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Semantic-aware Video Compression for Automotive
Cameras

Yiting Wang, Pak Hung Chan, Valentina Donzella

Abstract—Assisted and automated driving functions in vehicles
exploit sensor data to build situational awareness, however,
the data amount required by these functions might exceed the
bandwidth of current wired vehicle communication networks.
Consequently, sensor data reduction, and automotive camera
video compression need investigation. However, conventional
video compression schemes, such as H.264 and H.265, have
been mainly optimised for human vision. In this paper, we
propose a semantic-aware (SA) video compression (SAC) frame-
work that compresses separately and simultaneously region-of-
interest and region-out-of-interest of automotive camera video
frames, before transmitting them to processing unit(s), where
the data are used for perception tasks, such as object detection,
semantic segmentation, etc. Using our newly proposed technique,
the region-of-interest (ROI), encapsulating most of the road
stakeholders, retains higher quality using lower compression
ratio. The experimental results show that under the same overall
compression ratio, our proposed SAC scheme maintains a similar
or better image quality, measured accordingly to traditional
metrics and to our newly proposed semantic-aware metrics. The
newly proposed metrics, namely SA-PSNR, SA-SSIM, and iIoU,
give more emphasis to ROI quality, which has an immediate
impact on the planning and decisions of assisted and automated
driving functions. Using our SA-X264 compression, SA-PSNR
and SA-SSIM have an increase of 2.864 and 0.008 respectively
compared to traditional H.264, with higher ROI quality and the
same compression ratio. Finally, a segmentation-based perception
algorithm has been used to compare reconstructed frames,
demonstrating a 2.7% mIOU improvement, when using the
proposed SAC method versus traditional compression techniques.

Index Terms—Automotive camera data, video compression,
semantic segmentation, machine learning, Intelligent Vehicles,
Automated and Assisted driving.

I. INTRODUCTION

VEHICLES equipped with assisted and automated driv-
ing (AAD) functions can significantly enhance the trans-

portation system in several countries, increasing the safety
of journeys, providing more flexible and comfortable mo-
bility options, and reducing pollution and greenhouse gas
emissions [1]. In particular, for higher levels of driving au-
tomation, the perception sensor suite is essential for assisting
the vehicle decision-making process in AAD systems (L3-
L5) [2], [3], [4]. These higher levels of driving automation
require more perception sensors to provide the required spa-
tial and temporal coverage, and also to ensure redundancy,
robustness and safety [5], [6], [7]. This requirement results
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in a remarkable increase in the amount of generated data by
the perception sensors, especially from the widely deployed
camera sensors. The video data generated from cameras can
be used by safety critical features or through the cloud for
data analysis and decision-making. Both of these use cases
involve the need to transmit a large amount of sensor data
[8]. Assuming 8 cameras are used in an automated vehicle
with the possibility to transmit 200 Megabyte/second each, the
required bandwidth can not be supported by traditional vehicle
communication networks [9]. Moreover, computational power
and wired transmission bandwidth are limited resources on
vehicles, and a bandwidth bottleneck caused by too high data
rates may result in unacceptable delays, and as a consequence,
safety threats to the vehicle and other road stakeholders.

The reduction of camera data, i.e. video compression, needs
to be assessed in order to enable the real-time transfer of
videos from the sensors to the vehicle processing unit(s), with-
out compromising the perception steps consuming the sensor
data (see Fig. 1). Higher levels of compression can reduce
the volume of data and latency, but they can also decrease
the video quality (e.g. introducing distortions and artefacts
in reconstructed frames) that could impair the information
extracted from the data and therefore the decision-making
process and the vehicle safety. Chan et al. have demonstrated
that object detection based on compression-tuned neural net-
works can have improved performance in relation to neural
networks trained on uncompressed data (in terms of average
precision and recall) when lossy compressed video data are
transmitted over the vehicle data communication networks
[10], [11]. Recent work by Wang et al. has proposed some
preliminary results on H.264 compression of a user-defined
region-of-interest using video data [12]. However, the amount
of work on AAD-specific compression is very limited, and
additional research is necessary to fully explore the connection
between video compression and machine learning (ML)-based
perception for automated driving. In order to increase the com-
pression ratio of automated vehicles (AVs) video data without
lowering the quality of the perception algorithms, this work
proposes a new semantic-aware compression (SAC) method
based on a frame-by-frame identification of the region-of-
interest (ROI), preserving higher image quality for this region.
This novel semantic video compression splits each frame in the
video into two areas: the areas holding less crucial information
(such as sky, nature, trees, and foliage) are compressed more
heavily than regions containing fundamental information from
driving (e.g. the road, vehicles, pedestrians). The selection of
important and less important regions can be tuned depending
on the specific implementation of our proposed technique.
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Fig. 1. Schematic view of the architecture of a vehicle with a camera sensor transmitting compressed data (via vehicle wired communication networks) to
the processing unit(s) responsible for data consumption and perception. On the right, there is a zoom-in into the functions to show a comparison between
traditional (a) vs our proposed semantic-aware video compression (b).

Specifically, as a part of this work, ML-based pre-compression
semantic segmentation is used to identify ROI and enable
sufficient flexibility to cope with the complexity and variability
one can have between consecutive frames in automotive [13].
Following the settings from [12], ROI is identified to include
the following labels: road, object, human, parking, vehicle,
unlabeled, dynamic, ground; construction/structures, nature,
sky are regarded as non-ROI; compression to the different
regions is applied using H.264 and H.265 compliant codecs.
The contributions of this work are as follows:
• we introduce a new semantic-aware video compression

method for automotive cameras using segmentation to
extract dynamically, real-time, ROI and non-ROI for each
video frame;

• we apply different compression ratios to these two re-
gions, therefore better maintaining the image quality of
the ROI, which is more important for imminent naviga-
tion decisions;

• we propose three new metrics for quantifying the qual-
ity of reconstructed frames (i.e. semantic- aware (SA-)
Structural Similarity Index (SA-SSIM), semantic- aware
Peak Signal to Noise Ratio (SA-PSNR), and iIOU) that
weights image quality based on region importance. The
proposed metrics give more emphasis to regions that
are critical to driving (ROI), so they can provide a
more meaningful evaluation of the quality of images
specifically for automotive applications.

The experimental work demonstrates that the proposed ap-
proach achieves better results with respect to traditional com-
pression in terms of SA-SSIM and SA-PSNR, and state-of-
the-art performance even when combined with a perception
task, i.e. semantic segmentation.

II. RELATED WORK

A. Video Compression Standards
To date, H.264 and H.265 are two widely adopted com-

pression standards for videos used for digital television and

streaming [14]. These standards consider data redundancy in
time and space to decrease the size of the compressed files.
H.265 improves the compression performance significantly
by introducing some more flexibility to H.264 (e.g. more
macroblock sizes). Moreover, H.265 can achieve up to a 50%
reduction in bit rate maintaining the same perceptual video
quality of H.264 [15]. These traditional video compression
techniques benefit from being established and widely used in
a variety of applications. Their effectiveness, however, has not
been optimised for usage in video transmission specifically for
AV and AAD functions. Some concepts related to rate control
in the above mentioned standards are covered in [12], [16].
Recently, newer codecs (e.g. AOMedia Video 1, AV1, first re-
leased in 2018) and video compression standards (e.g. H.266,
also known as Versatile Video Coding, VVC, first released in
2020), have been developed to enhance compression efficiency
[17]. These codecs and standards are more advanced and
computationally complex with respect to their predecessors;
they can provide higher quality videos for comparable levels of
compression, and support high dynamic range videos and 8K
resolution. However, the computational complexity of these
novel techniques hinders real-time processing, and hardware
acceleration solutions are not mature enough (contrary to
H.264 and H.265) [18]. Hence, these standards are considered
outside the scope of assisted and automated functions and not
covered in this paper. Moreover, some standards have been
adopted for automotive (e.g. VESA Display Stream Com-
pression, DSC, and VESA Display Compression-M, VDC-
M), but they are optimised for displays (and human vision),
and not for machine learning based perception, and they
offer inadequately low compression ratios, i.e. 3:1-5:1 [11];
therefore they are also deemed outside the main topic of
this paper. In this study, well-known compression algorithms
(based on the H.264 and H.265 standards) are coupled with
a pre-segmentation phase in order to increase compression
performance in terms of higher compression ratios and better
image quality in the case of automotive applications.
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Fig. 2. Illustration of : (a) traditional compression; (b) the proposed semantic-aware video compression framework (SAC). S1 block implements the ROI-
based semantic segmentation; S2 is responsible for the separation of the two streams; S3 represents the two-level compression. The constant rate factor (CRF)
is used to change the compression level.

B. Content-aware Compression

The compression strategy proposed in this paper belongs
to content-aware compression, which entails compressing the
original video frames according to their information content.
In Li et al. the concept of an “importance map” is proposed
to emphasise the sharp edges or rich textures with more bit-
rate allocation [19]. Similarly, recent work has proposed a
“critical pixel mask” learned from an attention-based convo-
lution neural network (CNN) module to identify the pixels
in ROI that are more important for the perceived quality,
then a refinement neural network is used to improve the
image quality, especially for these masked areas [20]. Another
type of image compression involves the preservation of visual
information by changing geometric integrity [21]. This process
can result in a more “compressible” input image and therefore
better compression visual quality. To maximise performance
on the given analytic tasks with compression, it has been
recently proposed a semantic preserving compression frame-
work where the most relevant features for both classification
and compression tasks are jointly learnt with multi-task neural
network [22]. By introducing the multi-task loss, the accuracy
of the tasks for classification and decoding is boosted. How-
ever, most of these proposed methods only compress based
on spatial information, and they are not optimised in the case
of information redundancy in the temporal domain. Video
segmentation is used to differentiate foreground objects from
the background in a number of content-aware compression
methods. Early investigations use deep learning-based seg-
mentation to classify blocks in the video frame as “texture”
or “non-texture” to apply different compression codecs [23].
In Chen et al. the block-based compression is improved into
pixel-level texture segmentation to have even further bit-rate
reduction [24]. Sengar et al. proposed a motion segmentation-
based video compression method based on the optimisation of
adaptive particle swarm for surveillance videos [25]. However,
the CNN detector in these methods is likely to detect only one
or a few types of textures based on perceptual significance

for human vision. Moreover, the foreground extraction used
in these papers is only valid for static backgrounds, therefore
is not applicable to AVs. Some recent work has proposed to
compress road scene maps to solve the lack of large storage in
AVs for high-precision localization, but the Authors consider
data from the point cloud and not videos [6], [26]. Some
content-adaptive video compression techniques for AVs have
been recently proposed. However, the work from Dror et al.
is for remote AV control, whereas Wang et al. only presents
some preliminary results with semantic-aware compression
and H.264 [27], [12].

There are some recent works focusing on end-to-end tech-
niques to implement DNN-based semantic segmentation [28],
[29], [30]. However, they do focus on image compression and
not video compression as proposed in this work. Furthermore,
they do not consider the specific automotive requirements, so
they mainly use traditional metrics to evaluate their results.
One of the strengths of the techniques proposed in this work is
that they combine traditional compression techniques, so they
are fully deterministic and allow for higher compression ratios
to be achieved (1:1000 and above) with the flexibility of DNN-
based segmentation. Moreover, they have a higher degree of
flexibility, as depending on the specific application, ROI and
non-ROI can be defined differently, and the compression ratio
for the two regions can be also tailored.

C. Semantic Segmentation

Considering the sense-perceive-plan-control pipeline in
AVs, the quality of transmitted and decompressed sensor data
is of foremost importance for the following steps, see Fig.1.
Nonetheless, previous work mainly considers traditional image
quality metrics, even if some recent works have analysed the
implications of compression on object detection [10], [31],
[32]. However, there are further vision tasks, e.g. segmenta-
tion, that have not been properly investigated. Semantic seg-
mentation means that each pixel in an image is labelled with a
specific class (e.g. vehicle, road, sky, etc.) [33]. Many datasets,
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such as the KITTI, Cityscapes and ApolloScape, have helped
the improvement of the automated driving segmentation task
[34]. Building on previous works on segmentation [35], [36],
[37], this paper proposes an attention-based semantic segmen-
tation neural network to implement two key tasks: 1) ROI
extraction, as the first step of our semantic aware compression;
2) evaluation of the quality of the reconstructed frames.
Related to the first task, i.e. ROI extraction, a neural network
based solution can offer flexibility and robustness to identify
the ROI with high accuracy and to cope in real-time with the
significant variability between automotive video frames (e.g.
vehicles, pedestrians, bicyclists, animals in different positions,
orientations, with different colours, materials, textures, levels
of obstruction, etc.).

III. MODEL ARCHITECTURE

Fig.2 shows a comparison of conventional video compres-
sion and our SAC architecture. The proposed framework
mainly contains three steps (see Fig.2 b). S1 is the semantic
segmentation; S2 represents the stream separation (stream I,
ROI, and stream N, non-ROI); S3 performs the two-level
compression. The initial video frames are described as X =
{x1, x2, ..., xt}, where xt indicates the frame at time t. The
decompressed output stream is X̂ = {x̂1, x̂2, ..., x̂t}.

A. Overall Procedure

The proposed semantic-aware compression consists of the
following steps.
S1: ROI segmentation. The masks for both ROI and non-ROI
are generated to allow for stream separation in step 2. This
step is based on a threshold segmenting neural network, with
a similar structure to [38]. The specific segmentation details
will be introduced in Sec. III.B.
S2: Stream separation. After segmentation, the region bound-
aries are fitted to a 16 × 16 pixel block grid to match the
macroblocks in the compression standards (macroblock filter).
The masks will be used for generating the streams of ROI and
non-ROI. The specific separation details will be introduced in
Sec. III.C.
S3: Two-level compression. In this step, the ROI stream will
go through low-level compression and the non-ROI stream
will go through high-level compression. The encoder-decoder
structure follows conventional H.264 and H.265 standards.
After adding the two compressed streams, the output stream
of the compressed video X̂ will be produced. The specific
two-level compression details will be introduced in Sec. III.D.

B. ROI Segmentation

Since the segmentation masks will inform all the pro-
cess, more accurate segmentation will contribute to improved
semantic-aware compression. The segmentation network ar-
chitecture is described in Fig. 3 [38].

Firstly, the sensor generated video sequences X are con-
verted to lower resolution images and transformed to greyscale
through a deep neural network. Secondly, the Residual Net-
work (ResNet) 101 is used as the feature extraction network

Fig. 3. The architecture of the Segmentation Neural Network, highlighting
its different modules, i.e. ResNet, criss-cross modules.

due to its high efficiency [38], [39]. It can obtain the feature
map X̄ with the spatial size of h × w. Benefiting from its
“shortcut connections” structure, this backbone architecture
can address degradation problems in deeper convolution layers
[39]. Thirdly, two linked criss-cross attention modules are
used to get the new feature map H

′′
[38]. Following that,

a concatenation of the original feature map X̄ with the dense
contextual feature H

′′
is performed. Finally, the segmentation

results S can be obtained. We set the feature extraction network
as R and the segmentation network to be f, therefore the
segmentation result after step one is shown in (1).

S = f (R (X) +H ′′) (1)

Four tones of grey are used to represent the four output
categories of the segmentation pixels: ROI, sky, construction,
and nature. As it is hard to define what is “important” (i.e.
ROI) and there are constant changes for the stakeholders
belonging to ROI, this segmentation algorithm only predicts
the non-ROI; all the parts not identified as non-ROI are defined
as ROI. This process can produce a more robust ‘automotive
compliant’ segmentation.

C. Stream Separation

As shown in Fig. 4, given the segmentation results, S, a
binary mask is generated to further reduce the classification
of pixels into two regions: non-ROI and ROI. The macroblocks
used in the H.264 and H.265 standards for motion composition
and prediction are then simulated using a 16×16 macroblock
filter. Any 16 × 16 block that has at least one ROI pixel is
treated as an ROI block during filtering; in this way the loss
of any ROI pixels belonging to critical objects in the frames
is reduced. Using the binary ROI and non-ROI masks (Mi,
Mn), the two streams (Si) and (Sn) are generated according
to (2) and (3).

Si = Mi ⊙ X (2)

Sn = Mn ⊙ X (3)

Where ⊙ indicates the Hadamard product. The subscripts or
prefixes of i and n are used to indicate variables related to the
ROI or the non-ROI respectively.
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Fig. 4. Separation of ROI and non-ROI streams. Firstly, a binary mask is achieved via pre-processing the segmented frame S; then, important and non-important
macroblocks are generated to get the two masks, Mi and Mn; lastly, the masks are applied to the original frame to generate the two streams.

D. Two-level Compression-decompression

The frames at the time t from the video sequences Sn and
Si are set as nmt and imt respectively, according to (4)-(5).

nmt ⊂ Sn , imt ⊂ Si (4)

xt = nmt + imt (5)

The process of coding-decoding based on H.264 or H.265
can be divided into seven phases, as described in [12] and
schematically represented in Fig. 5. At the end, the predicted
ROI frame ˆimt and the reconstructed residual rt are combined
to achieve the decompressd ROI area frame imt, as shown
in (6).

imt = ˆimt + rt (6)

The non-ROI area frame nmt can be reconstructed in parallel
following a similar process. In the end, the reconstructed
whole frame xt is generated through the equation (7).

xt = imt + nmt (7)

The novelty of the proposed technique lies in the quantisation
step. In fact, in this work, the constant rate factor (CRF)
parameter can be set differently for the two streams, to obtain
various quality levels for ROI and non-ROI. The key feature of
the proposed SAC compression is that the CRF of the stream
Sn is greater than the stream Si, and therefore the quality of
imt (reconstructed ROI) is better than the nmt (reconstructed
non-ROI) one.

IV. IMPLEMENTATION

The experiments are conducted under the following as-
sumptions based on the labels from the Cityscapes dataset:
1) the non-ROI area is achieved by combining three classes:
construction (i.e. building, wall, fence, guard rail, bridge,
tunnel), nature (i.e. vegetation, terrain) and sky; 2) the ROI
area is the area of the frame not classified as non-ROI. Based
on the previously described network architecture, we have
designed and evaluated our experiments as detailed below.

Fig. 5. The process of H.264 or H.265 compression on ROI. An identical
process is applied in parallel (at the same time) to the non-ROI; in this case
the quantisation will have higher CRF (higher compression).

A. Training Optimisation

The optimisation method for gradient descend in step 1 is
the Adaptive Moment Estimation (Adam) [40]. It is computa-
tionally efficient with low memory requirements. A learning
rate of 3 × 10−4 was used, the betas are selected as (0.9,
0.999), and the weight decay is 1×10−5. The training process
has 47 epochs, 2974 iterations per epoch, and batch size of 4.

B. Loss Function

The binary cross-entropy loss (BCE) and dice loss are
combined to create the loss function, hereby called “BCE-
Dice loss” [12], [41], [42]. This compounded loss allows for
compensating unbalanced classes and has good perfomance
with small objects [12]. Assuming that the distribution of the
classes is s and the prediction of this distribution is ŝ, one can
use (8) to define the BCE loss.

LBCE (s, ŝ) = − (slog (ŝ) + (1− s) log (1− ŝ)) (8)

The similarity between the two distributions is computed via
the dice coeffcient [42]. It can be used here to calculate the
dissimilarity between labelled image s and predicted results



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. , NO. , 2022 6

p̂, as described in (9).

LDice (s, p̂) = 1− 2 (s ∩ p̂) +
1

(s ∪ p̂)
+ 1 (9)

Here, the smooth index 1 is added to avoid the extreme case
when s = p̂ = 0. The unique loss function that we employed in
our experiments combining BCE loss with dice loss is defined
in (10).

LBCE−Dice = LBCE (s, ŝ) + LDice (s, p̂) (10)

C. Evaluation of Compression and Segmentation
Compression distortion can be evaluated by computing

traditional quality metrics, namely PSNR and SSIM [43].
Additionally, the compression ratio can give an indication
of the overall compression per frame. However, the above-
mentioned quality metrics measure the quality of overall the
frames, despite the importance of the content of different
areas in each frame. Thus, this work provides a unique
semantic-aware assessment, leveraging that the two streams
have different compression ratios and different importance
to the aim of imminent decisions for planning and control
of the vehicle; this SA assessment is inspired by [44]. The
novel evaluation metrics, named SA-SSIM and SA-PSNR,
emphasise the importance of the quality of the ROI and
are used to evaluate the presented experimental results, Sec.
V. These newly defined quality indicators take performance
and compression ratio into consideration with a new concept
of “compression ratio indexes” as the weights for the two
regions. The functions will give higher weight to the ROI,
as their quality is crucial for the following navigation steps.
We define the CRF, SSIM and PSNR values for stream I
and N individually as (Croi, Cnon), (Si, Sn) and (Pi, Pn).
The compression ratio indexes, estimating the ratios between
the stream I and stream N compression (rroi, rnon ), can be
calculated as in (11)-(12).

rroi =
Croi

Cnon + Croi
(11)

rnon =
Cnon

Cnon + Croi
(12)

As the CRF for ROI is always smaller than non-ROI, the
ratio will always have rnon >rroi. The SA-PSNR and SA-
SSIM are formulated as the (13)-(14).

SA-SSIM = rnonSi + rroiSn (13)

SA-PSNR = rnonPi + rroiPn (14)

The accuracy of the “Intersection-over-Union” will serve
as the measurement metric for ROI segmentation (IOU). The
IOU can be expressed as in Eq. (15).

IOU =
GT ∩ Pre

GT ∪ Pre
(15)

Where GT represents the ground truth area, Pre as the pre-
dicted area, GT ∩ Pre illustrates the intersection region and
GT ∪ Pre is the union. The average IOU (mIOU) for m
categories of labels, can be computed as in (16).

mIOU =

∑m
1 IOUm

m
(16)

TABLE I
SELECTION OF CRF VALUES FOR TWO-LEVEL COMPRESSION

Method CRF default settings
H.264 Icrf = Ncrf = a
H.265 Icrf = Ncrf = b
SA-X264 Icrf = a-c, Ncrf = a+d
SA-X265 Icrf = b-e, Ncrf = b+f
Note: a,b are integers and between 0-51, c,d,e,f are integers and equal
or above zero. We name our SAC methods SA-‘codec’, for example,
SA-X264 is the X264 codec-based semantic compression.

This work also defines a “Region-of-interest IOU” (iIOU) in
(17), for the benefit of our task, to evaluate the quality of IoU
specifically for the ROI.

iIOU =
GTroi ∩ Preroi
GTroi ∪ Preroi

(17)

D. Experiment Setup

The experiments were performed using a virtual machine
running Ubuntu 20 (100GB of storage), a Quadro P5000 GPU
serving as the tensor core, and a Conda environment with
Python 3.8. The neural networks were trained and tested using
PyTorch.
1) Dataset: the main experiments used the Cityscape dataset
[45], which is an AV open benchmarking semantic dataset
made up of 50 sequences of annotated videos. To the aim
of this work, the Cityscape dataset was the only automotive
dataset that comprised temporal sequences with segmentation
masks (which are key for video compression techniques based
on inter-frame prediction). Part of the experiments was also
carried out using the KITTI-STEP dataset [46], which contains
diverse driving scenarios (e.g. rural, urban). This dataset was
designed for segmenting and tracking every pixel (STEP) and
contains labels for non-ROI for consecutive frames in the
video sequences.
2) Compression: FFmpeg X264 and X265 codecs were used
to carry out the experiments, selecting variable bit rate com-
pression based on CRF [12]; the higher the CRF the higher the
compression of the output videos, and therefore the lower the
video quality.Icrf and Ncrf are the CRF values for stream
I and stream N. A possible way of selecting CRF values
is summarised in Table I. In this work, the values of c, d,
and e, f have been selected to obtain the same compression
ratios achieved when using X264 with CRF = a and X265
with CRF = b. Specifically, in the results reported in the
next section, a = 23 and b = 28 have been selected, as the
default CRF values in H.264 and H.265, respectively. These
CRF values correspond to compression ratios of around 1:250
and 1:375 respectively [11], and similar compression ratios
can be achieved with c = 18, d = 27 and e = 23, f = 32.
Having similar compression ratios (when using the same
compression standard) allows for a fairer comparison of the
quality of output videos in case of uniform or semantic-aware
compression.

V. RESULTS

After 47 epochs (2974 iterations each) the computed mIOU
reaches 87.97% and 80.89% in training and validation, and
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frame 55

...

frame 80

...

frame 170
Fig. 6. Video compression visual results. From top to down: original frames, their semantic segmentation prediction, the non-ROI, the ROI, the reconstructed
frames by traditional X265, the reconstructed frames by SA-X265. CRF is 23 for the ROI, 28 for the non-ROI.

79.08% for testing. As a first consideration, the proposed
SAC method can allow for higher compression ratios while
preserving ROI quality, e.g. we can achieve about a 6%
reduction in the size of the compressed videos when using
SA-X265 compared to traditional X265. This size reduction
is achieved by using for the ROI the same CRF used for
traditional X265, while the non-ROI is compressed using a
higher CRF (i.e. CRFnon−ROI= CRFROI+ 5) for the ROI. A
higher size reduction can be achieved further by increasing
CRFnon−ROI . When using the X265 codec, the average
processing time is 0.211 s per frame. In the case of SA-X265,
it takes 0.103 - 0.177 s to code/decode the two streams and
segmentation takes 0.081 seconds per frame on average. So,
without any specific optimisation or hardware acceleration, SA
compression has an overall processing time that is comparable
to uniform compression (i.e. 0.184-0.258 s versus 0.211 s per
frame respectively).

A. Compression and Artefacts

The experimental results of each step for frames 55, 80 and
170 are displayed in Fig. 6. The second row shows the non-
ROI segmentation results. In the third and fourth rows there
are the non-ROI and ROI frames, the abrupt boundaries are
due to the macro-block filter. The fifth and sixth rows are the
reconstructed frames by the conventional H.265 method, and
by the proposed SA-X265, respectively.

The semantic-aware video compression shows comparable
visual performance and values for SSIM compared with
traditional H.264 and H.265 under same compression ratio,
Table III. There is a small decrease in PSNR when using the
SA techniques (around 1 dB), and this decrease may be due to
some artefacts in the reconstructed frames (as shown in Fig.
7), randomly appearing at the boundaries of ROI and non-ROI.
As an example, some artefacts have been identified using red
rectangles in Fig. 7, with unexpected violet and blue coloured
pixels in the reconstructed frames. It has also been observed
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Fig. 7. Flash artefact in one of the reconstructed frames after using our
proposed compression scheme SA-X265.

(but not reported here) that with a larger difference between
the CRF values deployed for ROI and non-ROI more artefacts
are arising at the boundaries. We believe that by applying
different compression ratios, these artefacts might be the result
of sharp changes at the boundaries. However, as explained in
the following sections, this kind of artefacts has little influence
on the selected perception task, i.e. segmentation.

To further analyse the image quality in the two different
regions (without considering the artefacts), we propose to eval-
uate the PSNR and SSIM in these different areas separately,
as explained in Sec. IV.C.

B. Image Quality and Semantic-aware Evaluation

Tables II and III present the quality of the reconstructed
frames after compression via traditional and newly proposed
semantic-aware techniques, namely PSNR, SSIM, and SA-
PSNR, SA-SSIM for the Cityscapes and KITTI-STEP datasets
respectively. These last two metrics emphasise the quality of
the ROI. The selected CRF values are stated in the Table (CRF
values for ROI and non-ROI are presented as Croi and Cnon).
For the compared compression methods, a clear decreasing
trend can be observed for all quality metrics as the value
of CRF increases. Moreover, the evaluated video quality of
the traditional uniform compression methods has lower SA-
SSIM and SA-PSNR than the SAC when achieving the same
compression ratio (e.g. H.264 at CRF=23 compared to SA-
X264 at Croi=18 and Cnon=27, or H.265 at CRF=28 com-
pared to SA-X265 at Croi=23 and Cnon=32), and even when
the SA-based methods have ‘worse’ CRF settings (e.g. same
CRF for ROI and higher CRF for non-ROI). For example,
comparing uniform H.265 compression with CRF = 28 and
SAC with Croi and Cnon equal to 28 and 32 respectively,
their PSNR, SSIM and SA-SSIM are comparable, however,
the SA compressed files have smaller size and higher SA-
PSNR. From the Table, it is also possible to observe that
the H.264-based methods mainly perform better in terms of
the evaluated metrics, but only because the compression ratio
achieved with H.265 at CRF =28 is higher with respect to the
one achieved for H.264 at CRF=23. It is worth noting that the
mean percentage of the ROI per frame is higher (62%) than
of the non-ROI (38%) (obviously these percentages change
for each image), so this proportion has an impact on the
calculated semantic-aware metrics. From Tables II and III, we
can conclude that our proposed semantic-aware compression
method can better estimate the quality of a compressed frame,

TABLE II
CALCULATED PERFORMANCE METRICS FOR TRADITIONAL VS SA
COMPRESSION TECHNIQUES BASED ON H.264 AND H.265 ON THE

CITYSCAPES DATASET, WITH CRF SETTINGS. ↑ DENOTES THAT LARGER
VALUES LEAD TO BETTER QUALITY.

Method Croi Cnon PSNR SSIM SA-PSNR SA-SSIM
(dB)↑ ↑ (dB)↑ ↑

H.264 18 18 46.76 0.98 46.76 0.98
SA-X264 18 23 45.99 0.99 48.79 0.99
H.264 23 23 45.18 0.98 45.18 0.98
SA-X264 18 27 43.94 0.98 48.05 0.99
H.264 27 27 43.69 0.98 43.70 0.98
SA-X264 23 27 44.33 0.98 47.07 0.99
H.265 23 23 45.76 0.98 45.76 0.98
SA-X265 23 28 43.98 0.99 47.76 0.99
H.265 28 28 43.80 0.98 43.80 0.98
SA-X265 23 32 43.77 0.98 47.01 0.99
H.265 32 32 42.01 0.97 42.01 0.97
SA-X265 28 32 43.97 0.98 45.20 0.98

TABLE III
CALCULATED PERFORMANCE METRICS FOR TRADITIONAL VS SA
COMPRESSION TECHNIQUES BASED ON H.264 AND H.265 ON THE

KITTI-STEP DATASET, WITH CRF SETTINGS. ↑ DENOTES THAT LARGER
VALUES LEAD TO BETTER QUALITY.

Method Croi Cnon PSNR SSIM SA-PSNR SA-SSIM
(dB)↑ ↑ (dB)↑ ↑

H.264 18 18 31.73 0.89 31.73 0.89
SA-X264 18 23 28.62 0.86 33.60 0.93
H.264 23 23 29.19 0.84 29.19 0.84
SA-X264 18 27 27.75 0.84 32.98 0.92
H.264 27 27 27.57 0.79 27.57 0.79
SA-X264 23 27 26.91 0.81 31.44 0.90
H.265 23 23 30.29 0.86 30.29 0.86
SA-X265 23 28 26.76 0.80 32.17 0.91
H.265 28 28 27.57 0.79 27.57 0.79
SA-X265 23 32 25.83 0.78 31.31 0.89
H.265 32 32 25.82 0.73 25.82 0.73
SA-X265 28 32 24.95 0.74 29.78 0.87

giving more weight to the regions which are crucial for
immediate and safe driving. In real-world applications, the
CRF values for the ROI and non-ROI can be fine-tuned
depending on the specific driving function that will consume
the data.

Fig. 8 compares part of a reconstructed frame after applying
the four compression methods. We can see that our proposed
methods show better quality in the important area, maintaining
clear license plate numbers.

C. Influence of Compression on Semantic Segmentation

After compression, it is important to evaluate its impli-
cations on the perception tasks implemented in the vehicle
processing units after the transmission of the data, Fig. 1.
Here, we use the same semantic segmentation network model,
described in Sec. III.B, to evaluate the videos compressed via
traditional and semantic-aware methods. The performance of
segmentation are evaluated based on the mean IOU (mIOU)
and important area IOU (iIOU), Sec. IV.C, as shown in Table
IV. The results demonstrate that decompressed frames with
enhanced SA-PSNR and SA-SSIM bring to better segmen-
tation output in terms of both mIOU and iIOU. Our pro-
posed SAC techniques outperform conventional compression
in terms of segmentation mIOU, with SA-X264 having the
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Fig. 8. Visual comparison of a frame compressed with the 4 different tech-
niques (one per row) with equivalent compression ratio. The plate is clearly
readable when using the proposed semantic aware compression techniques.

TABLE IV
EVALUATED SEGMENTATION-BASED PERCEPTION RESULTS FOR

TRADITIONAL AND SEMANTIC-AWARE COMPRESSION

Method Croi Cnon SA-PSNR SA-SSIM mIOU iIOU
(dB)↑ ↑ (%)↑ (%) ↑

H.264 23 23 45.18 0.98 87.86 92.00
SA-X264 18 27 48.05 0.99 90.56 92.45
H.265 28 28 43.80 0.98 85.71 91.43
SA-X265 23 27 47.01 0.99 87.48 92.04

best performance with 90.56% in mIOU and 92.45% in iIOU.
Fig. 9 compares visually the segmentation output after the
different compression techniques, and shows that, for example,
the segmentation of the traffic signal is preserved only when
using SA-X265.

VI. DISCUSSION

Our method presents an improved performance in terms of
traditional and ad hoc metrics, such as SA-PSNR, SA-SSIM,
mIOU and iIOU. For example, the SA-X264 has achieved
an increment of 2.864 in SA-PSNR and 0.008 in SA-SSIM
when compressed with the same ratio compared with H.264
compliant codec. Moreover, the semantic segmentation on
the SAC-based compressed videos performs better than on
the data compressed with H.264, with an increase of 2.7%
on mIOU and of 0.45% on iIOU. These results have been
validated by applying our proposed techniques also on KITTI-
STEP dataset (see Sec. IV.B and V.B). The evaluation of
image quality and semantic segmentation (quantitatively and
qualitatively) shows the same trends of the complete results
presented in the paper with the Cityscape dataset. In fact, using
KITTI-STEP, the novel SA-X264 shows the best performance,
e.g. with CRF values of 18 and 23 for ROI and non-ROI

Fig. 9. Visual comparison of the segmentation results on the original frame
(a)-(b), and the compressed frame under same compression ratio, but different
compression techniques: traditional X264 (c), traditional X265 (d), proposed
SA-264 (e), and proposed SA-265 (f).

respectively, it has the highest SA-PSNR (i.e. 33.598) and SA-
SSIM (i.e. 0.933) values, showing an increase of about 1% in
terms of iIOU compared with traditional H.264. The results
validate the flexibility and wider applicability of our method
under different driving scenarios and different datasets. In
the future, more efficient segmentation algorithms and codecs
may potentially be investigated to enhance the performance
and speed of our SAC method. Further research is required
on compression artefacts, such as those shown in Fig. 7.
Overall, the results show that these minor artefacts are not
frequent and the performance of the segmentation based on
the decompressed data is not affected by these artefacts.
Moreover, our proposed method can leverage the maturity of
compression techniques developed to comply with H.264 and
H.265 standards, but overall achieves better results than the
traditional uniform compression techniques.

VII. CONCLUSION

This paper proposes a novel automotive specific technique
to compress video camera data by pre-segmenting each frame
into important area and not-important area, and applying dif-
ferent levels of compression to the two areas, in order to better
preserve the quality of safety critical regions. In addition, three
new performance metrics have been discussed and applied, as
a way to give more weight to the quality of the regions in the
frames that are critical for driving applications. Experimental
findings indicate that our method outperforms other uniform
compression algorithms in terms of our weighted evaluation
metrics SA-SSIM and SA-PSNR, which take into account that
different regions of the frames are compressed at different
levels and therefore have different quality. The results pre-
sented in this paper open the possibility for new research
in the field of sensor data compression and particularly in
how to optmise the compression based on the importance of
the data content and in combination with specific perception
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tasks, such as object detection, segmentation, etc. Future work
will include optimising the proposed technique for bandwidth
utilisation and for real-time performance; however, given that
the proposed semantic aware compression processes in parallel
with the ROI and non-ROI frames (which are easier to
compress due to the uniform masked areas), the compression
time can be reduced up to almost 50% with respect to uniform
compression, therefore compensating the extra time added
by the pre-segmentation step. Furthermore, novel low-latency
compression techniques and compression on raw data might
be considered.
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