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Abstract: Chemical reaction networks can be utilised as basic components for nucleic acid feedback
control systems’ design for Synthetic Biology application. DNA hybridisation and programmed
strand-displacement reactions are effective primitives for implementation. However, the experimental
validation and scale-up of nucleic acid control systems are still considerably falling behind their
theoretical designs. To aid with the progress heading into experimental implementations, we provide
here chemical reaction networks that represent two fundamental classes of linear controllers: integral
and static negative state feedback. We reduced the complexity of the networks by finding designs with
fewer reactions and chemical species, to take account of the limits of current experimental capabilities
and mitigate issues pertaining to crosstalk and leakage, along with toehold sequence design. The
supplied control circuits are quintessential candidates for the first experimental validations of nucleic
acid controllers, since they have a number of parameters, species, and reactions small enough for
viable experimentation with current technical capabilities, but still represent challenging feedback
control systems. They are also well suited to further theoretical analysis to verify results on the
stability, performance, and robustness of this important new class of control systems.

Keywords: feedback control; chemical reaction networks; nucleic acids; strand displacement circuits;
synthetic biology

1. Introduction

With the recent advancement of cost-effective approaches for assembling oligonu-
cleotides, synthetic DNA has become an appealing preference for constructing circuits
using hybridisation and DNA strand displacement (DSD) reactions. Programmable and
biologically compatible synthetic circuits that utilise DSD reactions have been shown to
function effectively in living organisms (in vivo), as reported in a study by [1]. Therefore,
these DSD networks are a promising candidate for building synthetic feedback controllers
in biomolecular settings [2], to drive DNA-based molecular devices, or for the realisation
of biochemical computing circuits with emerging opportunities and challenges also for
applications in vivo [3].

Systematic methods to compose and program DNA circuits have been proposed [4]
that enable the translation of chemical programs to reactions through the use of nucleic
acids, where the binding affinities and the reaction rates can, to a certain degree, be con-
trolled [5,6]. Feedback control systems can be assembled with elementary chemical reaction
networks (CRNs) that provide an abstract layer for designing mathematical operators [7],
prior to being translated to biomolecular applications. As a result, the networks of fun-
damental reactions such as catalysis, degradation, and annihilation can then be mapped
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to their equivalent DSD reactions [8], where the DNA sequences effectively program the
biochemical interactions and each of the strand displacement reaction rates [5,9].

Nonetheless, at first glance, the concentrations of biomolecular species are seemingly
ill-suited to represent signals in the theory of feedback control, given that they are limited
to positive quantities. For instance, in a typical reference tracking control problem, the error
between the reference and the plant output can take either a negative or a positive value, but
then, this cannot be represented by a positive concentration. An alternative technique that
works around this limitation is to employ the so-called dual-rail representation, in which
pairs of concentrations are used to represent system state variables [10]. Specifically, a
signal x(t) is described by the difference between two concentrations x(t) = x+(t)− x−(t),
which corresponds to two chemical species X+ and X−. By making such an abstraction, this
approach enables the representation of gains and negative signals using positive quantities
that are essential for error computation in a negative feedback control system. The dual-rail
representation and implementations for elementary catalysis, degradation and annihilation
reactions provide a systematic framework to convert control theory into biochemistry,
which can be implemented with synthetic DNA oligonucleotides, where the representation
of transfer functions [11], linear feedback systems [12–17], and nonlinear controllers [18–20]
can be realised through the assembly of DSD networks.

While open-loop cascades for analogue or logical computations implemented with
DSD networks have been constructed [21], there remains a considerable gap between theory
and experiment when it comes to dynamical circuits that implement negative feedback.
Moreover, even the most basic types of feedback controllers have yet to be implemented
and reported. This is an important limitation to further progress, because the proposed
dual-rail representation requires annihilation reactions, which are essential to ensure that
species concentrations remain within the bounds of experimental feasibility, but lead to
nonlinear dynamics due to the bimolecular nature of annihilation reactions.

Ideally, these additional nonlinear dynamics are not observable in the represented
input to output linear dynamics, but still determine some important properties of the
CRN, which need careful consideration for experimental implementation, such as the
level of concentrations at which the circuit operates and unforced positive equilibria with
persistent consumption of chemical species [22,23]. Additionally, the implementation of
the DSD reactions introduce leakage and spurious effects [24], which prompted study on
leakage analysis and ways to mitigate it [25]. Furthermore, the variability and granular
design of hybridisation rates [5] introduce error and mismatches in the reaction rates.
All these aforementioned issues show that we are lacking an experimental validation of
control systems based on DNA hybridisation, to help us understand how nonlinearities
and uncertainty in the implementation impact the stability and performance of these
control circuits.

Due to several technical challenges, which include cross-talk, designing toehold se-
quences, leakage, etc., there is a substantial lag in the construction, validation, and scale-
up of nucleic acid control systems compared to the theoretical advancements’ counter-
part [5,24]. While the nucleotide sequence can be predicted from the toehold affinities [5],
the kinetics can be affected by undesirable binding scenarios, resulting in the modification
of the reaction rate constants and the dynamics (e.g., in oscillating circuits [24] or the seesaw
gate circuit [26]). The activation of these undesirable reactions that yields the leakage of
the outputs in the absence of the input also poses another major experimental hurdles. A
potential approach in addressing this issue is the use of clamps, which could impede the
spurious hybridisations [24,27], or compartmentalisation and localisation strategies [28–30],
which isolate strand complexes, which could cause leak reactions. Additionally, the severity
of leakage increases when concentrations are high; thus, it is a common practice to ensure
low concentrations of the reacting species [31]. This leakage at high concentrations along
with the restrictions on hybridisation rates [5] impose upper bounds on the speed at which
these circuits can operate. A technique that can be used to mitigate this is localisation,
whereby the adjacent gates are placed for interaction without diffusion at faster rates [26].
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Lastly, despite measures taken to prevent these spurious reactions, it is still essential that
the sequence of reactions, which are competing for common reactants, are well-managed
through the means of timescale separation or compartmentalisation [32]. With larger and
more complex circuits, sequence similarity aggravates all these undesired effects, with
a stronger need for toehold-mediated strand displacement circuits, which are robust to
molecular noise [33].

All the experimental challenges described above can be addressed through the designs
of circuits that have a lesser amount of reactions. With a lesser amount of reactions
and species, this reduces the number of designs required for the template strands. This
concurrently reduces the demand for the characterisation and tuning of the kinetic rates,
lessens the sources of error, as well as curtails the possibility of leakage and undesired
interactions. Ensuring fewer reactions and species are of pertinence, especially in using the
dual-rail representation, which necessitates a duplication of nearly all of the reactions [19].

A key challenge from a theoretical perspective is, therefore, to design circuits of
reduced complexity, using the least amount of chemical reactions, at the same time still
able to represent a negative feedback control problem of interest in an accurate manner. All
these are done to ensure that, with the presently available technical capacity, the likelihood
of implementing a successful experiment can be maximised. Here, we suggest chemical
representations for two fundamental types of feedback control systems in order to achieve
the above objective. Our first type of circuit is a reference-tracking problem employing
integral control for a stable first-order system, with a single tuning parameter. The second
type of circuit is a combined reference tracking and stabilisation problem of a marginally
stable plant, i.e., the classic double-integrator system employing the static state feedback
control of the two integrated states with two tunable gains. The dual-rail framework is
used in both of these circuits, and their parametrisations can be tuned to satisfy control
requirements such as steady-state tracking and transient dynamics. The supplied circuits of
reduced complexity are ideal candidates for the first experimental validation and robustness
assessment of nucleic acid controllers implemented via the dual-rail representation.

An early version of this study can be found in [34], where we established the fun-
damental theories of chemical reaction network that are required to realise the reference
tracking control problem. Here, we extended the work in [34] by applying the theories
to design two types of controllers and investigated the impact of the nonlinearities and
uncertainties on the experimental implementation, in particular the effect of leakage, which
was not considered previously.

The remainder of this article is organised as follows. Section 2 introduces the defi-
nitions and methods used in this work. The formulations and constructions with DNA
hybridisation reactions are detailed for control systems with integral action in Section 3
and with state feedback in Section 4. Section 5 discusses the impact of nonlinearities and
uncertainty in performance and robustness, highlighting the properties of interest for the
experimental investigation. Section 6 summarises the main conclusions.

2. Definitions and Preliminaries
2.1. Chemical Reaction Networks

The theory of CRNs has its roots in chemistry [35], whereby the same principle is
applied in a similar manner to biomolecules to model and analyse biochemical reaction net-
works. With their extensive computational capabilities [36,37], CRNs provide a convenient
representation for implementing elementary arithmetic operations [7] or the computation of
polynomials [38], using any chemical system with mass action kinetics. They also provide
an appropriate level of abstraction for designing complex circuits [39] and integrate the
different elements necessary to build linear feedback control systems [12,13].
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Definition 1. Given a set of M reactions between N chemical species Xj, a chemical reaction
network is represented by

N

∑
j=1

ajmXj
γm−→

N

∑
j=1

bjmXj, (m = 1, . . . , M) (1)

where the stoichiometric coefficients ajm and bjm determine, for each reaction m, the quantities of the
reactants consumed on the left and the products output on the right, at a rate γm. When, due to
degradation or sequestration, a product is removed or becomes nonreactive, it is omitted or replaced
by the symbol ∅.

When the same species is utilised in multiple reactions, it creates links between
different species that can be expressed as a graph to describe the network. There are various
sources that provide the definitions of the models and properties pertaining to CRNs.
These include Petri nets and monotone systems [40,41]; deficiency theorems and structural
analysis work [42–45]; and biochemical networks’ application [46].

Different principles have been used to model the time evolution of the concentration
of species [35]. In this study, the main principle that we used is the Mass-Action-Kinetics
(MAK)-based deterministic models, which have been traditionally used to model bio-
chemical processes [47–49], as well as used in the implementation of polynomial Ordinary
Differential Equations (ODEs) and Turing universal CRNs [36,50]. Assuming the MAK, a
set of ODE can be used to express a deterministic model [51–53] that is appropriate for the
analysis of control and systems theory, despite being nonlinear, with the reaction fluxes
depending on the product of the reatanct’s concentrations.

Definition 2. For a deterministic model based on the MAK [35], we have that, for each species Xj
in (1), the dynamics of its concentration xj is given by

ẋj =
M

∑
m=1

(
γm
(
bjm − ajm

) N

∏
j=1

x
ajm
j

)
(2)

Example 1. Take the reaction between the reactant species X1 and X2, which produces species X3,
represented by

a1X1 + a2X2
γ−→ bX3 (3)

where the reactants on the left are converted into the product on the right at a rate γ, according to
the stoichiometric coefficients a1, a2, and b. The MAK model results in the ODEs:

ẋ1 = −a1γxa1
1 xa2

2 (4)

ẋ2 = −a2γxa1
1 xa2

2 (5)

ẋ3 = +bγxa1
1 xa2

2 (6)

where the stoichiometric coefficients a1, a2, and b indicate, respectively, the relative number of
molecules consumed and produced during the reaction.

Let R+
0 denote the positive orthant, where vj ∈ R+

0 ⇒ vj ≥ 0; the dynamics of (4)
to (6) are expressed in their natural coordinates, and the concentrations xj ∈ R+

0 are always
non-negative. The system is non-negative (∀j, xj(0) ≥ 0⇒ xj(t) ≥ 0) if the sets of reactions
are modelled properly using realistic non-negative initial conditions.
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2.2. Dual-Rail Representation

In the context of feedback control, a key challenge in employing CRNs is their in-
ability to directly represent negative signals, since the concentrations of chemical species
are always positive. In a linear negative feedback system, we cannot restrict ourselves
to considering only a positive difference between two positive inputs, i.e., “one-sided”
subtraction [54]. The limitation of the positivity of CRNs can be circumvented using the
dual-rail representation [10,12,55], where this enables the positive and, in particular, the
negative signals that are vital for error signals’ computation in a feedback control to be
represented using molecular concentrations.

Definition 3. Consider two chemical species X+
j and X−j and respective concentrations x+j ≥ 0

and x−j ≥ 0. A dual-rail signal pj ∈ R is represented by pj = x+j − x−j , with dynamics given by
ṗj = ẋ+j − ẋ−j .

Here, we have signals that are generated by subtracting two positive quantities,
which enables us to obtain positive or negative results when subtracting signals instead of
concentrations.

Definition 4. The Input–Output (I/O) system is the response Y(s) = G(s)U(s), from an input
u = (u+ − u−) to an output y = (y+ − y−). The states are also dual-rail pj = x+j − x−j , where
u, y, pj ∈ R and u±, y±, x±j ∈ R+

0 .

Combining the MAK and the dual-rail representation, we can model linear systems
with both positive and negative signals, using CRNs composed of only the three types
of reactions:

Xi
γ−→ Xi + Xj (7)

Xi
γ−→ ∅ (8)

Xi + Xj
η−→ ∅ (9)

where we have unimolecular reactions for catalysis (7) and degradation (8) and a bimolecu-
lar reaction in annihilation (9).

Example 2 (First-order system). To chemically represent the first-order system with a negative
gain given by the transfer function:

Y(s) = − k1

s + k2
U(s) (10)

with u, y ∈ R, we take the pairs of chemical species {U±, Y±} and the CRN from Figure 1 with

U±
k1−→ U± + Y∓ (11)

Y±
k2−→ ∅ (12)

Y+ + Y−
η−→ ∅ (13)

From the MAK, we derive the ODEs for the concentrations:

ẏ+ = −k2y+ + k1u− − ηy+y− (14)

ẏ− = −k2y− + k1u+ − ηy+y− (15)
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From Definition 4, the linear I/O system results:

ẏ+ − ẏ− = −k2
(
y+ − y−

)
− k1

(
u+ − u−

)
⇔ ẏ = −k2y− k1u (16)

𝑌−

𝑌+

∅

𝑈+

𝑈−

𝑘2

𝑘2

𝑘1

𝑘1

𝑘1

𝑘1

∅

∅
𝜂 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠
𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛

Figure 1. The first-order transfer function described in Example 2 depicted as a network with the
dual-rail representation. Here, we have the duplication of unimolecular reactions of degradation and
catalysis. In the subsequent graphs, the autocatalysis represented in grey will be omitted. Through a
bimolecular reaction, the two components of the output signal y = y+ − y− annihilate each other.

The computation of a two-sided subtraction with the steady-state of a CRN or the
representation of negative gains is enabled by the dual-rail representation [55]. Although
this increases the number of required reactions (by duplicating the unimolecular reactions),
it does provide a systematic framework with which to represent linear and negative
feedback systems [11,12,14].

2.3. DNA Strand Displacement Reactions

Sequences of four types of nucleotides, i.e., Adenine (A), Guanine (G), Cytosine (C),
and Thymine (T), are formed by chains of nucleotides in nucleic acids. The formation of
hydrogen bonds between nucleotide pairs A-T and C-G results in a double-stranded DNA
with a helical shape. As depicted in Figure 2, this DNA structure is composed of two strands
of DNA that run antiparallel to each other. The bonding between the complementary pairs
of A-T and C-G is stabilised by the hydrophilic backbone and the hydrophobic nature of
the bases. As illustrated in Figure 2b, this results in the formation of double-stranded DNA
through an enzyme-free hybridisation reaction between two antiparallel complementary
strands of DNA [56].

1 2

2 3

1* 2*
ATCATTCAGCTTCCGG

TAGGAATAGTAAGTCG

ATCCTTATCATTCAGC

Toeholds

Binding domains

(a) (b) (c)

Figure 2. Single- and double-stranded DNA represented in three different manners: (a) sugar-
phosphate backbones with either forming a helicoidal double structure or exposed sugar bases;
(b) sequences of bound pairs of complementary sequences of nucleotides; (c) numbering the domains,
where 2∗ is the complementary sequence to the domain 2.
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The dynamics of simple chemical reactions such as catalysis, degradation, and an-
nihilation can be readily translated into nucleic-acid-based reactions with comparable
behaviours [8,9]. This approach enables technology for implementing circuits designed
using CRNs, where the DNA sequence of the nucleotides within the strands can effica-
ciously be used to program the biochemical circuitry to realise both analogue and digital
computations [4,5,26,54]. Each of these reactions has equivalent representations with DSD
reactions, where formal species and reactions in the CRN are mapped to sets of DNA
species. Various suggested architectures [8,9,24,32] permit the creation of circuits that are
aided by a high-level of automation through the utilisation of existing syntax and software
tools [4,13,57].

The DSD reaction uses DNA molecules as signal species, and they consist of binding
domains and single-stranded overhanging and exposed toeholds. The function of
these toeholds is to initiate and adjust the reaction rates of strand hybridisation [4,5],
as depicted in Figure 2c. The hybridisation process leads to bimolecular reactions with
unitary stoichiometric coefficients. Using the following DSD reaction of A + B→ C + D
as an illustration (Figure 3), the toehold 1 of the approaching strand A is hybridised to its
complementary toehold 1∗ in B, which leads to the commencement of branch migration.
This then displaces Domain 2 and releases the two output species of C and D. From the
thermodynamic point of view, the unbinding of toehold 1 is less favoured compared to
the displacement of the incumbent domain 2, resulting in C being completely displaced.
With the two output species C and D having no overhanging complementary toeholds for
further hybridisation, the displacement mechanism is deemed not reversible, assuming
leakage reaction rates are much slower than the displacement mediated by the toehold
reactions. The reverse reaction, where C displaces the strand A from D, can be up to orders
of magnitude slower [58] and be considered effectively unreactive.

1 2

2 3

1* 2*

1 2 3

1* 2*

2 3

1 2

1* 2*

bind

unbind

release+ +

𝐴

𝐵

𝐶

𝐷
Figure 3. An illustration of a bimolecular DSD reaction of A + B → C + D that involves single-
and double-strands. The hybridisation between overhanging complementary toeholds 1 and 1∗

initiates the displacement, resulting in competition for domain 2∗ between the incumbent strand and
the incoming strand A. The hybridisation carries on till the incumbent is fully displaced, yielding
new “species” C and D. There is an exposed toehold for the single-strand C, which can trigger
other hybridisation reactions. In view of the absence of exposed toeholds, species D is deemed
unreactive waste.

With the assumption of an irreversible reaction coupled with the output strand C
being able to take part in other reactions, the cascade of several reactions ensues. It is often
a challenge to describe the hybridisation reaction with good accuracy. Nonetheless, there
are several predictive models available that utilise the nucleotide sequences to provide a
good approximation of the reaction rate [5]. Using Visual DSD [57], which is a specifically
designed computer-aided design software for strand displacement reactions’ analysis, we
conducted a simulation to analyse and verify the DSD circuity by programming the species
and their affinities in the software. We ran the simulation in “default” mode, which is the
mode that considers finite binding/unbinding rates. The affinities between the toeholds,
which facilitate the initial hybridisation between the strands, are determined based on the
reaction rates in the CRNs.
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3. Integral Feedback Control System

We now propose a CRN with reduced complexity to represent the integral feedback
control system in Figure 4. This is then followed by implementing it in Visual DSD using
strand displacement reactions.

Example 3 (Reference tracking problem using integral control). Define the first-order plant
and the control law:

Y(s) =
b

s + a
V(s)⇒ sY(s) = bV(s)− aY(s) (17)

V(s) =
ki
s
(R(s)−Y(s)) (18)

where V(s) is the integral control action to have the output Y(s) track a reference R(s), according
to Figure 4.

𝑌(𝑠)𝑅(𝑠) + 𝑘𝑖
𝑠

𝑉(𝑠) 𝑏

𝑠 + 𝑎–
Figure 4. Reference tracking problem with integral control of a stable first-order plant.

The transfer function for the closed-loop dynamics results:

Y(s) =
bki

s2 + as + bki
R(s) (19)

where the integral control ensures steady-state tracking with Y(0) = R(0). The transient
dynamics are defined by the roots of the characteristic polynomial:

λ =
1
2

(
−a±

√
a2 − 4bki

)
(20)

with a natural frequency ωn =
√

bki and damping coefficient ξ = a
2
√

bki
.

3.1. Representation with Chemical Reactions

The closed-loop response represented by a network of catalysis, degradation, and
annihilation reactions is shown in Figure 5, where

V+ b−→ V+ + Y+, V− b−→ V− + Y− (21)

Y+ a−→ ∅, Y− a−→ ∅ (22)

R+ ki−→ R+ + V+, R−
ki−→ R− + V− (23)

Y+ ki−→ Y+ + V−, Y−
ki−→ Y− + V+ (24)

Y+ + Y−
η−→ ∅, V+ + V−

η−→ ∅ (25)

The reactions (21) and (22) describe the plant, where the reaction rates a and b, respec-
tively, set the gain and the degradation reactions, with a stable pole at s = −a.
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𝑅+

𝑅−

𝑉+ 𝑌+

𝑉− 𝑌−𝑘𝑖

𝑘𝑖
𝑘𝑖

𝑘𝑖

𝑏

𝑏

𝑎 ∅

𝑎 ∅

∅
𝜂

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛

∅
𝜂

Figure 5. Dual-rail representation for the CRN of the catalysis, degradation, and annihilation reactions
for realising integral control employing the MAK.

The additional dynamics of the chemical reactions used to solve the subtraction and
compute the control error as found in [12] or [14] are removed. Instead of using separate
CRNs for subtraction and integration, both operations are combined to reduce the number
of reactions and simplify the circuit. Thus, Equations (23) and (24) describe the subtraction
of the contributing reference and the output to the integral action through the crossing
of the contributions from Y± to V∓. The control gain is applied by the reaction rate ki in
the corresponding catalysis reactions. The annihilation reactions in (25) ensure low (i.e.,
experimentally feasible) concentrations of the chemical species [12,23].

The respective MAK governing the species concentrations can be written as

v̇+ = kir+ + kiy− − ηv+v− (26)

v̇− = kir− + kiy+ − ηv+v− (27)

ẏ+ = bv+ − ay+ − ηy+y− (28)

ẏ− = bv− − ay− − ηy+y− (29)

This gives us then that, for the dual-rail variables y = y+ − y−, v = v+ − v−, and
r = r+ − r−, the dynamics of the I/O are the outcome of the expressions v̇ = v̇+ − v̇− and
ẏ = ẏ+ − ẏ−, and this yields

v̇ = ki
(
r+ − r−

)
+ ki

(
−y+ + y−

)
= ki(r− y) (30)

ẏ = bv− ay (31)

The swapped contributions from Y± to V∓ still result in positive gains in the dynamics
of the concentrations in (26) to (29), but result in a negative gain on the output y when
computing the dynamics in (30) to (31).

The dynamics of the input–output given in (30) to (31) are linear, corresponding to the
transfer function of the closed-loop system in (19). To further simplify the construction, we

disregarded any annihilation reaction among the reference species R+ + R−
η−→ ∅ with the

assumption that we have low and constant input concentrations during the whole circuit
operation, and the dynamics in (30) to (31) rely solely on the difference of r instead of the
R+ and R− concentration levels.

3.1.1. Dual-Rail CRN as a Nonlinear Internal Positive Representation

The dual-rail representation uses a positive system (the MAK of the CRN) to represent a
non-positive system. This approach of having an Internally Positive Representation (IPR) [59]
lifts the constraint of positivity imposed by the implementation of the physical system using
chemical species. The representation uses input and output transformations that translate the
input and output of the system into and from positive states of the dynamics, respectively, to
realise arbitrary I/O dynamics. In our case, the internal positive dynamics are represented by
CRNs (Figure 6) and the positive variables are the natural coordinates of the MAK given by
positive concentrations.
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CRN𝑇(𝑢)
𝑢

𝑢+>0

𝑢−>0

𝑦+>0

𝑦−>0
𝑇(

𝑦+

𝑦−
)
𝑦

Input-to-Output dynamics

Figure 6. The depiction of input-to-output dynamics of a nonlinear internal positive representation
using a linear system, given by the MAK of a CRN.

When representing linear I/O systems with a linear IPR, we need to ensure that the
system is stable from input to output, but also internally stable. This results in limitations
when building the internal linear process [59]. However, the dual-rail representation
constructed with the elementary reactions of catalysis, degradation, and annihilation
reactions results in a nonlinear MAK. The I/O system in (30) to (31) is linear because the
dynamics of the differences of concentrations have the nonlinear terms of the MAK in (26)
to (29) cancelling out. However, internally, we have a process that is not only positive, but
also nonlinear and not observable in the I/O system.

Definition 5 (Rotated coordinates [23]). Define the transformation of coordinates v̄ = v+ − v−

and v̂ = v+ + v−, where we can recover the concentrations with v± = 1
2 (v̂± v̄).

In the new coordinates, we can clearly express the relationship between the I/O
system and the internal positive nonlinear dynamics [23]. Since ηy+y− = η

4
(
ŷ2 − ȳ2), we

can express the MAK of Example 3 in the new coordinates, where we obtain

˙̄v = ki(r̄− ȳ) (32)

˙̄y = bv̄− aȳ (33)

˙̂v = ki(r̂ + ŷ)− η

2
v̂2 +

η

2
v̄2 (34)

˙̂y = bv̂ + aŷ− η

2
ŷ2 +

η

2
ȳ2 (35)

The dynamics of ˙̄v and ˙̄y correspond to the I/O system and ˙̂v and ˙̂y are the remaining
dynamics in the dual-rail representation, which are nonlinear and depend on the trajectories
of the I/O system. It is noteworthy that the I/O system does not rely on ˙̂v or ˙̂y, and
these underlying nonlinear dynamics are, by design, not observable in the represented
linear system.

Assumption 1. It was assumed that the designed I/O system results in a stable closed feedback system.

Assuming that the controller is designed to ensure stability for the feedback system,
we have that the I/O system is a bounded and stable input into the internal nonlinear
dynamics. Assumption 1 together with previous theoretical results from [23] ensure that,
although nonlinear and partially unobservable, the dynamics in (32) to (35) remain stable.

3.2. Representation with Strand Displacement Reactions

In order for CRNs to be translated into nucleic acid chemistry, the DSD reactions are
set with comparable dynamics to each of the three elementary reactions, coupled with
toehold mediation to tune their reaction rates. Following [9], both catalysis and degradation
reactions can be implemented using the Join–Fork templates. A signal strand can be released
through the interaction of a Join double-stranded complex with either one or a few single-
stranded inputs. This then leads to a sequence of DSD reactions in the Fork template, where
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one or more output strands are released. The auxiliary templates, namely the Join and
Fork templates, as well as the auxiliary two-domain strands, need to be present in high
concentrations and supplied at the start of the reaction.

Figure 7 shows an example of sets of DSD reactions equivalent to the unimolecular
reaction of catalysis R −→ R + V, where the interactions with the intermediary strands and
auxiliary templates are mediated utilising toeholds. The sets of reactions are

R + JoinVR
ci×kt−−−⇀↽−−−
kbnd

JoinVR_1 + aux_hrtp (36)

JoinVR_1 + aux_tphpr
kbnd−−⇀↽−−
kbnd

JoinVR_2 + sig_hprtq (37)

sig_hprtq + ForkV R
kbnd−−⇀↽−−
kbnd

ForkVR_1 + aux_tphpr (38)

ForkVR_1 + aux_hrtp
kbnd−−⇀↽−−

kt
ForkVR_2 + R (39)

ForkVR_2 + aux_hvtr
kt−⇀↽−
kt

ForkVR_3 + V (40)

ForkVR_3 + aux_hitv
kt−→ ∅ (41)

The species highlighted in bold in (36) to (41) are the template complexes and auxiliary
single-stranded species, which are made available at a high concentration Cmax, to avoid
their irreversible consumption from significantly impacting the dynamics.

Figure 7. An example of a set of DSD reactions in which their dynamics are equivalent to a catalysis

reaction R
kt×ci−−−→ R + V generated in Visual DSD utilising the Join-Fork templates following [9]. The

toehold <tr*ci> in the complex JoinVR contains a complementarity degree to the signal toehold <tr>
of 0 < ci ≤ 1. This slows down the reaction mediated by <tr> and <tr*ci> to kt × ci, where kt is the
maximum binding rate of two complementary toeholds <tr> and <tr*> [13,60].
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As shown in Figure 7, every signal species is a single-stranded DNA that consists of
toehold (<tr>) and binding (<hr>) domains. The hybridisation to the multi-stranded complex
JoinVR is initiated by the toehold domain, which activates a series of processes, leading
to an intermediary strand sig_hprtq being released. The presence of this new intermediary
strand activates another series of strand displacements, but this time involving the ForkVR
complex. This results in the signal species V being released and a strand of R being returned
(following the stoichiometry of R −→ R + V).

Remark 1. The reversible reactions in (37) and (38) assume the same forward and backward
binding rate kbnd. Implicit in this assumption is that the sequences of the toeholds <tp> and <tp*>
can be designed to have the same maximum binding rate as the toeholds <tq> and <tq*>. The same
assumption is made in (40) for <tr>, <tr*>, <tv>, and <tv*>.

As depicted in Figure 8, the DSD reactions for the degradation reaction are less
complicated given that the JoinY complex only requires capturing the signal species Y in
an irreversible manner, with

JoinY + Y
kt×ca−−−→ JoinY_1 + dY (42)

Considering that there are no exposed toeholds in the product of the double-strand,
this product becomes inactive and participates no further in the reactions.

Figure 8. An example of a set of DSD reactions in which their dynamics are equivalent to a degra-

dation reaction Y kt×ca ,−−−→ ∅, generated in Visual DSD utilising the Join-Fork templates following [9].
The toehold <ty∗ca> has a degree of complementarity of 0 < ca, kt < 1 to the toehold <ty>, effectively
slowing down the binding rate from kt to kt×ca.

To implement the annihilation reactions, we propose the cooperative hybridisation
from [61] and applied in [32]. An auxiliary species AnnVV at high concentrations quickly
hybridises with both input signals to generate waste species, and in order for the cascade
to become irreversible, the two input species need to be present. In the ensuing cooperative
hybridisation mechanism, a single template per signal is then used to set the annihilation
reactions V + V′ −→ ∅, where

V + V′ + AnnVV
cVV×kt−−−−→ ∅ (43)

As shown in Figure 9, there is a set of DSD reactions that includes intermediary
complexes together with reversible displacement reactions, resulting in the following CRNs:

AnnVV + V
cVV×kt−−−−⇀↽−−−−

kubnd
Iv (44)

Iv + V′
cVV×kt−−−−→Wv + Wv′ (45)

AnnVV + V′
cVV×kt−−−−⇀↽−−−−

kubnd
Iv′ (46)

Iv′ + V
cVV×kt−−−−→Wv + Wv′ (47)
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Both V and V′, when present, facilitate the production of two double-stranded waste
complexes Wv and Wv′ from the second irreversible reaction.

The nucleotide sequences in the toeholds, which initiate strand hybridisation, allow
for the programmability of the DSD reactions. It is well known that the predictable
hybridisation kinetics is defined by the affinities between the base pairs [5] despite several
factors that could likewise impact the effective reaction rate constants [24]. To facilitate our
programming and analysis using Visual DSD, we adjusted the rates of the DSD reactions
through the assignment of complementarity degrees between toeholds [13,57] based on the
assumption that the binding affinities are weakened by the possibility of toehold design
and nucleotide sequences mismatch. As illustrated in Figure 7, the complex JoinVR has
the toehold <tr*ci> that possesses the complementarity degree to the signal toehold <tr> of
0 < ci ≤ 1. This slows down the reaction mediated by <tr> and <tr*ci> to kt × ci, where kt
is the maximum binding rate of two complementary toeholds <tr> and <tr*>.

Figure 9. An example of a set of DSD reactions in which their dynamics are equivalent to an
annihilation reaction generated in Visual DSD utilising the cooperative hybridisation approach
following [32,61].

Assumption 2. The auxiliary strands were assumed to be present at high concentrations and to
remain constant or approximately close to their initial value during the operation of the circuit (or
indefinitely through replenishment).

Assumption 2 allowed us to approximate the bimolecular hybridisation reactions with
the unimolecular reactions in (7) and (8). For example, the implementation in (42) can be
approximated assuming [JoinY](t) ≈ [JoinY](0) = Cmax, resulting in the approximating
unimolecular reaction:

Y
Cmax×ca×kt−−−−−−−→ JoinY_1 + dY (48)

where the constant and large presence of the auxiliary species JoinY is translated directly
into the unimolecular reaction rate [8].

3.3. Initialisation and Modelling of the Integral Control System

The six catalysis and two degradation reactions from the CRN in (21) to (25) with the
exception of one annihilation reaction were used in implementing the DSD reactions. In the
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analysis using Visual DSD, the reaction Y+ + Y− −→ ∅ can be removed to further reduce
the implementation given that both the Y+ and Y− concentrations are sufficiently low.

The templates shown in Figures 7–9 were employed to set the DSD reactions. A
single Fork template was used for both the outputs of the catalysis reaction, where through
cooperative hybridisation, the identical sequestering template is shared between the two
annihilated species. A high concentration of 15 double-stranded and 20 single-stranded
DNA templates and auxiliary species, respectively, was used for circuit initialisation. The
domains for signal species V, V′, Y, Y′, and R, R′ that, respectively, represent V+, V−,
Y+, Y−, and R+, R− are shown in Figure 10. The same figure also shows the provided
auxiliary templates with the details of their toeholds and domains that were constructed for
hybridisation and strand displacement.

Figure 10. The species that were used to initialise the DSD network for integral feedback control
system representation. Here, R, R′, V, V′, and Y, Y′ depict the signal strands. Together with the auxiliary
strands, they are initialised at high concentrations.

In the Visual DSD simulation, we set Cmax = 104 nM (the consumption of the auxil-
iary strands are not reversible and replenished). We also set the maximum binding and
unbinding rate of the toehold to 10−3 (nMs)−1 and 0.1 s−1, respectively. Table 1 provides
the details of all the parameters.

Table 1. The integral control circuit’s parametrisation for Visual DSD simulation.

Variable Description Values Units

Cmax Template and auxiliary species initial concentrations 104 nM
kbnd Auxiliary strands’ (<tp>,<tq>) toehold maximum binding rate 10−3 (nMs)−1

kubnd Unbinding rate 0.1 (s)−1

kt Signal species’ (<tr>,<ty>,<tv>) toehold maximum binding rate 10−4 (nMs)−1

ca Degradation of Y± toehold complementarity degree 2.5× 10−3 −
cb Plant catalysis reaction toehold complementarity degree 10−3 −
ci Feedback catalysis implementing integral control toehold comple-

mentarity degree
5× 10−2 −

cVV Annihilation reaction toehold complementarity degree 0.25 −
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From Figure 11, we note that there was an agreement between the output y = y+ − y−

reference tracking behaviour, as well as the concentration evolution in the DSD reactions
and the CRN concentrations obtained by the MAK, as in (26) to (29). Despite the DSD
reactions circuit exhibiting a desirable tracking behaviour, the dynamics of the transient
were damped further. One probable reason for this is the additional auxiliary species and
bimolecular reactions that were present.
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(b)

Figure 11. The integral control (Example 3) simulation results: (a) output y for the step response of the
open-loop plant, closed-loop dynamics, the MAK from the CRN and DSD reactions; (b) concentrations
in both the CRN and DSD representations.

4. State Feedback Control System

The closed-loop dynamics of the static state feedback can be modified by the controller
utilising only the gains on the plant state and adding no dynamics to the open-loop system.
The plant considered here was the classic double-integrator that represents the simplest
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second-order system. Thus, there was an extra state for the feedback apart from the
output feedback.

Compared to the previous example, the control of this plant was more difficult as it
was a marginally stable system due to the presence of two poles at the origin. Hence, the
closed-loop system not only had to achieve the reference tracking capability, but to stabilise
the open-loop system as well.

Example 4 (Double-integrator with linear state feedback). The state space description of the
process to be controlled is [

ẋ
ẏ

]
=

[
0 0
q 0

][
x
y

]
+

[
q
0

]
r (49)

where each integration has a gain q (Figure 12), and reference tracking was achieved with the
control law:

v = r− k1x− k2y (50)

𝑌(𝑠)
𝑅(𝑠) +

𝑞

𝑠

𝑋(𝑠)

𝑘2

𝑘1

-
𝑉(𝑠) 𝑞

𝑠

+

Figure 12. Block diagram representation of a static state feedback controller stabilising a double-
integrator plant.

There are two parameters, k1 and k2, that can be used to adjust the closed-loop state
space system dynamics:[

ẋ
ẏ

]
=

[
−qk1 −qk2

q 0

][
x
y

]
+

[
q
0

]
r (51)

The closed-loop frequency response results in a second-order system with the trans-
fer function:

Y(s) =
q2

s2 + qk1s + q2k2
R(s) (52)

where the poles describing the transient response are given by

λ =
q
2

(
−k1 ±

√
k2

1 − 4k2

)
(53)

There are only three parameters in the closed-loop system, i.e., two controller gains
and one plant gain. From (52), there are q that define the system timescale, 1/k2, which is
the static gain, ωn = q

√
k2 that denote frequency, and ξ = k1

2
√

k2
that represent the damping

coefficient. The parameter k2 is required to be set to unity for achieving steady-state
reference tracking. This implies that any implementation-related error or deviation in this
parameter will be visible in the steady-state error. It follows also that, for an overdamped
response, ξ > 1⇒ k1 > 2.
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4.1. Representation with Chemical Reactions

Similar to the previous example, further simplification of the CRN can be achieved
through the combination of the integration of the first state with the sum of the feedback
contributions and reference. The additional reactions to represent the sum operation
suggested in the following studies [12–14] can be avoided through this simplification.

By considering the dual-rail representation, the eight catalysis and two annihilation
reactions resulting from the CRN are given by

R+ q−→ R+ + X+, R−
q−→ R− + X− (54)

X+ q−→ X+ + Y+, X−
q−→ X− + Y− (55)

X+ qk1−→ X+ + X−, X−
qk1−→ X− + X+ (56)

Y+ qk2−→ Y+ + X−, Y−
qk2−→ Y− + X+ (57)

X+ + X−
η−→ ∅, Y+ + Y−

η−→ ∅ (58)

The plant double-integrator is represented by (54) and (55), which depicts the chain
of two catalysis reactions. The negative gains meanwhile are represented by the reactions
in (56) and (57), which can be realised through the exchange of contributions between
the dual-rail species, as shown in Figure 13a. Lastly, to ensure that the concentrations are
maintained at feasible levels, the annihilation reactions are implemented in (58).

𝑅+

𝑅−

𝑋+ 𝑌+

𝑋− 𝑌−𝑞

𝑞

𝑞𝑘2

𝑞𝑘2

𝑞

𝑞

∅
𝜂

∅
𝜂

𝑞𝑘1𝑞𝑘1

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘
𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛

(a)
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𝑌+

𝑋− 𝑌−𝑞

𝑞

𝑞𝑘2

𝑞𝑘2

𝑞

𝑞

∅
𝜂 ∅

𝜂

𝑞𝑘1

𝑞𝑘1

∅
𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛

(b)
Figure 13. Network of chemical reactions for dual-rail representation of the state feedback control
system, using (a) catalytic degradation or (b) degradation reactions.

The MAK for the chemical network results in

ẋ+ = q
(
r+ + k2y− + k1x−

)
− ηx+x− (59)

ẋ− = q
(
r− + k2y+ + k1x+

)
− ηx+x− (60)

ẏ+ = qx+ − ηy+y− (61)

ẏ− = qx− − ηy+y− (62)
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From the reversed contributions in (59) and (60), the negative signs appear in the gains
in the I/O dynamics of ẋ = ẋ+ − ẋ− and ẏ = ẏ+ − ẏ−, given by

ẋ = qr− qk2y− qk1x (63)

ẏ = qx (64)

In (63) to (64), we recover the linear closed-loop dynamics.

Having the catalysis reactions X±
qk1−→ X± + X∓ crossing the production of each

dual-species X∓ together with a fast annihilation X+ + X−
η−→ ∅ corresponding to the

alternative catalytic degradation proposed in [13], with a self-repressing gain analogous to

having X±
qk1−→ ∅ (for fast η � qk1), hence we can alternatively replace the catalysis

in (56) with degradation reactions. Interestingly, the absence of degradation reactions
in the produced species to ensure bounded concentrations and the marginal stability of
the stoichiometry in the catalysis reactions can be related to the marginal stability of the
integrators in the plant. In this construction, the stabilising feedback gain on x can be
directly related to degradation reactions on x±, which introduce a stable pole in the state.

This results in the CRN from Figure 13b with six catalysis, two degradation, and two
annihilation reactions given by

R+ q−→ R+ + X+, R−
q−→ R− + X− (65)

X+ q−→ X+ + Y+, X−
q−→ X− + Y− (66)

X+ qk1−→ ∅, X−
qk1−→ ∅ (67)

Y+ qk2−→ Y+ + X−, Y−
qk2−→ Y− + X+ (68)

X+ + X−
η−→ ∅, Y+ + Y−

η−→ ∅ (69)

Here, we have a different MAK, i.e.,

ẋ+ = q
(
r+ + k2y− − k1x+

)
− ηx+x− (70)

ẋ− = q
(
r− + k2y+ − k1x−

)
− ηx+x− (71)

albeit that ẋ has the same I/O dynamics as in (63). In Figure 14, the comparison of the
linear design with the CRN representation is shown. There is a good agreement of the
trajectories between the linear control design and the dual-signals obtained from the CRN
I/O dynamics, which follows the predefined reference tracking behaviour.

We must keep in mind, however, that the dynamics of the CRN are still a nonlinear
system. Writing the MAK of (65) to (69) in the new coordinates from Definition 5, we obtain

˙̄x = q(r̄− k2ȳ− k1 x̄) (72)

˙̄y = qx̄ (73)

˙̂x = q(r̂ + k2ŷ + k1 x̂)− η

2
x̂2 +

η

2
x̄2 (74)

˙̂y = qx̂− η

2
ŷ2 +

η

2
ȳ2 (75)
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Figure 14. The state feedback control (Example 4) simulation results: steady-state tracking response
of the linear design and the CRN and DSD reactions representing the I/O dynamics.

Again, we have the static state feedback in the I/O system, with nonlinear dynamics
unobservable in the representation of the linear feedback system. Although the negative
state feedback gains in ˙̄x become positive state feedback gains in the dynamics of ˙̂x, the
dynamics in (72) to (75) can be shown to be bounded [23].

4.2. Construction with Strand Displacement Reactions

For the DSD representation, the catalysis, degradation, and annihilation reactions are
constructed again according to Section 3.2, applying the architectures from Figures 7–9, to
obtain DSD reactions equivalent to the CRN in (65) to (69).

Following the above discussion, the construction in (65) to (69) is adhered to for further
simplification to the circuit. Here, we replace the catalysis reactions that are responsible
for realising the state feedback with the degradation reactions given in (67) that utilise
fewer species and a simpler template complex shown in Figure 8. Nevertheless, solely
depending on catalysis (also annihilation) reactions for circuit building may have its own
benefit. When proposing a catalytic degradation scheme, the authors in [13] advocated that
spatial localisation of the catalysis reaction enables degradation at faster rates.

Moreover, through the Visual DSD simulation and analysis, we observed that the

circuit was still functional even with the annihilation reaction X+ + X−
η−→ ∅ omitted

considering their concentrations stayed low. This is yet another plausible simplification,
depending on the experimental setup.

These aforementioned simplifications resulted in the implementation of state feedback
having the same complexity level as the integral control problem (i.e., six catalysis, two
degradation, and one annihilation reactions), despite the former needing to control a more
complex second-order system with marginal stability with more degrees of freedom. In the
Visual DSD simulation, there were, respectively, 15 and 20 double-stranded complexes and
auxiliary single-stranded species that were initialised at Cmax = 104 nM (the consumption
was not reversible and replenished). Furthermore, the maximum toehold binding and
unbinding rates were set to 10−3 (nMs)−1 and 0.1 s−1, respectively. For the details of all the
parameters and the supplied auxiliary strands, see Table 2 and Figure 15, respectively.
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Table 2. The state feedback control circuit’s parametrisation for the Visual DSD simulation.

Variable Description Vales Units

Cmax Template and auxiliary species’ initial concentrations 104 nM
kbnd Auxiliary strands’ (<tp>,<tq>) toehold maximum binding rate 10−3 (nMs)−1

kubnd Unbinding rate 0.1 (s)−1

kt Signal species’ (<tr>,<ty>,<tx>) toehold maximum binding rate 10−4 (nMs)−1

cq Plant reaction toehold complementarity degree 8× 10−3 −
c1 Degradation of X± toehold complementarity degree 8× 10−3 −
c2 Feedback catalysis of Y± toehold complementarity degree 8× 10−3 −
cYY Annihilation reaction toehold complementarity degree 1 −

Figure 15. Set of toehold-mediated species present initially for the DSD network representation of the
state feedback control of the double-integrator. The strands R, R′, X, X′, and Y, Y′ are the dual-species
for the signals. Together with the auxiliary strands, they were initialised at high concentrations.

In Figure 14, the reference-tracking behaviour of the DSD circuits is shown. We note
that there was good agreement between the CRN I/O dynamics with the linear design. The
DSD reactions on the other hand had slower transient dynamics. When we compared the
concentrations of the CRN with the Visual DSD simulation counterpart (Figure 16), we also
observed slower dynamics and lower equilibrium for Y± and X±, respectively, suggesting
state x was subjected to higher damping.

Nevertheless, the dynamics were similar to the desired design of the state feedback.
This observation provided us with another strong indication that we can omit the annihila-
tion reaction for X± given its limiting degradation.
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Figure 16. Simulation of the abstract CRN and the DSD implementation for the state feedback control
in Example 4. The simulation of the DSD realisation has the output species Y± steady-state close to
the expected from the CRN representation. X±, on the other hand, is smaller for the DSD circuit.

5. Impacts of Nonlinearities and Uncertainty on Experimental Implementations

The goal of the proposed circuits was to represent two linear feedback systems with
chemical reactions, with a number of species and reactions, which can be implemented
with currently available capabilities.

Synthetic DNA and strand displacement reactions have been shown to be applicable
for biocomputation and implementation of dynamical systems [9,24] and scalable to dozens
of distinct molecules [26,32]. Distributed setups can increase even further the number of
reactions and species, where the management of the chemical interactions is defined by
spatial separation or co-localisation [30], rather than the specificity and orthogonality of the
sequences of the programmed toeholds [62]. The constructions proposed in this work relied
on systems of DSD reactions of a smaller scale and were based on already implemented
schemes such as cooperative hybridisation [32,61].

Despite the obvious potential and capabilities of DNA-based chemistry, from the exist-
ing demonstrations of circuits based on DSD reactions, none dealt with the representation
of feedback control. The biocomputation of linear feedback systems with nucleic acids
remains to be validated experimentally, and beyond the basic validation of the designs,
there are additional properties that deserve investigation with an experimental setup.

5.1. Positive Equilibrium

It was pointed out in Section 3.1.1 that the linear I/O systems rely on an internal
positive and nonlinear representation, albeit unobservable and stable. For a linear IPR,
the stability of the IPR implicates a single equilibrium at the origin [59]. In the case of the
dual-rail representation applied here and, specifically in the representation of feedback
with integral action, previous work from the authors showed that the positive nonlinear
dynamics of the CRN realisation can admit an unforced positive equilibrium, which defines
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the levels of concentration at which the circuit operates and leads to persistent consumption
of chemical species [23].

Take again Example 3, assuming that ki was designed for a stable closed-loop system.
Then, v̄ and ȳ in (32) to (35) have stable trajectories, and for r± = 0 (no input concentrations),
the equilibrium of the I/O system at ȳ∗ = 0 and v̄∗ = 0 is globally asymptotically stable.
For the internal dynamics with r± = 0, the unforced equilibrium conditions result in

0 = ki ŷ−
η

2
v̂2 (76)

0 = bv̂ + aŷ− η

2
ŷ2 (77)

Solving for ŷ, we can write

v̂ =
η

2b
ŷ2 − a

b
ŷ⇒ 0 = ki ŷ−

η

2

( η

2b
ŷ2 − a

b
ŷ
)2
⇒
(

η3

8b2 ŷ3 − aη2

2b2 ŷ2 +
ηa2

2b2 ŷ− ki

)
ŷ = 0 (78)

Besides the trivial solution ŷ = 0, we have from Descartes’ rules of signs at least
another equilibrium ŷ = ŷ∗ > 0, and

ŷ = 0⇒ v̂ = 0 (79)

ŷ∗ > 0⇒ v̂∗ = +

√
2ki
η

ŷ∗ > 0 (80)

The reasons for the positive unforced concentrations have been theoretically pre-
dicted [23] and can be quickly understood for Examples 3 and 4. Writing the unforced
dynamics (v̄ = ȳ = r± = 0) of the internal dynamics from (32) to (35), we have linear and
nonlinear components with[ ˙̂v

˙̂y

]
=

[
0 ki
b −a

][
v̂
ŷ

]
− η

2

[
v̂2

ŷ2

]
(81)

The nonlinear quadratic contribution is always negative and stabilising. However, for
the linear term, we have the eigenvalues of the matrix as the solutions of s(s + a)− kib = 0
(which are different from the characteristic polynomial of the I/O system) and

0 = s2 + as− kib⇒ λ = 1
2

(
−a±

√
a2 + 4kib

)
(82)

Due to the positivity of the parameters, we have ki > 0⇒ λ = 1
2

(
−a +

√
a2 + 4kib

)
> 0.

This means the matrix in the internal positive dynamics has modes that push the unforced
dynamics away from the origin. The positive eigenvalue is, in fact, the Frobenius eigenvalue,
and it can be used to show that the origin is an unstable unforced equilibrium of the
MAK [23]. We have the same issue present in Example 4, where, from the dynamics in (72)
to (75), we can write the unforced response of the positive dynamics with[ ˙̂x

˙̂y

]
= q

[
k1 k2
1 0

][
x̂
ŷ

]
− η

2

[
x̂2

ŷ2

]
(83)

and the eigenvalues of the matrix in the linear term has an unstable positive eigenvector

with the associated eigenvalue ∀k1,k2>0, λ = q
2

(
k1 +

√
k2

1 + 4k2

)
> 0.

The nonlinear quadratic terms ensure the system is bounded, and although for cas-
caded systems of CRNs without feedback, the annihilation reactions are a practical mech-
anism to keep the concentrations low, for the representation of feedback, including such
reactions may become essential to keep the concentrations bounded [23].
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5.2. Positive Concentrations and Persistent Consumption

Note that the levels of the operating concentrations and the existence of an unforced
equilibrium have direct experimental consequences, such as the continuous depletion of
auxiliary strands in the implementation with bimolecular strand displacement reactions.

The histories in Figure 17 show the consumptions of the auxiliary species from the
simulation in Visual DSD of the state feedback control in Example 4. The consumed
auxiliary species are converted into the outputs of the DSD cascades, which includes the
signal species, but also the unreactive waste species that accumulate as the auxiliary species
are consumed. Figure 18 shows the histories of the concentrations of the accumulated
waste species that result from the DSD implementation in Example 4, where the species Wy
and Wy′ result from the implementation of Y+ + Y− −→ ∅, while JoinX_1 and JoinX′_1
result from sequestering the signal species in X± −→ ∅. At the end of the DSD cascades
for the implementations of the catalysis reactions, there is a waste species: ForkXR_4 and
ForkX′R′_4 result from X± −→ X± + R±; ForkYX_4 and ForkY′X′_4 result from X± −→
X± + Y±; ForkXY′_4 and ForkX′Y_4 result from Y± −→ Y± + X∓.

0 0.5 1 1.5 2 2.5
105

9,800

9,850

9,900

9,950

10,000

Figure 17. Histories of the consumptions of the auxiliary species from the simulation in Visual DSD
of the state feedback control in Example 4, with concentrations remaining close to their initial value
of Cmax = 104 nM throughout the operation of the circuit.
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Figure 18. Histories of the concentrations of the waste species from the simulation in Visual DSD of
the state feedback control in Example 4: Wy and Wy′ result from the implementation of Y++Y− −→ ∅;
JoinX_1 and JoinX′_1 result from implementing X± −→ ∅; ForkXR_4 and ForkX′R′_4 result from
X± −→ X± + R±; ForkYX_4 and ForkY′X′_4 result from X± −→ X± +Y±; ForkXY′_4 and ForkX′Y_4
result from Y± −→ Y± + X∓.
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The simulation shows the consequences of a positive equilibrium, with the continuous
consumption of auxiliary species and the production of waste, even when the output is
reaching the steady-state, in Figure 14. The consumption of the auxiliary species should
be slow to ensure the approximation of large and constant concentrations of the auxiliary
species, during the complete duration of the operation of the DSD circuit. This calls for
some care in the parametrisation and experimental setup to ensure the concentrations
of auxiliary species remain large during the duration of operation of the circuit or the
mechanisms for the replenishment of the auxiliary species and removal of waste species.

The properties of dual-rail implementations of feedback controllers predicted by the
above theory have yet to be experimentally tested. The systems proposed in this paper are
simple, but they still constitute powerful examples, wherein these theoretical results [22,23]
can be tested. The role of annihilation reactions in the implementation of feedback systems,
to bound the signal species and to slow down the consumption of auxiliary species and the
production of waste species, deserves immediate experimental investigation.

5.3. Variability in the Reaction Rates

The underlying assumption of the dual-rail representation of I/O systems is that it
relies on perfectly tuned reaction rates. In the derivation of the I/O dynamics in (30) to (31),
it is assumed in the CRN in (21) to (25) that the pairs of equations have exactly the same
reaction rates.

However, such an assumption is hindered by the design of affinities based on the
complementarity of toeholds, which suffer from granularity and variability [5]. For example,
the implementation of the catalysis assumes the designs of different toehold sequences with
the same maximum hybridisation (see Remark 1), which we can hope to be similar, but not
exactly the same. The differences will change the equilibrium conditions of the reversible
reactions and introduce error and uncertainty into the effective rate of output release.

Moreover, besides the hybridisation rates, there is the approximation of large and
constant concentrations of the auxiliary species from Assumption 2. Although, theoretically,
the concentration of individual auxiliary species can be used to fine-tune the speed of the
equivalent unimolecular reaction rates [11], experimental variations will always introduce
errors and variability. In Figure 7, we have for catalysis that ki ∝ Cmax × ci × kt, which is the
limiting reaction in (36) to (41), and in Figure 8, for degradation, we have a ∝ Cmax × ca× kt.
Hence, the accuracy of the initial concentrations Cmax impacts the resulting reaction speed.

Consider Example 3, where, despite the system’s simplicity, the physical parameters in
the implementation of the degradation reactions impact directly on the dynamic response
of the represented I/O system. If we look at the eigenvalues of the closed-loop represented
in (19) given by

λ = − a
2
± 1

2

√
a2 − 4kib (84)

we have that, for a high gain ki >
a2

4b , it results in <{λ} = − a
2 . The real part of the pole

depends directly on the implementation of the degradation reactions, and the variability
in the designs of the toeholds ca × kt, as well as the impact of the variations of [JoinY](t)
during operation, can be observed in the response time.

With a realisation with strand displacement reactions, the parametrisation of the CRN
will necessarily depend on several experimental effects, which introduce variability and
uncertainty in the reaction rates. The known issues of the dual-rail representation with
the mismatching of the reaction rates [11,12] were formally addressed by the author’s
theoretical analysis and the characterisation of the asymmetric parametrisation of the
dual-rail representations in [22,23].

In particular, the authors showed in [23] that, under parametric variability, the repre-
sentation of a stable linear model does not necessarily result in a CRN with stable dynamics
and the stability of the realisation with DSD reactions. The dual-rail representation relies
on the assumption of perfectly symmetrical pairs of chemical reactions, which is broken
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when considering variability in the parametrisation of the reaction rates. Asymmetric
parametrisation of the pairs in the CRNs causes feedback between the input-to-output
dynamics and the internal nonlinear positive dynamics of the kinetics, which can lead to
unstable feedback within the network, and stability must be analysed for the complete
CRN of the dual-rail representation.

However, the emergence of the behaviours predicted by theoretical and numerical
analysis and simulation in Visual DSD [22,23] still need validation with actual variability
from experimental realisation with DSD reactions.

5.4. Robustness

One of the main questions for experimental testing are how the physical parame-
ters impact the reaction rates of the CRN, not only for nominal performance, but also
for robustness.

For example, in practice, experimental variability leads to mismatches not only on
the representation of the plants with a+ 6= a−, b+ 6= b−, and q+ 6= q−, but also in the
representation of the control laws with k+i 6= k−i ,(qk1)

+ 6= (qk1)
−, and (qk2)

+ 6= (qk2)
−.

The reasons are clearer in the rotated dynamics. Take again Example 3, but now
assuming independent reaction rates for all reactions. The MAK then results:

v̇+ = k+i r+ + k−i y− − ηv+v− (85)

ẏ+ = b+v+ − a+y+ − ηy+y− (86)

v̇− = k−i r− + k+i y+ − ηv+v− (87)

ẏ− = b−v− − a−y− − ηy+y− (88)

Expressing the dynamics in the coordinates from Definition 5, we obtain

˙̄v = k+i r+ − k−i r− + k−i y− − k+i y+ (89)
˙̄y = b+v+ − b−v− − a+y+ + a−y− (90)
˙̂v = k+i r+ + k−i r− + k−i y− + k+i y+ − 2ηv+v− (91)
˙̂y = b+v+ + b−v− + a+y+ + a−y− − 2ηy+y− (92)

Remark 2. Note that, for a signal ȳ = y+ − y− and ŷ = y+ + y− and applying the same notation
to a parameter a such that ā = a+ − a−, â = a+ + a−, we have the equivalences

a+y+ − a−y− =
â
2

ȳ + ā
ŷ
2

(93)

a+y+ + a−y− =
ā
2

ȳ + â
ŷ
2

(94)

The correspondences in (93) to (94) allow us to express the rotated dynamics as

˙̄v =
k̂i
2
(r̄− ȳ) +

k̄i
2
(r̂− ŷ) (95)

˙̄y =
b̂
2

v̄− â
2

ȳ +
b̄
2

v̂− ā
2

ŷ (96)

˙̂v =
k̂i
2
(r̂ + ŷ)− η

2

(
v̂2 − v̄2

)
+

k̄i
2
(r̄ + ȳ) (97)

˙̂y =
b̂
2

v̂ +
â
2

ŷ− η

2

(
ŷ2 − ȳ2

)
+

b̄
2

v̄ +
ā
2

ȳ (98)
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If the parameters are symmetric, k̄i = ā = b̄ = 0, we recover the desired I/O system
decoupled from the positive and nonlinear dynamics. With mismatching reaction rates,
we have instead interconnected inputs from the nonlinear to I/O system that change
fundamentally the properties of the CRN, and robustness must be addressed for the
complete CRN.

Even if the nonlinearities do not participate in the I/O dynamics directly, ˙̄v and ˙̄y
are no longer decoupled from internal positive dynamics. The Assumption 1 of a repre-
sented stable I/O system no longer provides guarantees of stability for the interdependent
dynamics. Moreover, we can see that, for an unforced response, r̂ = 0, the equilibrium
conditions:

0 = − k̂i
2

ȳ− k̄i
2

ŷ (99)

0 =
b̂
2

v̄− â
2

ȳ +
b̄
2

v̂− ā
2

ŷ (100)

0 =
k̂i
2

ŷ− η

2

(
v̂2 − v̄2

)
+

k̄i
2

ȳ (101)

0 =
b̂
2

v̂ +
â
2

ŷ− η

2

(
ŷ2 − ȳ2

)
+

b̄
2

v̄ +
ā
2

ȳ (102)

can have non-zero equilibrium since v̂∗ > 0 and ŷ∗ > 0 lead to v̄∗ 6= 0 and ȳ∗ 6= 0, with

ȳ∗ = − k̄i

k̂i
ŷ (103)

v̄∗ = − b̄
b̂

v̂ + ŷ
(
− â

b̂
k̄i

k̂i
+

ā
b̂

)
(104)

The experimental variability of the reaction rates entail that, even in the representation
of stable linear feedback systems, the error and uncertainty in the parametrisation of
the reaction rates, introduced by the implementation with DSD reactions, can lead to a
violation of the symmetry assumptions of the dual-rail methodology and result in unstable
circuits [23]. The work by the authors in [22] investigated the impact of such variability and
mismatch of the reaction rates in the stability of the mass action kinetics of the CRN, based
on robust control techniques based on the structured singular value, adapted to address
uncertainty, positivity, and nonlinearities. For small variations in the reaction rates and
mismatches in the parametrisation of the dual-rail representation, the method can provide
a representative and quantified robustness stability margin for the dual-rail-representation
of a feedback system.

Therefore, we know how to quantify the robustness of the CRN to inform how much
error and uncertainty introduced by the realisation with DSD reaction networks can be
tolerated by the chemical representation. However, we lack experimental assessments of
such theoretical results, even with the most basic example of the dual-rail representation
of feedback.

The proposed systems with reduced complexity rely on a very few parameters, even
considering the complete MAK of the CRN. That means that fewer uncertainty intervals
need to be characterised and simpler models for robustness analysis can be generated, while
still providing examples where theoretical robustness results could be tested experimentally.

5.5. Leakage Dynamics

Finally, one of the most-problematic issues in the implementation of DSD networks
is the existence of leakage, where the output strands are released even in the absence of
input. Leakage without exposed toeholds does exist experimentally, albeit at much lower
rates, and strands that are designed to be unreactive will unbind and expose domains and
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toeholds. For example, leakage in the previously unidirectional in the (42) reaction can be
represented with

Y + JoinY
ca×kt−−−⇀↽−−−
kleak

JoinY_1 + dY (105)

With a finite unbinding rate kleak, irreversible reactions in the constructed CRN are
actually implemented with reversible cascades of DSD reactions, and such reversibility can
change the effective reaction rate and cause the buffering of the input species [8,13].

Moreover, even if the leakage rate can be assumed to be very low kleak � kt × ci, the
large concentrations of auxiliary strands used in the DSD cascades amplifies the leakage
of the output, and its impact on the circuit operation can become relevant [24]. Consider
in Example 3 that there are additional and undesired processes that lead to the release of
Y±, where

Z+ ρ+−→ Z+ + Y+ (106)

Z−
ρ−−→ Z− + Y− (107)

In this case, these reactions model the presence of strands Z± that interact with
auxiliary species at high concentrations, which can be approximated with unimolecular
reactions, where ρ± ≈ Cmax × kleak.

Assumption 3. Assume that the same leakage processes exist for Y+ and Y− and have the same
network structure. As the network of unimolecular catalysis and degradation reactions are duplicated,
we consider that the leakage processes are also duplicated.

From the construction methodology of the dual-rail representation, the cascades of
DSD reactions for catalysis and degradation have a symmetrical structure. That is, the
representation always results in pairs of catalysis and degradation reactions with ideally
matching reaction rates. See, for example, Figures 5 and 13, where the symmetry of the
construction methodology is clear in the graphs of the networks. With the additional
leakage reactions from (106) to (107), we then have in the MAK that

v̇+ = k+i r+ + k−i y− − ηv+v− (108)

ẏ+ = b+v+ − a+y+ − ηy+y− + ρ+z+ (109)

v̇− = k−i r− + k+i y+ − ηv+v− (110)

ẏ− = b−v− − a−y− − ηy+y− + ρ−z− (111)

and

˙̄v =
k̂i
2
(r̄− ȳ) +

k̄i
2
(r̂− ŷ) (112)

˙̄y =
b̂
2

v̄− â
2

ȳ +
b̄
2

v̂− ā
2

ŷ +
ρ̂

2
z̄ +

ρ̄

2
ẑ (113)

˙̂v =
k̂i
2
(r̂ + ŷ)− η

2

(
v̂2 − v̄2

)
+

k̄i
2
(r̄ + ȳ) (114)

˙̂y =
b̂
2

v̂ +
â
2

ŷ− η

2

(
ŷ2 − ȳ2

)
+

b̄
2

v̄ +
ā
2

ȳ +
ρ̂

2
ẑ +

ρ̄

2
z̄ (115)

Even in the absence of input r̂ = 0, the leakage will trigger the production of ŷ, and
indirectly also v̂, since in the representation of the feedback, the leaked output species Y±

will trigger the closed-loop response.
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An interesting result that needs experimental investigation is to what extent the
symmetry of the dual-rail representation helps with the impact of leakage. For illustration,
consider Example 3 with ideal ki, b, and a parameters, but with the existence of leakage
with asymmetric rates ρ+ 6= ρ−. Then

˙̄v = ki(r̄− ȳ) (116)

˙̄y = bv̄− aȳ +
ρ̂

2
z̄ +

ρ̄

2
ẑ (117)

˙̂v = ki(r̂ + ŷ)− η

2

(
v̂2 − v̄2

)
(118)

˙̂y = bv̂ + aŷ− η

2

(
ŷ2 − ȳ2

)
+

ρ̂

2
ẑ +

ρ̄

2
z̄ (119)

and we see that the dynamics of the I/O system depend on the asymmetry of the leakage
reaction rate ρ̄ and the difference of leaking strands Z±. If the initial conditions are the
same for Z± such that z+(t) ≈ z−(t), then ρ̂z̄ ≈ 0, and even if there is a considerable
presence of Z±, if the leakage process is symmetric such that ρ̄ ≈ 0, then ρ̄ẑ ≈ 0.

We then have that, while the presence of Z± can result in serious leakage for each of
the components of the signal y±, with the dual-rail representation of the I/O system, the
impact of leakage may be mitigated by reducing the differences between leaked strands and
leakage reaction rates. The proposed systems can be used to investigate how the symmetry
of the leaking process can be more relevant than the amplitude of the leakage, and if the
dual-rail representation can result in systems that are less sensitive to leakage.

6. Conclusions

There currently exist mature theoretical frameworks for the design of linear feedback
controllers with CRNs. Systematic procedures and software tools provide a translation
to equivalent reactions based on nucleic acid chemistry, which should be amenable to
experimental implementation. However, the readiness level of this technology has not
followed the theoretical developments, and we are lacking experimental validation of
such systems.

The viability of the two proposed constructions is increased by the very few DSD
reactions and strands necessary for the chemical representation of linear feedback control
systems, with the objective of a near-future experimentation and validation of feedback cir-
cuits based on toehold-mediated displacement reactions. For the representation of integral
control, we propose a representation simpler than found in the literature, by combining in
the same pairs of CRNs the operations of gain, subtraction, and integration. With this, we
removed from the implementation two catalytic, two degradation, and one annihilation
reaction. The representation of the state feedback candidate was simplified by combining
the gain, subtraction, and integration of the first state in the same CRNs. Although a
double-integrator is not a stable plant, its representation does not need degradation reac-
tions, and with these choices, four catalytic and one annihilation reaction were removed
from the representation.

Both representations capture traditional dynamical features of general classes of linear
feedback control systems and can be implemented using six catalytic, two degradations,
and one or two annihilation reactions. The reduced number of chemical reactions and
the size of the DSD networks puts the proposed candidate constructions within current
capabilities of experimental implementation.

Although the representations were simplified to fit viable experimentation with current
technical capabilities, the examples still represent challenging feedback control systems,
and the circuits are interesting for experimental investigation of the dependence of closed-
loop dynamics on toehold design and the impact of the annihilation reactions and internal
nonlinear positive dynamics on the stability, persistent equilibrium, and concentration
levels of the circuit. Furthermore, the proposed systems are rich enough to investigate
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spurious effects and dynamics present in DSD networks and how much the differential
nature of the dual-rail representation may help mitigate experimental perturbations.
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