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Summary

This thesis describes a study of techniques for the restoration of musical audio signals using 
a multiresolution signal representation called the multiresolution Fourier transform (MFT), a 
time-frequency-scale representation. This representation allows the restoration to adapt to the 
local signal structure, which typically consists of a set of approximately sinusoidal partials, each 
consisting of an “onset” of rapid energy variation followed by more slowly varying “sustain” and 
“decay” phases.

It must be decided what components of a noisy audio signal are to be kept in the restored 
version and, conversely, which must be removed. A simple filter is introduced that retains only 
musical signal — that is signal which adheres to the musical model — and rejects everything else. 
It is shown that this filter used in conjunction with the MIT has a low computational complexity. 
The MIT is used to capture the transient energy present at the onset of notes by splitting the time 
axis of a musical signal into steady-state and transient zones using a simple onset detector, which 
measures the expected energy at a given lime against the actual energy present.

Past audio signal restoration systems have relied on estimating a restored audio signal’s 
spectrum from the noisy audio signal presented to the algorithm. In this thesis the idea of having 
more than one version of a recording is used in order to gain further information about the ideal 
spectrum of the noisy signal. This poses a number of problems with regards to matching the time 
scales of two versions of the same piece. These are addressed and solutions are offered, based on 
a novel multiresolution warping algorithm.

Finally, various methods for using the detected signal spectrum of a clean modern signal to 
restore a noisy signal using the warping techniques and musical event detection filters are shown. 
These account for variations in scale and input signal to noise ratio (SNR) in the noisy signal. It 
is also shown how the simple adaptive filter introduced earlier can be used to restore audio signals 
with impulse noise as well as while additive noise. This filter and the time-warping technique is 
compared to adaptive Wiener filtering as an audio restoration method.
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Chapter 1

Introduction

1.1 Noise in Music

Everybody has heard a noisy musical signal at some time, for example when tuning their 

radios, listening to an old, scratched vinyl record or listening to pre-recorded music on 

very poor equipment. The Oxford dictionary defines noise as “an unpleasant sound” [2]. 

In practice noise is any sound which detracts from the ideal perception of an audio signal. 

There are many types of noise, in musical signal restoration there are three main classes of 

noise, these can be classified as broadband background noise, impulse noise and harmonic 

distortion [101. The first two of these are additive, that is they are independent of the 

musical signal, whereas the third is a function of the signal.

Broadband background noise is random in both time and frequency and, in audio 

restoration work, is generally considered to be of aGaussian form [36] [58] [59] [22[ [53]. 

Broadband noise occurs in recordings that have decayed as a result of their recording 

medium: withering of vinyl in gramophone recordings or demagnetization in tape record

ings; the poor quality of a recording; the presence of uncorrelaled noise in the recording 

process due to poor recording equipment, this noise is additive. The second type is im

pulse noise, which is normally present in degraded musical signals alongside broadband

1



1.2 The Musical Signal Restoration Problem 2

background, or Gaussian, noise. Impulses are random in time only, their frequency re

sponse is a function of the noise source — degraded grooves in gramophone recordings 

that result in clicks when “read” by the pick-up or static present in a poor radio reception. 

Finally, the third noise type groups together both harmonic distortion and sound shaping. 

Harmonic distortion is caused by nonlinearity in the recording process, for example due 

to saturation. Spectral shaping may be caused by the acoustics of the recording room or 

inadequacies in the frequency response of the equipment and is a linear effect, but it is not 

additive — it is a form of filtering. Of these three classes of noise, the first two are by far 

the most commonly dealt with in the audio restoration literature and so methods for the 

removal of these types of noise are discussed next.

1.2 The Musical Signal Restoration Problem

1.2.1 Outline

The musical signal restoration problem can be formalised as follows. Let x(t) denote a 

signal with noise present and s(t) and r(t) the signal and noise components respectively. 

Restoring x(t) is equivalent to estimating s(t) as accurately as possible: minimising the 

difference between the estimate x(t) of the clean signal and the original signal, in other 

words minimising ||x(t) — s(f)||, for some norm ||. This is where a problem arises since 

neither s(t) nor r(t) is known a priori. The removal of harmonic distortion and spectral 

shaping lie outwith the scope of this thesis.

1.2.2 Available Audio Material

Restoration of musical signals has been made desirable in recent years by the release 

of old, and sometimes rare, recordings of artists on Compact Disc that have previously 

been available on gramophone records. Generally these gramophone recordings are quite
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degraded. Most previous restoration systems assume that only one version of a recording 

is available. However, it is possible that more than one degraded recording may be 

available. Indeed this is assumed in a restoration method proposed by Vaseghi in [59], 

where the existence of a second equally degraded copy is assumed. In part of the work 

presented in this thesis it is assumed that alongside the degraded musical signal, there 

will be a clean, “modern” version of the same musical signal available. Even in the case 

when there is no clean recording of a musical signal, musicians could be paid to perform 

the piece, which could be recorded digitally, giving a clean version of any piece that is 

desired.

1.3 Previous Audio Restoration Methods and Signal Rep
resentations

Historically, there has been comparatively little activity in the field of musical signal 

restoration. Many of the methods used come directly from speech processing where, 

conversely, a lot of time and energy has been spent by a great many people over the last 

twenty or so years. Hence in the following overview of methods used to restore musical 

signals, some reference will be made to techniques employed to restore and enhance 

speech signals.

1.3.1 Time Representations

Viewing a musical signal as a function of time is simple: it is the way musical signals are 

stored, transmitted and received and is the most straightforward of all the representations. 

One of the least signal processing intensive methods used to restore a signal in the 

time domain is manual intervention [6], where the restorer views the time signal of the 

degraded music and decides visually what the best restored signal is. This choice is
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verified subjectively by the restorer until the best effect is found. This removes both 

broadband noise and impulse noise partially. The problems with this are first that it is 

very subjective: the best restoration depends greatly on the ability of the restorer and 

secondly since the desired result is to be of high quality, often at, or near to, CD quality, 

the sampling frequency is high. For CD quality it is 44.1kHz and is generally greater 

than 20kHz. This means that even for a short segment of signal there is a large number of 

samples to be rectified manually — making manual intervention both a very skilled and 

labour intensive occupation.

Kalman Filtering

From a signal processing perspective, the ideal filter for a degraded time sequence such 

as the noisy musical signal x(t) is a Kalman filler [10] [35]. A Kalman filter is a real 

time filter that, using a state-space signal model, estimates the best restored signal i(t),  

using x(t) and x(t  -  1). It is a non-stationary filter which gradually adapts to the signal 

statistics as more and more samples are processed, so that for stationary signals it behaves 

asymptotically like the best non-causal filter — the Wiener filter. The problem in audio 

restoration is the highly non-stationary nature of the musical audio signal: the more or less 

stationary, steady-state portions of the notes occur after the transient onsets. These two 

phases generally require different forms of processing, which is not easily accomplished 

with a conventional Kalman filter. This requires a higher level model of the musical signal 

than is available in the sample by sample time representation available here. Kalman 

filtering removes impulse noise as well as additive Gaussian noise 110].
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Adaptive Noise Cancelling

A time domain method used in speech enhancement for removing random noise is adaptive 

noise cancelling [30] [28], Over short periods of time audio signals are periodic, whereas 

the noise is not. Once the periodicity of the signal is found, using autocorrelation methods 

for example, the difference between two signal values one period apart will equal the 

difference of the noise components at those times, since the clean signal values cancel 

out. In other words, for a degraded audio signal s(t) with period T  then

x{t) -  x(t  + T) = s(t) -  s{t + T) + r(t) -  r(t + T)  «  r(t) -  r(t + T)  ( 1 . 1)

The noise difference ?•(/) — r(t + T)  is uncorrelated with s(t). This can be exploited in 

identifying what the noise component is at time t. For effective noise reduction, however, 

the spectrum of the corrupted signal needs to be known, so an estimate of the restored 

spectrum can be calculated. This leads to the conclusion that even though it is time 

information that locates the noise, it is not enough on its own to remove it. Variations in 

the periodicity causes implementational problems akin to those faced by Kalman filtering.

Removing Impulse Noise

The time domain lends itself to impulse noise restoration, by allowing the implementation 

of simple signal models. The simplest method is that used by Deutsch and Noll [ 17] for 

the removal of impulse noise in recordings held at the Phonogrammarchiv of the Austrian 

Academy of Science. The restorer locates the impulses visually and audibly, in a way 

similar to Brink, but instead of manually altering the signal, the restoration system replaces 

the N  degraded samples with the previous N  samples. They reported that there were no 

unpleasant side effects as long as N/ S f  is less than 20ms, where 5/ is the sampling 

frequency.
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In the impulse removal system used by Vaseghi [59] [58] a simple Linear Predictor 

(LP) model of the signal is used. That is, for an impulse train e(t), the signal at time i can 

be modelled as

-s(0  =  ^ 2 a(k)x{t -  k ) + r(t) + e(t.) ( 1. 2 )

c—i
where the coefficients a(fe) are the LP parameters and p is the LP filter length. This 

can be used to create an “excitation signal” by subtracting the predicted signal from 

the LP output, whereupon the impulses become apparent and can be removed from the 

noisy signal. When these samples are so distorted that the signal cannot be corrected, 

the samples are just replaced using the LP model output generated from the surrounding 

samples. This is very similar to the method used by Cisowski [11]. The only difference 

between the two methods is in the approach to locating impulses in the excitation signal. 

Vaseghi uses a matched filter— matched to an impulse response — or just peak detection, 

but Cisowski uses an “outlier threshold” method that depends on the distribution of the 

excitation signal being approximately Gaussian. Cisowski’s more sophisticated method 

is designed to reduce the probability of a false alarm due to a rapid musical onset or the 

like to less than 0.001%. A more recent method for detecting impulse noise in the time 

domain uses higher order statistical modelling [22], It is assumed that the musical signals 

can be regarded as approximately Gaussian in distribution over a lengthy time period. 

This is exploited by using a third order cumulant C3, defined as

C3 =  4 ; ]C *(*)*(*+ !)*(< +  2) (1.3)
*' 1=0

which is zero for second order sample distributions. It is assumed that the impulses are not 

Gaussian in behaviour and so they are found by locating the points where the cumulant is 

significantly different from zero. These samples are then replaced using the bispectrum, 

or Fourier transform of the cumulant and inferring phase and magnitude of each sample
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value for the affected samples.

1.3.2 Frequency Representations

In the previous section it was stated that musical signals are functions of time. Whilst 

this is correct, it is not helpful. Helmholtz discussed audio signals, or waves, as a tonal 

or frequency phenomenon [24], Indeed it is possible to distinguish two or more notes 

being played simultaneously: evidence for audio signals being made up of frequency 

components. The spectrum of an audio signal can be generated simply by taking its 

Fourier transform (discussed in further detail in chapter 2), allowing simple inspection of 

the component frequencies in a given musical signal.

Wiener Filtering

The ideal signal processing solution to the restoration of a noisy signal in the frequency 

domain is the Wiener filter [43] which is based on a stationary signal model. As noted 

above, it can be shown that the Wiener filter is the stationary limit of a Kalman filter 

[10]. The problem with implementing a Wiener filter is that audio signals are generally 

non-stationary: their statistics alter as a function of time. The basic assumption for the 

use of Wiener filtering is therefore false. However, Wiener filters can be used over the 

stationary periods of an audio signal to good effect. This motivates the next and most 

commonly used representation of audio signals: time-frequency representations that are 

functions of both time and frequency.

1.3.3 Time-Frecpiency Representations

Many methods used in audio restoration use a time-frequency representation. The simplest

of these representations is just the short-time spectrum [46] [9], a representation that splits
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the time signal up into short regularly spaced periods and looks at the spectrum for each. 

Using such a representation, an estimate of the noise in each frequency band in the short- 

time spectrum can be made. This is done by assuming that the noise signal and noise-free 

signal are not correlated. The noisy signal windowed using some finite window function, 

w(t), for example a cosine window, is represented by

x{t)w(t) = xw(t) = sw(t) + nw(t) (1.4)

Spectral Subtraction

The spectral subtraction method proposed by Boll [8] for speech enhancement maintains 

that in any degraded speech signal there is a period of non-speech activity in which 

the magnitude of the noise spectrum can be estimated. This estimation is computed 

by averaging over a number of these non-speech intervals. Boll made the phase of the 

estimated noise spectrum arg(Nw(iv)) equal to that of the noisy spectrum, arg(Su,(u)). 

This is then subtracted from the noisy signal spectrum, thus restoring the signal. Various 

improvements have been made to this method by considering the power spectra of the 

noisy signal [28]. More recently a method proposed by Vaseghi [58] for musical signal 

restoration exploits the fact that the signal and noise are uncorrelated. This means that the 

corresponding power spectra satisfy

|a^ ) | 2 H ^ ) I 2 +  I^«>MI2 (1.5)

the cross terms being zero. The amount of noise present may be overestimated, since 

it depends on the estimated noise in the periods of low signal activity, allowing the 

possibility of subtracting a high noise estimate from a signal area with a low amount of 

noise, creating a negative spectrum. Some solutions have been suggested to cure this, 

but it is worth commenting that none are entirely satisfactory. The two simplest of these
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methods are: first setting all negative spectral values to zero, and secondly, changing the 

sign of all negative spectral values, rendering them positive. More complex methods are 

described in [61] [62] [31].

Deutsch and Noll [ 17] make similar assumptions in their background noise reduction 

system. By averaging three or more samples, using a window of a length equivalent to 

the “stationary length” of the signal, a signal estimate is gained. This is then used to 

calculate the impulse response of a noise suppression filter, which is multiplied with the 

noisy signal in the frequency domain. The problems faced by this method are twofold. 

First the length of signal chosen to be stationary is fixed, whereas it is well known that 

various parts of audio signals display more stationarity than others, implying that the 

window length should be allowed to vary. Secondly, as the number of windows used in 

the averaging process increases, the accuracy of the noise suppression filter decreases.

Comb Filters

The harmonic nature of audio signals is exploited by the adaptive comb filtering method 

proposed by Shields and improved by Frazier et al [28] [29]. Shields proposed constructing 

a set of narrowband filters spaced at equal intervals determined by the fundamental 

frequency of the audio signal being restored. Thus, signal would be transmitted to the 

restored version and all noise would be suppressed. The timbre of an audio signal alters 

with time, as more notes are played or, as in speech enhancement, as another word is 

spoken. This is compounded by the introduction of the vibrato problem, in which the 

timbre of the signal will vary locally. Hence Frazier proposed a more general filter that did 

not assume equidistance between the narrowband filters, allowing their distance to vary 

depending on the timbre of the signal. Comb filters have also been used in polyphonic note 

transcription by Moorer [38]. To accomplish this he simplified the musical transcription



problem by ruling out the possibility of such musical phenomena as partials that overlap 

in frequency, vibrato and glissando. The comb filter’s role is to ascertain the periodicity 

of the signal at a given time.

Adaptive Wiener Filtering

There have been several restoration schemes that are based on Wiener filtering. A Wiener 

filter is a stationary filter and, since one can regard an audio signal as “locally stationary”, a 

local Wiener filter can be applied to those signal components. Such a filter is known as an 

adaptive Wiener filter. Vaseghi used an adaptive Wiener filter to restore audio signals [59] 

[58] by assuming that there would be two degraded copies of a given performance available. 

An assumption was made that the noise in these two recordings would be uncorrelated — 

valid if one assumes that the recordings have been degraded independently. The signals 

could not just be added as their time scales would not coincide precisely: no two audio 

signals will have exactly the same time scale due to limitations of the performers or, in this 

case, the playback mechanism. It was decided that the audio signal’s stationarity period 

was around 20ms. Hence an adaptive Wiener filter with this window length was used. To 

cope with the variation in time between the two recordings, it had a delay that depended 

on the cross-correlation of the two signals. The main drawbacks with this method are first 

that it is implemented in the time-domain, making the choice of adaptive delay algorithm 

complicated because the delay between the two recordings is a function of time. Secondly, 

there may not always be two degraded recordings of the same piece available. Thirdly, 

the filter length is fixed; this means that for the best results the stationarity of the signal 

should remain constant at around the filter length. It is well known that the duration of 

the steady-state periods of a musical signal varies with time, and is in any case punctuated 

by onsets. Moreover, the time scale of the piece and the speed of the performance vary

1.3 Previous Audio Restoration Methods and Signal Representations 10
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hugely, both implying a variability in the “stationary period”.

Montresor et al [36] used a minimum mean square error (MMSE) method proposed 

by Ephraim and Mallah [18] for speech restoration. Using an MMSE approach the local 

spectral amplitude is calculated. The a priori SNR estimate is calculated using the spectral 

power density of a silent period in which there is no audio activity. This gives a noise 

estimate. Once the noisy signal is known, it is possible to improve the restored signal 

estimate, using a first order recursive filter on the noise and noisy signal. The local 

spectrum of the signal is altered so that its phase remains the same but so that it now 

has the new clean signal amplitude estimate. This was further improved by Simon et al 

[53]by using an “Octave Filterbank Implementation”. The frequency domain is split into 

.7 sub-bands each of which has its own filter for estimating the a priori SNR. Simon et al. 

proposed different scales for each frequency band, choosing different time window lengths 

dependent on the sub-band: a small window of about 20ms for high frequencies and a 

long window length for low frequencies. This gives improved performance, permitting 

the restoration system to deal with high and low frequency noise simultaneously. This 

demonstrates one way in which scale can be used in time-frequency representations for 

audio signal restoration.

The Window of Scale

Pearson [45] worked on a similar premise in order to perform note transcription. Problems 

can arise when choosing a time window length for an audio signal representation. If the 

window is small the frequencies of notes’ partials are difficult to locate. When a long 

window is used its position in time is imprecisely defined. This is a consequence of the 

Uncertainty Principle [33]. To solve this problem Pearson used a generalised wavelet 

transform, that has an explicit scale parameter, the Multiresolution Fourier Transform
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(MFT). This allows the transcription algorithm to pick the appropriate scale at a given 

frequency or time, so that the position of a partial in time and frequency can be located 

independently of the uncertainty product associated with a fixed window and hence with 

high precision: such a scheme appears to offer the potential to overcome some of the 

limitations of previous methods.

1.4 Objectives

The work presented in this thesis intends to show how the multiresolution Fourier trans

form, with its free scale parameter, can be used to perform audio restoration.

1.5 Thesis Overview

The following chapter discusses some different time-frequency representations, with a 

view to introducing the MFT, an effective tool with which to perform audio restoration. 

In chapter 3, a simple adaptive filter, derived from the MFT of a musical signal, is 

introduced. It is shown that the filter has low complexity and can be easily applied to the 

restoration of noisy signals when the signal to noise ratio (SNR) is known. The benefits 

of combining restored signals across scale are discussed and a simple method of doing so 

is implemented. In chapter 4, a new method for aligning the time scales of two versions 

of a musical signal is introduced with a view to using the filter derived from a clean, 

modern recording, time-warping it and applying it to a noisy signal. In chapter 5 this 

is compared with other restoration methods including adaptive Wiener filtering. Finally, 

various methods for combining results from different scales and filters derived from the 

warped clean signal and the noisy signal are presented and tested. It is also shown that the 

adaptive filter can cope with impulsive noise as well as white additive Gaussian noise. The
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thesis is concluded with a summary of achievements and suggestions for further work.

1.6 Audio Samples

1.6.1 Notes on Hardware Used

The audio samples were recorded using a Technics XL Compact Disc Player, connected 

to a SPARC LX workstation with a SPARC 10 DBR1 audio chip for A/D conversion.

1.6.2 Measurement of Signal Accuracy

To ascertain the accuracy of the restoration algorithms presented in this thesis, a controlled 

amount of noise has been added to clean signals so that, on being restored, the error between 

the restored signal and the original clean signal can be measured precisely. This is done 

by calculating the signal to noise ratio (SNR) before and after restoration. The SNR is 

defined as the ratio of the signal variance to the noise variance of a degraded signal. The 

three SNR values used throughout this work are lOdB, 15dB and 2()dB. Upon listening, 

it appears that a signal with a SNR of 15dB gives a good approximation to a heavily 

degraded audio signal. Signals with SNR’s of lOdB and 20dB are included to demonstrate 

that the algorithms used in this work can function at other noise levels. Another term that 

is used in conjunction with SNR is SNR gain. This means the change in SNR of a signal 

upon enhancement. For example, a signal with a SNR of lOdB that is enhanced with a 

gain of 5dB will have an overall SNR after enhancement of 15dB.

1.6.3 Signal Samples

Four different musical signal samples have been chosen. Two extracts from Beethoven’s 

String Quartet in G major, Adagio and Scherzo movements and Adagio and Allegro 

movements, from “Waldstein”, a piano sonata, also by Beethoven . The Adagio string
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piece is chosen as it displays extreme vibrato. This is desirable to show how the restoration 

system in general, and more specifically, how the warping algorithm copes with heavy 

vibrato. The Scherzo is used as it is very quick. The “Waldstein” was chosen because the 

full range of piano tempos are tested. In the Adagio section, the pianist plays very slowly, 

and in the Allegro movement, the pace is extremely fast. This provides a good test of the 

robustness of the algorithms.

For testing the warping algorithm, two versions of each piece are chosen. For the 

string quartets, performances by the Smithsonian string quartet and the Lindsay string 

quartet are used and for the piano sonata, performances by Ashkenazy and Jando are used.

The Adagio and Allegro “Waldstien” and the Scherzo string quartet samples are 

approximately 12 seconds long and the Adagio string quartet sample is approximately 23 

seconds long. The sampling rate used throughout this work is 44.1 kHz.



Chapter 2

The Multiresolution Fourier Transform

2.1 The Requirements of a Good Representation in Audio 
Signal Restoration

Regarding an audio signal purely as a time function, it is difficult to make sense of what its 

constituent parts or features are. This problem is compounded in audio restoration since 

there is noise present in the time function that degrades the signal features. It is therefore 

helpful to have a higher level representation of such an audio signal, which facilitates the 

separation of musical features which would in turn enable a decision to be made as to 

what is noise and what is not.

For audio signal analysis it is desirable: first, that any representation is a function of 

time, second, that it is a function of frequency and third that this representation does not 

have a fixed scale [45], The reason for wanting the higher level representation to be a 

function of time is obvious: audio signal features are partly separable as functions of time 

and so any meaningful analysis must also be a function of time. It should be a function of 

frequency since the features are also partly separable as a function of frequency, but why 

must there be a variability in the scale at which we look at these features? The reason for 

this is due to the Uncertainty Principle [33], which limits the simultaneous resolution of

15
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time and frequency signal features. Thus if the scale were fixed, any analysis of an audio 

signal would be restricted to this fixed resolution. The problem with this is that audio 

signals do not have a fixed resolution. To show this, consider two notes being played on 

a piano. The limit on how closely in time or frequency these can be played is set by the 

demands of the composer, the virtuosity of the performer and the harmonic content of 

the notes. For example, it is possible to play two short notes less than 2Hz apart at the 

lower end of the piano keyboard. In order to be able to restore this audio signal well, by 

removing the maximum amount of noise, it would be necessary to have a high resolution 

in both time and frequency to detect the musical features, but this is prohibited by the 

uncertainty principle [45], [65].

Finally, any higher order representation of an audio signal that allows analysis of that 

audio signal must be accompanied by a method of inversion. This is because in audio 

restoration it is necessary to end up with an improved time function audio signal. A 

restored audio signal is of no use if it exists in an unreconstructable representation. This 

is a further consideration, along with the three requirements for audio restoration stated 

above, in choosing the representation used in this work. There are a number of audio 

signal representations available for analysis, whose main properties are discussed in this 

chapter.

2.2 Representing an Audio Signal

2.2.1 The Fourier Transform

The motivation for a Fourier representation of an audio signal is simple: a pure tone can 

be modelled exactly by a sine wave of the same frequency. If pure tones can be considered 

to be the building blocks of musical signals, then so too can sine waves, implying that any 

audio signal can be represented as some linear combination of sine waves. The integral
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Fourier transform is defined as [43]

roc
S{w) = /  s(t)e~JU>tdt (2 . 1)

where u> is the frequency of the complex exponential. Effectively S(u>) tells us how much 

contribution there is for each frequency u; and, for a purely harmonic signal s(t), S{u) 

would consist of lines at all multiples i]Uo of the fundamental frequency u,\). To return to 

our original analogy, this is the same as weighting each pure tone of frequency u> and then 

summing in frequency, creating the original time signal s(t).

Whilst this gives a sufficient description of the frequency structure of a time signal 

s(t), there is no evidence of any time structure, since the integral in (2 .1) is calculated 

over all time. This shortcoming of the Fourier representation was noticed by Gabor [20], 

who formulated a representation which is a function of both frequency and time. In effect 

the time scale of S(u>) is infinite. Note that in this work scale is used as a term to describe 

a particular resolution — if it is large scale then it is coarse and, if it is small scale, it is 

fine.

It is well known that the Fourier transform is invertible, for completeness the inversion 

formula is included for signal spectrum S(ui)

Gabor realised that the Fourier representation of audio signals was less than satisfactory: 

it did not meet with our intuitive interpretation of time signals which was that frequency 

content changes as a function of time. The example that he highlighted in [20] was that 

of a siren moving away from it listener. The listener does not hear a constant frequency,

( 2.2)

using this the time signal s(t) can be obtained.

2.2.2 The Gabor Transform
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but one which changed as a function of time. If this were analysed using a Fourier 

transform, the only frequency information obtained would be spread across the range of 

“instantaneous frequencies”. It was to the area of quantum mechanics that Gabor looked 

for a solution to this problem, realising that any representation of an audio signal that was 

both a function of time and frequency would have its accuracy in the frequency domain 

compromised by its accuracy in the time domain, and vice versa. This inequality is known 

as the uncertainty principle, and was first realised by Heisenberg in the field of wave 

mechanics in the 1920’s [33]:

(2.3)

where A t  is the uncertainty in time and A f  the corresponding uncertainty in frequency. 

Gabor’s major contribution was to evaluate what he called “elementary signals” that 

minimised this inequality. It is well known in the field of quantum mechanics that

(2.3) is minimised for a particle if the Hamiltonian describing such a particle’s motion is 

considered to be that of a classical simple harmonic oscillator [33], Using the Schrodinger 

equation it is possible to find a solution for these wave functions, known as Hermite 

functions. It was in this way that Gabor approached the problem of finding the most 

spatially and temporally compact wave functions. These wave functions were considered 

by Gabor to be the quanta of time-frequency representation and were accordingly named 

“logons”. They take the form of time and frequency shifted Gaussian functions and, 

although this set of functions does not form an orthogonal basis, as the sine and cosine 

functions do, it does give the maximum time and frequency concentration, as limited by

(2.3) . The notation used in [45] is

ftu(t) =  g{t -  kT)exp{ j (2nlFt  +  (f>)) ( 2.4 )
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for the “logon” at time index k and frequency index / on the time frequency plane, with 

frequency sampling interval of 2irF, and time sampling interval of T. The function g(t) 

is a Gaussian, of the form

g{t) = e x p (-a V ) (2.5)

the parameter a  is the scale parameter, which determines how much time definition and, 

correspondingly, how much frequency definition is to be allowed. These are related via

M  = ( 2 .6 )

Gabor states that, although these functions are not orthogonal, it is possible to approximate 

an expansion of a general time signal in terms of them with weighting coefficients Cu- 

Thus, time signal s(t) can be represented as

OO

s( t)=  Y. Cki g{i — kT) exp(j(2WFi + <f,)) (2.7)
k,l=— oo

For a representation of an audio signal, Gabor envisaged a time-frequency plane that 

was split into “logons”, each multiplied by the coefficients Cu, as in figure 2 .1 , with the 

weighting corresponding to the amount of contribution there was from each “logon” at 

that time and frequency. The main problem with the Gabor representation is the difficulty 

in calculating the coefficients Cu, which is often done using recursive iteration, which 

is expensive in computational terms when compared with the Fast Fourier Transform, 

(43], used to calculate the Fourier Transform of a signal. This difficulty in calculating the 

Gabor coefficients is related to the stability of the inverse, as explained by Daubechies 

114], Moreover, this choice of sampling intervals in time and frequency, which is known 

as critical sampling, leads to a highly unstable inverse, unsuitable for audio restoration 

work.
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Figure 2.1: Time-frequency plane with Gabor’s “logon” weightings.

2.2.3 The Short Time Fourier Transform

A simpler way of looking at the problem of creating a frequency representation of a signal 

that is also a function of time, is to split the time signal up into time segments, and look 

at the Fourier transform of each of these segments. This representation is a short time 

Fourier representation called the Short Time Fourier Transform (STFT). So for time signal 

s(t), the STFT, is denoted by S(u,t) ,  where u  represents the spectrum of the STFT at 

time t [46],

In order to localise the STFF it is necessary to modulate the signal with a window 

function, g(t), leading to the definition of the STFT as a Fourier transform of the windowed 

signal, where the windowed position is t\

S(u>,t) =  r  s{t )9(t -  t)e~JujrdT (2.8)
J  — oo

As the position of the window g(t) varies, then so does the “local” spectrum S(u;, i ). If the 

window is too long in time, then it will be ineffective at “tracking” non-stationary signals

c „, C ,3 C 23 C 33

C4Ou

C ,2 C 32 C 32

c „, C „ C 2, C 3,

C oo C ,o C30 C 30
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such as the frequency modulated siren of Gabor, while if it is too broad in frequency it will 

not be possible to resolve nearby spectral components. The uncertainty principle (2.3) 

is again the limiting factor. To illustrate this, consider a simple case when the window 

function is just a cosine, defined in the region [—r, r], so that it is of length 2 r and has 

centre at the origin.

g(t) =

The frequency response of this function is G(u>)

/ OO

cos(7rt/T)e~J'Jidt (2.10)
-O O

which reduces to

G(u>) = J cos(7rf /r)e _Jwt<if (2 . 1 1 )

it can be shown that this is

7TT
G{uj) =  2cos(ru;)-r-^----- r  (2.12)

r zu r  — 7T-

The window and signal are convolved in the time domain, which is equivalent to the 

product S(w,t)G(u) in the frequency domain [43]. There is a r  term in the numerator of 

(2.12), and a r 2 in the denominator. Therefore as the energy concentration increases in 

one domain, it decreases in the other. The trick is to find the best trade-off for one’s needs. 

If finding the precise location of a feature in time is more important than ascertaining a 

precise picture of its spectrum, then a small time window should be used. Conversely, if 

a precise spectrum is required, at the expense of the localisation in time of any feature

detected, a large time window should be used. Clearly the choice of the window scale is

crucial. It will affect the outcome of any analysis algorithms greatly. Note that “window 

scale” here means the size of the window — a large window scale means coarse resolution 

and a small window scale means fine resolution.

c o s(f) iff e [ - T ,r ]  
0 else
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Like the Fourier transform, the STFT can be reconstructed exactly, as long as the 

window function used in the inverse transform h(t) is related to the forward transform 

window g(t) via [46]

I "  h(t)g(—t) = 1 (2.13)

The forward transform window g(t) is often called the analysis window and the inversion 

window h(t) a synthesis window. The inverse STFT is defined in the corresponding 

manner to (2 .8)

/OO TOO

/  h(t -  ^ S i u i t y ^ d r d t  (2.14)
- o o  J — OO

2.2.4 The Wavelet Transform

One method, advanced in recent times, which tries to solve the scale problem that the 

STFT suffers from, is the wavelet transform (WT). This was motivated by the work done 

by Gabor splitting the time-frequency plane into discrete “logons”. The WT generalises 

this approach by allowing the analysis function, or wavelet, to be shifted and dilated, 

permitting an alteration in the scale of the frequency representation. This permits some 

frequencies to be seen at one scale and some at another [25] [14] [15] [48] [36] [53].

A wavelet is a function g(t), with Fourier transform denoted by G'(u;)'- the conditions 

that it must satisfy to be a wavelet are [ 14]

0 < / G \ u )
du) < oo

UJ J 0

The WT of a function s(t) is then

(2.15)

(2.16)

where the co-ordinates (ft, a )  give a position on a “shift-dilation” plane [25]. The variable

b can be interpreted as being a time or position co-ordinate, whereas a is a frequency/scale
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co-ordinate, where the amount of scale at a given frequency is determined by the choice of 

function g(t). For example, it is shown in [25] that for a Gaussian function as a choice of 

wavelet, the frequency resolution increases as a function of frequency, with a proportional 

decrease in time resolution. It is shown in [14] that this is true for any choice of wavelet 

function.

Although the WT has an advantage over the STFT, in that scale is not the same for 

all frequencies, once a scale has been chosen, any analysis algorithm is restricted to those 

scales for those frequencies. This was shown to be a problem in the work done by Pearson 

[45] on note transcription, where the scale needed for a given frequency range was a 

function of the piece being transcribed, and so could not be determined beforehand. The 

main problem with the WT, as far as this work is concerned, is that scale and frequency 

are interdependent, but unless the scale is varied independently of frequency, it cannot be 

chosen to avoid interference of close partials from different notes [45]. This problem is 

addressed in the next section.

Since the wavelet basis functions are typically over-complete [14], many inverse 

transforms exist [25]. One widely used in audio signal processing for continuous signals 

is

s(t) = — f  I  —= J  ----- j S{b,a)~dadb  (2.17)
c g J  J  \ J a  \  a  )  er

which reconstructs exactly. The constant c.g depends on the wavelet chosen.

2.2.5 The Multiresolution Fourier Transform

A transform based on the Fourier transform, which is a superset of both the Short Time 

Fourier transform and the WT, is the Multiresolution Fourier Transform (MFT) [9], [66]. 

It has definition

St,w,<r =  cri f  s(r)g(a(r -  t))e~JujrdT
— OO

(2.18)
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It is easy to see that this is an STFT with an explicit scale parameter in the transform 

domain, known as the MFT domain, as it has the same structure as an STFT with the 

window function scaled by a factor a. It is also possible to view (2.18) as a generalised 

WT. It is a condition of the definition of the MFT that the window function g(t) obeys 

certain conditions. The first is that the window is non-zero at the origin

<?(0)>0 (2.19)

and secondly, that

0 < (  (]{t)dt. < oo (2.20)
J  —  OO

which is the condition required to make the MFT a frame (see Daubechies for the definition 

of frame [14]). It can be shown that the MFT behaves like a WT. If one considers the 

definition of the WT (2.16) and the definition of the MFT (2.18), then it can be shown that 

the wavelets, denoted for clarity here by 7 (t), are of the form

7(T,cu)=ff(a(r-< ))e-jW (2.21)

It can be shown that these functions when dilated, shifted, or translated, give another 

function of the same type. In other words, if Q(t , /, tu) denotes the set of all functions of 

the form 7 (7-, u>) then any shift, translation or dilation to a function in &(t, t,to) results in 

another function that is in C/(r, t,u>). That is to say that the set £?(r, t ,u )  is closed under 

the operations of shifting, translation and dilation. This is shown in [66],

Thus, unlike any of the previous transforms, the MFT has complete freedom in the 

three axes of time, frequency and scale. The algorithms employed by the user can choose 

precisely which scale is desired and not be limited by a transform function which has fixed 

scale, or a choice of window function that has been chosen for a specific scale, as is true 

of the previous transforms. Looking at (2.18), it can be seen that there is a great deal of
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similarity with (2.8). If one set the scale parameter a equal to some constant, then the 

MFT reduces to an STFT. It can be concluded therefore that the MFT is an STFT that is a 

function of scale also. This will be discussed again in the discrete domain.

The MFT has been used for digital audio signal processing before [45], where it was 

employed in note transcription algorithms with some success. The fact that there was 

a free choice of scale, and one other parameter was exploited in this work, so that a 

musical notes constituent parts — partials — could be located as accurately as desired 

in frequency. These were then tracked down through scale space, until their onset in 

time was of a desired accuracy. Hence by using the MFT, the problems inherent to the 

uncertainty principle can be avoided with reasonable effect.

Until now, only the continuous case has been considered. Since we are concerned 

with digital signals, it is necessary to consider the case for the discrete Multiresolution 

Fourier Transform.

As stated above the MFT is equivalent to STFT’s with a continuous scale parameter. 

As stated in section 2.2.3 each STFT has a complete inverse. It can be concluded therefore 

that, in the continuous domain, the MFT is constructed from an infinite number of STFT’s, 

each having an exact inverse. In other words there are an infinite number of inverses. The 

MFT can be described as being over-complete, since there exists more than one way to 

invert from the transform domain exactly. It is sufficient however to invert for each scale 

a according to the inverse STFT given in (2.14).
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2.3 The Discrete Multiresolution Fourier Transform

2.3.1 Definition

The discrete MFT coefficient of a signal x(t) at time t, frequency /  and scale 2" is given 

by
i N<^~1 k f2ir

Xt,f,n = =‘î{n) Y ,  Xk-tzin)<Jn{k -  tZ{n)) cxp{ - j ~ — ) (2.22)
IczzO J' UMl

where E(n) is the window size, or time bin size for scale n, over which the sample values 

must run for each time window and n denotes the discrete scale parameter (replacing a in 

the previous continuous transform). The sample size E(n) in the time domain is chosen to 

be a power of two, so that the MFT can be implemented efficiently using the Fast Fourier 

Transform algorithm (FFT) [43]. This is defined in terms of the level n, so that the size 

of the time window is directly a function of scale, or as it is known in the discrete case, 

level. Its definition is

E(n) =  2" (2.23)

It is shown in [66] that this factor of two between levels is not only attractive in terms 

of being able to use the FFT algorithm, but also maximises the likelihood of features 

being tracked across levels. As can be seen from (2.22), the number of time samples 

is determined by the choice of sampling window: for critical sampling, i.c. sampling 

without redundancy to satisfy the equality in (2.3), it is just the total number of samples in 

the signal divided by the time bin size. The number of frequency samples is determined 

by the time bin window function size as well and, in order to invert each time bin, it is 

necessary to have at least as many frequency coefficients as there are samples in the time 

bin. If the total number of samples in the time signal is denoted by Nxm, then the number



2.3 The Discrete Multiresolution Fourier Transform 27

of MFT samples on the time axis is given by

(2.24)

where, Nt(n) denotes the number of time samples in the MFT. If the signal were to be 

oversampled by a factor / then this expression would become

accordingly. Note that in this work the term oversampling is used to refer to the amount 

of overlap between neighbouring windows. So that if l — 1 in (2.25) there would be 

twice as many time windows on the time axis of the MFT’s time-frequency plane as each 

window would overlap its neighbour by 50%. For the moment however the case l — 0 

is considered. The number of samples that are on the frequency axis of the MFT can be 

determined, as discussed above, by the bin size thus

where Nj(n)  denotes the number of frequency samples in the MFT domain. If one 

considers the MFT plane in a similar manner to Gabor’s time-frequency plane, it is easy 

to show that on every level, for a given input signal, there will be the same total number of 

coefficients determined by the product of the number of time coefficients and the number 

of frequency coefficients.

(2.25)

N f (n) = E(n) (2.26)

(2.27)

which equals the total number of coefficients in the time signal. This is reasonable, since
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then the original signal could not be recovered exactly.

We shall now consider what happens to these coefficients on the time-frequency plane, 

as a function of level. The area of the time frequency plane and the number of coefficients 

on each level are invariant with level, see (2.27), so the only thing that must change is the 

size of each “cell” in time and frequency. This information is actually contained in the 

definition of the time bin size (2.23). Let fl(n) denote the frequency sampling interval: 

the size of the bin in the frequency direction on the MFT plane. This is also a function of 

level, since the number of coefficients in the frequency plane is proportional to E(n). It 

follows that because the number of coefficients on the time-frequency plane is constant, 

the size of the MFT bin in the frequency direction varies inversely to the time bin size. 

This is a consequence of the uncertainty principle, shown in section 2.2.3 for a simple 

window function in time. The size of the frequency sampling interval is given by

0 (n )
2n 2irNt 2z (2.29)
N} Nm,  E(n)

It can be seen that to simplify any implementation of the MFT, if the total number of 

samples transformed from the time signal is a power of two, then each time bin, which is 

necessarily a power of two for the FFT algorithm, can divide the total number of samples 

exactly. From (2.29), the frequency sampling size will be a power of two also. If

N  , =  9'  total
M (2.30)

then the sample size in frequency can be described as

H(n) =  =  2n- Ai+17r
•=*(«)

and the number of time samples in the MFT' becomes in general, from (2.25),

(2.31)

Nt{n) =  2Af” 1+i (2.32)
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£2(n+l )

Figure 2.2: Tiles for different levels on the MFT’s time-frequency plane.

An arbitrary time-frequency tile is shown in figure 2.2. where, as above, the number n 

denotes the level. We now have a description of the shape of the coefficients or tiles 

on the time-frequency plane, highlighted in the simple examples in figures 2.2 and 2.3. 

The total number of samples in the time signal represented in figure 2.3 is 4, and there 

are accordingly three levels shown. As can be seen, level 0 is equivalent to the original 

time sampled signal, as there is complete sampling in time; level 2 represents the Fourier 

transform of the whole signal, as there is no sampling in time, only frequency. This is 

a graphic illustration of the time-frequency plane for a level of the M Fr with critical 

sampling. At each level, the total number of coefficients will be the same, with only their 

width and length varying as a function of level, thus altering their various resolutions in 

accordance with the uncertainty principle. Table 2.1 shows the time bin and frequency 

bin sizes in physical units for an audio signal sampled at 44.1kHz which is the sampling 

rate used in Compact Disc recordings and in this work, for the various MFT levels used.
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Increasing
Level

Figure 2.3: A time-frequency plane tessellation for a critically sampled MFT.

2.3.2 The Inverse Transform

As stated previously, it is of crucial importance to audio signal restoration that any analysis 

of the audio signals being restored be complemented by a resynthesis. This means that 

for each transform there must be an exact inverse.

Since the discrete MFT is a finite number of STFT’s in scale space there is an inverse

level (n) time bin (ms) frequency bin (Hz)
8 5.804 172
9 11.61 86.1
10 23.22 43.1
11 46.4 21.5
12 92.8 10.7
13 186 5.38
14 371 2.69

Table 2.1: Time and frequency bin sizes for various levels, critically sampled with a 
sampling rate of 44.1kHz.
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for each of these levels [9], [45], which corresponds to an STFT inverse. To perform this 

inversion, the inverse FFT is taken and the inverse window function applied which gives 

the block of signal samples that corresponds to that time bin in the MFT domain. Using 

the same notation as for the forward transform, the inverse is shown for level n, with time 

bins size E(n) and Nj(n)  defined as above. Then the value of the time signal at sample k 

can be found if

k' = k mod E(n) (2.33)

and

t = k div E(n) (2.34)

then the signal is synthesised using

x{k) =
9 n ( k )

H(n)-1
E  exp
/=0

(2.35)

which is just the inverse discrete Fourier transform for MFT bin /, determined by the 

position of the required time sample k. This is why gn(t) is required to be non-zero 

everywhere.

2.3.3 The Choice of Window Function and Sampling Interval

The MFT sampling scheme discussed in the previous section is critical sampling [14], in 

this each time signal sample corresponds to one sample on the time frequency plane. It 

can be shown, however, that having oversampling by a factor of two which corresponds 

to l = 1 in (2.25), gives a more stable representation of the time-frequency plane [ 141. 

In this application, the question of oversampling can be considered a practical one, since 

the final aim of performing restoration of a noisy signal in the MFT domain will be to 

remove some of the coefficients. If the MFT were critically sampled restoration would 

cause artifacts, due to the changes in energy between adjacent time-frequency bins. This



is a problem which does not arise when the MFT is oversampled by a factor of two, as 

the energy from one bin will be present in the adjacent time bins. In the language of [66] 

and [14], oversampling is necessary to get a well behaved, or “snug”, localised frame or 

representation. The values for N t(t) now increase by a factor of two,

W )  = (2.36)
W  total

and so

N t( n ) N f (n) = 2 NM,  (2.37)

i.e. there are now twice as many coefficients in one level of the MFT domain as there are

in the time domain signal.

One of the aims of this work is to transform the MFT domain structure of one audio 

signal, the prototype, to fit another, the target, by warping the time-axis. In so doing, 

it is of primary importance that the location of features in both signals be represented 

as accurately as possible in the MFT domain. This has implications for the choice of 

window function (/„(f). It would make sense to choose a function that was limited in time. 

This would mean that the function would have only finite extent in the time domain. A 

window, or analysis function, with this property can also be described as being truncated 

in the time domain. The effect that this has in the frequency domain is to introduce 

sidelobes in the frequency response of the window. This effect is directly attributable to 

the uncertainty principle, as the energy concentration in time is inversely proportional to 

that in the frequency domain [65] [54] [43].

The window functions used in this work are specifically designed to combat this 

problem. They are functions of the Finite Prolate Spheroidal Sequence (FPSS) class [67] 

[54] [43]. More precisely, in the notation of [67], they are the functions that offer a

2.3 The Discrete Multiresolution Fourier Transform 32



2.3 The Discrete Multiresolution Fourier Transform 33

solution to the eigenvalue equation

I(E(n))B (ii(n))I(5 (n))0n = A gn (2.38)

Here, the operators I(E(n)) and B(H(»)) are defined as square M  x M  matrices and the 

window function gn is regarded as a column vector. This equation produces an FPSS that 

is time-truncated, hut that has maximum energy concentration in the frequency domain. 

The operator I is

M H (»)) = { 1“ ¡ £ j  < f  (2.39)

and with F, the Discrete Fourier transform operator, defined as

1 . 2 7T A' / .
F‘, =  7 f f exp(_- ' i r >  (2-40)

then the bandlimiting operator B can be defined as

B (fi(n)) = F*I(fi(n))F (2.41)

This produces a time-truncated window function, but a function with minimum side- 

lobe energy in the frequency domain. The sidelobes have been measured [66] [16]. The 

method used to gauge the size of the sidelobes is to measure the peak ratio of the magni

tudes of the centre lobe and first sidelobe. This ratio has been shown to be about 15dB for 

the window function generated via (2.38). However, through experimentation with these 

FPSS functions it is found that if the truncation operator is relaxed — that is, allowed 

to extend over a period, twice as long, then a more satisfactory window function in the 

frequency domain is obtained. (2.38) then becomes

I(2E(n))B(n(n))I(E(n))<7„ =  A gn (2.42)

These window functions, the solutions to (2.42), have peak to first sidelobe magnitude of 

26.3dB, which is much lower than suggested previously. This can be verified by examining
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figures 2.6, 2.7 and 2.8. These FPSS’s are called relaxed FPSS’s, since their truncation is 

relaxed. This relaxation by a factor of two gives the best compromise, between the extra 

computation required to calculate the oversampled MFT, and the benefits of the reduced 

sidelobes [66]. Having a relaxed FPSS ties in with the method of oversampling: the FPSS 

is relaxed by a factor of 2 and the MFT is oversampled by a factor of 2.

2.3.4 Implementing the MFT

In previous implementations of the MFT [9] [16] [45], the window function has been 

truncated in frequency, or bandlimited. This means that, for simplicity, the implementation 

of the MFT needs to be in the frequency domain. This is done by taking the Fourier 

transform of the entire input array and the window function gn(t). This creates a single 

column on the time-frequency plane. The window function is shifted to cover each member 

of this column, and the two are multiplied together. The output of this multiplication is 

inverse transformed, so creating each of the rows on the time-frequency plane.

Applying The Window Function To The Signal

time signal

t=0 1 2

column of 
the time-frequency

signal

FFT
\  ---------------=>►

........................ , - i

time window 
applied to

Figure 2.4: An illustration of how the discrete MFT is implemented in this work.
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The implementation used in this work is much simpler since, as stated above, the 

window functions here are time limited. The basic algorithm is:

1. the window is applied to the start of the audio signal, covering E(n) samples;

2. the FFT is taken of these windowed samples, creating one column on the 

time-frequency plane;

3. the window is shifted by

4. steps 2 and 3 are repeated until all of the desired signal samples have been 

windowed and transformed.

This algorithm is described pictorially in figure 2.4. The advantage of this implemen

tation is that there is no need to take any large FFT’s as in Pearson [45], where an FFT 

was taken of the entire input array of 216 samples and then the inverse FFT taken of each 

row.

It is important to note that there is a phase difference inherent between the implemen

tation here and (2.22). Strictly speaking, performing the above implementation does not 

give an MFT. Consider the phase for the two MFT time bins according to (2.22), for a 

complex exponential signal of frequency / ,  time bins i and t + 1 , with 0 < k < E(n)

samples. Then the phase difference can be calculated by subtracting (2.43) from (2.44) 

giving

(2.43)

and

a r g ( . Y , -  arg(A',i/ftl) =  / tt (2.45)
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between successive time bins. In other words, for a constant frequency index / ,  there 

should be a constant change of phase between successive bins of ir. The implementation 

above does not change phase between successive bins as the FFT is applied separately 

to each bin, so that in this implementation, there is constant phase between successive 

time bins. This has no significant consequences in the restoration application . The FPSS 

generation algorithm employed here is a slightly modified form of that used previously in 

audio signal analysis [45]. A general algorithm is used that can create FPSS’s efficiently, 

for relatively small input sequences. In [45] the size of the FPSS required was halved; this 

was then created efficiently using the algorithm suggested in [67]. The FPSS’s are then 

“grown” by recursively oversampling, time truncating and bandlimiting until the required 

size is achieved. This recursive approximation is a stable operation, as has been shown in 

[67]. For a further description of this algorithm, see [45]. A relaxed FPSS generated using 

this technique is shown in figure 2.5, while figures 2.6 and 2.7 show the corresponding 

time and frequency profiles: figure 2.5 is the product of the two which indicates the time 

and frequency extent of the window. In figure 2.8 the sidelobes can be seen to be over 

20dB below the main peak.

2.3.5 Inverting the Oversampled Discrete MFT

To explain the inversion of an oversampled discrete MFT consider figure 2.4. It can be 

seen that the time samples in the window at / = 1 are present also in the time windows 

at t = 0 and t = 2. But both the windows at t = 0 and t = 2 contain information not 

needed to reproduce the samples in the time window at t = 1. The method used to invert 

the discrete MFT relies on the fact that the window function g„(t) approximates a cosine 

function. Using the function

M O  =
cos2(f — 1 )

(2.46)
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Figure 2.5: Time truncated relaxed FPSS for MFT level 11.
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Time Truncated FPSS For Level 11
Time Domain

Figure 2.6: Time truncated relaxed FPSS for MFT level 11 in the time domain.

Time Truncated FPSS For Level 11
Frequency Domain

Figure 2.7: Magnitude of the time truncated relaxed FPSS for MFT level 
frequency domain.

1 in the
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Time Truncated FPSS For Level 11
Frequency Domain

Figure 2.8: Time truncated relaxed FPSS for MFT level 11 in the time domain with a log 
scale.

results in adjacent windows summing to unity on inversion. This process is continued for 

all windows. One problem caused by this is that the first half window length samples at 

the beginning and end of the signal sample length will not be invertible. This problem 

can be easily avoided by “padding” the beginning and end of all MFT samples by half a 

window length of zeros.

2.4 Summary

It has been shown that the MFT is the most general time-frequency representation available: 

allowing a free choice of time and frequency resolution as a function of scale. Furthermore, 

the discrete MFT provides a stable frame if oversampled by a factor of 2 and as such is 

completely invertible from any level. An efficient and simple time domain implementation 

of the MPT for 1 -  d signals was given. In conclusion, the MFT is a versatile analysis 

tool and it can be implemented without difficulty.



Chapter 3

Adaptive Filtering of Musical Signals 
using the M FT

3.1 Introduction

In restoring a musical signal, it is necessary to determine what is music and what is not. 

The listener can distinguish between background sound — sound that is not musical, 

for example the sound of traffic or rain — and a musical composition. There must be 

something about music — it must have some property or properties that background noise 

does not have. A signal model would allow a better understanding of the structure of 

musical signals, and so aid in the recognition, detection and ultimately, the restoration of 

audio musical signals in a noisy environment.

3.2 A Musical Signal Model

There are many types of music. Indeed there exist musical genres whose aim it is to blur 

the border between music and sound, for example Schaeffer in his “Musique Concrète” 

used background sounds and decontextualised them, integrating them into a musical 

performance [421. So, when deciding on a musical model, it is helpful to be sure of 

what type of music is to be modelled. It is a condition of this work that any music used

40
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and therefore modelled here, must be such that there exist two performances of the same 

musical piece that can be mapped, or warped, one onto the other. Therefore any type 

of music that is to be modelled should have some fairly rigid rules as to how any given 

musical piece is performed. It would be rather difficult to warp one jazz performance to 

another as there will generally be not only large variation in timing and possibly pitch, 

but also in the notes being played. The type of music that is of interest will need to have 

some written score that is followed without too much interpretation. One such type of 

music is classical music, where classical music can be defined to be “any type of music 

written to conform to traditions of the past”, or “music that is written to bring order to life” 

[5]. This musical genre generally has a comprehensive score for each piece and, although 

there is always room for interpretation between performances, any two performances of a 

piece will not vary unrecognizably. Fortunately, this is also the area where there is much 

interest in the restoration of old recordings.

Because the score is what makes different performances of a musical piece similar, it 

is to the score that we look when deciding how to build a musical signal model. The score 

is essentially a list of instructions to the performers and as such can be considered to be 

a collection of notes with different timings, strengths and pitch. It then follows that if a 

signal model can be designed for a musical note, it is only a simple extension from this to 

a whole performance.

For the purposes of this work, a note consists of three main parts. The first is the 

tone of the note, which is the frequency at which the note is heard. The second is the 

envelope of the note, which is the shape of the attack and decay. This is a function of 

the instrument played and the musician playing. For example, a piano’s attack is sharp, 

but can be dampened slightly by the pianist pressing the key more slowly, a violin has a 

slow attack, but this can be quickened by the violinist. The third property of a note is its
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timbre. The timbre is a function of the instrument being played, and is the distribution 

of the energy of a note in frequency. A note is made of partials, or harmonics, of some 

fundamental, where the fundamental is the base frequency and each partial’s frequency is 

a multiple of the frequency of the fundamental. As the timbre alters, the distribution of 

the note’s energy changes through the partials, so that in some instruments certain partials 

will have more prominence than others. It is this distribution of energy across frequency 

that gives an instrument at least part of its distinctive sound.

Figure 3.1: An example of the envelope of a note.

A partial can be assumed to be a quasi-sinusoid, [45]. If a note is just a sum of partials, 

or harmonics, then it can be modelled as

N

s(t) =  A v{t) sin(woT/i + (3.1)

where N  is the number of partials present, u>q is the fundamental frequency or tone, <?>(?/) is 

an offset phase, and can be defined as an amplitude function varying as a function of
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fundamental partial
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Figure 3.2: An example of the time-frequency structure of two notes.

time. An(t) represents the envelope of the note, which typically has a short attack or onset 

and, by comparison, a long decay. The decay is classified for our purposes as steady-state, 

as it does not have the broadband properties that the onset has.

This notion can be extended to the whole score, where the envelope function is set to 

zero outside the scope of the notes it represents. If there are M  notes being played, and 

each note indexed with m  is of the form in (3.1), then each note in a first approximation 

of a musical score could be
N

Sm(t) = A nm(t) sin(u>0(m)?/f + ¿(?/)) (3.2)
r>=l

is a weighting function that encompasses both the distribution of energy through 

the partials ?/, and the time course of each. The set of all such notes, representing the 

score, would be

s(t) =  jC  ^n(t)
m= 1

(3.3)
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Thus (3.3) shows that a simple musical signal model can be described as a collection of 

amplitude modulated sine waves in frequency, at multiples of some fundamental frequen

cies, occurring as a function of time. Let us now consider some of the properties that notes 

and their partials have in the time-frequency plane. Although each partial will occupy two 

frequency bins because of the sampling and the windowing of the MFT implementation 

(cf chapter 2), the general shape of the signal is shown in idealised form in figure 3.1 and 

a practical example is shown in figure 3.4.

3.3 Audio Restoration using Lowpass Filtering

One way to restore noisy signals is to use a lowpass filter, which is easy to implement, 

using the MFT, by selecting a cut-off frequency and setting all MFr coefficients above that 

cut-off equal to zero before reconstruction. Figure 3.5 shows how, for a given MFT level, 

coefficients at frequency bins less than the cut-off frequency f c are included and the rest 

are ignored. The cut-offs used in this work are at 1.5kHz, 3kHz and 4.5kHz. 1.5kHz and 

4.5kHz arc included to show that by raising and lowering the cut-off frequency too much, 

the lowpass filter’s performance deteriorates. The filtering is done on the “Waldstein” 

Adagio Molto and String Quartet Scherzo, with white additive noise. The gain in SNR is 

plotted against level for the three cut-off values. As might be expected, because the filter 

is constant throughout the sample, there is little dependence of the gain on the choice of 

level. (Note that level 1 1 has a time window duration of 21.5 ms). Figure 3.6 is a plot of 

gain in SNR against level with an input SNR of lOdB. Each curve in this plot represents 

one of the three cut-offs discussed above. The two extreme cut-offs, namely 1.5kHz and 

4.5kHz both give a lower gain than 3.0kHz confirming that the best place to have the 

cut-off is where the signal energy is lower than the noise energy. For example, on a piano 

keyboard there are only five keys that produce a note with a fundamental frequency greater
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Piano A#0 Time Signal
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Figure 3.3: A section of time signal for piano note A#0.
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Figure 3.4: MFT time-frequency plane for the piano note A#() at MFT level 11.
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Figure 3.5: Lowpass filtering on the time-frequency plane.

Beethoven’s ‘'Waldstein" (Adagio Molto)
Gain In SNR With Low Pass Filtering And 10dB 01 Noise

Figure 3.6: Beethoven’s “Waldstein” (Adagio Molto) restored using a lowpass filter at 
various cut-off frequencies, with lQdB input SNR, based on various MFT levels.
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Beethoven’s String Quartet 2 In Gmaj (Scherzo)
Gain In SNR With Low Pass Filtering With Cut-Off At 3kHz
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Figure 3.7: Beethoven’s String Quartet no 2 in Gmaj (Scherzo) restored using a lowpass 
filter with a cut-off frequency of 3kHz, with lOdB input SNR, using various MFT levels.

than 3.0kHz. The shape of the curve for the cut-off at 1.5kHz is different from the other 

two because at such a low cut-off value, there is significant signal missing, whereas in 

the other two the main difference is the amount of noise removed. For the String Quartet 

Scherzo, the cut-off value was kept constant at 3.0kHz, and the level was varied, showing 

that the gain is not a function of level, as was expected. It is obvious that as the input SNR 

decreases, the cut-off frequency will necessarily increase: if there is no noise, the amount 

of “noisy signal” included in the best lowpass filtered output signal will have a cut-off 

frequency equal to the Nyquist frequency [43]. To summarise, the lowpass filter requires 

a choice of cut-off that maximises the energy and minimises the noise transmitted, and is 

a function of input signal to noise ratio. The shape of the restoration curve does not vary 

as a function of the MFT level.
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3.4 Audio Restoration using Wiener Filtering

A Wiener filter is an optimal filter, which minimises the mean square restoration error. An 

approximate Wiener filter was used by Vaseghi [59] to restore gramophone recordings, by 

assuming that the noise and the signal were not correlated. A Wiener filter />(r) can be 

derived from the Wiener-Hopf equation [43]

/OO

R»x{t -  t )h(r)dr (3.4)
-O O

where the noisy signal x(t) = s(t) + r(t) as previously, and Rsx is the cross-correlation 

of x(t) and s(t). This can be solved in the Fourier domain to give

H [ w )

S s x j u )

Sxx(u)
(3.5)

where H(lo) is the Fourier transform of the optimal Wiener filter, Sxi(lo) is the power 

spectral density of signal x(t) and Stx(u) the cross-spectral density of signals x(t) and 

s(t). It is assumed that the noise and signal elements of x(t) are not correlated and so 

Sxx(u) reduces to

SXx(u) = SSs{u>) + Snn( te) (3.6)

where S„„(ce) is the Fourier transform of the noise signal’s auto-correlation function, and

R s x { ^ )  —  ‘S ' s s ( k ' ) (3.7)

(3.5) now becomes

H(w) Ssa (te )
Sms(u>) +  S„n( U>)

(3.8)

which is just the signal spectrum of the clean signal divided by itself plus the spectrum of 

the noisy signal. This simple structure results because, for a stationary signal, the Fourier 

basis diagonalises the correlation function. Suppose, for the moment, that the spectrum
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of the signal and noise are known, allowing calculation of the Wiener filter. It can be seen 

from (3.8) that for a given frequency w, if there is a low signal spectral energy, the Wiener 

filter value will be low also. If, conversely, the spectral energy is significantly larger than 

that of the noise, then the Wiener filter has a gain of unity. Implementing the Wiener filter 

in the MFT domain is simple, as the signal spectrum Sxx(w) can be estimated by summing 

the MFT coefficients for a given frequency, over all time. If the discrete spectrum estimate 

is S„ ( f ) ,  then

Sxx( f )  = E |A 't,/.n|2 (3.9)
t=o

where T  is the interval over which the filter is computed. An example of the frequency re

sponse of a Wiener filter is shown in figure 3.8, which is the filter designed for Beethoven’s 

“Waldstein” Adagio Molto with lOdB of white additive noise. One thing to note is that 

the filter decays rapidly at about 4kHz, confirming the supposition made in the previous 

section that the signal values dominate only until about that point in the frequency spec

trum. The results for restoration with lOdB, 15dB and 20dB of white additive noise added 

to Beethoven’s “Waldstein” (Adagio Molto), and String Quartet 2 in Gmaj (Scherzo) are 

shown in figures 3.10 and 3.11 respectively, where the gain in SNR is plotted against MFT 

level. One point that is obvious upon inspection is that for high MFT levels there is a larger 

gain on both restorations than for low levels. This can be explained simply by considering 

(3.9), which shows that the signal spectrum estimate is a function of level. The bandwidth 

for coefficients is narrower for high MFT levels: the frequency resolution increases, as 

does the accuracy of the Wiener filter, since all the time coefficients are summed. In 

figure 3.12a plot is made of filter length (shown in seconds) against gain using the Wiener 

filter. This shows that as the length T  of the window used to compute the Wiener filter 

increases beyond an optimal length there is a deterioration in the gain. There are two main 

variables affecting the optimal interval in this implementation of Wiener filtering. The
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Wiener Filter Coefficients For MFT Level 11
Beethoven's "Waldstem” (Adagio Motlo) With 10dB While Additive Noise

frequency (h i)

Figure 3.8: Wiener filter frequency response for Beethoven’s “Waldstein” (Adagio Molto), 
with lOdB input SNR.

Adaptive Filter Coefficients For MFT Level 11
Beethoven’s "Waklslein” (Adagio Motto) With 10cfi3 White Additive Noise

frequency (hi)

Figure 3.9: The adaptive filter H,j m summed in time to compare with Wiener filter for 
Beethoven’s “Waldstein” (Adagio Molto), with lOdB input SNR (see section 3.5).
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Beethoven’s “Waldstein” (Adagio Molto)
Restored Using Wiener Filter

Figure 3.10: Beethoven’s “Waldstein” (Adagio Molto) performed by Jando restored using 
a Wiener filter for various input SNR’s.

Beethoven's String Quartet 2 In Gmaj (Scherzo)
Restored Using Wiener Filter

10.0 -

-------  10dB Input SNR
8 0 j- l5dB Input SNR

20dB Input SNR

level

Figure 3.11: Beethoven’s String Quartet no 2 in Gmaj (Scherzo) performed by The 
Smithsonian String Quartet restored using a Wiener filter for various input SNR’s.
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Wiener Filter Performance As A Function OF Length
Beethoven’s "Waldstein“ Adagio Molto With 10dB Input SNR

Figure 3.12: Gain on restoring Beethoven’s “Waldstein” (Adagio Molto) with input SNR 
of lOdB using a Wiener filter as a function of filter length for intermediate MFT level 10.

first is the signal spectrum estimate, Sxx(tc) which, as the period of time that it pertains 

to decreases, becomes more adaptive but, as the filter length increases, becomes more of 

an average estimate for that length of signal. The second is the noise estimate, Snn(u>), 

whose accuracy decreases if the window length becomes too short. There is therefore a 

trade-off between a good noise estimate and an accurate estimate of the spectral values for 

that time period. This problem will be addressed further in chapter 5, where an adaptive 

form of the Wiener filter will be implemented for two different audio signals, the target 

and the prototype, using the warping algorithm from chapter 4.

3.5 A Simple Adaptive Musical Event Detector

The aim of event detection is to detect the meaningful parts of musical signals: those 

which correspond to the partials of the notes being played. This is done by thresholding 

the signal at a level based on an estimate of the noise variance. T his creates a binary output
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that can be used to adapt the restoration filter to the spectral and temporal properties of 

the signal. This idea is illustrated in figure 3.2, which can be interpreted as the structure 

of the partials of a piece of music. Each MFT coefficient which is turned “on” in this plot 

represents a filter concentrated in both time and frequency.

3.5.1 The Signal Filter

As stated in the previous section, using the MFT (chapter 2) on musical signals shows that 

each partial occupies at least two frequency bins and has constant relative phase. Section

3.2 explained the signal model to be the sum of the constituent partials of the notes in 

a performance. Detecting the musical signal is, therefore, equivalent to detecting all of 

the partials. The detection filter acts in both time and frequency. The time filter is a first 

order recursive filter, which has been shown to be optimal for transient detection [51 ], the 

filter sums adjacent frequency pairs of M R’ coefficients, so that its peak output is when 

the phase of both frequency bins is the same. This filter was used in [45] for detecting 

partials for note transcription. In order to keep the same absolute length of memory, the 

recursion coefficient, o, is changed according to n.

The output of the filter at time f, Vtj <n is given by

=  at(n)(Xt<f,n +  X tj +\'„) + ( 1 — a(n))Vt- i j <n (3.10)

where X tj <n is as before, the MFT coefficient at time t, frequency f  and level n.

3.5.2 The Noise or Background Level Estimator

An estimate of the level of the background noise is found by using a separable first order 

recursive filter. This has a long memory in time and frequency, so that events in the past 

and higher (and usually lower energy) partials contribute to the estimate of the noise level.
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The output of filter at time t is given by

(3.11)

this is in effect an estimate of the noise variance. The noise standard deviation estimate is 

therefore just the square root of this, for time t and /

for coefficients t , /  and n. Note also that 7 (n) and (3(n) are functions of level for the same 

reason as a(n). It is important to note that in this instance, and this instance only, “noise” 

means that which does not adhere to the signal model, in other words the “background” 

level. The template is actually derived from a clean signal, which should have minimal 

noise.

3.5.3 The Binary Template

The output from the signal and noise filters can be combined to detect the signal. The 

most important value in this combined filter is the global threshold v, defined in terms of 

the maximum coefficient value

see section 3.5.5 for how u is chosen empirically and section 3.8 for a preliminary analytical 

method of choosing v.

If// is the activity threshold, the adaptive filter can be determined from

(3.12)

(3.13)

(3.14)

// serves as a local threshold, so that even if the signal filter output is large, it has to be 

larger than the local noise estimate. The values for //, a , 7 and $ are fixed, and vary only
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as a function of level. This is because the noise estimation filter requires that 7 and () are 

large (> 0.9) to estimate over a wide range of frequencies and a  must be reasonably large 

(typically > 0.8), to reduce false alarms. The value for // is typically fixed at about 0.001. 

It is important to note that the number of coefficients switched “on” in the filter depends 

on the number of coefficients greater than uQu.

3.5.4 Computational and Storage Complexity

In each level of the adaptive filter, that is for each value of n, there are Nt(n) time bins 

and Nf(n)  frequency bins, whose product is equal to twice the number of samples in the 

input audio signal. In the implementation of the filter algorithm for a single value of n 

there are two passes through the data: one to calculate the signal filter values and the noise 

filter values, and one to compare the signal values with the two thresholds, fi J W tj iU and 

v>Qn. In the first loop there are 6 multiplications and 8 additions — to normalise and 

implement the filters and in the second loop there is only one multiplication. Thus the 

filter’s computational complexity is proportional to 2NlMl for each level — as the number 

of multiplications and additions as stated above vary linearly with Ntaai. The number of 

MFT levels is

So the computational complexity for the adaptive filter for an audio signal with Ar„,ul 

samples for each level is

Aw,s — log;( Atl,ta|) + 1 (3.15)

(3.16)

which can be written in standard “big O" notation [ 1]

N  =  0(AWi log2(A\nlai)) (3.17)
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Since this filter is derived from the MFT, the MFT’s computational complexity will also 

be calculated. Consider each level of the MFT with Nt(n) time bins each Nj(n)  wide. 

Calculation of each of these time bins involves both a forward and inverse FFT. Since the 

computational complexity of the FFT is well known as N  log( AT) multiplications 143], the 

computational complexity for each level of the MFT is

Nn = 0 ( N xm[ log2(Artllla,)) (3.18)

Since the number of levels of the MFT, as stated above, is log2(jVlolal) then the total 

computational complexity for the entire MFT derived filter structure is

N  = 0 ( N M lof2(NM )) (3.19)

This is illustrated graphically in figure 3.13. In a timed experiment for an audio signal

Computational Complexity
Simple Adaptive Musical Event Detector (Including MFT)

Figure 3.13: Number of multiplications as a function of sample size for the simple adaptive 
filter algorithm.

11.8 seconds long, sampled at 44.1kHz, it took 18 seconds to calculate one level of the
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MFT and a further 19 seconds to calculate the simple adaptive filter, the hardware used 

was discussed in section 1 .6.1.

Storage of the filter in its raw form obviously requires a total of 2NtMi log2(iVtl)U,) bits 

— 1 bit per coefficient. This can be further reduced by run length coding in time, if 

required.

The filter, or template, is an array of MFT coefficients that, when applied to a noisy signal, 

permits only those coefficients with significant energy to be allowed through. This is the 

basis of the adaptive estimation procedure. It can be seen that as the number of coefficients 

in the template increases, so too does the potential gain in the signal to noise ratio (SNR) 

of the enhanced signal. Any signal restoration or enhancement scheme implies a trade-off 

between noise elimination and signal distortion, (see for example [43]). In the present 

system, a given template implies retention of only those MFT coefficients exceeding the 

threshold. The distribution of signal energy in the time-frequency plane is non-uniform 

but the noise energy is evenly spread (see figures 3.14 and 3.15), so using such a threshold 

an improvement in the signal to noise ratio will be found. For a given input SNR and 

MFT level, there is an optimum threshold, such that the sum of the signal rejection error 

and the noise retention error is minimised. If the noisy signal has MFT

3.5.5 Choice of Global Threshold u

(3.20)

then the error variance after smoothing is

where H i j <n(u) = 1 if the signal is above the threshold and Htj <u(u) = 0 otherwise. 

Because the implementation of the MFT ensures that the representation is a tight frame,
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114], [66], it follows that the error variance in the signal reconstructed using the template 

on one level is simply the mean of etj ,n, which depends on the threshold, w. a larger 

threshold implies more signal rejection, but also more noise rejection. At present there 

is no adequate theory for threshold selection, and so the thresholding is done empirically. 

However there is a preliminary analytical method that exploits the errors in (3.21) in 

section 3.8.

3.6 The Structure of the Simple Adaptive Filter

The adaptive filter described above is called a template filter since it represents a “template” 

of the signal in the time-frequency plane at a given resolution. Its structure reflects the 

signal from which it was derived, namely a musical signal. It therefore has rows of 

coefficients switched on where the energy in the signal is concentrated. Since a musical 

signal’s energy is distributed throughout its partials, the binary template has coefficients 

switched on in a pattern reminiscent of figure 3.2. Furthermore, since a musical signal 

is a function of time, so too is its template. In other words a binary template filter can 

be considered as a bank of time-varying narrowband filters reflecting the structure of the 

musical signal. Two templates are shown for Beethoven’s “Waldstein” (Allegro Con Brio) 

in figures 3.14 and 3.15. These show how the coefficients vary as a function of time and 

frequency, at two scales. In both figures the x-axis represents time in seconds, the y-axis 

frequency in Hertz and the intensity of the image is proportional to the magnitude of the 

coefficients in the MFT, in this case black represents “on”, and white “off”. Note also 

how the visible structures of the two filters differ. That in figure 3.14 appears to be more 

horizontal, whilst in figure 3.15, there is a distinct vertical structure. It is easy to see from 

these two filters how a low MFT level or scale could capture more transient energy than 

the higher level. This will be discussed later. It is interesting to consider what the filter
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Figure 3.14: A simple adaptive filter for Beethoven’s “Waldstein” (Allegro Con Brio) for 
MFT level 11. Note that black indicates a coefficient that is switched “on”.

Figure 3.15: A simple adaptive filter for Beethoven’s “Waldstein” (Allegro Con Brio) for
MFT level 8.
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would look like in the time domain. This is possible since the MFT is invertible. Note that 

it is not strictly an MFT, as it has been created artificially. In order to invert the MFT, the 

standard inverse (chapter 2) is amended so that there is no multiplication by the inverse 

window function, as the filter is not windowed, but the cosine windowing is still used to 

exploit the overlapping time bins for the inverse. When transformed, the template sounds 

similar to the clean signal in structure, but without the musical texture because there is a 

different phase structure. It does show that there are no discontinuities in the filter in the 

time-frequency plane, implying that filtering will be smooth and consistent.

To illustrate the point, a simple example has been created for two levels: level 8 and 

level 12. For all time, a frequency band was switched on by setting the value of the MFT 

array to one at that frequency band. The inverse MFT was applied without the inverse 

FPSS function but with the usual (cos2) window function on which the inverse MFT is 

based. Figures 3.16 and 3.17 show the resulting time signals obtained for MFT levels 12 

and 8 respectively. The frequency band selected was 258 Hz, as can be seen in both time 

signals, which are sine waves with a frequency of 258 Hz and constant amplitude. The 

process above was repealed with only a single time bin switched on. These results are 

shown in figures 3.18, 3.19 and 3.20, for levels 12, 10 and 8 respectively. Level 10 is 

included as an intermediate level to show how the wave packets produced from inverting a 

single MFT bin vary in scale from high levels to low levels. The structure in these figures 

is that of a wave packet function, with sinusoidal “carrier” structure, corresponding to the 

position on the frequency axis that they were on the time-frequency plane, modulated by 

the cosine squared window function. By inspecting figures 3.18 and 3.20, it is possible 

to see that by adding the wave packet to a neighbour shifted by half the window size 

and having the same phase, that these wave packets will interfere constructively and 

create the sine wave shown in figures 3.16 and 3.17. It is reassuring that the time signal
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MFT Level 12
Inverse Transform Of Binary Template Switched On At 25BHz Only

Figure 3.16: The MFT inverse for a simple adaptive filter structure with frequency bin 
turned on at 258Hz throughout time at MFT level 12.

MFT Level 8
Inverse Transform Of Binary Template Switched On At 258Hz Only

Figure 3.17: The MFT inverse for a simple adaptive filter structure with frequency bin
turned on at 258Hz throughout time at MFT level 8
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MFT Level 12
Inverse Transform Ot Binary Template Switched On At 258 Hz Only For On® Time Bin

Figure 3.18: The MFT inverse for a simple adaptive filter structure with frequency bin 
turned on at 258Hz for one time bin at MFT level 12.

MFT Level 10
Inverse Trans tom» Ot Binary Template Switched On At 258 Hz Only For One Time Bin

1 0.00 0.01 0.02 0.03 0.04 0 05 0.06 0.07 0.08
lime (s)

Figure 3.19: The MFT inverse for a simple adaptive lilter structure with frequency bin
turned on at 258Hz for one time bin at MFT level 10.
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MFT Level 8
Invers» Transform Of Binary Template Switched On At 2S8Hz Only For One Time Bin
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Figure 3.20: The MFT inverse for a simple adaptive filter structure with frequency bin 
turned on at 258Hz for one time bin at MFT level 8.

corresponding to the constituents of a binary template should look like simple functions. 

Note that this is very different from the result of choosing a single frequency turned on 

in a critically sampled representation, such as the DFT. Oversampling allows the use of 

smooth windows that minimise the artifacts at transients.

3.7 Restoration using the Simple Adaptive Filter

Before using the MFT fully to perform restoration across scale, results are shown for audio 

restoration done on individual levels. These will then set a base level for restoration using 

the adaptive filter (3.14), and eventually (in chapter 5) multiresolution restoration.

One way to find how well a given template works as an audio signal restorer is to 

obtain the template from a clean signal, s(t) and restore a version of the same signal with 

noise added. This method of templating should give no error due to inaccuracies in time 

and frequency of features in the template. The MFT of the restored signal is the product

,

4 i\__________ j

. .

|
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Beethovens “Waldstein” (Adagio Molto)
Input SNR = 10dB

Figure 3.21: The variation of gain in SNR as a function of threshold for various levels 
with lOdB input SNR on Beethoven’s “Waldstein” (Adagio Molto).

of the binary template and the noisy signal in the MFT domain

Xt,f,« -  #./,»(*(*))**./,» (3.22)

3.7.1 Results and Analysis

The optimum threshold u is found by minimising the errors in (3.21) due to the absence 

of signal and presence of noise in the restored signal. An estimate of the noise variance 

present is calculated for the noisy (target) signal, and the threshold is chosen accordingly.

Figure 3.21 shows how the best threshold varies with level and SNR. There are two 

main points to be taken from figure 3.21, the first is that the threshold is different for 

each level and the second that the maximum SNR is different for each level. The first 

point highlights the fact that the threshold u is a function of level n and input SNR so 

v — v(p,n),  a fact that will be exploited in chapter 5. The second point, the fact that 

the best SNR’s are different for different levels, illustrates the multiresolution nature of
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Beethoven’s “Waldstein” (Adagio Molto) Performed By Jando
Gain In SNR Using An Exact Template

Figure 3.22: Gain as a function of level and input SNR for Beethoven’s “Waldstein” 
(Adagio Molto).

Beethoven's “Waldstein” (Allegro Con Brio) Performed By Jando 
Gain In SNR Using An Exact Template

Figure 3.23: Gain as a function of level and input SNR for Beethoven’s “Waldstein”
(Allegro Con Brio).
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Beethoven's String Quartet 2 In Gmaj (Scherzo)
Gain In SNR Using An Exact Template

Figure 3.24: Gain as a function oflevel and input SNR for Beethoven’s String Quartet no 
2 in Gmaj (Scherzo).

Beethoven’s String Quartet 2 In Gmaj (Adagio Cantabile)

o.o-------1-------»------ 1------ -------•------ -
8 9 10 11 12 13 14

level

Figure 3.25: Gain as a function oflevel and input SNR for Beethoven’s String Quartet no
2 in Gmaj (Adagio Cantabile).
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audio signal enhancement, and the main reason that the MFT is used. To investigate 

the effects of resolution on audio restoration the gain in SNR is plotted as a function of 

level in figures 3.22 and 3.23 for Beethoven’s “Waldstein” Adagio Molto and Allegro Con 

Brio performed by Jando, respectively, and figures 3.24 and 3.25 show the results from the 

String Quartet in Gmaj Scherzo and Adagio Cantabile by The Smithsonian String Quartet, 

respectively.

Figure 3.22 shows the gain in SNR for various amounts of input noise, from 5dB 

to 25dB of white additive noise, for 10 MFT levels, ranging from level 6 to level 16. 

All the curves have the same general shape, with only minor differences. This can be 

interpreted as showing that the filter in each instance is retaining roughly the same number 

of coefficients, presumably these are the same coefficients for each level, which would 

mean that the filter was acting consistently across levels. The explanation for this is 

simply that the filter is optimised in each instance, by retaining only those coefficients that 

have significant energy. Obviously the Adagio Molto section of “Waldstein” is a slow 

section, so the best level for restoration, in all levels of noise, is a high one, level 14, where 

each bin in the MFT is 0.37 seconds long and 2.7Hz wide. It is natural in steady-state 

portions of signal, where the partial structure of the signal resembles a straight line on the 

time-frequency plane, that the higher the level, the more restoration there will be, as the 

proportion of the MFT coefficients required for reconstruction of steady-state portions is 

reduced by increasing the level. The limitations are that a level may be too high to capture 

the transients caused by the onsets of notes, or it may even be longer than the duration of 

some notes, missing them altogether. This is why the gain decays beyond level 14. For 

the faster section of the “Waldstein”, from the Allegro Con Brio, it can be seen that the 

best level is significantly lower than level 14, at level 8. This is because the piano is being 

played very quickly and loudly, so the transients are prevalent and the notes are very close
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in time. The problem with there being a high concentration of rapid notes and therefore 

transients is that the peak restoration gain is lower than for a slower piece where a much 

higher level can be used. As a result, the peak gain in SNR for the Allegro Con Brio is 

only lOdB at lOdB input SNR, compared with 15dB for the Adagio Molto.

This pattern is repeated in the two string pieces with one fast, the Scherzo, and one 

slow, the Adagio Cantabile. Since these are performed by bowed instruments, whose 

attack is not as fast and whose steady state not as sinusoidal as the piano’s, due to the 

vibrato, the difference in the gain due to restoration between the two is not as noticeable. 

The gain for the Adagio Cantabile is a peak at level 14 and the Allegro Con Brio at level 

13. The difference in gain between the two is only 2dB, much less than that for the piano 

pieces.

The main conclusions to be drawn from these results are first that the best MFT level or 

scale is a function of the particular piece of music being restored. It depends on whether 

it is fast or slow, or whether the instrument’s attack is short or long, and whether the 

instrument’s steady-state is sinusoidal like the piano. The second point is that the gain in 

SNR also depends on the amount of noise present in the signal, with the gain being around 

lOdB for the string quartet pieces and between lOdB and 15dB for the piano pieces.

It can be concluded that the best gain for lowpass filtering is significantly worse (3dB) 

than for templating increasing to in excess of 6dB for low input SNR. It is also worth 

commenting that lowpass filtering an audio signal reduces its “brightness”, making it a 

perceptually ineffective solution. Whereas the adaptive filtering technique relies on the 

masking effect of allowing areas of large SNR through, at the same time as areas with 

low SNR’s to be included in the restored signal. Finally, it has been shown also that the 

template performs better than the Wiener filter. From figure 3.10 the best gain for the 

Wiener filter is4dB less than the best value for the template filter and, similarly, the largest
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gain in figure 3.11 is worse by 5dB than the best for the template. Wiener filtering, when 

implemented in the MFT domain, has nothing to gain from using a low time resolution, 

since the only way to increase the accuracy of the filter’s spectral estimate is to increase 

the level, and thus increase the frequency resolution.

3.8 Selecting the global threshold v analytically

In (3.21) the error present in a thresholded MFT level is described as the sum of the errors 

due to the noise retained and the signal lost. This can be modelled statistically if the 

signal and noise energies are given probability densitiesp„(v) and pn{v) respectively. The 

energy threshold on level k is given by

T = (K-),)2 (3.23)

then the mean square errors in the restored signal can be defined as

e,(r) = /  vps(v)dv
j 0roo

6t(T) =  j  Vpn(v)dV

(3.24)

(3.25)

The threshold r  should obviously be chosen to minimise the total error e(r) = eg(r) -f 

e„(r), i.e.

Or
0 (3.26)

Figures 3.26 and 3.27 show the signal as a histogram and its approximation by exponential 

and Cauchy densities over a finite range of energies. Clearly the Cauchy density gives a 

reasonable fit to the data, but this has the unfortunate consequence of modelling the signal 

density by a process with unbounded moments. To overcome this problem, the density is 

modelled over a limited range of values, from 0 to 10 times the noise variance and to get
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a reliable estimate of the density from the data, the histogram bin width is chosen to be 

1 /  10th of the noise variance.

To estimate the parameters of the density, it is necessary to get a reliable estimate of the 

signal and noise variances from the noisy data. The target signal’s SNR can be estimated 

by exploiting the fact that nearly all the uncorrupted signal energy present in a noisy target 

signal is contained between the frequencies 0 and Fs, where it is also assumed that there 

is a proportion, ) of the total noise energy present. For most musical applications

Fa is about 3kHz. Furthermore, in the frequency range Fs to FNy(], it is assumed that the 

only energy is the remaining noise energy. This is enough information to ascertain the 

noise energy present in a given noisy signal. Thus if we define

5 1 is a combination of signal and a fraction, * !_pr > of the noise energy for time bin t

signal energy present for time bin t, can be defined in terms of (3.27) and (3.28) as,

(3.27)

(3.28)

and Si is a proportion (1 — tr*-) of the noise energy present. The amount of noise and
l ' N V q

(3.29)

and

V  — V  V (3.30)

Using these, an estimated signal to noise ratio p' can be calculated using

(3.31)

using (3.29) and (3.30). Note that (3.29) and (3.30) are both normalised so that the signal 

energy estimate does not swamp the noise energy estimate when Fs is high. Values of the
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Beethoven’s “Waldstein” (Adagio) with 10dB noise

Energy

Figure 3.26: The energy distribution for Beethoven’s “Waldstein” (Adagio Molto) lOdB 
away from the mean energy, modelled by both the exponential and Cauchy distributions 
on a log-linear scale.

Beethoven’s "Waldstein” (Allegro) with 20dB noise

Figure 3.27: The energy distribution for Beethoven’s “Waldstein” (Allegro con Brio) 20dB 
away from the mean energy, modelled by both the exponential and Cauchy distributions 
on a log-linear scale.
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estimated signal to noise ratio p! are shown along with the actual signal to noise ratio (p) 

for Beethoven’s “Waldstein” (Adagio Molto) performed by Ashkenazy in table 3.1 where 

Fs = 3 kHz.

Actual SNR (p) Estimated SNR (p')
lOdB 10.7dB
15dB 15.9dB
20dB 20.7dB

Table 3.1: Results for noise estimation on Beethoven’s “Waldstein” (Adagio Molto) 
performed by Ashkenazy, with Fs = 3kHz.

Using the estimate of the input SNR p' the appropriate energy distribution histogram 

is plotted alongside the approximate exponential and Cauchy distributions. This is shown 

in figures 3.26 and 3.27 for Beethoven’s “Waldstein” Adagio and Allegro respectively. As 

can be seen the Cauchy distribution, whilst not perfect, matches the energy distribution 

most closely. This means that the signal’s probability distribution is well approximated 

by

Ps{v) =
a/ir
r ■ ^

cr + ir
(3.32)

and since the noise magnitude distribution is given by the normal distribution, its energy 

can be modelled using the exponential distribution [43]

pn(v) — - e  oa
(3.33)

where a here is equal to twice the variance of the noise magnitude distribution. Returning 

to the definitions given for the signal lost and the noise included

. . r  va/it , v _v
(r ) — / + - e  «Jo O" T v~ Jt a

dv (3.34)

which when differentiated with respect to r gives

de{r) ocT
dr  ir(a2 + r 2)

e <r T
(3.33)
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hence

which can be solved using iterative substitution giving a value for r  [63]. This process 

was undertaken for Beethoven’s “Waldstein” Adagio by Jando with lOdB of noise. Figure 

3.28 shows results for restoration using these values of r  alongside results for restoration 

using the empirically chosen threshold from section 3.7. As can be seen quite clearly,

Beethoven's "Waldstein" (Adagio Molto) Performed By Jando
Gam in SNR Using an Exact Template

Figure 3.28: Gain as a function of level and input SNR for Beethoven’s “Waldstein” 
(Adagio Molto) using both analytical and empirical choices of threshold.

there is at most a ldB decrease in performance and, for level 14, a slight improvement in 

performance. This shows that this method is effective in estimating values for the global 

threshold v analytically.
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3.9 Comparing Filters Derived from Target and Prototype 
Signals

To illustrate the value of using a prototype signal, filters derived from the target signal can 

be compared with those discussed previously in section 3.7.1 — filters derived from the 

prototype signal. This was done using the same method as before. In figure 3.29 the gain 

in SNR is plotted against input SNR for the best single level in the range of levels from 

level 8 to level 14 for Beethoven’s “Waldstein” by Jando. The prototype derived signal 

gives a straight line, with a 5dB gain over the target derived restored signal for lOdB input 

SNR. The gain curve for the target derived filter is less co-linear, its gradient decreasing 

with gain. This is because the noise level of the target signal will fall off and, eventually, 

the filter derived from the target signal will give as good a performance as that derived 

by the prototype filter as the noise variance decreases. This can be seen by comparing 

figures 3.30 and 3.22, where figure 3.30 is the gain as a function of level for the target 

derived filter and 3.22 the gain for the prototype derived one. As can be seen their shape 

is similar, in that they both have low gain for low levels and, both have high gain around 

levels 13 and 14.

3.10 Multiresolution Templating

In section 3.7, audio restoration was performed on four pieces of music for various MFT 

levels and the gain plotted as a function of input signal to noise ratio for each. It was 

demonstrated that some levels are better for some pieces of music than others, for example 

for the “Waldstein” Adagio Molto, the best level was level 14, but for the Allegro Con Brio 

it was level 8. As was explained, this is due to the relative amounts of steady-state and 

onsets present in each piece. It follows that if a piece could be segmented into steady-state
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Beethoven's “Waldstein" Performed By Jando
Comparison Of Fitters Derived From Target And Prototype

Figure 3.29: A Comparison of gain for filters derived from the prototype and target signals.

Beethoven’s “Waldstein" (Adagio Molto) Performed By Jando
Gain In SNR Using Ekact Template Derived From Target Signal

Figure 3.30: Gain as a function of level and input SNR for Beethoven’s “Waldstein”
(Adagio Molto) using a target derived filter.
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and onset periods, and the best level for each segment could be chosen, better results 

might be obtained.

3.10.1 Segmentation of the Signal

It is becoming accepted that music has an inherently multiresolution structure [45] [25). 

For example, it is impossible to ascertain the start time and frequency of a note to an 

arbitrary accuracy due to the uncertainty principle (see for example [65] [33] [19]). The 

results in section 3.7 show that the best restorations for various pieces of music are at 

different resolutions or MFT levels. A high level should enhance continuous sinusoidal 

signals better than a low level, which would, conversely, enhance transient signals best. 

This idea can be compared to ideas of “best fit” compression. In [12], for example, 

compression is performed on a signal by adding signals from different scales and getting 

the “best lit”, at different intervals in the time domain, for the compressed signal by 

minimising the Shannon entropy of the time-frequency energy distribution.

Suppose the time axis is split into I  segments where each segment is an interval 

indexed with i, so that the ?th segment will be the interval f,+ i]. The time axis is then 

the union of these segments, and can be written

[0, r ] =  UM.+t] (3-37)
¿5=0

The best level of restored signal is chosen for each of these intervals by finding which 

level gives the best enhancement for that time segment and the final reconstruction is

simply the sum of the reconstructions for each segment
i-\

m  = x > ( 0  <3-38)
1=0

The time domain signal is used rather than the MFT for a number of reasons. If the 

signals were combined in the MFT domain then the segmentation level would necessarily
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be equal to the highest level in the MFT used for the enhancement. Generally the length

of an onset will be much less than the sampling interval of the highest level used, as the

highest level is more suited to steady states. Moreover, inversion of a signal defined in

multiple levels of the MFT is not straightforward: artifacts may be introduced around

coefficients whose neighbours are represented on a different level [9]. It follows that

combining the results in the time domain is the most effective solution.

In order to do this, the onsets of notes must be identified. The energy profile E(t, n) —

y  is used for this purpose. Although not every peak in the energy profile is
/

an onset, in this application it is more important not to miss an onset than to avoid false 

alarms. The problem of onset detection is thus equivalent to peak detection in the energy 

profile of MFT level To find the peaks, E(t ,n)  is smoothed with a first order

recursive filter, to give

E'(t ,n) = £E(t,n) + ( l - 0 E ' ( t -  l ,n)  (3.39)

This is then subtracted from the original, creating an energy difference profile, D[i , n ) 

which is non-zero only at those parts of the signal that correspond to positive transients.

D(t,n)  = |  f  i ’” ) -  E '{t' n)H (t' n) S  E V ' n) (3.40)

Examples of E(t,n),  E'(t ,n)  and D( t ,n ) are shown in figures 3.31, 3.32 and 3.33 

respectively.

The set of onsets {0,} can be defined in terms of the difference D(t , n). If the intervals 

where D( t , n ) is greater than zero, D(t,n)  > 0, are indexed with i, then interval A,(n) 

has definition

A.'(n) =  [/,,, t,e] : where tu < i < t ic , t t, > ,)e and D(t, n) > 0 for t. £ A,(»)

(3.41)
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Beethoven's String Quartet 2 In Gmaj
Energy Profile For MFT Level 14 With Onsets Marked

Figure 3.31: Energy profile at MFT level 14 of Beethoven’s String Quartet no 2 in Gmaj 
with onsets marked.

Beethoven's String Quartet 2 In Gmaj
Smoothed Energy Profile For MFT Level 14

Figure 3.32: Output of the first order recursive filter where £ =  0.6, with energy profile at
MFT level 14 of Beethoven’s String Quartet 2 in Gmaj as input.
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Beethoven's String Quartet 2 In Gmaj 
Peaks 01 Energy Profile For MFT Level 14

Figure 3.33: Positive transients found for energy profile at MFT level 14 of Beethoven’s 
String Quartet no 2 in Gmaj.

where t lt and tu denote the start and end of time interval 1, respectively.

The onsets can be found simply by maximising the difference energy profile within 

each of these intervals

O, =  t if D(t,n)  =  max D(s,n)  (3.42)
s £ A ,(n )

The above definition of onsets, or peaks, allows the the size of the onset to vary according 

to n. A value of n must be chosen to be sufficiently high to allow a large onset area, and 

sufficiently low that there are at least as many peaks as onsets. The decision as to which 

level to use is dependent on the music. If the music is fast, then a high time resolution is 

necessary. If the music is slow, then a low level is used so that secondary bumps on the 

peaks in the energy profile are not detected as onsets. Normally n is chosen to be in the 

range 11 < n < 14.

Once the time axis has been segmented, the decision as to which level is to be chosen
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in each segment must be made. By comparing the enhanced signal x(t, n) against the ideal 

restored signal s(t) — which is known a priori at this stage — the best restored signal 

can be chosen by minimising (3.21). This can be done by using the SNR, and choosing 

the level n(,p!imuro to give maximum SNR, i.e. for segment i with t £ [¿¿, t,+])

H i )  |2pi(nvimm) = max 10 log. (3.43)

For all four test pieces, the gain has been plotted against input SNR, for Beethoven’s 

“Waldstein” Adagio Molto and Allegro Con Brio performed by Jando, and String Quartet 

2 in Gmaj Adagio Cantabile and Scherzo performed by The Smithsonian String Quartet. 

These are shown in figures 3.34, 3.35, 3.36 and 3.37 respectively, with the best “per level” 

templating result included to show how much improvement there is by combining across 

resolutions. As can be seen, there is in most cases a significant improvement in the SNR 

by combining across level, or scale. The one case where the increase in gain is negligible 

is for the very slow “Waldstein” (Adagio Molto) (3.34). This is most likely because the 

multiresolution method only gives an improvement if there is a mixture of steady state and 

onset. As there are only a few notes being played, and they are played very slowly, the 

amount of transient, as a proportion of the total time is negligible. It is also worth noting 

that the single level gain is very high already (> 15dB) and so any further improvement 

may be hard to find. For the two string pieces, there is a marked improvement in both 

the Adagio Cantabile and the fast Scherzo pieces. The Scherzo at 20dB input SNR is 

improved by more than ldB by combining levels. The surprise is the improvement in 

the Adagio Cantabile, which shows IdB improvement also. There are two things to be 

considered here: first, the “Waldstein” Adagio Cantabile is not as slow as the Adagio 

Molto; second, the presence of vibrato in the strings could imply more variation in the 

optimum level.

It can be concluded from these results that audio restoration is a multiresolution
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Beethoven's “Waldstein" (Adagio Molto) Performed By Jando 
Gain In SNR Combining Across Level

Figure 3.34: Gain against input SNR for Beethoven’s “Waldstein” (Adagio Molto) per
formed by Jando combining across level.

Beethoven’s ‘•Waldstein" (Allegro Con Brio) Performed By Jando 
Gain In SNR Combining Across Level

Figure 3.35: Gain against input SNR for Beethoven’s “Waldstein” (Allegro Con Brio) 
performed by Jando combining across level.
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Beethoven’s String Quartet 2 In Gmaj (Adagio Cantabile) 
Gam in SNR Combining Across Level

Figure 3.36: Gain against input SNR for Beethoven’s String Quartet no 2 in Gmaj (Adagio 
Cantabile) performed by The Smithsonian String Quartet combining across level.

Input SNR <dB)

Figure 3.37: Gain against input SNR for Beethoven’s Siring Quartet no 2 in Gmaj 
(Scherzo) performed by The Smithsonian String Quartet combining across level.
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problem and that by combining signals from different scales, an even better enhancement 

can be found than those in section 3.7. This topic will be revisited in chapter 5.

3.11 Conclusion

In this chapter, an adaptive filter that can be used to restore audio signals has been 

described. It was shown to be better than lowpass filtering and Wiener filtering. Methods 

for choosing the filter’s threshold empirically and analytically were described. In order 

to vary the scale on which the filtering is done, a method for segmenting the signal was 

described that split the signal into onset and steady state. The optimum level was then 

chosen for each of these segments individually in the time domain using (3.43), giving a 

signal restored using more than one scale or resolution. The implementation of the filter 

using the MFT was shown to involve a simple “templating” operation, based on detection 

of the signal in the MFT representation.

In the next chapter a method for warping the template to fit a target signal will be 

described and in chapter 5 the warped template will be used in much the same way as it 

has been in this chapter.



Chapter 4

A Warping Algorithm for Enhancement

4.1 Introduction

In order to obtain a good enhancement of a noisy signal there must be some way of 

deciding what is signal and what is noise. In Vaseghi’s work [59], for example, this was 

done using two noisy recordings of the same performance. It was assumed that the noise 

in the two recordings would be uncorrelated and that the signals would be correlated, after 

a small amount of time warping. Other methods involve deciding what is noise and what 

is signal using empirical methods, [6] for example. In the present work, the aim is to 

enhance a noisy recording by discarding the noise without altering the signal significantly. 

This is done by finding a modern, clean recording of the piece to be enhanced and using 

the event detector (cf chapter 3) to give a template of the signal in the MPT domain. How 

this template can be used to restore a noisy version of the clean recording is discussed 

in chapter 3. This chapter aims to explain how, using warping techniques in time and 

frequency, this template can be made to fit the noisy recording for enhancement.

This chapter defines warping functions, explains a method for approximating warping 

functions, gives the background information necessary for the warping of the simple 

adaptive filter, gives a time warping algorithm for that filter and also explains a frequency

84
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warping algorithm. It concludes with results for warping of various signals.

4.2 Warping Audio Signals

Audio signals are, or have been, warped for many purposes. In the early days of Elektro

nische Musik, Stockhausen realised the connection between the timbre and duration of a 

musical note by varying dramatically the speeds at which a note was played [32], This 

technique was most famously employed in his piece “Gesang Der Jünglinge” to give the 

listener the effect of a note “dropping from the sky”. In Paris, Schaeffer was also varying 

the speeds of audio signals, although, in keeping with the theory of Musique Concrete, 

these sounds were everyday sounds, like steam trains in “Etudes Aux Chemins De Fer”. 

The time signal was warped in order to change the way the listener perceived it: from an 

everyday sound to what Schaeffer called an “objet sonore” or abstract musical object [42 J. 

In both of the above examples, the warping of audio signals was experimentally aesthetic. 

There was no target to warp towards and the signals warped were generally analogue.

A more scientific approach to warping digital audio signals is taken in the field of 

speech recognition [57] [23] [47] [40], There are many types of speech recognition 

systems and warping is used in all of them. The basic approach is to construct a set of 

target or template signals that any incoming signal can be referenced to, to find which it 

matches best. Each of these target signals is a recording of a word spoken by a single 

speaker in speaker-dependent speech recognition systems, or an amalgam of recordings 

of a word spoken by more than one speaker in speaker-independent systems. In both 

systems the input signal is compared in turn with each of the target signals. At this stage a 

“best warp” is found, so that the current input signal can be warped to fit the target signal 

as well as possible. The warping is necessary because the signals will probably be of 

different lengths since humans generally do not speak at a consistent speed. That is, no
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speaker can be expected to speak any word in such a way as to always reproduce exactly 

the same time signal. For speaker-independent systems it is easy to see that reason for 

having an amalgam of speakers for every word is that the idiosyncrasies of speech can be 

“averaged out” as much as possible. The warping must be done under the constraint of 

certain rules, otherwise there would be an infinite number of changes that could be made 

to the signal. These rules are: that the warped signal must be the same length as the target 

signal in time, to within a tolerance; there must be some features that can be identified and 

used as fixed points where the gradient of the warp can be altered. In speech recognition 

these points are often consonants, chosen because there is very little change in the speed 

of speech in consonants, as opposed to spoken vowels, where the speed varies as a matter 

of course between speakers. Once the “best warp” is found, the goodness of fit values for 

each warping are compared and the target signal with the best fit is chosen. Figure 4.1 

shows a schematic description of these processes. It can be seen from this diagram that 

the problem falls into three categories: matching, warping and the estimation of how well 

an input word matches each candidate word.

Warping a digital audio signal is a non-trivial exercise [3]. In order to perform an 

operation on the time-frequency plane of an audio signal x(t.), a time-frequency represen

tation must be used. In this work the MFT is used, due to its generality (cf chapter 2). 

Warping the magnitude of such a time-frequency representation can be done by using a 

linear interpolation algorithm, that is for MI7!' coefficient X tj , n, where

(4.1)

arg(-V,./,„) = (f>tj,n (4.2)

and warping coefficient e gives

A e t u f , n  -  A , , / , n  +  ( f U  -  1 1 ) (4.3)
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Input Word

f ( t)  —  g ( t)

\

A Suitable Target Word
Metric

Figure 4.1: How speech recognition works using warping.
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This method assumes that the behaviour of the magnitude between samples is linear, 

which is not necessarily a satisfactory model. Let us now consider the interpolation of 

the phase using a similar method, with the only difference being that the phase will be 

represented modulo 27t [3],

| (fret i ,/,n 127r — i ,/,n I 2jt T (^1 U)| t') — 11
127r where t\ < et\ < 12 (4.4)

Consider the difference in phase between \<f>t2j,n\2ir and \<j>tu],n\iv The difference may be 

greater than 27r, but because all phases are given modulo 2tt, this would be unknown. In 

fact there is no way of knowing in general how many times the phase has looped round 27r 

between samples. It can be seen that the phase of a general time-frequency representation 

of an audio signal does not behave linearly in between samples, and therefore that linear 

interpolation is inappropriate. As yet there are no general models for interpolating the 

phase of a warped audio signal [3]. To date the only way round this problem is to “unwrap” 

the phase from the beginning of the signal. All other methods of phase warping create 

artifacts. One example is “jerkiness” in sound due to jumps in phase between samples; 

another is a “fan” type sound due to warping the phase by guessing how much the phase 

should be warped by multiplying the phase by the warping factor and taking it modulo 2tt. 

It can be concluded that in general this type of warping is costly in terms of computation, 

and may not give totally satisfactory results.

The technique of warping one signal to fit another has been used previously in the 

field of audio restoration by Vaseghi [58] [59J, for sound signals with small differences in 

time. The approach was to build in a time warping component into a Wiener filter that was 

used to estimate the power spectra of the noise by looking at the noise in the two signals, 

both of which should be roughly equally degraded. Using this estimate, the noise was 

then subtracted from the signal, thereby restoring it. This warping is, however, extremely 

limited. The warping only works if the two signals are aligned within the duration of
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the filter, which was only 20ms long. This means that any warping that is done alters 

the time domain of the signal by less than 20ms at any one time. Compared to the work 

done in this chapter, the amount of warping done by Vaseghi was minimal. One method 

discussed by Vaseghi was to add the time aligned signals to form a hybrid signal. The 

problem with this method is one of integrity. Even though superficially it may appear to 

be effective since the sound signals (being correlated) add coherently and the noise signals 

(being uncorrelated) do not, small errors in the phase interpretation are likely to reduce 

the coherency between the signal components.

4.3 Describing a Warping Function

A warping function is a simple mapping from one signal to another. Generally the type of 

warping considered in time signals is time warping, though warping in frequency may be 

necessary. This is a simple extension of the algorithm used for time warping using Fourier 

techniques. The easiest way to think of warping is of a stretch or of a compression. The 

difficulty is in finding where to stretch or compress, and by how much.

For two time signals x(t) and y(t'), where x(t) is to be warped to y(t'), the warp 

function is a function that maps from the prototype time domain t to the target time 

domain t', so that the features in the two signals are time-aligned. The main requirement 

of a warping function is that the inverse warping must exist, hence that it must be a strictly 

monotonic increasing function. If an inverse did not exist then the prototype could not be 

derived from the warped prototype: in other words there would be a loss of information 

after warping. The warp function is defined by

f  =  m (4.5)
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with conditions

4>{tt) > <f>(t) &  t { > i (4.6)

t = (4.7)

The simplest example of such a function would be

t' = (p{t) = t (4.8)

where both time domains are already aligned. The warping function can be considered, 

in general, as a curve. The curve corresponding to (4.8) would be that shown in figure 

4.3, with gradient 7r/4. For a more complex relationship between the prototype time and 

target time consider the warp function in figure 4.4 where the gradient varies according to 

how fast or slow the target signal time moves relative to the prototype signal.

o T

Figure 4.2: Warping a simple wave function.

In the case of two musical signals representing different performances of the same 

piece, a warping function exists but will be unknown initially. To find it, a series of linear
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warps are fitted to the unknown warp function curve and the error between the two are 

measured using a suitable norm. Recursive bisection [56] is performed on both signals 

at breakpoints that correspond to similar features and the prototype signal is warped so 

that these breakpoints coincide. This process continues until the warp function or curve 

is well approximated by the piecewise linear warp. Finding a good approximation to 

the warp function can be classified as a curve fitting problem, where the norm is defined 

to be a measure of ‘sameness’ or fit between the warped prototype and target signals. 

This method of piecewise linear binary recursive curve matching is used in many areas, 

including image processing [44] and numerical analysis [50].

Warping the time signals directly alters their pitch and phase information, since the 

time signal is typically a sum of harmonic or partial sinusoids. Consider the ease of 

x(t), 0 < i < T, a sinusoid with constant amplitude and pitch, being compressed until 

T — T' from an original length where T' < T. If the periodicity of x(t) is then

the frequency of x(t) is —Hz. Compressing the signal so that its end points occur at 

t = T'  and t = 0 (figure 4.2), there will only be N  periods in the signal but it will have 

periodicity ^  and altered frequency jjH z > j H z .  This is clearly inappropriate in this 

application. The method chosen to perform warping in this work uses an MFT structure 

(section 4.4.3), in which the frequency and time information in the signal can be dealt 

with separately. Although warping of the phase of MFT coefficients can cause problems, 

it is the simple adaptive filter derived from the MFT that is to be warped to perform 

enhancement. Because this has no phase information it avoids the difficulties described 

above.

Since the warping is to be done using an MFT structure, it would be impractical to 

use a norm that relied on warping the time signals. The norm chosen is discussed further 

in section 4.4.3. It is worth commenting that the choice of norm is crucial because this
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determines the accuracy with which a given warp function fits the prototype to the target 

signal. If a norm was chosen that relied on the time signals then the warped prototype 

could have altered phase and pitch and therefore a low goodness of fit, even if the notes 

were exactly aligned.

t

Figure 4.3: A linear zeroth order warping function.

Figure 4.4: A continuous warping function.
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4.4 Break Points and Warp Factors

Consider two signals: the prototype signal x(t), 0 < t < T and the target signal y(t'), 0 < 

t' < T \  where T ^  T l in general. The method used for analysis of warp functions as 

discussed in section 4.3 consists of fitting straight lines to the warp function (see figure 

4.4) by recursively bisecting each line and refining each half until the best fit is found. For 

a zeroth order warping function, the prototype signal is warped to have the same length as 

the target signal. The amount by which it is warped is known as the warp factor Wj  and 

in this case is

H-7 = ”  (4.9)

Consider two different performances of the same musical piece. The musicians will 

not, in general, play with a constant ratio of speeds — they will vary their speed depending 

on which part of the music they wish to emphasise or heighten dramatically. A higher order 

approximation is necessary for the best match between two such signals: it is necessary to 

use more than one straight line to approximate the continuous warping function matching 

two performances. The co-ordinates in warped and prototype time are explained in the 

list below.

1. ws is the prototype time co-ordinate of the start point of a line approximating 

the warping function. At the first approximation this will be the start point of 

the prototype signal.

2. we is the prototype time co-ordinate of the end point of the line estimate, 

and is the end point of the prototype signal at the first approximation of the 

warping function.

3. m „ the same as w„ but for the target or matched signal.



4.4 Break Points and Warp Factors 94

4. m e, the same as wt but for the target or matched signal.

5. nip is the matched point, a break point chosen in the target signal correponding 

to some prominent feature.

6. wv is the warp point, a break point in the prototype signal that corresponds to 

the same feature as mp does in the target signal.

ws,wc,rna and m e are used for the zeroth order warping approximation and in higher 

orders of warping, the choices for wp and mp dictate their value. It is therefore important 

to ensure that the right choices for wp and mp are made. Once these points have been 

chosen for order n > 0 the signal is warped with one warp factor to the left of the warp 

point and another to the right. These are called the left and right warp factors, Wj" and 

Wf* respectively. They are defined by the choice of data points with the formulae

These are applied to the appropriate sub-segment of the prototype signal, so that the 

matched point mp and the warp point wp will occur simultaneously in both signals. A 

diagramatic explanation of the data points for a target and prototype signal profile is shown 

in figure 4.5.

This section and the previous section have explained the piecewise recursive linear 

approximation to the warping function, where the warping function is approximated by 

finding break points in both signals and then warping the prototype signal so that these 

breakpoints coincide, and continuing this process by bisecting each half in turn until a 

good approximation of the warp function is found.

(4.10)

and

(4.11)
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Prototype Profile

Target Profile

Figure 4.5: An illustration of data points.

4.4.1 The Representation of Prominent Features

The features of interest must occur as a function of time, as it is time warping that is of 

most importance. Frequency warping is relevant but is much simpler, as performers do not 

retune their instruments during a movement. Since it is time information that is of crucial 

importance here, the energy distribution across the frequency axis can just be summed: 

the energy of the signal at a given time is used as a source of features. The time variation 

of signal energy is appropriate for matching because most notes cause a noticeable peak 

in the energy profile, see for example figure 4.8. To identify matching features, the energy 

function E ( t , n) is used where, as in chapter 3,

£ ( ( ,« ) =  ¿ l - Y , , / . |2 (4.12)
/=0

for MFT coefficients X tj , n at level n, where F is the maximum frequency. The energy 

function is a time profile of the transformed signal X t j tU, and may sometimes be referred 

to as such. One advantage in using this structure over one that has both time and frequency
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components is that in a signal with noise, noise energy is usually more evenly distributed 

than the signal energy across the spectrum. Therefore a significant amount of noise energy 

can be ignored whilst capturing most of the signal energy by bandlimiting to a frequency 

lower than the Nyquist frequency. Examples of this energy profile structure are given for a 

performance by Ashkenazy of Beethoven’s “Waldstein” (Adagio Molto) in figure 4.X, and 

for a performance of the same piece by Jando in figure 4.10. The MFTs from which these 

two representations are derived are shown in figures 4.6 and 4.7 respectively. It is easy 

to see that at the onset of each note there is generally a large peak in the energy profile, 

and that the energy profile contains the information necessary for time warping. Shown 

in figure 4.9 is the energy profile derived from a signal with additive noise at a power of 

OdB relative to the signal, bandlimited at 5kHz, demonstrating that even in extreme levels 

of noise using the energy profile reveals the onset features clearly.

4.4.2 Warping An MFT Time-Frequency Plane In Time

Consider an MFT level that is to be time warped by a factor Wj. Starting at the lowest fre

quency sample and warped time sample, the equivalent sample in target time is calculated 

by dividing the prototype time t' by the warp factor Wj  and using linear interpolation to 

calculate the warped sample value. If the MFT structure is considered as a set of linear 

arrays in frequency, then x(t') is the warped array and x(t) is the unwarped array.

t1
Wf

dt  =  t -  |f]

x(t') = x( [fj ) 4- dt(x( [¿1 ) -  x( [fj ))

/ = (4.13)

(4.14)

(4.15)

where “ [ J” denotes door and “ [ ] ” denotes ceiling.
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Figure 4.6: MFT level 11 of Beethoven’s “Waldstein” (Adagio Molto) performed by 
Ashkenazy.

Figure 4.7: MFT level 11 of Beethoven’s “Waldstein” (Adagio Molto) performed by 
Jando.
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Figure 4.8: Profile of Beethoven’s “Waldstein” (Adagio Molto) performed by Ashkenazy 
derived from MFT level 11.

hm« («)

Figure 4.9: Profile of Beethoven’s “Waldstein” (Adagio Molto) performed by Ashkenazy 
with OdB noise added derived from MFT level 11 bandlimited to 5kHz.

hm« (»I

Figure 4.10: Profile of Beethoven’s “Waldstein” (Adagio Molto) performed by Jando 
derived from MFT level 11.
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Figure 4.11: Using linear interpolation to find the value of a warped coefficient.

4.4.3 The Goodness of Fit Function

One natural way to measure the goodness of fit between two real signals is the correlation 

coefficient [26]
_  e , m » m  , , . , .

Ve ^ w w

This is just the normalised dot product of the two signals, and it is simple to see that it has 

a maximum when the two signals are identical, and minimum when x(t) — —y(t).

In this work, the correlation coefficient is not calculated from the time signals, but 

instead from the MFT derived energy profiles of those signals.

£ L ) (£ r (T » )£ y(T,?Q)____ _
\/(^J=o(EAt,n)y-)(Ej=o(Ey( t \ n ) f )

(4.17)

where t' is used to denote the target time and f the prototype time. The use of the energy 

profile ensures that the phase variations between the two signals do not affect the goodness 

of fit. Similarly, any variations in pitch will also be eliminated. The warping process
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thus requires solution of two problems: the search for suitable break points, mp, wp, and 

measurement of the match using the correlation of (4.17).

4.5 The Time Warping Algorithm

4.5.1 An Overview of the Time Warping Algorithm

Having discussed the necessary tools required to perform warping in the previous sections, 

our attention now turns to how these are implemented to give the overall scheme. This 

process can be broken into two main parts: the first is the search for the best data points 

and the second is to ensure that the warping function found is the best possible.

4.5.2 Searching for Break Points

The best break points are the ones that occur at the most prominent features because they 

are easy to find and have a higher probability of occurring in all versions of a given piece. 

The search method both tries to find the best break points, and attempts to ensure their 

even distribution over the duration of the two samples. At each step an approximately 

even split is made, constrained by a search tolerance St, to limit how far the data point 

searcher is allowed to look for break points. The choice of tolerance is important, since if 

it is too small the chances of finding the same data points in both the target and prototype 

signals are limited, while if it is too large there will be the possibility of bundling.

At a given order of warping, each signal is split into a number of segments. At the 

start of the warping process there is only one segment, namely the whole of the signal, 

after one iteration there will be two and so on. The prototype signal is split and a search 

is made from this point, wm = within a window Stwm, until the most prominent

feature is found. If there are a number of features that have equal peak energy, then the 

point that is closest to the mid point w„, is taken in order to prevent bunching of the points.
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Figure 4.12: A How chart describing the warping algorithm.
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This process is repeated in the target signal, giving points that should correspond to the 

same feature in each signal, wp and mp. This should work if the speed and emphasis of 

two performances are similar: they are never exactly the same, but they are never so vastly 

different as to render them unmatchable. The choice for the warp point and matched point 

can be formalised using the notation introduced in section 4.4.1, with X tj,„ as the MFT 

of the prototype signal and the MFT of the target signal.

Sp = wp : E(wp,n)  = max(Ex(t,n)) for wm{ 1 -  St) < t < wm( 1 + S,) (4.18)

and

I wP ~ wm | =  min 11 -  wm | (4.19)
<65,,

and for the matched point

Sp = mp : E(mp,n) -  max(Ey(i,n)) for ???„,(1 -  S,) < t < mm( 1 + S,) (4.20)

and

|mp -  m tn | =  min \t -  m,lt \ (4.21)<es'

where rnm denotes the matched mid-point, in the same way that wm denotes the warping 

mid-point. The search for the best warp point is illustrated in figure 4.13.

To improve the matching process, use is made of the multiresolution structure of the 

MFT. A warp tolerance Wt is used in the same way as S, is used for searching. Having 

identified the break points, wp and mp, the warp point wp is first refined within a window 

wpW, until a maximum value of the correlation coefficient (4.17) is found. This point 

is then extrapolated to the next MFT level and the process is repeated until the highest 

resolution candidate is found. The warping tolerance is a ratio, so that as the search level 

decreases, the time resolution increases and the search takes place in a narrower window.
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Figure 4.13: Data point searching on the prototype profile.

Once the point is found in the highest resolution it becomes the warping point for that 

segment of signal (see figure 4.14).

A formalisation of this process can be made by considering (4.17), and using the 

notations given in (4.12),(4.10),(4.11) and in the list in section 4.4. The warp point is 

refined at each level using

rxy{wp, n) = max rxy(w' n) (4.22)
wp

where wp is the candidate warp point found from the feature space search method described 

in the previous section. The correlation function rxy(wp,n) is defined as

, , E t = w , ( X WL (w ,—, ) + w „ f ,n Y t - w ,+ m „ f , n )  T  X / t= W p (^ W ? (w p—t ) + w , f , n ^ ( t—W p+nip),f,n)
rxy (Wp , n ) =  7 • .......  ̂■: ■ --̂ —^ = ========1=^-1—

/ /  V 'Wp Y 2 -i- S^We Y 2 l / r mP y 2 X- Y ' ,,v  Y 2 1
C  t L t = w ,  A w )(w I- i ) + w s,f,n ' ^ l = w P W f ( w j - t ) + w j , f , n 1 t,f,n < ¿ w = m p 1 l,f,n /

This process continues recursively, until the maximum correlation is identified at the

highest time resolution.
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Figure 4.14: Multiresolution warp point search refinement.

4.5.3 The Stopping Criterion for the Refinement Process

If the bisection process continues unchecked, the warp function could contain a list of 

ordered pairs that would be only one less than the total number of points in the target 

signal. This is clearly impractical, given that changes in tempo occur comparatively 

seldom (certainly less than once per second on average). There will therefore be some 

order of warping which will give a sufficiently good approximation to any continuous 

warping function so that they will be indistinguishable. This is the point at which nothing 

would be gained from splitting a given segment further.

After each split, the correlation for the whole segment is compared with that of the 

two sub-segments and, if there is a decrease in either, the split is rejected and the recursion 

stops. If, however, there is an improvement, then the segment is bisected and the process 

continues. It is also desirable to be able to stop the process from reaching too small a 

scale. There is nothing to be gained from warping and matching only a few coefficients, 

so a minimum segment length can be set. An illustration of the process is shown in figure
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4.15.

warp order k=3 
warp order k=2 
warp order k= 1 
warp order k=()

warping signal time

Figure 4.15: A warping function stopped at different orders of warping with warp points 
marked.

4.5.4 Computational Complexity

The computational complexity of the warping algorithm is not simple to calculate due to 

its recursiveness. The approach taken here is to calculate the computational complexity 

for one bisection and then generalise from this to gain an expression for an upper bound 

on the computational complexity for the whole algorithm.

The warping algorithm (see figure 4.12) chooses candidate break points and refines 

them by maximising the correlation measurement. The selection of candidate points 

is a bounded linear search on each MFT level of the energy profiles, which for the 

purposes of calculating the computational complexity of the algorithm, are considered 

as one dimensional lists. The next stage, the refinement of these candidate break points, 

relies on choosing a point, warping the prototype according to this point, and calculating
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the correlation coefficient (4.17) with a bounded linear search on each MFT level. The 

bounded linear searches are O(N)  since these are searches on two 1 — d lists. The warping 

(cf section 4.4.2) is a single pass through the data, changing the indices on the prototype 

list to the new warped indices, which is O(N). There is 1 multiplication and 3 additions for 

each stage of this. The calculation of the correlation is found by multiplying corresponding 

elements in the two lists — the prototype and target signals — and normalising for their 

energy. There are 3 multiplications of 3N  additions. Hence, the correlation measurement 

is O(N) also. In refining the break points, the prototype list is first warped and then the 

correlation is calculated for each point within a fixed tolerance. Note that the number of 

multiplications in both instances does not vary as N. In other words, at each stage of an 

0 ( N ) process (the searching), another O(N)  process (the correlation calculation) takes 

place. Therefore the complexity for a single scale and a single break point is 0 ( N 2). If 

we assume that all levels of the MFT are used, then the complexity for a single node is 

() ( N 2 \og2(N)). If the depth of recursion is I\ then an upper bound on the complexity 

of the algorithm is 0 { N 2 log2(iV)2A ). In practice, K  < 4 for the examples used in the 

experiments. A graphical representation of this is shown in figure 4.16.

In practise this algorithm takes around 70 seconds to implement for an audio signal 

of length 11.8 seconds, sampled at 44.1kHz with a depth of K  = 4 on the hardware 

discussed in section 1.6.1.

4.6 Results of Time Warping

The effectiveness of the warping algorithm has been tested on four movements, taken 

from two pieces. For each of the four examples the warping function is given, along with 

a plot of the warped, unwarped and target profile — the same time scale is used in each to 

facilitate comparison.
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Computational Complexity

0.0 200.0 400.0 600.0 800.0 1000.0
no of time windows (MFT domain)

Figure 4.16: Number of multiplications as a function of sample size for the warping 
algorithm.

In figure 4.18, the warping function has been calculated in both directions to show that 

the algorithm is symmetric with respect to the target and prototype. Figures 4.21, 4.24 

and 4.27 show the other warping functions and figures 4.17, 4.20,4.23 and 4.26 show the 

time profiles for the warped, unwarped and target signals. Figures 4.19, 4.22, 4.25 and 

4.28 show how the goodness of fit between the two varies as a function of warp order. 

Note that in figure 4.19 the maximum order of warping is 3. This is due to the extremely 

slow nature of the piano in the “Waldstein” Adagio. Nothing was gained by the order of 

warping increasing it beyond three.

Although the final lest of the warping algorithm rests in the efficacy of the enhance

ments obtained using it, visual inspection of the energy profiles shows that the warping 

does align the major peaks quite successfully. Although the correlations vary considerably 

between pieces, there is a clear improvement in all cases as the warp order increases.
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Profiles For Beethoven’s “Waldstein”
Adagio Molto

Figure 4.17: Profiles of Beethoven’s “Waldstein” (Adagio Molto) showing warping.
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Warp Function For ‘'Waldstein" Adagio By Beethoven 
Adagio Molto

Figure 4.18: Warping function for Beethoven’s “Waldstein” (Adagio Molto).

Correlation Vs Order Of Warping
Beethoven's “Waldstein'' Adagio Molto

Figure 4.19: Correlation as a function of warp order for Beethoven’s “Waldstein” (Adagio
Molto).
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Profiles For Beethoven’s “Waldstein”
Allegro Con Brio

Figure 4.20: Profiles of Beethoven’s “Waldstein” (Allegro Con Brio) showing warping.
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W arp Function For "Waldstein" Adagio By Beethoven
Allegro Con Brio

Figure 4.21: Warping function for Beethoven’s “Waldstein” (Allegro Con Brio).

Correlation Vs Order 01 Warping
Beethoven s ‘Waktslewv Allegro Con Bno

Figure 4.22: Correlation as a function of warp order for Beethoven’s “Waldstein” (Allegro
Con Brio).
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Profiles For Beethoven’s String Quartet 2 In Gmaj
Adagio Cantabile

Figure 4.23: Profiles of Beethoven’s String Quartet no 2 in Gmaj (Adagio Cantabile)
showing warping.
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Warp Function For Beethoven String Quartet 2 In Gmaj
Adagio Cantabile

Figure 4.24: Warping function for Beethoven’s String Quartet no 2 in Gmaj (Adagio 
Cantabile).

Correlation Vs Order Of Warping

1 2 3
order of warping

Figure 4.25: Correlation as a function of warp order for Beethoven’s String Quartet no 2
in Gmaj (Adagio Cantabile).
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Profiles For Beethoven’s String Quartet 2 In Gmaj
Scherzo

Figure 4.26: Profiles of Beethoven’s String Quartet no 2 in Gmaj (Scherzo) showing
warping.
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Warp Function For Beethoven String Quartet 2 In Gmaj 
Scherzo

Figure 4.27: Warping function for Beethoven’s String Quartet no 2 in Gmaj (Scherzo).

Correlation Vs Order Of Warping
Beethoven 6 String Quartet 2 In Gmaj Scherzo

Figure 4.28: Correlation as a function of warp order for Beethoven’s Siring Quartet no 2
in Gmaj (Scherzo).
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4.7 Frequency Warping the Template

Warping a musical signal in frequency is not as complicated as warping in time. In 

general, instruments’ tuning does not alter as a function of time or, for that matter, 

frequency. Whilst theoretically two performances of the same piece should have exact 

correspondence in frequency — all instruments should be tuned precisely to the same 

frequency — there is always room for error. This error becomes more noticeable when 

templating the noisy MFT with the time warped template at high MFT levels. Level 14 of 

the MFT has frequency samples only 2.7Hz wide, so that middle C must be tuned to less 

than 1% error between performances in order for the frequency samples of the template 

and the noisy MFT to coincide. This error increases as the notes played go up in scale, 

for example at C6 (2046Hz) the accuracy of tuning must be less than 0.25%.

The frequency warping on the MFT template is applied after the time warping so that 

all the features are time aligned. The MFT and the template are multiplied together so 

that energy is transmitted only where the MFT template is switched on. The template 

is then warped in frequency by no more than 10%, a percentage from which any two 

performances are known not to vary. The warp factor is gradually increased in steps of 

about 0.001, for reasonable precision. The warp factor for which the maximum amount 

of energy is transmitted is then chosen to be the frequency warp factor. It is worth noting 

that this method relies on there being more signal energy present than noise energy. This 

should generally be the case: if there was more noise than signal it may become difficult 

to identify the piece being played, and thus lind a clean recording to match it to.

Once the frequency warping and time warping processes are complete, the template 

is ready to be used for enhancing the noisy, prototype signal. In figure 4.29, the template 

for Beethoven’s “Waldstein” by Jando has been time warped and is being used to restore
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Frequency Warping For “Waldstein” By Beethoven
Adagio Molto

Frequency Warp Factor

Figure 4.29: Energy transmitted by a time and frequency warped template derived from
Beethoven’s “Waidstein” performed by Jando through the Ashkenazy performance with
lOdB of noise
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a performance by Ashkenazy with lOdB of noise added. As the template is warped in 

frequency the energy transmitted when the template and the noisy Ashkenazy are overlaid 

is calculated and plotted. As can be seen there is a plateau with a warping factor of just 

over 1. This ties in with what one may expect intuitively since pianos can be tuned with a 

high degree of accuracy.



Chapter 5

Enhancing Noisy Musical Signals using 
a Warped Template

5.1 Introduction

This chapter is concerned with work which draws on the simple adaptive filter described 

in chapter 3, and the warping method (of chapter 4), to create a warped adaptive filter of a 

prototype signal to be used for enhancing a noisy target signal. The threshold parameter 

of the event detector is a function of both the MFT level at which the thresholding takes 

place and the noise present in the target signal. The clean prototype is thresholded and 

used to template the noisy target signal. Results for this will be shown. The time axes of 

signals restored at various resolutions are then segmented and marked as “steady-state” or 

“onset” using the onset detector described in chapter 3. Methods for finding the best level 

for each zone are described, along with results. It is shown that the warped templating 

process can be used to eliminate impulse noise as well as white additive noise. Finally, 

the techniques used in chapter’s 3 and 4 are brought together to demonstrate a simple 

implementation of an adaptive Wiener filter, like that used by Vaseghi [59], along with a 

comparison of results for this method and that of warping the simple adaptive filter.
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5.2 Choosing a Template to Enhance Noisy Signals

It was shown in chapter 3 that the template threshold is a function of the SNR of the noisy 

signal. The threshold v is a function of the noise present in the target signal, although the 

template is derived from the prototype. In figure 5.1 the threshold varies as a function of 

the input signal to noise ratio, which is the amount of noise present in the target signal 

before filtering, v can therefore be denoted as u(p), as it varies as p. In section 3.8 a 

method for estimating the SNR (p1) of a target signal was described. In practice v{p) is 

found empirically by filtering a prototype signal with p' noise added to it and varying v(p) 

until the gain in SNR is maximised.

5.3 Restoration using a Warped Template on Different

Once the template filter for the prototype signal is found, it is warped and used to 

enhance the noisy signal by filtering the noisy signal. This allows only those MFT 

coefficients of significant signal energy to be included in the reconstruction.

If the time warping function is denoted by and the frequency warping function by 

g(f),  the binary template created from the prototype signal’s MFT level by H(j in{y(t)), 

the noisy target signal’s MFT level by X tj , n and the enhanced MI7!’ level by X tj,» then 

the enhanced MFT for each level n is given by

in keeping with previous notation, t' and f  are the prototype’s time and frequency co

ordinates, which are warped to the target time t and frequency f .  Htj,n{il{t)) is the 

template for the warped prototype signal, warped to fit the target x(t) using the warping 

methods described in chapter 4, and X tj <n is the MFT for target signal x(t). Note that the

Levels

(5.1)
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Optimum Threshold v Input Noise For MFT Level 11
Beethoven's 'W aldstein ' (Adagio Molto)

Figure 5.1: A plot of the optimum threshold v{X't J n,p') for different values of input 
noise.

tilde denotes warping, and the hat denotes enhancement. The inverse MFT is taken of the 

enhanced MFT levels producing an enhanced time signal x(t) for MFT level n. Since the 

enhanced signal is a function of level, the enhancement of noisy signal x(t), created using

(5.1) and the inverse MFT, will be denoted by x(t, n).

5.3.1 The Warped Simple Adaptive Filter

The simple adaptive filter is warped using the warping algorithm in chapter 4, from a clean 

prototype signal to a noisy target. Ideally when the template is applied to the target all the 

noise will be excluded leaving only signal. If the target signal is x(t) = s(t) + r(t), where 

s(t) is the clean signal and r(t) is the noise, then the enhanced signal should equal the
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noise free signal. That is x(t, n) = s{t). The problem with this is twofold. First, there is 

noise present in the signal, so even if all the noise that is not part of the signal is ignored, 

the noise present in the signal must still be included. Secondly, when warping, or even 

designing a template (cf chapter 3) not all of the signal is included, as some will be missed 

by thresholding. This last problem is compounded by any lack of accuracy in the warping 

process. If the error upon enhancing a signal is denoted by the function e[a'(f, n)] then

s{t) -  x(t, n) = e [i( f ,  n)] = c[s{t)} + e[r{t)] (5.2)

where e[s(<)] is the signal missed in the enhanced templated signal and e[r(f)] is the 

noise included. The signal error, e[s(f)| is minimised in this instance by increasing the 

accuracy of the warp function. In chapter 3 it was shown that the error due to missing 

signal is minimised by varying the template’s threshold u{p). However in this instance 

there is error due to missing signal which cannot be corrected by adjusting v{p). There is 

a trade-off between the two errors in (5.2) which was discussed more fully in chapter 3. 

Note that /•(/) is used here to denote the noisy signal so as not to confuse the reader with 

n which is the discrete MFT level.

5.3.2 Results for Filtering Noisy Signals using the Warped Filter

For the four samples used throughout this work, noisy input signals for one performance 

were restored using (5.1). The prototypes were performances of the same pieces by 

different artists. For the “Waldstein”, the prototype performance was by Jando and the 

target performance by Ashkenazy. The prototype for the string quartet was performed by 

The Smithsonian String Quartet and the target performance was by The Lindsay String 

Quartet. The target signals were corrupted by additive white Gaussian noise giving signal 

to noise ratios of lOdB, 15dB and 20dB respectively. For each of the restored signals 

.f(/, n) the SNR was measured.
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The results are shown in figures 5.2, 5.3, 5.4 and 5.5 for the gain in signal to noise ratio 

against MFT level. Figure 5.2 includes the results shown in chapter 3 for filtering using 

the unwarped adaptive filter for comparison, to demonstrate how the gain is altered by 

warping the filter. The best enhancement is, unsurprisingly, for the slow movement of the 

“Waldstein” (Adagio Molto), which had the best enhancement in chapter 3 also. The gain 

in SNR is more than lOdB at most levels, tailing off to about 8dB’s at level 14. The result 

for filtering using a filter derived from the clean target signal shows that there is a slight 

loss introduced by warping the filter, which worsens as the level increases. The Adagio 

piano movement gave the best restoration in chapter 3 as well because it consists of long 

piano notes, which have partials that closely resemble sinusoids. The next best result is 

for the Allegro, the gain being high for low MFT levels, but decreasing with increasing 

level, more severely than the decrease in gain for the Adagio. This is due to the speed 

of the playing. As the level increases the time resolution decreases, which implies that 

the relatively high proportion of transient energy will not be dealt with adequately. Since 

the music is played much more quickly in an Allegro piece than in an Adagio piece, the 

warping would necessarily be more accurate, as there is more chance of placing a warped 

note in the wrong place — due to the quantity of notes being played in a given time. 

There is still a gain of about lOdB with an input SNR of lOdB, a substantial amount of 

improvement.

The two string pieces (Adagio Cantabile and Scherzo) from Beethoven’s String Quartet 

No 2, both give reasonable results for restoration using warping, but are not as good as 

their piano counterparts. This is partly because of the variability of the performances 

in terms of attack, decay and vibrato. The slow' piece, Adagio Cantabile, gives a low' 

gain as there is a heavy amount of vibrato present in the Lindsay Quartet’s performance 

which is not as noticeable in the performance by the Smithsonian String Quartet. The
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Beethoven's "Waldstein" (Adagio Molto)
Restored Using Warped Template

Figure 5.2: Gain in SNR for Beethoven’s “Waldstein” (Adagio Molto) for different levels 
and input SNR’s.

Beethoven's ‘'Waldstein” (Allegro Con Brio)
Restored Using Warped Template

Figure 5.3: Gain in SNR for Beethoven’s “Waldstein” (Allegro Con Brio) for different
levels and input SNR’s.
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Beethoven's String Quartet 2 In Gmaj (Adagio Cantabile) 
Restored Using Warped Template

Figure 5.4: Gain in SNR for Beethoven’s String Quartet no 2 in Gmaj (Adagio Cantabile) 
for different levels and input SNR’s.

Beethoven's String Quartet 2 In Gmaj (Scherzo)
Restored Using Warped Template

Figure 5.5: Gain in SNR for Beethoven’s String Quartet no 2 in Gmaj (Scherzo) for
different levels and input SNR’s.
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difference between the two performances for the Adagio can be seen in figures 5.6 and 5.7. 

These are MFTs for the same three seconds of signal in the Lindsay String Quartet’s and 

Smithsonian String Quartet’s performances, and they show the difference in the amount of 

vibrato present. It is worth remarking that although for the high levels (n > 12) in figure

5.4 the gain in dB is negative, the sound represents a subjective improvement. The quick 

string piece, results shown in figure 5.5, has the instruction “Scherzo” to the performer. 

Translated, this means “playful” or “jokingly”. In the Lindsay Quartet’s performance the 

attack is faster and louder than the Smithsonian Quartet’s piece, and since the Smithsonian 

is warped to the Lindsay the peak value for enhancement is at an MFT level between the 

maximum and minimum levels, where there is a better compromise between capturing 

the loud attack and having the minimum number of MFT coefficients turned on to capture 

the signal energy. It may also be recalled from chapter 4 that correlation measurements 

for the warping were lower for both extracts from Beethoven’s String Quartet No 2 when 

compared with the “Waldstein” extracts. Furthermore the correlation was lowest for the 

string Scherzo. It can be seen by inspecting the energy profiles visually in chapter 4 that 

there is a certain amount of ambiguity as to which peaks should align.

5.4 Restoration without Warping the Template

To show that it is necessary to warp the template produced from one performance to restore 

another, (5.1) is modified so that there is no warping function applied. The restoration is 

performed using the optimum threshold as before but now using

A = (Htj , n(y(i))Xtj,n) (5.3)

instead of (5.1). Results are shown in figure 5.8 for the restoration of “Waldstein” Adagio

Molto using both (5.3) and (5.1), with an input SNR of 20dB. As the level increases, the
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Figure 5.6: Three seconds of Beethoven’s String Quartet no 2 in Gmaj (Adagio Cantabile) 
performed by The Lindsay String Quartet, showing the effects of vibrato on the musical 
partials.

Figure 5.7: Three seconds of Beethoven’s Siring Quartet no 2 in Gmaj (Adagio Cantabile) 
performed by The Smithsonian String Quartet, showing the effects of vibrato on the 
musical partials.
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error between the warped and unwarped enhancements increases also. This is due to the 

transients in the template taking up wider frequency bins at the wrong time and degrading 

the restoration. It is easy to see that warping gives a much improved result.

Beethoven’s “Waldstein” Adagio Molto
Input SNR = 20dB

Figure 5.8: The difference between using a warped template and an unwarped template 
to perform restoration.

5.5 Multi resolution Enhancement using Warping

In section 3.10.1 a method of segmenting the signal in the time domain was discussed. 

This method used an event detector to detect onsets, which were labelled transients, and 

everything else was labelled steady-state. Once the time axis was segmented a “best level” 

choice was made for each segment, and the various “best level” choices for restoration 

were spliced together to give a multiresolution enhancement. In chapter 3 the choice 

of level was determined by maximising the signal to noise ratio of the enhanced signals 

;r(/, 7/), since the clean signal was known a priori. In this application, the clean target
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signal will not be known, so some method for choosing the best resolution for restoration 

for a given segment must be found. Since the clean target signal is actually known, it is 

possible to perform the multiresolution enhancement in the way it was done in chapter 3 

to provide a “benchmark” for the methods discussed here.

Warping the Best Levels for the Prototype

The best levels chosen in chapter 3 were for restoring the prototype signal and a version 

of the prototype that had noise added to it. The best level chosen for each segment 

maximised the SNR between the two signals. This gave a list of levels as a function of 

the prototype time. The relationship between the prototype time and the target time is 

now known (cf chapter 4). It is therefore possible to warp the best level choice for the 

prototype signal to match the noisy target signal's time scale. This assumes that the best 

level for the prototype will be the best level for the target. On first consideration this 

seems a valid assumption: the target and prototype should not vary greatly structurally. 

The problem is partly to do with error introduced during warping, as the two signals are 

not matched 100% there will be some noise present in the enhanced signal that should not 

be there and some signal missing. The ramifications for the transferability of the best level 

choice between the two signals becomes obvious if the results for the restoration on single 

levels are considered. The results for the unwarped filter acting on “Waldstein” Adagio in 

chapter 3 shows that level 14 has maximum gain but for the warped filter level 11 is the 

best. This is shown in section 5.3. Also, if the two Adagio String Quartet performances 

are considered, it can be seen that whilst they do not vary musically, the structure of 

their partials is not the same. The Lindsay Quartet’s performance has both audibly and 

visibly more vibrato present than the Smithsonian’s, making the best choice of level for 

the Lindsay performance a low' one. Hence, even if the warping correlation was 100%,
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the best levels are not necessarily the same for the prototype and target signals. It can 

be concluded that the underlying assumption in transferring the choice of levels from one 

signal to the other is not necessarily true. This was confirmed by experiment. So some 

method must be found that does not require any reference signal, but works only on the 

different signals enhanced at different resolutions of the MFT.

The Average of Levels

It is assumed that in all the restored signals x ( t , n ) there is more signal energy present 

than there is noise. Furthermore, it is expected that low levels will have better transient 

enhancement and high levels better steady state enhancement. The average of all these 

signals for a given time segment should have some of the qualities of the low levels and 

some of the qualities from the high levels. The “best” signal for a given segment should 

also contain as much of the high level steady state enhancement and low level transient 

enhancement as possible. If a contribution is taken from all of the different signals, using 

some weighting function o„, that is a function of level, with

£ « * = 1  (5.4)
n

The level can be chosen so that the enhanced signal at that level is the closest to the 

weighted composite signal, for each segment i  with i  € choosing n  such that

¿(n) is minimised
'.+i

¿(»opumum) =  min V  Ix ( t ,  n )  -  x ( t ,  n)|2 (5.5)
t = t ,

where

x ( t )  = anx(t, n) (5.6)
n

The problem with this method is that the values of o„ need to be chosen, according to

some model of signal behaviour, which is lacking at present. However a more simple
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solution is to use the average signal. This meets the criteria stated above for an ideal 

reference signal. In other words x(t. n) is defined as

x(t) =
Y .nH tn]

'  levels

(5.7)

and using (5.5) as above. Using this method, the signal chosen should be a compromise 

between features at high and low levels.

Minimum Variance

This method assumes that the further the signal values for a chosen level are from the ideal 

signal’s values, the less likely it is to be the best level for that segment. In other words, it 

is assumed that the best level for the segment is the one for which the restoration is most 

like its neighbours in scale. Using the same notation as above, the level chosen using this 

method will be given by

<1+1
«optimum) =  min n) -  x(t , n -  1 ))2 + (x(f, n) -  x(/, n + 1 ))2 (5.8)

t=tt

This method creates a problem at the maximum and minimum values of n where 

either n + 1 or n -  1 may not be available. The problem is solved by simply counting the 

contribution of the available neighbour tw’ice.

5.5.1 Results for Multiresolution Enhancement

Using the onset detector, the time axis is segmented into onset or steady state. The levels 

chosen for each segment are shown for both of the above methods for the slow piano piece 

(Beethoven’s “Waldstein” Adagio Molto) and the quick string piece (Beethoven’s String 

Quartet No2 in Gmaj) in figures 5.10 and 5.11 respectively. Results for all four pieces are 

shown in figures 5.12, 5.13, 5.14 and 5.15, where the x-axis is the input signal to noise
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Figure 5.9: Demonstrating the motivation for using a least square difference approach to 
choosing levels.

ratio and the y-axis represents the gain in SNR in the output. In figure 5.12 the best result 

for single level enhancement (cf section 5.3) is included. In 5.12,5.13 and 5.14 the gain is 

also plotted against input SNR for the actual best choice of level. The best choice is found 

using the target signal without noise added to determine which of the restored signals is 

closest to it — as was done in chapter 3.

The results show that in all but one piece, Beethoven’s “Waldstein” Allegro Con Brio, 

the average method works best. In the case where the minimum variance method performs 

better it gives only a slight improvement on the average method. Hence of the two methods 

discussed above, the method of averaging over levels gives the best performance. The 

main advantage of using the multiresolution method is that it gives a consistently good 

result for the enhancement and does not force the user to consider which level would be 

the best for a given piece of music. The results do not show large improvements in gain
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Beethoven's “Waldstein" (Adagio Molto)
Choice Of Level For Multiresolution Enhancement

14 , . ,

Figure 5.10: The choice of levels for Beethoven’s “Waldstein” (Adagio Molto).

Beethoven's String Quartet 2 In Gmai (Scherzo) 
Choree 01 Level For Mulbresolution Enhancement

SO 10.0
time(s)

Figure 5.11: The choice of levels for Beethoven’s String Quartet no 2 in Gmaj (Scherzo).
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Beethoven's “Waldstein" (Adagio Molto)
Gam In SNR For Multiresolution Enhancement

Figure 5.12: Gain against input SNR for two multiresolution enhancement methods for 
Beethoven’s “Waldstein” (Adagio Molto).

Beethoven's ''Waldstein” (Allegro Con Brio)
Gam In SNR For Muttiresotulion Enhancement

Figure 5.13: Gain against input SNR for two multiresolution enhancement methods for
Beethoven’s “Waldstein” (Allegro Con Brio).
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Beethoven's String Quartet 2 In Gmaj (Adagio Cantabile)
Gam In SNR Few Multnesoiutmn Enhancement

Figure 5.14: Gain against input SNR for two multiresolution enhancement methods for 
Beethoven’s String Quartet no 2 in Gmaj (Adagio Cantabile).

Beethoven’s String Quartet 2 In G maj (Scherzo)
Gain In SNR For Muttuesotution Entiancement

Figure 5.15: Gain against input SNR for two multiresolution enhancement methods for
Beethoven’s String Quartet no 2 in Gmaj (Scherzo).



5.6 Removing Impulse Noise using a Warped Template 136

found by using the multiresolution method, as they did in chapter 3, but the fact that the 

results are consistent and generally as good as the best values for individual levels, is 

enough to convince one of the advantages of using this method.

5.6 Removing Impulse Noise using a Warped Template

Whilst the templating method described in this chapter is designed to be used in broadband 

Gaussian noise, it also works well with impulse noise. “Clicks” on a record are usually 

caused by surface damage, and so impulse noise is very likely to occur on old gramophone 

recordings, where the surface will have degraded with age. On some radio transmissions 

of recordings, there will be static noise present, due to poor reception, which is also well 

modelled by impulses of the kind used here.

Figure 5.16 shows a section from “Waldstein” (Adagio Molto) with lOdB of white 

additive Gaussian noise as well as impulses present. The method used for restoring this 

is exactly the same as that in section 5.3. The noise was estimated and a template derived 

from the clean prototype, in this case Jando, was warped to fit the target signal using the 

techniques and algorithm from chapter 4. The restoration was performed on MFT level 

11. The noise estimator, from section 5.2, estimated that the input SNR was just over 

1 IdB and the threshold was chosen accordingly. The final signal to noise ratio of the 

enhanced signal (figure 5.17) had a gain of 10.02dB, very similar to that in section 5.3. 

It is reasonable to expect that this method should work, since each template consists of a 

number of time varying narrowband filters in frequency, so that any “clicks” that are not 

present in the prototype recording will be templated out, because they are broadband.

The impulses, in this work, are generated by adding sharp increases of fixed amounts 

to a musical piece, at a random place determined by the Poisson distribution [21]. The 

intensity of the Poisson distribution determines how many impulses there will be per unit
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Beethoven's ‘‘Waldstein" (Adagio Molto)
Signal With Impulses And tOdB Of Additive Gaussian Noise 
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Figure 5.16: A section of Beethoven’s “Waldstein” (Adagio Molto) with impulse noise 
added.

Beethoven’s “Waldstein” (Adagio Molto)
Signal With Impulses And lOdO Of Additive Gaussian Noise Removed 
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Figure 5.17: A Section of Beethoven’s “Waldstein” (Adagio Molto) with impulse noise 
removed.
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time.

5.7 Adaptive Wiener Filtering using Time Warping

In section 3.4, a Wiener iilter was shown to have a response that varied as the signal 

spectrum Sas(u>) and noise spectrum 5„„(u>). The Wiener filter can be made adaptive 

by varying the filter response through time. Using the MFT, it is possible to have a 

Wiener filter that varies from one time coefficient to the next. This can be implemented 

easily. Consider the implementation of the stationary Wiener filter in chapter 3. The 

spectral estimate was the energy of the prototype over all time. If the time over which 

the spectrum is estimated is restricted to, say, one time window, then the Wiener filter’s 

frequency response will change between subsequent time bins. So for time t the adaptive 

Wiener filter’s frequency response can be written

Sss(u,\t)
S„(w,t)  + Snu(u>,t)

(5.9)

since both the spectrum and the noise are estimated for each time bin, t. This is a naive 

way to estimate a signal’s spectrum, as it permits abrupt changes in the Wiener filter’s 

frequency response from time t to time t + 1. To avoid this, a sliding window is introduced: 

for a window of length 2C(n) -f 1 on level n, the time bins t — £(n) < t < t + ((n) 

contribute to the signal and noise estimates. A cosine-squared window was used to reduce 

any artifacts that may be caused by taking spectral contributions over several time bins, 

giving a smoother transition in the frequency response of the Wiener filter from one time 

bin to the next. The noise estimate is made for each time bin using (3.30) and smoothed 

with the same window that smoothes the spectral values. To simplify the notation, cos^ff) 

will denote the cosine squared window function centred at t, extending to f ±  (. Using 

the notation of section 5.2, the spectral and noise energy estimates for time t and window
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length 2£(n) + 1 are

'+<(»)
Snn(u,t) E (5.10)

l'=l-C(n)
*+<(»)

E cosj(i')|.Y,.,.„r- (5.11)
t'=t-C(n)

where x(t) is the prototype signal, y(t) the target and Sn is the amount of noise estimated 

in x(t) using (3.30). For the case considered here, where the two signals x(t) ^  y(t) the 

spectral values X tj <n must be normalised to be used as an estimate of This is done 

by scaling for equal variance, using

ŝcale
m / . n l 2
H \ X t . f , n \ 2

(5.12)

which modifies the spectral estimate to

S..(u>,i)= E  cos*(i')|A',.,/ ,„ |V ^  (5.13)

The noise variance is taken from the target signal and so no scaling is required. The 

Wiener filter now uses the normalised prototype signal spectrum as its estimate for the 

target’s spectral values. This assumes that they are aligned, which is not the case. They 

can be aligned, by using the warping functions #>(/) and g( f )  as above. Hence the spectral 

estimate using a clean unaligned prototype is

(+CP0
s „ { u i , t ) =  cosJ (0 |a v m /).„I2't1 i (5-14)

t ' = t - C(n)

which is easy to implement, once the warping functions <f>(t) and g( f )  are known. Thus 

the frequency response for an adaptive Wiener filter restoring degraded audio signals using 

a sliding window of length 2£(n) -f 1 and the warping function from chapter 4 is

Ej'tfijpq cos^(f,)|AV((.),g(/),n|V 2sk
+ Sn„ M

(5.15)
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5.7.1 Results

Results for restoration of Beethoven’s String Quartet (Scherzo) and Beethoven’s “Wald- 

stein” (Adagio Molto) are shown in figures 5.24 and 5.23 respectively for the gain in SNR 

as a function of both MPT level and input SNR. The gain is plotted as a function of sliding 

window length ((n) in figure 5.18 for the Adagio “Waldstein” and in figure 5.19 for the 

Scherzo String Quartet piece for v = 11. This is the best compromise level, as the results 

of this work and others have shown [59]. As the window length increases from C(n) = 3, 

there is an improvement in the gain for both pieces. The “Waldstein”, which had the most 

accurate warping correlation of the four pieces, has gain plotted as a function of window 

length for a lower level, n = 8. For level 11 the gain peaks for ((n) — 3 then decays, 

whereas for level 8 there is a steady increase as the window lengthens. This is common 

sense — the windows on level 11 are 8 times as long as their counterparts on level 8. The 

gain in a noisy signal due to adaptive Wiener filtering using warping is attributable to two 

things: the estimate of the noise spectrum, and the estimate of the local signal spectrum. 

The noise spectrum estimate’s accuracy increases as the window length increases, as there 

are more values for the estimator to use, but the local spectrum estimate’s accuracy will 

decrease as its locality decreases. In other words there is a trade-off between estimating 

the noise and estimating the local spectrum. There will, therefore, be an optimal length of 

window over which to estimate these values, which is why the maximum peaks in figure 

5.18 are different for different levels. Also the optimal adaptive Wiener filter length varies 

as a function of the piece of music that is being played. For faster pieces, the filter will 

necessarily become less stationary to obtain a better restoration as the rate at which the 

notes are played in the music increases. Figures 5.20 and 5.22 are plots of gain against 

input SNR for MFT level 11 for both pieces used in the analysis here. Both figures display 

clearly that the gain of the adaptive Wiener filtering is a function of input SNR — as the



5.7 Adaptive Wiener Filtering using Time Warping 141

SNR increases, the gain decreases. The results plotted here are for the optimal filter length, 

found empirically. In chapter 3, it was shown that the stationary Wiener filter, lowpass 

filter, and filtering using the simple adaptive filter all varied as a function of input SNR. 

Figures 5.23 and 5.24 show how the gain varies as a function of both input SNR, and MFT 

scale. Unlike the stationary Wiener filtering in chapter 3, the gain does not necessarily 

increase as the frequency resolution does. This is because of the time-varying nature of 

the filter, which allows the best spectral and noise estimate for a given section — £(n) — 

of the time axis. Again, the results plotted are for the optimal filter length or value of (fin) 

that gives the maximum gain. The first thing to note is that the shapes of figures 5.23 and 

5.24 are similar to those gain curves plotted using the simple adaptive filter in figures 5.5 

and 5.2 for the string quartet and “Waldstein” pieces respectively. Both methods use the 

same warping function found using the algorithm of chapter 4. The “Waldstein” Adagio 

does best at high levels, because it is slow, and the String Quartet Scherzo does best at low 

levels, because it is fast. The Scherzo shows best filtering results with a highly adaptive 

filter, whereas the Adagio shows best results when the filter is less adaptive. Again, both 

graphs illustrate clearly how the gain decreases as the input SNR increases.

The results in figures 5.23 and 5.24 can be compared with the results in figures 5.12 

and 5.15 for the “Waldstein” Adagio and String Quartet Scherzo respectively. The values 

for the gain in dB’s are given in tables 5.1 and 5.2. For the String Quartet piece, the 

simple adaptive filter does better than the Wiener filter, by about 1 or 2 dB, even when 

not combined through scale, whereas the “Waldstein” Adagio is ldB better when restored 

using the Wiener filter. It can therefore be concluded that both methods give roughly the 

same gain in SNR.
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Adaptive Wiener Filtering Using Warp Functions
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Figure 5.18: Gain as a function of window length for Beethoven’s “Waldstein” (Adagio 
Molto) for MFT level’s 8 and 11.
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Adaptive Wiener Filtering Using Warp Functions
Beethoven s String Quartet 2 In Gmaj (Scherzo)

Figure 5.19: Gain as a function of window length for Beethoven’s String Quartet no 2 in 
Gmaj (Scherzo) for MFT level 11.
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Adaptive Wiener Filtering Using Warp Functions
Beethoven s String Quartet 2 In Gmaj (Scherzo)

Figure 5.20: Gain as a function of input SNR for Beethoven’s String Quartet no 2 in Gmaj 
(Scherzo) for MFT level 11.

Adaptive Wiener Filtering Using Warp Functions
Beethoven's "Waldutein" (Adagio Motto)

Figure 5.21: Best window length as a function of level for Beethoven’s “Waldstein” 
(Adagio Molto) with an input SNR of lOdB.
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“Waldstein” (Ada gio)
Input SNR Warped Template Adaptive Wiener
lOdB 10.56dB 11.02dB
15dB 9.9 ldB 9.73dB
20dB 8.19dB 7.83dB

Table 5.1: Gain in SNR using the warped adaptive filter and the warped Wiener filter for 
Beethoven’s “Waldstein” (Adagio Molto) performed by Ashkenazy.

String Quartet In Gmaj (Scherzo)
Input SNR Warped Template Adaptive Wiener
lOdB 7.59dB 6.66dB
15dB 5.96dB 5.73d 13
20dB 3.88dB 4.1 IdB

Table 5.2: Gain in SNR using the warped adaptive filter and the warped Wiener filter 
for Beethoven’s String Quartet no 2 in Gmaj (Scherzo) performed by The Lindsay String 
Quartet.

5.8 Combining Warped Prototype and Target Derived Tem
plates

Having compared the restoration gained by using an adaptive Wiener filter to that obtained 

from the simple adaptive filter of chapter 3, our attention returns to the notion of using 

the target signal as a filter template. This was investigated in chapter 3, for Beethoven’s 

“Waldstein” by Jando, where it was easily seen that there was a significant improvement 

in the gain if the prototype signal was used instead of the noisy target. This was obviously 

going to be the case since, as the SNR of the target signal increases, it became increasingly 

like the prototype, meaning that in the limit, the gain in restoration using the target would, 

at best, only ever be as good as the gain found by using the prototype. However, when 

using a warping function and two different recordings the story is more complicated. The 

problem is compounded by such matters as the accuracy of the warping algorithm as well
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Adaptive Wiener Filtering Using Warp Functions
Beethoven s "Wa^dsteln', (Adagio Molto)

11.0

7.0 -----
10 15 20

input SNR (dB)

Figure 5.22: Gain as a function of input SNR for Beethoven’s “Waldstein” (Adagio Molto) 
for MFT level 11.

as the amount of noise in the target signal. To investigate this, SNR’s are shown in figures 

5.25, 5.26 and 5.27, for the noisy Ashkenazy Adagio signal with lOdB, 15dB and 20dB 

respectively. The results show the gain when using the warped prototype filter, the filter 

derived from the noisy signal and linear combinations of the two.

The signals were added in the time domain for simplicity — the respective results for 

the warped prototype and noisy target are stored in the time domain. Combinations of the 

two were calculated using the simple formula

z(t) =px( t )  -F (1 - p ) y ( t )  (5.16)

where p denotes the proportion of the target signal included in the final signal. As can 

be seen in all of figures 5.25, 5.26 and 5.27, the target derived signal has a higher peak, 

at level 14 and, as the SNR increases, the difference between the peak target derived 

filter restoration and the prototype restoration decreases. Eventually, as the SNR becomes
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Adaptive Wiener Filtering Using Warp Functions
Beethoven s String Quartet 2 In Gmaj (Scherzo)

Figure 5.23: Gain as a function of level for Beethoven’s String Quartet no 2 in Gmaj 
(Scherzo) for lOdB, 15dB and 20dB input SNR.

Adaptive Wiener Filtering Using Warp Functions
Beethoven s ' Waldstein'1 (Adagio Motto)

Figure 5.24: Gain as a function of level for Beethoven’s “Waldstein” (Adagio Molto) for 
lOdB, 15dB and 20dB input SNR.
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infinite and there is no noise in the target signal to restore, the ideal filter will be target 

derived. In practice this will happen at the point at which the noise introduced by using a 

warped template exceeds that of the noise in the target signal. The important point is that 

by combining the two filters there is an improvement overall in the SNR gain. Again, as 

the SNR increases, the amount of prototype needed becomes less. At lOdB having 50% 

of each filter gives the best result but, at 20dB, the difference between the 50% and the 

70% target filter narrows until, at level 14 the 70% target filter overtakes the peak of the 

50%. This bears out the findings in chapter 3.

5.8.1 Multiresolution Enhancement using Warped Prototype and Tar
get Derived Templates

The restored time signals derived as above can be combined across scale employing the 

same methods used in section 5.5. The results for this are plotted in figures 5.28, 5.29 and 

5.30 for p = 0.5,0.7 and 0.9 respectively. Once more by only combining half and half 

from both signals, the best results are gained for p =  0.5 in all cases, but the difference 

in gains reducing as the input SNR increases. Furthermore there are similarities in the 

performance of the two multiresolution enhancement methods employed, the Average 

of Levels and the Least Square Difference or Minimum variance methods. In all but 

one of the examples shown the Average of Levels method outperforms the Least Square 

Difference method in combining the time-domain signals across scale to the best effect. 

By comparing the results shown in figures 5.28, 5.29 and 5.30 with those in figures 5.25, 

5.26 and 5.27, it is easy to sec that, again, the multiresolution enhancement methods 

employed, whilst not improving dramatically on the best single level result, do give a 

result that is consistently at least as good as the “best level” result.
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5.9 Summary

This chapter has shown results for restoration of noisy audio signals at various resolutions 

and using multiresolution methods. These results show that whilst there is a degradation 

in the improvement of a noisy signal using the warping method of chapter 4 compared to 

using an exact template as in chapter 3, restoration using the warped template gives an 

improvement over that achieved using information derived solely from the target. Methods 

were discussed that combined signals restored at different levels, depending on whether 

the signal was steady state or an onset as used in chapter 3. The two main methods relied 

on different approaches, with different results. The first used a weighted composite of all 

the signals as a reference signal and picked the resolution of signal that was closest. This 

gave a consistent improvement over the best single resolution result, but was not quite as 

good as using the original clean signal as a reference. The second used the variance of all 

the signals with their nearest neighbours, and chose the best signal as the one having the 

lowest such mean variance. This was not as good as the composite weighted, or average, 

method. It was also shown that the warped template, as well as restoring broadband white 

Gaussian noise, copes well with impulses which would occur due to surface degradation 

in a gramophone recording or static in a radio transmission. The idea of adaptive Wiener 

filtering was introduced and, using the warping function from chapter 4, was implemented 

on the noisy target signal without any a priori information about its spectrum. This is 

a simpler implementation of the filter used by Vaseghi [59], made so by using the MFT 

and the warping functions. The results using this method were shown to be no better than 

the results using the computationally simple adaptive filter used earlier on, and discussed 

in chapter 3. Finally, in section 5.8, a general method was displayed that allowed the 

restoration of signals that are degraded by less than the error of the warping function. This
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was achieved by combining the target derived filters and the warped prototype filter. To 

avoid repetition of results, cases for when the inverse warping function is used and the 

prototype and target signals are reversed have not been included in this chapter, although 

it is useful to note that the conclusions are the same.
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Beethoven's "Waldstein’’ (Adagio Molto) Perlormed By Ashkenazy
Gain In SNR - Comtwvng Various Templates With Input SNR Ot tOdB

Figure 5.25: Beethoven’s “Waidstein” performed by Ashkenazy (Adagio Molto) with an 
input SNR of lOdB, showing the gains for signals restored using a combination of warped 
prototype templates and target derived templates.

Beethoven's ,'Waldstein'‘ (Adagio Molto) Performed By Ashkenazy
Gain In SNR - Combwang Vanou* Templates With Input SNR Ot 15dB

Figure 5.26: Beethoven’s “Waidstein” performed by Ashkenazy (Adagio Molto) with an 
input SNR of 15dB, showing the gains for signals restored using a combination of warped 
prototype templates and target derived templates.
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Beethoven’s “Waldstem" (Adagio Motto) Performed By Ashkenazy
Gain In SNR • Combining Various Templates With Input SNR Ol 20dB

Figure 5.27: Beethoven’s “Waldstein” performed by Ashkenazy (Adagio Molto) with an 
input SNR of 20dB, showing the gains for signals restored using a combination of warped 
prototype templates and target derived templates.

Beethoven's "Waldstetn" (Adagio Molto) Performed By Ashkenazy

Input SN R <dB)

Figure 5.28: Gain against input SNR using multiresolution enhancement methods for 
Beethoven’s “Waldstein” performed by Ashkenazy (Adagio Molto) with 50% target de
rived signal and 50% warped prototype derived signal.
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Input SNR (dB)

Figure 5.29: Gain against input SNR using multiresolution enhancement methods for 
Beethoven’s “Waldstein” performed by Ashkenazy (Adagio Molto) with 70% target de
rived signal and 30% warped prototype derived signal.

¡.0 -
10 15 20

input SNR (dB)

Figure 5.30: Gain against input SNR using multiresolution enhancement methods for
Beethoven’s “Waldstein” performed by Ashkenazy (Adagio Molto) with 90% target de
rived signal and 10% warped prototype derived signal.



Chapter 6

Conclusions and Further Work

This thesis has described methods of performing audio restoration using a generalised WT 

(the MFT). This has demonstrated the advantages of using a multiresolution approach, 

both in terms of algorithm design and implementation, and benefits to the gain in SNR 

of the restored signal. In so doing, a method of warping the features of one performance 

to coincide with the features in another was described. The initial method of restoration 

used a simple and efficient adaptive filter, which filtered the audio signal in the time- 

frequency domain, this was then warped to fit the noisy musical performance or target 

signal. This process has raised a number of issues, which have been addressed in this 

work. In conclusion, the implications of this work will be considered in a wider sense, 

along with suggestions for further work in the field.

In the following section some of the main results shown throughout this work will be 

summarised for the reader.

6.1 Summary of Results

All of the results in tables 6.1 and 6.2 have been shown previously in sections 3.10, 5.7 

and 5.8.1. The numbers shown are the gain in SNR upon filtering using the various

153
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“Waldstein” (Adagio)
Input SNR Template Warped Template Adaptive Wiener Target/Prototype
lOdB 15.21 dB 10.56dB 11.02dB 12.22dB
15dB l3.89dB 9.9 ldB 9.73dB 11,65dB
20dB 12.53dB 8.19dB 7.83dB 9.92dB

Table 6.1: A brief summary of some main results for Beethoven’s “Waldstein” (Adagio 
Cantabile).

String Quartet In Gmaj (Scherzo)
Input SNR Template Warped Template Adaptive Wiener
lOdB 11.08dB 7.59dB 6.66dB
15dB 9.18dB 5.96dB 5.73dB
20dB 7.95dB 3.88dB 4.1 ldB

Table 6.2: A brief summary of some main results for Beethoven’s String Quartet no 2 in 
Gmaj (Scherzo)

methods described. The column headed “Template” gives the results for templating with 

a priori information on the clean signal in section 3.1. “Warped Template” and “Adaptive 

Wiener” are the results from tables 5.1 and 5.2 in section 5.7 using the adaptive Wiener 

filter method and simple adaptive filter with warping. The “Target/Prototype” header 

gives the results for the best combination (p=0.5) of the target and prototype templates in 

section 5.8.1. Note that it is difficult to compare these results with those of other audio 

restoration methods as no numerical results are given in the literature. However, it is 

worth noting that the Adaptive Wiener method implemented in section 5.7 is very similar 

to the method proposed by Vaseghi [58] (59].

6.2 Filtering Degraded Audio Signals

In chapter 2, time-frequency representations of audio signals were considered as tools

with which to perform audio restoration. In some previous work in this field [59] (58]
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[6] [29], the problem of restoring degraded audio signals was approached in the time 

domain. In [6] [11] [22], for example, the approach taken was purely that of intervening 

manually in the time-domain structure of audio signals: altering them to sound better. 

The advantages of using a time-frequency representation such as the MFT were discussed 

and, after considering the most widely used methods of audio signal analysis, the MFT 

was shown to be the most general available. It allowed the free variation of scale with 

the signal features — high frequency resolution of steady-state features such as decay 

and high time resolution of transient features such as note onsets. This is a freedom not 

available to users of other time-frequency analysis tools such as the STFT, where the scale 

is fixed by the window size or the WT where the scale varies as a function of frequency 

but is fixed by the choice of wavelet. The MFT has been used before in audio signal 

processing by Pearson [45] [66] for note transcription. In this thesis an efficient and 

simple implementation of the MFT, which is not limited in the size of time signal that it 

could process, was introduced and its properties discussed.

In chapter 3, a simple adaptive filter was introduced. The motivation underlying this 

filter was that of simplicity and integrity. Instead of changing the values of the MFT 

domain coefficients that contained the audio signal information, a simple decision was 

made as to whether something was structured and therefore signal, or not and therefore 

assumed to be noise. This filter is simple because of its low computational complexity 

— 0{ N  log2(iV)) — and because of the smaller amount of storage space required when 

compared to any other adaptive filter, such as an adaptive Wiener filter [59]. Such a Wiener 

filter has complex coefficients H(u;) for each frequency value for each time, whereas in 

the simple adaptive filter coefficients arc binary and can therefore be stored cheaply. The 

integrity of this adaptive filter arises from the premise that ideally there should be no 

alteration in the signal values — the noise should be removed but the signal should be
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retained. This works in practice because although there is noise in the coefficients, the 

signal energy masks it [55] [37]. It was shown in chapter 3 that this filter worked well 

when the signal spectrum was known a priori and also in chapter 5 when the adaptive 

filter was derived from a prototype, warped and then applied to the noisy signal.

The problem of audio restoration can be approached in two equivalent ways: estimating 

the noise spectrum to be removed [58] [39], or estimating the signal spectrum to be retained 

[34] [36] [17] [ 18]. Once one of these is known then the other can be derived. In this work 

it was assumed that a clean spectral estimate was available, using the warping functions 

determined in chapter 4, from an uncorrupted recording of the same piece of music as the 

noisy signal. In choosing the threshold value for the adaptive filter, it was shown that the 

threshold was a function of the input SNR. A simple method was employed that allowed 

the amount of noise to be estimated by assuming that it was broadband — a more general 

assumption than that made in, for example, [36] where the noise values are assumed to 

have a Gaussian density. In this work, the assumption of a broadband noise distribution 

was used to give an accurate estimate of the input SNR, and hence the adaptive filter’s 

threshold. An analytical method for choosing this threshold was discussed in section 3.8 

and preliminary results were presented with some success. Thus the template filter uses 

both estimates of the signal spectrum, from the clean recording, and an estimate of the 

noise variance found by assuming that such a spectrum is flat, to calculate the template 

threshold. Once the threshold is chosen, features are detected if they span more than one 

(generally two) frequency bins for some length of time. This thesis has shown a method 

that combines both noise and signal spectral information using a musical signal model to 

good effect.

Most audio restoration techniques rely on the stat ionarity — over some time period — 

of the audio or musical signals for their enhancement [ 17] [58] [59] [36] [34] 118[ [53].
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This requires windowing in the time domain to isolate the period of time over which the 

signal is stationary. If this window is too wide, then the transients, or onsets, are missed 

or smeared, whereas if the window is too small any estimates suffer from high variability. 

This motivates the use of the MFT for audio restoration. Because of the range of scales 

available to the MFT user, an adaptive filter can be obtained which can be matched to 

both transients and steady-state periods in most musical pieces [64]. In practice the scale 

is varied in the time domain for ease of implementation and to avoid artifacts. To identify 

the regions of transient or steady-state features, a note onset detector was introduced in 

chapter 3. The motivation for this was simply that transients in musical signals will occur 

at the note onset, when the spectrum of the note changes the most rapidly in time. The 

onset detector split the time-domain of the signals into segments that were labelled either 

onset or steady-state. In chapter 3, where the signal was known a priori, the SNR of 

each segment of enhanced signal was used to determine the best MFT level or scale. In 

chapter 5, however, two heuristic methods were used because the uncorrupted signal was 

unavailable. It was concluded that the more reliable method was the one that chose the 

enhanced signal closest to the average of all the enhanced signals for that time frame.

If the audio signal is stationary over short periods of time only then these short periods 

taken together constitute a non-stationary system, the “state” of the audio signal, that 

alters from period to period. Furthermore, if we assume that each of these states is 

degraded by noise, then one method for restoring such a signal would be to use Kalman 

filtering as discussed briefly in chapter 1 [35] [10]. A Kalman filter is one designed to use 

the statistical information present in the changes of state in a non-stationary system, the 

degraded signal, to build an increasingly accurate picture of the uncorrupted signal. The 

problem with using such a method is the decision as to what constitutes a state: would 

such slates require spectral information, how long would each state last and, since musical
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signals are being considered here as multiresolution, how would the scale of such states 

be altered as a function of time? These questions are difficult to answer at the present 

time. The use of a Kalman filter would become simpler if a higher level model of the 

signal and its structure was being used, such as the representation employed by Pearson 

which used a Markov model of the musical notes [45], where the information could be 

manipulated more effectively. However, within the stationary periods Wiener filtering can 

be employed. Moreover, as the stationary states change, a time varying Wiener filter, one 

whose values alter as a function of time, can be introduced.

The adaptive filter was compared with a variety of methods including a lowpass filter, 

a stationary Wiener filter and, after the warping algorithm had been introduced, a time 

varying Wiener filter. The latter used warping of the clean prototype signal for its spectral 

estimate. The first two methods of filtering were shown to be ineffective tools for audio 

restoration compared with the simple adaptive filter — the lowpass filter rendered the 

restored signals dull, while the stationary Wiener filter performed badly because it was 

estimating over too long a time period, and consequently made an inaccurate estimate 

of the signal spectrum. The adaptive Wiener filter was implemented simply using the 

MFT. The time-varying Wiener filter used by Vaseghi relied on there being two recordings 

of the same piece available from which to estimate the local signal spectrum and the 

local noise spectrum [59]. This was done in the time domain, with a 20ms FIR filter 

that was varied so as to maximise the correlation between one noisy recording and an 

appropriately delayed second noisy recording of the same piece (delayed at most by one 

filter length). This caused a number of implementational problems not present in this 

work. The first problem is the assumption that two noisy recordings, with a variation in 

time scale always less than 20ms, are available. This implies that these would have to be 

two records that are identical apart from being degraded differently. The implementation
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by Vaseghi is further complicated by the fact that it is based on the time domain signal. 

Versions were implemented that relied on Least Mean Squares (LMS) and Recursive 

Least Squares (RLS) algorithms to match the two signals and hence estimate a local 

signal spectrum. The LMS method was found to be numerically unstable, not always 

guaranteeing the convergence of the two recordings, whereas the RLS method was found 

to be computationally intensive and very sensitive to non-Gaussian noise. Because the 

MFT is used in this thesis, once the local noise and signal spectra are known, implementing 

a Wiener filter becomes equivalent to weighting each of the coefficients on one level of 

the MFT of the noisy signal appropriately. The results for enhancing degraded audio 

signals using the warped adaptive filter and the warped adaptive Wiener filter — which 

requires more storage and computation — were shown to be comparable. Indeed, only 

one instance was found where the Wiener filter performed better than the simple adaptive 

filter. It can be concluded that using the simple, computationally efficient adaptive filter 

is as good as the adaptive Wiener filter.

In terms of facilitating the filtering of degraded musical signals it has been shown in 

this thesis that the MFT allows not only the use of the simple adaptive filter introduced 

in this work, but allows a simple implementation of the adaptive Wiener filter. It can be 

concluded therefore that the MFT is a very useful tool with which to analyse and restore 

musical signals.

6.3 Warping

When a filter derived from one performance is to be used to restore a second performance, 

a method of a local stretching of the time axis of the former to fit the time scale of the 

latter is required. The warping algorithm in chapter 4 finds the best piecewise linear 

approximation to the generally continuous warping function. To place this algorithm in a
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wider context, it is necessary to look further afield than the warping of audio signals. There 

is very little activity in the field of audio signal warping [59] [3] and so it is to the area of 

speech recognition that one is drawn for comparison. The Dynamic Time Warping (DTW) 

algorithm favoured in many speech recognition systems [23] [27] [47] 140] assumes the 

principle of optimality [13] [60], Once the end-points of the warp path have been found, 

the optimal warp path is found by back-tracking to the beginning, using some distance 

measure to constrain the warping. The warping algorithm presented in this work allows 

a more general approach to the warping of an audio signal by allowing more than one 

measure to find the best warp path. In this work the prototype is warped linearly so that 

both the target and the prototype signals have the same length. Next, the candidate break 

points are found in the signal using musical feature matching, based on peaks in the time 

profile of the signal energy. Once these have been identified they are further refined using 

a correlation measure. This gives a more accurate warping function. This is in contrast 

to the warping methods utilising the DTW approach, which usually uses one metric with 

which the accuracy of the warping function at each choice of warp path co-ordinate is 

gauged. One main difference between warping audio signals and warping speech signals 

is the length of the signal segments — in speech recognition a word will last at most 

one or two seconds, but musical performances last orders of magnitude longer. Audio 

signal “warping” was employed in the work by Vaseghi [59] [58]. This was warping in 

the broadest sense: one signal was delayed relative to another by a maximum of 20ms. 

The amount of delay was found by using a least squares algorithm that maximised the 

correlation between target and prototype signals. It is difficult to see how such a method 

of warping could be applied to two different performances of the same piece where it 

has been shown that the delay is regularly greater than 20ms. Indeed it is not difficult 

to tell that one performance is slower than another simply by listening. Furthermore,



6.4 Suggestions for Further Work 161

the warping algorithm in this work uses a feature model that is robust in additive white 

noise. It has been shown to work in the application of audio restoration, where the simple 

adaptive filter was warped and used successfully to restore degraded signals. In chapter 5 

the effects of enhancement on the target signal using a template derived from the prototype 

signal that was not warped to match the target signal were shown to be significantly worse 

than the enhancements gained by using a warped one. Furthermore, the warping function 

was shown to be successful in spectral matching for use in the adaptive Wiener filter.

It can be concluded that the warping algorithm presented here can successfully match 

audio signals that have large discrepancies in their time scales by using piecewise linear 

approximations to the continuous warping function and a recursive binary search. It 

avoids some of the assumptions behind DTW and is more general than the warping 

method employed by Vaseghi. For any given degraded recording of a classical piece, a 

clean modern recording will be available, if there is none immediately available an artist 

can be employed to produce one.

6.4 Suggestions for Further Work

This thesis has displayed and investigated the general principles of audio restoration 

using a multiresolution time-frequency representation. However, in order to produce an 

automated restoration system further work is, however, required.

In chapter 4, the end points of the warping function were given as initial conditions 

to the warping algorithm. Obviously if these are in error, then the warping function 

will not be correct: the algorithm has no capacity to recover from bad initial conditions. 

If, however, the algorithm could be generalised to search for these starting points, then 

the problem of finding the correct start and end points manually would, by definition, 

disappear. One method used in speech recognition for finding the endpoints for a warping
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function is to find points between words [47]. This may be possible in musical signal 

processing, since some musical signals will have silences between movements or musical 

phrases. A more general method could be employed to find the initial breakpoints of faster 

sections, such as the String Quartet Scherzo and “Waldstein” Allegro used as examples 

in this work. This method could rely on estimating the beat or tempo of the performance 

to find roughly where the start and end points are and then, using a similar refinement 

process to that used for the candidate warp points, vary the start and end point of one piece 

until the maximum correlation is found.

In chapter 5 it was noted that the differences in the results from the two Adagio 

String Quartet pieces was caused by the varying amounts of vibrato between the two 

performances. This was noted visually, but is also audibly perceptible. If the adaptive 

filter’s structure is likened to a set of narrowband filters, it would be possible to use this 

visualisation to vary the structure of the narrowband filters sinusoidally, with those filters 

occurring at a higher frequency having greater variation than those at lower frequencies. 

Applying this to different sinusoidal perturbations to the filterbank structure would cause 

the adaptive filter derived from one piece to emulate the vibrato — if different — in 

another, capturing more of the signal and thus increasing the enhancement of the degraded 

target signal. This would require a more sophisticated form of frequency warping than 

that used in this thesis.

In chapter 5, methods for combining audio signals enhanced using different levels of 

the MFT on the time-frequency plane across scale were suggested. Although the method of 

averaging across levels was shown to be the most consistent performer of the two methods 

given, it was not wholly satisfactory. When compared to the a priori combination of levels 

in chapters 3 and 5, it is evident that the averaging across levels can be improved upon. 

This method can be generalised to use some linear combination of the enhanced signals
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other than the average. Other weightings are possible, for example a weighting could 

be used that depended on whether the variance or energy concentration of those signals 

suggested a low or a high MFT level. Another such weighting could give low MFT levels 

a higher weighting for onset segments and, conversely, high levels a higher weighting for 

steady-state segments. This might be advantageous as the transients should occur at the 

note onsets.

A preliminary method of automatically choosing the global threshold v was introduced 

in section 3.8 which relied on modelling both the noise and signal’s energy distribution 

with a Cauchy distribution curve. This could be further improved for Chapter 5 if the 

choice of v somehow depended on the accuracy of the warping function.

In chapter 3 an adaptive fdter was derived from a noisy target signal and results for 

restoration were shown. In chapter 5 the signals enhanced using such a target derived filter 

and the signals enhanced using a warped prototype filter were combined. Obviously, as 

the SNR increases then the signal enhanced using a target derived filter will become more 

accurate and the warped prototype’s filter less so. If the prototype is clean then, even if 

the warping were perfect, the best that the warped filter could do would only ever be as 

good as the target derived one. Hence using a combination of the two would sufficiently 

generalise the process of restoring noisy signals to allow the restoration of both extremely 

noisy signals and signals only slightly degraded by noise.

It is assumed that the noise present in the signal coefficients retained by the adaptive 

filter will masked by the noise [39] [37] [55]. However, no attempt has been made here 

to exploit the phase properties of the MFT coefficients, as was done in Pearson’s work. 

These matters deserve further consideration.
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6.5 Concluding Remarks

This thesis has shown that the MFT is a versatile tool with which to tackle the musical audio 

signal restoration problem. A computationally efficient and easily stored adaptive filter 

has been introduced with which to perform audio restoration. A method for describing 

the difference in time scales of two performances of the same piece of music has also been 

introduced. This warping function facilitates the application of the adaptive filter to a 

noisy signal without requiring estimates of the noisy signal’s spectrum. It has been shown 

that the filter works with impulse noise as well as the white additive Gaussian noise used 

in the examples. Because of the versatility of the MFT, an adaptive Wiener filter, similar to 

that used by Vaseghi [59], was implemented simply. It was shown that the simple adaptive 

filter was better in all but one out of six cases where these two filters were compared. This 

showed the simple adaptive filter to be as good as the adaptive Wiener filter, but saving 

greatly on storage space required. Filters derived from the target signal and prototype 

signal were combined linearly in section 5.8 to improve the performance of the simple 

adaptive filter in low noise. Finally it can be said that the MFT, a generalised WT [66], 

has been shown to be a time-frequency representation that can be used for implementing 

restoration algorithms simply and to good effect.
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