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ABSTRACT: Bioprocessing and biotechnology exploit microorganisms (such as bacteria) for the production of chemicals,
biologics, therapies, and food. A major unmet challenge is that bacteriophage (phage) contamination compromises products and
necessitates shut-downs and extensive decontamination using nonspecific disinfectants. Here we demonstrate that poly(acrylic acid)
prevents phage-induced killing of bacterial hosts, prevents phage replication, and that induction of recombinant protein expression is
not affected by the presence of the polymer. Poly(acrylic acid) was more active than poly(methacrylic acid), and
poly(styrenesulfonate) had no activity showing the importance of the carboxylic acids. Initial evidence supported a virustatic, not
virucidal, mechanism of action. This simple, low-cost, mass-produced additive offers a practical, scalable, and easy to implement
solution to reduce phage contamination.

I t is now possible to edit biosynthetic pathways in bacteria toproduce high-value chemicals and natural products.1

Bacteria are widely used in food production. For bacteria to
be used in any application area, it is essential to exclude
bacteriophage (phage−bacteria selective viruses), which are a
common cause of infection that leads to financial and scientific
losses. Bacteriophages are among the most abundant
organisms on earth and are present wherever their hosts
are.2 Phages have potential as alternatives to antibiotics3−5 for
food safety6 and veterinary settings.7 Phages are also widely
used in biotechnology for ligand selection8−10 and other
areas.8,11

Despite their wide biotechnological use, phage contami-
nation in bacterial cultures leads to a complete loss of the
culture. This has significant cost implications for both
academic and industrial laboratories that have invested in
isolating and preparing these bacterial cultures. For example, in
the food industry, it is not possible to remove all phage from
raw materials, and this can lead to process collapse.12−14

Currently, good microbiology practice, aseptic conditions, and
vigorous cleaning or autoclaving are the primary mitigation
tools. These methods are not always successful, as phages are
robust and can survive in almost every condition.15 One option
is to engineer bacterial strains, which are intrinsically resistant
to phage, using, for example, gene editing technology, but this
is not trivial and might not be suitable for all hosts.16

Changing processes or re-engineering strains that have been
optimized for a particular biorefinery challenge is not simple: a
pragmatic solution would be an antiphage additive, in much
the same way that antibiotics are routinely used in mammalian
cell culture, to prevent bacterial infection.17 There are many
studies on the use of phage in treatment7,18,19 and for ligand
screening,9,10,20 but very few on tools to inhibit them. In
contrast, mammalian viruses have been investigated for the
discovery of viral inhibitors21,22 and for repurposing of existing
inhibitors.23

Bacterial hosts have evolved alongside phages and hence
have strategies to prevent/reduce phage infection, mostly
relying on protein components, restriction-modification, and
clustered regularly interspaced short palindromic repeats
(CRISPR) defenses,24−26 which are not easy to repurpose as
an antiphage additive. There are a small number of reports of
molecules that can inhibit phage infection: those discovered in
Streptomyces27 and some aminoglycoside antibiotics.28 The
latter are not desirable for large-scale biotechnological
application due to antimicrobial resistance concerns. It has
recently been demonstrated that sulfated polymers, which
mimic heparin sulfate anchors on cell membranes, are broad-
spectrum virucides against a range of human pathogenic
viruses.29,30 Poly(carboxylic acid)s have been reported to
inhibit human viruses.31,32 It is also well-established that
polymers can be deployed as antibacterial agents, mimicking
cationic host-defense peptides.33−36 A polymeric/biomaterials
approach to address phage contamination may offer a scalable
and practical solution. To the best of our knowledge, the only
report of antiphage polymer is dextran, dextran sulfate, and
polystyrene sulfate, which show some limited inhibition but
have been neither widely explored nor compared to other
polymers, and their mode of action is not studied.37

Here we report the novel discovery that poly(acrylic acid)
(PAA) is a potent inhibitor of bacteriophage infection. A
library of polymers was screened, showing this material to be
uniquely active, even compared to other poly(carboxylic
acid)s. The polymer prevents infection and is shown to not
interfere with recombinant protein expression procedures in
bacteria. This offers a scalable, practical, low-cost, and easy to
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deploy solution to the problem of phage contamination with
no need to change user protocols.
To evaluate if a synthetic polymer could be discovered to

inhibit bacteriophage infection, we prepared a panel of water-
soluble polymers including neutral and anionic polymers.
Cationic polymers were excluded, as they have antibacterial
activity38,39 and are hence not compatible with the assays,
which aim to allow bacteria to grow. The panels of polymers
were prepared using RAFT (reversible addition−fragmentation
chain transfer)40 polymerization to enable control over
molecular weight and dispersity, Figure 1. All polymers were
characterized by 1H NMR and (SEC) size exclusion
chromatography, Table S1. Full experimental details of the
polymer synthesis are in the Supporting Information. Polymers
are referred to by their number-average degree of polymer-
ization (DP), and molecular weight distributions are given in
Figure 1B−F.
To screen for the unprecedented function of an antibacter-

iophage polymer, a high-throughput 96-well microplate-based

assay was devised to maximize chemical space screening. In
brief, polymers were serially diluted in the appropriate growth
medium and added to the indicated bacteriophage. This was
then added to a culture of E. coli (Escherichia coli) EV36 or E.
coli K-12 (MG1655 cells) (depending on phage used) seeded
at a density of 0.001 (1 × 106 colony forming units (CFU·
mL−1)) and incubated at 37 °C for 24 h. If the bacteria grow,
there is an increase in OD600 (standard method for bacterial
growth curves), Figure 2A. If the phages are viable, they will
inhibit bacterial growth initially, before rebounding (as phages
are not 100% effective at killing from a single dose). An

example growth curve is shown in Figure 2B with poly(poly-
(ethylene glycol) methacrylate), PPEGMA, of different
molecular weights, showing a decrease in OD600 after 4 h.
This indicated that bacteriophages are viable and can kill the
host, and hence PPEGMA is not having an impact on the
phage. Controls of bacteria alone with all the polymers were
conducted to ensure that there were no effects on bacterial
growth. As might be expected, the vast majority of the
polymers show no impact on the phage (i.e., bacteria are
killed). However, there was one distinct exception: poly(acrylic

Figure 1. Polymers synthesized. (A) RAFT polymerization (full
details in Supporting Information). Molecular weight distribution for
(B) PPEGMA (poly(polyethylene glycol)methacrylate); (C) PHEA
(poly(N-hydroxyethylacrylamide); (D) PAA (poly(acrylic acid); (E)
PNIPAM (poly(N-isopropylacrylamide); (F) PMA (poly(methacrylic
acid).

Figure 2. Screening for bacterial phage inhibition. (A) Concept of
assay and polymer inhibition. (B) Representative growth curve with
PPEGMA and inactive polymers from screening. (C) Representative
growth curve with PAA, the only “hit” from the screen. E. coli EV36
was used as a bacterial host for the K1E bacteriophage. Complete
screens are listed in Figures S4−S8.
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acid), PAA. All molecular weights of PAA inhibited the action
of the phage, and thus, the bacteria could grow, Figure 2C.
This was surprising, considering that poly(methacrylic acid),
PMA, was less effective unless higher concentrations were
used, despite the minor structural difference of the backbone.
This was a remarkable observation, as based on this screen this
simple, low-cost, and widely used commodity polymer is
capable of preventing phage infections from spreading in a
bacterial culture.
PAA was further explored as a function of concentration

from 10 mg·mL−1 and for all molecular weights. All of the
phages were inhibited at 10 mg·mL−1, with no strong
molecular weight dependence on this limit, although
intermediate polymers around DP 100 appear to be slightly

more active. At 2.5 mg·mL−1 the inhibitory activity decreased,
and hence 10 mg·mL−1 (approximately 1 wt %) was deemed
optimal. Table 1 shows the minimum inhibitory concentration
(MIC) as a function of the phage type and polymer molecular
weight.
To further validate the above observations, we performed a

plaque-counting assay. In this assay the phages are applied to
E. coli on agar, allowing the total number of plaques formed to
be counted, and it is more sensitive than the in situ growth
curves. Figure 3A,B shows photographs of the agar after
inoculation with the phage and PAA. Compared to the
controls, there are clearly far fewer phage-associated plaques,
with none visible in most cases. Figure 3C quantifies the
plaques, confirming that, in the case of K1-GFP, K1E, K1−5,
and T7, the PAA fully inhibited all bacteriophage growth. In
the case of T4, visible plaques did form, but for PAA 73 and
PAA 153, this was reduced from 109 to 104 PFUs, representing
significant inhibition. Higher concentrations of PAA (20 mg·
mL−1) fully inhibited this phage. One possible explanation for
this difference is the actual phage loading in the experiment.
One phage particle does not equate to 1 PFU, and the T4
phage might have more viral particles (and hence higher
effective concentration). However, the T4 data did confirm
that there is an optimal PAA molecular weight around DP of
100.

Table 1. Minimum Inhibitory Concentration of PAAs from
Solution-Phase Screening

Phage and MIC (mg·mL−1)

Polymer K1F T4 T7

PAA 32 10 >10 10
PAA 73 5 >10 5
PAA 153 5 >10 5
PAA 187 10 >10 10
PAA 372 10 >10 5

Figure 3. Poly(acrylic acid) bacteriophage plaque assay. (A, B)
Photographs of plates showing reduction in plaques compared to
nonpolymer control using indicated phage. (C) Quantification of
plaque counting as a function of polymer molecular weight. E. coli
EV36 was used as host for K1F-GFP, K1E, and K1−5 phages; E. coli
MG1655 was used as host for T7 and T4 phages. 96 h incubation
preplating. [polymer] = 10 mg·mL−1.

Figure 4. Recombinant expression of GFP in E. coli in the presence of
PAA. (A) Schematic of experiment. (B) GFP production
(fluorescence) after 3 h. BL21-GFP is the host strain alone. IPTG
= isopropyl-β-D-thiogalactopyranoside, which induces expression. 0.4
mM. [polymer] = 10 mg·mL−1. Em. 528 nm; Ex 485 nm.
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It is important to highlight that applying the polymers as a
“therapeutic” (to bacteria already infected with phage) did not
rescue bacterial growth (Figures S16 & S17). Hence this is a
prophylactic strategy and suggests the polymer requires a
certain amount of time to function and is acting on phage
outside of the bacterial cells as part of its mode of action
(discussed later).
Many mammalian viruses (but not known for phages)

engage cell surface heparin sulfate, and polymeric sulfates have
been found to be virucidal.29,30,32 PMA and PAA have been
reported to inhibit human cell infection by mammalian viruses
but have not been explored for bacteriophage inhibition.31

Dextran sulfate may partially inhibit phage infection,37 but the
mechanism has not been explored. Here, poly(styrene-
sulfonate) was found to have no phage-inhibiting activity
(Figure S18) in our assays, in contrast to mammalian viruses
where polysulfonates are virucidal.29 Hence carboxylic acids,
based on the basis of this first data set, seem to be the optimal
anionic groups.
To probe the mechanism further, an experiment was devised

to see if the polymers permanently (i.e., virucidal) or
transiently (i.e., virustatic) inhibit the phage. K1F was
incubated with 10 mg·mL−1 of PAA (concentration so no
infection occurs) for 24 h. After this time, the phage/polymer
solution was diluted so that the polymer was below its MIC
(no inhibition in the standard experiments) before being
added to the E. coli host. Upon dilution, the phages were able
to eradicate the bacteria, equivalent to a control of untreated
phage (at equal PFU/mL to account for dilution). This
confirms a virusatic mechanism of action (Figure S14). PMA
was also tested (at appropriate concentration to account for its
lower activity), and a similar virustatic mechanism was
observed (Figure S15). This is in contrast to anionic polymers,
which inhibit zika virus, where increased hydrophobicity on the
backbone increased activity, suggesting that prokaryotic and
eukaryotic viruses require distinct polymers to inhibit them.41

The reduced activity of PMA may be linked to the fact that
PAA/PMA do not have identical pH-dependent solution
behavior (here pH 7.5 was used) but will need further
investigation.42 Transmission electron microscopy (TEM)
images of phages with PAA showed intact viruses (Figure
S11) and some aggregates. However, dynamic light scattering
did not show an increase in hydrodynamic diameter upon
PAA/phage incubation (Figure S19), and hence we propose
the polymer can reversibly bind the phage surface as a tentative
mechanism of action.
For this technology to be broadly useful, it is important that

the additives do not impact biotechnological protocols and, in
particular, recombinant protein expression.43 Therefore, the
impact of PAA on the expression of green fluorescent protein
(GFP) was evaluated. PAA was added to a range of culture
media for different E. coli BL21 (DE3) strains: wild-type
untransformed lacking any plasmid; DE3 strain, which has
been transformed with pWALDO plasmid encoding for GFP;
and DE3 strain, which has been transformed with pT5T
plasmid encoding for the human lectin DC-SIGN (but not
GFP as a negative control). All strains were first tested against
the previously used phage with PAA added, and all grew
(confirming the polymer inhibiting phage infection). The
exception was E. coli BL21 (DE3) transformed with pT5T
plasmid, encoding for DC-SIGN, where the growth rate was
slightly faster with PAA. GFP expression was induced using
IPTG (isopropyl thiogalactoside) and a negative control of no

ITPG, with GFP expression confirmed by fluorescence
spectroscopy. Addition of 10 mg·mL−1 of PAA had no
noticeable impact on IPTG-induced GFP expression and did
not induce leaky expression when no IPTG was added,
confirming that it is a passive additive for this process, Figure 4.
In conclusion, we demonstrate a simple, scalable solution to

the problem of phage contamination in bacterial culture by
using a polymeric additive. The low-cost, widely available
water-soluble poly(acrylic acid) was identified to prevent
phage infection during bacteria growth by simple addition into
standard growth media. Exploration of a wide polymer-
chemistry space revealed that uncharged polymers had no
effect and that poly(methacrylic acid) was less active. Electron
microscopy and dilution experiments support a virustatic
mechanism of action rather than virucidal, suggesting the
polymer reversibly interacts with the phage. The polymer does
not impact E. coli growth, and in a recombinant protein (IPTG
induction of GFP) system, the polymer did not affect the
expression. These results are of crucial importance for a range
of fields, since phage infection is a major problem in all
biotechnology and microbiology research and manufacturing
facilities, leading to closures and financial and scientific losses.
By simple addition of this polymer additive, phage infection
can be mitigated, reducing the need for shut down, fumigation,
and other time-consuming and costly actions. Furthermore,
this additive may help improve scientific quality by preventing
accidental phage infection.
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