Review article

Post-2000 growth trajectories in children aged 4–11 years: A review and quantitative analysis

Heather A. Robinson, Rinita Dam, Lamiece Hassan, David Jenkins, Iain Buchan, Matthew Sperrin

Farr Institute, University of Manchester, Vaughan House, Portsmouth St, Manchester, M13 9GB, UK
Manchester Academic Health Science Centre, UK
NIHR Manchester Biomedical Research Centre, UK

ARTICLE INFO

Keywords:
Body mass index
Pediatric obesity
Child development
Obesity

ABSTRACT

Children's body mass index (BMI) growth trajectories are associated with adult health outcomes, and vary by geography and epoch. Understanding these trajectories could help to identify high risk children and thus support improved health outcomes. In this review, we compare and quantitatively analyse BMI level and trajectory data published since 2010. We characterise recent growth in children aged 4–11 years, an age range most frequently targeted for BMI intervention, yet less studied than young childhood or infancy.

Through searches in OVID, we identified 54 relevant texts which describe either post-2000 summary BMI values by age and gender in cohorts with sample sizes of over 1000 children, or the results of latent class analyses of BMI trajectories within the 4–11 year age range. Population level median growth curves were projected and visualised as weighted means. These BMI curves, based on data from 729,692 children, can be visually clustered into 'high' and 'low' charting groups with extreme outlying values. Within populations, latent class analyses converge on 3–4 individual child trajectories, two of which predispose adult overweight. These growth pathways diverge early in childhood, yet are not effectively distinguished via isolated BMI measurements taken between 4 and 11 years, meaning some high risk children may currently be poorly identified.

1. Introduction

An estimated 41 million children worldwide are overweight or obese (World Health Organisation, 2017). The obstacles that obesity creates for children are diverse, from psychological distress and discrimination (Bacchini et al., 2015; Kalra et al., 2012) to a high likelihood of continued obesity in adulthood (Simmonds et al., 2015) and persistently compromised health (Kelsey et al., 2014). Although obesity is most effectively limited through early prevention (Pandita et al., 2016; Waters et al., 2011), intervention is frequently necessary to reduce established childhood overweight. Recent intervention programmes for young children report heterogeneous impacts (Waters et al., 2011), with some children significantly improving their health whilst others experience minimal benefits. This echoes discrepancies in children's initial risk of becoming overweight; a socioeconomic divide in child obesity prevalence appears to be widening (Stamatakis et al., 2010; Chung et al., 2016), and there remains a disproportionately high prevalence of child obesity in some ethnic groups (Nightingale et al., 2011; Moreno et al., 2013; Skinner et al., 2018).

Individual children follow divergent growth pathways, which can be clustered into 'latent trajectories'. As these are associated with epidemiological factors (O'Brien et al., 2007; Ventura et al., 2009; Li et al., 2007), the prevalence of latent trajectories may vary in time and space. To what extent this variability impacts or derives from macro-trends in obesity prevalence has yet to be established. A full understanding of this process could help channel resources into effective future interventions; specifically, in understanding key points at which the BMI trajectories of children at high risk of adult obesity diverge from those at low risk (Dietz, 2000), and in pinpointing how growth patterns adopted by individuals are determined.

The 4–11 year age range is critical to child development as it encompasses key development milestones; 'adiposity rebound' (AR): a trough in the growth curve between infancy peak and adolescent peak, typically at 4–6 years (Rolland-Cachera et al., 1984); 'mid-growth
et al., 2011; Brannsether et al., 2014; Rivera-Soto and Rodriguez—measure relating to heterogeneity in body composition (Nightingale
corded measure of child growth, acknowledging the drawbacks of this
ecessarily focus on BMI as the most frequently and consistently re-
timings aimed at managing BMI may be expected to have maximum im-
We thereby propose age ranges and circumstances in which interven-
2.1. Literature search
Our systematic search of OVIDToday (v.2.1.0) targeted studies re-
porting BMI by age and gender between ages 4–11 years including data
lected since 2000 (S1 Table). We considered peer–reviewed journal
articles and grey literature, including studies which (i) itemised median
or mean BMI values for cohorts by age, covering three or more age
points or multiple age bins within the 4–11 year age range, but typically
not repeated measures of the same children (“population level” mea-
surements), or (ii) described the results of latent class analyses of BMI
trajectories of children aged 4–11 years (“individual”, repeated child
measurements). Searches were restricted to English language and to
databases: Ovid MEDLINE® and Ovid MEDLINE® 1946–Present. A search in December 2016 was updated in June and
September of 2017 and March 2018. Citation searching was performed
for two texts (Buyken et al., 2008; Garden et al., 2012), to identify
related papers. Texts were managed in Mendele Desktop v1.17.
Studies which only presented data collected before or in 2000 were
excluded in the interests of capturing current modes of child growth.
We did not exclude latent class analyses on the basis of size due to the
limited number and typically smaller sample size of this study type, but
restricted cross-sectional studies to those reporting data from over 1000
subjects. We avoided selection bias towards study quality, to promote
the capture of data relating to middle income countries, which we
found to be sparse. Where studies presented BMI values by age, we
report the following parameters: sample size, cohort selection means,
measurement source (measured or reported) and outlier removal/
smoothing e.g. via LMS methods (Cole et al., 1995). Where referred to,
timing of AR is estimated as the point of lowest BMI value prior to
increase between ages 3 and 8 years (Kroke et al., 2006), with local
minima determined either from summary data tables, or visually from
population level growth curves where numeric data were not provided.
BMI refers to weight (kg), divided by height squared (m).

2.2. Quantitative synthesis
Median and/or mean BMIs for each reporting study were visualised
by gender and age, and visually clustered to predict common popula-
level trajectories, given extensive missing and non-matching time
points across studies which prevented hierarchical clustering using
software. Within each cluster, we calculated a weighted mean of
median BMI values, adjusted for the number of children contributing
measurements to each time point (Fenton and Kim, 2013), using spec-
ific values where provided or values extrapolated from total n if ne-
cessary (values provided in S2 Table). This was visualised separately by
gender, applying a Loess (least squares non-parametric locally weighted
smoothing) function in R V.3.3.1. Standard errors are visualised to in-
dicate predicted occupied space around the lines of best fit.

Data from Shandong, China, where BMI has been highly dynamic
since 2000 (Ying-Xiu and Shi-Rong, 2012; Zhang and Wang, 2012) and
therefore interacts with an effect of birth year, were visualised in
summary figures yet omitted from the calculation of weighted means.
Seven other studies presented growth curves without accompanying
tables (Table 1), therefore we requested further data from the authors.
Where tabulated data could not be obtained, values were visually de-
termined from curves (Gonzalez-Casanova et al., 2013; Bernardo et al.,
2012; Rush et al., 2013) or omitted (Kowal et al., 2013; Kowal et al.,
2015; Moher et al., 2010; Walton et al., 2014; Seo et al., 2013; Ene-
Obong et al., 2012; Zhong et al., 2013), dependent on figure quality
(value determinable to within 0.1 BMI point). Our smoothed weighted
mean of median curves are therefore based on data from 729,692
children.

3. Results
We identified 3490 references from bibliographic databases, six
from Mendele related text searches, 17 from searches whilst devel-
oping the search blocks, and 14 via citation search (Fig. 1). Following
the removal of duplicates and abstract and full text screening, 199 texts
remained. In 2017 and 2018, reiterations of the search identified a
further 161 papers, 15 of which were relevant. In all, forty-six studies
reported repeated cross–sectional or longitudinal child BMI values from
sufficient age points between 4 and 11 years to enable analysis of pop-
ulation level BMI patterns (Table 1), and eight reported latent class
results capturing within-population trajectory patterns.

Template from: Moher et al. (2010). For more information, visit

The majority of papers presenting BMI summary values by age and
gender reported cross–sectional mean measurements (n = 27)
(Table 1). Others presented median or centile values (n = 22). Seven
longitudinal studies (repeated measures of the same children) were
eligible for inclusion, five of which analysed median values
(Brannsether et al., 2014; Saari et al., 2010; Rush et al., 2013; Kowal
et al., 2013; Kowal et al., 2015), and two means (Nakano et al., 2010;
Angrbrett et al., 2011). Median cross–sectional BMIs from national
surveys were available for Saudi Arabia (Al Herbish et al., 2009), China
Table 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Cohort</th>
<th>Details of studies detailing population level post-2000 BMI data by age and gender between ages 4–11 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type</td>
<td>Period</td>
<td>Cohort inclusion/exclusion criteria</td>
</tr>
<tr>
<td>Nakan et al. (2010)</td>
<td>Longitudinal 2000–2007 Shikoku, Japan</td>
<td>Data from all regional schools included excepting special needs schools</td>
</tr>
<tr>
<td>Isojima et al. (2016)</td>
<td>Cross sectional national survey 2000 Japan</td>
<td>National survey (combined data from all regional schools)</td>
</tr>
<tr>
<td>Gonzalez-Casanova et al. (2013)</td>
<td>Cross sectional national survey 2005 Colombia</td>
<td>Random sample from schools by urbanity, ethnicity</td>
</tr>
<tr>
<td>Bernardo et al. (2012)</td>
<td>Cross sectional national survey 2007 Florianopolis, Brazil</td>
<td>Randomly sample from schools stratified by region & public/private sector</td>
</tr>
<tr>
<td>Saari et al. (2010)</td>
<td>Mixed longitudinal 2003–2009 Finland</td>
<td>Routinely recorded data from all regional schools & primary care units</td>
</tr>
<tr>
<td>Angbratt et al. (2011)</td>
<td>Longitudinal 1991–2006 Ostergotland, Sweden</td>
<td>All regional children with repeat clinic/school measurements</td>
</tr>
<tr>
<td>Rosario et al. (2010)</td>
<td>Cross sectional national survey 2003–2006 Germany</td>
<td>Randomly sample from randomly selected communities stratified by region, sex, age to reflect national demographics</td>
</tr>
<tr>
<td>Wijnhoven et al. (2014)</td>
<td>Cross sectional national survey 2009–2010 Spain</td>
<td>Non stratified school children</td>
</tr>
<tr>
<td>Wijnhoven et al. (2014)</td>
<td>Cross sectional national survey 2009–2010 Flanders, Belgium</td>
<td>Non stratified school children</td>
</tr>
<tr>
<td>Schonbeck et al. (2015)</td>
<td>Cross sectional national survey 2009 Netherlands</td>
<td>Data stratified by province, municipal size, sex, age to reflect national demographics</td>
</tr>
<tr>
<td>Kowal et al. (2015)</td>
<td>Mixed longitudinal 1983–2010 Kraków, Poland</td>
<td>Data stratified by regions & schools</td>
</tr>
<tr>
<td>Gomula et al. (2015)</td>
<td>Cross sectional 2012 Poland</td>
<td>Random sample from randomly selected communities stratified by region, sex, age to reflect national demographics</td>
</tr>
<tr>
<td>Bac et al. (2012)</td>
<td>Cross sectional national survey 2012 Kraków, Poland</td>
<td>Data stratified by region, urbanity & health</td>
</tr>
<tr>
<td>Motu et al. (2013)</td>
<td>Cross sectional cross sectional 2012 South Eastern Poland</td>
<td>Data stratified by region, urbanity & health</td>
</tr>
<tr>
<td>Dyrfj et al. (2015)</td>
<td>Cross sectional cross sectional 2012 Serbia</td>
<td>Boys stratified by district</td>
</tr>
<tr>
<td>Study</td>
<td>Study type</td>
<td>Period</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Walton et al. (2014)</td>
<td>Cross sectional</td>
<td>2004–2011</td>
</tr>
<tr>
<td>Whelton et al. (2007)</td>
<td>Cross sectional</td>
<td>2002</td>
</tr>
<tr>
<td>Pereira et al. (2010)</td>
<td>Cross sectional</td>
<td>2008</td>
</tr>
<tr>
<td>Vasques et al. (2012)</td>
<td>Cross sectional</td>
<td>2008</td>
</tr>
<tr>
<td>Papadimitriou et al. (2006)</td>
<td>Cross sectional</td>
<td>2003–2004</td>
</tr>
<tr>
<td>Senol et al. (2014)</td>
<td>Cross sectional</td>
<td>2008–2009</td>
</tr>
<tr>
<td>He et al. (2014)</td>
<td>Cross sectional</td>
<td>2013</td>
</tr>
<tr>
<td>Zhang and Wang (2011)</td>
<td>Cross sectional</td>
<td>2005</td>
</tr>
<tr>
<td>Ying-Xiu and Shu-Rong (2012)</td>
<td>Cross sectional</td>
<td>2010</td>
</tr>
<tr>
<td>Ma et al. (2010)</td>
<td>Cross sectional</td>
<td>2005</td>
</tr>
<tr>
<td>Qiu et al. (2013)</td>
<td>Cross sectional</td>
<td>2005</td>
</tr>
<tr>
<td>Xiong et al. (2011)</td>
<td>Cross sectional</td>
<td>2003–2004</td>
</tr>
<tr>
<td>Seo et al. (2013)</td>
<td>Cross sectional</td>
<td>2005</td>
</tr>
<tr>
<td>Mushiq et al. (2011)</td>
<td>Cross sectional</td>
<td>2009–2010</td>
</tr>
<tr>
<td>Khadilkar and Khambar (2015)</td>
<td>Cross sectional</td>
<td>2014–2015</td>
</tr>
<tr>
<td>Khadilkar et al. (2009)</td>
<td>Cross sectional</td>
<td>2007–2008</td>
</tr>
<tr>
<td>Singh and Mondal (2013)</td>
<td>Cross sectional</td>
<td>2006–2008</td>
</tr>
<tr>
<td>Study</td>
<td>Study type</td>
<td>Period</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Jackson et al. (2011)</td>
<td>Cross sectional national survey</td>
<td>2008</td>
</tr>
<tr>
<td>Ene-Obong et al. (2012)</td>
<td>Cross sectional</td>
<td>2011</td>
</tr>
<tr>
<td>Rush et al. (2013)</td>
<td>Longitudinal</td>
<td>2000–2010</td>
</tr>
</tbody>
</table>

Data based on summary cross-sectional values or curve estimation where numeric data not available.

a Where collection date is not provided, the year prior to publication is assumed.
b Authors provided unadjusted median data by age and gender.
(Ying-Xiu and Shi-Rong, 2012), India (Khadilkar and Khadilkar, 2015), Japan (Isojima et al., 2016), South Korea (Seo et al., 2013) and Germany (Rosario et al., 2010). Medians were given in regional studies from 17 countries, primarily in Europe, South America and Asia, with one study of a Pacific Island community in New Zealand (Rush et al., 2013). We identified no median BMI data from Africa or South America. The only data from North America meeting our inclusion criteria was a small study of 1084 children (Duran et al., 2013), and visualised pooled data from NHANES surveys conducted between 1999 and 2010 (Zhong et al., 2013). Mean BMI values were reported nationally for Colombia (Gonzalez-Casanova et al., 2013) and the Netherlands (Schonbeck et al., 2015), and regionally for 18 countries in Europe, South America, Asia and Africa. BMI values were typically measured by researchers or healthcare professionals, with the exception of one study (Ene-Obong et al., 2012). Some accounts were the first nationally to describe child BMI (Djorjic et al., 2016; Pereira et al., 2010; Maddah and Nikooyeh, 2010; Wamba et al., 2013).

We identified 8 latent class analyses grouping common BMI trajectories (Table 2), of which three reported data from North American cohorts (Carter et al., 2012; Pryor et al., 2011; Huang et al., 2013); one data from an Australian cohort (Magee et al., 2013), two data from Asian cohorts (Haga et al., 2012; Lin et al., 2014) and two data from U.K. cohorts (Stuart and Panico, 2016; Mostazir et al., 2015). One study proposed three developmental trajectory classes (Pryor et al., 2011), six studies four classes (Haga et al., 2013; Lin et al., 2014; Stuart and Panico, 2016; Carter et al., 2012) and one five to six (Haga et al., 2012) (Table 2). No study we identified explored both individual and population level BMI trajectories; Those presenting BMI by age and gender did not feature latent class analysis and vice versa. Latent class studies which did not report classes separately by gender typically tested clustering on each gender separately before running combined analyses (Tables 2–3), with two studies reporting classes unique to one gender (Lin et al., 2014; Haga et al., 2012). Most latent class studies visualised mean BMI levels by group, and a subset reported numeric BMI data (Pryor et al., 2011; Carter et al., 2012; Lin et al., 2014).

3.1. Variability of growth timing

Mid-growth spurt (Muhl et al., 1992), the timing of the steepest positive gradient of a growth curve, typically occurred at the population level between 8 and 10 years in boys and 9–11 years in girls (Table 1). Between populations, consensus timing varied. Mid growth spurt typically commenced from as early as 6 years in boys from East Asia (Seo et al., 2013; Naotunna et al., 2017) to as late as 10 years in ten independent studies. Typical timing of the start of mid growth spurt in girls ranged from 6 years in cohorts from Russia and South Korea (Nazarova and Kuzmichev, 2016; Seo et al., 2013), to as late as 10–12 years in girls in 12 cohorts worldwide. The timing of a dip in population level BMI curves corresponding to a majority of children entering adiposity rebound was similarly variable, from 2 to 4 years to 10–11 years (Table 1). Crucially, in the majority of studies, no such dip was evident, implying highly variable growth timing and/or early AR

Fig. 1. PRISMA process diagram.
Table 2
Trajectory classes and effectors identified through latent class analysis.

<table>
<thead>
<tr>
<th>Study</th>
<th>Cohort description</th>
<th>Method</th>
<th>No. classes</th>
<th>Trajectory names</th>
<th>Simplified trajectory identities</th>
<th>Frequency (%)</th>
<th>Age at divergence (yrs)</th>
<th>Identified factors</th>
<th>Exploration of gender differences</th>
<th>Study period</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pryor et al. (2011)</td>
<td>1997–1998 Quebec born singleton children, stratified by region</td>
<td>Group based mixture modelling (semiparametric mixtures)</td>
<td>3</td>
<td>Low-stable</td>
<td>Lower normal</td>
<td>54.5</td>
<td>< 0.5</td>
<td>Maternal smoking, maternal weight</td>
<td>Modelled independently</td>
<td>1998–2005</td>
<td>2120</td>
</tr>
<tr>
<td>Huang et al. (2013)</td>
<td>Children of 1979 U.S.A. cohort members</td>
<td>Group based mixture modelling (semiparametric mixtures)</td>
<td>4</td>
<td>Chronically obese</td>
<td>Early increasing</td>
<td>8.5</td>
<td>< 6</td>
<td>No pre-adolescent factors described</td>
<td>Adjustments made within model</td>
<td>1986–2008</td>
<td>5156</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Study</th>
<th>Cohort description</th>
<th>Method</th>
<th>No. classes</th>
<th>Trajectory names</th>
<th>Simplified trajectory identifies</th>
<th>Frequency (%)</th>
<th>Age at divergence (yrs)</th>
<th>Identified factors</th>
<th>Exploration of gender differences</th>
<th>Study period</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haga et al. (2012)</td>
<td>1991–1998 born Koshu city children, Japan, excluding twins</td>
<td>Group based mixture modelling (semi-parametric)</td>
<td>5(m), 6(f)</td>
<td>Stable thin</td>
<td>Constant low weight</td>
<td>12.6</td>
<td>< 2</td>
<td>Maternal BMI, breakfast consumption(m), parental smoking(m), sleep duration (m), parental age(f)</td>
<td>Modelled independently</td>
<td>1991–2000</td>
<td>1518</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stable average</td>
<td>Lower normal</td>
<td>42.2</td>
<td>< 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stable higher average</td>
<td>Higher normal</td>
<td>30.5</td>
<td>< 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progressive overweight</td>
<td>Developing overweight</td>
<td>10.5</td>
<td>< 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progressive obesity</td>
<td>Early increasing</td>
<td>4.2</td>
<td>< 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Progressive average (f)</td>
<td>Late increasing</td>
<td>12.1(f)</td>
<td>< 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Early onset overweight</td>
<td>Constant</td>
<td>4</td>
<td>< 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Late onset overweight</td>
<td>Late increasing</td>
<td>11.6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Healthy weight Normal to slightly underweight (m)</td>
<td>Normal</td>
<td>82.4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower normal</td>
<td></td>
<td>40.6(m)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lin et al. (2014)</td>
<td>Randomly selected schools cohort (7–12 years old), Taiwan, 2001–2006</td>
<td>Group based mixture modelling (semi-parametric mixtures)</td>
<td>4</td>
<td>Persistently obese</td>
<td>Early increasing</td>
<td>6.5(m), 6.8(f)</td>
<td>< 7</td>
<td>Physical activity level (m), parental BMI (m), perceived academic ability (m), parental education, family interactions, media use(f)</td>
<td>Modelled independently</td>
<td>2001–2006</td>
<td>1609</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistently slightly underweight (f)</td>
<td>Constant low weight</td>
<td>31.0(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistently normal weight</td>
<td>Higher normal</td>
<td>34.7(m), 40.2(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistently overweight</td>
<td>Late increasing</td>
<td>18.2(m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persistently overweight</td>
<td>Constant overweight</td>
<td>22.0(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It was possible to visually group the median BMI curves charted into two key groups (Fig. 2). A third cluster in boys could tentatively be proposed, as the upper of the two primary clusters appears to diverge from age 7–11 years. A number of outliers track considerably above these two key clusters, which could be replicated when plotting mean values, although their curves were more linear. Again, a potential split in the upper trajectory emerged in boys between 7 and 11 years. Based on these visualisations, we propose two modes of typical child BMI trajectory: ‘high charting’, acknowledging potential subgroups, and ‘low charting’.

Fig. 2. Comparison of boys’ and girls’ mean and median population BMI values, for data collected 2003–2010. Loess smoothing (span 0.4) applied for visualisation. Studies providing figures only are not represented where charts lack sufficient resolution for accurate estimation of values.
The 'high charting' cluster comprises most European cohorts, populations of Chongqing, Wannan and Beijing, boys from Shangdong (Fig. 2, Chinese cohorts in red), and cohorts from Japan, Korea and Iran. A second, 'low charting' cluster includes the 2005 Chinese national survey, and cohorts from Saudi Arabia, India and Vietnam. A number of outlying cohorts with very high BMI levels were identified, from Kuwait (Jackson et al., 2011), the Pacific Islander population of Auckland, New Zealand (Rush et al., 2013), Greece (Papadimitriou et al., 2006), Spain (Wijnhoven et al., 2014), the U.S.A (Zhong et al., 2013), South Korea (Seo et al., 2013) and Pakistan (Mushtaq et al., 2011). Several study cohorts demonstrate erratic cross-sectional BMI curves. In cases where studies barely exceeded the 1000 child threshold for inclusion, this likely results from small study size (Duran et al., 2013; Mushtaq et al., 2011; Singh and Mondal, 2013; Al Junaibi et al., 2013), but may also reflect an effect of birth year, heightened during transitional periods, for example in Greece (Papadimitriou et al., 2006), Turkey (Senol et al., 2014) and Poland (Gomula et al., 2015). The consensus trajectory of girls from Shandong, China, appears to have changed dramatically over time, departing from a typical growth curve shape between 2005 and 2010 (Fig. 2). Conversely, the shape of the Polish BMI curve appears to have normalised between 2008 and 2012, although longitudinal data from the same cohorts in each instance are not available, only comparisons of data from independent cohorts. There has been change to the Indian national growth curve, with lower median BMIs recorded for both genders between 7 and 11 years in 2014–2015 than in 2007–2008 (Khadilkar et al., 2009; Khadilkar and Khadilkar, 2015), whilst multiple independent studies conducted over time in Iran returned consistent results (Maddah and Nikooyeh, 2010; Hosseini et al., 2015).

We projected trajectories for each cluster using sample size weighted mean of medians, to compare with CDC and WHO reference values (Fig. 3). Our ‘high charting’ curve for both girls and boys aligns more closely in shape and level to CDC curves than to WHO reference values, whilst 'low tracking' population curves were more similar to WHO values. The diverse space that outlying cohorts occupy may encompass the growth trajectories of children from a number of high obesity prevalence countries from which no recent data has been published. However, as it is not clear to what extent these trajectories might be similar to those we identified, we have not predicted their occupied space.

3.3. Individual level BMI trajectories

Most of the latent class studies agreed in identifying four latent classes. Seven studies proposed an ‘early increasing’ latent class (2–8.5% of children) and six a ‘late increasing’ class (5–27%). Six studies differentiated two classes whose distinct trajectories each fell within the normal weight range (Pryor et al., 2011; Carter et al., 2012; Mostazir et al., 2015; Haga et al., 2012; Lin et al., 2014; Stuart and Panicó, 2016). Several studies proposing four or more classes referenced a class of children following a persistently high or persistently low stable BMI trajectory from prior to two years of age (Japan, Canada, Australia) (Carter et al., 2012; Haga et al., 2012; Magee et al., 2013), whilst only one study (U.S.A.) reported a subclass which decreased in BMI (Huang et al., 2013). Two studies reported constant or progressive underweight classes (Lin et al., 2014; Haga et al., 2012).

Children in an ‘early increasing’ class diverged in their growth trajectories from those in other classes at or prior to two years, whilst the trajectories of ‘normal’ and ‘late increasing’ children separated later, at age five to six years (Table 2). There was palpable heterogeneity around the 4–5 yr and 10–11 yr age ranges.

4. Discussion

In reviewing results across 55 global studies, we note heterogeneity in both population level and individual child growth, particularly at the
4–5 and 10–11 year age ranges, which often correspond to monitoring on a national basis (Henderson et al., 2015). This variation increases the difficulty in adequately assessing child health based on infrequent cross-sectional measurements. There have been indications that child obesity has plateaued generally in developed countries since 2000 (Wabitsch et al., 2014; Jia et al., 2017), yet this benefit does not extend to all regions and socioeconomic groups (Waters et al., 2011), and we find a concerning lack of synthesised data from many nations with high recent adult obesity rates. Post-2000 data which has already been synthesised indicates that extremely high BMI levels are now typical in children from a number of countries for which remedial action should be urgently prioritized.

4.1. Population level growth patterns

Based on recent cross-sectional BMI measurements taken from 1.54 million children, we propose two principal patterns of growth which apply at the population level. The first, higher charting cluster includes cohorts from European countries, Japan, Iran, Cameroon and China. This is consistent with a recent comparison of Danish, Finnish and UK child cohorts, which showed little variation in trajectory (Graversen et al., 2017). Cohorts from Poland, South Korea and eastern China are presently contained at the top of this group (Xiong et al., 2011; Kowal et al., 2013; Seo et al., 2013; Kowal et al., 2015). As this is the closest cluster to WHO standard values, it is likely that data from many regions outside of Europe and Asia also fall within this cluster, and therefore that the projected occupied space for this cluster is an underestimate of the actual occupied space. There is a possibility that large surveys from East Asia and Europe (n > 100k) bias the weighted means for this group, as values supported by larger sample sizes are assigned more confidence in our estimates.

A second, lower charting cluster includes a subset of cohorts from Asia. This lower charting group is characterised by lower median BMI values from 2 to 10 years, yet should not be considered a ‘low risk’ cluster in terms of adult obesity, as the risks of developing insulin resistance and other BMI related health issues may be higher at lower BMI values for some Asian children than those estimated for Caucasian children (Whincup, 2002).

Extremely high summary BMI values were observed in cohorts from a Pacific Island population of New Zealand, Kuwait, Greece, Spain, the U.S.A., South Korea and Pakistan. Outlying values from Pacific Island children in New Zealand (Rush et al., 2013) may be differentiated by previously identified genetic drivers of high BMI (Minster et al., 2016), whilst in contrast, child obesity in Pakistan remains under-researched (Tanzil and Jamali, 2016). We did not identify any study data published post–2010 meeting our inclusion criteria from many of the world’s most obese nations (Central Intelligence Agency, 2019) including Jordan, Qatar, Egypt and Bahrain, or for Malta and Greenland, which recorded exceptional rates of child overweight in 2001–2002 (Janssen et al., 2005). More recent BMI data by age is needed from these countries to support or discount the presence of one or more extremely high level clusters versus sporadic outliers.

We compared projected values for two charting population level BMI clusters to references from the CDC and WHO, implemented extensively worldwide to assess childhood growth (Cole et al., 1995; WHO Multicentre Growth Reference Study Group, 2006; De Onis et al., 2007; Kuczmarski et al. 2000). The shape and level of the higher charting cluster aligned most closely with CDC values, and the lower charting cluster to WHO values, indicating that identifying population growth type could be helpful in making reference choices.

4.2. Individual child trajectories

Latent class studies considering pre-2000 data were consistent in their findings, reporting three to four classes of child growth trajectory. In all but one case these included: ‘early increasing’, ‘late increasing’ and ‘normal’ classes: constituting children overweight from infancy, children entering mid growth spurt at 2–3 years, and children entering mid growth spurt at 4–5 years. Constant or progressive underweight classes were recognised in only two studies (Lin et al., 2014; Huang et al., 2013), consistent with prior observations that underweight prevalence in developed countries remains low (Janssen et al., 2005; Central Intelligence Agency, 2019). Six independent studies make the distinction of two latent trajectory classes tracking in parallel within normal weight boundaries (Carter et al., 2012; Mostazir et al., 2015; Pryor et al., 2011; Haga et al., 2012; Lin et al., 2014; Stuart and Panico, 2016).

Despite inconsistencies in the measured outcome, age ranges considered, and how cohorts were selected and stratified, ‘early increasing’ and ‘late increasing’ classes were reliably identified. These classes represent two independent modes of growth both associated with high adult obesity risk (Williams and Goulding, 2008; Boonpleng et al., 2012; Ohlsson et al., 2012). As BMI status is determined through cross-sectional comparison to reference values, which assume ‘normal’ growth timings, there is a danger of misclassification; ‘Early increasing’ children Williams and Goulding, 2008; Garden et al., 2012), comprising 3–8% of children studied, are likely to exceed overweight classification thresholds from as early as 2 years of age. However, children in the ‘late increasing’ class (Williams and Goulding, 2008), are typically under-weight or normal weight between 3 and 5 years by most reference standards due to their late AR timing. ‘Late increasing’ children, 5–19% of children studied, outnumbered ‘early increasing’ children in cohorts from the U.K., Australia and Japan (Mostazir et al., 2013; Magee et al., 2013; Haga et al., 2012; Lin et al., 2014; Stuart and Panico, 2016), therefore overlooking their predisposition for late childhood obesity during monitoring in early childhood poses an obstacle for obesity prevention. Children entering AR later than 6 years are not represented in the latent class analyses we identify, although population level consensus AR timings suggest that they are frequent globally, particularly in Africa and Asia (Table 1). These children are likely to have above average BMIs between the ages of 3 and 5 years, yet may belong to a healthy longer term trajectory (Anderson et al., 2014; Bornhorst et al., 2016). There is therefore a risk to both ‘late increasing’ and ‘delayed AR’ children in the event of weight–related interventions being misapplied. Of 46 studies reporting population level BMI statistics for children aged 4–11 years, only 11 also reported information for younger children. There are fewer instances of this integrated data because education centres rarely serve the same children from pre-school to age 12 years, necessitating separate study of these two data sources. Better cohesion between early years and later monitoring programmes could improve our understanding of how growth curves develop.

4.3. Predicting adult obesity risk

Latent class studies describe the BMI trajectories of individual children, often birth cohorts, followed over time. Those published since 2010 show that children adopt distinctive growth patterns prior to or within the 4–11 year age range, therefore may require different approaches to safeguarding health. These trajectory types can be used to predict later life health outcomes and to provide a basis for identifying high risk children. However, latent class studies by nature include fewer subjects, and require consent to repeat participation over time, which may create selection bias. They should therefore be considered a starting point for understanding the diversity of child growth, rather than as comprehensive measures of populations.

Recent latent class analyses concur that high risk growth trajectories predisposing adult obesity, diverge from less harmful trajectories by approximately age 5 (Table 2). Therefore, for the prevention of pediatric obesity to be effective, we suggest that children and their parents are targeted for healthy energy balance promotion considerably before this point. Models implemented in latent class studies confer that gains
can be made against obesity by targeting early life factors e.g. gesta-
tional smoking, breastfeeding, and control of pre-gestational and ge-

tational BMI, as recommended by the OECD (World Health Organisa-
tion, 2016). Although most interventions against obesity are insti-
gated during primary education, intervention in the primary years

may be too late to control whether children follow an ‘early increasing’

trajectory, as typically adopted before age 3 years. Interventions during

primary education are also unlikely to be effective for children fol-

lowing a ‘persistently high’ BMI trajectory, which appears to be fol-

lowed from birth. Interventions during primary education can, how-

ever lead to small reductions in overweight and obesity prevalence in some

individuals (Waters et al., 2011; Nelson et al., 2018; World Obesity

Federation, 2014), and therefore remain important for children who are

already overweight.

Cross-sectional studies can give an impression of a static population

of children of different ages, yet also capture temporal trends which

variably impact children born in different years. This, the potential of

the child growth curve to shift temporally at the individual and popu-

lation level, and the range of growth timing demonstrated in the

summary growth curves reviewed, suggest considerable caution should

be taken in the interpretation of age-specific BMI thresholds derived

from survey data (Wen et al., 2012). Dietz (2000) recommend 7 years as

a first reliable point for determining cross-sectional obesity risk, con-

sidering AR has occurred in most children by this point. However,

throughout the age range 4–11 years, a considerable group of children

exhibit atypical growth timing. As well as heterogeneity of timing of

early childhood events, early puberty has become more frequent in

some populations (Toppari and Juul, 2010; Yokoaya and Higuchi, 2014;

Kimani-Murage et al., 2010), contributing to heterogeneity in child BMI

from as early as 10 years. Accurate ascertainment of hazards should

therefore be prioritized wherever age stratified reference values are

used to assess personal health risk or to target weight related inter-

vention.

4.4. Limitations

We do not represent all cohorts equally, nor do we suggest that all

reported studies are of similar quality. Some studies referenced from

middle income cohorts were sourced from small surveys, and are

therefore more varied and potentially less reliable, for example omit-

ting year or method of data collection, or description of how subjects

were selected. Smaller studies may have specific motivations for cap-

turing data from a specific cohort, introducing selection bias.

Significant skew is unlikely on this basis as smaller and lone studies

from less represented regions are already underweighted by the ad-

justments implemented for sample size.

No studies identified differentiated low BMI individual level tra-

jectories, most likely because our minimum sample size biased the re-

sults towards studies in middle to high income countries with low un-

derweight prevalence. Studies presenting median growth reference data,
in which outliers have been removed (Khadilkar et al., 2009; Khadilkar

and Khadilkar, 2015; Saari et al., 2010) and/or LMS smoothing is ap-

plied to create a more continuous growth curve (Rush et al., 2013;

Isojima et al., 2016; Rosario et al., 2018), have been included in this

file. The reasons for this are the overlap in sample size, and the fact

that younger studies are more likely to use LMS smoothing, as rec-

ommended by the WHO (2007) and others. Our analysis, however,

includes regions expected to report extremely high median child BMIs.

Although we are confident to have captured most relevant studies, our

findings could be expanded by searching across multiple languages.

5. Conclusion

Typical child growth patterns vary within and between popula-

tions, and may change over time, with consequences for macrotrends in

obesity prevalence. Individual BMI trajectories establish early in

childhood, and child obesity is most effectively targeted through early

prevention. However, adult obesity risk in two classes of children may

be underemphasized in cross-sectional BMI measurement compar-

isons to standard reference values. We identify two primary clusters of

post-2000 population level growth curves, aligning more closely to the

shapes and levels of the CDC and WHO reference curves re-

spectively, reinforcing the importance of reference choice. Children

aged 4–11 years in Kuwait, Pakistan, the U.S.A, Spain, Greece and a

Pacific Island community in New Zealand show unprecedented BMI

levels which do not cluster with others. Recent data for this age group

is lacking from many of the world’s most obese nations and is needed
to assess global risk and the potential for a third, higher tracking popu-

lation-level growth cluster.

Supplementary data to this article can be found online at https://

Acknowledgments

HAR, LH and RD developed the search blocks which RD conducted,

approved by MS. HR updated the search and screened studies. HR and

DJ conducted the quantitative analysis. All authors were instrumental

in producing and approving the final submitted text and published

volumes.

The authors would like to thank authors who corresponded with us

and provided statistics or advice relating to specific cohorts; Dr. Vaman

Khadilkar, Dr. Henrietta Ene-Ongbo, Dr. Malgorzata Kowal, Prof. Elaine

Rush and Dr. Antti Saari. We thank Dr. Sabine Van der Veer for assis-
tance in designing this study. This research was undertaken by the

Health eResearch Centre (HeRC), funded by the Medical Research

Council (MRC) Grant MR/K000665/1. M.

References

Al Herbish, A.S., El Mouzan, M.L., Al Salloum, A.A., Al Qureshi, M.M., Al Omar, A.A.,

Foster, P.J., et al., 2009. Body mass index in Saudi Arabian children and adolescents:
a national reference and comparison with international standards. Annu Saudi Med.

29 (5), 342–347.

and potential determinants of obesity among school children and adolescents in Abu

Dhabi, United Arab Emirates. Int. J. Obes. 37 (1), 68–74.

Weight trajectories through infancy and childhood and risk of non-alcoholic fatty

and obesity in children aged 6–13 years–alarming increase in obesity in Cracow.

Bullying and victimization in overweight and obese outpatient children and adoles-

Obesity and eating behaviors in school children and adolescents –data from a cross

sectional study from Bucharest. Romania. BMC Public Health. 15, 206.

Bernardo, Gde O., Pudla, K.J., Longo, G.Z., de Vasconcelos, Fde A.G., 2012. Factors as-

sociated with nutritional status of 7–10 year-old schoolchildren: sociodemographic

variables, dietary and parental nutritional status. Rev Bras Epidemiol. 15 (3),

651–661.

Associations between early body mass index trajectories and later metabolic risk

Interrelationships between anthropometric variables and overweight in childhood
