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Abstract

We study the wealth distribution empirically with analysis of the UK wealth and

asset survey and rich list data and focus on prominent factors of the distribution

through mathematical modelling. Probability distributions for both debt and positive

wealth are fitted to the wealth data concentrating on the time period 2008-2016.

We fit power laws, a key property of the wealth distribution, to the upper tail

and analyse the difference in power law exponents between the survey rich and the

rich lists. We present an overview of potential agent based wealth models under

the themes of hierarchy, exchange, feedback and multiplicative processes. Two of

these models, one in each of the latter two categories, are studied in detail in the

final main results chapters. Both models are characterised by a critical power γ

parameter, exhibit power law tails and eventually extreme inequality. The first

is the balls in bins process with feedback originally studied in the combinatorics

literature and only recently applied to wealth. We analyse theoretical aspects of

this model as well as some general simulations. The second model, which we call a

non-linear Kesten process, has not been studied before to our knowledge and is a

generalisation of the Kesten process. This model was conceived by finding a rough

power law relationship between agent’s wealth and their wealth returns. Agents

evolve independently through time based on these returns. Due to the independence

of agents we can run the model for a large number of agents and we do so for general

and realistic 2008 UK initial conditions. We conclude that a non-linear rich gets

richer effect may be important when modelling the wealth distribution in times of

growing inequality.

vi



Introduction

The study of wealth and its distribution has been reignited in recent years due to

evidence of rising inequality since the 1980s [9, 7]. Especially since Piketty’s 2014

work ‘Capital in the 21st Century’ there has been an increasing focus on billionaires

and controversy over potential policies such as a wealth tax [121, 119]. The Covid-19

pandemic and recent record rises in inflation in 2022 have added flames to the fire

over discussions around wealth and inequality [22, 15].

Although we shall consider inequality, the primary focus of this thesis is a

related feature of the wealth distribution when viewed as a probability distribution.

This is the presence of a power law in the upper tail of the distribution. The power

law indicates that the richest in society obtain vast quantities of wealth not possible

in lighter tailed distributions. It is noteworthy that a mathematical function as

simple as the power law appears in the upper tail of a wide variety of quantities

from financial returns to city size [63, 111].

To model the wealth distribution we want to capture the most important

factor(s) determining the distribution. In particular we focus on models that generate

power laws and increase inequality by a rich gets richer effect. We focus on two

such models: a balls in bins process with feedback also referred to as a non-linear

generalised Pólya urn model and a non-linear Kesten process.

The main original work of the thesis appears in Chapter 4 and is published

in [60]. Chapter 3 holds promise as an intuitive model to study wealth and other

quantities such as city size in the future. Chapters 1 and 2 contains preliminary

fitting to wealth data and review of the existing literature with some minor extensions.

We now outline in more detail the contents of these chapters. In Chapter

1 we empirically analyse wealth by discussing the definition of wealth, the data

sources we use to analyse UK wealth primarily between the years 2008-2016, the

main theory and definitions of heavy tailed distributions and power laws, fitting

the wealth distribution and a brief overview of inequality which we measure for

simulations in the final chapter. A mixture distribution is fitted to negative and
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positive wealth. We find that a relatively unknown κ-generalised distribution fits

the positive wealth distribution well. We also discuss the disparity of the power law

exponents seen between the rich and very rich and show how survey bias may be a

cause of this phenomenon.

In Chapter 2 we summarise a selection of potential agent based wealth models

from the literature as well as presenting some variations and extensions. In line

with the data we view each agent as a household. We focus on modelling positive

wealth for a fixed number of agents. Many of these models have not been applied

directly to wealth data but as they are characterised by their ability to produce

heavy-tailed distributions and power laws they are potential candidates. The models

we analyse come under the broad categories of hierarchy, exchange, feedback and

multiplicative processes. The hierarchy model is a static model showing how a

hierarchical arrangement of agents in terms of their wealth leads to power law

distributions. The exchange models are based on work from econophysics where

agents are viewed as particles and money, a subset of wealth, as energy. Each

monetary transaction is seen as a transfer of energy. The simplest exchange model

of repeated fixed transactions with no debt produces the Boltzmann distribution

[146]. Adjusting this model by making the exchange amount dependent on the

agent or having agents transact at a power law rate dependent on their wealth can

produce power laws. Finally we overview a balls in bins process with feedback and

study a number of multiplicative process models in both discrete and continuous

time. In the balls in bins process wealth entering the system goes to an agent

with probability proportional to a feedback function of their current wealth. In

the multiplicative process models the wealth of agents is determined primarily

by random multiplicative factors. We study the multiplicative process models

in both discrete time as difference equations and continuous time as stochastic

differential equations (SDE). The particular method of finding a stationary density

of an SDE using the Fokker-Planck equation is used to find SDEs with power law

tailed solutions [23].

In Chapter 3 we analyse further the balls in bins process with particular

power law feedback functions studied originally in the combinatorics literature [114,

118]. Many results are known for N = 2 agents however we study the general N ∈ N
case. In this model, which can be viewed as a Markov process, wealth is repeatedly

added to agents with probability proportional to the agents current wealth raised

to a power γ. Thus for γ > 0 those with higher wealth are more likely to gain more

wealth. For γ > 1 a power law emerges in the distribution as well as a monopolising

agent who gains almost the entire proportion of total wealth. An approximation to

2



the expected value of wealth is found at time t. We solve for the probability mass

function at time t of the balls in bins process via the master equation for equal

initial conditions of one unit of wealth. Additionally we add a fitness attached to

each agent and show this scales t in the resulting probability mass function and

expected wealth meaning that higher fitness predicts higher wealth. The fitness can

be thought of as qualities that give agents more success in gaining wealth such as

productivity or intelligence. We run some general simulations but note that even

though we use a binary tree search, see Appendix B, to speed up the process we

cannot simulate a realistic number of households in an appropriate amount of time.

The draw back of this model is relating wealth received by agents to a real world

context. Likewise it is unclear how to fit a fitness distribution for agents. However

the rich gets richer preferential attachment effect in this model is a natural concept

that is reasonable to think happens in the economy [10].

Finally, Chapter 4 more naturally models the reality as we base it on an

empirical relationship we see in wealth returns. Our main proposition is that an

agent with higher wealth is more likely to have higher wealth returns that are

proportional to current wealth raised to the power γ − 1. This model is a discrete

Markov multiplicative process identical to the Kesten process [88] other than the

power γ on a wealth component. This γ is found by fitting the returns relationship

with the data. The additive part of the model is fixed and viewed as wealth

independent savings correlated to initial wealth. The randomness in the model

is characterised by a pre-factor parameter fitted to the data with a heavy-tailed

non-central t distribution. Like with the balls in bins process when γ > 1 we

produce power law tails and extreme inequality in the long time limit. Inequality

increases rapidly until a critical region beyond which super-exponential growth sets

in. We run the model for both general and realistic initial conditions and as the

agents are independent it is feasible to run the model for approximately the number

of households in the UK over a reasonable time period. Although the UK real world

data shows fairly flat overall inequality during 2008-2016 this may not reflect the

reality of potentially growing inequality over the same period, see for example [7].

We show that over periods of increasing inequality the model can produce reasonable

results.
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Chapter 1

Empirical Analysis of Wealth

1.1 Introduction

Wealth, specifically net wealth, can be defined as the total of assets net liabilities

(or debts) [13, 9, 127]. Unlike GDP and income which are flows measured over a

period of time, wealth is a stock that can conceivably be measured at any point

in time with a certain value. Wealth can be both positive and negative and is

measured for different entities increasing in scale from, for example, individuals

to households to companies to nations. There are different types of wealth. In

the wealth and assets survey the types of household wealth are divided into four

components: physical, property, financial and pension [40]. However these wealth

categories are not standard and can be classified in different ways, see for example

[82]. We can measure wealth in nominal or real values. Nominal is the value at the

particular time measured, whereas real is the value adjusted to a particular time.

The difference between the nominal and real value is due to inflation. We shall

not discount inflation and thus will be analysing primarily nominal wealth. Wealth

at all scales has been increasing rapidly since at least the industrial revolution due

to many interlinked factors such as resources, population, technology and inflation

[103]. For example per capita real wealth in Britain between 1760-2000 increased

roughly ten fold [103, 80].1

We shall focus on the distribution of wealth at the level of households which

we refer to as agents throughout the thesis. By distribution we mean the abstract

mathematical probability distribution which is an approximation for how wealth is

distributed in reality. We view wealth as a continuous variable taking a continuous

distribution. One of the interesting aspects of the probability distribution of wealth,

1In these references we find real wealth increased roughly one hundred fold whilst population
increased only roughly ten fold.
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as with income, is its heavy tailed nature and the presence of a power law for the

very richest in society. The heavy tails reflect the skew in wealth at the top and the

possibility of comparatively extreme wealth values [146, 33].

1.2 Discussion of Wealth Data Sources

Alvaredo et al [8] mentions four main sources of wealth data in the UK: tax on

estates, tax on investment income, surveys and rich lists. Tax data is found very

early in civilisation and is recorded in Mesopotamian texts as early as 2500BC [108].

Taxation was also a key motivation behind the Domesday book, one of the first

surveys of wealth completed in the year 1086 by order of King William the conqueror

[102]. One of the first to estimate wealth using tax records was Vilfredo Pareto.

Using tax data from multiple countries and as early as the 16th century, Pareto

discovered the presence of power law tails by plotting on logged scale engineering

paper [117, 101].

In the modern age there have been two national sample savings surveys

for Great Britain in 1953 and 1954 which allowed for estimates of wealth [97]. The

potential of wealth surveys in the 1970s were discussed by The Royal Commission on

the Distribution of Income and Wealth, also referred to as the Diamond Commission

[129]. These surveys however were never carried through because the response rate

was thought to be too low [8]. The UK government’s view on household wealth

surveys changed when the British Household Panel Survey (BHPS) started collecting

household financial wealth data from 1995 [8]. Then in 2000 the Office for National

Statistics (ONS) planned for a longitudinal wealth and assets survey (WAS) for

Great Britain starting in 2006 [8, 40]. The WAS conducted by the ONS aimed to

address gaps in the knowledge of household wealth [40].

Rich lists attempt to quantify wealth of the richest in society. Two well

known rich lists are the Sunday Times rich list which has run annually from 1989

and the annual Forbes rich list starting in 1982 [53, 93]. The Sunday Times rich

list is conducted by the Sunday Times newspaper and is specifically for the richest

households in the UK. The Forbes rich list is conducted by the Forbes American

business magazine and looks at the world’s dollar billionaires. Rich lists are subject

to bias as they are unlikely to capture everyone who should be on the list [53]. Also

they are subject to human judgement as the lists are compiled by employees who

have access only to incomplete data [53, 93].

There are issues with both taxation and survey data. For example, problems

accurately measuring taxation data include avoidance and evasion and difficulties

5



tracking and valuing assets [8]. Surveys present their own issues mainly in the form

of potential differential non-response survey bias [145]. Differential non-response

survey bias is when particular groups of the population do not respond to the

survey. If these non-responder groups are more wealthy than is seen in the data

then the wealth distribution will be biased and may seem more equal than it actually

is. Plausible reasons for why non-responder groups could be more wealthy include

hiding wealth and miscalculation of assets. The WAS does attempt to compensate

for differential non-response bias via weighting, see Section 10.6 in [115].

We focus on three sources of wealth for our data analysis: the WAS biennial

data from 2008-20162 for Great Britain and the Forbes and Times rich lists. Thus

although throughout the thesis we discuss UK wealth we are mainly analysing Great

British wealth plus potential Northern Irish rich households from the rich list. An

advantage of these data sources is that they are measured at the household level

which makes estimation of the probability distribution possible. In contrast, many

early empirical studies of wealth were only in certain brackets of the population

making it hard to have a good sense of the whole probability distribution [97].

Indeed, the Forbes and Times rich lists aim to capture the entirety of the richest

households.

1.3 Heavy Tails and Power Laws

We now summarise some key definitions and theory on heavy tails to set the scene

before we fit to the wealth distribution. Letting W be a random variable (RV) with

probability measure P, then the tail is the probability that W takes a value greater

than some value w: P(W > w). In other words it is one minus the cumulative

distribution function (CDF) of W . We can approximate the tail of W with the

empirical tail:

Definition 1 (Empirical Tail). Let {w1, w2, . . . , wN} be an i.i.d. sample from a

random variable W . We define the empirical tail 3 of W as

PN (W > w) :=
1

N

N�

i=1

1wi>w (1.1)

where 1 is the indicator function.

Note that the empirical tail is one minus the empirical cumulative distribution

2We note that this survey is on-going but we only accessed fine-grained data during this period.
3Which more specifically is the empirical complementary cumulative distribution function.
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function (ECDF) [143]:

PN (W ≤ w) = 1− PN (W > w) =
1

N

N�

i=1

1wi≤w .

Many results for the ECDF can by simple extension be applied to the empirical

tail. For example we note that the ECDF tends towards the cumulative distribution

function as the sample number increases to infinity, see specifically the Glivenko-Cantelli

Theorem in Chapter 19 of [143] for details. Thus by simple extension the empirical

tail tends towards the tail distribution as the sample number increases to infinity:

PN (W > w) → P(W > w) as N → ∞ .

An important tail to consider is that of an exponential distribution with tail

P(W > w) = e−λw, λ > 0, w > 0 .

On a graph of w versus P(W > w) with a logged scale y-axis (a semi-log plot) the tail

of the exponential distribution is then a straight line. A heavy-tailed distribution,

such as a lognormal distribution, turns upwards on a semi-log, and a light tailed

distribution such as the Weibull distribution, which we shall see in Section 1.4.5,

turns downwards, see Figure 2.8 of [41]. A distribution that is heavy tailed has

a tail distribution that approaches 0 less rapidly than an exponential tail and so

has a greater probability of higher values than an exponential. Conversely a light

tailed distribution has a tail distribution that approaches 0 more rapidly than an

exponential tail and so predicts higher values less often than an exponential and

consequently also a heavy tail [41]. Note we can compare two tails by saying one is

lighter/heavier than another if it approaches 0 more/less rapidly.

There are several ways to mathematically define a heavy tailed distribution,

see Chapter 2 of [61]. We choose the following definition of a heavy tailed distribution

relating the tail convergence to the exponential tail convergence described in the

previous paragraph:

Definition 2 (Heavy-tailed distribution). We call the probability distribution of W

heavy-tailed if the following is satisfied:

lim
w→∞

P(W > w)

e−λw
= ∞ ∀ λ > 0 . (1.2)
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This definition is the one used in [109] which goes into much more detail on

what we overview in this section. We note that the faster the limit (1.2) tends to

infinity the heavier the tail.

We now briefly present some classes of heavy tailed distribution. Firstly,

we consider subexponential distributions which is proved to be heavy tailed in

Lemma 3.2 of [61]. The name subexponential was originally chosen as the tail

of a subexponential distribution decays more slowly than an exponential tail which

is precisely the definition of a heavy tail given above in Definition 2. We present

the following definition seen in [69]:

Definition 3 (Subexponential distribution). Suppose W1,W2, . . .Wn are i.i.d. positive

RVs with some probability distribution. Then this distribution is subexponential if

lim
w→∞

P(max(W1, . . . ,Wn) > w)

P(W1 + · · ·+Wn > w)
= 1 . (1.3)

We can see from Definition 3 that subexponential distributions are related

to a monopoly effect that will be seen in models presented later in the thesis. By

monopoly we mean that the wealthiest agent takes almost all the total wealth as the

total wealth in the system grows. This can be seen more concretely by the following

formulation of (1.3):

lim
w→∞

P(max(W1, . . . ,Wn) > w)|W1 + · · ·+Wn > w) = 1 (1.4)

which is true as the max(W1, . . . ,Wn) > w necessarily implies W1 + · · ·+Wn > w.

A second class of heavy tailed distributions is called regularly varying. Suppose

we have a function f such that

lim
w→∞

f(λw)

f(w)
=

1

λβ
(1.5)

for any real λ > 0 and β ∈ R. If β = 0 then f is called a slowly varying function and

if β > 0 then f is called a regularly varying function, see [133, 20] for extensive theory

relating to these functions. It can be shown that any regularly varying function f(x)

can be written as f(x) = l(x)xβ where l(x) is a slowly varying function [20]. When

the tail function is regularly varying we have the following definition [81]:

Definition 4 (Regularly Varying Distribution). The probability distribution of W

is called regularly varying if its tail distribution is regularly varying i.e. for some

8



β ∈ R>0

lim
w→∞

P(W > λw)

P(W > w)
=

1

λβ
∀ λ > 0 .

Regular variation can also be written as

P(W > λw) � 1

λβ
P(W > w)

using the notation [81]4:

f(x) � g(x) ⇔ lim
x→∞

f(x)

g(x)
= 1 . (1.6)

We now summarise some properties of regular variation:

RV.1 Subclass of subexponential: Regularly varying distributions are also

subexponential distributions but not vice versa, see Chapter 2 of [61].

For example a lognormal distribution is subexponential but not regularly

varying [98, 109].

RV.2 Moments: If W is a regularly varying distribution with parameter β

then the moments for k > 0, E[W k], are finite if k < β and infinite

otherwise [20].

RV.3 Closure: The weighted sum of i.i.d. regularly varying RVs is again a

regularly varying RV, under certain conditions the product of regularly

random variables is again regularly varying and a regularly varying RV

raised to some power is again regularly varying, see respectively Lemma

3.3, Section 4 and Section 5 of [81]

TakingH, S andR as the class of heavy tailed, subexponential and regularly varying

distributions respectively then as stated above we have the following containment

R ⊂ S ⊂ H .

A regularly varying distribution of particular interest is the power law tail

[64, 100]. This is defined as

P(W > w) =
α

wβ
, for w > wm > 0 (1.7)

4Here � is often written as ∼ .
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for some real parameters

wm, α and β (1.8)

greater than zero. We refer to β as the power law exponent. We note that equality

in (1.7) is often taken asymptotically (1.6). Indeed whether (1.7) has equality or is

asymptotic is referred to as strong and weak Pareto law respectively in early work

by Mandelbrot [99]. In this thesis we do not emphasise distinguishing between the

two. The Pareto distribution is defined by (1.7) with

α = wβ
m

and is the probability distribution for which the entire tail is a power law. It is

named after Vilfredo Pareto as mentioned in Section 1.2.

Power laws present themselves as straight lines on the tail plot of w versus

P(W > w) where both the axes are logged (also often called a ‘log-log plot’). The

parameter α shifts the tail up or down and the power law exponent β determines

the gradient in log-log space. Power laws with a smaller β or shallower negative

gradient are heavier. Tails which are less heavy than a power law, curve downwards

on a log-log scale. This shall be seen in plots in Section 1.4.

There is a scale invariance property of the power law:

P(cW > w) = cβP(W > w) , for some constant c . (1.9)

This implies that if wealth was inflated equally among the richest members of the

population that the power law exponent will not change and that inequality amongst

these members would remain the same.

By the fundamental theorem of calculus for continuous variables the probability

density of W also has a power law with

fW (w) =
αβ

wβ+1
for w > wm > 0 . (1.10)

Due to the high level of variability, unpredictability and complexity in the

social sciences trying to find economic laws as compared to scientific laws may be

futile. Despite this we could say that economics has particular tendencies, one of

which could be [91]

The wealth distribution has a power law tail.

Pareto posed that this tendency holds across all time and in all countries [29].

Originally Pareto thought that the entire distribution was a power law (i.e. a Pareto

10



distribution) however it was found that the power law only holds for the upper tail

(for wealth greater than some wm) [29]. Pareto also hypothesised that the power

law exponent was roughly constant and held at around β = 1.5 [29] however again

there is evidence that there is more fluctuation of the β across time and place. We

shall see in the next section evidence of the power law only holding in the upper tail

and relatively wide fluctuations in the β across time. Since Pareto there have been

many studies suggesting this power law tendency including evidence of power laws

in pre-industrial societies such as for Hungarian aristocrats in 1550 [130].

Wealth is not the only economic variable that has a power law distribution.

Related quantities such as income, city size, firm size, land ownership and financial

returns all exhibit power law distributions [64]. Indeed, power law distributions

appear in variables outside of economics and not only for continuous variables but

for discrete variables such as the degree distribution of internet topology, the number

of species per genus, the number of times words appear in a text (commonly known

as Zipf’s law), citation counts and YouTube views [31, 55, 104].

1.4 Fitting the Wealth Distribution

We shall use WAS survey data and rich lists to fit the UK wealth distribution.

Details of how we extract the data to form the empirical tail as seen in Figure

1.1 are in Appendix C.2. Our extraction of the survey data relied on fine grained

cumulative household versus cumulative wealth data. This enabled us to find an

approximation of N empirical tail points:

(wi,PN (W > wi))
N
i=1 (1.11)

Thus we did not produce the empirical tail directly from a sample5 as in Definition

1.

1.4.1 Power Laws in the Positive Wealth Tail

We note Figure 1.1 covers only positive wealth for the UK. The vast majority of the

survey empirical tail over the 2008-2016 time period is below £100 million (£108).

The Forbes (dollar) billionaires converted to pounds over the same time period

start from roughly £500 million whereas the Times rich lists start from roughly

£100 million. The colour coded empirical tails are plotted for biennial years from

5It is noted that direct WAS sample data is available from the UK data service [5]. However
the data downloaded there is presented in a complex form and it would be future work to analyse
it properly.
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2008 to 2016 along with the Forbes rich lists forming a gap from roughly £50 million

(£5 · 107) to £500 million (£5 · 108). Additionally we plot Times rich list data for

2019, 2020 and 2021.

Figure 1.1: Empirical tail distribution of positive UK household wealth for five
consecutive biennial time periods 2008, 2010, 2012, 2014, 2016 from WAS [116],

together with Forbes rich list data on dollar billionaires [1], and UK Times rich list
data from 2019, 2020 and 2021 (see appendix C.1). Dashed lines indicate power

law tails with power law exponents 2 and 1 for comparison.

Figure 1.1 is on a double log or, as mentioned previously a log-log plot, where

both the x and y axes are in a log base 10 scale. The standard base 10 is chosen for

ease of readability of the plot values. As mentioned in Section 1.3 power laws are

seen as straight lines on log-log plots. We can see immediately that the UK wealth

distribution over the time period does not follow a Pareto distribution as the entire

tail is not a straight line on the logged axes. In Figure 1.1 we plot power laws with

exponents β = 2 and β = 1 for comparison between the WAS rich and Forbes dollar

billionaires. We shall see later in the chapter that these exponents are not exact fits

but illustrate the clear difference in tail gradient from the survey rich to billionaires.

The power law exponent for both Forbes and Times rich lists appear in a

similar range. This rough agreement of exponent from two different data sources

indicates some accuracy in the rich list data. The difference in exponents from WAS

to rich lists appears to be significant and could suggest the distribution has two
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power law tails with different exponents. However as we have mentioned in Section

1.2, the seemingly two tailed power law structure could be due to differential survey

bias, see Section 1.5, and so in reality there may be only one power law tail. There is

evidence that this might be the case as when the WAS data is adjusted it is possible

to match the power laws of the survey and rich lists, see [7].

1.4.2 Wealth Mixture Distribution

Now assume the wealth distribution with RV W is on the domain (−∞,∞) 6.

SupposeW is a mixture distribution of two continuous distributions, one for negative

wealth (−∞, 0) with RV W− and the other for non-negative wealth [0,∞) with RV

W+. We note this mixture distribution is a simplification of what is found in [34]

which was originally presented in [43].7 The density of W is written in terms of the

densities of W− and W+ as the following:

fW (w) = θfW−(w) + (1− θ)fW+(w)

with parameter θ ∈ (0, 1) . Then the tail of W is written in terms of the tails of W−
and W+ as follows

P(W > w) = θP(W− > w) + (1− θ)P(W+ > w) . (1.12)

We note P(W− > w) = 0 for w ≥ 0 and P(W+ > 0) = 1 so that 1− θ = P(W ≥ 0)8

and θ = P(W < 0) . Therefore

P(W > w) = P(W ≥ 0)P(W+ > w) , for w > 0 . (1.13)

Likewise the CDF of the mixture distribution is

P(W < w) = θP(W− < w) + (1− θ)P(W+ < w) . (1.14)

where in particular P(W+ < w) = 0 for w ≤ 0 .

Now let us consider the absolute value of negative wealth or debt |W |, W < 0.

6Although we note that in reality wealth is bounded.
7In particular we avoid a separate unit mass distribution for zero wealth.
8By assumed continuity of the distribution we can disregard the inequalities thus P(W < w) =

P(W ≤ w) and similarly for the tail.
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For debt |w| with w < 0 we arrive at the following formulation of the tail

P(|W | > |w|) = P(W < w)

= θP(W− ≤ w) , from (1.14)

= P(W < 0)P(|W−| > |w|)) for w < 0 . (1.15)

1.4.3 Methods for Fitting Distributions to Wealth

We shall now describe how we fit parameters of chosen distributions to the wealth

data. It will be seen that the exponential and lognormal distributions both fit well

positive wealth before the power law tail. Therefore we first describe how we fit the

exponential and lognormal distributions. First from the data we estimate P(W ≥ 0).

Then we estimate the mean and median numerically of W+ using the alternative

expectation formula [77] and the 50th percentile of W+ as follows

µ+ := E[W+] =

� ∞

0
P(W+ > w)dw

m+ := Med[W+] = w s.t. P(W+ > w) =
1

2
⇒

= w s.t. P(W > w) =
P(W ≥ 0)

2
from (1.13) .

Then the exponential and lognormal fits to W for w > 0 give

P(W > w) = P(W ≥ 0) exp

�
− 1

µ+
w

�
with W+ ∼ Exp

�
1

µ+

�

P(W > w) = P(W ≥ 0)PLognorm(k,s)(W > w) with W+ ∼ Lognorm(k, s),

k = log(m+) and s chosen numerically with NLLS described below.

We now propose a method of non-linear least squares (NLLS), see Section 2 of [132],

to fit wealth numerically the parameters Θ of a chosen probability distributionD(Θ).

For N empirical tail values (1.11) we define the sum of squares of the difference of

the empirical tail and distribution tail across all empirical tail points wi :

SD(Θ) =
N�

i=1

(PN (W > wi)− PD(Θ)(W > wi))
2 .

We then minimise numerically over SD(Θ) to find approximate parameters for the

distribution:

Θ̂ = argmin
Θ

SD(Θ) . (1.16)
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We note we do not analyse the residuals, �i = PN (W > wi)− PD(Θ̂)(W > wi), and

assume they are roughly i.i.d. normal with zero mean. The cost function for the

approximated parameters Θ̂ is then

CD(Θ̂) = SD(Θ̂) . (1.17)

Finally we note that maximum likelihood estimation (MLE) is commonly used to

fit distributions. It is particularly convenient to use MLE when it gives analytic

estimators as for the Pareto distribution which we shall discuss in Section 1.4.6.

However for those distributions with no analytic MLE estimators numerical methods

have to be used and are not a topic of this thesis.

1.4.4 Empirical Results: Positive Wealth and the κ-generalised

Distribution

We now focus on fitting distributions to the empirical tail for positive wealth9 from

the WAS (excluding rich lists) for the particular years 2008 and 2016. We can see

the exponential and lognormal distributions fit positive wealth for roughly the first

90% of the wealth distribution reasonably well in both 2008 and 2016, see Figures

1.2 and 1.3. In 2008 the lognormal distribution fits to a reasonable extent up to

the first 99% of the positive wealth distribution, see Figure 1.2. However in 2016

the lognormal fits less well the top 10%, see Figure 1.3. In Appendix A.2 there are

exponential and lognormal parameter fits, see Tables A.1 and A.2, and tail fits for

all biannual years 2008-2016, see Figure A.1.

To fit the tail for positive wealth (1.13) we are interested in the tail value

P(W ≥ 0) which is the probability that a randomly selected member of the population

has positive wealth. Equally the CDF at 0, P(W < 0) = 1 − P(W ≥ 0), is the

probability that a randomly selected household has negative wealth. From our

empirical tail data we estimate the EDF at 0: PN (W < 0), as roughly 0.15 for each

of the biennial years 2008 to 2016. This means roughly 15% of households have

negative wealth which is likely an overestimate. It is stated elsewhere in the WAS

data that roughly 15% of households have wealth less than £20000 over the time

period [116].

As seen in Figures 1.2 and 1.3 we see visual evidence of power laws in

the upper tail for roughly the richest top 10% illustrated by the rough straight

lines. Thus we see a two part structure in the positive wealth distribution: the

9Strictly speaking two of the distributions we fit, the exponential and κ-generalised, will be for
non-negative wealth [0,∞) whilst the lognormal fit is for strictly positive wealth (0,∞).

15



first 90% or so of the distribution (discounting negative wealth) follows roughly an

exponential distribution and the remaining 10% or so follows a power law. This

two part structure has been observed previously, see for example Figure 5 in [146].

A distribution with these characteristics is the κ-generalised (κ-gen) distribution

[34]. For this distribution we first introduce the generalised exponential (gen-exp)

function expκ : R → R:

expκ(x) = (
�
1 + κ2x2 + κx)1/κ. (1.18)

for x ∈ R and deformation parameter κ ∈ R. The gen-exp function (1.18) was first

discovered in the context of non-linear kinetics in particle systems and has many

mathematical properties [83]. For example the gen-exp function has many properties

of the regular exponential e.g. expκ(x) expκ(−x) = 1, tends to a regular exponential

function as κ → 0 or x → 0 and is also a regularly varying function (1.5).

Using (1.18) the κ-gen distribution is defined by the following density10

fκ-gen(w) =
α

β

�
w

β

�α−1 expκ

�
−
�
w
β

�α�

�
1 + κ2

�
w
β

�2α (1.19)

with tail function

Pκ-gen(W > w) = expκ

�
−
�
w

β

�α�
(1.20)

for w ≥ 0, α,β > 0 and κ ∈ (0, 1). To fit the positive wealth distribution with κ-gen

we have from (1.13)

P(W > w) = P(W ≥ 0)Pκ-gen(W > w), for w > 0 .

It can be shown that the κ-gen distribution is a regularly varying distribution

(1.6), in particular it has a (asymptotic) power law tail (1.7), with

Pκ-gen(W > w) �
�
βα

2κ

�1/κ 1

wα/κ
.

Thus, in particular, we can approximate the κ-gen power law exponent as

βκ-gen =
α

κ
. (1.21)

Fits with the κ-gen distribution are shown in Figures 1.2 and 1.3. The

10We shall make it clear when we use β differently from the power law exponent.
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parameter fits for α, β and κ were found using NLLS (1.16).11 Several other

distributions also have a two part structure with a power law tail including Mittag-Leffler

[66], Stable [42], Dagum, Generalised Beta, Inverse Generalised Gamma [44] and

double Pareto Lognormal [124].12

In Appendix A.2 there are parameter fits for all WAS biennial years 2008-2016

positive wealth data with the κ-gen distribution, see Table A.3 and tail fit plots for

the remaining years, see Figure A.1.

If we include rich list data we have a two power law structure as seen in Figure

1.1. We find the κ-generalised distribution gives a similar fit with and without the

Forbes rich lists and is thus unable to detect the small number of UK Forbes dollar

billionaires. We are unaware of a non-mixture distribution for the entirety of positive

wealth that has two different power laws in the tail.

Figure 1.2: Empirical tail distribution of positive UK household wealth in 2008
with exponential, lognormal and κ-gen fits to WAS [116]. Parameter fits (to 2

decimal places or nearest whole number): P̂(W ≥ 0) = 0.83, exponential
µ̂+ = 336276, lognormal m̂+ = 257057, ŝ = 1.01 and κ-generalised α̂ = 1.13,

β̂ = 341405, κ̂ = 0.50 .

11MLE estimation is also possible for κ-gen, however as there are no analytic solutions, numerical
methods would need to be used. See Section 3.1.6 of [32] for an overview of MLE applied to the
κ-gen distribution.

12We attempted to fit a number of these distributions with NLLS but could not find fits as good
as the κ-generated distribution. We do not show these fits and further analysis with for example
MLE would be needed to confidently rule out that these distributions do not fit the data well.
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Figure 1.3: Empirical tail distribution of positive UK household wealth in 2016
with exponential, lognormal and κ-gen fits to WAS [116]. Parameter fits (to 2

decimal places or nearest whole number): P̂(W ≥ 0) = 0.84, exponential
µ̂+ = 485223, lognormal m̂+ = 328702, ŝ = 1.16 and κ-generalised α̂ = 1.00,

β̂ = 480765, κ̂ = 0.44 .

1.4.5 Empirical Results: Debt

Instead of using negative wealth let us consider the absolute value of negative wealth

|W−|. We fit this to a Weibull distribution as was done in Clementi et al. [34]. The

tail of the Weibull is found to be

PWeib(|W−| > |w|) = exp

�
−
� |w|

λ

�s�
.

for wealth w < 0 and s,λ > 0. We note that the Weibull distribution is a

generalisation of the exponential distribution which occurs when s = 1. The

exponential distribution was fitted to debt in the original mixture model [43]. We

note for s > 1 the Weibull distribution is light tailed which implies that high values

of debt are much less probable than high values of wealth which as we have seen is

heavy tailed.
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Then from (1.15) we find the tail of debt |W | for w < 0 is

P(|W | > |w|) = P(W < 0) exp

�
−
� |w|

λ

�s�
. (1.22)

See Figures 1.4 and 1.5 for the fit to debt (1.22) for 2008 and 2016 respectively

where we estimate P(W < 0) from the data and then using the NLLS method, as

described in Section 1.4.3, we fit parameters λ and s.

In Appendix A.3 we have the parameter fits in Table A.4 and tail plot fits

in Figure A.2 for all WAS debt data for biennial years 2008-2016 [116].

Figure 1.4: Empirical tail distribution of UK household debt from WAS [116] in
2008 with Weibull fit (1.22). Parameter fits (to 2 decimal places or nearest whole

number) P̂(W < 0) = 0.17, ŝ = 0.23, λ̂ = 100 .
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Figure 1.5: Empirical tail distribution of UK household debt from WAS [116] in
2016 with Weibull fit (1.22). Parameter fits (to 2 decimal places or nearest whole

number) P̂(W < 0) = 0.16, ŝ = 0.28, λ̂ = 261 .

1.4.6 Fitting Power Law Tails

We now focus on fitting a power law (1.7) to the upper end of the tail. Three

questions with regards to power law fitting of the wealth distribution tail are:

PL.1 Does the (upper) tail follow a power law?

PL.2 Assuming the distribution has a power law tail how do you fit the power

law: in particular how do you estimate the power law parameters? These

are wm, the value where the power law starts, α the log shift factor and

β the power law exponent (1.8).

PL.3 Are there potentially two (or more) power laws in the tail?

We shall address point PL.1 with discussion of a goodness of fit test in the

next Section 1.4.7. A basic visual test of PL.1 is, as mentioned previously in Section

1.3, the straight line seen in the empirical tail in log-log space. As mentioned in

Section 1.4.1 we plot in log base 10. Now this test can be misleading as non-power

law distributions can appear to exhibit a straight line log-log empirical tail such as

the lognormal [98]. However in our case we have reason to rule out in particular a
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lognormal as its fit does not capture the straight line shape of the upper tail, see

Figures 1.2 and 1.3.

Making the assumption that the tail is power law we shall now consider

question PL.2. To fit wm we again use a visual approach and set

wm : P(W > wm) = 0.1 . (1.23)

This seems to roughly agree where the exponential distribution stops fitting the tail

which is roughly for the top 10% richest households, see Figures 1.2 and 1.3. We

note that Section 3.3 of [31] contains a detailed description of more rigorous methods

to fit wm.13

Once our wm is chosen via (1.23) we then estimate the remaining power law

parameters α and β. We note that fitting the remaining parameters α and β with

a greater wm should theoretically give the same fits as for wm. This is because we

are just fitting the slope and shift further down the line in log-log space. We now

show three methods for fitting α and β given wm.

The first method is using ordinary linear regression (OLS). We present two

models with different error formulations on which we apply OLS. The first model

described in [110, 52] has multiplicative errors ε1 :

P(W > w) = αw−βε1 . (1.24)

Then taking logs we have

log10 P(W > w) = log10 α− β log10w + log10 ε1 ⇒
y = a+ bx+ ε (1.25)

where y = log10 P(W > w), a = log10 α, b = −β, x = log10w and ε = log10 ε1 is the

error term. By the Gauss-Markov Theorem (G-M) the OLS estimates â and b̂ for

a and b respectively are unbiased and have minimum variance if the errors ε have

zero mean, finite variance and are uncorrelated [106]. Taking for simplicity

log10 ε1 ∼ N (0, 1) (1.26)

i.i.d. then the G-M conditions are satisfied. We can then estimate the OLS power

13This was attempted but did not appear to give good results for our data and so is not presented
in the thesis and is left for future work.
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law parameters α and β as

α̂OLS = 10â, β̂OLS = −b̂. (1.27)

However transforming back (1.25) with estimators (1.27) gives

P(W > w) = α̂OLSw
−β̂OLSε1 .

Therefore if we predict with

P̂(W > w) = α̂OLSw
−β̂OLS (1.28)

we will be ignoring the factor ε1. Now assuming (1.26) we have that ε1 is a lognormal

distribution and so E[ε1] > 0. Therefore we will be biasing the prediction by on

average E[ε1]. Estimating ε1 with the residuals to account for this prediction bias

is discussed in [110].

The second model is the following with additive errors

P(W > w) = αw−β + ε2 , (1.29)

with the errors, ε2 , following the conditions of G-M. Assume for simplicity that

ε2 ∼ N (0, 1). Then

log10 P(W > w) = log10 α− β log10w + log10(1 + ε̃2)

with ε̃2 = ε2/(αw
−β). By Jensen’s inequality, as log is a strictly concave function

and all errors are assumed not to be equal, we have

E[log10(1 + ε̃2)] < log10 E[1 + ε̃2] = 0 .

Therefore the errors log10(1+ ε̃2) break the G-M condition and so the OLS estimates

are not guaranteed to be unbiased. Methods for correcting the prediction bias in

this case are seen in [52, 148].

In summary OLS provides a simple way to fit power laws however depending

on the errors the fits may be biased. We do not carry out an analysis of the errors

in this thesis and so use no corrections on the OLS prediction (1.28).

A second method to fit the power law parameters α and β is using NLLS, see

Section 1.4.3. Assuming the additive error model (1.29) then the NLLS estimators
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(1.16) are the following

(α̂NLLS, β̂NLLS) = argmin
(α,β)

N�

i=1

�
PN (W > wi)−

α

wβ
i

�2

. (1.30)

We note that (1.30) has no analytic solutions, see Example 2.1, p22 [132] and so

numerical methods must be used. Assuming the model (1.29), in particular that

the errors are i.i.d. with mean zero, and that (α,β) is in a bounded domain then

as the power law is continuous for α and β greater than zero the estimate (1.30)

exists, see Chapter 12 of [132]. Under a few more conditions (1.30) is consistent

and asymptotically unbiased, see again Chapter 12 of [132]. We note that (1.30) is

identical to maximum likelihood estimation on the model (1.29) assuming the errors

�2 are i.i.d. normal, see Section 2.2 of [132].

The final method we use is maximum likelihood estimation (MLE) on the

sample from the power law tail [31]. MLE assumes a distribution and maximises

over the parameter space to find which parameter value is most likely to generate

the sample. Now as we have mentioned, our data is of the form of N empirical

points (1.11). Note first we have the minimum wealth value for the power law ŵm

already chosen from (1.23). To generate an i.i.d. sample w = {w1, w2, . . . , wn} from

the power law tail, wi ≥ ŵm, for all i = 1, 2, . . . , n, we select ui ∼Uniform[0, 0.1] 14

and find the closest wi such that P(W > wi) = ui . As the entire sample is from

a power law we assume this sample is from a Pareto distribution, see section 1.3.

Thus the density of W given the sample w is assumed of the form

fW |w(w) =
βŵβ

m

wβ+1
.

The likelihood function, L(w;β), is the product distribution of the sample:

L(w;β) = fW |w(w)

=

n�

i=1

βŵβ
m

wβ+1
i

as wi i.i.d.

To maximise the likelihood function over β it is convenient to maximise instead over

the log-likelihood function l(w;β) = logL(w;β). As the log function is monotonically

increasing, maximising over the log-likelihood is the same as maximising over the

14Assuming the power law part of the tail is for the top 10% as in (1.23).
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likelihood. Thus

l(w;β) =
n�

i=1

(log β + β log ŵm − (β + 1) logwi)

= n log β − β
n�

i=1

log
wi

ŵm
−

n�

i=1

logwi

Then maximising over the log-likelihood by taking the partial derivative and setting

equal to 0,
∂

∂β
l(w;β) = 0, gives the maximum likelihood estimator for β as 15

β̂MLE =
n

n�
i=1

log
wi

ŵm

. (1.31)

For a summary of several properties of the estimator (1.31), in particular that it is

consistent and efficient, see [31]. We note however that the estimator (1.31) is not

unbiased. It can be seen, see Example 7.3.1, p428 of [76] that

E[β̂MLE] =
nβ

n− 1

so that (1.31) is biased however it is an asymptotically unbiased estimator. It is

proven in Theorem 6.2.2, p369 [76] that under certain mild regularity conditions

MLE estimators are asymptotically unbiased.

Then the prediction for the tail fitted to the sample is

P̂(W > w|w) =

�
ŵm

w

�β̂MLE

.

Now given w > wm where in our case ŵm is chosen from (1.23)

P(W > w|w) = P(W > w|W > ŵm)

=
P(W > w)

P(W > ŵm)
⇒

P(W > w) = P(W > ŵm)P(W > w|w) (1.32)

Therefore our power law prediction with MLE for the distribution W by (1.32) for

15We know this is a maximum by the second derivative test and assuming β̂ > 0.
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w > ŵm is

P̂(W > w) = P(W > ŵm)

�
ŵm

w

�β̂MLE

.

= 0.1

�
ŵm

w

�β̂MLE

, by (1.23)

and thus

α̂MLE = 0.1ŵβ̂MLE
m . (1.33)

We note that the MLE estimators for α and β, respectively 1.33 and 1.31, are the

same as the Hill estimators [73].

See Figures 1.6 and 1.7 for power law parameter fits with OLS (1.27) (with no

bias correction), MLE (1.31), (1.33) and NLLS (1.30) for 2008 and 2016 respectively.

We note in these figures we only show the tail from wm (1.23) onwards. The power

law exponents β roughly agree for MLE and NLLS but give significantly different

results compared to OLS especially in 2016. In 2016, visually the OLS method seems

to work better than the MLE and NLLS method however the log-log plot can be

deceiving due to most points occurring for lower wealth. We note the erratic nature

of the data points in this year.

We also plot the κ-gen fits in Figures 1.6 and 1.7 which are the same fits

from Figures 1.2 and 1.3 respectively. We can see that the κ-gen fits are in the same

approximate range with power law exponents (1.21) agreeing with the power law

fits in some years better than others.

In Appendix A.4 Tables A.5 and A.6 show the power law parameter fits and

Figure A.3 shows the tail plot power law fits for WAS biennial years 2008-2016 [116].
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Figure 1.6: Empirical tail distribution of positive UK household wealth greater
than wm (1.23) in 2008 with κ-gen fit and power law fits using OLS (1.27), MLE

(1.31), (1.33) and NLLS (1.30) from WAS [116].
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Figure 1.7: Empirical tail distribution of positive UK household wealth greater
than wm (1.23) in 2016 with κ-gen fit and with power law fits using OLS (1.27),

MLE (1.31), (1.33) and NLLS (1.30) from WAS [116].

Finally, motivated from Figure 1.1 we consider the possibility that the tail is

approximated by two power laws PL.3:

P(W > w) =





α1

wβ1
for 0 < w1,m < w ≤ w2,m

α2

wβ2
for w > w2,m

(1.34)

with all parameters in R>0 and β1 �= β2. We know of no literature for this case

and instead it has been assumed that the appearance of two power laws is due to

survey bias as discussed in Sections 1.2 and 1.5. Thus it has been thought that

there is in reality only one power law in the tail [145]. We shall show reasoning

for this bias distortion in Section 1.5. However the extent of the difference in the

power law exponent between survey and rich lists gives plausibility to the two power

law hypothesis. Beyond the UK we see that the US does not exhibit two power

laws whereas many European countries such as France and the Netherlands do,

see appendix of [145]. One could hypothesise that a higher level of redistribution

avoided by the those in the rich lists could be responsible for the difference in power

law exponents in European countries.
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Figures 1.8 and 1.9 show fits for OLS (1.27) and MLE (1.33) and (1.31) to

the Forbes rich lists [1] as well as previous fits to the WAS richest 10% [116] as seen

in Figures 1.6 and 1.7. We note that in this case (possibly due to the small size of

the rich lists) we find no numerical solutions for NLLS parameter fits to the rich

lists.

In Appendix A.5 Tables A.7 and A.8 contain the power law parameter fits

and Figure A.4 shows the tail plot fits for Forbes rich lists biennial years 2008-2016

[1].

Figure 1.8: Empirical tail distribution of positive UK household wealth greater
than wm (1.23) in 2008 with power law fits using MLE (1.31), (1.33) and OLS

(1.27) from WAS [116] and Forbes rich list [1].
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Figure 1.9: Empirical tail distribution of positive UK household wealth greater
than wm (1.23) in 2016 with power law fits using MLE (1.31), (1.33) and OLS

(1.27) from WAS [116] and Forbes rich list [1].

1.4.7 Goodness of Fit

Throughout this section we have fitted various distributions to wealth data. We can

compare fits of different distributions by using a measure such as the cost function

(1.17) which is proportional to the mean squared error. However suppose we want

to compare the fitted distribution directly with the data itself. In particular we

want to know how likely the data comes from a specific distribution. For this

purpose we can use a goodness of fit test. One popular goodness of fit test is the

Kolmorogov-Smirnoff test (KS) [136, 75]. We can formulate the null hypothesis for

the KS test as

H0 : the sample data is generated by the particular distribution in question.

The KS test statistic is then defined as

T̂ := max
w>wm

|PD(Θ̂)(W > w)− PN (W > w)|

where PD(Θ̂)(W > w) is the tail fit of a particular distribution D(Θ) to the empirical

tail PN (W > w) of N data points. However if we estimate the parameters for the
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distribution using the data the KS test is no longer valid as the data and the fit are

not independent. To avoid this independence issue a Monte-Carlo approach can be

used that is outlined in [111] and described below:

MC.1 First fit the data with the chosen distribution. Then calculate the KS

test statistic T̂ .

MC.2 From the fitted distribution generate n samples and for each sample i

fit again with the distribution and calculate the KS test statistic T̂i to

the fit.

MC.3 The p value for H0 is then the proportion of sample test statistics greater

than the data test statistic

p =
1

n

n�

i=1

1T̂i>T̂ .

We attempted this Monte-Carlo approach for the power law fits on the power law

proportion of the WAS data (not including the rich list data) and found p-values

of 0 thus rejecting the power law hypothesis. This agrees with wealth data studied

by Clauset et al [31]. For this Monte-Carlo method to give p-values that do not

reject H0 the original data would have to fit the distribution with no more error

than artificially sampling from the distribution. This test may be too harsh and a

more lenient method may be studied for future work. The existence of the power

law assumption in the wealth distribution in this thesis therefore rests primarily on

the inexact log-log visual straight line test.

1.5 Bias in Survey Data

As previously discussed in Sections 1.2 and 1.4.6 the presence of bias in the survey

may account for the difference in the exponents of the power laws between the survey

and rich lists as seen in Figures 1.1, 1.8 and 1.9. To show why this is possible we

will set up a simulated sampling situation which is a simplified version of what is

done in [145]. Assume there are 27 million households, a rough estimate for the

number of households in the UK [116], and that the richest top 10% follow a Pareto

distribution with wm = 106 and β = 1.3. From the top 10% of the population

we sample without replacement n = 3000 households, roughly the same number of

the top 10% in the wealth and asset surveys [116], in two ways. Firstly we sample
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uniformly, secondly according to the rule

P(household i sampled) =
wγ
i

n�
j=1

wγ
j

(1.35)

where wi is the wealth of household i and γ < 0 so that we bias against choosing

wealthier households. As mentioned in Section 1.2 this is an example of differential

non-response bias. Figure 1.10 shows the results of the simulations with the two

types of sample. As can be seen the uniform sample has very similar exponent to

the population but the biased sample with γ = −1 has an exponent that increases

significantly. Thus with high bias it is possible that the survey data has an exponent

that is significantly higher than the rich list exponent. However we question whether

this level of bias is present in the survey data. As mentioned in the previous section

the presence of both one and two power law tails are apparent in other countries with

for example two tails in France whereas just one in the USA, see online appendix

of [145]. It would be future research to completely determine whether one or two

power laws are present in wealth data and how this differs between countries.

Figure 1.10: Sampling experiment: start with population top wealthiest 10% 2.7
million from Pareto(106, 2) (blue) then sample 3000 from this top 10% uniformly
(orange) or with power law rule (1.35) with γ = −1 biasing against choosing

wealthy households (green). Power law fits are with MLE (1.31), (1.33)
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1.6 Wealth Inequality

Though not the main focus in this thesis, wealth inequality has been a major topic of

investigation in economics [121, 44, 71] and is measured for simulations in Chapter

4. How wealth is distributed among society matters to a great extent as high levels

of inequality has likely been one of the reasons for social unrest throughout history

[39]. On the other hand it has yet to be seen if a relatively equal modern society

is possible with equalising attempts often leading to more harm than good [87].

The presence of heavy tails and power laws in the wealth distribution indicates

there is vast inequality [17]. Large inequality seems to have occurred at a similar

time to when complex civilisation originated [128, 46]. It has been noted that

since the 1980s inequality has been rising amongst many nations globally [121, 9].

Potential contributing factors include globalisation, financialisation, decreased taxes,

increased tax evasion and avoidance, increased inheritance and domination of the

technological sector [121, 9, 12]. There is on going debate amongst economists about

what policies, if any, should be implemented to reduce inequality.

There are several measures of inequality each with their various merits [26, 37,

121]. In this thesis we use the standard Gini coefficient g ∈ [0, 1] and top 1% wealth

share s0.01 ∈ (0, 1]. The Gini coefficient, often used for measuring income inequality,

can be thought of as a measure of the difference between any two randomly selected

agents wealth. The top 1% wealth share is defined as the proportion of wealth

held by the richest 1% of the population. The standard formulation of the Gini is

calculated only for positive wealth as including negative wealth values can give a

g > 1 [28].

For a non-decreasing ordered sample of N agents’ wealth w1 ≤ w2 ≤ · · · ≤
wN with total wealth µ =

N�
i=1

wi we define16

s0.01 :=

N�

i>0.99N

wi

�
µ and g :=

2

N

N�

i=1

iwi

�
µ− N + 1

N
. (1.36)

We note that higher g and s0.01 indicates higher inequality bounded by the two

extreme cases:

1. Perfect or total equality: w1 = w2 = · · · = wN ⇒ g = 0 and s0.01 = 0.01;

2. Perfect or total inequality: wi = 0 for i = 1, 2, . . . , N −1 and wN > 0 ⇒ g = 1

and s0.01 = 1.

16We note there are various formulations for the Gini but we use the one given in [78].
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For a continuous probability distribution for positive wealth W+ defined by

probability P then g can be formulated as

g = 1− 1

E[W+]

� ∞

0
P(W+ > w)2dw (1.37)

The formula for g (1.37) was first found by Dorfman [47]. We note that g is only

well defined for power law tails with exponent β > 1 corresponding to a finite mean.

One of the primary issues with the Gini is that it does not cater well for extremes,

for example the Gini for a Pareto distribution with β > 1 is 1/(2β − 1) which for

all β > 3/2 is less than the Gini for an exponential distribution which is always 0.5

[78].

Estimates for the UK top one percent wealth share (see Figure 1.11, copied

here from [9]) decreased significantly from 1895 until around 1985, and has since

been increasing.17 We note that in the US estimates for top wealth shares have

increased in a more dramatic fashion as compared to the UK, see Figure 1 in [127].

From the WAS we find estimated Gini for UK total wealth has remained

relatively stable over the years 2008-2016 at around 0.6 [116]. We note that the

Gini can be calculated for different components of wealth as was done in WAS [116].

From 2008-2016 the Gini was highest for UK financial wealth estimated above 0.8

[116]. See Figure 1.12 for the Gini and top 1% wealth share for total wealth and

wealth components estimated from the WAS data over 2008-2016 using the Lorenz

curves [116]. We see a roughly flat measure of total inequality during this time,

slightly rising property wealth inequality and notable jumps in financial and pension

wealth inequality The WAS survey data, as well as likely exhibiting bias, may be

undervaluing certain assets and thus underestimating inequality [7]. As noted above

the Gini may not be adequate to pick up significant changes in the very wealthy. It

also requires a fair amount of granulated data to estimate perhaps explaining the

lack of historical Gini measures of wealth in the literature.

Another way of estimating inequality is looking at the value of the power law

β (1.7). Lower β indicates higher inequality as it means there is a higher probability

of richer agents. Looking specifically at the MLE estimates of β (1.31), we see in the

WAS that there were lower values in 2008 and 2010 and higher values in 2012, 2014

and 2016, see Table A.6 and Figure A.3. Looking at the Forbes rich lists we see no

real relationship in the βs, see Table A.8 and Figure A.4. This may be because in

the UK over these years we do not have many data points. Thus over this relatively

17Or more specifically non-decreasing may be a more accurate term as we can see from Figure
[9] there may be times of roughly flat wealth inequality in the 2000s.
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short time period of 2008-2016 we do not find any exact trends for inequality in

terms of the βs.

Figure 1.11: Top 1% UK wealth share, s0.01, from 1895-2013: Figure 1 in [9]

Figure 1.12: Gini, g, and top 1% UK wealth share, s0.01, estimated using the
Lorenz curve from WAS biennially 2008-2016 for total wealth and wealth
components [116]. Note the likely underestimate of s0.01 for total wealth in

comparison to Figure 1.11

1.7 Discussion

This chapter’s main focus was fitting the wealth distribution using the WAS and rich

list data. We discussed how it can be useful to use a mixture distribution to separate

negative and positive wealth. Using the NLLS method we find an adapted Weibull

and κ-generalised distribution fit well the debt and positive wealth distribution
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respectively. An analysis of residuals, different methods of fitting such as MLE and

a comparison of different distribution fits for wealth is left to future work.

We also gave three methods for fitting power laws to the upper tail. Linear

regression in log-log space, has been criticised because of issues in the errors which

we outlined. However we see that the linear regression method does give a rough

approximation for the β parameter. The NLLS method avoids the error transform

issue but as it is a numerical method the numerical solution may not be the optimal

one. Finally the MLE fitting method is both convenient as there is an analytical

solution and again suffers less of a bias issue compared to OLS as it is asymptotically

unbiased, see [30] for simulations demonstrating the bias. Thus when accuracy and

efficiency is required MLE is likely the best choice. We shall present various models

generating power laws in the upper tail in the following chapters.

We discussed that the KS Monte-Carlo test outlined in Section 1.4.7 was

insufficient to conclude the wealth data had a power law. But we felt it was

inconclusive due to the slightly erratic nature of the data. It is left to future work

to test more rigorously distributions fitted to wealth.

Finally we noted the change in exponent in the power law from WAS to rich

lists and showed how bias can cause a change in exponent. However we think that

this level of bias may be unlikely and that it could instead be caused by different

means of measuring wealth between the two data sources [7]. More extensive study

would be necessary to totally rule out that two power laws is not an artefact of

wealth data.
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Chapter 2

An Overview of Wealth Models

2.1 Introduction

In this chapter we review models that produce heavy tails or power laws which

as seen in Chapter 1, are a key feature of the wealth distribution. The stochastic

feedback model referred to as a balls in bins process with feedback or non-linear

generalised Pólya urn in the combinatorics literature, shall be analysed further for

particular cases in Chapter 3 and has been fitted to US wealth data [142]. In

Chapter 4 we shall run our non-linear extension of the Kesten process with realistic

UK wealth 2008 initial conditions using data presented in Chapter 1.

There have been several reviews of such models producing heavy tails, see

for instance [94, 123, 64, 111, 134]. We shall present a selection of models from the

literature as well as some variations. These models are by no means an exhaustive

list however they show that many types of mechanisms can produce heavy tailed

distributions and power laws. Throughout this chapter we view Wn or Wt as wealth

at discrete time n or continuous time t. However in these models we are quite loose

with what we mean by wealth and present some models that previously were applied

to related quantities like money or stocks.

As mentioned in the introduction the models fall into four categories of

hierarchy, exchange, feedback and multiplicative process. We further subdivide the

multiplicative processes into discrete and continuous time leaving the following five

categories:

1. Hierarchy (Section 2.2). This is a static model where we translate heavy tailed

distributions into a hierarchy. Hierarchies are seen in many social structures

including ones relating to wealth and we extend on Simon’s early 1957 model

[135] to see the link with the κ-generalised distribution.
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2. Exchange (Section 2.3). We review models in econophysics that relate the

exchange of money between agents to the transfer of energy between particles.

The basic model leads to the Boltzmann-Gibbs distribution and under certain

extra conditions we can produce heavy tails and power laws. A review of some

of these models can be seen in Yakovenko [146].

3. Feedback (Section 2.4). We focus on the model that has been referred to

as both a balls in bins process with feedback and a non-linear generalised

Pólya urn in the literature [49, 118] and, as mentioned above, has been fitted

explicitly to US wealth. We review key theoretical results from the combinatorics

literature. Further results as well as simulations for particular power law

feedback functions will be presented in Chapter 3.

4. Discrete time stochastic multiplicative process (Sections 2.5, 2.6 and 2.7). We

discuss proportionate growth which was first studied by Robert Gibrat [68]

and used in the seminal paper modelling income by D. G. Champernowne

[25]. Then we present key theory on the Kesten process, an extension of

proportionate growth, first analysed in detail by Harry Kesten [88]. A new

non-linear generalisation of the Kesten process is analysed in Chapter 4.

5. Stochastic differential equations or SDEs (Sections 2.8, 2.9, 2.10, and 2.11).

SDEs are the the continuous time versions of the discrete time multiplicative

processes. Geometric Brownian motion has famously been applied to stock

prices and produces a lognormal distribution. We discuss non-linear extensions

of GBM as well as the stationary Fokker-Planck equation to find stationary

solutions of SDEs often used in the econophysics literature. The well known

paper by Jean-Phillipe Bouchaud was one of the first to apply this method to

a model of wealth [23] and we also find an SDE that produces a stationary

κ-generalised distribution with the same methodology.

The models discussed in this chapter can also be classified into two classes:

stationary and non-stationary. In the stationary case we have

Wt → D(Θ) as t → ∞

where the quantity Wt tends to D(Θ) , some distribution with time independent

parameters Θ after some large time. In the non-stationary case, although Wt

may asymptotically be described by a particular distribution, the parameters of the

distribution will be time dependent. As noted in Section 1.1 wealth has been growing

rapidly since the industrial revolution suggesting that a non-stationary model is best.
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However a normalisation of wealth may be stationary and so in this case a stationary

heavy tailed distribution may be suitable.

Another important factor to consider is the initial distribution. For some

models it does not matter what the initial conditionW0 is, the asymptotic distribution

Wt as t → ∞ will be the same. However for other cases the asymptotic dynamics

will depend non-linearly on the initial condition. We shall focus more explicitly on

initial conditions for the models in Chapters 3 and 4.

Finally related to the initial condition one can consider the meaning of time.

How long the model captures certain dynamics and at which time the model starts

are important questions to ask. We shall run models with these points in mind in

Chapter 4.

The following quote sums up well the limits of modelling social phenomena

(where we can replace income with wealth):

The forces determining the distribution of incomes in any community

are so varied and complex, and interact and fluctuate so continuously,

that any theoretical model must either be un-realistically simplified or

hopelessly complicated.

The quote is by D. G. Champernowne, see Section 2 of [25], who was one of the

first to model income with stochastic methods. Like Champernowne we focus on

models that are un-realistically simplified and that inevitably do not explicitly take

into account many potentially important factors underlying the wealth distribution.

2.2 Hierarchy

Many human and animal societies are arranged in a hierarchy. The formation of

hierarchies and their stability can be analysed with models [72]. We shall present a

static hierarchical model for wealth which under certain circumstances produces a

power law. Our presentation here will generalise slightly the model first introduced

in [135] to produce a κ-generalised distribution. We note also that a static hierarchy

model has recently been extended to a dynamic model with multiple hierarchies [58].

Suppose we have a hierarchical structure where at each level l = 1, 2, . . . , n

there are a proportionally decreasing number of agents. In particular, suppose at

level l there are rn−l agents, r ∈ N>1, such that each agent at level l has wealth

value wl > 1. We note that the wealth is increasing with the levels thus

w1 ≤ w2 ≤ · · · ≤ wn .
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See Figure 2.1 and Table 2.1 for an illustration of this set up. For example with

r = 2 as seen in Figure 2.1 the number of agents halves as the level goes up by one.

Figure 2.1: Hierarchical structure with rn−k (here r = 2) agents at each level
k = 1, 2, . . . , n. Every agent at each level has the same wealth with higher wealth
at a higher level. Arrows are merely for display however one could think of a

dynamic model of agents going up and down the hierarchy as considered in [58].

Level number of agents wealth

1 rn−1 w1

2 rn−2 w2

...
...

...

n r0 = 1 wn

Table 2.1: Hierarchical structure levels with w1 ≤ w2 ≤ · · · ≤ wn .

In total then, there are

N =
n�

l=1

rn−l =
n−1�

i=0

ri =
rn − 1

r − 1

agents. WithWN as the discrete RV for wealth an agent chosen uniformly at random

from the N agents then we have for ω ∈ [ωl,ωl+1)

P(WN > w) =
1

N

n�

i=l+1

rn−i =
1

N

n−l−1�

i=0

ri

=
(rn−l − 1)(r − 1)

(r − 1)(rn − 1)
=

r−l − r−n

1− r−n
≈ r−l for large n
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Note in particular we have P(WN > ω) = 1 , ω < ω1 and P(WN > ω) = 0 , ω >

ωn. Note also we shall assume we can approximate WN as a continuous distribution

for large N . Now we shall consider wealth growing as a function of the levels l and

some constant value w0 > 1 thus

wl = f(l, w0) .

First suppose wealth grows linearly with the levels:

wl = lw0 . (2.1)

Then we have for ω ∈ [ωl,ωl+1)

logP(WN > w) ≈ −l log r

= − log r

w0
wl ⇒

P(WN > wl) ≈ exp

�
− log r

w0
wl

�

implying that in this case WN can be approximated by an exponential distribution

with parameter
log r

w0
.

Now suppose instead that wealth grows multiplicatively with the levels:

wl = wl
0 . (2.2)

Then we have for ω ∈ [ωl,ωl+1)

logP(WN > w) ≈ −l log r

= − log r

logw0
logwl ⇒

P(WN > wl) ≈ w
− log r/ logw0

l

which implies WN is approximated by a Pareto distribution with exponent

β =
log r

logw0
. We see (counter intuitively) that higher w0 wealth at the lowest level

and lower r meaning smaller numbers of agents at each level corresponds to lower

β or higher inequality.

We know from our empirical investigation from Section 1.4 that positive

wealth is fitted by an exponential distribution in the lower tail and a power law

in the upper tail. Our best fit for this distribution, see Section 1.4.4, was the
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κ-generalised distribution. Thus we want (1.20) for ω ∈ [ωl,ωl+1)

P(WN > w) ≈ r−l

= expκ

�
−
�
wl

β

�α�

with α,β > 0 and κ ∈ (0, 1). Using the fact that the inverse of expκ(x) (1.18) is[33]

logκ(x) :=
xκ − x−κ

2κ

and using this to solve for r−l = expκ

�
−
�
wl

β

�α�
we find the wealth at level l to

be

wl = β

�
rκl − r−κl

2κ

�1/α

= β

�
(aw0)

κl − (aw0)
−κl

2κ

�1/α

. (2.3)

where (2.3) is by setting r = aw0, a > 0.

With a = α = 1, β = 2 and κ ≈ 1 we have by substituting in (2.3) that

wl ≈ wl
0−w−l

0 ≈ wl
0 for high levels l. Also it can be seen using L’Hôpital’s rule that

lim
κ→0

logκ(x) = log x and thus with β = α = 1 and κ ≈ 0 and again substituting in

(2.3) then wl ≈ l log(aw0) and thus taking a = ew0/w0 we have wl ≈ lw0. Therefore

we can see that (2.3) is a generalisation of both (2.1) and (2.2).

2.3 Econophysics Exchange Models

Econophysics applies mathematical and modelling techniques from physics to economics

and was first coined by the physicist Eugene Stanley in 1995 [146]. These physics

techniques have been applied to many economic and financial phenomena [6, 138].

In particular econophysics methods have been applied to model money, income

and wealth of which many studies have been compiled by Chatterjee et. al. and

Yakovenko [24, 146]. In this section we model money, a subset of wealth, such

that we view total money as fixed in the system and as a medium of economic

exchange [146]. We relate Boltzmann’s kinetic theory of gases to the exchange of

money, where the transfer of energy between molecules or atoms is equivalent to

the transfer of money between agents. Agents can be thought of as individuals or

households in the economy. This analogy was first made by Yakovenko in 2001 [48]
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although Boltzmann himself remarked how his theory could potentially extend from

mechanical objects to sociology [146]. The Boltzmann-Gibbs theory states that the

probability of a system (we can think of this as a molecule or atom) with energy w

is the Boltzmann-Gibbs distribution with density

P(w) = Ce−w/T (2.4)

where C is a normalising constant and T is the temperature of the system. Note in

the continuous case with w ∈ R≥0 that (2.4) is identical to the probability density

of an exponential distribution with C = 1/T .

When making the analogy to money we set Wn(i) to be the random variable

for the amount of money an agent i has in a population of N ∈ N agents at time n.

We take time n ∈ N0 = {0, 1, 2, . . . } to be discrete.

Assume two different agents i and j chosen at random with money Wn(i)

and Wn(j) respectively at discrete time n. Consider an exchange of an amount

Δn(i) ∈ R from i to j at time n :

Wn+1(i) = Wn(i)−Δn(i) (2.5)

Wn+1(j) = Wn(j) +Δn(i) (2.6)

and thus

Wn(i) +Wn(j) = Wn+1(i) +Wn+1(j) .

Therefore the total money of the two agents before and after the exchange is the

same and money is conserved in the transaction. As this is true for all agents

exchanging with each other, money, like energy, is conserved in the system.

Now set the exchange amount to be fixed across time and agents: Δn(i) =

Δ > 0. Also impose a boundary condition of Wn(i) ≥ 0 for all n and i. Then

repeatedly choosing uniformly at random two unique agents i and j, i �= j, from the

set of N agents and performing the exchange from agent i to j, see (2.5) and (2.6),

the distribution of Wn tends towards a stationary Boltzmann distribution (2.4) as

n → ∞ [146]. We note however that this approximation is only true if the total

money in the system is much greater than the number of agents in the system [131].

The exact stationary probability mass function solution is detailed also in [131].

Without imposing any lower bound on the value ofWn(i) there is no convergence

to a stationary distribution. In this case agents form a roughly normal distribution

with increasing variance as agents money moves increasingly in both the positive

and negative direction, see [79] for an exact solution. Imposing a lower ‘debt’ bound
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of −∞ < −wm < 0 such that Wn(i) ≥ −wm also gives a stationary distribution

W which is proportional to a Boltzmann-Gibbs distribution (2.4) for w ≥ 0 with

T = wm + E[W ] [146] 1

Suppose we are again running repeated exchanges (2.5) and (2.6). However

we let the exchange amount be a proportion λn(i) ∈ (0, 1), potentially dependent

on agent i and time n, of the payers money:

Δn(i) = λn(i)Wn(i) . (2.7)

Assuming each agent has a positive amount of money then no agent can go into debt

but may go very close to 0. This form of exchange (2.7) is referred to as multiplicative

exchange [79]. Let us first focus on fixed λn(i) = λ ∈ (0, 1) independent of agent

i and time n. In this case there is a stationary distribution W [79]. If λ = 0.5 for

all agents, W is again an exponential distribution, for general λ �= 0.5 we have that

W is well fitted by a Gamma distribution. Exact solutions for the distribution of

W are found by using the master equation approach which we omit here2 [79]. It

can be seen that the higher the λ the less equal the stationary distribution with

the critical point at λ = 0.5 above which ‘unprofitable interactions are sufficiently

devastating that a large and persistent underclass is formed’ [79].

Now suppose the exchange amount is again a proportion of the payers money

(2.7) but the proportions for each agent are independent of the time step n but

dependent on the agent: λn(i) = λ(i). In this case choosing λ(i) from a distribution

with support [0, 1] such as a uniform or beta distribution we find evidence that the

distribution Wn as n gets large leads to power laws, see left of Figure 2.2. We note

that this power law formation is found in [27] for a more sophisticated exchange but

still based on fixed agent proportions λ(i) independent of time.

Another way to obtain a power law from an exchange model is related to the

feedback function in the balls in bins process in Section 2.4 and Chapter 3. Assume

that every agent’s money is positive with Wn(i) ∈ R>0 at each time n. Instead of

choosing the two agents for exchange in (2.5) and (2.6) uniformly at random, we

now consider choosing the agents for exchange with the following probability:

P(Agent i , j chosen for exchange at iteration n|Wn) =
Wn(i)

γ ·Wn(j)
γ

� N�
k=1

Wn(k)γ
�2 (2.8)

1Though we note that after results in [131] that this is again only true for
�

i Wn(i) >> N .
2We do however use this method in the balls in bins process in Chapter 3. It is future work to

analyse these exchange models in more detail using the master equation.
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with γ ∈ R≥0 and Wn = {Wn(1),Wn(2), . . .Wn(N)} . Thus agents with more

money are more likely to exchange for γ > 0 and we have the previous uniform case

for γ = 0. Now choose some fixed exchange amount Δn = Δ > 0 with a boundary

condition Wn(i) > 0 for all n and i. With γ > 1 we obtain a power law for the

distribution of Wn after a large n number of exchanges ((2.5) and (2.6)) with agents

chosen according to (2.8), for a particular case with γ = 3, see right of Figure 2.2.

Figure 2.2: Power law tails fitted with MLE (1.31), (1.33), for two repeated
exchange scenarios. Left: N = 1000 agents, all agents starting with w0 = 1000, 106

repeated exchanges, fixed lower bound at 1, with exchange amount proportional to
the payers money (2.7) with time independent, agent dependent proportion

λn(i) = λ(i) chosen from a uniform distribution between (0, 1). Right: N = 1000
agents, all agents starting with w0 = 1000, 108 repeated exchanges, with agents
chosen for exchange chosen by rule (2.8) with γ = 3 and fixed exchange amount

Δ = 50 .

2.4 Balls in Bins Process with Feedback

Let us consider N ∈ N agents with agent j having positive wealth Wn(j) ∈ N
at discrete time n ∈ {0, 1, 2, . . . }. We introduce the probability that an agent

gains a certain amount of wealth ω ∈ N at time n + 1 as follows, letting Wn =

{Wn(1),Wn(2), . . .Wn(N)} , then

P(Wn+1(j) = Wn(j) + ω|Wn) =
f(Wn(j))

N�
i=1

f(Wn(i))

(2.9)

where f : N → R>0 is some continuous function referred to as the feedback

function. Thus the probability that the agent j gains ω at time n is proportional

to some function of the agent’s current wealth.

We have made the simplifications that both wealth and ω are strictly positive
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and discrete and that f goes to a positive co-domain to guarantee a non-zero

denominator in (2.9). Therefore each agents wealth will either stay the same or

increase at each iteration. We also assume for simplicity ω is fixed though it could

be extended to a random value. We assume wealth is discrete rather than continuous

to make analogy to the following so-called balls in bins process with feedback [114].

Definition 5 (Balls in bins process with feedback). Set Wn(j) as the number of

balls in bin j out of N distinct bins at time n and (2.9) as the probability that ω

new balls go into bin j at time n + 1. Then repeated applications of (2.9) is called

a balls in bins process with feedback f .

We shall refer to the process in Definition 5 simply as the balls in bins process.

We note that as (2.9) only depends on the previous time then the discrete time RVs

Wn forms a Markov chain. Another way to think of the balls in bins process is

with a Pólya urn. For this analogy set Wn(j) as the number of balls of colour i out

of N distinct colours in an urn at time n and (2.9) as the probability that ω new

balls of colour i go into the urn at time n+ 1. Then repeated applications of (2.9)

in this case is known in the literature as an example of a generalised Pólya urn

[118]. This model was considered in the context of the economy by W. B. Arthur a

well-known figure in non-mainstream studies of economics [10].

We shall now introduce a definition of monopoly in the balls in bins process:

Definition 6 (Balls in Bins Monopoly). We define monopoly by bin jm in the balls

in bins process if there exists an nm ∈ N such that for all iterations n ≥ nm bin jm

takes every new ball added to the system almost surely.

Thus Definition 6 means that monopoly by an agent jm is achieved when for

all n ≥ nm

P(Wn+1(jm) = Wn(jm) + ω|Wn)
a.s.
= 1 .

We note that Definition 6 is stronger than one bin taking all but a negligible fraction

of the balls in the limit. Definition 6 states that one bin gets all but finitely

many balls. The following theorem gives a condition on the feedback function f

for monopoly to occur.

Theorem 1 ([90],[113]). Monopoly for some agent jm (as defined in Definition 6)

occurs with probability 1 in the balls in bins process with feedback f : N → R>0 if

the following is satisfied
∞�

i=1

1

f(i)
< ∞ . (2.10)
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Theorem 1 was first proved for the power function

f(x) = xγ (2.11)

with γ > 1 in Proposition 2 of [90]. It was extended to the more general form seen

in Theorem 1 which we see in [114] and was first developed in [113]. We present

essentially the same proof in [113] for feedback (2.11) in Chapter 3 where we relate

the discrete time model to continuous time. Although not explicitly stated as such

the balls in bins process with feedback (2.11) was used to model US wealth [142].

We shall now prove the following proposition (see Proposition 1 in [114])

which gives a class of feedback functions f such that (2.10) holds and so by Theorem

1 monopoly in the balls in bins process occurs.

Proposition 1 ([114]). Suppose we extend the domain of the feedback function f

from N to R≥1, i.e. f : R≥1 → R>0. Suppose also f is differentiable on R≥1,

increasing with f(1) > 0 and satisfies the following limit:

lim
x→∞

xf �(x)
f(x)

> 1. (2.12)

Then for this f , (2.10) holds.

Proof. If f satisfies (2.12) then by definition there exists n ∈ N and c > 1 such that

xf �(x)
f(x)

≥ c ∀x ≥ n ⇔

x
d

dx
log f(x) ≥ c ∀x ≥ n ⇔

log f(x) ≥ c(log x+ d) ∀x ≥ n, some d ∈ R ⇔
f(x) ≥ Dxc ∀x ≥ n, and D = ecd > 0 ⇒

∞�

i=n

1

f(i)
≤ 1

D

∞�

i=n

1

ic
< ∞ .

As f(1) > 0 and f is increasing we know f(x) > 0 ∀x . Thus �n−1
i=1

1
f(i) < ∞ and

so f satisfies (2.10). �

Thus if a feedback function f satisfies the conditions of Proposition 1 then

monopoly occurs in the balls in process. Examples of functions that satisfy (2.12)

are included in Table 2.2.
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f(x)

αxγ(log x)β with fixed α > 0, β ≥ 0 and γ > 1

xγ(α+ sinx) with α > 1 and γ > 1

αeβx with fixed α,β > 0

f(x) differentiable on R>1 s.t. ∃ c > 1 s.t. f(x) ≥ αxγ ∀ x ≥ c with fixed α > 0 and γ > 1

Table 2.2: Examples of functions satisfying (2.12).

Monopoly is an interesting result of the balls in bins process as we often

see a less extreme version of it in the economy. For instance market domination of

companies in multiple sectors such as steel and oil has happened numerous times

leading to very wealthy individuals such as Andrew Carnegie [125]. More recently

the advent of new technology has seen companies such as Google and Amazon

dominate their respective markets leading to their owners being at the top of the

rich lists [107]. Thus the monopoly of the balls in bins process occurring for feedback

function f satisfying Theorem 1 could lead one to suspect that a similar iterative

mechanism as in (2.9) does happen in the economy. However we recognise the

limitations of the balls in bins process type of monopoly modelling reality: in the

real world monopolies are not as strong and do not last ad infinitum.

If f satisfies (2.10) as well as two extra conditions which we do not include

here, see Definition 1 in [114], then f is called a valid feedback function and we

have the following two properties for the model with two bins:

B.1 Initial conditions matter: if one bin contains more than half of the

initial number of balls it is likely with high probability to never have

less than half the proportion of balls throughout the process and thus

be the monopolising bin, see Theorem 3 in [114].

B.2 The number of balls in the losing bin has a heavy tail: let L be

the number of balls in the losing (non-monopolising) bin then for large

w ∈ N the tail of the distribution of L is heavy, in particular if f is

the power function (2.11) with γ > 1 then the tail of L is a power law:

P(L > w) � c/wγ−1 for some c ∈ R>0, see Corollary 2 in [114].

We could hypothesise that something similar is true for more general N ∈ N bins.

We shall see evidence for this in Chapter 3. Assuming B.1 and B.2 do generalise

to N agents then we can relate this phenomenon to the wealth distribution. The
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fact that initial conditions dominate the outcome of the balls in bins process as in

B.1 could be compared to a lack of mobility within the wealth distribution. We

also know from our empirical analysis in Section 1.4 the wealth distribution exhibits

power law tails thus we also see the potential link to B.2.

2.5 Proportionate Growth

For this section and the next two Sections 2.6 and 2.7 we have N agents with the

wealth of agent i ∈ {1, 2, . . . , N} at discrete time n ∈ {0, 1, 2, . . . } denoted as Wn(i).

However for convenience we often do not refer to a particular agent and thus write

Wn instead of Wn(i).

Let us assume the following update rule for each of the N agents

Wn+1 = An+1Wn (2.13)

with An drawn i.i.d. from a RV at each time n and for each agent. Thus we have

N independent agents running in parallel. The solution to (2.13) for general n is

Wn = W0

n�

k=1

Ak. (2.14)

We could also write (2.13) in vector-matrix form:

Wn+1 = An+1Wn (2.15)

where Wn is a vector of size N of the agents wealth and An is an N by N diagonal

random matrix with the An of each agent on the diagonal. We note that we could

have dependence between the wealth of the agents if non-diagonal elements Ai,j of

An is drawn from a random variable that is not degenerate at 0.3 The solution to

(2.15) for general n is

Wn = AnAn−1 . . .A1W0 . (2.16)

Various convergence conditions related to the norm of the matrix productAnAn−1 . . .A1

have been studied [62, 89]. We note here for the case (2.13) that if An takes strictly

positive values then Wn becomes unbounded. This result is mentioned in [89] and

is the result of Kolmogorov’s three series Theorem, see Chapter IX Section 9 [57].

Equation (2.13) is known as Gibrat’s proportionate growth, named after

Robert Gibrat, who first studied the equation to consider a multitude of size distributions

3A RV X is not degenerate at 0 if P(X �= 0) > 0.
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including firm and city size [68]. Gibrat studied the case under whichWn approximates

a lognormal which can be seen as an application of the central limit theorem to the

log of the product in (2.14), see PG.2 below. We note that a particular form of this

model (2.13) was considered by Yule for the size distribution for the genera of species

[147]. A similar case was considered in the seminal paper for income generation by

Champernowne (although he was looking specifically at agents in different income

classes) [25]. Levy and Solomon considered this model specifically for generating

wealth through investment returns [95].

As we previously mentioned if An > 0 then (2.14) is unbounded, thus to keep

wealth bounded it can be convenient to introduce normalised wealth:4

wn :=
Wn

�Wn�
∈ [0, 1] (2.17)

where �Wn� :=
1

N

N�
i=1

Wn(i) is the ensemble average over the N agents at time n.

We now consider some specific cases of (2.13) producing heavy tailed distributions

labelled PG.1 and PG.2.

PG.1 An = a > 1 such that n is from some time independent distribution :

n ∼ D(Θ).

We can think of this case as every agent compounding some fixed amount

a at different speeds or over varying lengths of time. In this case (2.14)

becomes:

Wn = W0a
n.

Now suppose we approximate n with an exponential distribution, commonly

used for waiting times, then n ∼ Exp(λ). Then P(n > s) = e−λs and so

P(Wn > w) = P(W0a
n > w)

= P
�
n >

1

log a
log

�
w

W0

��

= exp

� −λ

log a
log

�
w

W0

��

=

�
W0

w

�λ/ log a

.

Therefore Wn ∼ Pareto(W0,λ/ log a) . Taking a = e we arrive at the

well known relation that if X ∼ Exp(λ) then W0e
X ∼ Pareto(W0,λ) .

4Note wn is N times the wealth fraction.
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PG.2 Suppose An are i.i.d. RVs with An > 0 and n large.

Taking logs of (2.14) gives

logWn = logW0 +
n�

i=1

logAi ⇒

logWn − logW0 =
n�

i=1

logAi

Now as the logAi are also i.i.d. RVs with µ := E[logAi] ∈ R and

σ2 := Var(logAi) ∈ (0,∞) then by the central limit theorem

n�
i=1

logAi − nµ

√
nσ2

d−→ Z as n → ∞

where Z ∼ N (0, 1). Thus we have the approximation for large n:

logWn − logW0 − nµ√
nσ2

≈ Z ⇔

Wn ≈ W0 exp
�√

nσ2Z + nµ
�
⇔

Wn ∼ W0 · Lognormal(nµ, nσ2) .

We also have the approximations for mean and variance of Wn by using

the formulae for mean and variance of the lognormal:

E[Wn] = W0 exp
�
nµ+ nσ2/2

�

Var(Wn) = W 2
0 (exp(nσ

2)− 1) exp(2nµ+ nσ2)

= (exp(nσ2)− 1)E[Wn]
2 .

However it is shown that these are poor approximations until a sufficiently

large n is reached [122].

We could also consider the bounded situation with normalised wealth

wn (2.17). Supposing An takes some value a with density f(a) then

P(wn+1 > w) = P(awn > w)

= P(wn > w/a)

=

� ∞

0
P(wn > w/a)f(a)da by the law of total probability.
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Now suppose there exists a stationary distribution wn → w∞ as n → ∞
which has a power law with tail P(w∞ > w) = α/wβ with α > 0 and

β > 0. Then substituting into the above gives

α/wβ = α

� ∞

0
(a/w)βf(a)da ⇔

E[Aβ
n] = 1 . (2.18)

Thus assuming there is a stationary distribution and An i.i.d. satisfies

(2.18) then the distribution has a power law tail. This heuristic solution

is discussed in the review in Gabaix [63]. It can be shown that if in

addition to (2.18) a positive lower barrier to wealth exists thus wn ≥
wl > 0 for all n and E[logAn] < 0 then the stationary distribution w∞
with a power law tail exists [137]. These conditions are similar to when

the Kesten process exhibits a stationary distribution which we see in

the next section.

2.6 Kesten Process

Let us now consider a similar multiplicative process to the proportionate growth

model (2.13) differing only by the additional RV Bn. Let us assume the following

update rule for each of the N agents:

Wn+1 = An+1Wn +Bn+1 (2.19)

where An and Bn are random variables and An is i.i.d. Then it can be shown, see

[88], that the solution to (2.19) for general n is

Wn =

n�

k=1

Ak

�
W0 +

n�

k=1

Bk

k�

i=1

A−1
i

�
. (2.20)

Assuming both An and Bn are both i.i.d. random variables and Bn is not

degenerate at 0 then (2.19) defines a Kesten process first rigorously studied by

Kesten [88]. We also assume that the variance of both An and Bn are finite. The

Kesten process has been used to model wealth where An is related to the wealth

rate of return and Bn is earnings after consumption or in other words savings [18].

For an overview of Kesten models applied to wealth see Section 3 of [17].
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We can write (2.19) in matrix form:

Wn+1 = An+1Wn +Bn+1

where Wn is a vector of size N of each agent’s wealth, An is an N by N diagonal

matrix with the An of each agent on the diagonal and Bn is a vector of size N of

the additive term Bn for each agent. Kesten considered the more general case where

An is non-diagonal and so the wealth of an agent at the next iteration is dependent

on other agents current wealth. We do not discuss here the dependent scenario.

Defining

µ := E
�
log |Ak|

�
∈ R and ν2 := Var

�
log |Ak|

�
∈ (0,∞) (2.21)

then we consider the following two cases on µ ; one leading to a stationary distribution

and the other non-stationary:

Suppose µ < 0. This is the stationary case where Kesten proved the

following result with exact details found in Theorem 5 in [88]: suppose there exists

a β > 0 such that E[|An|β ] = 1 and provided several other mild regularity conditions

on the distributions of An and Bn are satisfied,

Wn → W∞ :=
∞�

k=1

Bk

k−1�

i=1

Ai in distribution as n → ∞ , (2.22)

for all initial conditions W0. The stationary distribution exhibits a power law in one

or both tails with parameter β, i.e. the following limits

lim
w→∞

wβP(W∞ > w) and lim
w→∞

wβP(W∞ < −w) , (2.23)

exist and are finite, with at least one of them strictly greater than zero.

Suppose µ > 0. Following relatively recent results, see Theorem 2 ii) in [74],

this non-stationary case can be analysed as follows. Taking absolute values and

logarithms in (2.20) we have

log |Wn|− µn√
nν

=

n�
k=1

log |Ak|− µn

√
nν

+

log

�����W0 +
n�

k=1

Bk

k�
i=1

A−1
i

����
�

√
nν

. (2.24)
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By the CLT for i.i.d. random variables Ak we have

n�
k=1

log |Ak|− µn

√
nν

→ N (0, 1) in distribution as n → ∞ .

Since E[log |Ai|−1] = −µ < 0 we have

����W0 +
n�

k=1

Bk

k�
i=1

A−1
i

����
n→∞−−−→ �W∞ corresponding

to the limit in the stationary case. This implies
1√
nν

log

�����W0 +
n�

k=1

Bk

k�
i=1

A−1
i

����
�

→
0 and

log |Wn|− µn√
nν

→ Z ∼ N (0, 1) in distribution as n → ∞ . (2.25)

Therefore

|Wn|1/(
√
nν)

eµ
√
n/ν

d−→ eZ ∼ Lognorm(0, 1) in distribution as n → ∞ .

To leading order of the second summand of (2.24) we get a linear dependence on

the initial condition as n → ∞ 5

|Wn| � |W0| exp(µn+
√
nνZ) .

We note that [74] also includes the case with µ = 0 which we do not discuss here.

2.7 Generalising the Kesten Process

We could generalise the random iterative models in the preceding sections to the

following form

Wn+1 = fθn+1(Wn) n = 0, 1, 2, . . . (2.26)

where fθn+1 is some (random) function with argument (θn+1,Wn) where θn+1 ∈ Rk,

k ∈ N are i.i.d. RVs. The models analysed in Sections 2.5 and 2.6 as well as the

model we will see in Chapter 4 are summarised in Table 2.3.

5Here the symbol � means that Wn = W0 exp
�
µn +

√
nν2Z + o(

√
n)

�
as n → ∞, with

Bachmann-Landau (or little o) notation such that o(an)/an → 0 for all positive sequences (an : n ∈
N) .
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Label θn+1 fθn+1(Wn)

Proportionate growth (2.13) An+1 An+1Wn

(Linear) Kesten process (2.19) (An+1, Bn+1) An+1Wn +Bn+1

Non-linear Kesten process,

see Chapter 4, (4.3)
(αn+1, Sn+1) Wn + αn+1W

γ
n + Sn+1

Table 2.3: Summary of discrete random iterative models.

It is known that under certain conditions the generalised process (2.26)

produces a unique stationary distribution independent of initial conditions W0, see

Section 2.4 of Collamore et al. [35]. We also know, see Section 2.6, that the linear

Kesten stationary case produces power law tails. An interesting question is whether

there are models of the form (2.26) that produce non-stationary distributions with

power laws. We shall see evidence from simulations in Chapter 4 that the non-linear

Kesten process does produce such power laws.

2.8 Stochastic Differential Equations

In the remainder of the chapter we would like to find continuous time analogues of

the random discrete time iterative model (2.26) in the previous Section 2.7 that could

potentially model the wealth distribution. One way to do this is through a stochastic

differential equation (SDE). We define an SDE in the Itô convention noting that

there are other ways of defining an SDE such as Langevin and Stratonovich [65].

We shall now view Wt as the wealth of an agent at time t ∈ R≥0 , although

in the subsequent sections we may view Wt as modelling related quantities such as

stocks. Suppose we have an SDE in Itô form:

dWt = a(Wt, t)dt+ b(Wt, t)dBt (2.27)

where a(Wt, t) is the drift coefficient, b(Wt, t) is the diffusion coefficient and Bt is

Brownian motion. We note that it is possible to use the power law tailed Levy

process Lt instead of Brownian motion Bt. SDEs defined with Levy process noise

works well to fit power law tailed online video views [104]. We refer the reader to

Chapter 5 of [112] for conditions on a and b for uniqueness and existence results of

the (strong) solution to (2.27). We assume in general that strong solutions exist to

the SDEs presented in this chapter.

Now let p(w, t) be the probability density of a random variable Wt generated
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by the SDE (2.27). Then the Fokker-Planck equation is defined as follows, see

Section of 5.4 [65]:

∂p(w, t)

∂t
= − ∂

∂w
(a(w, t)p(w, t)) +

∂2

∂w2

�
b(w, t)2p(w, t)

2

�
. (2.28)

Now suppose Wt tends to a stationary distribution W with density p(w)

independent of t so that ∂p(w)
∂t = 0.6 Then a(w, t) and b(w, t) also become independent

of t which we now denote a(w) and b(w) respectively. Therefore (2.28) becomes

d

dw
a(w)p(w) =

d2

dw2

�
b(w)2p(w)

2

�

which has the following solution

p(w) =
p(w0)b(w0)

2

b(w)2
exp

�� w

w0

2a(s)

b(s)2
ds

�
(2.29)

where w0 is an arbitrary constant in the domain of W [94, 65].

2.9 SDE Agent Interaction: Bouchaud’s Model

We now present an SDE model of wealth with dependence between agents. We

denote the wealth of agent i at time t as Wt(i) and assume N ∈ N agents. We note

in this model that wealth is assumed to be non-negative: Wt(i) ≥ 0 . Consider the

following SDE for agent i :

dWt(i) = µWt(i)dt+ σWt(i)dBt(i) +
�

j �=i

(aijWt(j)− ajiWt(i)) dt (2.30)

where Bt(i) is Brownian motion for agent i and aij is the proportion of wealth that

agent i gains by exchange from agent j (and vice versa). Thus the summation term

in (2.30) can be viewed as economic exchange across all agents in the system. This

model defined by (2.30) was first introduced by Bouchaud and Mézard [23]. We

note that (2.30) is presented with the Itô convention as written in [94] rather that

the Langevin equation form seen in [23].

To make matters simpler we assume all agents exchange with the same fixed

rate aij = τ/N for some constant τ ∈ R. We define the ensemble mean

Wt := (1/N)
�N

i=1Wt(i) and the proportional wealth of agent i as wt(i) := Wt(i)/Wt.

6The stationary solution may only exist under constraints such as a reflecting boundary
condition, see Section 5.2.1 [65] for an overview.
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Substituting the fixed rates into (2.30) we find

dWt(i) = µWt(i)dt+ σWt(i)dBt(i)− τ(Wt(i)−Wt)dt . (2.31)

We note that (2.31) is also referred to as reallocating geometric Brownian motion

(RGBM) [19] and can be seen to be geometric Brownian motion (GBM), see next

Section 2.10, with a mean reverting term determined by the value and particularly

the sign of the reallocation rate parameter τ . For τ = 0 (2.31) is GBM, for τ > 0 we

have that growth in wealth reverts to the mean and that Wt becomes stationary with

an inverse Gamma distribution, see (2.34), and for τ < 0 we have mean repulsion

so that agents wealth is pushed either more positive or negative in an exponential

manner and no stationary solution exits [19]. Fitting (2.31) to US top wealth share

data from 1913 to 2014 gives a fluctuating τ that is on average positive until around

1980 after which it is on average negative [19] coinciding with the decrease then

increase in inequality as seen in Figure 1.11.

We now find the stationary distribution of (2.31) with τ > 0. Summing these

equations (2.31) over the N agents and dividing by N we obtain

dWt � µWtdt (2.32)

with solution Wt � W0 exp(µt). Now

dwt(i) =
1

Wt

(dWt(i)− wt(i)dWt) by quotient rule and cancellation of dt

� 1

Wt

�
µWt(i)dt+ σWt(i)dBt(i)− τ(Wt(i)−Wt)dt− wt(i)µWtdt

�

= −τ(wt − 1)dt+ σwtdBt

where the second line above is by substitution of (2.31) and (2.32). For ease of

notation we drop the i and so we have the following SDE equation to solve for:

dwt � −τ(wt − 1)dt+ σwtdBt . (2.33)

Note that (2.33) is no longer µ dependent. Using (2.29) to find a stationary solution

of (2.33) we have a(s) = −τ(s − 1) and b(s) = σs and assuming Wt ≥ w0 for all t
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we have

� w

w0

2a(s)

b(s)2
ds =

� w

w0

2τ(1− s)

σ2s2
ds

= −2τ

σ2

�
1

s
+ log s

�w

w0

=
2τ

σ2

�
1

w0
− 1

w

�
+ log

�w0

w

�2τ/σ2

and so by (2.28) the stationary density to (2.33) is

p(w) =
C

w2(1+τ/σ2)
exp

�
− 2τ

σ2w

�
, w > 0 (2.34)

which is an inverse Gamma distribution with C =
(α− 1)α

Γ(α)
where α = 1 + 2τ/σ2

and Γ(α) is the Gamma function. See [94] for this result which was first found for

the Langevin equivalent in [23]. We see that for large w this density (2.34) tends

to a power law and thus the stationary distribution of (2.31) has a power law tail

with exponent β = α. We see from (2.34) higher inequality either with smaller τ

meaning a smaller rate of agent interaction or higher σ2 corresponding to a higher

rate of diffusion.

An extension of the Bouchaud model that produces a generalisation of (2.34)

with another free parameter and incorporates negative wealth is seen in [67].

2.10 Analysis of Non-linear GBM

In this section we will analyse the following SDE

dWt = µW γ1
t dt+ σW γ2

t dBt (2.35)

with parameters γ1, γ2, µ,σ ∈ R . We shall call (2.35) non-linear geometric Brownian

motion (non-linear GBM) if γ1 or γ2 are not both equal to 0 or 1 . If γ1 = γ2 = 1

we have the well-known GBM with solution

Wt = W0 exp

��
µ− σ2

2

�
t+ σBt

�
(2.36)

and thus Wt has a lognormal distribution. GBM was assumed to model stock prices

in the derivation of the famous Black-Scholes equation for call options [21]. However

using GBM to model stock prices implies normal returns which has been found to
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be problematic due to evidence that stock returns can be heavy tailed [105]. Thus

to create heavier returns one may consider (2.35) but with different γ1 or γ2 so that

the growth and or random noise changes non-linearly.

With γ1 = 1 and γ2 = γ ∈ R (2.35) is known as the constant elasticity in

returns variance (CEV) used as an alternative to GBM to model stock prices [38].

It assumes that the diffusion term increases non-linearly with the stock price Wt.

Exact transition density solutions to the CEV model have been found involving

modified Bessel functions [96]. They were first studied for 0 < γ < 1 [38] but have

since been extended to γ > 1 [51] (where γ = 1 is exactly GBM). When fitting to

options data it has been observed that γ may oscillate above one but in the main is

below one [51]. For γ > 1 it has been found that the stationary solution is a power

law with exponent β = 2γ − 1 [70].

Relatively recently (2.35) has been analysed more generally in [70] and they

found that if γ2 > 1 and γ1 < 2γ2 − 1 then there is a stationary power law with

exponent β = 2γ2 − 1 (see (2.43) below). Note that the exponent only depends on

the exponent in the diffusive term.

It is interesting to observe when (2.35) reaches explosion (Wt = ∞ for t < ∞).

As noted in [70] the pure growth process reaches explosion for γ1 = γ > 1 . Thus

with µ �= 0, σ = 0 then the pure growth ODE

dWt = µW γ
t dt (2.37)

has solution

Wt =
�
W

−(γ−1)
0 − µ(γ − 1)t

�− 1
γ−1

which explodes in finite time for γ > 1 at

t =
1

W γ−1
0 (γ − 1)µ

.

Now considering µ = 0, σ �= 0 we have the purely diffusive process

dWt = σW γ
t dBt . (2.38)

The solution to this equation does not explode as in the pure growth process but

does exhibit ‘bursting’ behaviour where the process can reach arbitrarily large values

[70]. It is indicated in [70] that in general (2.35) is explosive when γ1 > 2γ2− 1 > 1

however it would be interesting to confirm this using Feller’s test of explosions [84]

A particular case of the model (2.35) has been studied as an SDE approximation
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to a GARCH process of price volatility and produces a stationary distribution with

power laws under reflective boundary conditions [92]. As is done in [94, 92, 70]

and illustrated in the previous Section 2.9 we shall find the stationary solution of

(2.35) using the stationary density formula from the Fokker-Planck equation (2.29).

Following the notation from (2.29) we have a(s) = µsγ1 and b(s) = σsγ2 and so

� w

w0

2a(s)

b(s)2
ds =

2µ

σ2

� w

w0

sγ1−2γ2ds

=





2µ

σ2
[log s]ww0

if γ1 − 2γ2 = −1 (2.39)

2µ

σ2

�
sγ1−2γ2+1

γ1 − 2γ2 + 1

�w

w0

if γ1 − 2γ2 �= −1 . (2.40)

Let us first analyse the case γ1 − 2γ2 = −1 (2.39) which was studied in [92].

Note that GBM γ1 = γ2 = 1 (but with a reflecting barrier) satisfies this case. If we

choose w0 > 0 as a reflecting barrier [94] then

� w

w0

2a(s)

b(s)2
ds =

2µ

σ2
(logw − logw0) if γ1 − 2γ2 = −1

and thus by substituting into (2.29) we have that the stationary distribution is a

Pareto distribution with density:

p(w) =
C

wβ+1
if γ1 − 2γ2 = −1 (2.41)

with β = 2(γ2 − µ
σ2 )− 1 and C = βwβ

0 , see [94] for this result. Note for the Pareto

distribution to be well defined we assume β > 0 . For γ1 = γ2 = 1 we see that

β > 0 translates to µ < σ2/2 and thus GBM (2.36) tends to 0 as t → ∞ which is

prevented by the boundary condition. From the power law exponent β we see that

fixing γ2 there is greater inequality either with higher µ or smaller σ2. We also see

counter-intuitively greater inequality with smaller γ2 . However from preliminary

simulations the presence of the ‘bursting’ phenomena discussed above is more likely

for higher γ2 .

Now consider the other case where γ1−2γ2 �= 1 (2.40) and in particular when

γ1 < 2γ2 − 1 and µ ,σ > 0 . (2.42)
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Then, again assuming the reflecting lower barrier w0 > 0 :

� w

w0

2a(s)

b(s)2
ds =

2µ

σ2(γ1 − 2γ2 + 1)
(wγ1−2γ2+1 − wγ1−2γ2+1

0 ) if γ1 < 2γ2 − 1

and thus by substituting into (2.29) we have that the stationary distribution is of

the following form

p(w) = Cwτ exp(−awα) if γ1 < 2γ2 − 1 (2.43)

where τ = −2γ2 < 0 , a =
−2µ

σ2(γ1 − 2γ2 + 1)
> 0 and α = γ1 − 2γ2 + 1 < 0 . We see

that if γ1 > 2γ2 − 1 then α > 0 and a < 0 leading to no stationary solution. With

γ1 > 1 the process is always finite and greater than 0 [70]. Then integrating over

(0,∞) (2.43) gives result 4 in [70] with the constant C calculated below for w0 → 0 .

For p(w) to be a density, which we see is a generalisation of the inverse Gamma

distribution seen in the last section, we must have

1 = C

� ∞

w0

wτ exp(−awα)dw

= Cα−1a−
τ+1
α

� 0

awα
0

z
τ+1
α

−1 exp(−z)dz, where z = awα with a > 0 , α < 0

= −Cα−1a−
τ+1
α

� awα
0

0
z

τ+1
α

−1 exp(−z)dz ⇒

C =
−α

a−
τ+1
α γ
�
τ+1
α , awα

0

� w0→0−−−−→ −α

a−
τ+1
α Γ

�
τ+1
α

�

where γ(x, y) :=
� y
0 sx−1e−sds is the lower incomplete Gamma function and Γ(x) is

the regular Gamma function. We note that for large w the density (2.43) approaches

a power law density (1.10). This indicates the stationary solution of (2.35) with

condition (2.42) has a power law tail. Again we see higher inequality for lower γ2

but note again higher γ2 indicates a greater level of ‘bursting’ [70].

2.11 SDE with κ-generalised Solution

We now show that the κ-generalised distribution which is a good model for positive

wealth, see Section 1.4.4, is the stationary distribution of the following SDE:

dWt = −1

2
dt+




�
1 + κ2 (Wt/β)

2α

α/β (Wt/β)
α−1




1/2

dBt (2.44)
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with α,β > 0 (noting here β is not the power law exponent, instead we shall use

βκ-gen as in Section 1.4.4) and κ ∈ (0, 1) with a reflecting boundary condition such

that Wt ≥ 0 for all t .

We see that the diffusion coefficient scales like �
�

κ/α
�
Wt for large Wt

so let us first analyse the simpler SDE

dWt � −1

2
dt+

�
κ/α
�
WtdBt .

We see this SDE is a special asymptotic case of the non-linear GBM (2.35) with

µ = −1/2, γ1 = 0, σ =
�
κ/α and γ2 = 1/2. Now as γ1 − 2γ2 = −1 we have the

density solution scales as (2.41)

p(w) � C

wβκ-gen+1

with βκ-gen = 2(γ2−µ/σ2)− 1 = α/κ which agrees with the κ-gen exponent (1.21).

This means the distribution is more unequal for smaller α/κ or equivalently greater

κ/α .

Going back to the original SDE (2.44)we again use (2.29) to find the stationary

solution. We have

a(s) = −1/2 and b(s) =




�
1 + κ2 (s/β)2α

α/β (s/β)α−1




1/2

.

Thus � w

w0

2a(s)

b(s)2
ds =

� w

w0

− α/β (s/β)α−1

�
1 + κ2 (s/β)2α

ds . (2.45)

As seen in (1.18) in Section 1.4.4 we have the generalised exponential function

expκ(s) := (
�

1 + κ2s2 + κs)1/κ .

Setting f(s) = expκ(g(s)) where g(s) is another differentiable function, it can be

shown using the chain rule and the property
d

ds
expκ(s) =

expκ(s)√
1 + κ2s2

[33] that

f �(s) =
g�(s)�

1 + κ2g(s)2
f(s). Thus we have

� w

w0

g�(s)�
1 + κ2g(s)2

ds =

� w

w0

f �(s)
f(s)

ds = [log f(s)]ww0
= log expκ(g(w))−log expκ(g(w0))
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and setting g(s) = −(s/β)α we have by substitution

� w

w0

− α/β (s/β)α−1

�
1 + κ2 (s/β)2α

ds = log(expκ(−(w/β)α))− log(expκ(−(w0/β)
α)) .

Therefore by (2.29) the stationary density solution to (2.44) is

p(w) =
α

β

�
w

β

�α−1 expκ (− (w/β)α)�
1 + κ2 (w/β)2α

, w ≥ 0 (2.46)

which is the probability density of the κ-generalised distribution. We note that

(2.44) is only one of many possibilities that gives the κ-generalised density as a

solution. Any drift and diffusion term satisfying (2.45) would be suitable and there

was no particular reason for the choice in (2.44).

2.12 Discussion

In this chapter we analysed a variety of agent based models from the literature along

with slight extensions that produce heavy tails and power laws under the general

themes of hierarchy, exchange, preferential attachment and multiplicative processes.

We presented models that are both stationary and non-stationary and emphasise

that non-stationary models may be more appropriate as wealth is generally a growing

quantity.

The hierarchy models show how wealth can be arranged in space whereas

the remainder of the models are concerned with how wealth changes amongst agents

through time. In the exchange models we model only a fixed quantity ‘money’, a

subset of wealth, that is repeatedly exchanged amongst agents. For the multiplicative

models we mostly forget exchange and let wealth grow over time. In the balls in

bins process with feedback, units of wealth enter the system and are received by

agents with probability proportional to their wealth. In the multiplicative process

models the wealth of agents grow through time by repeated multiplication of random

factors. The balls in bins process depends on every agent at each iteration whereas

the majority of the multiplicative process models are at the opposite extreme with

agents iterating independently.

Although we fit the non-linear Kesten process to the wealth data in Chapter

4, future work would be to fit more of the models to wealth. Comparison of the

models, for instance by analysing the returns, could show if there is a link between

them.
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Chapter 3

Balls in Bins Process with

Feedback

3.1 Introduction

In this chapter we shall analyse the balls in bins process with feedback, which we

shall refer to as the feedback model and was summarised in Section 2.4. In

particular we will be interested in the resulting probability distribution using the

master equation approach. We are particularly interested in the formation of power

laws and discuss in more detail the monopoly result as well as an approximation of

the expectation of wealth given the initial condition.

We can think of the feedback model as follows: at each time iteration a unit

of wealth enters the economy and goes to a particular agent with some probability

based on the agent’s existing wealth, w, proportional to wγ . The strength of the

feedback is dominated by a parameter γ where above the critical value γc = 1 the

model produces power laws with exponent β = γ − 1 and monopoly in the wealth

distribution.

For overviews of the feedback model see [113, 114, 49, 149]. We note there

are extensive theoretical results in the literature some of which were summarised in

Section 2.4. Many results relate to the case of N = 2 agents. Our main aim in this

chapter is to focus on the general N ∈ N case via the master equation which we

believe has not been done before. We shall first focus on the feedback function of

f(w) = wγ and then consider the more general fitness feedback function f(w) = αwγ

where α > 0 is the fitness. We note that we do not fit the model to wealth data but

this has been done for US wealth in [142].
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3.2 Model

We shall now set up the model. We denote the wealth of N ∈ N agents at iteration

n = 0, 1, 2, . . . by the set

In = {In(1), In(2), . . . , In(N)}

where In(j) is the wealth of agent j at discrete time n. We use I for wealth at discrete

time to differentiate from the continuous time process in the following sections. For

this model we consider only cases of positive wealth of a non-zero integer value:

In(i) ∈ N for all i ∈ {1, 2, . . . , N} and n ∈ {0, 1, 2, . . . }.
At each iteration n, a wealth packet, ωp ∈ N, is given to an agent j using the

following update rule1:

P(In+1 = In + ωpEj |In) =
In(j)

γ

N�
i=1

In(i)γ
(3.1)

for real γ ≥ 0 where Ej is the basis vector of N elements with zeros everywhere

but the jth place which is a one. Thus (3.1) is the probability that an agent j gains

wealth ωp and we see from the memoryless property of (3.1) that In is a Markov

chain on the state space S = NN . For γ > 0 the update rule (3.1) gives a wealth

advantage as the higher an agent’s wealth the more likely it is to grow further in

wealth. The case γ = 1 is the classical Pólya urn model of which a special case we

analyse in Section 3.5. We focus primarily in this chapter on the most applicable

case to wealth of γ > 1 which produces monopoly and power laws however theory is

also known for the γ < 1 case where each agent in the limit gains the same fraction of

wealth. Both the cases of γ = 1 and γ < 1 are discussed in [90, 49]. As mentioned in

the introduction, we shall refer to the model for In defined by the update rule (3.1)

as the feedback model. We note in this model agents can only gain wealth and

the overall wealth in the system is growing at a fixed rate of ωp and is an example

of a pure birth process [85].

Note the update rule is invariant under non-zero multiplication:

(αIn(j))
γ

N�
i=1

(αIn(i))γ
=

In(j)
γ

N�
i=1

In(j)γ

where α ∈ N and so the probability of a given agent gaining wealth is the same

1Feedback function f(x) = xγ in (2.8).
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under non-zero scalar multiplication of the system In. For the remainder of the

chapter we set the wealth packet as one: ωp = 1 .

3.3 Markov Process and Master Equation

We shall now relate the discrete time feedback model to a continuous time jump

chain with independent agents, see Chapter 5 of [144], Chapter 7 [65] and Section

6.9 of [139] for background theory in this section.

Let

Wt = {Wt(1),Wt(2), . . . ,Wt(N)}

be N agents at continuous time t ∈ R≥0 where Wt(j) ∈ N is the wealth of agent j

at time t. For an agent Wt(j) := Wt we define the transition probabilities as

pt(ω, ν) := P(Wt = ν|W0 = ω) ,

the transition rates

g(ω, ν) :=
dpt(ω, ν)

dt

���
t=0

and let pt(ω) := P(Wt = ω) where ν, ω ∈ N . We define the rates to be

g(ω, ν) =





ωγ if ν = ω + 1 ,

−ωγ if ν = ω ,

0 otherwise.

The master equation for the feedback model outlined in Section 3.2 for a

single agent is

d

dt
pt(ω) =

�

ν �=ω

(pt(ν)g(ν,ω)− pt(ω)g(ω, ν))

= pt(ω − 1)(ω − 1)γ − pt(ω)ω
γ . (3.2)

The rates indicate the agents jump to a new wealth value of ωp = 1 above

their current wealth. The intervals of time that the jumps happen are called the

holding times. The holding time (or waiting time) Ht(ω), is defined as the time

until an agent jumps to another value (when currently at value ω at time τ), and is

exponentially distributed with mean 1/|g(ω,ω)| = 1

ωγ
i.e.

Ht(ω) := inf{t > 0 : Wτ+t = ω + 1 : Wτ = ω} ∼ Exp(ωγ) . (3.3)
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Jump times are then defined as the cumulative sums of the holding times and are

the continuous times when an agent jumps in wealth. The process Wt is known as

a continuous time jump chain. As the holding times are independently distributed

exponential RVs the agents run independent of each other and never jump at the

same time. It can be shown that the distribution of Wt at the jump times is the

same as the distribution of the balls in bins process with (3.1) by exponential

embedding [113].2 In mathematical terms suppose tn , n ∈ N , are the jump times

then

In = Wtn

and

(Wt)t∈R≥0

is a Markov process on the state space S = NN .

3.4 Explosion Time and Monopoly

For a particular agent j at time t with wealth Wt := Wt(j), we find using the master

equation (3.2) a relationship for the time differential of the expectation. Thus

d

dt

∞�

ω=1

ωpt(ω) =

∞�

ω=1

ω
d

dt
pt(ω)

=

∞�

ω=1

ωpt(ω − 1)(ω − 1)γ −
∞�

ω=1

pt(ω)ω
γ

=
∞�

k=0

(k + 1)pt(k)k
γ −

∞�

ω=1

pt(ω)ω
γ , (k = ω − 1)

=
∞�

ω=1

pt(ω)ω
γ .

Where we note that the interchange of the differentiation in the sum in the first

equality above holds if
�∞

ω=1 ω
d
dtpt(ω) converges uniformly for t ∈ R , see Theorem

7.17 of [126]. Therefore
d

dt
E[Wt] = E[W γ

t ] . (3.4)

When γ = 1 we see equation (3.4) holds exactly with solution

E[Wt|W0 = ω0] = ω0e
t . (3.5)

2We note that one of the earliest references to this technique is [11].
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For a random variable X and a sufficiently differentiable function f on X we

can find an approximation of the first moment (expectation) E[f(X)] using Taylor

expansion. The approximation is (see Chapter 4 of [16])

E[f(X)] ≈ f(E[X]) +
f ��(E[X])

2
Var(X) . (3.6)

Taking our random variable as Wt and feedback function f(Wt) = W γ
t , with γ > 0

we find the approximation to be

E[W γ
t ] ≈ E[Wt]

γ +
γ(γ − 1)(E[Wt])

γ−2

2
Var(Wt) . (3.7)

Thus assuming the second term in (3.7) is small (which for high E[Wt] and Var(Wt)

holds for γ < 2 )
d

dt
E[Wt] ≈ E[Wt]

γ (3.8)

is a good approximation to (3.4).

Solving the first order ODE (3.8) for γ > 1 we find3

E[Wt|W0 = ω0] ≈
�

1

ωγ−1
0

− (γ − 1)t

�− 1
γ−1

. (3.9)

We note if every agent starts with ω0 then (3.5) and (3.9) will give the same

expected value for every agent and we will have no idea of the order of poorest to

richest agents. However if every agent starts with a different ω0 then the order from

poorest to richest shall be predicted to be the same as the initial order across time.

We see also from (3.9) that for γ > 1 we expect a non-linear dependence on initial

conditions.

For γ > 1, (3.9) ‘explodes’ (E[Wt] = ∞ for t < ∞) at the explosion time

t =
1

ωγ−1
0 (γ − 1)

. (3.10)

Another way to define the explosion time of an agent is the sum of the holding

times that an agent spends at each state

ω = ω0,ω0 + 1, . . . .

3We note we solve the equivalent ODE in Section 2.10.
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Thus a RV of the explosion time T can be written

T :=

∞�

ω=ω0

Ht(ω) . (3.11)

Then

Proposition 2. The explosion time T (3.11) of an agent for the feedback model has

finite expectation (expected explosion time) and variance for γ > 1 .

Proof. Noting the holding times for an agent are exponentially distributed Exp(ωγ)

with mean
1

ωγ
(3.3)

E[T ] = E

� ∞�

ω=w0

Ht(ω)

�

=
∞�

ω=ω0

E[Ht(ω)]

=

∞�

ω=ω0

1

ωγ
< ∞ for γ > 1 .

Where linearity of expectation holds in the second equality above as Ht(ω) ≥ 0 for

all ω and E[Ht(ω)] are finite, see Section 5.6 of [139]. Using the fact that the holding

times have variance
1

ω2γ
we have

Var(T ) = Var

� ∞�

ω=ω0

Ht(ω)

�

=

∞�

ω=ω0

Var(Ht(ω)) by independence of Hω

=
∞�

ω=ω0

1

ω2γ
< ∞ for γ >

1

2
.

Again the linearity of variance holds in the second equality above as Ht(ω) ≥ 0 for

all ω and Var(Ht(ω)) are finite by extension of the result in Section 5.6 of [139].

�

Therefore for each agent j the Markov process (Wt(j))t∈R≥0
for the feedback

model with γ > 1 can be described as a pure birth process that is explosive.

We now come to the following monopoly result. This is a particular case of

the more general result given in Theorem 1 in Chapter 2.4. We note the existing
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proofs of the following result, see Proposition 2 [90] and Theorem 1 [114].

Proposition 3 ([114]). For γ > 1, an agent j in the discrete time feedback model

will achieve monopoly (see Section 2.4 Definition 6).

Proof. We have N independent agents with independent explosion times Ti, i =

1, 2, . . . , N where T is defined in (3.11). As each Ti is a continuous random variable

with finite mean and non-zero variance (Proposition 2) we have that Ti �= Tj for

i �= j almost surely.

Thus we must have an ordering of the explosion times Ti :

T(1) < T(2) < · · · < T(N) < ∞ .

Hence, letting Tj = T(1) we have WTj (j) = ∞ and

�

i�=j

WTj (i)

is a finite random variable. Thus relating the continuous process back to the discrete

time feedback model this must mean that after a certain number of iterations every

new wealth packet goes to the monopoly agent j . �

We note in the proof above that the jump times of the joint process Wt do

not go beyond the smallest explosion time T(1) i.e if tn is the nth jump time then

limn→∞ tn = T(1) .

We also note that monopoly in the discrete feedback model means the rank

ordering of agents from poorest to richest will after a certain amount of time become

fixed. The rate at which this occurs is open to future research.

3.5 Solutions to the Master Equation and the Power

Law Relationship

Solution for γ = 0

For γ = 0 the master equation (3.2) is

d

dt
pt(ω) = pt(ω − 1)− pt(ω) . (3.12)
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It can be shown by substituting back into (3.12) that the mass function solution is

of a Poisson distribution

pt(ω) =
tω−ω0

(ω − ω0)!
e−t , ω = ω0, ω0 + 1, . . . .

Solution for γ = 1 and ω0 = 1

For γ = 1, this is a case of the classical Pólya urn and the master equation (3.2) is

d

dt
pt(ω) = pt(ω − 1)(ω − 1)− pt(ω)ω . (3.13)

With ω0(i) = 1 for all i = 1, 2, . . . , N it can be shown by substituting back into

(3.13) that the solution to (3.13) is

pt(ω) = (1− e−t)ω−1e−t , ω = 1, 2, . . . .

This is the probability mass function for a geometric distribution, the discrete

analogue of the exponential distribution, see Chapter 1 of Feller [56].

Solution for γ = 2 and ω0 = 1

For γ = 2 the master equation (3.2) is

d

dt
pt(n) = pt(ω − 1)(ω − 1)2 − pt(ω)ω

2. (3.14)

Assume ω0(i) = 1 for all i = 1, 2, . . . , N and so

p0(ω) =




1 if ω = 1

0 otherwise.
(3.15)

For ω = 1 the master equation (3.14) is

d

dt
pt(1) = −pt(1) .

which has solution with initial conditions (3.15)

pt(1) = e−t . (3.16)
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For ω = 2 the master equation (3.14) after substituting (3.16) becomes

d

dt
pt(2) + 4pt(2) = e−t

which has solution with initial conditions (3.15)

pt(2) =
1

3
e−t − 1

3
e−4t.

Doing the same again for ω = 3 we solve

d

dt
pt(3) + 9pt(3) =

4

3
(e−t − e−4t)

to find

pt(3) =
1

6
e−t − 4

15
e−4t +

1

10
e−9t .

From these solutions we make an ansatz for the general master equation (3.14) with

initial conditions (3.15) as

pt(ω) =

ω�

j=1

aω,je
−j2t (3.17)

with coefficients aω,j ∈ R. Substituting (3.17) into (3.14) and using the initial

conditions (3.15) we can find the relationship between the coefficients for n > 1

given as

aω,j =
(ω − 1)2

ω2 − j2
a(ω−1),j for j = 1, 2, . . . ,ω − 1 and

aω,ω = −
ω−1�

j=1

aω,j

a1,1 = 1 .

This shall be proved for general γ �= 0 in Proposition 4 below.

General solution for γ �= 0 with ω0 = 1

The method to reach the solution (3.17) for γ = 2 with initial condition ω0(i) = 1

for all i = 1, 2, . . . , N can be extended for general γ �= 0 :

Proposition 4. The master equation (3.2) for the feedback model with γ �= 0 and
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initial condition ω0 = 1 for all agents has the following solution for ω > 1

pt(ω) =

ω�

j=1

aγ,ω,je
−jγt (3.18)

with

aγ,ω,j =
(ω − 1)γ

ωγ − jγ
aγ,(ω−1),j for j = 1, 2, . . . ,ω − 1 ,

aγ,ω,ω = −
ω−1�

j=1

aγ,ω,j and

aγ,1,1 = 1 .

Proof. Taking the derivative of (3.18) we find the left hand side of the master

equation is

d

dt
pt(ω) =

ω�

j=1

−jγaγ,ω,je
−jγt . (3.19)

The right hand side of the master equation is found by substitution of (3.18). We

have for all ω = 2, 3, . . .

pt(ω − 1)(ω − 1)γ − pt(ω)ω
γ =

ω−1�

j=1

aγ,ω−1,je
−jγt(ω − 1)γ −

ω�

j=1

aγ,ω,je
−jγtωγ

=

ω�

j=1

((ω − 1)γaγ,ω−1,j − ωγaγ,ω,j)e
−jγt (3.20)

defining aγ,ω−1,ω := 0. Setting the summands of (3.19) equal to (3.20) we have

−jγaγ,ω,j = (ω − 1)γaγ,ω−1,j − ωγaγ,ω,j ⇒

aγ,ω,j =
(ω − 1)γ

ωγ − jγ
aγ,(ω−1),j for j = 1, 2, . . . ,ω − 1 .

Now from the initial conditions (3.15) and substitution into (3.18) we have

p0(ω) =
ω�

j=1

aγ,ω,j = 0 ∀ω > 1 ⇒

aγ,ω,ω = −
ω−1�

j=1

aγ,ω,j .
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Finally again from the initial conditions (3.15) and substitution into (3.18) we have

p0(1) = aγ,1,1 = 1 .

�

We see for fixed ω that pt(ω) → 0 as t → ∞ which makes sense for γ ≤ 1 as

every agent will go to infinite wealth values. For γ > 1 this also makes sense as we

have explosion at some finite time when viewing each agent individually. However

as we noted above the joint process will not go beyond the smallest explosion time.

We plot pt(ω) for an arbitrary value of t = 3 after numerically calculating

(3.18) for γ = 1, 1.3, 1.5, 2 in Section 3.7 Figure 3.3. We note that the sum only

converges numerically for appropriate t and ω that would be future research to

analyse more exactly.

Power Law at γ > 1

We shall see from simulations, see Figure 3.2 Section 3.7, that in a certain region

[ωm,ωM ] ⊆ N a power law appears after a long enough time in the feedback model

for γ > 1 .

Thus for ω ∈ [ωm,ωM ] assume

pt(ω) →
α

ωβ+1
as t → ∞ (3.21)

for some α,β > 0. Then we have

dpt(ω)

dt
→ 0 as t → ∞ . (3.22)

Substituting (3.21) into the master equation (3.2) we have for

ω − 1, ω ∈ [ωm,ωM ]

dpt(ω)

dt
= pt(ω − 1)(ω − 1)γ − pt(ω)ω

γ → α

(ω − 1)β+1
(ω − 1)γ − α

ωβ+1
ωγ as t → ∞

= α
�
(ω − 1)γ−(β+1) − ωγ−(β+1)

�
.

For (3.22) to hold with ωM < ∞ we require that

β → γ − 1 as t → ∞ . (3.23)
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For N = 2 existing theory proves that (3.23) holds, see Corollary 2 [114].

We also see evidence that (3.23) holds for N > 2 agents - see Figure 3.2 for N = 10

agents. In Figure 3.2 we run the feedback model 2000 times and find the empirical

tails of the aggregate of the runs excluding the monopoly agents.

3.6 Fitness

Now suppose to each agent j we attach a time and wealth independent ‘fitness’

ηj > 0 and adapt the update rule (3.1) so that an agent j gains a wealth packet ωp

at time k as follows:4

P(In+1 = In + ωEj |In) =
ηjIn(j)

γ

N�
i=1

ηiIn(i)γ
(3.24)

where we maintain the same notation and set up as in Section 3.1. We note again

that this update rule is invariant under non-zero multiplication. We shall call the

model defined by (3.24) the fitness feedback model. The fitness can be viewed

as a fixed factor attached to each agent that leads to a greater chance of higher

wealth. For instance this could be something like intelligence or productivity. This

is a slightly more general model of the feedback model studied in the last section

which occurs for equal fitness ηi = 1 for all agents i.

Applying exponential embedding so that the jump chain continuous time

process Wt = In at the jump times tn and using exactly the same theory applied

to the fitness feedback model as presented earlier in this chapter for the feedback

model we find the following analogous results. The master equation for a single

agent with fitness η > 0 is

d

dt
pt(ω) = pt(ω − 1)η(ω − 1)γ − pt(ω)ηω

γ

= η(pt(ω − 1)(ω − 1)γ − pt(ω)ω
γ) . (3.25)

For γ = 1 we can derive the equation

d

dt
E[Wt] = ηE[Wt]

with solution

E[Wt|W0 = ω0] = ω0e
ηt .

4With feedback function f(x) = ηxγ in (2.8).
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An approximation for the time derivative of the expectation for γ > 1 is

d

dt
E[Wt] ≈ ηE[Wt]

γ .

From this we find the approximate expected value of wealth at time t scaling with

η compared to (3.9) for γ > 1 :

E[Wt|W0 = ω0] ≈
�

1

wγ−1
0

− (γ − 1)ηt

�− 1
γ−1

(3.26)

which we see predicts higher expected wealth with both higher initial wealth and

higher fitness. See Figure 3.4 for simulated Wt versus the predicted expectation

(3.26).

It follows from (3.26) that monopoly occurs for γ > 1 with explosion time

becoming proportionally smaller by 1/η compared to the feedback model (3.10):

t =
1

ωγ−1
0 η(γ − 1)

.

As in Proposition 4 we find the following general solution for the master

equation such that all agents have the same initial wealth ω0 = 1 .

Proposition 5. The master equation (3.25) for the fitness feedback model with

γ �= 0 and initial condition w0 = 1 for all agents has the following solution for

ω > 1

pt(ω) =

ω�

j=1

aγ,ω,je
−jγηt (3.27)

with

aγ,ω,j =
(ω − 1)γ

ωγ − jγ
aγ,(ω−1),j for j = 1, 2, . . . ,ω − 1 and

aγ,n,n = −
ω−1�

j=1

aγ,n,j and

aγ,1,1 = 1 .

We note that the only difference in the solution (3.27) compared to (3.18) is

scaling the time t by the fitness η. This leads to the following particular solutions

comparable to those seen in Section 3.5:
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For γ = 0 the master equation is

d

dt
pt(ω) = η(pt(ω − 1)− pt(ω))

with the following Poisson solution

pt(ω) =
(ηt)ω−ω0

(ω − ω0)!
e−ηt , ω ≥ w0

with mean ηt .

For γ = 1 the master equation (3.2) is

d

dt
pt(ω) = η(pt(ω − 1)(ω − 1)− pt(ω)ω) .

With ω0 = 1 for all agents it can be shown the solution for ω ≥ ω0 = 1 is the

following Geometric distribution

pt(ω) = (1− e−ηt)ω−1e−ηt

with mean eηt .

For γ > 1 we again hypothesise that the limiting distribution follows a power

law for ω ∈ [ωm,ωM ] and using the same substitution approach in the last section

but with master equation (3.25) we see pt(ω) = α/ωβ+1 with β → γ − 1 as t → ∞ .

3.7 Simulations

We note that using a binary tree search detailed in Appendix B can significantly

speed up the run time of simulating the feedback models. The binary tree search is

an alternative to the bisection and in parallel approach seen in [142].

We summarise the following points relating to the simulations:

S1. The model is dependent on initial conditions and the rank order of agents

in terms of the magnitude of their wealth becomes fixed over time. We see

evidence of this in Figure 3.4.

S2. We see the presence of monopoly for γ > 1 and power laws excluding the

monopolistic richest agent. The higher the γ the more apparent this is as seen

in Figures 3.1. We also see evidence of the relationship between the power law

exponent, β = γ − 1 , from Figure 3.2 and 3.3.

S3. We present simulations not fitted to real world data. This has been done
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in [142] however as they acknowledge it is hard to relate certain aspects of

the model to the real world. Monopoly where almost all wealth belongs to a

single household is of course an asymptotic concept, and for real world data

only the transient behaviour of feedback models can be relevant. Therefore

the feedback models can only be fitted over a finite time period.

Figure 3.1 show the tails of the feedback model for one run at iteration

n = 106, 107, 108, 109 for N = 1024 agents5, initial wealth of all agents the same

at ω0 = 1, and γ = 1, 1.1, 1.2, 1.3 . We see that for γ = 1 the simulation is well

fitted by an exponential distribution in line with the theory in Section 3.5 and for

γ > 1 the appearance of power law tails and monopoly also in line with theory in

Sections 3.4 and 3.5. We can see the monopoly becomes more apparent for higher

γ. It is interesting to note that for γ > 1 some agents never receive a wealth packet

so stay at initial wealth ω0 = 1 whilst the monopoly agent receives close to the total

number of wealth packets added.

The relationship of the power law exponent β and γ, β = γ − 1 , seen in

Section 3.5, is not apparent for one run of the feedback model as in Figure 3.1.

However if we aggregate across runs (combine all values from each run) excluding

the monopoly agents we obtain a more accurate distribution and do see evidence that

β → γ − 1 . The example of N = 10 agents and aggregating over 2000 runs is seen

in Figure 3.2. Checking the power law relationship for higher numbers of agents

and different initial conditions and the speed of convergence through simulations

is subject to future investigation. We note that higher γ seems to lead to faster

convergence across runs when comparing γ = 1.5 and γ = 2 in Figure 3.2.

We numerically calculate the mass function pt(ω) for the feedback model

using the sum form (3.18) in Figure 3.3. We again see evidence for the exponential

mass function for γ = 1 and the power law mass function pt(ω) = α/ωγ (meaning a

power law exponent of β = γ − 1) for γ > 1 . We note that we obtain good results

from the sum (3.18) only for specific t and can only calculate the sum up to a certain

ω before numerical divergence.

5We choose N = 210 = 1024 agents as it is convenient for the binary search detailed in Appendix
B
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Figure 3.1: Tails of feedback model with initial wealth ω0 = 1 for each agent at
iteration n = 106, 107, 108, 109 for N = 210 = 1024 agents. Top left γ = 1, top right

γ = 1.1, bottom left γ = 1.2 and bottom right γ = 1.3. The β values are MLE
power law fits for the top 10% richest agents.

Figure 3.2: Tails of feedback model of aggregation of 2000 runs up to n = 104

iterations excluding monopoly agent with N = 10 agents, initial wealth ω0 = 1
with γ = 1.5 , left and γ = 2 , right. Power law tails plotted with exponents

β = γ − 1 .
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Figure 3.3: Calculation of mass function pt(ω) for the feedback model with ω0 = 1
at time t = 3 using the sum form (3.18) for γ = 1, 1.3, 1.5, 2 up to ω = 350 . For
γ = 1 we find an exponential distribution approximation fits well and for γ > 1 we
see evidence of the power law pt(ω) = α/ωγ for ω ∈ [ωm,ωM ], see black dashed

lines.

Figure 3.4 shows that (3.26) can give a reasonable approximation for

E[Wt|W0 = w0]. Specifically Figure 3.4 shows the results for γ = 1.1, initial

distributionW0 ∼ Bin(10·N, 1/N), arbitrary slightly skewed fitness η ∼ Gamma(9, 2),

N = 1024 agents at iteration n = 106, 107, 108, 109 .

To approximate continuous time t ∈ R at discrete time iteration n ∈ {0, 1, 2, . . . }
we numerically solve for t in the following

N�

i=1

In(i) =
N�

i=1

E[Wt(i)|W0(i) = ω0(i)] ≈
N�

i=1

�
1

ω0(i)γ−1
− (γ − 1)ηit

�− 1
γ−1

where ω0(i) and ηi is the initial wealth and the fitness respectively of agent i. In

other words we solve for t where the total wealth of the system at iteration k is equal

to the total wealth of the continuous time approximations (3.26) of the expected

wealth of agents. We could do this approximation for the feedback model without

fitness by using (3.9) instead of (3.26).
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Figure 3.4: Wt versus E[Wt|W0 = ω0] (3.26) for fitness feedback model with fitness
α ∼ Gamma(9, 2) and initial distribution W0 ∼ Bin(10 ·N, 1/N), γ = 1.1 and
N = 210 = 1024 agents. Top left, top right, bottom left and bottom right

corresponds to iteration n = 106, 107, 108, 109 . Lines correspond to y = x for
comparison.

3.8 Discussion

We have presented theoretical results of the balls in bins process with feedback

also referred to as a non-linear generalised Pólya urn model for the general N ∈
N numbers of bins/agents case. The primary feedback function studied was W γ

with extension to more general ηW γ with fitness η . We outlined the technique of

exponential embedding to view the discrete time feedback model in continuous time.

The master equation was used to find the explosion time and proof of monopoly for

γ > 1, an approximation for the expectation of wealth given initial conditions,

specific probability mass functions for all agents initially with one unit of wealth,

w0 = 1 , probability mass functions for general γ �= 0 in terms of summations and

prediction of the power law exponent β = γ− 1 for γ > 1 . We showed a few figures

illustrating that the simulations back up the theory.

There are several aspects of the model that could be analysed in more detail.

For instance exploring further via simulations the convergence of the power law
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exponent relationship β = γ − 1 for different numbers of agents. Related to this

we could analyse more generally how fast the rank ordering of agents changes over

time for different γ and how the model scales for different numbers of agents. One

could also investigate further how to attach fitness to agents. What fitness means in

terms of a quality like intelligence or productivity and how to find it’s distribution

would be inquiries for further study. Finally one could think of more complicated

feedback functions and methods to break up the monopoly of the model such as a

fluctuating γ or additional random factors.

Future work would include running the model with regards to UK data and

comparing the fits to US data [142]. However as mentioned in [142] it is difficult to

understand how the parameters of the model relate to the real world. A potentially

more intuitive approach to modelling wealth is considered in the next chapter.
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Chapter 4

Non-linear Kesten Process

4.1 Introduction

This chapter contains our work found in [60] and centres around an agent based

model for positive wealth generalising the Kesten process [88], see Chapter 2, Section

2.6. The inspiration for the model is based on an empirical relationship between

wealth and its rate of return. We find, from UK wealth data, evidence that the rate

of return has a rough power law relationship meaning that agents with higher wealth

are non-linearly more likely to have a higher return. We shall see from simulations

evidence that a power law emerges in the model along with a crossover point leading

to super-exponential growth and complete inequality. We find that this model, like

the balls in bins process, leads to unrealistically high inequality over long times.

However over shorter time periods the wealth biased returns could be a reason for

the increasing inequality seen generally since the 1980s.

4.2 Model

We consider independent agents (representing households), whose wealth at discrete

time n ∈ {0, 1, 2, . . . } (representing years) is denoted by Wn > 0. The focus of

this model is wealth growth rather than exchange, and we model the dynamics of

positive wealth only, keeping track of bankruptcy events after which we reset the

wealth value of the agent (see Section 4.5 for details). We assume that the wealth

of an agent over the time period n to n+ 1 changes via two mechanisms: returns

on existing wealth, where Rn+1 ∈ R denotes the corresponding rate of return

(ROR), and savings Sn+1 ≥ 0, resulting for example from excess earnings which

are independent of the current wealth of an agent (see Section 4.4.3 for details).
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This leads to the recursion

Wn+1 = Wn(1 +Rn+1) + Sn+1 with initial condition W0 > 0 . (4.1)

Here the RORs Rn and savings Sn are independent random variables. It is commonly

accepted that RORs depend monotonically on wealth [54, 14, 50], and we assume

the following power-law form,

Rn+1 = αn+1W
γ−1
n for some γ ≥ 1 , (4.2)

where αn ∈ R are i.i.d. random variables from some fixed probability distribution,

and with small probability can also take negative values. The very simple choice

(4.2) is consistent with empirical data for the UK presented in Section 4.4.1. We

are not claiming that this is the best or most detailed model for RORs, which have

been observed in some cases to exhibit an intermediate plateau rather than a strict

increase as a function of Wn (see e.g. Figure 2 in [50]). But our aim here is to

capture the most essential features in a simple model that can also be analysed

analytically, and it is of course possible for simulations to replace (4.2) by different

functions. We find that a non-central t distribution (see Appendix C.5 for details)

provides a good match with data for αn, which is discussed in Section 4.4, Figure

4.3.

Substituting (4.2) in (4.1) gives the recursion

Wn+1 = Wn + αn+1W
γ
n + Sn+1 . (4.3)

With γ > 1 we refer to (4.3) as a non-linear Kesten process. We now summarise

theoretical results of (4.3) for different γ values.

γ = 1. See Chapter 2 Section 2.6 for a more in depth summary of the

mathematical properties of this case. Here we have Rn = αn and Wn+1 = (1 +

αn+1)Wn + Sn+1 . The stationary version of this linear model has been introduced

and studied by Kesten [88], and the non-stationary asymptotic growth case is more

recently discussed in [74]. It is easy to see that the asymptotic behaviour of Wn

is dominated by the exponential en log |1+αn|, and we present details on the analysis

of both cases in Section 2.6. In the stationary case with µ := E[log |1 + Rn|] < 0,

the model is known to exhibit power-law tails in the limiting distribution, but for

wealth dynamics the non-stationary case of asymptotic growth is most relevant,

which occurs for µ > 0. Following results in [74], the asymptotics, see Section 2.6,
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is given by a log-normal distribution such that to leading exponential order 1

Wn � W0 exp
�
µn+

√
nν2Z

�
as n → ∞ , (4.4)

where ν2 := Var[log |1+Rn|] and Z ∼ N (0, 1) is a standard Gaussian. The rigorous

version of this result is subject to further reasonable and mild regularity assumptions

on the distributions of parameters (see Theorem 2(i) in [74]), and the leading order

behaviour is independent of the savings Sn. Since (4.3) is linear in Wn, the model

also has a natural scale invariance for the units of wealth (see discussion in [23]),

and the initial condition W0 enters (4.4) as a simple multiplicative constant.

γ > 1. To our knowledge the non-linear model has not been studied before.

Details are given in Section 4.3, where we find asymptotic super-exponential growth

to leading order,2

Wn �
�
W0e

D
�γn

as n → ∞ , (4.5)

where D is given by a convergent series depending on the distribution of αn and the

initial behaviour of the process. Again, we focus on the non-stationary case with

W0e
D > 1 . In contrast to the linear case, we see that the asymptotics depend in a

strong, non-linear way on the initial conditions and early dynamics of the process.

Therefore there is no central limit theorem on the logarithmic scale that leads to

(4.4), and we are not able to predict the asymptotic scaling distribution of Wn . But

numerical results presented in Section 4.5 show that the model exhibits power-law

tails with realistic shapes on relevant time scales.

For realistic initial conditions and parameters the dynamics follows initially

an exponential growth regime, and super-exponential growth sets in when the dominant

term in yearly gains in equation (4.3) changes from Wn to αn+1W
γ
n (additive savings

again do not influence the asymptotic behaviour). This means that the returns from

wealth in a single year become of the same order or higher than current wealth, which

happens for values around

Wn ≈ α
−1/(γ−1)
n+1 . (4.6)

Billionaire return data in Figure 4.1 below indeed confirm that RORs of around

100% or more can be achieved. From numerical results in Section 4.5 we see that

this crossover leads to a two-tailed structure of the distribution ofWn similar to what

1For a reminder the symbol � means that Wn = W0 exp
�
µn +

√
nν2Z + o(

√
n)

�
as n → ∞,

with Bachmann-Landau (or little o) notation such that o(an)/an → 0 for all positive sequences
(an : n ∈ N) .

2Likewise Wn �
�
W0e

D
�γn

means Wn =
�
W0e

D
�γn+o(γn)

.
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we see in the data in Figure 1.1, and we think this feature of the model provides

a promising explanation for this effect. Since we find in the next section that γ is

close to 1, (4.6) is very sensitive to the value of the random variable αn+1 (which is

raised to a large power), leading to a broad crossover region. While this crossover is

a realistic feature seen in data from the UK and other countries ([145], but notably

not in the USA, see online Appendix of [145]), the non-linearity also implies that

the model is not scale invariant and coefficients will heavily depend on the currency

unit.

We further find empirically that αn is mostly positive with a heavy tail,

but negative values are possible, see Figure 4.3 of Section 4.4.2, and thus Wn may

become negative. Since our dynamics (4.1) are not built to describe agents in debt,

we replace Wn with one of three replacement mechanisms discussed in Section 4.5.1.

We note that bankruptcy events where agents’ losses exceed their current wealth

are realistic and do occur, but in this paper we focus on modelling the dynamics of

agents with positive wealth.

We also note that both, the non-stationary linear and super-linear models,

exhibit monopoly, where the wealth fraction of the richest agent in a system of

N independent agents tends to 1 as time n → ∞ . This behaviour is well known

for distributions with heavy tails (see e.g. Table 3.7 in [69]), which include the

log-normal distribution in the linear case (4.4), and is only more pronounced in the

super-linear model with heavier tails. We present related numerical results for the

Gini coefficient and the top 1% wealth share in simulations, both tending to 1 in

the long-time limit. While of course this extreme limit is not realistic currently,

inequality measures are well known to increase since the 1980s (see summary in

Chapter 1, Section 1.6). This is consistent with understanding current wealth

distributions as transient behaviour of our model, which leads to monopoly if γ ≥ 1

remains unchanged over time. Of course we can only parametrise our model over

the current range of wealth values, and in order to get more realistic forecasts

for future wealth distributions, we would have to include also the lifetime and

inheritance dynamics for agents and the role of external influences (such as war or

other catastrophies). The simplified model we present here explains how current

wealth distributions can arise naturally from generic initial conditions, and we

discuss possible refinements for further study in Section 4.6.
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4.3 Non-Linear Kesten Process Theory

We now present the theory of the non-linear Kesten process in more detail. The

wealth returns Rn at time n are assumed to have the following relationships

Rn+1 =
Wn+1 −Wn − Sn+1

Wn
, Rn+1 = αn+1W

γ−1
n (4.7)

where αn is drawn from some i.i.d. RV and Sn ≥ 0 is wealth independent savings.

We then combine (4.7) to analyse the following non-linear process with γ > 1 as in

(4.3):

Wn+1 = Wn + αn+1W
γ
n + Sn+1 .

We can re-write (4.3) in the same form as a Kesten process

Wn+1 = An+1(Wn)Wn + Sn+1, where An+1(Wn) = 1 + αn+1W
γ−1
n

where now the prefactor on the Wn is non-linearly dependent on Wn. Thus, as

mentioned, we refer to (4.3) as a non-linear Kesten process. However we note

that unlike with a strict Kesten process we can allow savings to be zero.

We will see empirical analysis for fitting the distribution of αn, which could

be negative, in Figure 4.3 of Section 4.4.1. However here assume for simplicity that

αn > 0, which implies that Wn is increasing and strictly positive for all n ≥ 0.

Negative values of αn will lead to bankruptcy events as n → ∞ which we shall

consider in Section 4.5. Taking logarithms of (4.3) leads to

logWn+1 = log
�
Wn + αn+1W

γ
n + Sn+1

�

= γ logWn + log
�
αn+1 + 1/W γ−1

n + Sn+1/W
γ
n

�

so that Xn+1 = γXn +Bn+1, (4.8)

where Xn := logWn and Bn+1 := log(αn+1 + 1/W γ−1
n + Sn+1/W

γ
n ). Now using

(2.20) we get

Xn = γn
�
X0 +

n�

k=1

Bkγ
−k
�

so that
Xn

γn
d−→ X0 +D as n → ∞, (4.9)

where D :=
∞�
k=1

Bkγ
−k. Since Wn > 0 is increasing with n and αn are i.i.d., Bk are

bounded random variables, so D ∈ (0,∞) is a well defined random variable since
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γ > 1. Thus, as n → ∞, this implies to leading exponential order3

Xn

γn
� X0 +D so that Wn �

�
W0e

D
�γn

. (4.10)

We can see from (4.10) that Wn exhibits super-exponential growth4.

Crossover

We note a particular aspect of model (4.3) which we call the crossover. This

happens when the model starts to exhibit super-exponential growth and occurs

when the αn+1W
γ
n term starts to dominate the Wn term in (4.3) corresponding to

returns greater than 1. Solving

αn+1W
γ
n ≥ Wn we have

Wn ≥ 1

α
1/(γ−1)
n+1

(4.11)

and we find super-exponential growth happens for wealth values greater than (4.11).

We note that the αn are random so (4.11) is not an exact point but would correspond

to a region for typical values of αn.

4.4 Empirics

Before moving on to the simulations of the non-linear Kesten process (4.3) we

undertake some key empirical analysis to parametrise the model. We calculate

returns on wealth, Rn, and the prefactor, αn, and make statistical fits on these

variables. Although savings do not evolve with wealth as mentioned above, they

are correlated with initial wealth values of an agent as part of their social status or

fitness. To infer this dependence, we look at UK income and expenditure data for

the year 2016 [3, 2].

4.4.1 Returns Rn

As in Section (4.3) from (4.3) we rearrange to find the ROR as

3So that Wn =
�
W0e

D
�γn+o(γn)

as n → ∞ where o is again the Bachmann-Landau or little o
notation.

4Formally Wn exhibits super-exponential growth when lim
n→∞

Wn
cn

= ∞ for all c > 0 .
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Rn+1 =
Wn+1 −Wn − Sn+1

Wn
≈ Wn+1 −Wn

Wn
for billionaires. (4.12)

For wealthy agents, wealth gain is to a large extent dominated by returns on wealth,

so that Wn+1 − Wn � Sn+1 and savings can typically be ignored. The ROR is

then simply given by the wealth growth rate, which we will use to compute Rn for

billionaires, while we include savings to estimate ROR from survey data for other

agents.

As mentioned previously, fairly recent work [54, 14, 50] has suggested an

increasing wealth dependence on returns. We also find empirical evidence for this

from WAS as summarised in Figure 4.1, and assume a simple power-law relationship

as in (4.2) which is roughly consistent with the data.5 According to this relationship

we have

E[Rn+1|Wn] = µW γ−1
n , where µ = E[αn+1] . (4.13)

We fit the power-law exponent γ and the prefactor µ as shown in Figure 4.1. From

Figure 4.2 we see evidence that returns are independent across time and the variance

of returns is proportional to the square of the mean returns as wealth increases with

the particular fit,

var(Rn+1|Wn) ≈ 0.57E[Rn+1|Wn]
2 . (4.14)

Such a quadratic scaling relationship of mean and variance is common in multiplicative

processes, and consistent with our model assumption (4.2), as is explained in Appendix

C.3.

Note that the apparent structure in percentile returns data in Figure 4.1

for individual years does not constitute reliable information in our view, since the

variation of the points is artificially decreased due to our numerical procedure as

explained in Appendix C.4. Viewing all years as a combined dataset, we find an

increasing wealth dependence of RORs consistent with a simple power-law relationship,

which also matches well with data for billionaires. In the next subsection we present

a method to estimate a reasonable value of the power-law exponent γ so that both,

WAS and billionaire return data, can be modelled well with our assumption on

returns (4.2).

5However we note the relationship may be more complex and that returns are likely a more
complicated function of wealth with a flattening of returns before the very rich, see Figure 2 in [50].
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Figure 4.1: Percentile ROR using WAS data [116] for the years 2010, 2012, 2014
and 2016, and ROR for individual billionaires for 2016 [1]. Power law fits

according to (4.13) to the cluster of WAS ROR data combined over all four time
periods, leads to µ ≈ 0.003, γ ≈ 1.192 (with both parameters free) and to

µ ≈ 0.013 with chosen γ = 1.075 (justified below in Figure 4.3). We also include
γ = 1 for comparison, leading to µ ≈ 0.032, i.e. an average ROR of about 3%.

Respective shaded regions are one standard deviation around the power fit means
(4.13) as explained in Appendix C.3.

Figure 4.2: Left: autocorrelation of a sample of billionaire ROR indicating
independence in returns. Right: average annual billionaire returns from 2008-2016

Forbes list [1], showing mean and variance relationship for increasing wealth
percentiles as in (4.14).

4.4.2 Fitting αn

With (4.3) we have in analogy to (4.12)
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αn+1 =
Wn+1 −Wn − Sn+1

W γ
n

≈ Wn+1 −Wn

W γ
n

for billionaires. (4.15)

As illustrated in Figure 4.3, we choose the power-law exponent γ = 1.075, such that

the return data from the WAS and billionaires can be best explained with a single

power law of the form (4.2). We fit the distribution of the αn (which we assume to

be i.i.d.) with a shifted and scaled non-central t-distribution (nct), i.e. we take

αn ∼ nct(k, c, l, s) .

This distribution has four parameters: k > 0 represents the degrees of freedom

controlling the heaviness of the tail, c ∈ R is the centrality that controls the skewness

of the distribution, l ∈ R is the shift and s > 0 is the scale, see Appendix C.5 for

details.

Figure 4.3: Left: αn+1 (4.15) for WAS data percentiles [116] for four time periods
along with 2016 billionaire data plotted against wealth Wn. We choose γ = 1.075
so that the means of WAS and billionaire data essentially agree (dotted lines).
Right: Kernel density of αn+1 for WAS data and 2016 billionaire data as seen in

the left Figure. Inset: corresponding empirical tails P(αn > a) on logarithmic scale.
Dotted green and red lines provide fits by the non-central t-distribution (nct) to
WAS and billionaires with respective nct parameter fits k ≈ 6.03, c ≈ 0.0573,
l ≈ −0.00575, s ≈ 0.0112 and k ≈ 2.01, c ≈ 0.941, l ≈ −0.00156, s ≈ 0.0112.

We find that, while the bulk of the distributions of αn agree well, the

billionaire data lead to heavier tails thanWAS data. Again, our method of extracting

returns from WAS data leads to decreased fluctuations, and therefore we use the

parameter values corresponding to billionaire data in simulations in Section 4.5.

90



4.4.3 Savings Sn

We recall that in our model (4.1) savings Sn represent all contributions to wealth

growth that are independent of the current wealth of an agent. They do not evolve

with increasing wealth and only contribute additive noise, which does not influence

the long-time behaviour of the dynamics. However, we need to estimate savings

and their correlation with (initial) wealth to run simulations, and in particular in

order to extract empirical RORs from wealth data using (4.12), which determine

the statistics of the crucial parameter αn. [86] presents evidence for recent years in

the US, that income and salary are positively correlated with wealth.

We estimate savings by equivalised disposable income after expenditure for

increasing deciles of median wealth using ONS data sources [2, 3]. Equivalised

disposable income is household size adjusted income available for spending after tax

and deductions, and by expenditure we summarise costs that do not contribute to

wealth, such as buying food or paying rent. We fit the dependence on wealth w with

a logistic function

S(w) =
κ1

1 + κ2wκ3
with parameters κ1,κ2 > 0 and κ3 < 0 . (4.16)

This is illustrated in Figure 4.4, where we show data on equivalised disposable

income, household expenditure and give the fitted parameter values for (4.16).

Figure 4.4: Left: Plot of equivalised disposable income and average household
expenditure for 2015/16 against 2016 median wealth deciles. Right: Fit of the

logistic function (4.16) to equivalised disposable income after expenditure, where
we choose κ1 = 106 and fit κ2 = 4.13 · 109 and κ3 = −1.308. ONS data sources

used can be found in [2, 3].

We used (4.16) as an estimate for additive contributions to wealth growth

when calculating percentile returns in Figure 4.1, see Appendix C.4 and in simulations

in Section 4.5.2 as a function of initial wealth w = W0. Note that the logistic fit levels
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off at κ1 = 106 for large values of w which is an arbitrary cap of 106 GBP on wealth

independent savings. For most rich households, contributions to wealth growth

significantly beyond this scale are in the form of wealth returns. It is important to

note that none of our results are sensitive to the choice of parameters κ1, κ2 and

κ3, since savings only really play a role in parameter estimation or simulations on

the scales shown in Figure 4.4.

4.5 Simulation Results

For all simulations presented in this section we use i.i.d. αn ∼ nct(k, c, l, s) with

parameters

k = 2.008 , c = 0.941 , l = −0.00156 and s = 0.0112 , (4.17)

corresponding to data from individual billionaires which represent our best estimate

of fluctuations for individual households for γ = 1.075 see Figure 4.3. We do,

however, experiment with changing γ values in which case we multiply the αn by a

positive constant to keep the mean at the same level. This is explained further in

Section 4.5.1.

4.5.1 Generic Initial Conditions with Zero Savings

To investigate the general properties and dependence on initial conditions of our

model over longer time horizons, we consider the following four different initial

conditions each with mean 10000:

I.1 W0 = 10000 (BLUE •)

I.2 W0 ∼ 5000 + Exp(1/5000) (ORANGE �)

I.3 W0 ∼ Exp(1/10000) (GREEN �)

I.4 W0 ∼ Pareto(5000, 2) (RED +)

In other words, in I.1 all agents start with initial wealth 10000, in I.2 agents get

5000 plus an exponentially distributed random amount with mean 5000, in I.3

initial wealth is drawn from an exponential with mean 10000 and in I.4 it is Pareto

distributed with parameters xm = 5000 and exponent β = 2.

It is also possible in our simulations for the wealth Wn(i) of an agent i to

become negative. In this case we choose one of the following replacements for Wn(i):
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R.1 replace with a proportion of the agent’s previous positive wealth value

pWn−1(i) > 0 such that p is uniformly chosen from (0, 1] ;

R.2 replace with the agent’s previous positive wealth value Wn−1(i) > 0 ;

R.3 replace with wealth Wn(j) > 0 of another uniformly chosen agent j .

We can think of R.1 as the agent losing a random proportion of wealth,

R.2 as no change in the agent’s wealth and R.3 as the agent being removed from

the system and being replaced uniformly with another agent with positive wealth.

We note that R.3 is a simple approximation to resampling the agent’s wealth

from the current wealth distribution. We focus here on simulations with the more

realistic compromise mechanism R.1. In Appendix C.6.1 we will present simulation

results for the more extreme replacement mechanisms R.2 and R.3 which lead to

similar results, confirming that our model is not very sensitive on the choice of the

replacement mechanism.

For each initial distribution we run the simulations iteratively using (4.3) for

N = 106 independent agents and zero savings Sn = 0 with parameters in (4.17) and

replacement mechanism R.1. We choose zero savings for convenience in this section,

to isolate the effect of the multiplicative dynamics which is dominant in generating

the wealth distribution in this model, see Section 4.3. Results for empirical tail

distributions at times n = 10, 100, 200 and 300 are presented in Figure 4.5, using

the colour code indicated in I.1-I.4. We also show standard inequality measures

(see Chapter 1 Section 1.6 for the definitions), the Gini coefficient g and the top one

percent income share s0.01 for γ = 1.075 up to time n = 300 in top left and right of

Figure 4.7. We see that all initial conditions eventually lead to monopoly, and for

intermediate times power-law tails emerge in the wealth distribution. Due to the

crossover (4.6) to super-exponetial growth, a two-tailed structure emerges for large

times and wealth values.

In Figure 4.6 we show for comparison empirical tails for γ = 1.19 with αn ∼
0.23 · nct(k, c, l, s), and for γ = 1 with αn ∼ 2.5 · nct(k, c, l, s), so that average ROR

values are well approximated with different fits for µ = E[αn+1] (4.13) as shown in

Figure 4.1. For γ = 1 we also compute the two inequality measures g and s0.01 up

to n = 400, see bottom left and right of Figure 4.7 which shows the independence

of initial conditions and slower progression towards monopoly. For the higher value

of γ we see that the crossover sets in earlier at more realistic wealth values around

107 with a two-tailed structure with quite realistic power-law tails (cf. Figure 1.1).

For the linear model with γ = 1 we see no crossover and can fit the distribution for

large times well by a log-normal distribution in accordance with (4.4). In this case
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there is also no noticeable difference between distributions originating from different

initial conditions as we have seen in Figure 4.7. This is also illustrated in Figure

4.8, where we also see a clear dependence of final wealth values on initial conditions

in the non-linear case with γ > 1.

Figure 4.5: Empirical tails for simulation (4.3) with N = 106 agents, zero savings
Sn = 0, αn ∼ nct(k, c, l, s) with γ = 1.075, fitted parameters in (4.17), the four
initial conditions I.1-I.4 with colour code, and replacement mechanism R.1.
Power law fits show heavier tails with exponents β decreasing with increasing

times n = 10, 100, 200 and 300.
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Figure 4.6: Top left and right: empirical tails for simulation (4.3) with N = 106

agents, zero savings Sn = 0, αn ∼ 0.23 · nct(k, c, l, s) with fitted parameters (4.17)
but with γ = 1.19 for the four initial conditions with respective colour coding

I.1-I.4, replacement mechanism R.1 and power law fits with exponent β. Bottom
left and right: empirical tails for simulations as in top row, but with γ = 1, Sn = 0,

αn ∼ 2.5 · nct(k, c, l, s), with lognormal fit at n = 400.
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Figure 4.7: Gini, g, and top 1% wealth shares, s0.01, for simulation (4.3) with
N = 106 agents, zero savings Sn = 0, αn ∼ nct(k, c, l, s) with fitted parameters in

(4.17), γ = 1.075 for top left and right and αn ∼ 2.5 · nct(k, c, l, s), γ = 1 for
bottom left and right. The four initial conditions with respective colour coding

I.1-I.4 are used with replacement mechanism R.1.

Figure 4.8: W0 versus Wn for 1000 randomly chosen agents for simulation (4.3)
with N = 106 agents, zero savings Sn = 0 with fitted parameters in (4.17), left

αn ∼ nct(k, c, l, s), γ = 1.075 and right αn ∼ 2.5 · nct(k, c, l, s) and γ = 1. We use
initial conditions with colour coding I.3 and replacement mechanism R.1. We see
a clear dependence on initial conditions for γ > 1, and essentially no dependence

for γ = 1.
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4.5.2 Realistic Initial Conditions

In this section we simulate a realistic scenario for the UK, with N = 23 · 106
households, initial conditions W0 extracted from the UK wealth distribution in

2008, and with fixed savings Sn = S(W0) as given in (4.16) of Section 4.4.3.

Figure 4.9 shows the empirical tail of the resulting wealth distribution at times

n = 0, 2, 4, 6, 8, 10, 20 and 50, after simulating (4.3) with Sn = S(W0), γ = 1.075,

αn ∼ nct(k, c, l, s) with fitted parameters in (4.17) and replacement mechanism R.1.

Figure C.4, in Appendix C.6.2, shows empirical tails for the other two replacement

mechanisms R.2, R.3 which lead to very similar results. The number of agents (N)

is a rough estimate for the number of households in the UK with positive wealth

in 2016. Time n corresponds to the number of years after 2008, so for example

n = 8 corresponds to 2016. Again we can see increasing inequality, see Figure C.5

in Appendix C.6.2, with the decreasing power-law exponent β. We also see that the

average returns for the simulations, see Figure 4.10, matches roughly the shape of

the RORs seen in Figure 4.1.

Figure 4.9: Empirical tails for simulation (4.3) with N ≈ 23 · 106 agents,
replacement mechanism R.1, γ = 1.075, fixed savings Sn = S(W0) (4.16),

αn ∼ nct(k, c, l, s) with fitted parameters in (4.17) for 2008 initial conditions. Fit
values for a power-law tail exponent β decrease from the initial value 2.13.
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Figure 4.10: Average return over 2010-2018 for 1000 randomly chosen agents and
1000 richest agents in 2018 against agents wealth in 2018 for simulation (4.3) with

N ≈ 23 · 106 agents, replacement mechanism R.1, γ = 1.075, fixed savings
Sn = S(W0) (4.16), αn ∼ nct(k, c, l, s) with fitted parameters in (4.17) for 2008

initial conditions. The power fits (straight lines) for E[Rn+1|Wn] = µW γ−1
n , are the

three fits to the real world data from Figure 4.1, along with one standard deviation
error region.

Comparing Figure 4.9 to Figure 1.1 we see that the two-tailed structures

differ slightly: While the heavier tail for billionaires with a power-law exponent of

about β = 1 is shifting but well preserved, the stability of the lighter power-law

tail for millionaires is not well represented in our simulation. This is because we

deliberately chose a simple model assuming that average ROR follows a monotone

power law with wealth. While this is largely consistent with data, the survey data

for RORs show some plateau behaviour for millionaires clearly visible in Figure 4.1,

which has also been suggested for other countries, see Figure 2 of [50]. This may be

related to the changing wealth composition of the very rich [45].

4.6 Discussion

The model defined by the iterative equation (4.1) represents a generic evolution of

household wealth, based on the well motivated assumption that wealth exchange
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between households does not play an important role but is governed primarily by

wealth returns. The particular form (4.3) of a non-linear Kesten process has been

motivated by inferring empirically that RORs increase with household wealth, and

that this relationship is consistent with a simple power law with exponent γ as

in (4.2), see also Figure 4.1. We want to stress that the qualitative results and

main features of our model do not depend on this particular choice, which we have

taken for simplicity and in order to study the effect of the non-linearity with a single

parameter. We have seen from theory and simulations that the asymptotic dynamics

of the model (4.3) and the resulting tail of the wealth distribution is dominated by

the exponent γ. For the linear case with γ = 1 the RORs do not depend on wealth,

and it is known that wealth grows asymptotically with a lognormal distribution

(see Section 2.6), which does not correspond to power-law tails seen in real data

as in Figure 1.1. As demonstrated by our main results, the non-linear model with

γ > 1 exhibits power-law tails from generic initial conditions, including even perfect

equality or light tailed exponential distributions, see Section 4.5.1. It also leads to

a two-tailed structure resulting from a crossover (4.6) to super-exponential growth

for the richest households.

We now summarise the most important theoretical features and differences

of the linear (γ = 1) and the non-linear (γ > 1) non-stationary Kesten process (4.3):

• for all γ ≥ 1, including the linear case, the model exhibits monopoly6, i.e.

for N independent households the wealth fraction of the richest household

increases with time and asymptotically approaches 17;

• the linear model is ergodic8, in the sense that the asymptotic exponential

growth rate of household wealth does not depend on the initial condition

W0. The latter only enters as a multiplicative factor and the model is scale

invariant, i.e. wealth can be measured in units of W0 in a dimensionless way;

• the non-linear model is not ergodic9, i.e. the asymptotic exponential growth

rate depends on W0 and the early dynamics. It is also not scale invariant,

and the non-linearity on the right hand side leads to a critical scale (4.6)

where wealth gain per year can exceed current wealth, which is observed in

data for the richest households.

6A less strict version than in the balls in process with feedback seen in Chapter 2 and 3.
7Nevertheless, realistic levels of inequality can of course be achieved on intermediate timescales.
8In particular the log returns log(Wn+1/Wn) tend to an ergodic process as n → ∞ . See [120]

for more discussion on transforming non-ergodic processes to ergodic ones in an economics/wealth
context.

9In particular the log returns log(Wn+1/Wn) explode as n → ∞ and is thus non-ergodic.
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Moreover, we would like to stress that our model is phenomenological and not built

from first principles, since we simply assume an empirically motivated non-linear

relationship between ROR and current wealth. Therefore the model lacks a natural

scale invariance and the parameter αn is not universal, but depends on the units

of measurement (the currency) and will vary between different countries/economic

areas. On the other hand, the non-linearity induces a crossover scale that can

be a possible explanation for an apparent two-tailed structure in the data. This

is an important aspect of our model and although analysed in Chapter 1 should

be investigated further. While not present in data from the USA, the two-tailed

structure has been observed [145] for several countries which have a less liberal

economic system and put more emphasis on social equality. Related political measures

such as taxation then lead to a more even wealth distribution and a lighter power-law

tail for rich households including millionaires, while the richest in society distribute

their wealth globally and can escape such measures, leading to a heavier tail for

billionaires.

Other interesting generalisations to make the model more realistic include

dynamics for negative wealth, a realistic treatment of bankruptcy events and also

household lifetime and fragmentation over longer time periods, or a household

dependence of the parameter αn reflecting variations in ‘fitness’ to generate returns

from investment. Also, mechanisms of household interaction possibly via a general

redistribution or taxation procedure could be included and could lead to interesting

effects on the dynamics similar to recent work in [19]. But the aim of this chapter

was to introduce a simple model, that can explain the main features of wealth

distribution and dynamics, and how they can be explained by a non-linear wealth

dependent rate of return.
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Conclusion

This thesis, by means of statistical analysis and mathematical modelling, attempted

to provide further insight into aspects of the wealth distribution and key mechanisms

for how the distribution is generated. We have focused to a large extent on the power

law, a feature we see in the upper tail of the wealth distribution. A significant

change in power law exponent between the UK survey rich and rich lists was found

in alignment with previous research [145]. We saw that survey bias could account for

this change but other reasons such as a difference in measurement between survey

and rich list may be a more realistic explanation [7]. Future work would be needed

to be certain there is only one power law in the tail. As well as analysing various

methods for fitting the power law we also fitted the entire distribution of both

negative and positive UK wealth with a mixture distribution. For positive wealth

we found that an exponential as well as lognormal distribution is a good fit before

the power law and that the κ-generalised distribution [32] fitted reasonably to the

whole of positive wealth. However there are potentially other distributions that

would also fit positive wealth just as well and it would be further study to compare

them. Also, different methods of fitting the positive wealth distributions such as

MLE would be useful as a comparison to the NLLS method used in Chapter 1. We

focused our study on UK wealth data between 2008-2016. It would be interesting

to see how the distribution evolves over a longer period of time and to compare the

distribution between countries, however this is limited by data availability [121].

Our wealth modelling, specifically for positive wealth, was classified into

the general themes of hierarchy, exchange, feedback and multiplicative processes.

Various models of these types were analysed in Chapter 2. We found that the

Pareto distribution as well as the κ-generalised distribution can be arranged in a

hierarchy suggesting there are some stabilising forces that the structure of hierarchies

provide to the economy. We then considered exchange models, originating in the

econophysics literature, where agents repeatedly exchange with each other. Under

certain conditions when the amount exchanged is fixed proportionally to the agent or
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the rate of exchange differs between agents we find power laws can emerge. Finally

the balls in bins feedback model and various multiplicative processes were analysed

from the stand point of both discrete and continuous time. The multiplicative

process models were characterised by repeated random multiplications. The Kesten

process, a linear model, is known to give a power law stationary distribution under

certain conditions by purely random effects [88]. We also showed several SDEs can

produce power law stationary distributions, including the κ-generalised distribution,

by solving the stationary Fokker Planck equation. Many of the models in Chapter

2 have not been fitted adequately to data. This would be necessary to show the

models can fit more of the distribution than just the power law.

Models generating non-stationary power law distributions for growing wealth

were found by adding a non-linear rich gets richer power law term. This was true

for both the balls in bins process or feedback model analysed in Chapter 3 and

the non-linear Kesten process examined in Chapter 4. Both these models although

dependent on initial conditions, produce power law tails and extreme inequality

in the long time limit for all initial conditions for a critical parameter γ > 1.

We note the balls in bins feedback model produces a stronger monopoly than the

non-linear Kesten process. In the feedback model richer agents gained more wealth

with probability proportional to W γ with γ > 1 and at each iteration there is a

dependence between all agents. In the non-linear Kesten model richer agents were

more likely to gain more wealth through returns proportional to W γ−1 with γ > 1

and at each iteration all agents run independently of each other.

In Chapter 3 the master equation under the backdrop of exponential embedding

was used to find some new results of the balls in bins process with feedback in

continuous time for a general N ∈ N agents. We found that there is an ‘explosion’

time which proves monopoly and a means of calculating the expected wealth of an

agent over time. We found time dependent probability mass functions for the case

with wealth packet of one unit entering the system and an initial condition of one

unit per agent including a general sum solution for γ �= 0 that can be numerically

calculated. Assuming a power law solution to the process an exact relationship

β = γ − 1 where γ > 1 and β is the power law exponent of the tail distribution

was also found. How the process scales with more agents, changes with differing

wealth packets and initial distributions and how the rank ordering of the poorest

to richest agents changes throughout the process are several questions for further

study. We slightly extended the feedback model to include fitness, which we think of

as something like intelligence or productivity. We found higher values of fitness leads

to higher expected wealth. Specifying exactly what fitness is and then finding what
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distribution it follows from data would be subject to future work. More elaborate

feedback functions could also be analysed and simulated in the feedback model.

We also ran several simulations that gave evidence for the theoretical results in the

chapter.

In Chapter 4 our original non-linear Kesten process was run from a realistic

2008 UK wealth initial distribution for the number of agents approximating the

number of UK households. We found that running the model till 2016 produces

higher inequality but not at an unrealistic level. From the UK data for 2008-2016,

we saw in Chapter 1 that the Gini coefficient appeared to remain roughly constant

with fairly fluctuating power law tails. However due to data errors there may in fact

have been a rise in inequality in alignment with the model [7]. Thus we conclude

that the non-linear Kesten process may be useful over short or intermediate time

scales but over longer time scales where inequality even decreases new additions

to the model would need to be included. For instance γ values could be fitted

for multiple years or a different returns function entirely may be found and used

instead of the power law relationship in the model. Although this model included

a replacement of agents if they go into debt further addition of shocks could be

added. We also ran the model under general initial conditions showing that power

laws and extreme inequality appear even for equal initial conditions. Key theoretical

results of the non-linear Kesten process also included the non-linear dependence of

initial conditions and the critical region after which super-exponential growth sets

in. These results were also backed up by simulations.

There is always a conflict between having a model simple enough to be

analysed and simulated and complex enough to take into account the reality. Population

changes, household size and type, age, technological changes and shocks such as

recessions, war and pandemics are all factors that can effect the distribution. However

this thesis focused on analysing only one general factor encapsulated by the phrase

the rich get richer. We showed that this effect often characterised by a non-linear

factor in mathematical models is enough to explain power laws and high inequality

both seen in the wealth distribution.
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Appendix A

Fitting the Tail of UK Wealth

This appendix concerns results from Chapter 1.

A.1 Remarks on the Methods of Fitting

To fit the wealth distribution we have used several methods in Chapter 1. For the

exponential and lognormal fits to positive wealth we used the method of estimating

parameters with the mean and median respectively. For the remaining lognormal

parameter and the κ-gen parameter fits to positive wealth we used NLLS on the

empirical tail. We also use NLLS on the empirical tail for the adapted Weibull

distribution to negative wealth and as one of the methods to fit the power law

to the top 10% WAS data richest. As noted in Section 1.4.6 NLLS could not fit

the rich lists due to the numerical algorithm not optimising. This could be due

to irregularities in the rich lists and their small sizes. The remaining methods we

use to fit the power law are OLS and MLE. We note that both OLS and MLE

have analytical solutions however this is not the case in general for NLLS. Thus

for NLLS numerical methods are required and we implement this with the Python

least squares package from the scipy optimize module. We run the least squares

with method set to Levenberg-Marquardt which is the standard method setting.

When using the algorithm it is important to choose appropriate initial conditions

otherwise the algorithm does not converge to a solution.

In this appendix we provide parameter estimates for fits to the empirical tail

of the wealth distribution using WAS data [116] and Forbes rich list data [1]. We

refer to the empirical tail by the N points (wi,PN (W > wi))
N
i=1. Throughout a

parameter k is estimated by k̂.
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A.2 Positive Wealth Tail Fits

Here we fit positive wealth. Technically we sometimes fit non-negative wealth but

we don’t emphasise the distinction.

Exponential

The mean for the positive wealth distribution can be estimated using the following

alternative expectation formula

µ+ := E[W+] =

� ∞

0
P(W+ > w)dw.

We estimate µ+ from the data using numerical integration1. An exponential distribution

W+ ∼ Exp(1/µ+) has density

fW+(w) = 1/µ+ exp

�
− 1

µ+
w

�

for w, µ+ > 0 with mean and variance equal to µ+ and µ2
+ respectively. Then the

tail of the exponential distribution for positive wealth w > 0 is

P(W > w) = P(W ≥ 0) exp

�
− 1

µ+
w

�
.

Table A.1 shows estimates from the empirical tail WAS data for P(W ≥ 0) and µ+

and the cost (1.17) of the fits for all wi > 0 . P(W ≥ 0) is estimated by P(W ≥ w̃0)

where w̃0 ≥ 0 is the smallest data point greater than or equal to 0 .

Year P̂(W ≥ 0) µ̂+ Cost

2008 0.83 336276 11.15

2010 0.85 356144 8.43

2012 0.84 382654 10.58

2014 0.83 424329 6.87

2016 0.84 485223 5.55

Table A.1: Estimates of P(W ≥ 0) (2 decimal places) and positive wealth
exponential empirical tail fits of µ+ (nearest whole number) with the cost (1.17)
(2 decimal places) to WAS data for biennial years 2008-2016.

1Specifically using the trapezoidal rule using Python’s Scipy integrate.trapezoid module.
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Lognormal

The density of a lognormal distribution W+ ∼ Lognorm(k, s) is

fW+(w) =
1

ws
√
π
exp

�
−(logw − k)2

2s2

�

for w, s > 0 and k ∈ (−∞,∞). We can find the median from the tail as follows

m+ := Med[W+] = w s.t. P(W > w) =
P(W ≥ 0)

2
.

We estimate the median m̂+ from the data by using P̂(W ≥ 0) from Table A.1 and

then finding the closest tail value by absolute value to P̂(W ≥ 0)/2 . Thus

m̂+ = argmin
w>0

�����P(W > w)− P̂(W ≥ 0)

2

�����

Then for a lognormal it can be shown that k = logm+. We can estimate the wealth

distribution with lognormal tail for w > 0 as

P(W > w) = P(W ≥ 0)PLognorm(k,s)(W > w)

We estimate the remaining parameter ŝ by NLLS (1.16). Table A.2 shows these

parameter fits along with the cost (1.17) of the fits for wi > 0 for WAS data.

Year m̂+ ŝ Cost

2008 257057 1.01 5.63

2010 271638 1.04 9.69

2012 292347 1.05 7.83

2014 289257 1.15 3.25

2016 328702 1.16 3.21

Table A.2: Positive wealth lognormal empirical tail fits to positive WAS data of m+

(nearest whole number) and s (2 decimal places) with cost (1.17) (2 decimal places)
to WAS data for biennial years 2008-2016.

κ-generalised

With the generalised exponential function expκ(w):

expκ(w) = (
�

1 + κ2w2 + κw)1/κ
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the κ-generated (κ-gen) distribution has the following density

fκ-gen(w) =
α

β

�
w

β

�α−1 expκ

�
−
�
w
β

�α�

�
1 + κ2

�
w
β

�2α

with tail function

Pκ-gen(W > w) = expκ

�
−
�
w

β

�α�

for w ≥ 0, α,β > 0 (here β is not the power law exponent) and κ ∈ [0, 1). For

positive wealth we want to estimate

P(W > w) = P(W ≥ 0)Pκ-gen(W > w) .

We fit P(W ≥ 0) as previous with Table A.1 and the κ-gen parameters α, β and κ

with NLLS (1.16). The κ-gen distribution is a regularly varying distribution (1.6)

with

Pκ-gen(W > w) � 1

β(2κ)1/κ
1

wα/κ
.

Thus when fitting we can approximate the κ-gen power law exponent as

β̂p =
α̂

κ̂
(A.1)

where α̂ and κ̂ are fits of the parameters α and β respectively. Table A.3 shows the

fits for the κ-gen parameters along with the cost for WAS data for wi > 0 .

Year α̂ β̂ κ̂ β̂p = α̂/κ̂ Cost

2008 1.13 341405 0.50 2.27 1.26

2010 1.11 350901 0.51 2.19 1.93

2012 1.10 381672 0.52 2.14 2.13

2014 1.03 418226 0.50 2.07 1.87

2016 1.00 480765 0.44 2.24 1.34

Table A.3: Positive wealth κ-gen empirical tail fits to positive WAS data [116] for
α (2 decimal places), β (nearest whole number), κ (2 decimal places), the regularly
varying power law exponent βp (2 decimal places) and cost (1.17) (2 decimal places)
for biennial years 2008-2016.
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Plots

Figure A.1 shows the empirical tail fits to biannual 2008-2016 WAS data for positive

wealth with the exponential, lognormal and κ-gen distributions.

Figure A.1: Empirical tail distribution of positive UK household wealth for
biennial years 2008-2016 with exponential, lognormal and κ-gen fits to WAS data
[116]. Fits for exponential found in Table A.1, for lognormal in Table A.2 and for

κ-gen in Table A.3 .
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A.3 Debt Tail Fits

Weibull

The density of the Weibull is defined as

fWeib(|w|) =
s

λ

� |w|
λ

�s−1

exp

�
−
� |w|

λ

�s�

where we assume w < 0 and take s,λ > 0. Then for wealth w < 0 we have debt

|W | with the following tail

P(|W | > |w|) = P(W < 0) exp

�
−
� |w|

λ

�s�
.

We fit the parameter P(W < 0) = 1 − P(W ≥ 0) using the fit of P(W ≥ 0) from

Table A.1. For the remaining parameters s and λ we use NLLS (1.16). Table A.4

shows the empirical tail fits for the adapted Weibull distribution to WAS data and

the cost (1.17) for debt.

Year P̂(W < 0) ŝ λ̂ Cost

2008 0.17 0.23 100 1.6 · 10−5

2010 0.15 0.34 516 2.0 · 10−6

2012 0.16 0.24 106 4.7 · 10−6

2014 0.17 0.31 439 1.2 · 10−6

2016 0.16 0.28 261 4.2 · 10−6

Table A.4: Debt adapted Weibull empirical tail fits for θ (2 decimal places), s (2
decimal places), λ (nearest whole number) and cost (1.17) (2 significant figures) for
WAS biennial years 2008-2016 [116].
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Figure A.2: Empirical tail distribution of UK household wealth debt from WAS
data [116] for biennial years 2008-2016 with Weibull fit. Parameter fits found in

Table A.4.

A.4 Survey Wealth Power Law Tail Fits

The power law for the positive tail is defined

P(W > w) =
α

wβ
, for w > wm > 0 .

We choose wm as the tail value for the top 10% of richest households:

wm : P(W > wm) = 0.1 .
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We estimate wm as

ŵm = argmin
w

|P(W > w)− 0.1| .

We fit the power law with three methods: OLS (where we do not correct

for potential bias) (1.27), MLE (1.31), (1.33) and NLLS (1.30) for w > wm to the

WAS biennial 2008-2016 data. We also, as discussed above, fit the κ-gen power law

exponent (A.1). See Tables A.5 and A.6 for parameter fits and Figure A.3 for plots

of the empirical tail fits for biennial top 10% richest WAS data 2008-2016.

Year ŵm α̂OLS α̂MLE α̂NLLS

2008 783413 250265412470 64648898927 84931716366

2010 814914 579244022874 39911333772 81025881213

2012 909526 3604068491633 604161877226 362201752682

2014 1041327 6851243114176 608035578326 549962767634

2016 1205244 61327974512444 3105708814824 1593163542759

Table A.5: Power law fits for for WAS data biennial years 2008-2016 [116] for wm and
α (nearest whole number) with OLS (1.27), MLE (1.31), (1.33) and NLLS (1.30).

Year β̂OLS β̂MLE β̂NLLS β̂κ-gen CostOLS CostMLE CostNLLS Costκ-gen

2008 2.10 2.01 2.02 2.27 0.010 0.010 0.007 0.007

2010 2.15 1.98 2.01 2.19 0.023 0.037 0.016 0.015

2012 2.27 2.15 2.11 2.14 0.026 0.026 0.019 0.037

2014 2.29 2.13 2.11 2.07 0.031 0.038 0.021 0.054

2016 2.42 2.22 2.17 2.24 0.044 0.043 0.026 0.051

Table A.6: Power law fits for β (2 decimal places) for WAS data biennial years
2008-2016 [116] with OLS (1.27), MLE (1.31), (1.33) and NLLS (1.30) and the
regularly varying power law exponent (A.1) for κ-gen as previously given in Table
A.3 and costs (1.17) (3 decimal places).
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Figure A.3: Empirical tail distribution of positive UK household wealth greater
than wm (1.23) for WAS data biennial years 2008-2016 [116] with κ-gen fit and
with power law fits using OLS (1.27), MLE (1.31), (1.33) and NLLS (1.30).

Parameter fits found in Tables A.5 and A.6.

A.5 Survey Wealth and Forbes Rich List Power Law

Empirical Tail Fits

Two power laws in the tail could be approximated with the following

P(W > w) =





α1

wβ1
for 0 < w1,m < w ≤ w2,m

α2

wβ2
for w > w2,m
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with all parameters in R>0 and β1 �= β2 where we fit α2 and β2 to the rich lists. We

note that we could not find a numerical NLLS solution to α2 and β2 due to the small

sample size (under 60) and potential irregularities in the data. The parameter fits

for w1,m, α1 and β1 are the same as in Tables A.5 and A.6. The costs and parameter

fits for the rich lists, w2,m, α2 and β2, are seen in Tables A.7 and A.8 for OLS and

MLE. We estimate w2,m as the smallest wealth value in the rich list. See Figure A.4

for the two power law fits for OLS and MLE for the WAS and rich lists for biennial

years 2008 to 2016.

Year ŵ2,m α̂2,OLS α̂2,MLE

2008 439189189 3479000 83601

2010 430107527 528233 518398

2012 439253269 47162738 74779

2014 404040404 614937 4362

2016 603566529 616326 118734

Table A.7: Power Law Fits for w2,m and α2 (nearest whole number) with OLS
(1.27), MLE (1.31), (1.33) to Forbes rich list biennial 2008-2016 data [1].

Year β̂2,OLS β̂2,MLE Cost2,OLS Cost2,MLE

2008 1.44 1.27 1.42 · 10−13 2.33 · 10−13

2010 1.35 1.35 1.48 · 10−13 1.80 · 10−13

2012 1.55 1.24 5.10 · 10−14 1.60 · 10−13

2014 1.33 1.09 1.55 · 10−12 8.69 · 10−13

2016 1.30 1.23 7.34 · 10−13 5.52 · 10−13

Table A.8: Power Law Fits for β2 (2 decimal places) with OLS (1.27), MLE (1.31),
(1.33) and costs (1.17) (3 decimal places) to Forbes rich list biennial 2008-2016 data
[1].
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Figure A.4: Empirical tail distribution of positive UK household wealth greater
than wm (1.23) for biennial years 2008-2016 with power law fits using OLS (1.27),

MLE (1.31), (1.33) and NLLS (1.30) to WAS [116] and OLS and MLE fits to
Forbes rich lists [1]. Parameter fits found in Tables A.5, A.6, A.7 and A.8.
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Appendix B

Binary Tree Search

In the balls in bins process with feedback in Chapter 3 we consider a collection of

N agents with agent j having wealth Wn(j) and rate rn(j) = f(Wn(j)) > 0 at time

n ∈ N. At each time n a wealth packet ωp > 0 is given to an agent with the following

probability update rule given Wn = {Wn(1),Wn(2), . . . ,Wn(N)} :

P(Wn+1(j) = Wn(j) + ωp|Wn) =
rn(j)

N�
i=1

rn(i)

. (B.1)

Agent Rate Cumulative Rate

1 rn(1) rn(1)

2 rn(2) rn(1) + rn(2)
...

...
...

j rn(j)
j�

i=1
rn(i)

...
...

...

N rn(N) R :=
N�
i=1

rn(i)

Table B.1: Rates

We want to code (B.1). We note that this is a more general problem of

sampling from a categorical distribution (also called an empirical distribution) which

is a common problem in probabilistic programming [140].

Define R :=
N�
i=1

rn(i). A simple algorithm to calculate which agent j should

have its wealth Wn(j) updated at time n by ω is to first uniformly at random choose
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a value p between 0 and R inclusive of 0 and exclusive of R. Then we iteratively go

through the cumulative rates and find the first j such that
j−1�
i=1

rn(i) ≤ p <
j�

i=1
rn(i)

for j = 1, 2, . . . , N where
0�

i=1
rn(i) := 0. The probability that p will lie in this interval

will then be as in (B.1):

j�
i=1

rn(i)−
j−1�
i=1

rn(i)

R
=

rn(j)

R

This is illustrated in Algorithm 1.

Algorithm 1 Calculate which agent j to update (3.1) at time n

-Choose p uniformly at random between 0 and R inclusive of 0 and exclusive of

R: p ∼ U [0, R)

-Let j ← 1, u ← rn(j)

while p > u do

j ← j + 1, u ← u+ rn(j)

end while

Wn+1(j) ← Wn(j) + ωp and update rn+1(j) = f(Wn+1(j))

Algorithm 1 will take time complexity O(N) as there are N rates. Therefore

if we run the update rule for nu ∈ N iterations this will take

T1(N,nu) = O(nuN).

We can improve on this time complexity by using a binary tree search, see for

example Chapter 12 of [36]. We make the assumption that there are N = 2M agents

where M ∈ Z≥0 . Figure B.1 illustrates the layout of the binary tree. Each node of

the tree has a position and holds a value. The top node of the tree has position 0

and holds value 0, the node directly below has position 1 and holds value R. The

position 1 node’s value is then divided into two and the left node below has position

2 or 10 in binary and holds the first half of R:
N/2�
i=1

rn(i) whilst the right node below

has position 3 or 11 in binary and holds the second half of R:
N�

i=N/2+1

rn(i) . From

here we repeat this process of dividing the node values in two until we reach the

leaves at the bottom of the tree which hold the rates. Every time we go in position

down and left from a node we shift the digits of the binary number of that node and

add a 0 to get the new position and when we go down and right we do the same but
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instead add a 1. In C++ this is done using the shift operator <<. To go down from

a node left we use the shift operator << only and to go down from a node right we

use the shift operator and add 1: (<<) + 1.

There are (M + 1) + 1 = M + 2 = log2(N) + 2 layers of the binary tree and
M�
i=0

2i + 1 = 2M+1 nodes. We can see now that the position 0 node with value 0

is merely a dummy node so the number of nodes works out to a power of two for

convenience and is not necessary. The rate of the jth agent is in the tree position
M−1�
i=0

2i + 1 + j = 2M + j = N + j.

Code B.1 returns the binary tree of rates in vector form with the ith place

of the vector holding the ith value of the tree after inputting the rates and M . It is

built by first inputting the bottom layer of the tree and then building to the top of

the tree by the new parent node above adding the two child nodes below.

Code B.2 returns the position in the tree and the corresponding agent to

update (3.1) after inputting the binary tree vector outputted from Code B.1, M

and p ∼ U [0, R). It finds the position (poss) by moving down left or right in the

binary tree and comparing p to the node in the bottom left from the current position

(position k, value R tree[k]) while adjusting p by taking away the comparison node

value (R tree[k]) if the position moves right. It ends at the final rates layer of the

tree and outputs this tree position (pos) and the rates position (j) in a vector r

which is just the tree position take away N as mentioned above.

Code B.3 returns the updated binary tree which will be used in the next

iteration with δ added to the rate rn+1(j) = rn(j) + δ where δ = f(Wn(j) + ω) −
f(Wn(j)). It inputs the binary tree outputted in Code B.1, M , the tree position

outputted in Code B.2 and δ. First δ is added to the rate rn(j) with corresponding

tree position and then by using the forward shift operator (>>) which knocks off

the end bit from the binary tree position, δ is added to each parent going up the

tree finishing with adding δ to the position 1 node with updated value R+ δ.

Algorithm 2 shows how to run the update rule (3.1) nu ∈ N times with the

binary tree search using Code B.1, B.2 and B.3. First the rates tree is initialised

using Code B.1 which is O(N) time complexity then within the for loop Code

B.2 and B.3 are utilised each of order O(M) = O(log2(N)). Thus the total time

complexity for Algorithm 2 is

T2(N,nu) = O(N) +O(nu log2(N))

which is a substantial time gain to Algorithm 1 for a large agent number N .

We noted before that N is to be a power of two: N = 2M . However if we wanted to
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have N1 agents that is not a power of two we can introduce N −N1 dummy agents

with zero rates so we still in a sense have N agents. As zero rates does not effect

the cumulative sums of rates only the N1 agents will be updated with the update

rule (3.1).

We note that a binary search tree is not the most efficient tree in order

to sample from a categorical distribution. A Huffman tree is more efficient as

it minimises the average number of branches searched instead of the maximum

number of branches in the tree as in binary search [140]. Details of sampling from

a categorical distribution as well as updating probabilities (3.1) are found in [140].

Algorithm 2 Algorithm to run update rule (3.1) nu times using binary tree search

Initialise wealth vector W = [W0(0),W0(1), . . . ,W0(N)], ω and δ

Initialise binary tree of rates (r0(i) = f(W0(i))) R tree using Code B.1

for i = 1, 2, . . . , nu do

-Set R =R tree[1]

-Take p ∼ U [0, R)

-Find tree position (poss) and rate position (j) using Code B.2

-Set before ← W[j]

-W[j] ← W[j] + ωp

-Set after ← W[j]

-Calculate δ = f(after)− f(before)

-Update R tree using Code B.3

end for
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Figure B.1: Binary Search Tree. Rates are at the bottom layer. Written on the
nodes are a, b where a is the node position and b is the node value. We also write
the binary number a2 for the positions a with the � indicating their equivalence:

a2 � a .1

1 We note here � has a different meaning to the asymptotic relation as in Chapter 1 .
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Code B.1: C++ function to set up binary tree with rates, see Figure B.1, as a
vector.

vector<double> r_tree(vector<double> rates, long int M){

double N=pow(2.0,M); // no. of agents

double T=pow(2.0,M+1); // size of tree

N= (long int) N;

T= (long int) T;

vector<double> R_tree(T);

for (long int i=0; i<N; i++){ // fill in bottom layer of tree

R_tree[N+i]=rates[i];

}

for(long int i=N-1; i>0; i--){ // remaining nodes filled with

// values of the two (child) nodes below

R_tree[i] = R_tree[(i<< 1)] + R_tree[(i<<1) +1];

}

return R_tree;

}
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Code B.2: C++ function to find the position of rate in binary tree.

vector<long int> find_position(vector<double> R_tree, long int M,

double p){

double N=pow(2.0,M);

N= (long int) N;

long int pos=1; // tree position: start at node 1 with value R

long int k=2; // position of left child to parent at node at pos

double check = R_tree[k]; // value of left child to parent at pos

vector<long int> r;

for(long int i=1; i<=M; i++){

if(p<check){

pos=pos<<1; // go left in tree

if(k<N){ // stop at last layer to calculate check

k=k<<1;

check = R_tree[k];

}}

else{

p=p-check;

pos=(pos<<1)+1; // go right in tree

if(k<N){// stop at last layer to calculate check

k=k+1;

k=k<<1;

check = R_tree[k];

}}}

long int j=pos-N;

r.push_back(pos); // final tree position

r.push_back(j); // position of rate

return r;

}

134



Code B.3: C++ function to update the binary tree.

vector<double> r_tree_update(vector<double> R_tree, long int M,

long int pos, double delta){

for(long int i=1; i<=M+1; i++){

R_tree[pos] = R_tree[poss]+delta;

pos=pos>>1; // goes to position of parent node

}

return R_tree;

}
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Appendix C

Theory and Empirics for Fitting

the Non-Linear Kesten Model

This appendix is concerned with results in Chapter 4.

C.1 Data Sources

Here we list the data sources used in Chapter 4:

1. Biannual wealth and asset survey (WAS) data 2008-2016 from the Office for

National Statistics (ONS) [116]

2. Forbes rich lists [1]

3. Times rich list data - extracted from Times online newspaper 2019, 2020 and

2021. See [59] for this data and for the current list see [4].

4. ONS household income, salary and expenditure data [3, 2]

Full details on the data can be found at the author’s repository [59].

C.2 Tail of UK Wealth

Here we outline how we extract the empirical tail from wealth survey and rich list

data from [116, 1]. For extensive discussion on the wealth and asset survey see

[115]. We have wealth survey data in the form (h̃i, w̃i) for i = 1, 2, . . . n where

h̃i ∈ [0, 1] is the cumulative proportion of households and w̃i ∈ [0, 1] is their

corresponding cumulative proportion of wealth. Let us assume that the h̃i are
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ordered by increasingly wealthy households with positive wealth. The survey data

was in this form to calculate the Gini coefficient from the Lorenz curve defined by

the points (h̃i, w̃i). Let HT and WT be the total number of households and the total

amount of wealth of all households respectively.

Define ŵi = (w̃i+1 − w̃i)WT and ĥi = (h̃i+1 − h̃i)HT for

i = 1, 2, . . . , n−1. Then ŵi is the amount of wealth owned by an increasingly rich ĥi

number of households. We have then that wi =
ŵi

ĥi
is the average amount of wealth

of increasingly rich ĥi households and thus wi is ordered: wi ≤ wi+1 for all i.

Therefore the points (wi, h̃i+1) characterise an approximation to the empirical

CDF and the points (wi, 1 − h̃i+1) give the corresponding approximation to the

empirical tail. We plot the approximate empirical tail of positive wealth in Figure

1.1 which are points below £108 for the years 2008, 2010, 2012, 2014 and 2016.

We have separate wealth data in the form of rich lists. For rich lists we have

data of individuals households wealth wi for i = 1, 2, . . . , R where R are the number

of households in the rich list. We assume the rich list comprise of the R wealthiest

households in the total population of households. Then if wi are ordered, their

empirical CDF and tail are thus the points (wi, 1−(R−i)/HT ) and (wi, (R−i)/HT )

respectively. The empirical tail of the rich lists are the points above £108 in Figure

1.1 and are matched for corresponding years to the survey data. Note a couple of

survey points do also extend past £108.

The empirical tails can be found in the same fashion for four components of

wealth defined as property, physical, financial and pension in the wealth and asset

survey.

C.3 Mean and Variance of Returns

With Rn defined as in (4.2) and αn i.i.d. from some distribution with µ = E[αn+1]

and σ2 = var(αn+1) as in Section 4.2 we have

E[Rn+1|Wn] = E[αn+1W
γ−1
n ] = E[αn+1]W

γ−1
n = µW γ−1

n , (C.1)

var(Rn+1|Wn) = var(αn+1W
γ−1
n ) = var(αn+1)W

2(γ−1)
n =

σ2

µ2
E[Rn+1|Wn]

2 . (C.2)

Thus the interval I of one standard deviation around the mean of Rn+1 used in

Figure 4.1 is
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I =

��
1− σ

µ

�
E[Rn+1|Wn],

�
1 +

σ

µ

�
E[Rn+1|Wn]

�
= ((µ−σ)W γ−1

n , (µ+σ)W γ−1
n ) .

(C.3)

C.4 Estimating the ROR

To approximate returns of individual household wealth using the WAS data [116]

we use the returns on percentile wealth. For each time period n from the empirical

tail of the survey we extract the percentile wi,n such that PN (Wn > wi,n) = pi where

pi = 1 − i/100 for i ∈ {1, 2, . . . , 100}. Note we only extract positive percentiles i

such that wi,n > 0 , which excludes the poorest households. Then we substitute

Wn = wi,n in (4.12) to calculate RORs of percentiles over each of the five biennial

time periods 2008-2016 of the data [116]. For percentile i we have the ROR as

ri,n+2 =
wi,n+2 − wi,n − 2si,n+2

2wi,n
, (C.4)

where si,n are the savings in percentile i and time period n (see Section 4.4.3 for

details).

Note that these percentile RORs for the ONS survey data [116] plotted

in Figure 4.1 only approximate RORs for individual households. Our procedure

does not account for households changing percentiles over a time period, leading to

reduced fluctuations of the resulting returns data. To compensate for this and also

possible effects of the financial crisis from 2008 onwards, we combine all time periods

in a single data set to infer system parameters. For billionaires we have individual

wealth data across time. We ignore savings to compute returns according to (4.12),

and plot these values for 2016 in Figure 4.1.

In order to understand the dependence of ROR on wealth in particular

for the UK, it is instructive to consider the different composition of wealth for

poorer and richer households. Survey data [116] differentiate four components of

wealth: property, physical, financial and pension, and their typical distribution is

summarised in Figure C.1, exemplary for 2016 data. Financial and property wealth

of the poorest decile have a negative sign (i.e. constitute debt), and the total average

wealth in that decile is approximately 0 and not shown in Figure C.1.

The paper ‘The rate of return on everything, 1870–2015’ [82] provides a

comprehensive analysis of average returns across four different types: bills, bonds,

equity and housing over 1870-2015. In particular for the period 1980-2015 the
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average real rate of returns on equity and housing for the UK are 9.11% and 6.81%,

respectively (Table 7, p 37 [82]). Therefore, the increasing proportion of property

and financial wealth for wealthier households can account for RORs increasing with

wealth. This is also confirmed in Figure C.1 (bottom), where we see that ROR

(technically ROR with zero savings as it is unclear how to divide savings across

components) for physical and pension wealth are largely independent of wealth,

while property and financial ROR increase with wealth.

Figure C.1: Absolute wealth by components as a function of total wealth (top left)
and wealth proportions by component of positive wealth deciles (top right), both
from ONS data [116] from 2016. Bottom: ROR with zero savings (wealth growth)
and same colour code averaged over time periods from 2008 to 2016, computed as

described in (C.4) from percentile data [116].

C.5 Non-central t Distribution

We fit αn with a non-central t distribution, see Figure 4.3. The non-central t

distribution has been used for fitting stock returns that are both skewed and heavy

tailed [141]. We define the non-central t distribution denoted with the random

variable U as
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U =
Z + c�
V/k

where Z ∼ N (0, 1), c ∈ R is the centrality parameter, and V ∼ χ2(k) with

k ∈ R>0 degrees of freedom. We now define the shifted and scaled non-central t

distribution with random variable W such that

W = sU + l

with the shift parameter l ∈ R and scale parameter s ∈ R>0. We denote W

by

W ∼ nct(k, c, l, s) .

C.6 Supplementary Simulation Results

C.6.1 Generic Initial Conditions

Recall the replacement mechanisms (R.1)-(R.3) in case of bankruptcy events:

R.1 replace with a proportion of the agent’s previous positive wealth value

pWn−1(i) > 0 such that p is uniformly chosen from (0, 1] ;

R.2 replace with the agent’s previous positive wealth value Wn−1(i) > 0 ;

R.3 replace with wealth Wn(j) > 0 of another uniformly chosen agent j .

We can see from Figures 4.5 (top left and right), C.2 and C.3 that the

empirical tails and inequality measures of the simulations (4.3) evolve similarly in

time for the three replacement mechanisms (R.1)-(R.3) until the system enters

the crossover region. Then bankruptcy events become more frequent and relevant

for the richest households, leading to significant differences with mechanism R.3

naturally leading to slowest growth.
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Figure C.2: Simulation (4.3) with N = 106 agents, zero savings Sn = 0,
αn ∼ nct(k, c, l, s) with fitted parameters in (4.17) and γ = 1.075 for the four

initial conditions with respective colour coding I.1-I.4 and replacement mechanism
R.2. Top left and right show empirical tails at times n = 200, 300 and power-law
tail fits with exponents β. Bottom left and right show respective Gini, g, and top

1% wealth shares, s0.01 up to n = 300 .
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Figure C.3: Simulation (4.3) with N = 106 agents, zero savings Sn = 0,
αn ∼ nct(k, c, l, s) with fitted parameters in (4.17) and γ = 1.075 for the four

initial conditions with respective colour coding I.1-I.4 and replacement mechanism
R.3. Top left and right show empirical tails at times n = 200, 300 and power-law
tail fits with exponents β. Bottom left and right show respective Gini, g, and top

1% wealth shares, s0.01 up to n = 300 .

C.6.2 Realistic Initial Conditions

We can see from Figures 4.9, C.4 and C.5 that the three replacement mechanisms

(R.1)-(R.3) give very similar results on wealth distribution and inequality over time

n, for the simulations described in the caption of Figure C.4. This is due to the much

shorter time horizon compared to our numerical studies of generic initial conditions,

and confirms that the choice of replacement mechanism is not crucial over limited

time periods.
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Figure C.4: Empirical tails for simulation (4.3) with N ≈ 23 · 106 agents,
replacement mechanisms R.2 (left) and R.3 (right), fixed savings Sn = S(W0)

(4.16), αn ∼ nct(k, c, l, s) with fitted parameters in (4.17) and γ = 1.075 for 2008
initial conditions at times n = 0, 2, 4, 6, 8, 10, 20 and 50. Power law fits with

exponents β decreasing from β = 2.13 at n = 0 to β = 1.45 at n = 50 .

Figure C.5: Gini, g, (left), top 1% wealth shares, s0.01, (right) for simulation (4.3)
with N ≈ 23 · 106 agents, fixed savings Sn = f(W0), αn ∼ nct(k, c, l, s) with fitted

parameters (4.17) and γ = 1.075 with rough 2008 initial conditions and
replacement mechanisms R.1-R.3.
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