outer regions (Rafikov, 2005; Stamatellos & Whitworth, 2009; Rice &
Armitage, 2009; Clarke, 2009).

Other studies such as Stamatellos & Inutsuka (2018); Stamatellos (2015) have
found that when realistic thermodynamics are included, giant planets can open up
gaps and slow their inward migration. However, in their simulations the planets
were also allowed to accrete material which could aid gap opening. It is therefore
unclear if their planet migration slowed down due to the mass or once they reached
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the gravitationally stable inner disc. The gravitational instability of a disc can be
defined by Q, the Toomre parameter (Toomre, 1964)

Q = csΩ
πGΣ , (3.2)

where cs is the sound speed of the disc, Σ is the disc surface density, Ω is the angular
frequency, and G is the gravitational constant.

Cossins et al. (2009) showed that the amplitude of density fluctuations de-
creases at a rate inversely proportional to β. This means that in constant β models
as in Baruteau et al. (2011) and Malik et al. (2015), there will be density fluctu-
ations triggered by gravitoturbulence throughout the disc. These fluctuations can
result in mass deficits around the planet and induce stochastic kicks or even Type
III migration.

The motivation behind this work is to determine whether planets – irrespec-
tive of how they form – can slow down their migration in the inner gravitationally
stable part of the disc. To accomplish this, we mimic the effects of more realistic
thermodynamics by using the aforementioned simple cooling method but we vary
it with radius such that the cooling timescale in the outer regions is much smaller
than the inner regions so that the disc is only gravitationally unstable in the outer
part. A larger β (and hence a longer cooling timescale) in the inner gravitationally
stable region resulting in smaller density fluctuations could provide a safe haven for
the planet. The main advantage of this method is to avoid having to use the more
complicated and computationally expensive method of radiative transfer. We study
the migration of planets in these more realistic discs to determine whether they can
slow their inward migration and survive.

The outline of this Chapter is as follows. In Section 3.2, we describe how
the simulations are set up and how the disc thermodynamics is treated. In Section
3.3, we present the comparison of the new implementation of the cooling parameter
with the standard implementation. We compare the effect it has on the evolution
of the disc, and also how planet migration is affected. In Section 3.4, we investigate
the impact of numerics on the results. In Sections 5.4, we put the work done here
in context of past work and observations. Finally, we make conclusions in Section
5.5.
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3.2 Model

3.2.1 Numerical Method

We perform 3D hyrdrodynamic simulations using Phantom, a Smoothed Particle
Hydrodynamics (SPH) code developed by Price et al. (2018a). Most of the simula-
tions presented here are run with 2 million gas particles. To ensure the results are
not affected by resolution, a subset of the simulations are also done with 1 and 4
million particles. The relative change in error is ∼20% with each step up/down in
resolution. The star and planets are modelled as sink particles (Bate et al., 1995).
The accretion radius of the star is set to be equal to the disc inner boundary, Rin.
The accretion radius of each planet is set to 0.001, which is much smaller than their
Hill radius. This is to prevent the planets from accreting too much material in or-
der to perform as close as a comparison to Baruteau et al. (2011) and Malik et al.
(2015).

To model shocks, we use an artificial viscosity switch that utilises the time
derivative of the velocity divergence introduced by Cullen & Dehnen (2010). The
artificial viscosity parameter αv, is varied depending on how far away the shock
is. Close to the shock, it is a maximum, αmax = 1. Far from the shocks, it is a
minimum, αmin = 0. The artificial viscosity coefficient βv is set to 2.

3.2.2 Initial Conditions

We model a disc between Rin = 1 and Rout = 25, with disc to star mass ratio of 0.1.
It should be noted that these simulations are scale free. The initial surface mass
density is set as a smoothed power law and is given by

Σ = Σ0

(
R

R0

)−1
fs, (3.3)

where Σ0 is the surface mass density at R = R0 = 1 and fs = 1−
√
Rin/R is the

factor used to smooth the surface density at the inner boundary of the disc.
The energy equation is given by

du
dt = −P

ρ
(∇ · v) + Λshock −

Λcool
ρ

(3.4)

where u is the specific internal energy, the first term on the RHS is the PdV work,
Λshock is a heating term that is due to the artificial viscosity used to correctly deal
with shock fronts, and Λcool is a cooling term to cool the disc.
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We assume an adiabatic equation of state. For an ideal gas this relates the
pressure P , to the density ρ, and specific internal energy by

P = (γ − 1)ρu = c2
sρ

γ
, (3.5)

where the adiabatic index is γ = 5/3 and the sound speed is cs =
√
γkBT/µmH.

The mean molecular weight is assumed to be µ = 2.381. The initial temperature
profile is expressed using a power law as

T = T0

(
R

R0

)−0.5
. (3.6)

The disc aspect ratio H/R, is set to 0.05 at R = R0.

3.2.3 The cooling timescales

In this Chapter, we simply set the cooling term as

Λcool = ρu

tcool
(3.7)

where the cooling time is given by

tcool = βΩ−1. (3.8)

Here, β is the cooling parameter. Under the assumption that the transfer of angular
momentum driven by gravitoturbulence occurs locally, we can relate the cooling
parameter β with the α viscosity parameter by (Gammie, 2001)

α = 4
9

1
γ(γ − 1)

1
β
. (3.9)

We perform two sets of simulations with different cooling implementations
to model the disc thermodynamics. Firstly, we define β as

β = β0

(
R

R0

)−2
, (3.10)

where β0 = 5500. Since β varies with radius, so does α. In these discs α ranges from
∼ 10−4 in the inner regions to ∼ 10−2 in the outer regions. Secondly, to compare
with previous studies, we run a set of simulations where the cooling parameter
is globally constant and set to β = 15. Using equation 3.9, this is equivalent to
α = 0.027. This value and the normalisation constant in equation 3.10 is chosen to
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Figure 3.1: Comparison between a constant (β = 15) and a variable
(β = β0(R/R0)−2) cooling parameter. The cooling time in the inner regions is sig-
nificantly longer using a variable β.

ensure that while the disc cools fast enough to develop spiral structure, it does not
fragment into clumps. This is done so that the migration of the planet is not affected
by the interaction with the clumps. The difference between these cooling timescales
on disc evolution and planet migration is shown in Figure 3.1 where it can be seen
that using the variable β defined in equation 3.10 results in the cooling timescale in
the inner regions being significantly longer than with constant β. Hence, the inner
regions now cool slowly enough to avoid becoming gravitationally unstable, while
the outer regions still cool fast enough to become gravitationally unstable and form
spiral structure.

3.2.4 Embedding the planets

After the disc has evolved long enough to form spiral structure (around 10 orbits
at the outer edge, R = 25), a planet is added at R = 20. To explore the effect the
variable cooling parameter has on planet migration, the evolution of both giant and
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low mass planets is followed. The giant planets have planet to star mass ratios of
q = 2.857× 10−4, 9.543×10−4 and 9.543×10−3. The low mass planets have planet
to star mass ratios of q = 3× 10−6, 3× 10−5 and 5.149 × 10−5. This is equivalent
to a 1MSat, 1MJup, and a 5MJup planet and a 1M⊕, 10M⊕, and a 1MNep planet in
a 0.1M� disc around a 1M� star.

3.3 Results

The simulations presented here are done in two steps. First the disc is set up as
described in Section 3.2.2 and is allowed to evolve until spiral structure develops.
The evolution of the disc is described in Section 3.3.1 Then after the inclusion of
planets of various masses, the simulations are resumed and the planet’s migration
is shown in Section 3.3.2. These are done with both a constant and variable β.

3.3.1 Disc evolution

Both discs start with identical surface density and temperature profiles, so that
the evolution of the disc is determined by how it cools. The difference is seen
in Figures 3.2 and 3.3. In Fig 3.2, the density rendered plots of both discs is
shown at two different times. The top row shows the disc early in its evolution
just as the spiral structure begins to form. The disc that evolves with constant β
develops spiral structure from the inside first (top left) and develops spiral structure
throught the disc (bottom left), which is consistent with past studies. Whereas the
disc that evolves with variable β only develops spiral structure in the outermost
regions (right). Similarly, the bottom row shows how the discs differ shortly before
a planet is added. This behaviour in the bottom right panel is more in line with
what is expected from realistic discs, where discs are expected to be gravitationally
unstable only in the outer regions (Rafikov, 2005; Stamatellos & Whitworth, 2009;
Rice & Armitage, 2009; Clarke, 2009).

The difference between the two discs is due to the different expressions for β
used. Since the variable β increases with decreasing radius, it results in the cooling
time in the inner regions being much larger. This effect of the cooling time on the
disc evolution is shown in Figure 3.3 by comparing the temperature and the the
Toomre parameter of both discs at the same moment in time. Using equation 3.5
and the expression for the sound speed, the temperature as the disc evolves can be
calculated as

T = µmp
kB

(γ − 1)u. (3.11)
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Figure 3.2: Comparison of the evolution of two discs evolved with a constant cooling
parameter β given by equation 3.10 (left), and a variable β (right), after 7 and 10
orbits (at R = 25). The top row shows the two discs at an early stage where the
spiral structure has just begun to form. The bottom row shows both discs at a
later stage just before a planet is added. This figure highlights that a variable β
mimics a more realistic disc where the disc is only gravitationally unstable in the
outer regions.

A consequence of the variable β model is the disc cools extremely inefficiently
in the innermost regions of the disc, resulting in very high temperatures as seen in
Figure 3.3a. However, the simulations present here are scale free. Hence, although
the temperatures are quite high, they would be more in line with expected values
if the disc was scaled up to sizes of typical gravitationally unstable disc, while also
scaling the initial Q profile to be identical. Furthermore, the high temperatures at
R < 10 is not a major concern for the purposes of this Chapter since the planet
reaches this part of the disc.

Figure 3.3b compares the azimuthally averaged Toomre parameter, Q. Since
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Figure 3.3: Azimuthally-averaged temperature (left) and Toomre parameter (right)
for the variable and constant β simulations after 10 orbits at R = 25. This figure
shows why the disc cooled with a variable β is only gravitationally unstable in the
outer regions. Due to the significantly longer cooling times in the inner regions,
the inner disc cannot cool fast enough, which results in the Toomre parameter not
reaching the required values for gravitational instability. Although the temperatures
are quite high, it should be noted that if these discs were scaled up to sizes of typical
gravitationally unstable discs, while scaling the initial Q profile to be identical, the
temperatures would be more sensible. The discs at this time are shown in the
bottom row in Figure 3.2.
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Figure 3.4: Migration tracks of a 1MSat (left), 1MJup (middle), and a 5MJup (right)
planet in a disc cooled with a variable β (blue) and constant β (orange). The planet
slows down in the inner disc modelled with a variable β, whereas with a constant
β, the inward migration does not slow down and the planets reach the inner edge of
the disc. The dashed lines are defined as the time when migration has slowed down
(or reached the inner edge).

Q is dependent on the temperature via the sound speed, this results in Q� 1.7 in
the inner regions. Hence, the conditions for spiral structure to form is only satisfied
in the outer parts (Durisen et al., 2007).

3.3.2 Planet migration

Giant Planets

To investigate the effect the variable β has on planet migration, a single planet
is added at R = 20 in the simulations in Section 3.3.1 for both the constant and
variable β discs. The value of β at the initial location of the planet is roughly similar
in both discs (see Figure 3.1).

To compare with previous studies that also used β-cooling to study planet
migration in self-gravitating discs, we first evolve the planets in a constant β disc.
From the migration tracks, shown in orange in Figure 3.4, and in the top row of
Figure 3.5, it can be seen that the planets reach the inner edge of the disc in a few
orbits. These compare well with previous studies such as Baruteau et al. (2011).
However, in a disc cooled with a variable β, the migration tracks are no longer the
same. Although both initially migrate inwards very rapidly, with a variable β, the
inward migration slows down in the inner gravitationally stable part of the disc as
seen in the bottom row of Figure 3.5. This is more clearly seen in Figure 3.6 which
shows the surface density (top row) and a 2D map of the Toomre stability parameter
Q (bottom row) of a constant β disc (left column) when a 1MJup planet reaches the
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Figure 3.5: This figure shows the location of a 1MSat (left), a 1MJup (middle), and
a 5MJup planet (right) soon after their migration has slowed down. This is shown
for a disc modelled with a constant β (top row) and a variable β (bottom row). The
planets in a constant β disc only stop migrating when they reach the inner edge
of the disc. Whereas, with a variable β, migration slows down before reaching the
disc’s inner edge. The times in each panel correspond to the dashed lines in Figure
3.4.

disc’s inner edge, and of a variable β disc (right column) when the planet’s migration
slows down. It can be seen that unlike in a constant β disc, the inner region of a
variable β disc is gravitationally stable, and it is in this region where the planets
are able to slow down their inward migration.

Stochastic kicks

As seen from Figure 3.4, planet migration in self-gravitating discs is not a smooth
process. The planets can experience random kicks that push them either inwards
or outwards. To ensure that these random kicks due to the turbulent nature of the
gravitationally unstable disc do not impact the results of the giant planet simula-
tions, the simulations in Section 3.3.2 are repeated another 3 times. In each new
run the planets are embedded at the same distance, but started 0.2 orbits earlier.
Starting at a different time means that the turbulent structure around the planet
is different in each simulation. Hence, it is a good test to determine whether the
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Figure 3.6: Surface density (top) and 2D Toomre parameter (bottom) plots of the
disc soon after a 1MJup planet reaches the inner edge of a constant β (left) and slows
its migration in a variable β (right) disc. The 2D Q plots show how gravitationally
unstable the disc is. It can be seen that the migration of a 1MJup planet slows down
in the gravitationally stable part of the disc.

turbulence has a significant impact on planet migration.
The results from the various restarts are shown in Figure 3.7. The migration

of the giant planets are very similar to each other, regardless of when they start. In
all cases, the initial rapid inward migration slows down in the gravitationally stable
inner disc at roughly the same location and time. There is one exception, shown
by the lightest line in Figure 3.7, where the planets do not immediately migrate
inwards. This is due to random chance, where the planet is initially embedded
inside one of the spiral arms of the disc. In other words, the planet is in a region
of much higher density fluctuation, increasing the stochasticity. This is seen in the
migration tracks for all three planets, which fluctuates much more than the other
runs. Nevertheless, even in this random scenario, the planet eventually slows down
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Figure 3.7: Migration tracks of a 1MSat (top), 1MJup (middle), and a 5MJup (right)
planet started at different times to understand the effect of different turbulent envi-
ronments. Despite the random turbulent structure around the planet at each start
time, the planets always end up migrating inwards rapidly and slow down when they
reach the gravitationally stable inner disc.

its migration in the inner disc.
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Low mass planets

As seen in Figure 3.7 (and as noted by Baruteau et al. 2011) the influence of stochas-
tic kicks increases with decreasing planet mass. Hence, for low mass planets it is
especially important to run multiple simulations as done so previously to observe
the trend in the migration.

We begin by looking at the migration in the disc with a constant β, shown
in the left column of Figure 3.8. Although the low mass planets migrate inwards
on a longer timescale compared to the giant planets, they show no signs of slowing
down. A couple of simulations of the 10M⊕ and 1MNep planet even reach the inner
edge. It is expected that with enough computational time, all simulations of the
low mass planets would reach the inner edge.

As with the giant planets, the migration of the low mass planets in the
disc with a variable β (shown in the right column of Figure 3.8) compared to a
constant β is quite different. In some cases, the 1M⊕ and 10M⊕ hardly show any
inward migration. In the cases where the planets migrate inwards, the migration is
significantly slowed down once the planet reaches the inner regions of the disc which
is gravitationally stable. The slow down is best seen with the 1MNep planet where
after the initial rapid inward motion, the migration rate is much slower. With a
variable β, there are some instances where the 1M⊕ and 10M⊕ planet do not migrate
in at all. This is likely to be due to stochastic kicks, and will be discussed further
in Section 3.5.1.

3.4 Impact of numerics

3.4.1 Resolution tests

To ensure that the above results are not affected by the resolution, we repeat the
simulations with the giant planets, but with 1 and 4 million particles. However,
it should be noted that the relative change in error is only ∼20% with each step
up/down in resolution here, which may not be enough to determine convergence.

The first check for any resolution effect is done by comparing the disc evolu-
tion. Both the low and high resolution broadly compared very well with the initial
simulations; all 3 simulations are only gravitationally unstable in the outer regions
of the disc. A minor difference is that the gravitationally unstable regime extends
further in with higher resolution. However, the higher resolution also resolves more
of the inner disc. Thus the extent of the gravitational stable region in all 3 discs
is similar in size, but shifted further in with increasing resolution. The planets are
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Figure 3.8: Migration tracks of the 1M⊕, 10M⊕, and a 1MNep planet started at
different times for a constant (left) and a variable (right) β disc. The general trend
is that even low mass planets migrate to the inner edge of a constant β disc. However,
in a variable β disc, like the giant planets, they slow down in the gravitationally
stable inner disc. The sporadic outward migration is due to the opposite effect
described later in Figure 3.12; there are under-dense regions behind the planet
resulting in a positive corotation torque.

introduced at the same time in all three discs. The migration of each planet with
different resolutions is shown in Figure 3.9.

Although each planet does travel further in with increasing resolution, the
conclusion that planet migration slows down in the inner gravitationally stable re-
gion of the disc remains unchanged. The further inward migration is due to the
self-gravitating nature being resolved further in. This is shown in Figure 3.10 where
the 2D map of the Toomre parameter Q is shown for all three resolutions just before
the planet is added. In red are the regions which are gravitationally unstable. To
compare how much of the inner disc is gravitationally stable, a grey circle is overlaid
to represent the inner gravitationally stable disc of the 4 million particle simulation.
From this it can be seen that as the resolution decreases, the gravitationally stable
inner disc becomes larger. However, regardless of resolution, the migration of a
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Figure 3.9: Comparison of the planet migration in a disc with variable β modelled
using 1, 2, and 4 million SPH particles. The resolution increases with lighter shades.
Inward migration slows down in the gravitationally stable inner disc in all cases.
Although the exact location where the planet slows down varies with resolution, the
relative difference is less than the expected error of the different resolutions, showing
the results are approaching convergence.



3.4. Impact of numerics 73

−20

0

20

N = 1× 106

−20

0

20

y
(c

od
e

u
n

it
s)

N = 2× 106

−20 0 20
x (code units)

−20

0

20

N = 4× 106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q
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lowest resolution simulation, more of the inner disc is gravitationally stable.
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planet in a disc with variable β always slows down in the gravitationally stable part
of the disc and before reaching the inner disc edge.

3.4.2 Different β profiles

Since the choice of how β should vary with radius was arbitrarily chosen, we gener-
alise it to

β(R) = β0

(
R

R0

)−δ
(3.12)

and investigate the impact of different values of δ. We repeat the previous simu-
lations with β = 27500 (R/R0)−2.5 and β = 137500 (R/R0)−3, where β0 is chosen
such that β (R = 25) = 8.8 in all three cases. We do not investigate δ 6 1.5 since
we require the cooling time, tcool to decrease with radius so that only the outer
regions become gravitationally unstable. With δ = 1.5, the cooling time is constant
throughout the disc.

A 1MSat, 1MJup, and 5MJup planet is introduced at R = 20 after the discs
have evolved for 10 outer orbital periods. The different β profiles do not change
the key result as we find that the inward migration is slowed down when the planet
reaches the inner gravitationally stable part of the disc.

3.5 Discussion

3.5.1 Torque

To investigate why the rapid inward migration of the planets slows down in a variable
β disc, we evaluate the tidal torque between the disc material and the planet. The
total z-component of the torque, which drives the radial motion of the planet, is
calculated by summing the individual torque contributions from each fluid element
on the planet and is given by

Tz =
N∑
i

GMpmi

d3
i

rp × di , (3.13)

where di is the separation between each fluid element and the planet, mi is the mass
of the fluid element, and rp and Mp are the position and mass of the planet respec-
tively. To decrease numerical noise, all material inside half the Hill radius of the
planet is considered to be circumplanetary material and excluded from calculations.
This exclusion zone varies with the stellar mass which increases as disc material is
accreted by the star, and with the mass and location of the planet as it migrates.
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Figure 3.11: Total z-component of the torque exerted by the disc material on a
1MSat (top), a 1MJup (middle), and a 5MJup planet (bottom) in a variable β (blue)
and a constant β (orange) disc. In a variable β disc, the torque is most negative in
the first orbit when the planet is migrating inwards rapidly. After which the torque
is slightly negative, and thus the planet continues to migrate inwards but at a slower
rate. In a constant β disc, the torque is just as negative during the rapid inward
migration, however it stays negative for longer and only decreases to near zero when
the inner edge of the disc is reached. The red dashed lines indicate the times shown
in Figures 3.12 and 3.13.
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The torques are also smoothed by taking the average over 0.2 orbits.
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Figure 3.12: This figure shows how the surface density of the disc near a 1MJup
planet changes as it migrates in a variable β (left) and a constant β (right) disc.
Top left panel is when the planet is rapidly migrating inward in a variable β disc.
Bottom left is when the migration of the planet has slowed down. Top right is just
before the planet starts rapidly migrating inwards in a constant β disc. Bottom
right is when the planet is rapidly migrating inwards. When the surface density of
the region in front and behind the planet is comparable, there is little migration
(bottom left and top right). However when there is an under-dense region in front
and and over-dense region behind, the planet migrates inwards due to the azimuthal
density gradients (top left and bottom right, also see middle panel of Figure 3.4).

Figure 3.11 compares how Tz varies as the planet migrates in both a constant
and variable β disc. The behaviour of the torque is quite different in each disc. With
a constant β, the 1MJup and 5MJup planet experience a large negative torque until
they reach the inner edge, at which point a lack of disc material results in the
torque flattening to near zero very quickly. Due to random outward kicks while the
1MSat planet is migrating inwards, the torque profile is not continuously negative.
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Figure 3.13: Azimuthally-averaged torque acting on a 1MJup as it migrates in a
variable (left) and constant (right) β disc. When the corotation torque is mostly
negative, the planet is rapidly migrating inwards (compare times in Figure 3.5) due
to an underdense region in front of the planet (see Figure 3.12).

Despite this, it is still clear that like the 1MJup and 5MJup planet, the magnitude
of the torque only significantly decreases when it reaches the inner edge of the disc.
Whereas with a variable β, even though the torque once again quickly becomes
just as negative, once the planet reaches the gravitationally stable inner disc, the
magnitude of the torque decreases but remains negative resulting in more inward
migration at a much slower pace. Unlike with a constant β, the torque does not
flatten indicating it is still migrating inwards, albeit very slowly.

The difference in the torque evolution as the planet migrates can be explained
by considering the disc structure near the planet as it migrates. The corotation
torque, exerted by the gas within the horseshoe region plays a significant role in the
magnitude and direction of the total torque. Asymmetries in the disc structure in
this region can result in either inward or outward migration. Figure 3.12 shows the
disc structure at important times during the planet’s migration in a variable (left)
and constant β (right) disc. Comparing with Figure 3.11 shows that the torque is
most negative when the region in front of the planet is underdense relative to the
region behind the planet (top left and bottom right). This density contrast results
in a large negative co-oribital corotation torque which drives the planet inwards.
This is seen in azimuthally-averaged torques in Figure 3.13 which shows that when
the planet is rapidly migrating inwards, the corotation torque is mostly negative.
Whereas when there is little density contrast around the planet (top right and
bottom left in Fig 3.12), the torque profile in Fig 3.13 is more symmetric resulting
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in slower migration.
As expected, comparing the torque on the 1MSat to the 1MJup and 5MJup

planets show that lower mass planets are more affected by stochastic kicks. Unlike
the latter two, the torque on a 1MSat frequently becomes positive resulting in the
sporadic moments of small outward migration as seen in Figure 3.4. However, it is
still clear the torque on average is negative and the planet is still migrating inwards.

However, the increased effect of stochastic kicks as planet mass decreases
could explain why some of the low mass planets do not migrate inwards. Figure
3.14 shows the migration (right column) of a 1M⊕ planet, and how Tz (left column)
varies as it migrates. The first five rows are the different runs in a variable β disc.
In nearly all cases, the migration is dominated by stochastic kicks as seen by the
torque fluctuating about zero, resulting in small inward and outward migration.
The bottom row is in a constant β disc, where it is clear that despite stochastic
kicks being present, the torque on average is slightly negative resulting in inward
migration.

3.5.2 Comparison with previous work

We compare our results to those of Baruteau et al. (2011) and Malik et al. (2015)
who considered giant planet migration in self-gravitating discs. There are a couple
of differences in this work. They perform their simulations using a 2D grid based
code, whereas the simulations in this work are performed using a 3D SPH code. The
initial conditions of the disc are also slightly different. Their disc surface density and
temperature decreased as R−2 and R−1 respectively, whereas in this work, the disc
surface density and temperature decreases as R−1 and R−0.5 respectively. To ensure
that the different initial conditions and codes used do not influence the results, we
initially performed a set of simulations with a constant value of β = 15 to compare
with Baruteau et al. (2011) and Malik et al. (2015). Despite the differences, we
agree with their findings that using a constant β results in the giant planets rapidly
migrating towards the inner edge of the disc.

However, the crucial development in our work is how the disc is cooled:
whilst, we also utilise the β-cooling approach, we allow β to vary with radius to
mimic a more realistic disc such that our discs remain gravitationally stable in the
inner regions, and spiral structure only forms in the outer regions. The planets are
able to slow down their rapid inward migration before reaching the inner disc edge.

Using radiative transfer, Stamatellos & Inutsuka (2018) migrate 1MJup plan-
ets in self-gravitating discs using a 3D SPH code. The initial conditions in their discs
are more similar to ours; the same initial disc mass and surface density profile. Their
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Figure 3.14: Total z-component of the torque exerted by the disc material on a 1M⊕
planet is shown on the left panels. The migration tracks are shown on the right. The
top 5 panels are simulations modelled with a variable β, whilst the bottom panel is
one of the simulations modelled with a constant β. The migration is dominated by
stochastic kicks which results in random outward or inward motion, as seen in the
torques oscillating about zero.

usage of a realistic treatment of the disc thermodynamics meant that like in the sim-
ulations presented here, the planets are evolved in discs that are only gravitationally
unstable in the outer regions. Using realistic thermodynamics to allow the gas to
control its cooling/heating based on its properties, the thermodynamics of the cir-
cumstellar and circumplanetary disc is better captured. This enhances the mass
growth of the planet causing the planets to grow to beyond the brown dwarf limit.
This resulted in their planets opening up gaps and slowing their inward migration.
Thus it is unclear whether the mass growth or its presence in the more gravitation-
ally stable inner disc was the dominant factor in slowing the inward migration. We
do not allow our planets to grow (Racc = 0.001) and hence show that modelling the
cooling in the discs such that only the outer disc is gravitationally unstable, enables
a planet to slow its migration in the inner gravitationally stable disc. Therefore,
while we expect the growth of a planet would help slow its migration, our work
shows that the location of the planet in the disc has an important effect too.
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Recently Mercer et al. (2018), using their radiative transfer simultions cal-
culated an effective value of beta, βeff . Using this, they showed that a constant β
does not accurately reflect a realistic gravitationally unstable protoplanetary disc.
Their calculated βeff was found to vary both spatially and with time as the disc
evolves. Since the variable β model in this Chapter does not vary with time, to
achieve a similar comparison, we compare the variable β profile here with their βeff

of a high mass disc that has not yet developed spiral arms. In general, the two com-
pare reasonably well with both decreasing as roughly R−2 in the inner regions of the
disc. The main difference between the two is in the outer regions where the βeff of
Mercer et al. (2018) decreased more slowly tending towards a non-zero β. However
this difference could be enhanced by the differences in the simulation setup, where
their simulations have a ambient radiative field of 10K and they simulate a higher
disc-to-star mass ratio. Furthermore, their discs eventually fragment, whereas the
β profile chosen here is such that disc fragmentation is avoided.

3.5.3 In the context of observations

The viability of early planet formation is important given recent observations of
young protoplanetary discs. Some of these discs are a few million years old or
younger (Andrews et al., 2018) and already show substructure such as rings and
gaps. Assuming that the gaps were carved out by planets, Lodato et al. (2019)
determined that a wide range of planet masses from super Earths to a few Jupiters
at wide orbits (10 − 100 AU) were typically required. There is also an increasing
body of evidence (Clarke et al., 2018; Flagg et al., 2019) that show that planets have
formed in young discs (∼ 1Myr).

Although the discs in the aforementioned studies may not be expected to be
gravitationally unstable given their mass estimates, they still indicate that planets
can form very early in a disc’s lifetime. However, measuring the disc mass can be
quite challenging. Recently Booth & Ilee (2020) using the rarer CO isotopologue,
13C17O measured the mass of HL Tau to be at least 0.2M�, up from the previous
gas mass measurements of 2− 40× 10−3M� (Wu et al., 2018). This puts HL Tau in
the gravitationally unstable regime beyond 50AU, where a potential planet might
be carving the gaps seen.

If planets can form in young discs, the next most natural question to ask is
whether they can survive their migration. Our work shows that planets formed –
by any process – in young discs can survive and evolve in the disc.
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3.5.4 In the context of population synthesis models

The work presented here is also important for studying population synthesis mod-
els in self-gravitating discs, such as the ones in Galvagni & Mayer (2013), Forgan
(2013), and Forgan et al. (2018a). A common problem in these models is using the
rapid migration times. This results in very low survivability of any clumps formed
via gravitationally stability, unless the clumps could open up a gap to slow their
migration and survive. The results here show that with more realistically modelled
thermodynamics, the inward migration of planets in gravitationally unstable discs
can be suppressed without requiring gap-opening. Further work will be required
to study the impact that a slow down of a planet’s migration has on population
synthesis studies.

3.5.5 Caveats

The main goal of this Chapter is to study the impact of implement a more realistic
treatment of the thermodynamics on planet migration. Thus, the main difference
compared to past studies with β-cooling models is how β varies with radius. Several
other possible important parameters are kept fixed.

We only consider one disc model. The temperature and surface density pro-
files are the same for all simulations. The disc mass is also kept fixed. Although
these would change how the Toomre parameter evolves, and thus how the gravita-
tional stability of the disc evolves, it is not expected to change the result that planet
migration can be slowed down in the gravitationally stable inner disc.

We have also limited accretion onto the planets. Studies have shown that
disc fragments (∼1− 10MJ Boley et al. 2010) can easily accrete enough material to
become brown dwarfs (Stamatellos & Whitworth, 2009; Kratter et al., 2010b; Zhu
et al., 2012a). To keep things simple, the accretion radii of the planets are small
enough to ensure the planet’s mass stays roughly constant. This is obviously not
very realistic, but is done firstly to directly compare with Baruteau et al. (2011) and
Malik et al. (2015) and secondly to understand the impact that different locations
of gravitationally unstable discs have on planet migration and survivability.

Despite using a variable β to mimic the varying cooling in a real self-gravitating
disc, the cooling in a disc is likely to be much more complex. Further work will be
done in the future comparing the results here with a disc modelled using radiative
transfer.
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3.6 Conclusion

We perform 3D SPH simulations to investigate the migration of both giant planets
with masses of 1MSat, 1MJup, and 5MJup, and low mass planets with masses of 1M⊕,
10M⊕, and 1MNep in self-gravitating discs. Our study shows that by implementing
a radially decreasing cooling time to more accurately cool the disc such that only the
outer region of the disc is gravitationally unstable, the inward migration of planets
is slowed down in the inner gravitationally stable part of the disc without requiring
a gap to open up. These results show, most importantly that planets may be able
to survive their inwards migration in real self-gravitating discs.
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4
Hiding Signatures of

Gravitational Instability in
Protoplanetary Discs

4.1 Introduction

In the last few years, a large number of discs have revealed substructure in the form
of rings and gaps when observed at millimeter wavelengths with ALMA (ALMA
Partnership et al., 2015; Andrews et al., 2016; Fedele et al., 2018; Andrews et al.,
2018; Huang et al., 2018a; Dipierro et al., 2018; Booth & Ilee, 2020). A few of these
discs are thought to be very young (< 1Myr) (ALMA Partnership et al., 2015; Fedele
et al., 2018; Dipierro et al., 2018). Ring and gap structures have also been observed
in even younger (. 0.5 Myrs) Class 1 discs (Sheehan & Eisner, 2018; Segura-Cox
et al., 2020). Young discs are thought to be massive and could potentially be
gravitationally unstable. Such discs are expected to harbour spiral arms. There is
evidence that discs with spiral arms in the midplane exist (Pérez et al., 2016; Huang
et al., 2018a), although they seem to be quite rare. Is the observed rarity due to
young discs being less massive or can spiral structures in massive discs be hidden
by other processes?

The goal of this Chapter is to investigate the impact that a migrating gi-
ant planet, irrespective of how it formed, has on the structure of a gravitationally
unstable disc and the resulting implications for observations of such discs. We find
that a migrating giant planet is able to suppress spiral structures yielding discs that
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appear axisymmetric with rings and gaps.

4.2 Method

4.2.1 Hydrodynamic simulations & initial conditions

We perform scale free 3D gas hydrodynamic simulations using phantom, a smoothed
particle hydrodynamics (SPH) code developed by Price et al. (2018a).

The disc setup is identical to that in Rowther & Meru (2020). We model a
disc using 2 million particles between Rin = 1 and Rout = 25 in code units with a
disc-to-star mass ratio of 0.1. The central star, and the planet are modelled as sink
particles (Bate et al., 1995). The accretion radius of the central star is set to be
equal to the disc inner boundary, Rin. To maintain a roughly constant planet mass
throughout the simulation, the accretion radius of the planet is limited by setting it
to 0.001 in code units. This is ∼10 times smaller than the minimum Hill radius for
a 3MJup planet at Rin. The initial surface mass density is set as a smoothed power
law and is given by

Σ = Σ0

(
R

R0

)−1
fs, (4.1)

where Σ0 is the surface mass density at R = R0 = 1 and fs = 1−
√
Rin/R is the

factor used to smooth the surface density at the inner boundary of the disc. The
initial temperature profile is expressed as a power law

T = T0

(
R

R0

)−0.5
, (4.2)

where T0 is set such that the disc aspect ratio H/R = 0.05 at R = R0. The energy
equation is

du
dt = −P

ρ
(∇ · v) + Λshock −

Λcool
ρ

(4.3)

where we assume an adiabatic equation of state, u is the specific internal energy,
the first term on the RHS is the PdV work, Λshock is a heating term that is due to
the artificial viscosity used to correctly deal with shock fronts, and

Λcool = ρu

tcool
(4.4)

controls the cooling in the disc. Here we use a simple implementation of the cooling
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time which is proportional to the dynamical time by a factor of β,

tcool = β(R)Ω−1 = β0

(
R

R0

)−2
Ω−1, (4.5)

where Ω is the orbital frequency and we have varied β with radius (Rowther & Meru,
2020). This allows us to mimic a realistic self-gravitating disc that is only gravi-
tationally unstable in the outer regions (Rafikov, 2005; Stamatellos & Whitworth,
2009; Rice & Armitage, 2009; Clarke, 2009).

To model shocks, we use an artificial viscosity switch that utilises the time
derivative of the velocity divergence introduced by Cullen & Dehnen (2010). The
artificial viscosity parameter αv has a maximum of αmax = 1 near the shock and a
minimum of αmin = 0 far away from the shock. The artificial viscosity coefficient βv
is set to 2 (see Price et al. 2018a).

Embedding the planet

The simulation is first run for 10 orbits to allow spiral structure in the disc to develop.
We then split it into two simulations, one with an embedded planet and one which
continues to evolve without a planet. The latter is a control simulation to compare
the impact a migrating giant planet has on the spiral structure in a gravitationally
unstable disc. A planet with a planet-to-star mass ratio of q = 2.9× 10−3, equivalent
to 3MJup in a 0.1M� disc around a 1M� central star is added at Rp = 20.

The simulations are run for another 8 orbits, with a total simulation time of
18 orbits.

4.2.2 Post processing of simulations

The raw synthetic continuum images at 1.3mm are created using mcfost (Pinte
et al., 2006, 2009). We first scale the simulations such that Rout = 200au, and
initial Rp = 160au. We use 108 photon packets on a Voronoi tesselation where each
mcfost cell corresponds to an SPH particle. The luminosity of the star is calculated
using an assumed mass of 1M� and a 1Myr isochrone from Siess et al. (2000) which
corresponds to a temperature of T? = 4286K. Since the gas surface density of the disc
is quite large, the Stokes numbers in the disc are small enough (< 0.1 for mm sized
grains) that we assume that the dust is well coupled to gas. Therefore we assume
that the dust distribution is identical to the gas distribution and a constant dust-to-
gas ratio of 0.01. The dust sizes vary between 0.3 and 1000 µm and are distributed
across 100 different sizes with a power-law exponent of −3.5. We assume all dust
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grains are made of astronomical silicates, and are spherical and homogeneous. We
compute the dust properties using Mie theory. The disc is assumed to be at a
distance of 140pc.

To create mock millimeter continuum observations, we use the ALMA Ob-
servation Support Tool (Heywood et al., 2011). We use integration times of 12,
30, 60, and 120 minutes at 230GHz (1.3mm) in Band 6 with the ALMA Cycle 8
C43-7 configuration. We assume a bandwidth of 7.5GHz and a precipitable water
vapour level of 0.913mm. CLEAN images are created using natural weights result-
ing in a beam size of 0.107′′ × 0.124′′, or equivalently 15.0au ×17.3au at 140pc.
As shown by Mayer et al. (2016), different ALMA configurations can alter the de-
tectability of features. Hence a similar set mock observations are created with the
C43-6 configuration (0.156′′×0.196′′) and with a disc inclined at 40◦ using the C43-7
configuration.

Assuming a disc inclination and position angle of 40◦, optically thick 12CO,
and optically thinner 13C16O CO-isotopologue channel maps are generated for the
J = 3− 2 transition using a velocity resolution of 0.1 km/s. We choose this tran-
sition as it can be observed with a good compromise between observation time
and signal-to-noise ratio. The abundances for 12CO and 13C16O are assumed to
be a fraction 1 × 10−4 and 2 × 10−7 of the total disc mass (i.e. relative to H2)
respectively. We account for CO freeze-out at T < 20K, and photo-dissociation and
photo-desorption in regions of high UV radiation (see Appendix B of Pinte et al.
2018a). We then convolve the resulting images with a beam size of 0.05′′ × 0.05′′;
the maximum resolution expected for CO line observations.

4.3 Results

4.3.1 Impact on spiral structure

As shown in Rowther & Meru (2020), planets migrate inwards rapidly until they
reach the gravitationally stable inner disc. For the simulations presented here, the
gravitationally stable region is inside R ≈ 120au. The impact of the planet on the
disc as it migrates is compared to the control simulation using the Toomre parameter
(Toomre, 1964),

Q = csΩ
πGΣ , (4.6)

which gives a measure of how gravitationally unstable the disc is, where Σ and cs

are the disc surface density and sound speed, respectively.
Figure 4.1 shows the surface density (left) and the 2D Toomre parameter Q
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Figure 4.1: Surface density (left) and 2D Toomre parameter (right) plots of a disc
without a planet (top) and with a 3MJup planet (bottom) at the end of the sim-
ulation. The 2D Toomre plots show how gravitationally unstable the disc is. The
critical value for non-axisymmetric instabilities is when Q . 1.7 (Durisen et al.,
2007), shown in red. The planet erases the spiral structure and is massive enough
to carve out a gap. This results in a gravitationally stable axisymmetric disc.

(right) of the simulations without a planet (top) and with a 3MJup planet (bottom)
at the end of the simulation. It is clear that the presence of the planet significantly
impacts the structure. The planet suppresses the spiral structure and opens up a
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Figure 4.2: Azimuthally averaged Toomre parameter, Q (top), surface density, Σ
(middle), and the sound speed, cs (bottom) for both the disc without a planet (red
lines) and with a 3MJup planet (blue lines) for the first 2 orbits every 0.2 orbits
after the planet is added. The time evolution during the first 2 orbits is shown by
the darker shades representing later times. The increase in cs due to the planet is
the dominant reason for the increase in Q in the outer regions of the disc (beyond
R ≈ 120au), causing the disc to become gravitationally stable.

gap. Despite both discs retaining the same disc mass (∼0.09M�) within 200au, the
2D Q plots show that the presence of the planet results in the disc becoming mostly
gravitationally stable with Q > 1.7 throughout the disc. Without a planet, strong
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gravitationally unstable (Q < 1.7) arms are present.
The dominant reason for the increase in Q is due to the planet’s influence

on the disc temperature, or equivalently the sound speed cs, in the disc. The spiral
wakes generated by the planet as it migrates are regions of relative overdensities
with respect to the disc background. The radially propagating spiral wakes can
evolve into shocks. The exchange of momentum and energy between the density
wakes and the disc at the shocks influence the global properties of the disc, heating
it up (Goodman & Rafikov, 2001; Rafikov, 2016; Ziampras et al., 2020).

The azimuthally averaged Toomre parameter (top), surface density (middle),
and sound speed (bottom) is plotted in Figure 4.2 for the first 2 orbits after the
3MJup planet (blue lines) is embedded. The red lines represent the disc without
the planet at the same times. It can be seen, particularly in the regions of the disc
beyond R ≈ 120au, that there is a quick and significant increase in the sound speed
after the planet has been added, whereas, the change in Σ is relatively small. This
increase in temperature causes the disc to become gravitationally stable, resulting
in a higher value of the Toomre parameter.

To ensure the sudden inclusion of the 3MJup planet did not trigger artificial
excess heating, we compared the artificial viscosity to the gravitational stress param-
eter immediately after the planet was embedded. The increase in artificial viscosity
due to the planet is negligible compared to the magnitude of the gravitational stress
parameter.

4.3.2 Continuum images

The left column of Figure 4.3 compares the mock observations of a disc with a
3MJup planet (bottom) and without a planet (top) with an integration time of 30
minutes using the C43-7 configuration. An axisymmetric flux map is produced as
the azimuthally averaged flux of the mock observations and is shown in the middle
column. Finally to highlight non-axisymmetric features, the residual flux is plotted
in the right column by subtracting the axisymmetric map from the mock observation.
The top subset of panels in Figure 4.4 show the mock observations (top half) and
residuals (bottom half) using the higher resolution C43-7 configuration. The bottom
left subset of panels show the same with the lower resolution C43-6 configuration.
The bottom right subset of panels are for a disc inclined by 40◦ using the C43-7
configuration.

From Figure 4.3, it can be seen that without a planet, spiral arms due to
gravitational instability would be readily apparent. Whereas with the planet, the
only major non-axisymmetric feature that remains are the spiral arms caused by the
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Figure 4.3: Mock observation (left) using the C43-7 configuration with an integration
time of 30 minutes, axisymmetric flux map (middle), and residual flux (right) of a
disc without a planet (top) and with a 3MJup planet (bottom). The white ellipse
in the bottom left of each mock observation represents the beam size. The presence
of the planet results in a disc that no longer consists of spiral structure due to
gravitational instability and appears to be more axisymmetric.

planet as shown in Figures 4.3 and 4.4. The higher resolution mock observations
are able to better resolve the gap, however the planet induced spiral arms are only
visible with integration times > 1hr. This is true for both the non-inclined and
moderately inclined disc. Using a lower resolution, which increases the signal-to-
noise, allows the spiral arms to be easily seen in the residuals at lower integration
times. The tradeoff is a gap that is less resolved and shallower in the continuum
image. Despite the lower resolution images showing the spiral arms of the planet
more easily, higher resolution images would still be favourable as a less resolved and
shallower gap can lead to underestimates of the planet’s mass. This could in turn
lead to predictions with other methods of estimating the planet’s mass, such as with
the CO kinematics, that are inconsistent.
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Figure 4.4: Top subset of panels show the mock observations (top half) and residual
plots (bottom half) of a disc with a 3MJup planet with integration times of 12, 30,
60, and 120 minutes using the higher resolution C43-7 configuration. The bottom
left subset of panels is similar but only for integrations times of 12 and 30 min-
utes using the C43-6 configuration. At high resolution the disc appears completely
axisymmetric with short integration times. Whereas with longer integration times
(over 60 minutes), spiral arms caused by the planet can be seen in the residual
plots. At lower resolutions, the gap carved by the planet appears shallower, but
the planet’s spiral arms are easier to detect even with short integration times. The
bottom right subset of panels show that the planet’s spiral arms are also detectable
for moderately inclined discs. This is shown for a disc inclined by 40◦.

4.3.3 CO kinematics

The spiral waves generated by the planet can cause localised deviations in the Kep-
lerian flow of the disc as shown recently by Pinte et al. (2018b, 2019, 2020). These
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Figure 4.5: Synthetic continuum subtracted channel maps (J = 3 − 2 transitions)
for a) 12CO and b) 13C16O at ∆v = ±0.5 km s−1 from the systemic velocity of the
disc with and without the planet. A kink is not detected in the optically thick
12CO, but is visible in the optically thin 13C16O in the negative velocity channel
within the vicinity of the planet, see bottom right inset in Fig 4.5b. The bend in the
velocity profile in the bottom right inset is referred to as the kink. This is contrasted
with the smooth velocity profile in the bottom left inset. The disc inclination and
position angle are both 40◦.
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deviations can be detected as kinks in the gas channel maps.
Figure 4.5 shows the channel maps for 12CO and 13C16O at ∆v = ±0.5 km s−1

from the systemic velocity with the continuum subtracted. The optically thick 12CO
does not reveal any signs of a planet, but a kink is noticeable in the optically thinner
13C16O in the −0.5 km s−1 channel within the vicinity of the planet. We can exclude
large scale perturbations or any azimuthally symmetric mechanisms since the kink
is not seen in the opposite velocity channel where the profile remains smooth. The
kink is shown in the bottom right panel of Fig 4.5b in the inset. The kink is also
seen in the channels from v = −0.3 to −1.2 km s−1.

Although the channel maps without the planet are not perfectly smooth as
would be expected from a Keplerian disc, this is likely to be due to the gravitational
instabilities. Hall et al. (2020) show that for a gravitationally unstable disc the
perturbations due to gravitational instabilities are seen in all azimuths and in both
the positive and negative velocity channels. However in our simulations with a
planet, the kink is more localised appearing in only the negative velocity channel.
To ensure that the observed kink is due to the planet, we re-calculated the channel
maps with the planet at slightly different times with the planet being in different
azimuthal locations. Although the kink is not detectable at all times, whenever the
kink is detected it is in a different location determined by the position of the planet.
Additionally, in some cases the kink was only detected for a narrower range of ∆v.

4.4 Discussion

4.4.1 Implications for dust-to-gas mass ratios

In the early stages of evolution, discs are expected to be massive and gravitationally
unstable (e.g. Bate, 2018). A characteristic feature of such discs are their spiral
arms. However, from observations so far (Pérez et al., 2016; Huang et al., 2018a),
these discs appear to be quite rare. Due to the difficulty in directly measuring the
gas mass of the disc, the disc mass is often inferred via the dust mass using a fixed
dust-to-gas mass ratio. In some scenarios, such as with MWC 480 (Liu et al., 2019),
the observed dust mass can be high enough such that inferring the gas mass via
the canonical dust-to-gas mass ratio of 0.01 results in a disc that is massive enough
to be gravitationally unstable. Thus in their models, they assume a higher dust-
to-gas mass ratio to ensure that the disc is gravitationally stable. Facchini et al.
(2020) show that LkCa-15 retains a significant amount of dust mass in its rings.
Consequently, when modelling LkCa-15, they assume an upper limit on the disc gas
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mass (and hence a higher dust-to-gas mass ratio) to ensure the disc is not locally
gravitationally unstable.

In both cases this assumption was deemed necessary to explain the lack of
spiral features in the observations, which would be expected from more massive
discs. However, we show that a migrating 3MJup planet can cause a massive disc to
become gravitationally stable and suppress any spiral structure that would otherwise
be present. Hence, large dust-to-gas mass ratios are not necessarily required to
explain a lack of spiral features.

4.4.2 Caveats

A caveat to the results presented here is the long term gravitational stability of the
discs due to the cooling mechanism used. Although it mimics the characteristics
of a realistic self-gravitating disc, i.e. a disc which is only gravitationally unstable
in the outer regions, it is still a straight-forward implementation where the cooling
time is a simple expression determined by the location in the disc.

The actual cooling in the disc is likely to be more complex and evolve over
time. Recently Mercer et al. (2018) calculated an effective β from their radiative
transfer calculations, which was found to vary both spatially and with time. Hence,
it is unknown what impact using more complex cooling methods such as radiative
transfer to cool the disc will have on the long term gravitational stability of the disc
with a migrating planet. Whilst we show that a migrating giant planet can erase
the spiral structure in a self-gravitating disc, it remains to be investigated whether
the loss of spiral structure remains for a significant amount of time.

The results presented here initially appear contrary to Meru (2015) where
it was shown that a fragment formed by gravitational instability in the outer disc
could trigger subsequent fragmentation in the inner disc. The main difference is
that the Toomre profiles are quite different. In Meru (2015), the inner disc was on
the edge of fragmentation (Q ∼ 1). Hence the increase in the surface density as a
result of the fragment driving material inwards towards the disc caused the disc to
fragment. This behaviour is not seen or expected in this Chapter as the inner disc
remains well above the gravitationally stable regime (Q & 1.7).

In this Chapter, we have only presented results for one planet and disc mass.
Lower mass planets would be less likely to impact self-gravitating spiral structures.
On the other hand, lower mass discs, which have weaker gravitational instabilities,
would be more susceptible to having their spiral structures suppressed by planets.
Although we find that a planet that is large enough to open up a gap also suppresses
the spiral structure, we cannot conclude that non-gap-opening planets are unable to
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affect the disc structure. We will present a follow up study that considers a variety
of planet and disc properties, as well as ALMA configurations, to investigate the
conditions at which spiral suppression is likely to be observed.

4.5 Conclusion

We perform 3D SPH simulations to investigate the impact a migrating giant planet
has on the structure of a gravitationally unstable disc. Our work shows that the
presence of the planet suppresses the spiral structure in the disc and causes the disc
to become gravitationally stable because it alters the temperature structure. This
interaction between the planet and the disc causes the self-gravitating phase of the
disc to be shortened, while retaining the same disc mass. The planet is able to carve
open a gap resulting in an axisymmetric disc.

The mock ALMA observations of the continuum presented here show that
the disc can appear completely axisymmetric for higher resolution ALMA configu-
rations. However, with longer integration times or by sacrificing resolution, spiral
arms from the planet become observable. In the latter case, the gap carved by the
planet will be less resolved and appear shallower. We also show that the planet can
be detected with high resolution kinematics using optically thin CO-isotopologues
like 13C16O. Our results show it is possible to explain a lack of spiral structure in
high mass discs without requiring high dust-to-gas mass ratios to limit the gas mass.
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5
Continuing to Hide Signatures
of Gravitational Instability in

Protoplanetary Discs

5.1 Introduction

In the last few years the Atacama Large Millimeter/submillimeter Array (ALMA)
has provided us with a large number of well resolved discs at millimeter wavelengths.
These observations have revealed the ubiquity of disc substructures. The most com-
mon of these substructures being axisymmetric rings & gaps. (ALMA Partnership
et al., 2015; Andrews et al., 2016; Fedele et al., 2018; Andrews et al., 2018; Huang
et al., 2018a; Dipierro et al., 2018; Long et al., 2018; Booth & Ilee, 2020). A few
of these discs are thought to be very young (< 1Myr) (ALMA Partnership et al.,
2015; Fedele et al., 2018; Dipierro et al., 2018). In their youth discs are expected to
be more massive and in the regime where the disc self-gravity drives its evolution.
In this phase of their lives, young massive discs develop gravitationally instabilities
in the form of large-scale spiral structures. These discs are often referred to as GI
discs. However, even young Class I discs show evidence of rings & gaps (Segura-Cox
et al., 2020; Sheehan & Eisner, 2018). Although rare, there is evidence that discs
with spiral features in the midplane exist (Pérez et al., 2016; Huang et al., 2018a).
Is the rarity of spiral structures in the disc midplane due to young discs being less
massive than we expect? Or can gravitational instabilities in massive discs be hidden
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by other processes?
Protoplanetary discs are primarily made up of circumstellar gas H2, which

is difficult to observe and makes measuring the mass of the disc challenging. Thus,
the total mass of the disc has to be inferred from the other constituents of the disc,
the dust or molecular gas (usually CO). By assuming a globally constant dust-gas
mass ratio, one can infer the gas mass from the more easily observed dust. However,
the inferred gas mass remains very uncertain due to the assumptions that go into
the disc radius, dust-to-gas mass ratio, dust opacities, distribution of grain sizes, or
local over/under-densities (Testi et al., 2014; Andrews, 2015, and references therein).
Inferring the disc mass using CO has other problems. The disc masses measured can
be underestimated if the CO line emission is optically thick, and hence doesn’t trace
the disc midplane (Bergin & Williams, 2017). Additionally, measurements of the
disc mass using CO can also be affected by freeze-out onto icy grains (van Zadelhoff
et al., 2001) and photodissociation (Reboussin et al., 2015). However, Booth et al.
(2019) showed that disc masses can be larger when using 13C17O, an optically thin
isotopologue which is a more robust tracer of the disc mass, consistent with early
mass estimates by Greaves et al. (2008). In HL Tau, Booth & Ilee (2020) found that
the disc mass estimates pushed the outer regions of the disc into the gravitationally
unstable regime. Interestingly, the continuum data for HL Tau shows axisymmetric
ring & gap structure (ALMA Partnership et al., 2015) instead of spiral structures;
in contrast to what is expected from massive gravitationally unstable discs.

The physical interaction between a planet and the disc can alter the disc
structure through the exchange of angular momentum (Kley & Nelson, 2012). Thus
it is natural to invoke planets as an explanation for the disc substructures such as
rings & gaps. Comparisons of hydrodynamic and radiative transfer simulations to
observations from ALMA (Clarke et al., 2018; Zhang et al., 2018) have validated this
interpretation. The evidence for planet-disc interactions became stronger by ?Pinte
et al. (2020) where it was shown that the planet could be detected by the localised
kink it produces in the gas kinematics. Given the young ages of some of these discs
with rings & gaps, if they were formed by planets then it’s reasonable to assume
the planet may have formed when the disc was younger and perhaps gravitationally
unstable. Hence, it’s necessary to understand how planet-disc interactions impact
gravitationally unstable discs and their observability.

Recent work has shown that the evolution of a gravitationally unstable disc
can be altered by the same mechanisms that are often used in lower mass discs, as
shown in Rowther et al. (2020) with a gap-opening planet, and by a warp in Rowther
et al. (2022). In the case of a planet, its spiral wake influences global properties of
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the disc. While in a warped disc, the non-coplanar geometry results in an oscillating
radial pressure gradient, which alters the velocities in the disc. In both, the disc
was heated up rendering it gravitationally stable with an axisymmetric ring & gap
structure.

In this Chapter we perform three-dimensional global numerical simulations
to extend the study in Rowther et al. (2020) by exploring a wider set of planet
and disc masses to fully understand the interplay between planet-disc interactions
and gravitational instabilities, and its implications on observations. This paper is
organised as follows. In §5.2 we describe the simulations presented in this Chapter.
In §5.3 we present our results on how planet-disc interactions impact gravitationally
unstable discs. The limitations and observational implications of this Chapter are
discussed in §5.4. We conclude our work in §5.5.

5.2 Model

We use Phantom, a smoothed particle hydrodynamics (SPH) code developed by
Price et al. (2018a) to perform the suite of simulations presented here.

5.2.1 Disc setup

The disc setup is identical to that in Rowther & Meru (2020) & Rowther et al.
(2020), and is summarised below. All discs are modelled using 2 million particles
between Rin = 1 and Rout = 25 in code units where the fiducial disc has a disc-to-
star mass ratio of 0.1. This is equivalent to a 0.1M� disc around a 1M� star. Sink
particles (Bate et al., 1995) are used to model both the central star and the planet.
The accretion radius of the central star is set to be equal to the disc inner boundary,
Rin. The surface density profile Σ is given by

Σ = Σ0

(
R

R0

)−1
fs, (5.1)

where Σ0 is the surface mass density at R = R0 = 1 and fs = 1−
√
Rin/R is the

factor used to smooth the surface density at the inner boundary of the disc. The
initial temperature profile is expressed as a power law

T = T0

(
R

R0

)−0.5
, (5.2)
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where T0 is set such that the disc aspect ratio H/R = 0.05 at R = R0. The energy
equation is

du
dt = −P

ρ
(∇ · v) + Λshock −

Λcool
ρ

(5.3)

where we assume an adiabatic equation of state, and u is the specific internal energy,
P is the pressure, ρ is the density and v is the velocity. The first term on the RHS
is the PdV work, and Λshock is a heating term that is due to the artificial viscosity
used to correctly deal with shock fronts. The final term

Λcool = ρu

tcool
(5.4)

controls the cooling in the disc. Here the cooling time is straightforwardly imple-
mented to be proportional to the dynamical time by a factor of β(R),

tcool = β(R)Ω−1 = β0

(
R

R0

)−2
Ω−1, (5.5)

where Ω is the orbital frequency and we have varied β with radius (Rowther &
Meru, 2020). In addition to the disc mass, the strength of gravitational instability
also depends on the cooling factor (Cossins et al., 2009). Hence, we set β0 = 5500.
The cooling factor is β = 13.75 and 8.8 at the planet’s location, Rp = 20 and
at Rout, respectively. This allows us to mimic a realistic self-gravitating disc that
is only gravitationally unstable in the outer regions (Rafikov, 2005; Stamatellos &
Whitworth, 2009; Rice & Armitage, 2009; Clarke, 2009), while being comparable to
constant β simulations in the outer regions.

Cullen & Dehnen (2010) introduced an artificial viscosity switch that utilises
the time derivative of the velocity divergence, which we use here to model shocks.
The artificial viscosity parameter αAV varies depending on the proximity to a shock.
Close to the shock, it takes a maximum of αmax = 1, and a minimum of αmin = 0
far away. The artificial viscosity coefficient βAV is set to 2 (see Price et al. 2018a;
Nealon et al. 2015).

5.2.2 The Suite of Simulations

In our suite we consider three different disc masses and three planet masses. We
begin by simulating three discs – that differ only in their mass – for 10 orbits at R =
Rout to allow spiral structure in the disc to develop. The final snapshot from each
of these three simulations are then used as the initial condition for four subsequent
simulations; three of these containing embedded planets of differing masses and
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Figure 5.1: Surface density rendered plots of a 0.08M�, 0.1M�, and a 0.25M� disc
after 10 orbits at R = Rout, right before a planet is embedded. Spiral structures due
to gravitational instabilities are seen in all three discs to different extents. The higher
the disc mass, the more gravitationally unstable the disc becomes as highlighted by
the decreasing size of the gravitationally stable inner disc as the disc mass increases.

one without a planet. The latter is a control simulation to compare the impact a
migrating giant planet has on the spiral structure in a gravitationally unstable disc.

To investigate the importance of the planet mass on suppressing spiral struc-
tures in a GI disc, we choose 1MSat, 1MJup, and a 3MJup for our planet masses. Each
planet is embedded (in code units) at Rp = 20 with an accretion radius of 0.001, and
the simulation is run for another 8 orbits, with a total simulation time of 18 orbits.
To investigate the importance of the disc mass on planet-disc interactions in a GI
disc, for our disc masses we choose a less gravitationally unstable (0.08M�) and
a more gravitationally unstable (0.25M�) disc in addition to our fiducial (0.1M�)
disc. Figure 5.1 shows each of the three discs right before the planet is embedded.

5.2.3 Post processing of simulations

The raw synthetic continuum images at 1.3mm are created using mcfost (Pinte
et al., 2006, 2009). The simulations are scaled such that the disc size is 200au, and
initial Rp = 160au. We use 108 photon packets on a Voronoi tesselation where each
mcfost cell corresponds to an individual SPH particle. The luminosity of the star
is calculated assuming a mass of 1M� and a 1Myr isochrone from Siess et al. (2000)
which corresponds to a temperature of T? = 4286K. We assume that the dust is
perfectly coupled to the gas and a constant dust-to-gas ratio of 0.01. As the Stokes
numbers in all the simulations in this Chapter are less than unity, this assumption is
valid. Additionally, in a GI disc, the dust is stil able to couple quite well to the gas
even at Stokes numbers of ∼10 (Baehr & Zhu, 2021). The dust sizes vary between



5.3. Results 101

0.3 and 1000 µm and are distributed across 100 different sizes with a power-law
exponent of −3.5. We assume all dust grains are made of astronomical silicates, and
are spherical and homogeneous. We compute the dust properties using Mie theory.
The disc is assumed to be at a distance of 140pc.

Mock millimeter continuum observations are created using the ALMA Ob-
servation Support Tool (Heywood et al., 2011). We use an integration time of 60
minutes in the ALMA Cycle 9 C-7 configuration. We assume a bandwidth of 7.5GHz
and a precipitable water vapour level of 0.913mm. CLEAN images are created using
natural weights resulting in a beam size of 0.107′′ × 0.124′′, or equivalently 15.0au
×17.3au at 140pc.

In Rowther et al. (2020), the kink caused by a 3MJup planet in a 0.1M�
disc was not visible in the channel maps of the optically thick 12CO. Therefore in
this Chapter, the kinematics is investigated using just the optically thinner 13C16O.
Assuming a disc inclination and position angle of 40◦, channel maps are generated
for the J = 3− 2 transition using a velocity resolution of 0.1 km/s. We choose this
transition as it can be observed with a good compromise between observation time
and signal-to-noise ratio. The abundance of 13C16O is assumed to be a fraction
7×10−7 of the total disc mass (i.e. relative to H2) respectively. Unless specified, we
do not account for CO freeze-out at T < 20K, and photo-dissociation and photo-
desorption in regions of high UV radiation (see Appendix B of Pinte et al. 2018a).

5.3 Results

Once the disc develops spiral structures, two different scenarios are followed. In the
first the simulation is continued as normal to show how the disc would evolve in the
absence of any planets. In the second, a planet is embedded. This is done for all
combinations of a 1MSat, 1MJup, and a 3MJup planet in a 0.08M�, 0.1M�, and a
0.25M� disc, totalling 9 simulations with planets. In all cases, the planet starts in
the outer gravitationally unstable parts of the disc and migrates rapidly inwards. As
the planet migrates, the spiral wakes generated by the planet begin influencing the
global disc properties (Goodman & Rafikov, 2001; Rafikov, 2016; Ziampras et al.,
2020). The final fate of the migrating planets and their impact on the disc structure
depend on both the planet’s mass and the strength of gravitational instabilities (i.e.
the disc mass).
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Figure 5.2: The migration tracks of a 1MSat, 1MJup, and a 3MJup in a 0.08M� (left),
0.1M� (middle), and 0.25M� (right) disc (as shown in Figure 5.1). The planets are
able to slow their migration in the 0.08M� and 0.1M� disc as the inner regions are
gravitationally stable. However, the planets are unable to slow down in the 0.25M�
disc as it is completely gravitationally unstable. The dot in the left panel marks the
location of a 1MSat planet as it is undergoing a brief period of outward migration
in a 0.08M� disc.

5.3.1 Planet Migration

In the 0.08M� and 0.1M� discs, the variable β model results in a disc with a
gravitationally stable inner region as shown in Rowther & Meru (2020). Whereas,
the 0.25M� disc is massive enough to still be gravitationally unstable everywhere
despite the variable β model. The migration of a 1MSat, 1MJup, and a 3MJup planet
is shown in Figure 5.2 in each of the three discs. Fig 5.2 demonstrates how the
strength of gravitational instabilities, and thus the mass of the disc (increasing from
left to right), determines the fate of the planet.

In the left and middle panels (the 0.08M� and 0.1M� disc), the migration
of each planet slows down when it reaches the stable inner disc, but at different lo-
cations. The lighter the planet, the further out the planet slows down. After which,
the planet continues to migrate inwards at a slower pace, consistent with the results
in Rowther & Meru (2020). However, as the entire 0.25M� disc is gravitationally
unstable, the migration of the planets (right panel) is much more similar with sim-
ulations using a constant β where the planet rapidly migrates inwards towards the
inner boundary of the disc (Baruteau et al., 2011; Malik et al., 2015; Rowther &
Meru, 2020). After which, migration ceased.
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Figure 5.3: Cross section slices of density in the z = 0 plane of various disc and planet
masses. From top to bottom, the disc masses are 0.08M�, 0.1M�, and 0.25M�. The
left-most, detached column shows how the disc evolves without a planet. The rest
from left to right contain a 1MSat, 1MJup, and a 3MJup planet. These show that if
a planet is massive enough it can completely suppress spiral structures due to GI,
e.g. a 0.08M� or 0.1M� disc with a 3MJup planet. If its mass is too low, the disc
remains gravitationally unstable, e.g. with any planet in a 0.25M� disc. When the
planet mass lies somewhere between those two extremes, spiral structures due to GI
are weakened, e.g. a 0.1M� disc with a 1MJup planet.

5.3.2 Gravitational Instability vs Planet’s Spiral Wakes

Figures 5.3 and 5.4 show the density and velocity divergence ∇ · v rendered plots
for all the simulations in this Chapter. In both figures, each row corresponds to a
different disc mass. From top to bottom, the disc masses are 0.08M�, 0.1M�, and
0.25M�. Similarly, each column represents a different planet mass. The left-most
detached column shows how the disc would have evolved in the absence of a planet.
The rest from left to right contain a 1MSat, 1MJup, and a 3MJup planet. The time
at which the simulation is shown is chosen such that planets are on the North side
of the disc, hence the times are not identical. Having the planet at roughly the same
location makes for easier comparisons for mock observations in Figures 5.7 and 5.8,
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Figure 5.4: Cross section slices of velocity divergence ∇ · v in the z = 0 plane
of various disc and planet masses. The simulations are arranged as in Figure 5.3.
When the magnitude of ∇ · v due to the planet’s spiral wake is greater relative to
the ∇ · v due to GI, the evolution of the disc is driven by the planet resulting in
a gravitationally stable disc with ring & gap structure, e.g. a 0.08M� or 0.1M�
disc with a 3MJup planet. When the magnitude of ∇ · v due to the planet and GI
is comparable, GI structures are weakened, but not suppressed, e.g. a 0.1M� disc
with a 1MJup planet. If the magnitude of ∇ · v due to GI is dominant, then GI
structures are unaffected, e.g. with any planet in a 0.25M� disc.

but the general results described here are applicable even at the same simulation
time. Similarly to Rowther et al. (2022), we use the ∇ · v plots to understand how
the spiral wakes of the planet are responsible for heating up the disc as from eq 5.3,
changes in ∇·v directly contribute to the energy equation, and thus the temperature
of the disc.

From the various disc and planet masses explored in this Chapter, we find
that the planet’s impact on the spiral structures due to GI can be quite different.
For sufficiently massive discs, the gravitational instabilities are too strong to be
suppressed by the planet. This is the case with the 0.25M� disc in the bottom row
of Fig 5.3. Likewise, if the planet is massive enough, it can alter the evolution of
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Figure 5.5: Azimuthally averaged ∇ · v plots showing the impact of a planet on
representative simulations from Figure 5.4 that highlight the three scenarios that
may occur. In this view, spiral structures in the disc are represented by radial
variations in ∇ · v. In the top panel, the spiral wakes generated by a 3MJup planet
in a 0.08M� disc dominate over GI, thus controlling the evolution of the disc. In
the middle panel, the magnitude of ∇·v due to GI is comparable to a 1MJup planet
in a 0.1M� disc. Hence, both the planet and GI play a role in the evolution of the
disc. In the bottom panel, a 3MJup planet in a 0.25M� disc has a lesser impact on
∇ · v compared to GI. Thus the evolution of the disc is unchanged.

the disc by heating it up enough to push it into the gravitationally stable regime,
and thus suppressing spiral structures (Rowther et al., 2020). The suppression of
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GI is most apparent with the 3MJup planet in the 0.08M� and 0.1M� discs. An
in-between scenario is also seen where the planet mass is just large enough to weaken
GI structures, but not enough to completely suppress it. The weakening of GI can
be seen with both 1MSat and 1MJup planets in a 0.1M� disc in the middle row of
Fig 5.3.

By expanding our parameter space beyond Rowther et al. (2020), we can
explore in more detail how the spiral wakes generated by the planet interacts with
the gravitational instabilities present in the disc, seen in Figure 4. In general, the
magnitude of ∇·v due to GI is larger with increasing disc mass. This is expected as
more massive discs are expected to be more gravitationally unstable. Similarly, ∇·v
due to the spiral wakes generated by the planet is also larger with increasing planet
mass which is consistent with expectations of larger planets being more easily able
to influence the disc’s evolution (Kley & Nelson, 2012). However, the impact of the
planet on ∇ · v is broadly similar regardless of disc mass.

Figure 5.5 shows the azimuthally averaged ∇·v of a subset of the simulations
in Fig 5.4. In each panel the blue lines represent a simulation with a planet that
is representative of one of the aforementioned scenarios, while the orange lines are
for discs that continued to evolve without a planet. They highlight the increasing
dominating effect of GI on the magnitude of ∇·v as the disc mass increases. Figures
5.4 and 5.5 now reveal why none of the planets have a significant impact on the spiral
structures due to GI in the most massive disc. The magnitude of ∇ · v due to GI
is larger comparable to ∇ · v due to the planet’s wake. As a result, the planet
does not contribute much to the energy equation (Eq. 5.3) and the disc remains
gravitationally unstable. Only the 3MJup planet has a minor impact on the disc
structure. However, the planet’s wake is restricted to the inner disc. Thus, the
outer disc remains mostly unaffected. Similarly, Figs 5.4 and 5.5 also reveal that
gravitational instabilities are completely suppressed when ∇ · v due to the planet’s
wake is dominant, as shown in the simulations with a 3MJup planet in a 0.08M� and
0.1M� discs, and a 1MJup planet in the 0.08M� disc. In the in-between scenario
where GI is weakened, this occurs when both GI and the planet have a comparable
influence on ∇·v as seen when there is a 1MSat or 1MJup planet in the 0.1M� disc,
and a 1MSat planet in the 0.08M� disc. The Toomre Q parameter gives a measure
of how gravitationally unstable a disc is, and is defined by (Toomre, 1964)

Q = csΩ
πGΣ . (5.6)

To best highlight the three scenarios that may occur, the azimuthally averaged
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Figure 5.6: Azimuthally averaged Toomre Q plots after two orbits showing the
impact of a planet on three representative simulations that highlight the three sce-
narios that may occur. In the top panel, a 3MJup planet in a 0.1M� disc increases
Q globally, thus controlling the evolution of the disc and causing it to become grav-
itationally stable. In the middle panel, a 1MJup planet in a 0.1M� disc is unable to
affect Q in the outermost regions of the disc, but has a minor impact on the inner
regions. Hence, both the planet and GI play a role in the evolution of the disc. In
the bottom panel, a 1MJup planet in a 0.25M� disc has little impact on Q, thus the
evolution of the disc is unchanged.

Toomre Q plots in Figure 5.6 are shown two orbits after the planet has been em-
bedded for three representative simulations. To summarise;
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i) Planet Driven Evolution – The spiral wakes generated by a 3MJup planet
in a 0.1M� or 0.08M� have a large effect on ∇·v causing the disc to heat up as
seen by the global increase in the Q profile. Thus, GI structures are completely
suppressed as the disc is pushed into the gravitationally stable regime.

ii) GI + Planet Driven Evolution – The spiral wakes of a 1MJup planet in
a 0.1M� disc are less extended compared to the 3MJup planet. As the spiral
wakes do not extend far out, the the Q profile of outer parts of the disc remain
in the gravitationally unstable regime. Thus the simulations still show GI
structures in the outer regions.

iii) GI Driven Evolution – The spiral wakes generated by any of the three
planets in a 0.25M� disc are unable to have a major impact on ∇·v, and thus
they have very little effect on the Q profile. Hence the disc remains just as
gravitationally unstable as if it had evolved without a planet.

5.3.3 Mock ALMA observations

The top half of Figure 5.7 shows mock observations for all simulations in this Chapter
at the same times as shown in Figures 5.3 and 5.4 at 1.3mm with an integration
time of 60 minutes using the C-7 configuration. The bottom half highlights non-
axisymmetric features by plotting the residuals of subtracting the mock observations
from an axisymmetric model. From top to bottom, the disc masses are 0.08M�,
0.1M�, and 0.25M�. The left-most detached column shows how the disc would be
observed in the absence of a planet. The rest from left to right show how the disc
would appear if it contained a 1MSat, 1MJup, and a 3MJup planet.

From Figure 5.3, in a 0.25M� disc the planets do not have much, if any,
impact on gravitational instabilities in the disc. This is reflected in the mock obser-
vations in Figure 5.7, where both the flux and residual plots are similar regardless
of whether a planet is present in the disc.

In contrast, Figure 5.3 shows that the 0.08M� and 0.1M� discs are much
more affected by the presence of a planet. If the planet is massive enough and drives
the disc’s evolution, as is the case with a 3MJup planet in a 0.08M� and 0.1M� discs,
ring & gap structure is seen in the mock observations. The weakening of GI by the
lower mass planets is also reflected in the mock observations where evidence of GI
in the form of large-scale spiral structures is far less clear. The lack of obvious GI
structures is highlighted by the plots in the left-most detached column which show
that in the absence of a planet, evidence of GI is apparent in the mock observations,
and especially the residuals in Fig 5.7.
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Figure 5.7: Upper panel: mock observations at 1.3mm using the C43-7 configuration
with an integration time of 60 minutes. Lower panel: the residuals of subtracting the
mock observations from an axisymmetric model which highlights non-axisymmetric
features. The simulations are arranged as in Figure 5.3. The planet can completely
suppress spiral structures if it’s massive enough, or have no affect on GI if its mass
is too low, or weaken GI and making it harder to observe if the planet mass lies
between the two extremes.
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The planet leaves a few hints of its presence in Fig 5.7. For clarity, this will
be described using the mock observations of a 3MJup planet in either the 0.08M�
or 0.1M� disc as the planet dominates over GI, where all the residual features can
be confidently attributed to the planet. The largest of the features in the residuals
show that the rings are asymmetric in brightness, highlighted by the red regions in
the vicinity of the planet. Comparison with Fig 5.3 reveals that this asymmetry can
be attributed to overdense regions resulting from the spiral wakes of the planet. As
mentioned earlier, the gravitationally stable inner disc slows down planet migration
in the 0.08M� or 0.1M� discs. The inward migration is due to a large negative
coorbital torque resulting from an underdense region in front of the planet (Rowther
& Meru, 2020; Malik et al., 2015; Baruteau et al., 2011), which is revealed in the
residuals as a blue (underdense) region in front of the planet. The opposite is seen for
an outwardly migrating 1MSat planet in a 0.08M� disc where the blue (underdense)
region is behind the planet. The time at which the mock observation is created
is marked in the migration track in Figure 5.2 highlighting the outward migration.
The planet also appears as a bright spot in the mock continuum data. It is likely
that this bright spot is artificially enhanced by our choice of accretion radius, see
§5.4.2.

5.3.4 Impact on the Kinematics

The gas channel maps can also be used to detect GI or the presence of giant planets
(Pinte et al., 2018b, 2019, 2020; Hall et al., 2020). Figure 5.8 shows the synthetic
channel maps at ∆v = vobs − vsystemic = 0 km/s for all the simulations in this
Chapter. In real observations, the channel maps would be affected by CO freeze-
out, and photodissociation and photodesorption in regions of high UV radiation.
However, the channel maps in Fig 5.8 are created excluding these effects for easier
comparison with Hall et al. (2020) and Terry et al. (2022). Additionally, these have
not been convolved with a beam size. Both are discounted for clarity in comparing
the kinematic signatures of GI and a planet.

Primary Kink

In the case of a planet, its presence can be detected by a localised kink near the
location of the planet (Pinte et al., 2018b, 2019, 2020). This is most apparent for a
3MJup planet in a 0.1M� or 0.08M� disc where a kink is visible near the vicinity
of the planet and is not seen at all radii. A weaker kink is also visible for a 1MJup

planet in both the 0.1M� and 0.08M� discs, but this is likely to be detectable only
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Figure 5.8: Synthetic channel maps (J = 3 – 2 transitions) for 13C16O at ∆v = 0
km s−1 from the systemic velocity of the disk. The simulations are arranged as in
Figure 5.3. When the planet is able to open up a gap in the disc, a primary kink is
seen at the planet’s location along with a secondary kink on the opposite side due
to the planet’s spiral wake. GI wiggles are only clearly seen for the 0.25M� disc.

in synthetic observations which are not affected by noise and not smoothed by the
beam size. However, if the planet’s influence does not dominate over GI, the planet
is undetectable from the kinematics as evident by the lack of any localised kink in
the 0.25M� disc.

Secondary Kink

The presence of a planet in the kinematics can be detected by any extended features
caused by the spiral wake of the planet (Bollati et al., 2021; Calcino et al., 2021;
Verrios et al., 2022). In Fig 5.8, this extended feature is visible as a secondary kink
on the opposite side of the planet. The imprint of the planet’s spiral wake is most
easily seen for a 1 and 3MJup in a 0.08M� disc, and a 3MJup in a 0.1M� disc. The
imprint left behind by the wake of the planet as seen in these simulations have also
been detected in the disc around HD 163296 (Calcino et al., 2021).
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GI Wiggle

In the case of GI, its presence can be detected in the form of ‘GI wiggles’ (Hall
et al., 2020). The global nature of GI results in these wiggles being non-localised
appearing at all velocities and radii in the disc. In Fig 5.8, a clear GI wiggle is
only seen for a 0.25M� disc where strong gravitational instabilities are present. The
amplitude of the wiggle is larger further out in the disc. Since β decreases with
radius, this behaviour is consistent with Longarini et al. (2021) which showed the
amplitude of the wiggle is stronger for lower values of β. As mentioned earlier, when
GI is stronger compared to the planet’s spiral wake, the disc structure is unaffected.
This is reflected in the kinematics by the lack of any features associated with the
planet visible in the 0.25M� disc.

Despite being gravitationally unstable and harbouring large scale spiral fea-
tures, the 0.08M� and 0.1M� discs only show tentative GI wiggles, which is likely to
be hidden when observational effects (such as a beam size) are included. However,
this is expected from previous work which showed GI wiggles are weaker for lower
disc masses (Longarini et al., 2021; Terry et al., 2022).

Including CO Freeze-out, Photodissociation and Photodesorption

To determine if the kinematic features due to a planet or GI are impacted by ob-
servational effects, Figure 5.9 compares the channel maps with (right panels) and
without (left panels) the inclusion of CO freeze-out below 20K, and photodissocia-
tion and photodesorption in regions of high UV radiation. The comparison is only
presented for two simulations; a 3MJup planet in a 0.1M� disc and a 0.25M� disc
without a planet. The former is chosen to investigate the observability of the kine-
matic signatures due to a planet which shows that both the primary and secondary
kink are unaffected. The latter is chosen to determine observability of GI structures
in the channel maps which show that the GI wiggles are far less visible due to the
inclusion of the aforementioned observation effects.

5.4 Discussion

5.4.1 Observational Implications

Simulations of star cluster formation (Bate, 2018) show that discs are expected to
be massive and potentially gravitationally unstable in the earliest stages of their
lives. A characteristic feature of such massive discs are their large-scale spiral arms.
Despite the increasing number of resolved protoplanetary discs, these type of discs
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Figure 5.9: Synthetic channel maps (J = 3 – 2 transitions) for 13C16O at ∆v = 0
km s−1 from the systemic velocity of the disk. The top panels are for a 3MJup in a
0.1M� disc, while the bottom panels are for a 0.25M� disc without a planet. The
right panels includes CO freeze-out below 20K, and photodissociation and photodes-
orption in regions of high UV radiation, while the left panels do not. Inclusion of
these observational effects do not affect the visibility of the kinematic features of
the planet. However, as GI is strongest in the outer colder regions of the disc, they
are more affected and are less visible.

remain quite rare in observations (Pérez et al., 2016; Huang et al., 2018a). Addition-
ally, more complex methods have measured disc masses to be higher than previous
estimates using a constant fixed dust-to-gas mass ratio to infer the total mass of
the disc. Using the rare optically thinner 13C17O, Booth & Ilee (2020) measured
the mass of HL Tau to be large enough to enter the gravitationally unstable regime.
Utilising the aerodynamic properties of dust grains Powell et al. (2019) measured
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new disc masses to be 9-27% of their stellar hosts. Such high masses push the
discs close to the gravitationally unstable regime where the disc would be expected
to show evidence of gravitational instabilities, but instead they show axisymmet-
ric ring & gap structures. Our results show that weak and moderate gravitational
instabilities can be suppressed by planet-disc interactions, thus highlighting that
massive discs cannot be simply dismissed by the lack of large-scale spiral structures
in the disc midplane. Veronesi et al. (2021) showed that the self-gravity of the Elias
2-27 protoplanetary disc can have a noticeable impact on its rotation curve. Hence,
our results provide additional motivation for obtaining high resolution molecular
data for axisymmetric discs so that dynamical mass estimates can be calculated
to determine if their spiral structures due to GI are hidden by planets or other
processes.

5.4.2 Observability of Continuum and Kinematic Features

The results presented here have made a few assumptions and simplifications which
affect the observability of the continuum and kinematic substructures described in
§5.3.

The bright spot at the planet’s location in our synthetic observations is most
likely to be impacted due to the simplification of using an accretion radius of 0.001
code units. We choose a small accretion radius to ensure the planet does not accrete
too much material. If the planet was allowed to freely accrete, it would quickly reach
the threshold required to open up a gap at which point all the planets would behave
identically, which defeats the purpose of investigating the impact of different planet
masses. The consequence of such a tiny accretion radius is a lot of gas swirling
around the planet. Although a circumplanetary disc is an expected physical feature,
resolving it is not the purpose of this study and it is unlikely that we do so in these
simulations.

In this Chapter, the dust has been assumed to be perfectly coupled to the gas.
Consequently, any asymmetric structure due to the planet present in the simulation
is also evident in the mock continuum observation. If the dust is decoupled from
the gas, the asymmetric features are less likely to be observable (Dipierro et al.,
2015) as the dust will be able to form substructures that do not trace the gas
substructures perfectly. However, given the high masses of the disc involved the
Stokes numbers of millimeter sized grain is smaller than one and thus are more
likely to be coupled to the gas. Nevertheless, simulations with a gas and dust
mixture are required to test the validity of this assumption further. Additionally,
the observability of these substructures also depend on ALMA configuration and
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integration time used. Recently, Speedie et al. (2022) also found that planet driven
spirals could be observable with ALMA with longer integration times. This is also
true for the observability of GI structures when they are weakened by the planet
like with a 1MSat or 1MJup planet in the 0.1M� disc.

The cavity seen in all simulations is due to the inner-most regions of the disc
not being resolved. Consequently, the inner boundary of the disc shows up as a ring
in the contiuum. Higher resolution and more realistic thermodynamics could both
resolve these issues.

In §5.3.4 it was shown that the inclusion of CO freeze-out, and photodissoci-
ation and photodesorption had more of an effect on the kinematic signatures of GI
rather than a planet. Gravitational instabilities are expected to be strongest in the
outer colder regions of the disc. Hence, their signature GI wiggle is more likely to
be affected by CO freeze-out. This is seen in the bottom right panel of Fig 5.9 by
the lack of emission (and thus wiggles) in the outer parts of the disc. However, as
the planet is located in the inner warmer parts of the disc, the kinematic features
associated with the planet are still visible with the extra physics included.

5.4.3 Cooling prescription

A caveat to the simulations presented in this study is the cooling prescription used.
Although it is able to mimic a realistic gravitationally unstable disc, i.e. one that
only has GI structures in the outer regions of the disc, it does not account for the
evolution of the disc. Using radiative transfer simulations, Mercer et al. (2018) cal-
culated an effective β which was found to vary both spatially and with time. While
this does not change our conclusions qualitatively, the long term evolution of planet-
disc interactions in a GI disc requires studies with more realistic thermodynamics.

5.5 Conclusions

We perform 3D SPH simulations to investigate the impact of planet-disc interactions
on the structure of a gravitationally unstable disc. Our work shows that the more
gravitationally unstable a disc is, the harder it is for a planet to influence the disc’s
evolution. However, the planet can affect the disc’s evolution when the strength of
the planet’s spiral wake is comparable to or larger than gravitational instabilities.
When the planet is massive enough, it is able to open up a gap in the disc.

The mock ALMA observations of the continuum show that the observability
of GI structures is either diminished or completely suppressed when the planet is
massive enough to impact the disc structure. The analysis of the kinematics reveals
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that if either the kinematic signature of a planet or GI is present, then the other is
not detected. If the planet drives the disc’s evolution, then the planet’s imprint is
visible in the kinematics. The GI wiggle is only clearly visible for the highest mass
disc, and as the planet is not massive enough to impact the disc structure, the GI
wiggles are not affected by the presence of the planet.

Our results show that it is possible for high mass discs to appear axisymmet-
ric, and lacking large-scale spiral structures in the presence of a giant planet. The
implications on the origins of disc substructures, planet formation, and disc evolu-
tion necessitate these findings to be taken into account when considering the many
possible discrepancies between the disc structure and inferred mass in observations.
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6
Warping Away Gravitational

Instabilities in Protoplanetary
Discs

6.1 Introduction

In recent years, a large number of protoplanetary discs have been observed at mil-
limeter wavelengths with ALMA. Most of these discs are axisymmetric, with some
also containing rings and gaps (ALMA Partnership et al., 2015; Andrews et al., 2016;
Fedele et al., 2018; Andrews et al., 2018; Huang et al., 2018a; Dipierro et al., 2018;
Booth & Ilee, 2020), even though some of them are quite young (< 1Myr). Ring and
gap structures have also been observed in even younger (. 0.5 Myrs) Class 1 discs
(Sheehan & Eisner, 2018; Segura-Cox et al., 2020). Young discs are thought to be
massive and could potentially be gravitationally unstable. A characteristic feature
of such discs are large scale spiral features. There is evidence that discs with spiral
arms in the midplane exist (Pérez et al., 2016; Huang et al., 2018b), although they
seem to be quite rare.

Does the lack of observed large scale spiral structures imply that young discs
are not as massive as expected? Or can signatures of gravitational instabilities
be hidden? It is reasonable to assume that gravitationally unstable discs do not
evolve in isolation. The physical processes that are often used to explain observed
substructures such as rings and gaps, along with the mechanisms that can warp
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a disc will also influence the evolution of young self-gravitating discs. A common
explanation for rings and gaps are planet-disc interactions which can also suppress
spiral structures in gravitationally unstable discs (Rowther et al., 2020).

There are several mechanisms that can warp a protoplanetary disc. These
include a misaligned internal (planetary or stellar) companion, a misaligned unbound
stellar companion (flyby), or misaligned infalling material from chaotic accretion
episodes. The rate at which these discs are observed also suggests that warps and
misalignments are common in protoplanetary discs (Benisty et al., 2017; Walsh
et al., 2017; Casassus et al., 2018; Ballabio et al., 2021). The latter two mechanisms
are more relevant for gravitationally unstable discs. Flybys are much more common
earlier in a disc’s lifetime and become less frequent over time (Pfalzner, 2013; Vincke
& Pfalzner, 2016; Bate, 2018). Misaligned infall is also expected to occur very early
in a disc’s lifetime when there is still plenty of material around the protostar (Bate,
2018; Sakai et al., 2019). Both of these mechanisms are more likely to occur precisely
when discs are more likely to be gravitationally unstable and can alter the evolution
of the disc.

There have been some simulations of flybys interacting with a gravitationally
unstable disc, but in these studies the flybys were coplanar or head-on. Additionally,
the distance of closest approach occurred inside the disc causing major disruption
to the disc structure and completely suppressing gravitational instabilities (Lodato
et al., 2007; Forgan & Rice, 2009). These works demonstrate that a flyby altering
the disc structure can affect the heating and thus the self-gravitating structures.
However, they do not consider warps or misalignments. Thies et al. (2010) on the
other hand did study the impact of inclined flybys and found that stellar encounters
induced fragmentation. However, their disc masses were much more massive and
hence more prone to fragmentation.

In this Chapter we use three-dimensional global numerical simulations to
consider the evolution of an isolated self-gravitating disc subjected to a warp. To our
knowledge, this is the first study of a self-gravitating disc subjected to a warp. This
Chapter is organised as follows. In §6.2 we recall the relevant warp theory and its
context in self-gravitating discs. In §6.3 we describe the simulations presented in this
Chapter. In §6.4 we present our results of the impact that an artificially introduced
warp has on the structure and evolution of gravitationally unstable protoplanetary
discs. We discuss our work in the context of its limitations and observations in §6.5.
We conclude our work in §6.6.
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Figure 6.1: A 3D projection of the disc after it has been warped. The annotations
(see Fig 10 of Lodato & Pringle, 2007) show the radial pressure gradients induced by
the warp at different azimuths as a fluid element orbits the disc. The orange arrows
show the rotation of the disc. The shaded grey boxes represent the pressure between
adjacent annuli of gas. At φ = 0 and φ = π the annuli are aligned, hence there is
no pressure gradient. At all other azimuths, the heights of the annuli are offset
resulting in an oscillating radial pressure gradient as the gas traverses an orbit. The
direction of the resulting pressure gradient is shown by the black arrows. The colour
scale represents the surface density of the disc with brighter colours correspond to
regions of higher density.
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6.2 Warp Theory

Warped discs are characterised by a radial dependence on the angular momentum
vector. The steepness of the warp is described by the warp amplitude ψ which is
given by (eg. Ogilvie, 1999; Lodato & Price, 2010)

ψ = R

∣∣∣∣ ∂l

∂R

∣∣∣∣ , (6.1)

where l is the unit angular momentum vector, and R is the radial location spherical
coordinates.

To demonstrate the effect that the warp has on the disc, in Figure 6.1 we
show a 3D projection of a warped gravitationally unstable disc with annotations to
illustrate how the warp propagates through the disc. Consider a fluid element as it
orbits around the disc with a position given by φ. Here the disc may be described as
concentric rings or annuli of gas and the warp causes adjacent rings to be vertically
offset. The rotation of the disc is represented by the orange arrows. The shaded
grey boxes represent the direction of the pressure between adjacent annuli of gas.
At φ = 0 and π, adjacent rings will be perfectly aligned with no variation in the
vertical height z, hence at these locations there is no pressure gradient. At all other
azimuths, adjacent rings will have variations in z, resulting in pressure gradients
due to overpressure regions above or below the local midplane. The magnitude of
the induced pressure gradient is given by (Lodato & Pringle, 2007)

∂P

∂R
∼ ∂P

∂z
ψ ∼ Pψ

H
, (6.2)

where P is the pressure, z is the vertical height, and H is disc scale height. The
direction of the resulting pressure gradient, represented by the black arrows, changes
based on whether the fluid element is flowing towards or away from misaligned
regions. As it moves towards vertically offset regions, away from φ = 0 and π,
the resulting radial pressure gradient points inwards. The direction of the pressure
gradient is reversed when flowing away from the vertically offset regions, towards
φ = 0 and π. Hence the fluid element feels an oscillating pressure gradient as it orbits
in the warp which will drive the disc’s evolution. This oscillating radial pressure
gradient can trigger a strong response in the velocity flow in the disc. The response
for example in the radial velocity field from Lodato & Pringle (2007)

vR ∝ ψ cosφ (6.3)

depends on the warp amplitude of the disc and the azimuthal angle φ.
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While there have been extensive analytic efforts studying warps in accre-
tion discs (Hatchett et al., 1981; Papaloizou & Terquem, 1995; Ogilvie, 1999, 2000;
Lodato & Price, 2010), simplifications are often required, or the regime studied is
restricted to either wave-like or diffusive. However, in the work presented here where
we consider warps in gravitationally unstable discs, which contains large scale spiral
structures that cause shocks, PdV work is naturally important. Hence, if a warp
can excite strong responses in the velocity flow, the spiral structures in the disc are
expected to be impacted due to additional PdV heating. Furthermore, in gravita-
tionally unstable discs, the disc viscosity can be comparable to the disc aspect ratio
H/R, placing it in the intermediate regime where the warp propagation is neither
fully wave-like or diffusive. Martin et al. (2019) (and later Dullemond et al. 2022)
showed that in the intermediate regime, the warp propagation is wave-like in the
outer regions of the disc, and diffusive in the inner regions. As gravitational instabil-
ity is more relevant in the outer parts of the disc, we consider the warp propagation
to be wave-like in this chapter.

6.3 Method

6.3.1 Hydrodynamic simulations & initial conditions

We use Phantom, a smoothed particle hydrodynamics (SPH) code developed by
Price et al. (2018a) to perform the suite of simulations presented here.

The disc is modelled using 2 million particles between Rin = 3 and Rout = 150
in code units with a disc-to-star mass ratio of 0.1. The central star is modelled using
a fixed external potential. The initial surface mass density is set as a smoothed power
law and is given by

Σ = Σin

(
R

Rin

)−1
fs, (6.4)

where Σin is the surface mass density at R = Rin and fs = 1−
√
Rin/R is the factor

used to smooth the surface density at the inner boundary of the disc. The initial
temperature profile is expressed as a power law

T = Tin

(
R

Rin

)−0.5
, (6.5)

where Tin is set such that the disc aspect ratio H/R = 0.05 at R = Rin. The internal
energy equation is
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du
dt = −P

ρ
(∇ · v) + Λshock −

Λcool
ρ

(6.6)

where we assume an adiabatic equation of state, and u is the specific internal energy.
The first term on the RHS is the PdV work, Λshock is a heating term that is due to
the artificial viscosity used to correctly deal with shock fronts, and

Λcool = ρu

tcool
(6.7)

controls the cooling in the disc. Here, the cooling time is modelled using a simple
prescription such that it is proportional to the dynamic time by a constant factor
βcool (Gammie, 2001),

tcool = βcool Ω−1, (6.8)

where Ω is the orbital frequency. Assuming the transfer of angular momentum is
locally driven by gravitoturbulence (Gammie, 2001), βcool can be related to the α
viscosity by (Shakura & Sunyaev, 1973)

α = 4
9

1
γ(γ − 1)

1
βcool

. (6.9)

Here βcool = 15, which using the above equation gives a theoretical α = 0.027. To
model shocks, we use an artificial viscosity switch that utilises the time derivative
of the velocity divergence introduced by Cullen & Dehnen (2010). The artificial
viscosity parameter αv varies depending on the proximity to a shock. It takes a
maximum of αmax = 1 close to the shock and a minimum of αmin = 0 far away.
The artificial viscosity coefficient βv is set to 2 (see Price et al. 2018a; Nealon et al.
2015).

6.3.2 Warping the disc

Before the disc is warped, it is evolved for 10 orbits to allow it to become gravita-
tionally unstable and develop spiral structures. A warped disc can be described by
two angles, its tilt β, and its twist γ. Using this, the unit angular momentum vector
can be written as (Pringle, 1996)

l = (cos γ sin β, sin γ sin β, cosβ), (6.10)

where the disc is considered warped if l varies with radius. To introduce a warp in
our simulation, the position of each particle is rotated such that the unit vector of
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the angular momentum is given by (Lodato & Price, 2010)

lx =


0 for R < R1
A
2

[
1 + sin

(
π R−R0
R2−R1

)]
for R1 < R < R2

A for R > R2

ly = 0,

lz =
√

1− l2x,

(6.11)

where in our fiducial setup the warp is centered at R0 = 75 and extends from R1 = 45
to R2 = 105 in code units. The initial misalignment between the outer and inner
disc, i = 30◦ defines A = sin(i). All discs in this work are initially untwisted since
ly = 0.

Figure 6.1 also helps to visualise how the warp profile affects the disc’s evolu-
tion, as also described in equations 6.2 and 6.3. For a steeper warp, i.e. a larger warp
amplitude ψ, a fluid element will experience a larger pressure gradient from adjacent
rings as it orbits around the disc. Hence to investigate the importance of the warp
amplitude ψ on the disc evolution, we consider multiple simulations. First, we con-
sider various inclinations where simulations are performed with i = 5◦, 15◦, and 60◦.
By changing only the initial disc misalignment, the only difference to the fiducial
setup is the maximum value of ψ. Second, the impact of the warp location is also in-
vestigated with two additional simulations with the same warp width (R2−R1 = 60)
and initial disc misalignment (i = 30◦), but at R0 = 50 and 100.

6.4 Results

6.4.1 Evolution into a gravitationally stable disc

As the disc in our fiducial simulation evolves, the warp propagates radially both
inwards and outwards. The influence of the warp quickly suppresses the spiral
structures yielding an axisymmetric gravitationally stable disc. Since the warp is
not maintained by external forces, as the disc continues to evolve, the warp smooths
out and the disc becomes coplanar. The top panels of Figure 6.2 shows the surface
density of the disc at three snapshots at 0.5, 4, and 14 orbits after the disc is warped.
The leftmost panels shows the disc in the early stages when it is still warped. The
middle panels show the disc while the warp is dissipating at t = 4 orbits. Here,
the disc is smooth with no signs of any spiral structures left. The rightmost panels
show the disc much later in its evolution after the warp has completely dissipated
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at t = 14 orbits. Due to the constant βcool used to cool the disc, the disc cools back
down and becomes gravitationally unstable once more after the warp has dissipated
and the disc is back to being flat.
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Figure 6.2: Plots of the surface density, Σ (top) and divergence of velocity, ∇ · v
(bottom) in code units where the angled brackets represent a density weighted aver-
age, showing the evolution of a 0.1M� disc 0.5, 4, and 14 orbits (from left to right)
after a warp is introduced. The warp induces a strong response in the velocity flow
of the disc (left panels), which heats it up resulting in an axisymmetric gravitation-
ally stable disc (middle panels). After the disc has realigned, cooling takes over with
the disc eventually recovering its spiral features (right panels).

To demonstrate what drives the disc to become gravitationally stable, the
azimuthally averaged surface density Σ, sound speed cs, and Toomre Q parameter
(Toomre, 1964) are plotted in Figure 6.3, where the darker lines represent later
times. The Toomre parameter is given by

Q = csΩ
πGΣ . (6.12)

Protoplanetary discs are considered to be gravitationally unstable when spiral struc-
tures form. The critical value to form non-axisymmetric instabilities such as spiral
arms is when Q . 1.7 (Durisen et al., 2007). We see that the surface density of
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the disc is mostly unchanged once the warp is introduced. However, as seen by the
increase in cs the influence of the warp heats up the disc by enough to put it in the
gravitationally stable regime. During the first couple of orbits when the disc is still
warped, Figure 6.3 shows that the disc continues to heat up. As the warp dissipates
as the disc evolves, cooling takes over and the disc starts to cool back down. Due
to the simple cooling prescription, the inner regions of the disc begin to cool down
first. This is expected in a disc cooled with a constant βcool, where the the disc cools
faster in the inner disc. Eventually the warp has dissipated such that the disc can
cool down enough to reform its spiral structures. The rightmost panels in Figure
6.2 show the disc at 14 orbits when it is gravitationally unstable again.

To determine why the disc initially heats up, we investigate the role of PdV
work. The bottom panel in Figure 6.2 shows ∇ · v, the divergence of the velocity.
Recalling from §6.2 that the warp induces a response in the radial velocity, we
examine the consequence of this on the heating in the disc. As the divergence of
the velocity directly contributes to the energy (and thus temperature) of the disc,
see equation 6.6, we can use ∇ · v as a proxy for the heating due to PdV work that
is occuring in the disc. In the early stages of evolution at 0.5 orbits, the disc is
still warped. As mentioned in §6.2, strong radial pressure gradient are induced due
to adjacent annuli of gas varying with vertical height z. This triggers a response
in the induced radial velocity of the disc which heats it up as seen by the large
magnitude of ∇ · v in the bottom left panel of Figure 6.2. As the disc evolves, the
warp dissipates as there is no external torque sustaining the warp. At 4 orbits, the
disc is nearly flat and hence there is little variance in the pressure gradient. Thus,
the magnitude of ∇ · v has greatly decreased, as expected, leading to less heating
from PdV work. At 14 orbits, the only contributions to PdV heating is due to the
gravitational instabilities in the disc, which is much weaker compared to the PdV
work due to the warp.

6.4.2 Impact of warp inclination

Figure 6.4 shows the initial warp profile for three additional simulations, each with
a different initial disc misalignment of i = 5◦, 15◦, 60◦ to compare with the fiducial
simulation with i = 30◦. Recalling eq 6.2, the pressure gradient induced by the warp
depends on the pressure p, disc scale height H, and warp amplitude ψ. By fixing R0

and R2−R1, the location and extent of the warp respectively, p and H are unchanged
in the warped regions for all four discs. Thus, only changing the maximum value of
ψ allows for easier comparison of how the warp affects the evolution of the disc.

Figures 6.5 and 6.6 show the surface density and the divergence of the velocity
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Figure 6.3: Azimuthally averaged surface density, Σ (top), the sound speed, cs
(middle), and the Toomre parameter, Q (top) in code units at 0.5, 1, 1.5, 2, and 4
orbits after the warp has been introduced. The darker shades represent later times.
The dashed gray line in each panel is the initial profile at the moment the warp is
introduced. The increase in cs due to the warp is the reason for the increase in Q
causing the disc to become gravitationally stable.
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Figure 6.4: The warp amplitude, ψ (top) and the tilt, β (bottom) for the simula-
tions where the initial disc misalignment, i varies from 5◦ to 60◦. The darker lines
represent larger i. A larger initial disc misalignment results in a steeper tilt profile,
and thus a larger warp amplitude.

at 0.5 and 4 orbits respectively after the warp has been introduced. From the plots
of ∇ · v in Fig 6.5 it is clear that, all else being equal, the discs with the stronger
warp profiles trigger greater responses in the induced radial velocity of the disc.
This is easiest seen comparing the two extremes where i = 5◦ and i = 60◦ (top left
and bottom right sub panels). For the disc where i = 5◦, there is little change to the
∇ · v of the disc. Whereas with i = 60◦, there is a large impact on ∇ · v throughout
most of the disc. Fig 6.6 shows the consequence of the warp on the disc structure.
It can be seen that the discs with stronger misalignments (i = 30◦ and i = 60◦
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in particular), which trigger stronger responses in the induced radial velocity of
the disc, experience greater heating resulting in the discs becoming gravitationally
stable with no signs of spiral structures after a few orbits.

This is reflected in Figure 6.7 which shows the azimuthally averaged surface
density Σ (top panels), sound speed cs (middle panels), and Toomre Q parameter
(bottom panels). In all cases, the surface density is mostly unchanged as with the
fiducial case. The change in the sound speed on the other hand has a strong depen-
dence on the initial disc misalignment. In general, a larger initial disc misalignment,
and hence a larger warp amplitude ψ, results in more heating. However, simply hav-
ing a misaligned disc does not necessarily result in the disc becoming gravitationally
stable. With a slight misalignment of i = 5◦, since there is very little change to the
velocity flow of the disc, the contribution to the PdV work due to the warp is neg-
ligible and the disc simply continues to cool as expected due to the constant βcool

used in these simulations. Although there is some heating in the i = 15◦ case, it is
not enough to push the disc into the gravitationally stable regime as it quickly cools
back down to pre-warp levels. It is only in the i = 30◦ and 60◦ cases that there is
enough heating to result in the disc becoming completely gravitationally stable.

6.4.3 Impact of warp location

Unlike in §6.4.2 where varying the initial disc misalignment i, only changes the warp
profile, varying the warp location R0, adds additional complexities to the evolution
of a warped disc. Figure 6.8 shows the warp profiles (first two panels), the initial
pressure p (third panel), and disc scale height H (bottom panel), for the simulations
with R0 = 50, 75 and 100. The bottom two panels are important to understanding
the pressure gradients induced by the warp, recalling eq 6.2.

Since the warp amplitude, ψ is larger for increasing R0, based on the results
in §6.4.2 we might näıvely expect the magnitude of ∇ · v to be largest for the
disc warped at R0 = 100. However, from Figure 6.9 this is clearly not the case.
Instead, the largest change to ∇ · v is for the disc warped at R0 = 50 which has the
smallest ψ. To reconcile this discrepancy, we have to also consider the pressure and
scale height at each R0. From Fig 6.8, the pressure increases while the disc scale
height decreases for smaller R0. Both of these work towards increasing the pressure
gradients induced by the warp (see equation 6.2), thus triggering a stronger response
in ∇ · v for smaller R0, which is consistent with our results.

Based on the results in §6.4.2 we should expect that the spiral structures to
be most weakened for the discs warped at smaller R0, since they have the largest
change in ∇·v. However, from Figure 6.10, this is clearly not the case. Instead, the
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Figure 6.5: The surface density, Σ (top) and divergence of velocity, ∇·v (bottom) in
code units where the angled brackets represent a density weighted average, showing
the evolution of a 0.1M� disc 0.5 orbits after a warp has been introduced. The
subplots are for a disc with initial misalignments of i = 5◦, 15◦, 30◦ and 60◦. The
∇ · v plots show that the strength of the response to the velocity flow of the disc
due to the warp is greater for larger i.

impact to the disc structure is greater at larger R0. To understand why, we have to
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Figure 6.6: Same as Figure 6.5, but at 4 orbits after the warp has been introduced.
Due to the strong response to the velocity flow, the discs in the bottom row (i = 30◦
and 60◦) have heated up enough to become gravitationally stable and lose their
spiral structures. Whereas for a slight misalignment (i = 5◦), the spiral structures
are unaffected as the disc has experienced negligible heating.

now consider the timescale at which warp propagation is damped, tdamp = (αΩ)−1

(Lubow & Ogilvie, 2000), and the cooling timescale, tcool = βcoolΩ−1 (Gammie,
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Figure 6.7: The azimuthally averaged surface density Σ (top panels), sound speed
cs (middle panels), and Toomre Q parameter (bottom panels) in code units for the
discs with initial disc misalignment i = 5◦, 15◦, 30◦ and 60◦ (from left to right). The
darker shades represent later times. The dashed line represents the conditions at
t = 0. The disc only experiences sufficient heating to become gravitational stable
when i = 30◦ and 60◦.

2001). For an α ∼ 0.1 (a typical value for GI discs), the damping timescale is ∼10
orbital periods at R = 75au, which is consistent with our simulations. Both of these
timescales are longer at larger R0. A longer tdamp results in the disc taking longer
to realign. Since the disc is in a warped state for an increased duration, the heating
due to the warp is prolonged. Comparing the right panels of Figs 6.9 and 6.10
shows that the magnitude of ∇·v has decreased the most for R0 = 50. Whereas for
R0 = 100 the magnitude of ∇·v has not changed too much. This is consistent with
the disc realigning much faster for a warp at R0 = 50. Since tcool is also shorter at
smaller R0, cooling is faster in the inner regions of the disc due to the simple cooling
model used. Hence, the heating due to the warp is less efficient for smaller R0.

Figure 6.11 shows the azimuthally averaged surface density Σ (top panels),
sound speed cs (middle panels), and Toomre Q parameter (bottom panels) for these
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Figure 6.8: The warp amplitude, ψ (first panel) and the tilt, β (second panel)
for the simulations where the warp location, R0 = 50, 75, and 100. The darker
lines represent larger R0. The maximum value of ψ increases at higher R0. The
pressure and disc scale height in code units are shown in the third and fourth panels
respectively. The pressure profile is the same for all simulations, hence the lines are
coincident.
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Figure 6.9: The surface density, Σ (left) and divergence of velocity, ∇ · v (right) in
code units showing the evolution of a 0.1M� disc 0.5 orbits after a warp has been
introduced. The subplots are for a disc with the warp located at R0 = 50, 75 and 100.
Although the warp amplitude ψ increases with higher R0, the magnitude of ∇ · v is
largest at lower R0, which is at odds with the results in Figure 6.5. However, once
the differences in pressure p, and disc scale height H at different R0 are considered,
this discrepancy is reconciled. Higher pressures and and a smaller scale height at
lower R0 counter the lower warp amplitude giving rise to greater response in the
induced radial velocity.

simulations. The impact of the shorter cooling and realignment timescales at smaller
R0 is more apparent in this figure. The disc with R0 = 50 cools the quickest.
Additionally, since the disc also realigns the fastest for R0 = 50, the heating due to
the warp does not last long enough to spread throughout the disc. This is in contrast
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Figure 6.10: Same as Figure 6.9 but at 2 orbits after the warp has been introduced.
Despite the magnitude of ∇ · v being initially larger at lower R0, the impact to
the spiral structures is greater at larger R0. This result initially appears at odds
with Figure 6.6 where the spiral structures are most suppressed with increasing
magnitudes of∇·v. However consideration of the cooling and realignment timescales
reconciles this discrepancy. Both timescales are shorter at smaller R0. Hence, we
expect the magnitude of ∇ · v, and hence the amount of heating, to decrease faster
for discs warped at lower R0, which can be seen by comparing with the right panels
of Figure 6.9 to see how much the magnitude of ∇ · v has changed by. Therefore,
the results here are consistent with our expectations of spiral structures being most
impacted at larger R0 since the heating due to the warp is prolonged and more
efficient at larger R0.
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Figure 6.11: The azimuthally averaged surface density Σ (top panels), sound speed
cs (middle panels), and Toomre Q parameter (bottom panels) in code units for the
discs with the warp located at R0 = 50, 75, and 100 (from left to right). The darker
shades represent later times. The dashed line represents the conditions at t = 0.
The disc experiences greater heating, and thus is more impacted, at larger R0 due
to longer cooling and realignment timescales at larger radii.

to the disc with R0 = 100 which has experienced the most heating globally due to a
longer realignment timescale. In general, we find that the spiral structures are more
affected by a warp located further out which results in the disc being heated up for
a longer duration.

6.5 Discussion

6.5.1 Disc cooling & long term evolution

The cooling parameter, βcool is constant both spatially and temporally. Although
commonly used to model self-gravitating discs, comparison with radiative transfer
models show that βcool should vary in both time and space (Mercer et al., 2018).
For the purposes of this Chapter, a constant βcool is justified as we are primarily
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interested in how the evolution of the disc structure responds to a warp. Since PdV
heating dominates over cooling while the disc is warped, we expect the qualitative
results to hold; a warp acts to move a self-gravitating disc towards stability.

However, the long term evolution of the disc will be better understood when
taking into account the non-coplanar geometry with more sophisticated disc ther-
modynamics. In all simulations where the disc becomes gravitationally stable due
to the warp, the disc eventually cools back down to become gravitationally un-
stable and recover its spirals throughout the disc. This is simply a result of the
cooling model which is time-independent and thus does not take into account the
structural evolution of the disc. Additionally, the shorter cooling time in the inner
disc naturally results in spiral structures forming more quickly in the inner regions,
contrary to expectation of realistic self-gravitating discs (Rafikov, 2005; Stamatellos
& Whitworth, 2009; Rice & Armitage, 2009; Clarke, 2009). Hence, more realistic
thermodynamics are needed to better understand the longer term evolution of the
suppression of spiral structures due to the warp.

6.5.2 Formation of rings & gaps

An interesting result which could have important implications on observations is
the formation of rings and gaps from the evolution of a warped gravitationally
unstable disc. We find tentative evidence of ring and gap structure, most easily
seen in the bottom row of Figures 6.6 (i = 30◦ and 60◦) and 6.10 (R0 = 100).
The evolution of the warp amplitude which has a continuous decline in magnitude
combined with the surface density profiles suggests that the gap is not a result of
disc breaking. We also do not expect the disc to break due to the high α viscosities
(Doǧan et al., 2018) associated with gravitationally unstable discs generally and in
our simulations (α ∼ 0.1). Our results instead suggest that the spiral structures
initially present in our disc evolved into ring and gap structure as a result of the
warp propagation. However, the morphology of the spiral structures depend on the
disc thermodynamics. Thus, more detailed simulations are required to determine if
warps in gravitationally unstable discs can explain some of the sub-structures seen
in observations. This may explain features in existing discs such as Elias 2-27, which
contains a gap, spiral structures and evidence of a warp (Paneque-Carreño et al.,
2021). If the warp in Elias 2-27 is located in the inner parts of the disc, the impact
of the warp could be localised to the inner disc allowing the spiral structures in the
outer regions of the disc to survive.
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6.6 Conclusion

We perform 3D SPH simulations to investigate the impact of a warp on the struc-
ture of a gravitationally unstable disc. Our work shows that if the warp is strong
enough, it can suppress spiral structures due to gravitational instability. This is
due to the oscillating radial pressure gradient induced by the warp which triggers a
response in the velocity flow of the disc. This causes the disc to heat up and become
gravitationally stable. In some cases, the disc evolves to form ring & gap structure,
which could have important observational implications.

We find that the structure is more impacted for warps with larger initial
disc misalignments and for warps located further out. In the former case, a larger
initial misalignment simply results in larger pressure gradients due to a larger warp
amplitude, and thus a stronger response in the velocity flow of the disc leading to
increased heating. The latter case is more complicated due to physical properties of
the disc varying with radius, but a warp located further out has a greater impact on
the spiral structure due to a longer realignment timescale, which results is prolonged
heating. Finally, we note that a more detailed treatment of the disc thermodynamics
is required to understand the long term evolution of the tentative ring and gap
structure we identify in some of our simulations.
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7
Future Work

7.1 Star-disc interactions

The results of Chapter 6 demonstrated the concept of how a warp could alter the
evolution of a gravitationally unstable disc. In those simulations, I used an ideal
warp such that the effect of the warp was isolated from whatever mechanisms might
induce the warp. Previous works that study mechanisms of warping a disc neglect
self-gravity as the disc masses are much lower compared to the discs in this thesis.
Hence, my future studies will explore whether external companions are able to warp
gravitationally unstable discs.

The simulations will primarily feature bound companions on retrograde or-
bits as they provide more favourable conditions for warping a disc (Xiang-Gruess,
2016; Cuello et al., 2019). In addition to companions on inclined orbits, there will
be two control simulations. One will be a standard GI disc around a single star to
compare the evolution of the disc on its own. The other will contain a companion
on a coplanar retrograde orbit. The latter will allow the impact of the companion
to be differentiated from the impact of the warp. Figure 7.1 shows the preliminary
results of a simulation showing a 0.1M� disc warped by a 1M� companion inclined
at 135◦ at a pericenter distance of 350au. It shows that the concept introduced in
Chapter 6 can be physically motivated.

Star formation simulations (Bate, 2018) have shown that during their forma-
tion discs do encounter neighbouring stars. Additionally, the star systems formed
can be made up of multiples, also confirmed by numerous examples of binary and
triple systems (e.g. Tobin et al., 2016a). However, due to the large scale of the
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Figure 7.1: A simulation of a 0.1M� disc around a 1M� star warped by a 1M�
companion inclined at 135◦ at a pericenter distance of 350au.

simulation, the discs were poorly resolved. These controlled simulations aim to un-
derstand how disc-star interactions affect the evolution of gravitationally unstable
discs and the resulting implications on planet formation.

7.2 Misaligned infall

An alternative scenario that can result in misaligned discs is by infalling material.
The disc can become warped or even broken if the angular momentum vector of the
infalling material is misaligned relative to that of the disc. This has been demon-
strated in Bate (2018); Kuffmeier et al. (2021), but with unresolved discs and in a
much more chaotic environment; the misaligned disc that had formed in that star
formation simulation was subsequently destroyed by stellar encounters. My future
studies based on Chapter 6 aims to study how infalling material affects the evo-
lution of gravitationally unstable discs in a more controlled environment. It will
involve setting up a cloud of material on the orbit of a flyby. This will allow for
control of the shape, mass, rotational speed, and distance of closest approach of the
infalling material resulting in a stronger understanding of the conditions required
for infalling material to warp gravitationally unstable discs. Another possible study
is to replicate the conditions in figure 1.13 by studying the impact of misaligned
infall on a circumbinary gravitationally unstable disc.



7.3. Dust concentration in the spiral arms of GI discs 140

-13 -12 -11 -10
log < density [g/cm3] >

t=4200 yrs

Figure 7.2: Dust+gas density rendered image of a 0.25M� disc. Dust with Stokes
numbers of approximately 4 are efficiently trapped in the spiral arms forming nu-
merous clumps.

7.3 Dust concentration in the spiral arms of GI discs

Chapter 3 showed that planets that form in gravitationally unstable disc can survive
their inward migration. These results will motivate future work studying planet
formation in self-gravitating discs. While planets forming through gravitational
instability is well studied, the dust is often neglected. The spiral arms due to
gravitational instabilities are regions of pressure maxima where dust can get trapped
(Rice et al., 2004, 2006) forming planetary embryos (Baehr et al., 2022).

My initial simulations will explore the role of self-gravity and drag in trapping
dust of different sizes in the spiral arms, and the formation of clumps. Later, this will
be expanded to investigate dust growth in self-gravitating discs. These simulations
will be the first to explore how fast dust can grow in gravitationally unstable discs
and whether they can grow to the sizes required to fragment into planetary sized
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embryos. Figure 7.2 shows a preliminary simulation where dust with Stokes numbers
of approximately 4 are efficiently trapped in the spiral arms of a 0.25M� disc and
have formed numerous clumps.

7.4 Role of thermodynamics on the signatures of planet-
disc interactions

The results of Chapters 3 - 5 highlight the importance of the disc thermodynamics
on the fate of planet migration, and how planet-disc interactions shape the disc.
However, a vast majority of non-self-gravitating discs typically assume a locally
isothermal equation of state. As shown in Chapter 4 and 5 the heating due to
spiral wakes generated by the planet can play a role in the disc’s evolution, which is
missed by a vertically isothermal equation of state. Recently Speedie et al. (2022)
showed that the observational signatures of planets can be missed if the simpler
thermodynamic model is used.

My future work will focus on giant gap-opening planets. It will involve com-
paring the observational signatures using three thermodynamic models: vertically
isothermal; adiabatic with cooling; and radiative transfer. One of the main areas of
investigation will be the discrepancy of planet mass estimates from gap widths and
depths (Zhang et al., 2018; Lodato et al., 2019), and the kinematics (Pinte et al.,
2020). A change in how the disc thermodynamics is modelled will change planet
mass estimates from either the gap profile or the kinematics, or both. Hence, the
aim is to see whether more accurate modelling of the disc thermodynamics resolves
this discrepancy.



142

8
Conclusion

I have carried out three-dimension numerical simulations of gravitationally unstable
protoplanetary discs to investigate whether evidence of gravitational instability can
by hidden by physical processes such as planet-disc interactions and warps. To do
this I have used a combination of three-dimensional hydrodynamic simulations and
radiative transfer calculations, producing both models with demonstrative physics
and synthetic observations.

In Chapter 3, by modelling the thermodynamics using variable β-cooling to
mimic a realistic gravitationally unstable discs where the inner regions are gravita-
tionally stable (Rafikov, 2005; Stamatellos & Whitworth, 2009; Rice & Armitage,
2009; Clarke, 2009), I find that planets are able to slow down their migration in the
inner parts of the disc in contrast to previous studies (Baruteau et al., 2011; Malik
et al., 2015) which used a constant β to cool the disc. A consequence of the sim-
pler thermodynamics is a globally gravitationally unstable disc which is inconsistent
with theoretical expectations. My result is more consistent with work that included
realistic thermodynamics which showed planets could open up gaps and slow their
migration (Stamatellos, 2015; Stamatellos & Inutsuka, 2018). However, an impor-
tant difference between the work in this thesis with the latter is accretion onto the
planet. In their simulations, the planets grew in mass beyond the brown dwarf limit
allowing the planet to easily open up a gap. Hence, it was unclear whether the
thermodynamics or the gap in the disc was the dominant reason for slowing down
the migration. Whereas in my simulations the planet’s mass is fixed and most of
the planet masses chosen in my simulations were insufficient to open a gap. Thus
it was clear that the treatment of the disc thermodynamics was the relevant factor
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in slowing down the migration of the planet. Once the planet was beyond the tur-
bulent unstable parts of the disc, the corotation torques greatly decreased allowing
the planet to slow down. The survivability of planets in GI discs is important as it
shows that planets that form in these discs could influence the disc’s evolution if it
is massive enough.

In Chapter 4, two simulations were compared. One where the disc evolved
with a 3MJup planet, and the other being a control simulation to see how the disc
would have evolved in the absence of the planet. I showed that the planet was able
to alter the evolution of the disc, completely suppressed spiral structures by heating
up the disc and thus pushing it into the gravitationally stable regime. On the other
hand, the control simulation simply continued to be gravitationally unstable. I
made mock observations to show that in the absence of a planet, spiral structures
due to GI is easily observable. Whereas with a planet, even a massive disc that
would otherwise be gravitationally unstable could look like many of the observed
discs with ring & gap structure.

In Chapter 5, I considered a range of disc and planet masses to study in
further detail how planet-disc interactions can influence the evolution of a GI disc.
Using plots of the velocity divergence (∇ · v) and Toomre Q, I show three scenarios
that can occur when a planet is migrating in a GI disc. If the disc is massive enough,
then from analysis of ∇ · v it’s clear that GI is too strong relative to the planet’s
spiral wake. Hence, the planet has little impact on the velocity structure and is thus
unable to suppress the spiral structures due to GI. Conversely, if the planet’s spiral
wakes are too strong relative to GI, the disc is pushed into the gravitationally stable
regime resulting in a disc with ring & gap structure. Between these two extremes,
both the planet and GI play a role in the disc’s evolution. While spiral structures
are not completely suppressed in this scenario, they are weakened. Even though
the planet cannot completely hide evidence of GI in the simulations, evidence of
GI is less obvious in the mock observations. Finally, analysis of the kinematics
showed that in this set of simulations the signature of a planet cannot be detected
simultaneously with the signature of GI.

In Chapter 6, I introduced a warp in a GI disc to study how the evolution of
a GI disc might be affected. The warp induces an oscillating radial pressure gradient
which triggers a response in the velocity flow of the disc. A consequence of the warp
is the loss of spiral structures as the disc is then pushed into the gravitationally
stable regime as it heats up while the warp is still present. A range of warp profiles
was explored to determine how the disc structure was impacted for different disc
misalignments and by the location of the warp. I showed that larger misalignments
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results in stronger pressure gradients due to a larger warp amplitude. Hence, the
larger the misalignment, the more the disc structure was impacted. I also showed
that since the realignment timescale is longer further out in the disc, the more the
disc structure is impacted. This is because the lifetime of the warp is prolonged,
and hence the disc structure is heated up for a longer duration making it easier
for the disc to become gravitationally stable and lose its spiral structures. In some
simulations, the disc also formed ring & gap structure, which again shows that
massive discs can appear in observations without their characteristic large scale
spiral structures.

While recent observations of protoplanetary discs (eg. Andrews et al., 2018)
suggest that gravitationally unstable discs may be intrinsically rare, the results
here demonstrate that the observed rarity could be due to neglecting many of the
complex processes that can shape the evolution of a GI disc and suppress its spiral
structures. Furthermore, the results also show that upper limits on the disc mass
are not always necessary if there is a lack of visible spiral structure when the disc
is expected to be gravitationally unstable. This is particularly relevant for mass
estimates of protoplanetary discs due to the many uncertainties that go into the
various methods. While estimates from the readily measured dust mass indicate
discs are not expected to be gravitationally unstable, more robust tracers of the
disc mass can push the disc into the gravitationally unstable regime despite the
disc having ring & gap structure, as was the case with HL Tau (Booth & Ilee,
2020). Hence, if planets are the cause, they must have formed when the disc was
younger and potentially gravitationally unstable. Planets being able to survive the
gravitationally unstable phase of a disc also has important implications as many of
the substructures seen in discs can be explained by planets.
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