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Effect of degree correlations on the loop structure of scale-free networks

Ginestra Bianconi and Matteo Marsili
The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

In this paper we study the impact of degree correlations in the subgraph statistics of scale-
free networks. In particular we consider loops, simple cases of network subgraphs which encode
the redundancy of the paths passing through every two nodes of the network. We provide an
understanding of the scaling of the clustering coefficient in modular networks in terms of the maximal
eigenvector of the average adjacency matrix of the ensemble. Furthermore we show that correlations
affect in a relevant way the average number of Hamiltonian paths in a three-core of real world
networks. We prove our results in the two-vertex correlated hidden variable ensemble and we check
the results with exact counting of small loops in real graphs.

PACS numbers: : 89.75.Hc, 89.75.Da, 89.75.Fb

I. INTRODUCTION

The dynamics and the function of many complex sys-
tems strongly affect their network structure [1, 2, 3, 4].
In fact both large-scale properties (like the scale-free de-
gree distribution [5]) and local properties (like recurrence
of small motifs [6, 7]) must be selected for widespread
robustness requirements and specific preferential uses in
real graphs. A large number of different networks [1, 2, 3],
from the Internet to the protein interaction networks in
a cell, share a scale-free degree distribution P (k) ∼ k−γ

with γ < 3 and a high clustering coefficient respect to
random Erdös-Renyi graphs [8]. The scale-free degree
distribution of a network affects the statistics of sub-
graphs present in it showing that large-scale properties
and local properties of scale-free networks are strongly
related to each other. Special examples of subgraphs in
networks are loops [9, 10], paths that pass through each
node in the loop only once. In random scale-free networks
there are many small size loops compared to random
graphs and there can be a lack of Hamilton cycles (loops
of length L = N) due to the fact that most of the large
paths need to pass through hubs [10]. Along with other
properties, many real scale-free networks also have degree
correlations [11]. Degree correlations in real networks in-
dicate that links are not randomly wired and that the
probability that two nodes of degree ki and kj are linked
deviates from the expected value ri,j = kikj/(〈k〉N).
Consequently, correlated networks have at least one of
the three following features: i) a k dependent average
connectivity knn(k) of the first neighbors of a node with
degree k [12, 13]; ii) a non trivial dependence on the con-
nectivity of the clustering coefficient C = C(k) of nodes
of degree k [14]; iii) a cutoff that is larger than the struc-
tural cutoff K ∼

√

〈k〉N . In particular many real scale-
free networks show a power-law dependence on k both for
knn(k) and for C(k), i.e. knn(k) ∼ kα and C(k) ∼ k−δ.
Correlations do affect the subgraph statistics as shown in
the Internet [15] and in calculations based on the scaling
of the clustering coefficient [7, 16]. Every network can be
represented in terms of its adjacency matrix ((a)) of ele-
ments ai,j = 1, 0 depending if there is a link between node

i and node j. From a formal point of view an ensemble of
networks is given when a probability P(a) is assigned to
each adjacency matrix ((a)) of N×N elements. In an un-
correlated and undirected network ensemble with given
degree sequence {ki} all the links are independent. Con-
sequently all the matrix elements ai,j with i < j of are in-
dependent and their average value in the ensemble can be
written as 〈ai,j〉 = ri,j = kikj

〈k〉N . A two-vertex correlated
network is a network in which still the matrix elements
ai,j with i < j are independent but 〈ai,j〉 = ri,j %= kikj

〈k〉N .
Networks with higher order correlations instead would
have non independent matrix elements which will favor
some specific motifs in the network. In this paper we are
going to provide an analytic calculation of the number of
loops in two-vertex correlated scale-free networks. In the
light of our results we are able to interpret the scaling of
the clustering coefficient C(k) in terms of the scaling of
the maximal eigenvector (the eigenvector associated with
the maximal eigenvalue) of the average adjacency matrix
of the network ensemble. Moreover we show that the
maximal eigenvalue and the corresponding eigenvector
not only determine the number of triangles in the two-
vertex correlated network ensemble, but they also fix the
number of small loops of length 3 & L & N . Finally we
are able to give a sufficient condition for the absence of
Hamilton cycles in two-vertex correlated networks. This
allows us to study a set of real graphs (the Internet at
the Autonomous System -AS- Level and protein-protein
interaction networks-DIP) [17] and show that assuming
they are specific instances of two-vertex correlated net-
work ensembles, one can exclude the presence of Hamilto-
nian cycles in the three-core of these graphs. Our findings
are in agreement for the Internet with what was found in
Ref. [18] where a Belief-Propagation algorithm was ap-
plied to the measurement of the number of loops in real
graphs. The absence of Hamiltonian cycles in a three-
core of a network is an unexpected result since regular
random graphs with connectivity c ≥ 3 are Hamiltonian
[8, 19]. We note here that the average number 〈NL〉 of
loops of size L in a two-vertex correlated network can
possibly be dominated by a very large number of loops
occurring in very rare networks [18]. Nevertheless, pre-
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liminary results indicate that in uncorrelated scale-free

networks with γ < 3 the ratio 〈N 2
L〉

〈NL〉2 is bounded at least
for small loops and for Hamiltonian cycles. We expect
that similar arguments could also be extended to scale-
free correlated networks.

The paper is organized as follows: in Sec. II we give an
intuition of the results found for small loops in two-vertex
correlated network ensemble by considering the problem
of exact counting of loops in generic networks; in Sec. III
we introduce the hidden variable ensemble and we cal-
culate the number of small loops and Hamiltonian cycles
in two vertices correlated hidden variable ensembles; in
Sec. IV we compare the results with real networks; and
finally we give the conclusions in Sec.V.

II. COUNTING SMALL LOOPS IN REAL
NETWORKS

In this section we would like to provide some intu-
itive arguments to show that in scale-free networks the
maximal eigenvalue of the adjacency matrix and the cor-
responding eigenvector are responsible for the number of
small loops present in it. The adjacency matrix ((a)) of
a simple network of size N is the N × N matrix of el-
ements ai,j = 1, 0 indicating the existence (ai,j = 1) or
not (ai,j = 0 ) of a link between node i and node j. The
total number of closed paths of length L passing though
a node i is given by the matrix element (aL)i,i. The loops

N (i)
L of size L passing through a node i are given by

N (i)
L = (aL)i,i − (corrections) (1)

where these corrections account for closed paths which in-
tersect themselves at least once and which must be sub-
tracted from the term (aL)i,i in order to consider only
loops. If by λn we indicate the eigenvalues and by u

n

the eigenvectors of the adjacency matrix ((a)) we find [9]

N (i)
L ∼

∑

n

λL
n

[

u(n)
i u(n)

i −O(u(n)4
i )

]

(2)

For small L, the correction terms can be neglected if the
spectrum of the graphs {λ} contains one large eigenvalue
λ0 = Λ0 and if the associated normalized eigenvectors

satisfy 0 < u(n)
i & 1,∀i, as is the case in most scale-free

networks. If these conditions are satisfied the sum over n
in (2) is dominated by the term n = 0 and consequently
the number of loops of length L passing through the node
i is given by

N (i)
L ∼ ΛL

0 u0
i u

0
i , (3)

while the total number of loops of size L is given by

NL =
1

2L

∑

i

N (i)
L ∼

ΛL
0

2L
, (4)

where the factor 2L accounts for the multiplicity of nodes
a single loop pass through and the two possible directions
of each loop. Thus we found by intuitive arguments that
the total number of small loops of size L of scale-free net-
works will scale like ΛL

0 while the number of small loops
passing through a node is proportional to the square of
the maximal eigenvector associated with Λ0. These argu-
ments apply for the exact counting of small loops in real
networks. In a random graph ensemble the adjacency
matrix is a random variable which has average values of
the elements 〈ai,j〉 = ri,j and we need to evaluate the
average number of loops 〈NL〉 instead of NL The results
we will prove in the following sections are an extension
of the expressions (4) and (3) to two-vertex correlated
hidden variable network ensemble.

III. AVERAGE NUMBER OF LOOPS IN
CORRELATED HIDDEN VARIABLE ENSEMBLE

To model a general two-vertex correlated network in
the following we will consider networks that are gener-
ated within the hidden variable model [20, 21]. The pre-
scription of Ref. [20] to generate a class of scale-free
networks with exponent γ is the following: 1) assign to
each node i of the graph a hidden continuous variable
qi distributed according to a ρ(q) distribution. Then 2)
each pair of nodes with hidden variables q, q′ are linked
with probability r(q, q′). When the hidden variable dis-
tribution is scale-free ρ(q) = ρ0q−γ for q ∈ [m, Q] and
r(q, q′) = qq′/(〈q〉N), we obtain a random uncorrelated
scale-free network. In this specific case a structural cut-
off is needed to keep the linking probability smaller than
one, i.e. Q2/(〈q〉N) < 1. This cutoff scales differently
with the system size N depending on the value of γ:
Q ∼ N1/(γ−1) for γ > 3, Q ∼ N1/2 for γ ∈ (2, 3) and
Q ∼ N1/γ for γ ∈ (1, 2). On the contrary, to generate a
correlated scale-free network with natural cutoff N1/(γ−1)

and γ > 2 in the literature different ansatz have been pro-
posed [20, 21]. In order to present general results on the
average number of loops in the hidden variable ensemble
for any type of linking probabilities r(q, q′) we consider
an ordered set of distinct nodes {i1, . . . , in, . . . , iL}. With
each such kind of set it is possible to associate a loop in
the network in which subsequent nodes are linked with
each other. For each choice of the nodes {i1, . . . , iL},
with hidden variables {qi1 , . . . , qiL

} the probability that
they are connected in a loop is

r(qi1 , qi2)r(qi2 , qi3) · · · r(qiL
, qi1) =

∏

n

r(qin
, qimod(n+1,L)

)

(5)
and for each loop of the network there are 2L ordered
sets {i1, . . . , iL} which describe it corresponding to cyclic
permutations of the indices and to their order inversion.
The average number of loops of size L in the graph is
given by the number of ways we can choose an ordered
set of L nodes {i1, . . . , iL} multiplied by the probability
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that these nodes are connected in all distinguishable or-
derings and divided by 2L. In order to proceed with the
calculation, we lump together nodes with hidden vari-
able qi ∈ [q, q + ∆q), where ∆q is a small interval of
q. In each interval of q there are Nq + NP (q)∆q nodes
of the network. For each choice of the L nodes, let nq

with
∑

q nq = L be the number of nodes in the loop
with qin

∈ [q, q + ∆q). The ways we can choose them
within the Nq nodes of the network, is given by the bino-
mial Nq!/[nq!(Nq − nq)!]. Moreover let nq,q′ indicate the
nodes of a hidden variable q of the loop linked with a sub-
sequent node of hidden variable q′ in the fixed direction

of the loop. We note that the way to choose {nq,q′} is
given by the multinomial nq!/

∏

q′ nq,q′ ! and that the par-
tition {nq,q′} must satisfy the conditions

∑

q′ nq,q′ = nq

and
∑

q nq,q′ = nq′ . Finally the number of ways in which
one can permute the L nodes keeping nq,q′ constant is
given by

∏

q nq!. Considering all this and that the prob-
ability Eq. (5) that the selected nodes are connected in
the chosen order can be written as Πq,q′r(q, q′)nq,q′ , we
get the following expression for the average number of
loops 〈NL〉 of size L,

〈NL〉 =
1

2L

′
∑

{nq}

∏

q

Nq!

nq!(Nq − nq)!

∏

q

nq!
′

∑

{nq,q′ }

nq!
∏

q′ nq,q′ !

∏

q,q′

r(q, q′)
nq,q′ (6)

where the sums
∑′

{nq}
,
∑′

{nq,q′}
are extended over all

{nq} and {nq,q′} such that
∑

q nq = L,
∑

q′ nq,q′ = nq

and
∑

q nq,q′ = nq′ and the factor 2L accounts for the
multiplicity in which we count each loop. Introducing

the constraints
∑

q nq = L and
∑

q nq,q′ = nq′ by ex-
plicit delta functions, using their integral representation
we find

〈NL〉 =
1

2L

∫ ∞

−∞
dx

∑

{nq}

eLx
∏

q

Nq!

nq!(Nq − nq)!

∏

q

nq!e
−xnq

∫ ∞

−∞
Dxq

∏

q

enqxq

∑

{nq,q′}

nq!
∏

q′ nq,q′ !

∏

q,q′

r(q, q′)
nq,q′ e−xq′nq,q′ .

where the Dxq indicates
∏

q dxq, and the sum over {nq,q′}
is performed over all {nq,q′} such that

∑

q′ nq,q′ = nq.
Consequently, performing the multinomial summations
over {nq,q′} we get the following expressions:

〈NL〉 =
1

2L

∫ ∞

−∞
dx eLx

∑

{nq}

∏

q

Nq!

nq!(Nq − nq)!
e−xnqnq!

∫ ∞

−∞
Dxq

∏

q

enqxq





∑

q′

r(q, q′)e−xq′





nq

=
1

2L

∫ ∞

−∞
dx eLx

∑

{nq}

∏

q

Nq!

nq!(Nq − nq)!
e−xnqnq!

∫ ∞

−∞
Dxq eQg({xq}) (7)

with

g({xq}) =
1

Q

∑

q

nq



xq + ln





∑

q′

r(q, q′)e−xq′







 (8)

Notice that in Eq. (7) one can safely take the limit ∆q →
0 and that the average over the P (q) distribution is taken
assuming that we focus on the limit N → ∞. In what

follows, we will evaluate Eq. (7) in different ranges of
L in the limit N → ∞. Assuming L . 1 we evaluate
the integral over the variables {xq} by the saddle point
equation finding

nq = e−xq

∑

q′

nq′

r(q′, q)
∑

q′′ r(q′, q′′)e−xq′′
. (9)
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If we indicate by Sq′ the sum Sq′ =
∑

q̄ r(q′, q̄)e−xq̄ , we
can cast the solution in the following form,

e−xq = nq
1

∑

q′ nq′r(q, q′)/S′
q
. (10)

This provides the self-consistent equation for {Sq}

Sq =
∑

q′

nq′

r(q, q′)
∑

q′′ nq′′r(q′, q′′)/Sq′′

(11)

It is easy to check that {Sq} satisfying the equation

Sq =
∑

q′

nq′r(q, q′)/Sq′ (12)

is a solution of the Eq. (11). Inserting a delta func-

tion δ
(

Sq −
∑

q′ nq′r(q, q′)/Sq′

)

and assuming that the

Jacobian of this transformation is 1, i.e. assuming

S2
q . r(q, q′) (13)

and using the Stirling approximation for the factorial nq,
the integrals over xq calculated at the saddle point take

the values S
2nq
q e−nq ln(nq)+nq and the average number of

loops of size L can be expressed as the following:

〈NL〉 =

∫ ∞

−∞
dx eL(x−1)

∫

DSq

∫

Dwq

′
∑

nq

∏

q

Nq!

nq!(Nq − nq)!

(

e−xSq
2
)nq

exp





∑

q

wq



Sq −
∑

q′

nq′

r(q, q′)

Sq′







 .(14)

Finally, performing the summation over {nq} we get

〈NL〉 =
1

2L

∫ ∞

−∞
dx eL(x−1)

∏

q

∫

DSq

∫

Dwq exp







N

〈

ln(1 + e−xSq
2 exp



−N
∑

q′

wq′r(q, q′)/Sq





〉

+ N
∑

q

wqSq







.

where 〈〉q indicates the average over the distribution of
the hidden variables Nq. In the limit N > L . 1 we

evaluate the saddle point equations, finding

Sq = N

〈

r(q, q′)Sq′e−x exp
(

−
∑

q′′ r(q′, q′′)wq′′/Sq′

)

1 + S2
q′e−x exp

(

−
∑

q′′ r(q′, q′′)wq′′/Sq′

)

〉

q′

wq = −P (q)
(2Sq +

∑

q′ r(q, q′)wq′ )e−x exp
(

−
∑

q′ r(q, q′)wq′/Sq

)

1 + S2
qe−x exp

(

−
∑

q′ r(q, q′)wq′/Sq

)

% =

〈

S2
qe−x exp

(

−
∑

q′ r(q, q′)wq′/Sq

)

1 + S2
qe−x exp

(

−
∑

q′ r(q, q′)wq′/Sq

)

〉

q

. (15)

with % = L/N . In order to solve these saddle point equa-
tions we make the ansatz

N
∑

q′

r(q, q′)wq′ = νSq. (16)

With this assumption we can rewrite the saddle point
equations (15) as

Sq = N

〈

r(q, q′)Sq′e−x−ν

1 + S2
q′e−x−ν

〉

q′

,

wq = −(2 + ν)P (q)
Sqe−x−ν

1 + S2
qe−x−ν

,

% =

〈

S2
qe−x−ν

〉

, (17)
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FIG. 1: Normalized number of triangles (empty triangles),
quadrilaterals (filled squares) and pentagons (filled circles),
passing through nodes of connectivity k. Data are shown
for the Internet at the Autonomous System Level in Novem-
ber 1997 (bottom), in the s. cerevisiae protein interaction
database (center) and in the h. pylori protein interaction
(top) [17]. The solid lines indicate the predictionsNL(k) ∝ S2

k

where Sk is the maximal eigenvector of the correlation matrix
Nk′r(k, k′). The data are shifted to improve the readability
of the graph.

which can be solved and define the value of ν, ν = −1.

A. The uncorrelated case

In the uncorrelated case, when r(q, q′) = qq′

〈q〉N we found

Sq = q
√

%
〈q〉 which satisfies hypothesis (13). The results

found in this limit are the same as the ones found in [10].

B. Small loops

The limit of small loop size is the limit x . 1. In this
limit the saddle point equations (17) reduce to

Sq =
∑

q′

Nq′r(q, q′)Sq′e−x+1

wq = −P (q)r(q, q′)Sqe
−x+1

% = 〈S2
q 〉qe

−x+1. (18)

The first equation indicates that Sq is the eigenvector of
the average adjacency matrix Nq′r(q, q′) with eigenvalue
Λ = ex−1; the second equation defines the linear relation
between wq and Sq, and the third equation fixes the nor-
malization constant for the eigenvector Sq. In this limit
the average number of loops of size L is given by

NL ∼
1

2L
(Λ)L (19)

Network 2〈ln(Sk)〉− 2〈ln(SR
k )〉−

〈ln(p)〉/N 〈ln(pR)〉/N
AS 11-97 -4.73 2.98

4-98 -5.22 3.06
7-98 -5.35 3.03
10-98 -5.56 3.01
1-99 -5.74 3.07
4-99 -6.06 3.09
7-99 -6.28 3.07
10-99 -6.55 3.06
1-00 -6.75 3.07
4-00 -7.20 3.01
7-00 -7.30 3.03
10-00 -7.46 3.01
1-01 -7.428 3.01
3-01 -7.73 3.00

DIP s. cerevisiase -6.46 3.99
h.pylori -4.5 3.8
c. elegans -0.66 2.89

TABLE I: In the table we report the value of 2〈ln(Sq)〉 −
〈log(p)〉/N with Sq satisfying Eq. (23) assuming as the max-
imum likelihood assumption that all the qi = ki on the
nodes of the three-core of the Internet graphs and on the
graphs of protein interactions [17]. We compare the value
of 2〈ln(Sq)〉 − 〈ln(p)〉/N calculated with the two-vertex cor-
relation assumption on real graphs or simply assuming the
minimal assumption r(q = k, q′ = k′) = 1 − e−kk′/〈k〉N ,i.e.
2〈ln(SR

q )〉 − 〈ln(pR)〉/N . We observe that real correlations
are essential to predict the absence of Hamiltonian cycles in
these graphs.

where Λ is the maximal eigenvalue of the average adja-
cency matrix Nq′r(q, q′), with the results valid until

% &
〈S4

q 〉

〈S2
q 〉2

, (20)

where Sq is the eigenvector of matrix NP (q′)r(q, q′) cor-
responding to the maximal eigenvalue Λ . max S2

q . We
observe that the vector Si = Sqi

with i = 1, . . . , N is the
eigenvector of the matrix ri,j = r(qi, qj). In other words
{Si} is the eigenvector of the average adjacency matrix
of the networks in the ensemble 〈ai,j〉 = ri,j . This result
provides the extension of the arguments of Sec. I , Eq.
(4) to the two-vertex correlated network ensemble.

C. Small loops passing though a given node

From expression (15) one can also derive the number
of small loops passing through a given node. One can
easily show that

NL(q) ∼
1

2L
S2

qΛL−1
{q} (21)

where Sq is the maximal eigenvector of the matrix
Nq′r(q, q′) normalized in such a way that 〈S2

q 〉 = %Λ.
This provides the extension of the arguments of section
I Eq. (3) to a two-vertex correlated network ensemble.
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D. Hamiltonian cycles

The Hamiltonian cycles of a graph are loops of size
L = N . From Eq. (14) we find that when L = N
the expected number of Hamiltonian cycles goes to zero
exponentially with N if

2〈ln(Sq)〉 < 1 (22)

with Sq satisfying

Sq =
∑

q′

r(q, q′)Nq′/S′
q. (23)

Consequently, in the thermodynamic limit, since

P (NL > 0) ≤ 〈NL〉 , (24)

(22) if a sufficient condition for excluding the presence of
Hamiltonian cycles in the network.

IV. COMPARISON WITH REAL DATA

To test our calculation on real graphs and forecast
some results regarding the existence or not of Hamilto-
nian cycles we have to assume that the real networks
under study are a particular instance of a two-vertex
correlated hidden variable network ensemble. Since the
average connectivity k̄(q) of a node depends only on its
hidden variable the minimal assumption one can make
to fit real networks with the hidden variable model is
that the average degree is a one-to-one map to the hid-
den variable q. In this assumption maximum likelihood
considerations force us to assume that each real graph is
a random realization of a two-vertex correlated networks
with qi = ki and r(q = k, q = k′) =

Nk,k′

〈k〉NNkNk′
where

Nk,k′ are the total number of links between nodes of de-
gree k and k′ and Nk and Nk′ are the numbers of nodes
with degree k and k′.

This results give a very interesting interpretation of
the dependence of the clustering coefficient on the con-
nectivity k, i.e. C(k) ∼ 1

k(k−1)Λ
2
{k}S

2
k where Sk is the

eigenvector associated with the maximal eigenvalue Λ of
the matrix Nq′r(q, q′), in agreement with the intuitive
arguments of Sec. I. Moreover, one can predict if in the
three-core of the considered graph there are no Hamilto-
nian cycles by evaluating if the condition (22) is satisfied,

i.e. if

2〈ln(Sq) −
1

N
〈ln(p)〉〉 < 1 with Sq =

∑

q′

r(q, q′)N(q′)/S′
q.

where the ln(p)/N = 〈ln[1− (1 + q + q2/2)e−q]〉 corrects
for the probability that the network in the ensemble con-
tains nodes of connectivity k < 3 as described in [10].
In particular one can compare the value of 2〈lnSq〉 cal-
culated by solving (25) with r(q = k, q′ = k′) extracted

from the data [r(q = k, q′ = k′) =
Nk,k′

〈k〉NNkNk′
] with the

value of 2〈lnSq〉 in the simplest example of a correlated
ensemble, i.e. the static network ensemble [22] defined
with r(q = k, q′ = k′) = 1 − exp[− kk′

〈k〉N ]. We found
as reported in Table I that the real degree correlations
are such that the presence of Hamiltonian cycles in the
three-core of the network is very unlikely.

V. CONCLUSIONS

In conclusion we have evaluated the number of loops
of any size in two-vertex correlated networks. The re-
sults can be applied to real graphs, finding very good
agreement of the predicted scaling of the clustering coef-
ficient C(k) with the square of the maximal eigenvector
Sk of the matrix Nk′r(k, k′),i.e. C(k) ∼ S2

k. Moreover we
can have a condition for predicting the absence of Hamil-
tonian cycles for the three-core of Internet and protein-
protein interaction data. The results indicate that degree
correlations strongly affect the loop frequency. Further
study would consider how important are fluctuations of
the number of loops around this average and would con-
sider the frequency of other subgraphs in correlated scale-
free networks.
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