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ABSTRACT
We study sublinear time algorithms for estimating the size of

maximum matching. After a long line of research, the problem

was finally settled by Behnezhad [FOCS’22], in the regime

where one is willing to pay an approximation factor of 2. Very

recently, Behnezhad et al. [SODA’23] improved the approxima-

tion factor to (2− 1

2
𝑂 (1/𝛾 ) ) using 𝑛1+𝛾

time. This improvement

over the factor 2 is, however, minuscule and they asked if even

1.99-approximation is possible in 𝑛2−Ω (1)
time.

We give a strong affirmative answer to this open problem

by showing (1.5 + 𝜖)-approximation algorithms that run in

𝑛2−Θ(𝜖2 )
time. Our approach is conceptually simple and di-

verges from all previous sublinear-time matching algorithms:

we show a sublinear time algorithm for computing a variant

of the edge-degree constrained subgraph (EDCS), a concept that

has previously been exploited in dynamic [Bernstein Stein

ICALP’15, SODA’16], distributed [Assadi et al. SODA’19] and

streaming [Bernstein ICALP’20] settings, but never before in

the sublinear setting.

Independent work: Behnezhad, Roghani and Rubinstein

[BRR’23] independently showed sublinear algorithms similar

to our Theorem 1.2 in both adjacency list and matrix mod-

els. Furthermore, in [BRR’23], they show additional results on

strictly better-than-1.5 approximate matching algorithms in

both upper and lower bound sides.
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1 INTRODUCTION
Computing a maximum matching in a graph is one of the

most fundamental problems in combinatorial optimization.

We consider this problem in a sublinear setting, as defined
below.

The model. The input graph 𝐺 = (𝑉 , 𝐸) has 𝑛 nodes, maxi-

mum degree Δ and average degree 𝑑 . The node-set𝑉 is known

to the algorithm. In contrast, the algorithm can access the

edge-set 𝐸 by making either only adjacency-matrix queries, or
only adjacency-list queries. An adjacency-matrix query takes

an unordered pair of vertices {𝑢, 𝑣} ∈
(𝑉

2

)
, and returns whether

{𝑢, 𝑣} ∈ 𝐸. An adjacency-list query, on the other hand, takes

an ordered pair (𝑣, 𝑖), where 𝑣 ∈ 𝑉 and 𝑖 ∈ [𝑛], and returns

the 𝑖𝑡ℎ edge incident on 𝑣 in 𝐺 if 𝑖 ≤ deg𝑣 (𝐸), or returns
⊥ if 𝑖 > deg𝑣 (𝐸). We say that a matching 𝑀 ⊆ 𝐸 is (𝛼, 𝛽)-
approximate iff ` (𝐺) ≤ 𝛼 · |𝑀 | + 𝛽 , where ` (𝐺) is the size of
maximum matching in 𝐺 . When 𝛽 = 0, we refer to an (𝛼, 0)-
approximate matching as simply an 𝛼-approximate matching.

In this model, the goal is to design algorithms that runs in

sublinear time (i.e., without even reading the entire input),

assuming that it takes 𝑂 (1) time to answer each query.

Before proceeding any further, we highlight a known fact

(see Appendix E for more details).

Fact 1.1. (Informal) No sublinear algorithm returns the
edges of a good approximate matching.

To see an intuitive justification behind Fact 1.1, consider

a (𝑛/2) × (𝑛/2) bipartite graph, whose edge-set is a perfect
matching given by a uniformly random permutation of [𝑛/2].
In this graph, no algorithm can return a (𝑂 (1), 𝜖𝑛)-approximate

maximum matching with 𝑜 (𝑛2) adjacency-matrix queries. A

similar instance gives the desired lower bound under adjacency-

list queries.

Accordingly, for over a decade, a long and impressive line

of work has been devoted to the study of the value version of

this problem, where the sublinear algorithm is asked to return

only an approximation to the value of ` (𝐺). The following
remains a central open question in this topic.

2
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Question 1.2. Under adjacency-matrix queries,
can we design a (1, 𝜖𝑛)-approximation algorithm in

�̃�𝜖

(
𝑛2−Θ(1)

)
time? Similarly, under adjacency-list

queries, can we design a (1 + 𝜖)-approximation algorithm

in �̃�𝜖
(
𝑛Δ1−Θ(1)

)
time?

Note that we need Ω(𝑛2) adjacency-matrix queries to dis-

tinguish between an empty graph and a graph containing

one edge. This explains why Question 1.2 asks for an (1, 𝜖𝑛)-
approximation under adjacency matrix queries, but a multi-

plicative (1 + 𝜖)-approximation under adjacency-list queries.

PreviousWork. A table summarizing relevant literature is in-

cluded in the arXiv version of this paper. Early research on this

topic focused on obtaining 𝑂 (1) time algorithms when Δ =

𝑂 (1). For instance, a notable paper by Yoshida et al. [25] de-

signed a (1, 𝜖𝑛)-approximation inΔ𝑂 (1/𝜖
2 )
time under adjacency-

list queries. On general graphs, however, all these early algo-

rithms [21–23, 25] can take Ω(𝑛2) time. This drawback was

addressed by Kapralov et al. [17] and Chen et al. [13] (based

on [22]), who obtained the first nontrivial bounds for this

problem on general graphs. Continuing this line of work, in a

recent influential paper Behnezhad [5] finally designed sub-

linear algorithms for matching with near-optimal running

times in general graphs, in the regime where the approxima-

tion guarantee is arbitrarily close to 2. The key idea behind

the result of Behnezhad [5] is to implement the randomized

greedy algorithm, which returns a maximal matching and has

an approximation guarantee of 2, in the sublinear setting.

At this point, a natural question to ask is whether one

can beat the performance of randomized greedy matching

in the sublinear model. This was answered very recently by

Behnezhad et al. [8], who showed that for any constant 𝛾 >

0, the approximation guarantee of [5] can be improved to

2 − 1

2
𝑂 (1/𝛾 ) , by paying an additional factor of Δ𝛾 in running

time. This improvement over the approximation guarantee

of 2 is, however, minuscule, and it was explicitly posted as

an open problem in [8] whether even 1.99-approximation is

possible in 𝑛2−Ω (1)
time.

Our Results.We give a strong affirmative answer to this open

problem by showing the first sublinear matching algorithms

with approximation guarantee arbitrarily close to 1.5.

Theorem 1.3. For any 𝜖 > 0, there are algorithms that,
given a graph 𝐺 , w.h.p. estimates the size of maximum
matching up to

(1) (1.5 + 𝜖)-approximation in �̃�𝜖
(
𝑛Δ1−Θ(𝜖2 )

)
time

using adjacency-list queries,

(2) (1.5, 𝜖𝑛)-approximation in �̃�𝜖
(
𝑛𝑑1−Θ(𝜖2 )

)
time

using adjacency-list queries, and

(3) (1.5, 𝜖𝑛)-approximation in �̃�𝜖
(
𝑛2−Θ(𝜖2 )

)
time us-

ing using adjacency-matrix queries.

Theorem 1.3 makes significant progress towards the ulti-

mate goal of resolving Question 1.2. An affirmative resolu-

tion to this question would have impact beyond the area of

sublinear algorithms. For example, a (1, 𝜖𝑛)-approximation

algorithm in 𝑛2−Θ(1)
time, under adjacency-matrix queries,

would immediately imply the first fully dynamic algorithm

that can (1 + 𝜖)-approximate the size of maximum matching

using 𝑛1−Θ(1)
update time, which is one of the biggest open

problems in the area of dynamic graph algorithms [7, 12]. See,

e.g. [12], for the reduction.

Our Techniques.Our technique behind Theorem 1.3 diverges

from all previous sublinear matching algorithms. In brief, we

show how to exploit the concept of an edge-degree constrained
subgraph (EDCS) in the sublinear model. This object has been

successfully used in the past in dynamic [10, 11, 16, 18], dis-

tributed [2] and streaming settings [3, 9], but never before in

a sublinear setting.

More specifically, our approach is inspired by the streaming

algorithm of [9]. We sample a sublinear number of edges from

the input graph𝐺 , and using a greedy heuristic find a subset𝐻

of these sampled edges which satisfy: deg𝑢 (𝐻 ) +deg𝑣 (𝐻 ) ≤ 𝛽
for all (𝑢, 𝑣) ∈ 𝐻 , where deg𝑥 (𝐻 ) is the degree of node 𝑥 in 𝐻

and 𝛽 := 1/Θ(𝜖3) can be thought of as being a large constant.

We refer to 𝐻 as an edge degree bounded subgraph (EDBS) of

𝐺 . Let 𝑈 := {(𝑢, 𝑣) ∈ 𝐸 \ 𝐻 : deg𝑢 (𝐻 ) + deg𝑣 (𝐻 ) ≤ (1 − 𝜖)𝛽}
denote the set of underfull edges. It is known [9] that 𝑈 ∪ 𝐻
serves as a good sparsifier for maximum matching in the input

graph, in the sense that ` (𝐺) ≤ (3/2 + 𝜖) · ` (𝐻 ∪𝑈 ).
The key observation driving our algorithm is this: If the

number of edges we sample from 𝐺 to construct 𝐻 is suffi-

ciently large (while still being sublinear), then the average

degree in𝑈 is small. Since the EDBS 𝐻 has maximum degree

≤ 𝛽 by definition, it follows that the subgraph 𝐻 ∪ 𝑈 also

has small maximum degree. Thus, we can run the algorithm

from [25] on 𝐻 ∪ 𝑈 , which works well on bounded degree

graphs, to obtain a (1 + 𝜖)-approximation to ` (𝐻 ∪𝑈 ), which
in turn gives a (3/2+𝜖)-approximation to ` (𝐺). One issue here
is that the algorithm from [25] requires adjacency-list query

access to its input, which we cannot provide because we do

not explicitly store the edges of𝑈 . We overcome this challenge

by noting that, intuitively, we have adjacency-matrix query

access to 𝐻 ∪ 𝑈 (because we do in fact explicitly store the

set 𝐻 ). Thus, we can simulate an adjacency-list query (𝑣, 𝑖) in
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𝐻 ∪𝑈 , by first querying𝐺 to collect all the edges in𝐺 that are

incident on 𝑣 , and then deciding which of these edges belong

to 𝑈 . This implies that we incur a blow up in the running

time of [25] while implementing it on 𝐻 ∪𝑈 . Nevertheless, by

carefully choosing the relevant parameters, we still manage to

ensure that the overall running time of our algorithm remains

sublinear. The basic template behind our algorithms is concep-

tually simple, and is described in Section 3. Section 4 shows

how to implement this template in the sublinear setting.

Remarks. We now point out an intriguing implication of

our result. We can show that the subsets 𝐻,𝑈 , as described

above, satisfy: either ` (𝐻 ) ≥ Θ(𝜖) · ` (𝐺) or ` (𝐻 ∪ 𝑈 ) ≥
(1−Θ(𝜖)) ·` (𝐺). In the former case, we can actually return the

edges of a 1/(Θ(𝜖))-approximate matching, since we explicitly

store the edge-set 𝐻 . In the latter case, we can return a (1 +
𝜖)-approximation to the value of ` (𝐺). This implies that on

any given graph 𝐺 , our algorithms either refutes Fact 1.1, or

resolves Question 1.2 in the affirmative. This is summarized

in Theorem 1.4. See Section 5 for details.

Theorem 1.4. There is an algorithm for each of the fol-
lowing tasks, on input graph 𝐺 = (𝑉 , 𝐸).
• (i) Return either a matching 𝑀 ⊆ 𝐸 of size |𝑀 | =
Ω(𝜖 ·` (𝐺)), or a (1, 𝜖𝑛)-approximation to the value

of ` (𝐺), in �̃�𝜖
(
𝑛2−Θ(𝜖2 )

)
time under adjacency-

matrix queries, whp.
• (ii) Return either a matching𝑀 ⊆ 𝐸 of size |𝑀 | =
Ω(𝜖 · ` (𝐺)), or a (1 + 𝜖)-approximation to the

value of ` (𝐺), in �̃�𝜖
(
𝑛 · Δ1−Θ(𝜖2 )

)
time under

adjacency-list queries, whp.
• (iii) Return either a matching 𝑀 ⊆ 𝐸 of size
|𝑀 | = Ω(𝜖 · ` (𝐺)), or a (1, 𝜖𝑛)-approximation

to the value of ` (𝐺), in �̃�𝜖
(
𝑛 ·

(
1 + 𝑑1−Θ(𝜖2 )

))
time under adjacency-list queries, whp.

Also, note that we are using the algorithm from [25] (which

requires adjacency-list query access) on 𝐻 ∪𝑈 (which we can

access via only adjacency-matrix queries). If there exists a

fast (1, 𝜖𝑛)-approximate sublinear algorithm under adjacency-

matrix queries, then we can use it directly to estimate the value

of ` (𝐻∪𝑈 ). This will lead to an improved running time for our

overall algorithm, as captured in the corollary below. In partic-

ular, an adjacency-matrix query based (1, 𝜖𝑛)-approximation

algorithm in �̃�𝜖 (𝑛Δ) time, which is not even sublinear in |𝐸 |,
will imply a (1.5, 𝜖𝑛)-approximation algorithm, also under

adjacency-matrix queries, in �̃�𝜖 (𝑛1.5) time.

Corollary 1.5. Suppose that there is an algorithm
which, given an input graph 𝐺 , whp returns a (1, 𝜖𝑛)-
approximation to the value of ` (𝐺) in �̃�𝜖 (𝑛Δ𝑞) time
under adjacency-matrix queries, where 𝑞 ≥ 0. Then
there exists another adjacency-matrix query based algo-
rithm which returns a (1.5, 𝜖𝑛)-approximation to ` (𝐺) in
�̃�𝜖

(
𝑛2−1/(1+𝑞)

)
time.

Finally, as an immediate corollary of our result, we obtain

a sublinear algorithm for graphic TSP with an improved ap-

proximation ratio from 27/14 ≈ 1.929 [6, 13] to 40/21 ≈ 1.904.

See Appendix D for further discussions.

Theorem 1.6. There is an �̃� (𝑛2−Θ(𝜖2 ) ) running time ran-
domized algorithm which estimates the cost of graphic
TSP within a factor of 40/21 + 𝜖 .

2 PRELIMINARIES
Key Notations: Throughout this paper, we denote the input
graph by𝐺 = (𝑉 , 𝐸), and let𝑚,𝑛, Δ and 𝑑 respectively denote

the number of edges, the number of nodes, the maximum

degree of any node, and the average degree of a node in𝐺 . For

a subset of edges 𝐸′ ⊆ 𝐸, we often abuse the notation and refer

to 𝐸′ as a subgraph𝐺 ′ = (𝑉 , 𝐸′) of𝐺 . Next, consider any edge
𝑒 = (𝑢, 𝑣) ∈

(𝑉
2

)
that is not necessarily part of 𝐺 . The degree

of this edge in 𝐺 is defined as deg𝑒 (𝐸) := deg𝑢 (𝐸) + deg𝑣 (𝐸),
where deg𝑥 (𝐸) denotes the degree of a node 𝑥 ∈ 𝑉 in 𝐺 =

(𝑉 , 𝐸). Furthermore, we define

𝛽 :=
1

Θ(𝜖3)
, where 𝜖 ∈ (0, 1) is a small constant. (1)

EDBS: We now recall the notion of an edge degree constrained
subgraph (EDCS) of the input graph, which in recent years has

found a wide variety of applications across different computa-

tional models [2–4, 9–11, 16, 18]. Specifically, an EDCS 𝐻 ⊆ 𝐸
is a subgraph of𝐺 = (𝑉 , 𝐸) that satisfy two conditions: (i) Each
edge 𝑒 ∈ 𝐻 inside the EDCS has degree deg𝑒 (𝐻 ) ≤ 𝛽 , and (ii)

each edge 𝑒 ∈ 𝐸\𝐻 outside of the EDCS has degree deg𝑒 (𝐻 ) ≥
(1 − 𝜖)𝛽 . It is known that ` (𝐻 ) ≤ ` (𝐺) ≤ (3/2 + 𝜖) · ` (𝐺)
for any EDCS 𝐻 of 𝐺 . For reasons that will become apparent

as we describe our algorithm, in this paper we drop the sec-

ond condition from the definition of an EDCS. Instead, we

say that 𝐻 ⊆ 𝐸 is an edge degree bounded subgraph (EDBS)

of 𝐺 iff deg𝑒 (𝐻 ) ≤ 𝛽 for all 𝑒 ∈ 𝐻 . Theorem 2.2 implies that

any EDBS 𝐻 of 𝐺 , along with all the edges not in 𝐻 which

violate the second condition mentioned above, still preserves

a (3/2 + 𝜖)-approximately maximum. This relaxation of the

notion of an EDCS was considered before in [9], albeit in the

different context of maximum matching in the semi-streaming

model.

Definition 2.1. Consider any subset of edges 𝐻 ⊆ 𝐸 in an
input graph 𝐺 = (𝑉 , 𝐸). We say that an edge 𝑒 ∈ 𝐸 is underfull
w.r.t. 𝐻 iff deg𝑒 (𝐻 ) < (1 − 𝜖)𝛽 , and overfull iff deg𝑒 (𝐻 ) > 𝛽 .
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Furthermore, we say that 𝐻 is an EDBS of 𝐺 iff there is no edge
𝑒 ∈ 𝐻 that is overfull w.r.t. 𝐻 .

Theorem 2.2 ([9]). Consider any graph 𝐺 = (𝑉 , 𝐸), and an
EDBS 𝐻 of 𝐺 . Let𝑈 denote the collection of edges in 𝐸 \ 𝐻 that
are underfull w.r.t. 𝐻 . Then ` (𝐺) ≤ (3/2 + 𝜖) · ` (𝐻 ∪𝑈 ).

Next, consider a process whereby we start with an empty

subset of edges 𝐻 = ∅ in 𝐺 , and keep making the following

two types of changes to 𝐻 : (1) if we find an edge 𝑒 ∈ 𝐸 \ 𝐻
that is underfull w.r.t. 𝐻 , then we include it in 𝐻 , and (2) If we

find an edge 𝑒 ∈ 𝐻 that is overfull w.r.t. 𝐻 , then we remove

it from 𝐻 . Theorem 2.4 implies that this can continue for at

most 𝑂 (𝛽2 · ` (𝐺)) iterations.
Definition 2.3. The operation Insert(𝐻, 𝑒,𝐺) takes as input a
graph𝐺 = (𝑉 , 𝐸), a subset of edges𝐻 ⊆ 𝐸 and an edge 𝑒 ∈ 𝐸 \𝐻
that is underfull w.r.t. 𝐻 , and it outputs the subset 𝐻 ∪ {𝑒}. In
contrast, the operation Delete(𝐻, 𝑒,𝐺) takes as input a graph
𝐺 = (𝑉 , 𝐸), a subset of edges 𝐻 ⊆ 𝐸 and an edge 𝑒 ∈ 𝐻 that is
overfull w.r.t. 𝐻 , and it outputs the subset 𝐻 \ {𝑒}.

Theorem 2.4. Consider a process where we start with an
empty subset of edges 𝐻 = ∅ in 𝐺 = (𝑉 , 𝐸). Subsequently, the
set 𝐻 changes via a sequence of Insert and Delete operations.
To be more specific, in each iteration of this process, either we
find an edge 𝑒 ∈ 𝐸 \ 𝐻 that is underfull w.r.t. 𝐻 and set 𝐻 ←
Insert(𝐻, 𝑒,𝐺), or we find an edge 𝑒 ∈ 𝐻 that is overfull w.r.t.𝐻
and set 𝐻 ← Delete(𝐻, 𝑒,𝐺). Then this process can run for at
most 𝑂 (𝛽2 · ` (𝐺)) iterations.

Theorem 2.4 follows from the standard potential function

based argument for EDCS [2, 4, 11]. For completeness, we

provide a proof of this theorem in Appendix A.

The query complexity of an algorithm on a given input is

the number of queries it needs to make, whereas its running

time is the total time taken to return an answer to the given

input, assuming each query is answered in 𝑂 (1) time. Note

that the runtime of an algorithm is always lower bounded by

its query complexity. With adjacency-matrix (resp. adjacency-

list) queries, it is trivial to design an algorithm with query

complexity 𝑂 (𝑛2) (resp. 𝑂 (𝑚)) for any graph problem. Our

goal is to design an algorithm that returns an approximation

to the value of ` (𝐺), whose query complexity (and runtime)

is much better than this trivial bound. We will use two well-

known results from the sublinear matching literature, which

are stated below.

Theorem 2.5 ([25]). There exists an algorithm that returns a
(1 + 𝜖)-approximation to the value of ` (𝐺), where𝐺 = (𝑉 , 𝐸) is
the input graph, using �̃�𝜖

(
ΔΘ(𝜖−2 )

)
adjacency-list queries whp.

The algorithm also runs in �̃�𝜖
(
ΔΘ(𝜖−2 )

)
time whp.3

Theorem 2.6 ([5]). There exists an algorithm that returns a
(2 + 𝜖)-approximation to the value of ` (𝐺), where 𝐺 = (𝑉 , 𝐸)
is the input graph, using �̃�𝜖 (𝑛) adjacency-list queries whp. The
algorithm also runs in �̃�𝜖 (𝑛) time whp.

3
Throughout this paper, we use the abbreviation “whp” to refer to the

phrase “with high probability”.

3 A SCHEMATIC ALGORITHM
We now describe our algorithmic template (see Figure 1),

which takes as input, along with the graph 𝐺 = (𝑉 , 𝐸), the
parameters `∗,𝑚∗,Δ∗ and 𝛾 . The reader should think of the

first three parameters in this list as being proxies for ` (𝐺),𝑚
and Δ (or sometimes, 𝑑 instead of Δ).4 We choose different val-

ues for these parameters while implementing the algorithm in

different settings – under adjacency-list and adjacency-matrix

queries. However, in all these settings, we have:

` (𝐺)
(2 + 𝜖) ≤ `

∗ ≤ 𝑛, 𝑑 ≤ Δ∗ ≤ 𝑛, 𝑚∗ ≥ 𝑚, and 0 < 𝛾 < 1. (2)

The algorithm proceeds in rounds. In each round, it samples

Θ
(
𝑚∗ log𝑛

`∗ (Δ∗ )𝛾
)
edges independently and uniformly at random

from the set 𝐸 (with repetitions). For each sampled edge 𝑒 ∈ 𝐸,
the algorithm checks if 𝑒 ∈ 𝐸 \ 𝐻 and is underfull w.r.t. 𝐻 .

If yes, then it inserts 𝑒 into 𝐻 , which in turn might lead to

some existing edges in 𝐻 becoming overfull. Before dealing

with the next sample, the algorithm ensures that 𝐻 remains

an EDBS of𝐺 , by repeatedlty removing overfull edges from 𝐻

if necessary. Finally, if the set 𝐻 does not change throughout

the entire duration of a given round, then the algorithm no

longer proceeds to the next round. Instead, at this point it

identifies the collection𝑈 ⊆ 𝐸 \ 𝐻 of edges that are underfull

w.r.t. 𝐻 (but does not explicitly calculate 𝑈 ), identifies the

nodes 𝑉𝑠𝑚𝑎𝑙𝑙 ⊆ 𝑉 that have “small” degrees in 𝑈 , and then

returns the size of the maximum matching in the subgraph of

𝐻 ∪𝑈 induced by 𝑉𝑠𝑚𝑎𝑙𝑙 . In the lemmas below, we derive a

few key properties of this schematic algorithm.

Lemma 3.1. The algorithm in Figure 1 runs for at most 𝑂 (𝛽2 ·
` (𝐺)) rounds.

Proof. Consider the process where we keep changing the

subset𝐻 ⊆ 𝐸 by repeatedly adding underfull edges and remov-

ing overfull edges. By Theorem 2.4, this can continue for at

most 𝑂 (𝛽2 · ` (𝐺)) iterations. The lemma follows since except

the very last round, every other round in Figure 1 increases

the number of iterations of this process by at least one (see

step (11) in Figure 1). □

Lemma 3.2. Suppose that we are at the start of round 𝑘 of the
algorithm, for some 𝑘 ≥ 1. At this point in time, let 𝐻𝑘 denote
the state of the set 𝐻 , and let𝑈𝑘 denote the collection of edges in
𝐸 \𝐻𝑘 that are underfull w.r.t.𝐻𝑘 . If |𝑈𝑘 | ≥ `∗ · (Δ∗)𝛾 , then whp
the algorithm does not terminate at the end of round 𝑘 (instead,
it proceeds towards implementing round 𝑘 + 1).

Proof. Throughout the proof, we condition on all the ran-

dom choices made by the algorithm until the beginning of

round 𝑘 , and assume that |𝑈𝑘 | ≥ `∗ (Δ∗)𝛾 . During round 𝑘 , the
For loop in step (04) of Figure 1 runs for (100𝑚∗ log𝑛)/(`∗ (Δ∗)𝛾 ) =
𝐿 (say) iterations. Let 𝑒𝑖 ∈ 𝐸 denote the edge that gets sampled

during the 𝑖𝑡ℎ iteration of this For loop. For each 𝑖 ∈ [𝐿], we
have Pr[𝑒𝑖 ∈ 𝑈𝑘 ] = |𝑈𝑘 |/|𝐸 | ≥ `∗ (Δ∗)𝛾/𝑚 ≥ `∗ (Δ∗)𝛾/𝑚∗,

4
Recall that𝑑 and Δ respectively denotes the average degree and maximum

degree in𝐺 .
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01. 𝐻 ← ∅.
02. Repeat: // (Start of a new round)

03. Status← false.

04. For 𝑖 = 1 to (100𝑚∗ log𝑛)/(`∗ (Δ∗)𝛾 )
05. Sample an edge 𝑒 ∈ 𝐸 u.a.r.

06. If 𝑒 ∈ 𝐸 \ 𝐻 and is underfull w.r.t. 𝐻 , Then

07. Status← true.

08. 𝐻 ← Insert(𝐻, 𝑒,𝐺).
09. While there exists an edge 𝑒 ∈ 𝐻 that is overfull w.r.t. 𝐻 :

10. 𝐻 ← Delete(𝐻, 𝑒,𝐺).
11. If Status = false, Then

12. Break. // (This is the last round)

13. Let𝑈 be the collection of edges in 𝐸 \ 𝐻 that are underfull w.r.t. 𝐻 . Next, consider any set

𝑉𝑠𝑚𝑎𝑙𝑙 ⊆ 𝑉 s.t.

{
𝑣 ∈ 𝑉 : deg𝑣 (𝑈 ) ≤

(1−𝜖 ) · (Δ∗ )𝛾
𝜖

}
⊆ 𝑉𝑠𝑚𝑎𝑙𝑙 ⊆

{
𝑣 ∈ 𝑉 : deg𝑣 (𝑈 ) ≤

(1+𝜖 ) · (Δ∗ )𝛾
𝜖

}
,

and define 𝐸𝑠𝑚𝑎𝑙𝑙 := {(𝑢, 𝑣) ∈ 𝐻 ∪𝑈 : 𝑢, 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑙𝑙 }.
14. Return ` (𝐸𝑠𝑚𝑎𝑙𝑙 ).

Figure 1: SCHEMATIC-ALGO(𝐺 = (𝑉 , 𝐸), `∗,𝑚∗,Δ∗, 𝛾).

since𝑚∗ ≥ 𝑚 according to (2). Let 𝑋𝑖 ∈ {0, 1} be an indicator

random variable that is set to 1 iff 𝑒𝑖 ∈ 𝑈𝑘 , and let𝑋 =
∑𝐿
𝑖=1

𝑋𝑖
denote the total number of times an edge from 𝑈𝑘 gets sam-

pled during round 𝑘 . Note that the random variables {𝑋𝑖 } are
mutually independent, and we have: E[𝑋 ] = ∑𝐿

𝑖=1
E[𝑋𝑖 ] =∑𝐿

𝑖=1
Pr[𝑒𝑖 ∈ 𝐸𝑘 ] ≥ |𝐿 | · `∗ (Δ∗)𝛾/𝑚∗ = 100 log𝑛. From Cher-

noff bound, it follows that 𝑋 ≥ 1 whp. In other words, whp at

least one edge sampled during round 𝑘 belongs to𝑈𝑘 . Consider

the smallest index 𝑖 ∈ [𝐿] such that 𝑒𝑖 ∈ 𝑈𝑘 ; such an index ex-

ists whp. The algorithm calls the subroutine Insert(𝐻, 𝑒𝑖 ,𝐺)
during the 𝑖𝑡ℎ iteration of the For loop in round 𝑘 , and sets

Status← true (see steps (06) – (08) in Figure 1). This implies

that the algorithm does not terminate at the end of round 𝑘

(see steps (11)–(12) in Figure 1). □

Corollary 3.3. At the end of the last round in Figure 1, we have
|𝑈 | < `∗ · (Δ∗)𝛾 whp.

Proof. Follows from Lemma 3.1 and Lemma 3.2. □

Lemma 3.4. At step (14) in Figure 1, we have ` (𝐺) ≤ (3/2 +
𝜖) · ` (𝐸𝑠𝑚𝑎𝑙𝑙 ) + Θ(𝜖) · `∗, whp.

Proof. Initially, the algorithm starts by setting 𝐻 = ∅, and
hence 𝐻 is an EDBS of𝐺 = (𝑉 , 𝐸) at this point. Steps (09)–(10)
in Figure 1 ensures that the set𝐻 continues to remain an EDBS

of𝐺 throughout the duration of the algorithm. Since𝑈 ⊆ 𝐸\𝐻
is the collection of underfull edges w.r.t. 𝐻 at the end of the

Repeat loop in Figure 1, Theorem 2.2 implies that:

` (𝐺) ≤ (3/2 + 𝜖) · ` (𝑈 ∪ 𝐻 ) (3)

Henceforth, condition on the high probability event that |𝑈 | <
`∗ (Δ∗)𝛾 (see Corollary 3.3). Since each node 𝑣 ∈ 𝑉 \𝑉𝑠𝑚𝑎𝑙𝑙 is
incident upon at least

(1−𝜖 ) (Δ∗ )𝛾
𝜖 edges from𝑈 , we infer that:

|𝑉 \𝑉𝑠𝑚𝑎𝑙𝑙 | ≤
2 · |𝑈 |
(1−𝜖 ) (Δ∗ )𝛾

𝜖

<
2𝜖`∗

(1 − 𝜖) < 3𝜖`∗ .

Accordingly, if we remove all the edges in 𝐻 ∪𝑈 that share

an endpoint with 𝑉 \ 𝑉𝑠𝑚𝑎𝑙𝑙 , then the size of the maximum

matching in 𝐻 ∪𝑈 can decrease by at most an additive 3𝜖`∗.
To see why this is the case, fix any maximum matching 𝑀

in 𝐻 ∪𝑈 , and note that each time we remove a node (along

with its incident edges) from 𝐻 ∪𝑈 , the number of edges in

𝑀 decreases by at most one. Finally, note that once we have

removed all the edges incident on 𝑉 \𝑉𝑠𝑚𝑎𝑙𝑙 from 𝐻 ∪𝑈 , we

end up with the subgraph 𝐸𝑠𝑚𝑎𝑙𝑙 . Hence, we have:

` (𝐻 ∪𝑈 ) ≤ ` (𝐸𝑠𝑚𝑎𝑙𝑙 ) + 3𝜖`∗ . (4)

The lemma now follows from (3) and (4). □

Lemma 3.5. The graph 𝐺𝑠𝑚𝑎𝑙𝑙 := (𝑉𝑠𝑚𝑎𝑙𝑙 , 𝐸𝑠𝑚𝑎𝑙𝑙 ) has maxi-
mum degree Δ𝐺𝑠𝑚𝑎𝑙𝑙

= 𝑂𝜖 ((Δ∗)𝛾 ).

Proof. Consider any node 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑙𝑙 . By definition, we

have deg𝑣 (𝑈 ) = 𝑂𝜖 ((Δ∗)𝛾 ). On the other hand, since 𝐻 is

an EDBS of 𝐺 , we have deg𝑒 (𝐻 ) ≤ 𝛽 for all edges 𝑒 ∈ 𝐻 ,
and hence deg𝑢 (𝐻 ) ≤ 𝛽 for all nodes 𝑢 ∈ 𝑉 . In particular,

this means that deg𝑣 (𝐻 ) ≤ 𝛽 , and hence deg𝑣 (𝐸𝑠𝑚𝑎𝑙𝑙 ) ≤
deg𝑣 (𝐻 ) + deg𝑣 (𝑈 ) = 𝑂𝜖 (𝛽 + (Δ∗)𝛾 ) = 𝑂𝜖 ((Δ∗)𝛾 ). This im-

plies the lemma. □

4 IMPLEMENTATION
We now show how to implement the schematic algorithm from

Section 3 in sublinear settings, under both adjacency-matrix

and adjacency-list queries. To highlight the main ideas and for

simplicity of exposition, here we only focus on bounding the

query-complexities of our sublinear algorithms. In Appendix C,

we explain how our algorithms can be efficiently implemented,

in such a way that their running times have similar asymptotic

bounds as their query complexities.
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4.1 (3/2, 𝜖𝑛)-Approximation with
Adjacency-Matrix Queries

Themain results in this section are summarized in the theorem

and the corollary below.

Theorem 4.1. There is an algorithm which, given an input
graph 𝐺 = (𝑉 , 𝐸), returns a (3/2, 𝜖𝑛)-approximation to the

value of ` (𝐺) after �̃�𝜖
(
𝑛2−Θ(𝜖2 )

)
adjacency-matrix queries in

𝐺 , whp.

Corollary 4.2. Suppose that there is an algorithm A∗ which,
given an input graph 𝐺 with maximum degree Δ, whp returns
a (1, 𝜖𝑛)-approximation to the value of ` (𝐺) after �̃�𝜖 (𝑛Δ𝑞)
adjacency-matrix queries in 𝐺 , where 𝑞 ≥ 0. Then there exists
another adjacency-matrix query based algorithm which has the
same approximation guarantee as in Theorem 4.1, and query

complexity �̃�𝜖
(
𝑛2−1/(1+𝑞)

)
.

We devote the rest of this section to proving Theorem 4.1

and Corollary 4.2. We implement the schematic algorithm de-

scribed in Figure 1, in a setting where we can access the edges

of 𝐺 only via adjacency-matrix queries. Before proceeding

any further, we show how to handle two basic primitives in

the adjacency-matrix query model: (a) how to estimate the

value of𝑚 = |𝐸 |, and (b) how to sample an edge uniformly at

random from 𝐸. The tools for implementing these primitives

are respectively captured in Lemma 4.3 and Lemma 4.4; their

proofs are deferred to Appendix B.

Lemma 4.3. Suppose that we sample, independently and uni-
formly at random (with repetitions), 𝑆 = (100/𝜖3) ·𝑛 log𝑛 many
pairs of nodes from 𝑉 ×𝑉 . For each 𝑖 ∈ [𝑆], let 𝑋𝑖 ∈ {0, 1} be
an indicator random variable that is set to 1 iff the 𝑖𝑡ℎ pair of
nodes sampled in this manner are connected via an edge in 𝐺 .
Let 𝑋 :=

∑𝑆
𝑖=1

𝑋𝑖 . Define

�̂� := (1 + 𝜖) · 𝑋𝑛
2

𝑆
+ 𝜖𝑛.

Then we have𝑚 ≤ �̂� ≤ (1 + 𝜖) ·𝑚 + 2 · 𝜖𝑛, whp.

Lemma 4.4. Suppose that we keep sampling, independently
and uniformly at random (with repetitions), unordered pairs of
nodes from 𝑉 ×𝑉 , until we find an edge 𝑒 ∈ 𝐸. Then:
• (i) The edge 𝑒 we find is a uniformly random sample from
the set 𝐸.
• (ii)Whp, this random process stops after sampling �̃� (𝑛2/𝑚)
pairs of nodes from 𝑉 ×𝑉 .

Our algorithm under adjacency-matrix queries consists of the

following four steps.

Step 1: Preprocessing. We first invoke Lemma 4.3 to get

an estimate �̂� of the value of𝑚, using 𝑆 = �̃�𝜖 (𝑛) adjacency-
matrix queries. From this point onward, we condition on the

high probability event guaranteed by Lemma 4.3. If �̂� ≤ 4𝜖𝑛,

then we infer that 𝑚 = 𝑂 (𝜖𝑛), and so our algorithm stops

execution and returns the value 0 as an estimate of ` (𝐺), which
is trivially a (1, 𝜖𝑛)-approximation to ` (𝐺) since ` (𝐺) ≤ 𝑚 =

𝑂 (𝜖𝑛). Accordingly, for the rest of this section, we assume that

�̂� > 4𝜖𝑛. In this case, by Lemma 4.3 we have:

𝑚 ≤ �̂� ≤ Θ(𝑚) . (5)

At this point, we set `∗ ← 𝑛,𝑚∗ ← �̂�, Δ∗ ← 𝑛 and 𝛾 ← 𝑐 · 𝜖2

for a sufficiently small constant 𝑐 > 0. We next show how to

implement a call to SCHEMATIC-ALGO(𝐺, `∗,𝑚∗,Δ∗, 𝛾) as in
Figure 1.

Step 2: Obtaining the EDBS𝐻 . The goal here is to implement

steps (01)–(12) of Figure 1. Note that in a given “round” (an

iteration of the Repeat loop in Figure 1), we need to sample

Θ(𝑚 log𝑛/𝑛1+𝛾 ) edges from 𝐸 uniformly and independently at

random. To obtain each of these samples, we invoke Lemma 4.4.

This requires us to make �̃� (𝑛2/𝑚) adjacency-matrix queries

per sample, whp. Once we have the sampled edges at our

disposal, we can perform all the remaining computation in that

round without any further overhead in our query complexity.

Thus, to implement one round we make a total of �̃� (𝑚/𝑛1+𝛾 ) ·
�̃� (𝑛2/𝑚) = �̃� (𝑛1−𝛾 ) adjacency-matrix queries in 𝐺 , whp. By

Lemma 3.1, there are at most 𝑂 (𝛽2 · ` (𝐺)) = 𝑂𝜖 (𝑛) rounds.
Hence, to implement all these rounds, whp overall we make

�̃�𝜖
(
𝑛 · 𝑛1−𝛾 ) = �̃�𝜖 (𝑛2−𝛾 ) adjacency-matrix queries in 𝐺 .

Note that the end of Step 2, our algorithm explicitly stores

the EDBS 𝐻 . The main challenge for our adjacency-matrix

query based algorithm now is to compute an approximation

to the value of ` (𝐻 ∪𝑈 ), given that it does not explicitly store

the set of underfull edges𝑈 .

Step 3: Identifying the set 𝑉𝑠𝑚𝑎𝑙𝑙 . For each node 𝑣 ∈ 𝑉 , we
now decide whether or not to include it in the set 𝑉𝑠𝑚𝑎𝑙𝑙 in

the following manner.

• Sample 𝐾 = (100/𝜖) · 𝑛1−𝛾
log𝑛 nodes 𝑣1, . . . , 𝑣𝐾 from

the set𝑉 , uniformly and independently at random (with

repetitions). For each 𝑖 ∈ [𝐾], check whether (𝑣, 𝑣𝑖 ) ∈
𝑈 : by first making an adjacency-matrix query in 𝐺 to

confirm whether (𝑣, 𝑣𝑖 ) ∈ 𝐸, and if yes, then by fur-

ther verifying whether (𝑣, 𝑣𝑖 ) ∈ 𝐸 \ 𝐻 and deg𝑣 (𝐻 ) +
deg𝑣𝑖

(𝐻 ) ≤ (1 − 𝜖)𝛽 (these last two conditions can be

checked without making any further adjacency-matrix

queries in 𝐺 , since we explicitly store all the edges in

𝐻 ). Let 𝑋𝑖,𝑣 ∈ {0, 1} be an indicator random variable

that is set to 1 iff (𝑣, 𝑣𝑖 ) ∈ 𝐸. Let 𝑋𝑣 :=
∑𝐾
𝑖=1

𝑋𝑖,𝑣 . We

include the node 𝑣 into 𝑉𝑠𝑚𝑎𝑙𝑙 iff 𝑋𝑣 ≤ (100/𝜖2) · log𝑛.

The total number of adjacency-matrix queries in𝐺 made dur-

ing the above procedure is 𝑛 · 𝐾 = �̃�𝜖 (𝑛2−𝛾 ). We now show

that this procedure is consistent with step (13) of Figure 1.

Claim 4.5. The set 𝑉𝑠𝑚𝑎𝑙𝑙 , as constructed above, whp satisfies
the condition:{

𝑣 ∈ 𝑉 : deg𝑣 (𝑈 ) ≤
(1 − 𝜖) · 𝑛𝛾

𝜖

}
⊆ 𝑉𝑠𝑚𝑎𝑙𝑙

⊆
{
𝑣 ∈ 𝑉 : deg𝑣 (𝑈 ) ≤

(1 + 𝜖) · 𝑛𝛾
𝜖

}
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Proof. Fix any node 𝑣 ∈ 𝑉 . The random variables {𝑋𝑖,𝑣}
aremutually independent, andwe have E[𝑋𝑣] =

∑𝐾
𝑖=1

E[𝑋𝑖,𝑣] =∑𝐾
𝑖=1

Pr[𝑋𝑖,𝑣 = 1] = 𝐾 · deg𝑣 (𝑈 )/𝑛 = (100/𝜖) · 𝑛1−𝛾
log𝑛 ·

deg𝑣 (𝑈 )/𝑛 = (100/𝜖) · 𝑛−𝛾 log𝑛 · deg𝑣 (𝑈 ). Thus, applying
Chernoff bounds, we infer that:

Observation 4.6. If deg𝑣 (𝑈 ) ≤
(1−𝜖 ) ·𝑛𝛾

𝜖 , then whp 𝑣 ∈
𝑉𝑠𝑚𝑎𝑙𝑙 . On the other hand, if deg𝑣 (𝑈 ) >

(1+𝜖 ) ·𝑛𝛾
𝜖 , then whp

𝑣 ∉ 𝑉𝑠𝑚𝑎𝑙𝑙 .

The claim now follows from Observation 4.6 and a union

bound over all the nodes 𝑣 ∈ 𝑉 . □

To summarize, at the end of Step 3, we explicitly store the

EDBS 𝐻 and the node-set 𝑉𝑠𝑚𝑎𝑙𝑙 . However, to the edges in

𝐺𝑠𝑚𝑎𝑙𝑙 := (𝑉𝑠𝑚𝑎𝑙𝑙 , 𝐸𝑠𝑚𝑎𝑙𝑙 ) we only have adjacency matrix ac-

cess to. Indeed, suppose that we are given a pair of nodes

𝑢, 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑙𝑙 , and we are asked to determine whether (𝑢, 𝑣) ∈
𝐸𝑠𝑚𝑎𝑙𝑙 . To perform this task, we first make an adjacency-

matrix query in 𝐺 about the existence of the edge (𝑢, 𝑣) in 𝐸.
If the response tells us that (𝑢, 𝑣) ∈ 𝐸, then we further check

whether the following condition holds: either (𝑢, 𝑣) ∈ 𝐻 , or
deg𝑢 (𝐻 ) + deg𝑣 (𝐻 ) < (1 − 𝜖)𝛽 . If the answer is yes, then we

conclude that (𝑢, 𝑣) ∈ 𝐸𝑠𝑚𝑎𝑙𝑙 . Otherwise, we conclude that
(𝑢, 𝑣) ∉ 𝐸𝑠𝑚𝑎𝑙𝑙 .

Step 4: Computing a (1 + 𝜖)-approximate estimate of
` (𝐸𝑠𝑚𝑎𝑙𝑙 ). We now run the algorithm from Theorem 2.5 on

𝐺𝑠𝑚𝑎𝑙𝑙 := (𝑉𝑠𝑚𝑎𝑙𝑙 , 𝐸𝑠𝑚𝑎𝑙𝑙 ), and output the estimate 𝛼 returned

by this algorithm. The key challenge here is that Theorem 2.5

requires adjacency-list query access to 𝐺𝑠𝑚𝑎𝑙𝑙 , but we only

have adjacency-matrix query access to 𝐺 . We overcome this

challenge as follows.

Suppose that the algorithm from Theorem 2.5 makes an

adjacency-list query 𝑄 , asking for the 𝑖𝑡ℎ edge incident on a

given node 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑙𝑙 in 𝐺𝑠𝑚𝑎𝑙𝑙 . To answer this query 𝑄 , we

make (𝑛 − 1) adjacency-matrix queries in 𝐺 – to collect all

the edges incident on 𝑣 in 𝐺 – and then identify the subset of

these edges that belong to 𝐺𝑠𝑚𝑎𝑙𝑙 (based on the contents of

the sets𝐻 and𝑉𝑠𝑚𝑎𝑙𝑙 , which we store explicitly). And once we

have identified this subset, we can trivially answer the original

query𝑄 . To summarize, we can implement each adjacency-list

query in 𝐺𝑠𝑚𝑎𝑙𝑙 by making (𝑛 − 1) adjacency-matrix queries

in 𝐺 .

By Lemma 3.5 and Claim 4.5, whp the graph 𝐺𝑠𝑚𝑎𝑙𝑙 has

maximum-degree Δ𝐺𝑠𝑚𝑎𝑙𝑙
= 𝑂𝜖 (𝑛𝛾 ). Accordingly, it follows

that in order to run the algorithm from Theorem 2.5 on𝐺𝑠𝑚𝑎𝑙𝑙 ,

whpwemake atmost �̃�𝜖

(
𝑛 · (Δ𝐺𝑠𝑚𝑎𝑙𝑙

)Θ(1/𝜖2 )
)
= �̃�𝜖

(
𝑛1+Θ(𝛾/𝜖2 )

)
adjacency-matrix queries in 𝐺 .

Approximation guarantee: As discussed above, our algo-

rithm returns an estimate 𝛼 such that 𝛼 ≤ ` (𝐸𝑠𝑚𝑎𝑙𝑙 ) ≤ (1 +
𝜖) · 𝛼 . Since we have `∗ = 𝑛 (see Step 1 above), Lemma 3.4

implies that:

𝛼 ≤ ` (𝐸𝑠𝑚𝑎𝑙𝑙 ) ≤ ` (𝐺) ≤ (3/2+Θ(𝜖))·𝛼+Θ(𝜖𝑛) = (3/2)·𝛼+Θ(𝜖𝑛).
(6)

Proof of Theorem 4.1. The approximation guarantee follows

from (6). Next, recall that Steps 1, 2, 3, 4 respectively makes at

most �̃�𝜖 (𝑛), �̃�𝜖 (𝑛2−𝛾 ), �̃�𝜖 (𝑛2−𝛾 ) and �̃�𝜖
(
𝑛1+Θ(𝛾/𝜖2 )

)
adjacency-

matrix queries in 𝐺 , whp. Hence, the total query complexity

of our algorithm is at most:

�̃�𝜖 (𝑛) + �̃�𝜖 (𝑛2−𝛾 ) + �̃�𝜖 (𝑛2−𝛾 ) + �̃�𝜖
(
𝑛1+Θ(𝛾/𝜖2 )

)
= �̃�𝜖

(
𝑛2−Θ(𝜖2 )

)
.

The last equality holds since 𝛾 := 𝑐 · 𝜖2
for a sufficiently small

constant 𝑐 > 0 (see Step 1 above). □

Proof of Corollary 4.2. Steps 1, 2 and 3 of the algorithm

remains the same as before. In Step 4, however, we run the

algorithm A∗ (see the statement of the corollary) on 𝐺𝑠𝑚𝑎𝑙𝑙 .

The query-complexity of implementing Step 4 now becomes

�̃�𝜖
(
𝑛 ·

(
Δ𝐺𝑠𝑚𝑎𝑙𝑙

)𝑞 )
= �̃�𝜖

(
𝑛1+𝑞𝛾 )

. Hence, if we set 𝛾 := 1/(1 +
𝑞), then the total query complexity of the algorithm, over all

the four steps, becomes:

�̃�𝜖 (𝑛) + �̃�𝜖 (𝑛2−𝛾 ) + �̃�𝜖 (𝑛2−𝛾 ) + �̃�𝜖
(
𝑛1+𝑞𝛾

)
= �̃�𝜖

(
𝑛2−1/(1+𝑞)

)
. □

4.2 (3/2 + 𝜖)-Approximation with
Adjacency-List Queries

The main result in this section is summarized in the theorem

below.

Theorem 4.7. There is an algorithm which, given an input
graph 𝐺 = (𝑉 , 𝐸), returns a (3/2 + 𝜖)-approximation to the

value of ` (𝐺) after �̃�𝜖
(
𝑛 · Δ1−Θ(𝜖2 )

)
adjacency-list queries in

𝐺 , whp.5

We devote the rest of this section to proving Theorem 4.7.

We implement the schematic algorithm described in Figure 1,

in a setting where we have access to the input graph only via

adjacency-list queries. Specifically, the algorithm consists of

the following five steps.

Step 1: Preprocessing. For each 𝑣 ∈ 𝑉 , we compute its degree

deg𝑣 (𝐸) in 𝐺 by doing a binary search on the interval [0, 𝑛],
using𝑂 (log𝑛) adjacency-list queries. Thus, at the end of �̃� (𝑛)
adjacency-list queries, we know the degree of each node in𝐺 ,

along with the values of𝑚,𝑑 and Δ.

This means that from now on we can sample a uniformly

random edge from 𝐺 using a single adjacency-list query: For

this, all we need to do is sample a node 𝑣 from the distribution

D, which places a probability mass of deg𝑥 (𝐸)/(2 · |𝐸 |) on
each node 𝑥 ∈ 𝑉 , and then sample an index 𝑖 ∈ [deg𝑣 (𝐸)]
uniformly at random, and make an adjacency-list query to

return the 𝑖𝑡ℎ edge incident on 𝑣 . This observation will be

used in Step 3 of our algorithm below.

Step 2: Obtaining a coarse approximation of ` (𝐺).We call

the algorithm from Theorem 2.6, which returns an estimate _

such that _ ≤ ` (𝐺) ≤ (2 + 𝜖) · _, using �̃�𝜖 (𝑛) adjacency-list
queries. We set `∗ ← _,𝑚∗ ←𝑚, Δ∗ ← Δ and 𝛾 ← 𝑐 · 𝜖2

for

a sufficiently small constant 𝑐 > 0, and we next show how to

5
Here, Δ denotes the maximum degree of any node in𝐺 .
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implement a call to SCHEMATIC-ALGO(𝐺, `∗,𝑚∗,Δ∗, 𝛾), as
described in Figure 1.

Step 3: Obtaining the EDBS𝐻 . The goal here is to implement

steps (01)–(12) of Figure 1. Note that in a given “round” (an

iteration of the Repeat loop in Figure 1), we need to sample

Θ(𝑚 log𝑛/(_Δ𝛾 )) edges from 𝐸 uniformly and independently

at random, and once we have the sampled edges at our dis-

posal, we can perform all the remaining computation in that

round without any further overhead in our query complex-

ity. We have, however, already discussed in Step 1 that by

making a single adjacency-list query, we can sample a uni-

formly random edge from𝐺 . Thus, a given round in Figure 1

requires us to make Θ(𝑚 log𝑛/(_Δ𝛾 )) adjacency-list queries.
By Lemma 3.1, there are at most 𝑂 (𝛽2 · ` (𝐺)) = 𝑂 (𝛽2_)
rounds. Hence, to implement all these rounds, we make at

most Θ
(
𝛽2_ · (𝑚 log𝑛)/(_Δ𝛾 )

)
= �̃�𝜖 (𝑚/Δ𝛾 ) = �̃�𝜖 (𝑛 · Δ1−𝛾 )

adjacency-list queries. At the end of Step 3, we only explicitly

store the EDBS 𝐻 . The main challenge for our adjacency-list

query based algorithm now is to compute an approximation

to the value of ` (𝐻 ∪𝑈 ), given that it does not explicitly store

the set of underfull edges𝑈 .

Step 4: Identifying the set 𝑉𝑠𝑚𝑎𝑙𝑙 . For each node 𝑣 ∈ 𝑉 ,
we sample 𝐾 = (100/𝜖) · Δ1−𝛾

log𝑛 edges in 𝐺 incident on

𝑣 , uniformly and independently at random (with repetitions).

We need to make one adjacency-list query for each of these

samples, which leads to a total of �̃�𝜖 (Δ1−𝛾 ) adjacency-list
queries per node, and hence �̃�𝜖 (𝑛·Δ1−𝛾 ) adjacency-list queries
to deal with all the𝑛 nodes in𝐺 . For each 𝑖 ∈ [𝐾], let (𝑣,𝑢𝑖 ) ∈ 𝐸
denote the 𝑖𝑡ℎ sample for 𝑣 ∈ 𝑉 , and let 𝑋𝑖,𝑣 ∈ {0, 1} be an
indicator random variable that is set to 1 iff (𝑣,𝑢𝑖 ) ∈ 𝑈 . Note

that once we have retrieved the sampled edge (𝑣,𝑢𝑖 ) ∈ 𝐸, it
is easy for us to check whether it belongs to the set 𝑈 (by

verifying whether (𝑣,𝑢𝑖 ) ∈ 𝐸 \ 𝐻 and whether deg𝑣 (𝐻 ) +
deg𝑢𝑖

(𝐻 ) ≤ (1 − 𝜖)𝛽) without making any further adjacency-

list queries in 𝐺 , since we explicitly store all the edges in 𝐻 .

Let 𝑋𝑣 :=
∑𝐾
𝑖=1

𝑋𝑖,𝑣 . We construct the set 𝑉𝑠𝑚𝑎𝑙𝑙 as follows:

𝑉𝑠𝑚𝑎𝑙𝑙 := {𝑣 ∈ 𝑉 : 𝑋𝑣 ≤ (100/𝜖2) · log𝑛}. We now show that

this is consistent with the way𝑉𝑠𝑚𝑎𝑙𝑙 is defined in step (13) of

Figure 1.

Claim 4.8. The set 𝑉𝑠𝑚𝑎𝑙𝑙 , as constructed above, whp satisfies
the condition:{

𝑣 ∈ 𝑉 : deg𝑣 (𝑈 ) ≤
(1 − 𝜖) · Δ𝛾

𝜖

}
⊆ 𝑉𝑠𝑚𝑎𝑙𝑙

⊆
{
𝑣 ∈ 𝑉 : deg𝑣 (𝑈 ) ≤

(1 + 𝜖) · Δ𝛾
𝜖

}
Proof. Fix any node 𝑣 ∈ 𝑉 . The random variables {𝑋𝑖,𝑣}

aremutually independent, andwe have E[𝑋𝑣] =
∑𝐾
𝑖=1

E[𝑋𝑖,𝑣] =∑𝐾
𝑖=1

Pr[𝑋𝑖,𝑣 = 1] = 𝐾 ·deg𝑣 (𝑈 )/deg𝑣 (𝐸) = (100/𝜖)·Δ1−𝛾
log𝑛·

deg𝑣 (𝑈 )/deg𝑣 (𝐸) ≥ (100/𝜖) · Δ−𝛾 log𝑛 · deg𝑣 (𝑈 ). Thus, ap-
plying Chernoff bounds, we get:

Observation 4.9. If deg𝑣 (𝑈 ) ≤
(1−𝜖 ) ·Δ𝛾

𝜖 , then whp 𝑣 ∈
𝑉𝑠𝑚𝑎𝑙𝑙 . On the other hand, if deg𝑣 (𝑈 ) >

(1+𝜖 ) ·Δ𝛾

𝜖 , then whp
𝑣 ∉ 𝑉𝑠𝑚𝑎𝑙𝑙 .

The claim now follows from Observation 4.9 and a union

bound over all the nodes 𝑣 ∈ 𝑉 . □

To summarize, at the end of Step 4, we explicitly store the

EDBS 𝐻 and the node-set 𝑉𝑠𝑚𝑎𝑙𝑙 , but not the edge-set 𝐸𝑠𝑚𝑎𝑙𝑙
(see step (13) in Figure 1). However, given a pair of nodes

𝑢, 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑙𝑙 , along with a guarantee (which we are in no

position to verify) that 𝑢 and 𝑣 are connected via an edge in

𝐸, we can decide whether or not (𝑢, 𝑣) ∈ 𝐸𝑠𝑚𝑎𝑙𝑙 based on the

contents of the set 𝐻 .

Step 5: Computing a (1 + 𝜖)-approximate estimate of
` (𝐸𝑠𝑚𝑎𝑙𝑙 ). We now run the algorithm from Theorem 2.5 on

𝐺𝑠𝑚𝑎𝑙𝑙 := (𝑉𝑠𝑚𝑎𝑙𝑙 , 𝐸𝑠𝑚𝑎𝑙𝑙 ), and output the estimate 𝛼 returned

by this algorithm. The key challenge here is that Theorem 2.5

requires adjacency-list query access to 𝐺𝑠𝑚𝑎𝑙𝑙 , but we only

have adjacency-list query access to𝐺 . We overcome this chal-

lenge as follows.

Suppose that this algorithm makes an adjacency-list query

𝑄 , asking for the 𝑖𝑡ℎ edge incident on a given node 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑙𝑙
in 𝐺𝑠𝑚𝑎𝑙𝑙 . To answer this query 𝑄 , we make deg𝑣 (𝐸) many

adjacency-list queries in𝐺 – to collect all the edges incident on

𝑣 in𝐺 – and then identify the subset of these edges that belong

to 𝐺𝑠𝑚𝑎𝑙𝑙 (based on the contents of 𝐻 and 𝑉𝑠𝑚𝑎𝑙𝑙 , which we

explicitly store). Once we have identified this subset, we can

trivially answer the original query 𝑄 . To summarize, we can

implement each adjacency-list query in 𝐺𝑠𝑚𝑎𝑙𝑙 by making at

most Δ adjacency-list queries in 𝐺 .

By Lemma 3.5 and Claim 4.8 , whp the graph 𝐺𝑠𝑚𝑎𝑙𝑙 has

maximum-degree Δ𝐺𝑠𝑚𝑎𝑙𝑙
= 𝑂𝜖 (Δ𝛾 ). Accordingly, it follows

that in order to run the algorithm from Theorem 2.5 on𝐺𝑠𝑚𝑎𝑙𝑙 ,

wemake �̃�𝜖

(
Δ · (Δ𝐺𝑠𝑚𝑎𝑙𝑙

)Θ(1/𝜖2 )
)
= �̃�𝜖

(
Δ(1+Θ(𝛾/𝜖

2 ) )
)
adjacency-

list queries in 𝐺 , whp.

Approximation Guarantee: As discussed above, our algo-

rithm returns an estimate 𝛼 s.t. 𝛼 ≤ ` (𝐸𝑠𝑚𝑎𝑙𝑙 ) ≤ (1 + 𝜖) · 𝛼 .
Since _ = `∗ ≤ ` (𝐺) ≤ (2 + 𝜖) · `∗ (see Step 2), Lemma 3.4

implies that:

𝛼 ≤ ` (𝐸𝑠𝑚𝑎𝑙𝑙 ) ≤ ` (𝐺) ≤ (3/2 + Θ(𝜖)) · 𝛼. (7)

Proof of Theorem 4.7. The approximation guarantee follows

from (7). Next, recall that Steps 1, 2, 3, 4, 5 respectively makes

�̃� (𝑛), �̃�𝜖 (𝑛), �̃�𝜖 (𝑛 · Δ1−𝛾 ), �̃�𝜖 (𝑛 · Δ1−𝛾 ) and �̃�𝜖
(
Δ1+Θ(𝛾/𝜖2 )

)
adjacency-list queries in 𝐺 , whp. Hence, the total query com-

plexity of the algorithm is at most:

�̃� (𝑛) + �̃�𝜖 (𝑛) + �̃�𝜖 (𝑛 · Δ1−𝛾 ) + �̃�𝜖 (𝑛 · Δ1−𝛾 ) + �̃�𝜖
(
Δ1+Θ(𝛾/𝜖2 )

)
= �̃�𝜖

(
𝑛 · Δ1−Θ(𝜖2 )

)
This holds because Δ ≤ 𝑛, and 𝛾 := 𝑐 · 𝜖2

for a sufficiently

small constant 𝑐 > 0 (see Step 2). □
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4.3 (3/2, 𝜖𝑛)-Approximation with
Adjacency-List Queries

In Section 4.2, we showed how to obtain a (3/2+𝜖)-approximation

to ` (𝐺) with �̃�𝜖 (𝑛 ·Δ1−Θ(𝜖2 ) ) adjacency-list queries. Note that
this query complexity is sublinear in𝑚 = |𝐸 | only if most of

the nodes in 𝐺 have degree close to Δ. In this section, we

address this issue by designing an algorithm whose query

complexity is always sublinear in𝑚, at the cost of incurring

an additive 𝜖𝑛 slack in the approximation guarantee. The main

result in this section is summarized in the theorem below.

Theorem 4.10. There exists an algorithm which, on input
graph𝐺 = (𝑉 , 𝐸), returns a (3/2, 𝜖𝑛)-approximation to the value

of ` (𝐺) after �̃�𝜖
(
𝑛 ·

(
1 + 𝑑1−Θ(𝜖2 )

))
adjacency-list queries to

𝐺 , whp.6

Steps 1, 2, 3 of our algorithm for Theorem 4.10 remains

almost the same as Steps 1, 2, 3 in Section 4.2; the only differ-

ence being that in Step 2 we set Δ∗ ← 𝑑 (instead of setting

Δ∗ ← Δ as in Section 4.2). After the end of Step 3, we diverge

from the algorithm in Section 4.2, for the following reason.

For each node 𝑣 ∈ 𝑉 , Step 4 in Section 4.2 decides whether

or not it belongs to 𝑉𝑠𝑚𝑎𝑙𝑙 by sampling Θ̃𝜖 (Δ1−𝛾 ) edges inci-
dent on 𝑣 in𝐺 , and then checking how many of these samples

belong to 𝐻 . This leads to an overall query complexity of

�̃�𝜖 (𝑛 · Δ1−𝛾 ) for Step 4. If we instead wish to get a similar

query complexity in terms of 𝑑 , then we can afford to sample

at most Θ̃𝜖 (𝑑1−𝛾 ) incident edges per node. However, if a node
𝑣 ∈ 𝑉 has deg𝑣 (𝐸) ≫ 𝑑 , then Θ̃𝜖 (𝑑1−𝛾 ) samples will never

suffice to determine whether deg𝑣 (𝐻 ) = 𝑂 (𝑑𝛾/𝜖). Note that
this difficulty does not arise in Section 4.2, because every node

in 𝐺 has degree at most Δ (in contrast to the current section,

where some nodes can have degree ≫ 𝑑). To overcome this

difficulty, we prune the high degree nodes out of𝐺 , and work

with the remaining subgraph while implementing Step 4 and

Step 5, following the template of Section 4.2. We defer the

complete algorithm and its analysis to Appendix B.

5 RETURNING A MATCHING VS
APPROXIMATING THE VALUE OF ` (𝐺)

It is well-known that no algorithm can return the edges of a

𝑂 (1)-approximate maximum matching in an input graph 𝐺

using only sublinear number of queries. In addition, it remains

a big open question to design a sublinear algorithm that re-

turns a (1, 𝜖𝑛)-approximation (or a (1 + 𝜖)-approximation) to

the value of ` (𝐺). As summarized in the theorem below, an

interesting corollary of our analysis from the previous sections

is that on any given graph, we can achieve one of these two

goals.

Theorem 5.1. There is an algorithm for each of the following
tasks, on an input graph 𝐺 = (𝑉 , 𝐸).
• (i) Either return a matching 𝑀 ⊆ 𝐸 of size |𝑀 | = Ω(𝜖 ·
` (𝐺)) or return a (1, 𝜖𝑛)-approximation to the value of

6
Here, 𝑑 denotes the average degree in𝐺 .

` (𝐺), bymaking �̃�𝜖
(
𝑛2−Θ(𝜖2 )

)
adjacency-matrix queries,

whp.
• (ii) Either return a matching𝑀 ⊆ 𝐸 of size |𝑀 | = Ω(𝜖 ·
` (𝐺)) or return a (1 + 𝜖)-approximation to the value of

` (𝐺), bymaking �̃�𝜖
(
𝑛 · Δ1−Θ(𝜖2 )

)
adjacency-list queries,

whp.
• (iii) Either return a matching𝑀 ⊆ 𝐸 of size |𝑀 | = Ω(𝜖 ·
` (𝐺)) or return a (1, 𝜖𝑛)-approximation to the value of

` (𝐺), by making �̃�𝜖
(
𝑛 ·

(
1 + 𝑑1−Θ(𝜖2 )

))
adjacency-list

queries, whp.

Proof. (Sketch) Recall that all the three sublinear algo-

rithms described in Section 4 are based on the template estab-

lished in Figure 1. Furthermore, all the three sublinear algo-

rithms satisfy the following properties: (i) they explicitly store

the contents of the EDBS𝐻 of𝐺 (and hence can output the set

of edges belonging to a maximum matching in 𝐻 , if required),

and (ii) they return a near-optimal approximation to the value

of ` (𝐻 ∪𝑈 ). The theorem now follows from Lemma 5.2.

Lemma 5.2. Let 𝐻 ⊆ 𝐸 be an EDBS of 𝐺 = (𝑉 , 𝐸), and let
𝑈 ⊆ 𝐸 \ 𝐻 denote the collection of edges that are underfull
w.r.t. 𝐻 . Then, either ` (𝐺) ≤ (1/Θ(𝜖)) · ` (𝐻 ) or ` (𝐺) ≤ (1 +
Θ(𝜖)) · ` (𝐻 ∪𝑈 ).

The proof of Lemma 5.2 appears in Section 5.1. □

5.1 Proof of Lemma 5.2
The proof follows the ideas of [4]. We will first prove the

lemma for bipartite graphs.

Claim 5.3. Consider a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), and an
EDBS 𝐻 ⊆ 𝐸 of 𝐺 . Let 𝑈 ⊆ 𝐸 \ 𝐻 be the collection of edges
that are underfull w.r.t. 𝐻 . Then, either ` (𝐺) ≤ (1/𝜖) · ` (𝐻 ) or
` (𝐺) ≤ (1 + Θ(𝜖)) · ` (𝐻 ∪𝑈 ).

Proof. Applying Hall’s theorem on the subgraph 𝐻 , we

infer that there must exist a subset of nodes 𝐴 ⊆ 𝑅 such that

|𝐴| − |𝑁𝐻 (𝐴) | = |𝑅 | − ` (𝐻 ), where 𝑁𝐻 (𝐴) := {𝑢 ∈ 𝐿 : (𝑢, 𝑣) ∈
𝐻 for some 𝑣 ∈ 𝐴} denotes the set of neighbors of 𝐴 in 𝐻 . Let

𝐵 := 𝑁𝐻 (𝐴), 𝐵 := 𝐿 \ 𝐵, and 𝐴 := 𝑅 \ 𝐴. This implies that

|𝐴| − |𝐵 | = |𝑅 | − ` (𝐻 ), and hence |𝐴| + |𝐵 | = ` (𝐻 ).
Note that there must exist a matching 𝑀 ⊆ 𝐸 \ 𝐻 of size

|𝑀 | ≥ ` (𝐺) − ` (𝐻 ) between the vertices of 𝐵 and 𝐴, for

otherwise 𝐴 would be a Hall’s witness set showing that the

maximum matching size of 𝐺 is smaller then ` (𝐺), leading
to a contradiction. Let 𝑆 ⊆ 𝐴 ∪ 𝐵 denote the set of end-

points of the edges of 𝑀 . Since 𝑁𝐻 (𝑆) ⊆ 𝐴 ∪ 𝐵, we have

|𝑁𝐻 (𝑆) | ≤ |𝐴| + |𝐵 | = ` (𝐻 ).
For sake of contradiction, suppose that ` (𝐻 ) < 𝜖 · ` (𝐺) and

` (𝐻∪𝑈 ) < (1−5𝜖) ·` (𝐺). Then, we have |𝑀 | ≥ ` (𝐺)−` (𝐻 ) ≥
(1 − 𝜖) · ` (𝐺). Since ` (𝐻 ∪ 𝑈 ) < (1 − 5𝜖) · ` (𝐺) and |𝑀 | ≥
(1−𝜖) ·` (𝐺), it follows that at least 4𝜖 ·` (𝐺) edges of𝑀 are not

in𝐻 ∪𝑈 . Each such edge 𝑒 ∈ 𝑀 has deg𝑒 (𝐻 ) ≥ (1−𝜖) ·𝛽 . This
implies that deg𝑆 (𝐻 ) :=

∑
𝑣∈𝑆 deg𝑣 (𝐻 ) ≥ 4𝜖 · ` (𝐺) · (1−𝜖) · 𝛽 .

Next, observe that each edge in 𝐻 that is incident on 𝑆 must

share one of its endpoints with𝐴∪𝐵, and deg𝑣 (𝐻 ) ≤ 𝛽 for all
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nodes 𝑣 ∈ 𝑉 . Hence, we get ` (𝐻 ) ·𝛽 = |𝐴∪𝐵 | ·𝛽 ≥ deg𝑆 (𝐻 ) ≥
4𝜖 · (1−𝜖) ·𝛽 ·` (𝐺), so that ` (𝐻 ) ≥ 4𝜖 · (1−𝜖) ·` (𝐺) > 𝜖 ·` (𝐺).
This leads to a contradiction. □

It now remains to extend Claim 5.3 to general graphs. To-

wards this end, fix any general graph𝐺 = (𝑉 , 𝐸) and an EDBS

𝐻 ⊆ 𝐸 of𝐺 . Let𝑈 ⊆ 𝐸 \𝐻 denote the collection of edges that

are underfull w.r.t. 𝐻 . Let𝑀∗ ⊆ 𝐸 be a maximum matching in

𝐺 . Following the approach taken by [4], we now construct a

random bipartite subgraph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) of 𝐺 , as described
below.

Constructing the bipartite subgraph 𝐺 = (𝐿 ∪ 𝑅, 𝐸): For
each edge 𝑒 = (𝑢, 𝑣) ∈ 𝑀∗, sample a bit 𝛼𝑒 ∈ {0, 1} uniformly

at random: if 𝛼𝑒 = 0 then assign 𝑢 to 𝑅 and 𝑣 to 𝐿, else assign

𝑢 to 𝐿 and 𝑣 to 𝑅. Next, for each node 𝑣 ∈ 𝑉 \𝑉 (𝑀∗), assign
it to 𝑅 or 𝐿 uniformly at random. Finally, let 𝐸 ⊆ 𝐸 be the

subset of edges in 𝐺 whose endpoints lie in different sides of

the bipartition (𝐿, 𝑅). Note that 𝑀∗ ⊆ 𝐸, and hence ` (𝐺) =
` (𝐺) = |𝑀∗ |. Define �̂� := 𝐻 ∩ 𝐸.

Claim 5.4 ([4]). With non-zero probability, the following con-
ditions simultaneously hold.

• (a) For every edge 𝑒 ∈ �̂� , we have deg𝑒 (�̂� ) ≤ (𝛽/2) ·
(1 + 4𝜖).
• (b) For every edge 𝑒 ∈ 𝐸 \ (�̂� ∪𝑈 ), we have 𝑑𝑒𝑔𝑒 (�̂� ) ≥
𝛽/2 · (1 − 5𝜖).

For the rest of the proof, we condition on the event which

ensures that both the two parts of Claim 5.4 hold. Set 𝜖 := 20𝜖

and
ˆ𝛽 := (𝛽/2)·(1+4𝜖). Part (a) of Claim 5.4 implies that �̂� is an

EDBS of𝐺 , w.r.t. ˆ𝛽 and 𝜖 . Let𝑈 :=

{
𝑒 ∈ 𝐸 \ �̂� : deg𝑒 (�̂� ) < (1 − 𝜖) · ˆ𝛽

}
denote the collection of underfull edges in 𝐺 w.r.t. �̂� . Part (b)

of Claim 5.4 implies that𝑈 ⊆ 𝑈 . Finally, recall that by defini-

tion, we have �̂� ⊆ 𝐻 . Now, applying Claim 5.4 on (𝐺, �̂�,𝑈 ),
we get:

Either ` (𝐺) ≤ (1/𝜖) · ` (�̂� ) or ` (𝐺) ≤ (1 + Θ(𝜖)) · ` (�̂� ∪𝑈 ) .
(8)

Since ` (𝐺) = ` (𝐺), �̂� ⊆ 𝐻 , 𝑈 ⊆ 𝑈 and 𝜖 = Θ(𝜖), the lemma

follows from (8).

A PROOF OF THEOREM 2.4
This argument is almost identical to the one present in [4]. Let

𝐻 ⊂ 𝐸 be some arbitrary sub-graph. Define potential function

Φ(𝐻 ) = ∑
𝑣∈𝑉 𝑑𝑒𝑔𝐻 (𝑣) · (𝛽 − 1/2) −∑𝑒∈𝐻 𝑑𝑒𝑔𝐻 (𝑒). Assume

that 𝜖 · 𝛽 ≥ 1 and 𝜖 · 𝛽 is an integer for sake of simplicity. We

will argue that if an edge 𝑒∗ in 𝐸 \𝐻 which is underfull with

respect to 𝐻 is added to 𝐻 or an edge 𝑒∗ of 𝐻 which is overfull

with respect to 𝐻 is removed from 𝐻 then Φ(𝐻 ) increases by
at least one. Let 𝐻− and 𝐻+ represent the state of 𝐻 before

and after the edge update. In the former case:

Φ(𝐻+) − Φ(𝐻−) =
∑︁
𝑣∈𝑉
(𝛽 − 1/2) · (𝑑𝑒𝑔𝐻+ (𝑣) − 𝑑𝑒𝑔𝐻+ (𝑣)) −∑︁

𝑒∈𝐻+
𝑑𝑒𝑔𝐻+ (𝑒) +

∑︁
𝑒∈𝐻 −

𝑑𝑒𝑔𝐻 − (𝑒)

= 2 · 𝛽 − 1 − 𝑑𝑒𝑔𝐻+ (𝑒∗) −∑︁
𝑒∈𝐻 −

𝑑𝑒𝑔𝐻+ (𝑒) − 𝑑𝑒𝑔𝐻 − (𝑒)

≥ 2 · 𝛽 − 1 − (𝛽 · (1 − 𝜖) + 1) −
(𝛽 · (1 − 𝜖) − 1)

≥ −1 + 2 · 𝛽 · 𝜖
≥ 1

The first inequality just follows from the fact that 𝑒∗ had to
be underfull before the insertion. Where as in the later case

Φ(𝐻+) − Φ(𝐻−) = −2 · 𝛽 + 1 + 𝑑𝑒𝑔𝐻+ (𝑒∗) +∑︁
𝑒∈𝐻 −

𝑑𝑒𝑔𝐻+ (𝑒) − 𝑑𝑒𝑔𝐻 − (𝑒)

≥ −2 · 𝛽 + 1 + (𝛽 + 1) + (𝛽 − 1)
≥ 1

The first inequality follows simply from the fact that 𝑒∗

had to be overfull before the deletion. Hence, underfull edge

insertions and overfull edge deletions consistently increase

the potential function Φ(𝐻 ). If 𝐻 is the empty-set Φ(𝐻 ) = 0.

If there is no overfull edge in 𝐻 (with respect to 𝐻 ) then the

maximum edge degree and hence the maximum vertex degree

of 𝐻 is 𝛽 . The fractional matching 𝑓 : 𝐻 ⇒ 1/𝛽 is a feasible

fractional matching and |𝐻 |/𝛽 = 𝑠𝑖𝑧𝑒 (𝑓 ) ≤ ` (𝐺) · 3/2, as
the size of any fractional matching is at most 3/2-the size

of the maximum matching size in a graph. Furthermore, by

definitionΦ(𝐻 ) = ∑
𝑣∈𝑉 𝑑𝑒𝑔𝐻 (𝑣) ·(𝛽−1/2)−∑𝑒∈𝐻 𝑑𝑒𝑔𝐻 (𝑒) ≤

𝛽 ·∑𝑣∈𝑉 𝑑𝑒𝑔𝐻 (𝑣) = 𝑂 ( |𝐻 | · 𝛽). The combination of the lower

and upper bounds imply that Φ(𝐻 ) ∈ 𝑂 (` (𝐺) · 𝛽2) and hence

𝐻 may undergo at most𝑂 (` (𝐺) ·𝛽2) underfull edge insertions
or overfull edge deletions.

Note that the only difference between the argument pre-

sented here and in [4] is that we express the upper bound on

Φ(𝐻 ) in terms of ` (𝐺) instead of 𝑛 which turns out to be cru-

cial in order to design our sub-linear approximate matching

algorithm using adjacency list queries witouth additive slack.

B MISSING PROOFS FROM SECTION 4
B.1 Proof of Lemma 4.3
Observe that 𝑋𝑖 form i.i.d. variables, hence we can apply Cher-

noff’s bound on 𝑋 . By definition E[𝑋 ] = 𝑆 ·𝑚
𝑛2

=
𝑚 ·log(𝑛) ·100

𝑛·𝜖3
.

Assume𝑚 ≥ 𝜖 ·𝑛
2

hence E[𝑋 ] ≥ 50·log(𝑛)
𝜖2

.
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Pr(𝑚 ≤ �̂� ≤ 𝑚 · (1 + 𝜖) + 2 · 𝜖 · 𝑛) ≥

Pr

(
𝑚 ∈ [ 𝑋 · 𝑛2

(1 + 𝜖) · 𝑆 , (1 + 𝜖) ·
𝑋 · 𝑛2

𝑆
]
)

=

Pr

(
𝑋 ∈ [E[𝑋 ]

1 + 𝜖 ,E[𝑋 ] · (1 + 𝜖)]
)
≥

Pr

(
|𝑋 − E[𝑋 ] | ≤ E[𝑋 ] · 𝜖

2

)
≥ (9)

1 − 2 · exp

(
−E[𝑋 ] · (𝜖/2)

2

3

)
≥ (10)

1 − 1/𝑝𝑜𝑙𝑦 (𝑛)

Inequality 9 holds as long as 𝜖 ≤ 1/4 and Inequality 10

follows from Chernoff’s bound. If 𝑚 < 𝜖 ·𝑛
2

then E[𝑋 ] ≤
50·log(𝑛)

𝜖2
and clearly𝑚 ≤ (1+𝜖) · 𝑋 ·𝑛2

𝑆
+2 ·𝜖 ·𝑛 = �̂�. It remains

to show that with high probability �̂� ≤ 𝑚 · (1 + 𝜖) + 2 · 𝜖 · 𝑛,
more specifically that with high probability (1+𝜖) · 𝑋 ·𝑛2

𝑆
≤ 𝜖 ·𝑛

(and hence �̂� ≤ 2 · 𝜖 · 𝑛).

Pr

(
(1 + 𝜖) · 𝑋 · 𝑛

2

𝑆
≤ 𝜖 · 𝑛

)
=

Pr

(
𝑋 ≥ 100 · log(𝑛)

𝜖2 · (1 + 𝜖)

)
≤

Pr

(
𝑋 − E[𝑋 ] ≥ 50 · log(𝑛)

𝜖2
· 1 − 𝜖

1 + 𝜖

)
≤

exp
©«−

50·log(𝑛)
𝜖2

· ( 1−𝜖
1+𝜖 )

2

3

ª®¬ ≤ (11)

1/𝑝𝑜𝑙𝑦 (𝜖)

Inequality 11 follows from Chernoff’s bound and from the

fact that E[𝑋 ] ≤ 50·log(𝑛)
𝜖2

.

B.2 Proof of Lemma 4.4
Let 𝑋𝑒 stand for the event where the algorithm samples edge

𝑒 and let 𝑋𝐸 stand for the event where the algorithm sam-

ples an edge from 𝐸. A simple application of Bayes’s theorem

shows that Pr (𝑋𝑒 |𝑋𝐸 ) = Pr(𝑋𝐸 |𝑋𝑒 ) ·Pr(𝑋𝑒 )
Pr(𝑋𝐸 ) =

1·1/𝑛2

𝑚/𝑛2
= 1/𝑚 as

expected. The probability that any sample from 𝑉 ×𝑉 is not

in 𝐸 is (1 −𝑚/𝑛2). Hence, the probability that the algorithm

doesn’t sample an edge from 𝐸 in Ω
(
𝑚 ·log(𝑛)

𝑛2

)
samples is at

most (1 −𝑚/𝑛2)Ω (
𝑚 ·log(𝑛)

𝑛2
) ≤ exp(−Ω(log(𝑛)) = 1/𝑝𝑜𝑙𝑦 (𝑛).

B.3 Proof of Theorem 4.10
The proof of Theorem 4.10 is quite similar to the arguments de-

veloped in Section 4.2. As usual, we essentially implement the

schematic algorithm described in Figure 1, under adjacency-

list queries. The algorithm consists of the following steps.

Step 1: Preprocessing. This remains exactly the same as in

Step 1 in Section 4.2.

Step 2: Obtaining a coarse approximation of ` (𝐺). We

set Δ∗ ← 𝑑 (whereas Step 2 in Section 4.2 sets Δ∗ ← Δ).
Everything else remains the same as in Step 2 in Section 4.2.

Step 3: Obtaining the EDBS 𝐻 . This remains exactly the

same as Step 3 in Section 4.2 (except that Δ∗ = 𝑑 instead of

Δ). Following the analysis in Section 4.2, we infer that for this

step the algorithm makes �̃�𝜖 (𝑚/𝑑𝛾 ) = �̃�𝜖 (𝑛 · 𝑑1−𝛾 ) queries.
At this point, we diverge from the algorithm in Section 4.2,

for reasons outlined in Section 4.3. Define the subset of nodes

𝑉 ∗ :=
{
𝑣 ∈ 𝑉 : deg𝑣 (𝐸) ≤ 𝑑/𝜖

}
. Let 𝐸∗ := {(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈

𝑉 ∗} denote set of edges in 𝐺 induced by 𝑉 ∗. Next, define
𝐺∗ := (𝑉 ∗, 𝐸∗), 𝐻∗ := 𝐻 ∩ 𝐸∗ and𝑈 ∗ := 𝑈 ∩ 𝐸∗ (see Step (13)

in Figure 1). Finally, define a subset of nodes𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

⊆ 𝑉 ∗ such
that: {

𝑣 ∈ 𝑉 ∗ : deg𝑣 (𝑈 ∗) ≤
(1 − 𝜖) · 𝑑𝛾

𝜖

}
⊆ 𝑉 ∗

𝑠𝑚𝑎𝑙𝑙
(12)

⊆
{
𝑣 ∈ 𝑉 ∗ : deg𝑣 (𝑈 ∗) ≤

(1 + 𝜖) · 𝑑𝛾
𝜖

}
Finally, define 𝐸∗

𝑠𝑚𝑎𝑙𝑙
:=

{
(𝑢, 𝑣) ∈ 𝐻∗ ∪𝑈 ∗ : 𝑢, 𝑣 ∈ 𝑉 ∗

𝑠𝑚𝑎𝑙𝑙

}
,

and let𝐺∗
𝑠𝑚𝑎𝑙𝑙

:= (𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

, 𝐸∗
𝑠𝑚𝑎𝑙𝑙

). The next two lemmas should

respectively be interpreted as an analogues of Lemma 3.4 and

Lemma 3.5.

Lemma B.1. We have ` (𝐺) ≤ (3/2 + 𝜖) · ` (𝐸∗
𝑠𝑚𝑎𝑙𝑙

) + Θ(𝜖𝑛),
whp.

Proof. As deg𝑣 (𝐸) > 𝑑/𝜖 for all 𝑣 ∈ 𝑉 \ 𝑉 ∗, we have∑
𝑣∈𝑉 deg𝑣 (𝐸) = 𝑛 · 𝑑 ≥ |𝑉 \𝑉 ∗ | · (𝑑/𝜖), which implies that

|𝑉 \𝑉 ∗ | ≤ 𝜖𝑛. Fix any maximum matching 𝑀 in 𝐻 ∪𝑈 . Let
𝑀∗ ⊆ 𝑀 be the set of edges in𝑀 whose both endpoints are in

𝑉 ∗. Observe that𝑀∗ is a valid matching in𝐻∗∪𝑈 ∗. Since every
edge in𝑀 \𝑀∗ shares at least one endpoint with 𝑉 \𝑉 ∗, we
have |𝑀 \𝑀∗ | ≤ |𝑉 \𝑉 ∗ |. Thus, we get: ` (𝐻∗ ∪𝑈 ∗) ≥ |𝑀∗ | =
|𝑀 | − |𝑀 \𝑀∗ | ≥ |𝑀 | − |𝑉 \𝑉 ∗ | ≥ |𝑀 | − 𝜖𝑛 = ` (𝐻 ∪𝑈 ) − 𝜖𝑛.
Rearranging the terms in the preceding inequality, we get:

` (𝐻 ∪𝑈 ) ≤ ` (𝐻∗ ∪𝑈 ∗) + 𝜖𝑛. (13)

From (13) and Theorem 2.2, we infer that:

` (𝐺) ≤ (3/2 + 𝜖) · ` (𝐻∗ ∪𝑈 ∗) + Θ(𝜖𝑛) . (14)

It now remains to upper bound ` (𝐻∗ ∪𝑈 ∗) by ` (𝐸∗
𝑠𝑚𝑎𝑙𝑙

).
Towards this end, recall that `∗ ≤ 𝑛 (see (2)), Δ∗ = 𝑑 (see

Step (2) above), and 𝑈 ∗ ⊆ 𝑈 . Hence, by Corollary 3.3, we

have: |𝑈 ∗ | ≤ 𝑛 · 𝑑𝛾 , whp. Each node 𝑣 ∈ 𝑉 ∗ \ 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

has

deg𝑣 (𝑈 ∗) > (1 − 𝜖)𝑑𝛾/𝜖 . Accordingly, we infer that |𝑉 ∗ \
𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

| · (1 − 𝜖)𝑑𝛾/𝜖 ≤ |𝑈 ∗ | ≤ 𝑛𝑑𝛾 , and hence |𝑉 ∗ \𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

| ≤
𝜖 (1 − 𝜖)−1𝑛 = Θ(𝜖𝑛).

The edge-set 𝐸∗
𝑠𝑚𝑎𝑙𝑙

is obtained by removing, from the set

𝐻∗∪𝑈 ∗, all the edges incident on the nodes in𝑉 ∗\𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

. Thus,

applying an argument similar to the one used to derive (13),

we get:

` (𝐸∗
𝑠𝑚𝑎𝑙𝑙

) ≥ ` (𝐻∗∪𝑈 ∗)− |𝑉 ∗ \𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

| ≥ ` (𝐻∗∪𝑈 ∗)−Θ(𝜖𝑛).
(15)

The lemma follows from (14) and (15). □
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Lemma B.2. The graph 𝐺∗
𝑠𝑚𝑎𝑙𝑙

:= (𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

, 𝐸∗
𝑠𝑚𝑎𝑙𝑙

) has maxi-
mum degree Δ𝐺∗

𝑠𝑚𝑎𝑙𝑙
= 𝑂𝜖 (𝑑𝛾 ).

Proof. Consider any node 𝑣 ∈ 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

. By definition, we

have deg𝑣 (𝑈 ∗) = 𝑂𝜖 (𝑑𝛾 ). On the other hand, since 𝐻 is

an EDBS of 𝐺 , we have deg𝑒 (𝐻 ) ≤ 𝛽 for all edges 𝑒 ∈ 𝐻 ,
and hence deg𝑢 (𝐻 ) ≤ 𝛽 for all nodes 𝑢 ∈ 𝑉 . In particular,

this means that deg𝑣 (𝐻 ) ≤ 𝛽 , and hence deg𝑣 (𝐸∗𝑠𝑚𝑎𝑙𝑙 ) ≤
deg𝑣 (𝐻 ) + deg𝑣 (𝑈 ∗) ≤ 𝑂𝜖 (𝛽 + 𝑑𝛾 ) = 𝑂𝜖 (𝑑𝛾 ). This implies

the lemma. □

Recall that we already know the degree of each node in 𝐺

and the value of 𝑑 (see Step 1 above), as well as the contents

of the set 𝐻 (see Step 3 above). Using this information, we

explicitly identify the contents of the sets 𝑉 ∗ and 𝐻∗, without
making any further adjacency-list query in𝐺 . This also implies

that we have adjacency-matrix query access to the edges in

𝐸∗.

Step 4: Identifying the set 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

. This is analogous to Step

4 in Section 4.2, with minor adjustments for the fact that the

nodes in 𝑉 ∗ have maximum degree 𝑑/𝜖 (as opposed to Δ)
in𝐺 . But, for completeness, we reproduce the appropriately

modified arguments below.

For each node 𝑣 ∈ 𝑉 ∗, we sample 𝐾 = (100/𝜖2) · 𝑑1−𝛾
log𝑛

edges in 𝐺 incident on 𝑣 , uniformly and independently at

random (with repetitions). We need to make one adjacency-

list query in 𝐺 for each of these samples, which leads to a

total of �̃�𝜖 (𝑑1−𝛾 ) adjacency-list queries per node, and hence

�̃�𝜖 (𝑛 ·𝑑1−𝛾 ) adjacency-list queries to deal with all the nodes in
𝑉 ∗. For each 𝑖 ∈ [𝐾], let (𝑣,𝑢𝑖 ) ∈ 𝐸 denote the 𝑖𝑡ℎ sample for

𝑣 ∈ 𝑉 , and let𝑋𝑖,𝑣 ∈ {0, 1} be an indicator random variable that

is set to 1 iff (𝑣,𝑢𝑖 ) ∈ 𝑈 ∗. Note that once we have retrieved the
sampled edge (𝑣,𝑢𝑖 ) ∈ 𝐸, it is easy for us to check whether it

belongs to the set𝑈 (by verifying whether (𝑣,𝑢𝑖 ) ∈ 𝐸∗\𝐻∗ and
whether deg𝑣 (𝐻∗) + deg𝑢𝑖

(𝐻∗) ≤ (1 − 𝜖)𝛽) without making

any further adjacency-list queries in 𝐺 , since we explicitly

store all the edges in 𝐻 and have adjacency-matrix query

access to the edges in 𝐸∗. Let𝑋𝑣 :=
∑𝐾
𝑖=1

𝑋𝑖,𝑣 . We construct the

set𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

as follows:𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

:= {𝑣 ∈ 𝑉 : 𝑋𝑣 ≤ (100/𝜖2) · log𝑛}.
We now show that this is consistent with the way 𝑉 ∗

𝑠𝑚𝑎𝑙𝑙
is

defined in (12).

Claim B.3. The set 𝑉𝑠𝑚𝑎𝑙𝑙 , as constructed above, whp satisfies
the condition:{

𝑣 ∈ 𝑉 ∗ : deg𝑣 (𝑈 ∗) ≤
(1 − 𝜖) · 𝑑𝛾

𝜖

}
⊆ 𝑉 ∗

𝑠𝑚𝑎𝑙𝑙

⊆
{
𝑣 ∈ 𝑉 ∗ : deg𝑣 (𝑈 ∗) ≤

(1 + 𝜖) · 𝑑𝛾
𝜖

}
Proof. Fix any node 𝑣 ∈ 𝑉 ∗. The random variables {𝑋𝑖,𝑣}

aremutually independent, andwe have E[𝑋𝑣] =
∑𝐾
𝑖=1

E[𝑋𝑖,𝑣] =∑𝐾
𝑖=1

Pr[𝑋𝑖,𝑣 = 1] = 𝐾 · deg𝑣 (𝑈 ∗)/deg𝑣 (𝐸) = (100/𝜖2) ·
𝑑1−𝛾

log𝑛·deg𝑣 (𝑈 ∗)/deg𝑣 (𝐸) ≥ (100/𝜖)·𝑑−𝛾 log𝑛·deg𝑣 (𝑈 ∗).7
Thus, applying Chernoff bounds, we get:

7
The last inequality holds because deg𝑣 (𝐸 ) ≤ 𝑑/𝜖 for all nodes 𝑣 ∈ 𝑉 ∗ .

Observation B.4. If deg𝑣 (𝑈 ∗) ≤
(1−𝜖 ) ·𝑑𝛾

𝜖 , then whp 𝑣 ∈
𝑉𝑠𝑚𝑎𝑙𝑙 . On the other hand, if deg𝑣 (𝑈 ∗) >

(1+𝜖 ) ·𝑑𝛾
𝜖 , then whp

𝑣 ∉ 𝑉𝑠𝑚𝑎𝑙𝑙 .

The claim now follows from Observation B.4 and a union

bound over all the nodes 𝑣 ∈ 𝑉 . □

To summarize, at the end of Step 4, we explicitly store

the edge-set 𝐻∗ and the node-set 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

, but not the edge-set
𝐸∗
𝑠𝑚𝑎𝑙𝑙

. However, given a pair of nodes 𝑢, 𝑣 ∈ 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

, along

with a guarantee (which we are in no position to verify) that 𝑢

and 𝑣 are connected via an edge in 𝐸, we can decide whether

or not (𝑢, 𝑣) ∈ 𝐸∗
𝑠𝑚𝑎𝑙𝑙

based on the contents of the set 𝐻∗.

Step 5: Computing a (1 + 𝜖)-approximate estimate of
` (𝐸∗

𝑠𝑚𝑎𝑙𝑙
). We now run the algorithm from Theorem 2.5 on

𝐺∗
𝑠𝑚𝑎𝑙𝑙

:= (𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

, 𝐸∗
𝑠𝑚𝑎𝑙𝑙

), and output the estimate 𝛼 returned

by this algorithm. The key challenge here is that Theorem 2.5

requires adjacency-list query access to 𝐺∗
𝑠𝑚𝑎𝑙𝑙

, but we only

have adjacency-list query access to𝐺 . We overcome this chal-

lenge as follows.

Suppose that this algorithm makes an adjacency-list query

𝑄 , asking for the 𝑖𝑡ℎ edge incident on a given node 𝑣 ∈ 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

in 𝐺∗
𝑠𝑚𝑎𝑙𝑙

. To answer this query 𝑄 , we make deg𝑣 (𝐸) ≤ 𝑛

adjacency-list queries in 𝐺 – to collect all the edges incident

on 𝑣 in 𝐺 – and then identify the subset of these edges that

belong to 𝐺∗
𝑠𝑚𝑎𝑙𝑙

(based on the contents of 𝐻∗ and 𝑉 ∗
𝑠𝑚𝑎𝑙𝑙

,

which we explicitly store). Once we have identified this subset,

we can trivially answer the original query 𝑄 . Thus, we can

implement each adjacency-list query in 𝐺∗
𝑠𝑚𝑎𝑙𝑙

by making at

most 𝑛 adjacency-list queries in 𝐺 .

By Lemma B.2 and Claim B.3, whp the graph 𝐺∗
𝑠𝑚𝑎𝑙𝑙

has

maximum-degree Δ𝐺∗
𝑠𝑚𝑎𝑙𝑙

= 𝑂𝜖 (𝑑𝛾 ). Accordingly, it follows
that the algorithm from Theorem 2.5, while running on the

graph𝐺∗
𝑠𝑚𝑎𝑙𝑙

, makes �̃�𝜖

(
𝑛 · (Δ𝐺∗

𝑠𝑚𝑎𝑙𝑙
)Θ(1/𝜖2 )

)
= �̃�𝜖

(
𝑛 · 𝑑Θ(𝛾/𝜖2 )

)
adjacency-list queries in 𝐺 , whp.

Approximation Guarantee: As discussed above, our algo-

rithm returns an estimate 𝛼 s.t. 𝛼 ≤ ` (𝐸∗
𝑠𝑚𝑎𝑙𝑙

) ≤ (1 + 𝜖) · 𝛼 .
Hence, Lemma B.1 implies that:

𝛼 ≤ ` (𝐸∗
𝑠𝑚𝑎𝑙𝑙

) ≤ ` (𝐺) ≤ (3/2+Θ(𝜖))·𝛼+Θ(𝜖𝑛) = (3/2)·𝛼+Θ(𝜖𝑛).
(16)

Proof of Theorem 4.10: The approximation guarantee fol-

lows from (16). Next, recall that Steps 1, 2, 3, 4, 5 respec-

tively makes �̃� (𝑛), �̃�𝜖 (𝑛), �̃�𝜖 (𝑛 · 𝑑1−𝛾 ), �̃�𝜖 (𝑛 · 𝑑1−𝛾 ) and
�̃�𝜖

(
𝑛 · 𝑑Θ(𝛾/𝜖2 )

)
adjacency-list queries in 𝐺 , whp. Hence, the

total query complexity of the algorithm is at most:

�̃� (𝑛) + �̃�𝜖 (𝑛) + �̃�𝜖 (𝑛 · 𝑑1−𝛾 ) + �̃�𝜖 (𝑛 · 𝑑1−𝛾 ) + �̃�𝜖
(
𝑛 · 𝑑Θ(𝛾/𝜖

2 )
)

= �̃�𝜖

(
𝑛 ·

(
1 + 𝑑1−Θ(𝜖2 )

))
.

This holds because 𝛾 := 𝑐 · 𝜖2
for a sufficiently small constant

𝑐 > 0 (see Step 2 above). □



Sublinear Algorithms for (1.5 + 𝜖 )-Approximate Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

C EFFICIENT IMPLEMENTATION OF THE
FRAMEWORK

The contents of this section appendix appear in the arXiv

version of the paper at link due to page limitations.

D SUB-LINEAR TSP
In the metric traveling salesman problem we are given an

𝑛 × 𝑛 distance matrix 𝐷 specifying the pairs wise distance

of 𝑛 locations and our goal is to devise a tour of minimum

length visiting all locations. Similarly to the matching problem

it is an interesting question how close the cost of the optimal

solution can be approximated via a sub-linear number (𝑜 (𝑛2))
of queries to𝐷 . [15] has shown that the cost of a minimum size

spanning tree of a weighted graph may be estimated within

a (1 + 𝜖)-factor using �̃� (𝑛) queries. As the TSP cost is upper

bounded by the double of the MST cost this approach yields

an efficient (2 + 𝜖)-approximate solution to the problem.

For specific metrics better than 2-approximate solutions

using sub-linear time have appeared in literature ([19, 20, 24])

(but not for general metrics which remains an interesting

open problem). In particular for the case of graphic TSP where

distances in𝐷 represent vertex pair distances in an underlying

unweighted graph [13] has shown that there is a �̃� (𝑛) time

algorithm which approximates the cost within a 2−𝛿 ratio for
some absolute constant 𝛿 . In the same paper the authors show

that no algorithm can approximate the cost of graphic TSP

within an approximation ratio close than (1 + 𝜖0) for some

absolute constant 𝜖0 with 𝑜 (𝑛2) distance queries. Furthermore,

the authors show that with query complexity super-linear in 𝑛

a better approximation ratio 27/14 can be obtained in �̃� (𝑛3/2)
time. Note that this result relies on an approximate maximum

matching algorithmwhich runs in �̃� (𝑛3/2) which was recently
improved to �̃� (𝑛) time by [6].

There are sub-linear results for the case of (1, 2)-TSP (where
distances in𝐷 are in {1, 2}) ([13] 1.625-approximation, [1] 1.75-

approximation) and when it is either known that the metric

contains a spanning tree supported on weight-1 edges or the

algorithm is given access to a minimum spanning tree of the

graph ([14] sub-2 approximation).

In [13] the authors show a close connection between the

approximate matching and TSP problems. They show that

any algorithm which can approximate the cost of graphic or

(1, 2)-TSP within a (1 + 𝜖)-factor may be used to approximate

the size of a maximum matching of a bipartite graph with 𝜖 ·𝑛
additive slack.

Substituting Theorem 1.3 into the framework of [13] we

achieve a new approximation ratio achievable for the TSP prob-

lem in sub-linear time: we may obtain a 40/21-approximate

solution in �̃� (𝑛2−\𝜖2 ) time and distance queries. This suggest

that there might indeed be an interesting regime of different

approximation ratio/running time payoffs for TSP for approx-

imation ratios in (1 + 𝜖0, 2) and running times (𝑛, 𝑛2).

Theorem D.1 (Theorem 7 of [13]). For any 𝛿 and 𝑐0 ≥ 1.
Given a graph G with maximum matching size 𝛼 · 𝑛, suppose

there is an algorithm that uses pair queries (adjacency matrix
queries), runs in 𝑡 time, and with probability at least 2/3, outputs
an estimate of the maximum matching size 𝛼 · 𝑛 such that
𝛼 ≤ 𝛼 ≤ 𝑐0 ·𝛼 +𝛿 . Then there is an algorithm that approximates
the cost of graphic TSP of G to within a factor of 2 − 1

7·𝑐0

+ 𝛿 ,
using distance queries, in 𝑡 + 𝑂 ( 𝑛

𝛿2
) time with probability at

least 3/5.

The breakthrough paper [6] has shown an �̃� (𝑛) running
time algorithm for finding a (2+𝜖)-approximate matching size

estimate. Substituting this algorithm into into Theorem D.1

of [13] the author of [6] obtains a 27/14-approximation to the

graphic TSP-problem in �̃� (𝑛) time. If we instead substitute

the algorithm of Theorem 1.3 we obtain the following result:

Theorem D.2. There is an �̃� (𝑛2−Ω (𝜖2 ) ) running time ran-
domized algorithm which estimates the cost of graphic TSP
within a factor of 40/21 + 𝜖 .

E PROOF OF FACT E.1

Fact E.1. (Formal:) There is no algorithm which for a
given graph and some constant 𝜖 > 0 returns a 1/𝜖-
approximate (respectively (1/𝜖, 𝜖 ·𝑛) approximate) match-
ing in �̃�𝜖 (𝑛2−𝛿 ) time for some 𝛿 > 0 using adjacency list
query (respectively adjacency matrix query) access to the
graph.

Adjacency Matrix Queries: Consider a bipartite graph on

vertex sets |𝐿 | = |𝑅 | = 𝑛 where any potential edge (𝑢, 𝑣) |𝑢 ∈
𝐿, 𝑣 ∈ 𝑅 exists with some probability 𝑝 =

𝑘 ·log(𝑛)
𝜖2
/𝑛 in-

dependently from each other for some large enough con-

stant 𝑘 . Call the edge set of this graph 𝐸𝑝 . Using chernoff’s

bound we can argue that if 𝑘 is selected high enough then

with high probability the degree of each vertex will fall into

[ (1−𝜖 ) ·log(𝑛) ·𝑘
𝜖2

,
(1+𝜖 ) ·log(𝑛) ·𝑘

𝜖2
] in𝐸𝑝 . Consider fractionalmatch-

ing 𝐸𝑝 → 𝑛 ·𝑝/(1+𝜖). As with high probability vertex degrees

are in [(1−𝜖) ·𝑝 ·𝑛, (1+𝜖) ·𝑝 ·𝑛]𝑤 is a valid fractional matching

and 𝑠𝑖𝑧𝑒 (𝑤) ≥ 𝑛 · (1−𝜖 )
1+𝜖 ≥ 𝑠𝑖𝑧𝑒 (𝑤) · 𝑛 · (1 − 4 · 𝜖). As 𝑤 is a

valid fractional matching and 𝐺 is bipartite ` (𝐺) ≥ 𝑠𝑖𝑧𝑒 (𝑤).
Any (1/𝜖, 𝜖 · (2𝑛))-approximate matching of𝐺 must have

at least (` (𝐺) − 𝜖 · (2𝑛)) · 𝜖 ≥ 𝜖 · 𝑛 · (1 − 6 · 𝜖) ≥ 𝑛 · 𝜖/2
edges (for 𝜖 < 1/12). However, as each edge exist in the graph

with probability 𝑝 independently from each other, regardless

which edges are queried by the algorithm it needs to query (in

expectation and by Chernoff’s bound with high probability)

at least Ω( 𝑛 ·𝜖𝑝 ) = Ω𝜖 ( 𝑛2

log(𝑛) ) edges in order to find a large

enough matching.

Adjacency List Queries: Construct graph𝐺 = (𝐿 ∪𝑅 ∪𝑈 , 𝐸)
as follows: |𝐿 | = |𝑅 | = 𝑛 and there is a perfect matching (and

no other edge) between 𝐿 and 𝑅, |𝑈 | = 𝑛 · 𝜖/2 and there is a

complete matching between 𝐿 ∪ 𝑅 and 𝑈 . Assume that the

neighbour list of every vertex is ordered uniformly at random.

By definition ` (𝐺) = 𝑛. An algorithm may easily match the

vertices of 𝑈 to some subset of vertices in 𝐿 ∪ 𝑅. However,
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in order to match 𝜖 · 𝑛 pairs of vertices the algorithm must

find at least 𝑛 · 𝜖/2 edges of the perfect matching between

𝑅 and 𝐿. Any adjacency list query on the edges incident of

a vertex in 𝑅 or 𝐿 returns a neighbour in 𝑈 with probability

(𝑛 · 𝜖/2)/(𝑛 · 𝜖/2 + 1) and returns a vertex of 𝑅 ∪ 𝐿 with

probability 1/(𝑛 ·𝜖/2+ 1). Hence, in expectation the algorithm

must make at least Ω(𝑛 · 𝜖) list queries to find a single edge of
the perfect matching. Therefore, to construct a matching of

size 𝜖 · 𝑛 the algorithm must make at least Ω𝜖 (𝑛2) list queries
to edges incident on the vertices of𝑈 ∪ 𝐿.

Note on the definition of adjacency list queries: One can
define adjacency list queries in two separate ways. In both

settings query of the format (𝑣, 𝑖) returns the 𝑖-th neighbour

incident on vertex 𝑣 . However, the definition 𝑖-th neighbour

can either follow from a pre-defined ordering of vertices over

the whole graph or this ordering may be different for all ver-

tices. Papers in literature are often ambiguous about this detail.

In the former, easier setting the proof in the paragraph above

breaks down (for that setting their is a binary search based

algorithm which works on the above example graph). How-

ever, informally speaking if instead of 𝑈 being completely

connected to 𝑅 ∪ 𝐿 we would define the graph such that any

edge (𝑢, 𝑣) |𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑅 ∪ 𝐿 exists with probability 1/2 the

algorithm would still not have any better way to find an edge

of the perfect matching then querying Ω(𝜖 · 𝑛) edges of some

vertex in 𝑅 ∪ 𝐿 and we would reach the same conclusion.
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