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We show that financial correlations exhibit a non-trivial dynamic behavior. We introduce a simple phe-

nomenological model of a multi-asset financial market, which takes into account the impact of portfolio invest-

ment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected

by investment based on it. We show that such a feedback on correlations gives rise to an instability when the

volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correla-

tions very similar to those observed in real markets. Maximum likelihood estimates of the model’s parameter for

empirical data indeed confirm this conclusion, thus suggesting that real markets operate close to a dynamically

unstable point.

Financial markets – as prototypical examples of the col-

lective effects of human interaction – have recently attracted

the attention of many physicists. This is because, in spite of

their internal complications, their aggregate behavior exhibits

surprising regularities which can be cast in the form of simple,

yet non-trivial, statistical laws[1, 2, 3], reminiscent of the scal-

ing laws obeyed by anomalous fluctuations in critical phenom-

ena. Such a suggestive indication has been put on even firmer

basis by recent research on the statistical physics approach to

interacting agent models[4, 5, 6, 7, 8]. This has shown that

quite realistic market behavior can indeed be generated by the

internal dynamics generated by traders’ interaction.

The theoretical approach has, thus far, mostly concentrated

on single asset models, whereas empirical analysis has shown

that ensembles of assets exhibit rich and non-trivial statistical

properties, whose relations with random matrix theory [9, 10],

complex networks [11, 12] and multi-scaling [13] have at-

tracted the interest of physicists. The central object of study

is the covariance matrix of asset returns (at the daily scale in

most cases). The bulk of its eigenvalue distribution is dom-

inated by noise and described very well by random matrix

theory [9]. The few large eigenvalues which leak out of the

noise background contain significant information about mar-

ket’s structure. The taxonomy built with different methods

[10, 14, 15] from financial correlations alone bear remark-

able similarity with a classification in economic sectors. This

agrees with the expectation that companies engaged in simi-

lar economic activities are subject to the same “factors”, e.g.

fluctuations in prices or demands of common inputs or out-

puts. Besides their structure, market correlations also ex-

hibit a highly non-trivial dynamics: Correlations “build up”

as the sampling time horizon on which returns are measured

increases (Epps effect) and saturate for returns on the scale of

some days [16]. Furthermore, these correlations are persistent

over time [11] and they follow recurrent patterns [15].

In what follows we shall mostly concentrate on the dynam-

ics of the largest eigenvalue of the correlation matrix. The

corresponding market mode [9] describes the co-movement

of stocks and it accounts for a significant fraction of the

correlations[17]. Fig. 1a shows the time dependence of the

largest eigenvalue of the (exponentially averaged) correlation

matrix of daily returns for Toronto Stock Exchange [18]. Sim-

ilar behavior has been reported earlier [19] for different mar-

kets. Fig. 2 shows that fluctuations in the largest eigenvalue

are broadly distributed, suggesting that Fig. 1a can hardly be

explained entirely as the effect of few external shocks.
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FIG. 1: Maximum eigenvalue of the correlation matrix as a function

of time for τ = 50. a) Toronto Stock exchange [18]. Here the corre-

lation matrix is obtained using Eqs. (4) and (5) with |δxt〉 taken from

historical data. b) simulation of Eq.(1) with N = 20, R = 510−4,

B = 10−3,∆ = 1,ε = 10−1, W = 0.245. Components of |b〉
where generated uniformly in the interval [0, 2 · 10−3], resulting in

W ∗ ≈ 0.25.

This leads us to formulate the hypothesis that such non-

trivial behavior arises as a consequence of the internal market

dynamics. One of the key functions of financial markets is

indeed that of allowing companies to “trade” their risk for re-

turn, by spreading it across financial investors. Investors on

their side, diversify (i.e. spread) their strategies across stocks

so as to minimize risk, as postulated by portfolio optimization

theory [20]. The efficiency of portfolio optimization depends

on the cross correlations among the stocks the financial mar-

ket is composed of. The optimal portfolio is computed under

the price taking assumption that investment does not affect the

market. While this is reasonable for the single investor, the

effect of many investors following this same strategy can be
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FIG. 2: Cumulative distribution of the day-to day change in the max-

imum eigenvalue for different indices: DAX (+), TSX($), DOW(!),

ASX(×). Also shown is the same distribution for a numerical sim-

ulation of the model with N = 20, ε = 0.1, R = 1, W = 14.7,

∆ = 1,B = 10−2,τ = 100. In the inset we show the results of the

fitting procedure on these indices (same symbols).

sizeable. If financial trading activity resulting from portfolio

optimization strategies have an impact on prices’ dynamics,

it will also affect the correlations which these strategies ex-

ploit. Hence financial correlations enter into a feedback loop

because they determine in part those trading strategies which

contribute to the price dynamics, i.e. to the financial correla-

tions themselves. This feedback is somewhat implicit in the

Capital Asset Pricing Model (CAPM), which concludes that

since all traders invest according to the optimal portfolio, the

market is well approximated by a one factor model [20] (see

however [12]). While this explains why the largest eigenvalue

of the correlation matrix is so well separated from the other

ones, CAPM relies on rational expectation equilibrium argu-

ments, and it does not address dynamical effects such as those

of Fig. 1a.

This Letter discusses a general phenomenological ap-

proach, in the spirit of Landau’s theory of critical phenomena

[21], which shows that a non-trivial dynamics of correlations

can indeed result from the internal dynamics due to trading

on optimal portfolio strategies. The model predicts a dynam-

ical instability if the investment volume W exceeds a critical

value. Not only we find very realistic dynamics of correla-

tions close to the critical point (see Fig. 1b) but maximum

likelihood parameter estimation from real data suggest that

markets are indeed close to the instability. Phenomenological

models are particularly suited for modeling complex systems,

such as a financial market, were a bottom-up (microscopic)

approach inevitably implies dealing with many complications

and introducing ad hoc assumptions [23]. For the ease of ex-

position, we shall first introduce a minimal model which cap-

tures the interaction among assets induced by portfolio invest-

ment. Later we will show that this model contains the lowerst

order terms in a general expansion of the dynamics and that

all the terms beyond these are irrelevant as far as the main

conclusions are concerned. A further reason for focusing on

the simplest model is that it will make the comparison with

empirical data easier.

Let us consider a set of N assets. We denote by |x〉 the

vector of log-prices and use bra-ket notation [22]. We focus on

daily time-scale and assume that |xt〉 undergoes the dynamics

|xt+1〉 = |xt〉 + |βt〉 + ξt|zt〉. (1)

where |βt〉 is the vector of bare returns, which describes all

external “forces” which drive the prices, including economic

processes. This is assumed to be a Gaussian random vector

with

E[|βt〉] = |b〉, E[|βt〉〈β(t′)|] = |b〉〈b| + B̂δt,t′ (2)

|b〉 and B̂ will be considered as parameters in what follows.

The last term of Eq. (1) describes the impact of portfolio

investment on the price dynamics: ξt is an independent Gaus-

sian variable with mean ε and variance ∆ and the vector |zt〉
is the optimal portfolio with fixed return R and total wealth

〈z|1〉 = W . In other words, |zt〉 is the solution of

min
|z〉,ν,σ

[

1

2
〈z|Ĉt|z〉 − ν (〈z|rt〉 − R) − σ (〈z|1〉 − W )

]

(3)

where Ĉt is the correlation matrix at time t. Both the expected

returns |rt〉 and the correlation matrix Ĉt, which enter Eq. (3),

are computed from historical data over a characteristic time τ :

|rt〉 = (e
1

τ − 1)
∑

t′<t

e−
t−t

′

τ |δxt〉 (4)

Ĉt = (e
1

τ − 1)
∑

t′<t

e−
t−t

′

τ |δxt〉〈δxt|− |rt〉〈rt| (5)

where |δxt〉 ≡ |xt+1〉 − |xt〉 [24]. This makes the set of

equations above a self-contained dynamical stochastic system.

In a nutshell, it describes how the economic bare correlated

fluctuations |βt〉 are dressed by the trading activity due to in-

vestment in optimal portfolio strategies. R, W, ∆ and τ are

phenomenological parameters reflecting the portfolio compo-

sition which dominates trading activity, not necessarily those

of a representative investor. In particular, note that |zt〉 is a

quantity, not a percentage as in portfolio theory [20]. Indeed,

the impact of investment on prices depends on the volume of

transactions. The parameter W , which can be taken as a proxy

for the volume of trading on portfolio strategies, will play a

crucial role in what follows.

These parameters are assumed to be constant, meaning that

portfolio policies change over time-scales much longer than

τ . Portfolio theory is, in principle, based on expected returns

and covariances. We implicitely assume that historical data
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can be used as a proxy for expected correlations and returns.

Eqs. (1–5) also assume that portfolio investment is dominated

by a single time scale τ . Later we shall argue that a generic

distribution of time scales would not change the main results.

Finally, Eq. (1) assumes a linear price impact and gaussian

bare returns. Both assumptions may be questionable, spe-

cially at high frequency [25, 26]. We shall see, however, that

non-trivial dynamics and statistics (including a fat tailed dis-

tribution of returns) arises even in such a simplified setting,

thus suggesting that the specific market mechanism and the

statistics of bare returns are unessential ingredients.

Numerical simulations of the model show a very interest-

ing behavior. In Fig 1b we plot the temporal evolution of the

maximum eigenvalue of the correlation matrix for a particular

choice of parameters (see later). The dynamics is highly non-

trivial, with the appearance of instabilities resembling those

observed for real markets (Fig. 1a). To be more precise, we

also analyze the statistics of the day-to-day differences in Λ.

In Fig. 2 we can see a clear power-law behavior emerging,

again very similar to the one we get for real markets.

In order to shed light on these findings, let us consider the

behavior of the model in the limit τ → ∞. We assume that,

in this limit, the correlations and hence |zt〉 reach a time inde-

pendent limit, which by Eqs. (1, 3) is given by

|z〉 =
1

Ĉ − νε
(ν|b〉 + σ|1〉) (6)

where σ and ν are fixed by the constraints 〈z|1〉 = W and

〈z|r〉 = R. Notice that |r〉 = E[|δx〉] = |b〉 + ε|z〉 needs to

be determined self-consistently. We find Ĉ = B̂ + ∆|z〉〈z|
which, combined with Eq. (6), yields an equation for Ĉ. In

order to make the analysis simpler, we assume structure-less

bare correlations B̂ = BÎ . In this case Ĉ has N −1 eigenval-

ues equal to B, and one eigenvalue with eigenvector parallel

to |z〉, whose value is [27]

Λ = B +
∆W 2

N
+

Nδb2∆(1 −
√

1 − a)2

4ε
(7)

where a = 4[W (b + εW/N) − R]/(Nδb2) and b, δb2 are the

average and the variance of bare returns, respectively. If R
and W are both proportional to N , then the contribution to Λ
due to portfolio investment is also proportional to N . This is

indeed the order of Λ in empirical data. Most remarkably, Eq.

(7) makes sense only for a < 1/4, i.e. for

W < W ∗ =
N

2ε

[

√

b2 +
4εR

N
− b

]

. (8)

As W → W ∗ the solution develops a singularity with infi-

nite slope ∂Λ
∂W → ∞. This is reminiscent of the divergence

of susceptibility χ close to a phase transition, signalling that

the response δΛ = χδW to a small perturbation δW di-

verges as W → W ∗. The origin of the singularity at W ∗

is directly related to the impact of portfolio investment. In-

deed, notice that the two constraints are hyper-planes in the

space of portfolios |z〉 when ε = 0 and always have a non-

empty intersection. When ε > 0, the constraint on return

becomes an hyper-sphere, centered in −|b〉/(2ε) and of ra-

dius
√

〈b|b〉/4 + εR/ε. Hence intersections exist only for

W < W ∗.

As anticipated, Eq. (1) can be thought of as the lowest or-

der of a phenomenological expansion [21]. Higher orders,

e.g. |zt+1〉 − |zt〉, as well as terms proportional to |rt〉 and

its time derivatives, can be included. Likewise, one can con-

sider a generic matrix B̂, or add several components |zk
t 〉 of

portfolio investment in Eq. (1), each with different parameters

Rk, W k and ∆k or acting over different time horizons τk . In

all these case, we confirmed [28] the existence of a dynami-

cal instability when the volume of trading exceeds a critical

value, as long as the time-scales (τk) over which averages are

taken in Eqs. (4,5) are very large. The analytic approach can

be extended to finite τ by a systematic 1/τ expansion in the

W < W ∗ phase [28]. This expansion describes how fluctua-

tions in slow quantities, such as |zt〉 or Ĉt vanish as τ → ∞.

We find that the coefficients of the 1/
√

τ expansion diverge

as W → W ∗, signalling that fluctuations do not vanish for

W > W ∗. For example, we find that fluctuations in Λ diverge

as δΛ ∼ |W ∗−W |−1/2, when W → W ∗. This is why higher

order terms such as |zt〉 − |zt−1〉 in Eq. (1) are irrelevant, in

the sense of critical phenomena, i.e. their presence does not

affect the occurrence of the phase transition.

Numerical simulations fully confirm these results. Fig. 3

reports the relative fluctuations of Λt as a function of W ,

for simulations carried out at different time scales τ . For

W < W ∗, fluctuations vanish as τ increases and Λ converges

to the value of Eq. (7). For W > W ∗, instead, the dynamics

is characterized by persistent instabilities with fluctuations of

the same order of Λ, and it does not attain a smooth limit as

τ → ∞. For values of W smaller but close to W ∗ the model

exhibits strong fluctuations, precursors of the instabilities for

W > W ∗. It is precisely in this critical region that we recover

realistic results, such as those of Fig 1b. Moreover, the dis-

tribution of returns develops a power law behavior as W ap-

proaches W ∗ (with a cutoff which diverges as 1/
√

W ∗ − W ).

The presence of a phase transition from a stable to an un-

stable state and the strong resemblance of the dynamics of the

model close to criticality with real data (see Fig. 1) suggests

that real markets might be close to the phase transition. In

order to investigate this issue systematically, we estimate the

parameters of our model from real data. In doing this we im-

plicitly assume that parameters ε, R, W etc. vary slowly on

time scales of order τ . We compute the likelihood that the

particular set of time series of a given market are produced as

output of Eq. (1) for a particular choice of parameters. Next

we find the parameters which maximize the likelihood [28].

As a check, the procedure was run on synthetic data set gen-

erated by Eq. (1) and it allowed us to recover the parameters

with which the data set was created. In the inset of Fig. 2 we

plot the result of such a fit for (the assets of) four different in-

dices in the time period 1997-2005 [18]. We used τ = 50 and

fits were taken on a time window of T = 300 days. Notice,
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in this respect, that while in our model τ enters both in the

dynamics and in the way we take averages, in the empirical

analysis it only enters in the way we take averages, whereas

we don’t have access to the time scale τ used by investors. We

checked that the main results do not depend significantly on

the choice of τ . We see that fitted parameters for real markets

tend to cluster close, but below, the transition line W = W ∗.

This is also consistent with the similarity of the distribution of

Λ for real and synthetic data of Fig. 2.
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FIG. 3: Relative fluctuation of the maximum eigenvalue as a function

of W in a simulation of the model with N = 20, ε = 0.1, R = 1,

∆ = 1,B = 10−2,τ = 1000 (+), τ = 20000 (×) and τ = 50000
($). Vertical line is the theoretical critical value of W .

Our model is very stylized and it misses many important

aspects. For example, it is undeniable that external factors

and global events have an effect on financial markets. For

example, the introduction of the Euro has a visible effect on

the scatter of points for the DAX in the inset of Fig. 2. On

the other hand, the points relative to non-European markets

in different time windows cluster in the same region, showing

that parameters can indeed be considered as roughly constant

on the time-scales discussed here. At any rate, rather than in-

sisting on the validity of the model on theoretical grounds, we

have shown that it reproduces key empirical features of real

financial markets. This makes us conjecture that a sizeable

contribution to the collective behavior of markets arises from

its internal dynamics and that this is a potential cause of insta-

bility. If, following Ref. [29], crashes were activated events

triggered by large fluctuations, the proximity to the instabil-

ity would make the occurrence of such correlated fluctuations

more likely, thus enhancing the likelihood of crashes.

Our results indicate the existence of an additional compo-

nent of risk due to the enhanced susceptibility of the mar-

ket. Such “market impact” risk arises because investing in

risk minimization strategies affects the structure of correla-

tions with which those strategies were computed. This com-

ponent of risk diverges as the market approaches the critical

point W ∗, thus discouraging further investment. This pro-

vides a simple rationale of why markets “self-organize” close

to the critical point. Such a scenario is reminiscent of the pic-

ture which Minority Games [8] provide of single asset mar-

kets as systems driven to a critical state, by speculative trading

[30]. In both cases, the action of traders (either to exploit pre-

dictable patterns or to minimize risk) produces a shift in the

position of the equilibrium that counteracts the effect of this

action (by either making the market less predictable or more

risky), as if a sort of generalized Le Chatelier’s principle were

at play.
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