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Abstract

We construct a rational T2-equivariant elliptic cohomology theory for the 2-torus T2,

starting from an elliptic curve C over C and a coordinate data around the identity.

The theory is defined by constructing an object ECT2 in the algebraic model category

dA(T2), which by Greenlees and Shipley [GS18] is Quillen-equivalent to rational

T2-spectra. This result is a generalisation to the 2-torus of the construction [Gre05]

for the circle T. The object ECT2 is directly built using geometric inputs coming from

the Cousin complex of the structure sheaf of the complex abelian surface X = C × C.

We use this construction to compute rational T-equivariant elliptic cohomology

of CP(V ): the complex projective space of a finite dimensional complex representation

V of T. More precisely we prove that ECT built in [Gre05] and ECT2 satisfy a split

condition implying ECT(CP(V )+) ∼= ECT2(S(V ⊗ w)+) where S(_) is the sphere

of vectors with unit norm and w is the natural representation of T. The rational

T2-elliptic cohomology of this space can be deduced from the one on spheres of

complex representations SV of T2 that we compute in the construction of ECT2 .
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Elliptic cohomology

Cohomology theories are among the best tools to study topological spaces up
to homotopy equivalence. In the most classical sense a cohomology theory is a
contravariant functor from topological spaces to graded abelian groups satisfying some
axioms (Eilenberg-Steenrod axioms), that encode the invariance under homotopy
equivalence and makes the theory more computable. Via stabilization, cohomology
theories are represented by certain objects called spectra. Indeed given a cohomology
theory E∗(_) we have an associated spectrum E, such that the cohomology of the
space X is

E∗(X) = [Σ∞X,E]∗

where [_,_]∗ denotes the graded set of homotopy classes of maps, and Σ∞X is the
suspension spectrum of X (the corresponding stabilized object). Conversely every
spectrum E defines a cohomology theory in the same way.

Ordinary cohomology and complex K-theory are the most prominent examples
of cohomology theories, but since their definition mathematicians have asked how
to build more of them and how can they be classified. For sufficiently nice theories
(namely complex orientable) one can associate a power series in two variables called
formal group law [Qui69]. Let us specify that the formal group law is not canonically
associated to the cohomology theory, but it depends on the choice of a power
series generator for the cohomology ring of CP∞. Under this association ordinary
cohomology is associated with the additive formal group law and complex K-theory
is associated with the multiplicative formal group law. A great source of formal
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group laws is the formal completion of a one dimensional algebraic group at the
identity. If we are working over an algebraically closed field for example, we are
soon in short supply of one dimensional algebraic groups, except for the additive
and multiplicative ones all the others are elliptic curves. These more exotic theories
whose associated formal group law arises as the formal completion of an elliptic curve
are called elliptic cohomology theories. In contrast with ordinary cohomology and
complex K-theory that enjoyed wide geometric applications, for long time the known
constructions of elliptic cohomology [Lan88] [LRS95], and more recently [AHS01],
have been purely algebraic, lacking geometric interpretation.

In many concrete cases we have a group G (compact Lie group) acting on the
space X, and it would be desirable to have cohomology theories that take this group
action into account, namely we would like to have a G-equivariant cohomology theory.
Often given a (non-equivariant) cohomology theory we can readapt the definition
to obtain an equivariant theory with similar properties but that takes the group
action into consideration: for example Borel cohomology, equivariant K-theory and
equivariant cobordism, are equivariant counterparts of the respective non-equivariant
theories. Exactly as in the non-equivariant world for G a compact Lie group, via
stabilization one can construct a category of G-spectra where every such cohomology
theory E∗G(_) is represented by a G-spectrum E, in the sense that for any based
G-space X we have

E∗G(X) = [Σ∞X,E]G∗ . (1.1.1)

The gain with the category of G-spectra is in the structure, in particular one can do
homotopy theory in it.

For many years elliptic cohomology has begged for an equivariant counterpart,
but in contrast with ordinary cohomology and complex K-theory where a geometric
definition could be readapted, it wasn’t even clear what a “good theory” of equivariant
elliptic cohomology should satisfy. If one takes complex K-theory as a model, than
we can expect a good theory of equivariant elliptic cohomology to encode the full
algebraic group C, in contrast with the non-equivariant theory simply encoding the
formal completion of C around the identity. This is in analogy to how equivariant
K-theory works. By the Atiyah-Segal completion theorem [AS69] if we complete the
equivariant K-theory of the point at its augmentation ideal, we obtain the K-theory
of BG, the classifying space of G:

KUG(∗)∧I ∼= KU(BG).

In 1994 Growjnowski [Gro07] proposed the first definition of equivariant elliptic
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cohomology EC∗G(_) for any compact lie group G with complex coefficients. He
defined EC∗G(_) as a coherent holomorphic sheaf over a certain variety XG constructed
from the given elliptic curve C. Growjnowski was interested in implications for the
representation theory of certain elliptic algebras where a sheaf valued theory defined
for finite complexes was enough. Around the same years Ginzburg-Kapranov-Vasserot
[GKV95] gave an axiomatic description of equivariant elliptic cohomology. The theory
they had in mind was a collection of functors going from pairs of G-complexes to
the abelian category Coh(XG) of coherent sheaves over the same variety XG built
from the elliptic curve C. When G is a compact abelian lie group [GKV95, example
1.4.4] then XG is the variety:

XG := HomAb(G∗, C) (1.1.2)

where G∗ is the character group of G: the continuous group homomorphisms from
G to the circle group T. To use the full apparatus of stable equivariant homotopy
theory it is essential to have a conventional group valued G-equivariant cohomology
theory defined on G-spaces, and represented by a G-spectrum ECG. This is precisely
the point of view taken by Greenlees in [Gre05], starting from an elliptic curve C over
a Q-algebra and a coordinate around the identity, he builds a rational T-equivariant
elliptic cohomology theory ECT using algebraic models [Gre99]. The connection with
the elliptic curve C resides in the cohomology of the one point compactification SV

for a complex representation V of T:

ECeven
T (SV ) ∼= Heven(XT,O(−DV ))

ECodd
T (SV ) ∼= Hodd(XT,O(−DV ))

(1.1.3)

where O(−DV ) is a coherent sheaf over XT, associated to the representation V .
This PhD thesis is a contribution to this last approach. We will build a rational

T2-equivariant elliptic cohomology theory ECT2 using algebraic models [GS18], and
we forge the connection with the elliptic curve C we started with, computing the
values on spheres of complex representations SV . Exactly as in the circle-equivariant
theory (1.1.3) we obtain the cohomology of certain coherent sheaves O(−DV ) over
the prescribed variety XT2 . Moreover we will prove that the circle-equivariant theory
ECT of Greenlees and our T2-equivariant construction ECT2 satisfy the useful split
condition (Theorem 1.2.5), allowing us to compute EC∗T(CP(V )) for the T-space
of complex lines of a T-representation V . We believe that this is the first time
where T-equivariant elliptic cohomology of the complex projective spaces CP(V ) is
computed (rationally).
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We only discussed the starting point of the influential field of equivariant
elliptic cohomology. Right from the start a different school emerged with the work
of Devoto [Dev96], focusing on the case of G finite, particularly for organizing
moonshine phenomena. The equivariant theory shares also an interesting connection
with physics (see for example the Stolz-Teichner program [ST11], or work of Berwick-
Evans [Ber21]). Moreover it contributed to give a more comprehensible picture
towards a geometric interpretation of elliptic cohomology [BT18]. It was only
recently with a big program started by Lurie [Lur18a], [Lur18b], [Lur19], [GM20]
that they were able to define an integral theory of equivariant elliptic cohomology for
any compact lie group. Lurie moved the construction entirely in the land of derived
algebraic geometry, which seems necessary to enjoy an integral theory [Lur09].

1.1.2 Algebraic models

Studying the full collection of G-equivariant cohomology theories and their invariants
has always been a major driving force in Algebraic Topology. Being able to package
this information in the more structured category of G-spectra was a big achievement
in the field, and allowed to define a closed symmetric monoidal structure under
the smash product, as well as allowing to do homotopy theory in it. Still the
category of G-spectra is a difficult category to work with. Even when G is the
trivial group, the endomorphism ring of the unit object (the sphere spectrum) is the
ring of stable homotopy groups of spheres, which is a notoriously complicated ring.
Therefore trying to find an algebraic model for the full category of G-spectra seems
an impossible task, and we can try to reassess the problem discarding the torsion
part in the category. More precisely we can consider only G-equivariant cohomology
theories that take values in graded rational vector spaces, and that are classified
by rational G-spectra, and we can try to model them with a nicer abelian category
where we gain understanding in the structure and computational power.

To make the problem more precise we need to introduce the framework of
model categories. A model category C is a category with a distinguished class
of morphisms called weak equivalences, and additional structure and axioms that
consent the construction of another category Ho(C) called the homotopy category
of C. A map in the homotopy category Ho(C) is an isomorphism if and only if can
be represented in the model category C by a weak equivalence. This structure tries
to mimic what happens for the classical homotopy theory of topological spaces or
chain complexes of R-modules for a commutative ring R. For example the category
of chain complexes of R-modules with the weak equivalences being the homology-
isomorphisms can carry the structure of a model category, and the homotopy category
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turns out to be the derived category of R exactly as we can expect. A Quillen-
equivalence between two model categories C and D is a pair of adjoint functors
between the two categories such that the model structure is copied from one category
to the other, and it is the right notion to express when C and D have the same
homotopy theory. In particular a Quillen equivalence C 'Q D implies an equivalence
of the respective homotopy categories. We will present an introduction to Model
categories in 2.1.

A great way to condense scope and power of algebraic models for rational
G-spectra is the following conjecture of Greenlees [Gre99]:

Conjecture 1.1.4 (Greenlees). For every compact Lie group G there is a graded
abelian category A(G) whose injective dimension equals the rank of G, and an
homology functor

πA∗ : G -SpectraQ → A(G) (1.1.5)

from rational G-spectra, equipped with an Adams spectral sequence converging for
every pair of rational G-spectra X and Y :

Ext∗,∗A (πA∗ (X), πA∗ (Y )) =⇒ [X,Y ]G∗ . (1.1.6)

Furthermore there is a Quillen-equivalence

G -SpectraQ 'Q dA(G) (1.1.7)

between rational G-spectra and the category dA(G) of differential graded objects in
A(G).

For example when G is the trivial group, Serre’s computations of the stable
homotopy groups of spheres [Ser51] combined with Morita theory [SS03] imply that
the algebraic model A(G) may be taken to be the category of graded Q-vector spaces,
and the functor πA∗ the homotopy groups functor. Furthermore rational spectra are
Quillen-equivalent to differential graded Q-vector spaces.

Conjecture 1.1.4 has been proved for various groups: G finite [GM95b], the
circle group T [Gre99] [Shi02], SO(3) [Ked16], O(2) [Bar17], tori of any rank Tr

[GS18], and various classes of G-spectra. The main computational gain in A(G) is
the Adams spectral sequence (1.1.6) that can be used to compute the values of a
theory since it converges to (1.1.1). The Quillen equivalence (1.1.7) can be used to
build entirely new G-equivariant cohomology theories simply constructing objects
in the category dA(G). This is precisely the method used in [Gre05]: building an
object ECT in dA(T) and using the Quillen-equivalence (1.1.7) for the circle G = T
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to define a T-equivariant elliptic cohomology theory. Moreover once the object ECT
is built, Greenlees uses the Adams spectral sequence for the circle group, to compute
(1.1.3).

1.2 Statement of results

1.2.1 Building T2-equivariant elliptic cohomology

In 2018 Greenlees and Shipley proved the Quillen-equivalence (1.1.7) for G = Tr a
torus of any rank [GS18, Theorem 1.1]. It is therefore natural to try to generalize
the construction of [Gre05] to higher dimensional tori. The first step of this project
is to build an object ECT2 ∈ dA(T2) representing T2-equivariant elliptic cohomology,
which is precisely the main goal of this PhD thesis.

To be more precise exactly as in [Gre05] we start from the data of an elliptic
curve C over the complex numbers and a coordinate te ∈ OC,e in the local ring at
the identity of C, vanishing to first order at e. From this we build our object ECT2 :
this is the main theorem of this thesis. The construction of the object can be found
in Section 4.4 while the computation on spheres is Theorem 4.5.1.

Theorem 1.2.1. For every elliptic curve C over C and coordinate te ∈ OC,e, there
exists an object ECT2 ∈ A(T2) whose associated rational T2-equivariant cohomology
theory EC∗T2(_) is 2-periodic. The value on the one point compactification SV for
a complex T2-representation V with no fixed points is given in terms of the sheaf
cohomology of a line bundle O(−DV ) over X = XT2 = C × C:

ECnT2(SV ) ∼=

H
0(X ,O(−DV ))⊕H2(X ,O(−DV )) n even

H1(X ,O(−DV )) n odd.
(1.2.2)

This theorem suggests the following conjecture.

Conjecture 1.2.3. There exists an exact functor of triangulated categories SpT2
Q →

D(QCoh(X )) that sends SV to O(−DV ). From this one could recover Theorem 1.2.1
by applying the cohomology functor D(QCoh(X ))→ QCoh(X )∗.

For every complex T2-representation V the associated divisor DV is defined
as follows. The definition (1.1.2) for the associated variety defines for us a functor X
from closed subgroups of T2 to subvarieties of X

X(H) := HomAb(H∗, C)
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where as before H∗ := Hom(H,T) is the character group of H. Note this is an exact
functor inducing an embedding X(K) ↪→ X(H) for every containment K ↪→ H, and
that X(H) has the same dimension as H. Denote zn the one dimensional complex
representation of T2 with weight vector n = (n1, n2) ∈ Hom(T2,T). If V = ⊕

n αnz
n,

then the associated divisor of V is defined as:

DV :=
∑
n

αnX(Ker(zn)).

The T2-case is somehow separated from the general Tr case. Namely the
Adams spectral sequence (1.1.6) collapses at the second page for T2 resulting in
a neat and explicit description of the values of the theory on spheres of complex
representations (1.2.2). Even if a similar description is expected to be true for higher
dimensional tori, the Adams spectral sequence is not expected to collapse at the second
page, and a substantial study of it may be necessary. Moreover the construction for
T2 is complicated enough to shed some light over compatibility constraints among
connected subgroups of the same codimension, not visible in the circle case (like for
example the use of completed coordinates needed for Lemma 4.4.36). At the same
time the situation is still simple enough to allow explicit visualization of the objects
and to avoid use of combinatorics and inductive arguments necessary for higher tori,
that would complicate the comprehension of the main ideas of the construction.

The point of this method is that the construction of an object in dA(T2) so
closely corresponds to the algebra of functions over the algebraic variety X = XT2 =
C × C. The contact point is the Cousin complex (as introduced by Grothendieck
[Har66, Proposition 2.3]) of the structure sheaf OX . From the algebraic geometry
side this Cousin complex computes the cohomology of coherent sheaves over X , since
it is a flabby resolution of OX . While in A(T2) this Cousin complex clearly matches
the terms of an injective resolution of our object ECT2 , and therefore computes the
values of the cohomology theory EC∗T2(_) via the Adams spectral sequence. As a
consequence calculations of the cohomology theory ECT2 are directly reduced to the
cohomology of sheaves of the algebraic variety X .

Two main subjects can benefit from our construction of ECT2 . From the
algebraic models perspective, this is the first non-trivial explicit construction of an
object in dA(G) for higher dimensional tori, that is directly built in the algebraic
model and does not come from a spectrum through the homology functor πA∗ . This
is interesting since it is a first example of use of these algebraic models for higher tori
as a building tool for new theories. Many steps of the construction can be replicated
with different geometric inputs to potentially define new and interesting rational
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equivariant cohomology theories. From the elliptic cohomology perspective, our
construction of ECT2 is a conventional group valued theory represented by a rational
T2-spectrum which maintains a really close connection to the actual geometry of the
curve C. Moreover this construction can be used to enhance computations in the
T-equivariant case as we present in the final part.

1.2.2 Computing elliptic cohomology of complex projective spaces

Our construction of ECT2 opens the door to new computations also in the T-
equivariant case, since ECT built in [Gre05] and ECT2 satisfy a useful “split condition”
(Theorem 1.2.5). The following is an example of a new computation that we can
achieve in T-equivariant elliptic cohomology, it is the main computational result of
this thesis and to the author’s knowledge the first time it appears in literature. It
can be found in the Thesis as Theorem 5.0.1.

Theorem 1.2.4. For every elliptic curve C over C, if ECT is the rational T-
equivariant elliptic cohomology theory built in [Gre05], and V is a finite dimensional
complex representation of T, then:

1. If V has one isotypic component, V = αzn with α ≥ 0:

ECkT(CP(V )) ∼= Cα−1

for every k ∈ Z.

2. If V has more than one isotypic component, V = ⊕
n αnz

n:

ECkT(CP(V )) ∼=

0 k even

Cd k odd.

where d = ∑
i<j αiαj(i− j)2.

We denote zn the one dimensional complex representation of T of weight
n ∈ Hom(T,T), while CP(V ) is the T-space of complex lines in V .

To achieve this new computation, we will reduce it to the cohomology of
spheres of complex representations in the T2-case. More precisely let G = T2,
H1 = {1} × T and H2 = T × {1} the two privileged subgroups, and denote the
quotient Ḡ := G/H1 ∼= H2 ∼= T. The cohomology theories ECḠ and ECG are
H1-split:
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Theorem 1.2.5. For every elliptic curve C over C and coordinate te ∈ OC,e, there
is a natural transformation of G-cohomology theories

ε : InfG
Ḡ
ECḠ −→ ECG

which induces an isomorphism

[G/H+, InfG
Ḡ
ECT]G∗ ∼= [G/H+, ECG]G∗

for every subgroup H of G such that H ∩H1 = {1}. The functor InfG
Ḡ

: Ḡ -Spectra→
G -Spectra is the inflation functor on spectra (2.4.10).

This is the majority of the work needed to prove Theorem 1.2.4 and we
will prove it in Sections 5.3 and 5.4. As an immediate consequence we obtain the
following useful Corollary:

Corollary 1.2.6. For any H1-free G-space X:

EC∗G(X) ∼= EC∗
Ḡ

(X/H1) (1.2.7)

We can apply this corollary to the Ḡ-space CP(V ), noticing the isomorphism
of Ḡ-spaces:

CP(V ) ∼= S(V ⊗C w)/H1

where w is the natural one dimensional complex representation of H1 and S(V ⊗Cw)
is the G-space of vectors of unit norm in the complex vector space V ⊗C w. Notice
that V ⊗C w is now a complex representation of G of the same dimension of V , and
that H1 acts freely on it. Therefore we only need to compute EC∗G(S(V ⊗w)+). The
computation of this last cohomology is direct consequence of the one on spheres of
complex representations (1.2.2) since we have the cofibre sequence of G-spaces:

S(V ⊗ w)+ −→ S0 −→ SV⊗w, (1.2.8)

inducing a long exact sequence in elliptic cohomology.

1.3 Structure of the Thesis

We start in Chapter 2 with a solid background in equivariant stable homotopy theory.
We introduce the framework of model categories that will be our context when doing
homotopy theory. We then move in defining G-equivariant orthogonal spectra that
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represent G-equivariant cohomology theories, and discuss change of group functors
and localization. We conclude the chapter with a self-contained account of algebraic
models.

Chapter 3 contains prerequisites from the algebraic geometry side. We start
with the theory of sheaf Cousin complexes as introduced by Grothendieck that will
be our main algebraic geometry tool in the construction of ECT2 . We then define
algebraic groups, abelian varieties and formal group laws. Using formal group laws
we can define non-equivariant elliptic cohomology. We conclude the chapter with
some facts on complex algebraic surfaces that will come at handy when computing
ECT(CP(V )).

Chapter 4 is the first chapter of original work and where we construct ECT2

starting from an elliptic curve C over C and a coordinate around the identity. After
changing the topology on the abelian surface X = C ×C we consider the sheaf Cousin
complex of its structure sheaf. The local cohomology modules appearing in this
complex will constitute all the geometric inputs needed to build ECT2 . We conclude
the chapter computing the values of ECT2 on spheres of complex representations
using the Adams spectral sequence of the algebraic model A(T2).

In Chapter 5 we present an application of our theory ECT2 by computing
rational T-equivariant elliptic cohomology of the complex projective space CP(V )
for a finite dimensional complex representation of T. More precisely we prove that
ECT built in [Gre05] and ECT2 satisfy a split condition allowing us to perform the
computation with the T2-equivariant theory. To achieve this result we define a
natural transformation of cohomology theories and prove the transformation to be
an H-equivalence for certain subgroups H of T2.

We conclude the Thesis presenting in Chapter 6 three possible future directions.
In particular we discuss some ideas on how to generalize the construction to higher
dimensional tori, by building ECTk ∈ A(Tk). We discuss the possibility to generalize
the construction to more general complex abelian surfaces and not only XT2 = C × C.
We also hint how to extend the computation of circle-equivariant elliptic cohomology
of CP(V ) to Grassmanians Grn(V ).

1.4 Notation and Conventions

In general G denotes the group of equivariance that we are working on, that will
always be a compact Lie group. Depending on the section we will sometimes restrict
our attention to G = Tr a torus of rank r: compact connected Lie group of rank r.
In chapters 4 and 5 we fix G = T2 the 2-torus. By T we denote the circle group:
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the torus of rank 1. By subgroup of a compact Lie group we always mean closed
subgroup, and we generically denote them with H and K, while F denotes a finite
subgroup.

The collection of connected closed codimension 1 subgroups of the 2-torus T2

is {Hi}i≥1 indexed with i ≥ 1, and with H1 = 1× T and H2 = T× 1 being the two
privileged subgroups. We denote Hj

i the subgroup with j connected components
and identity component Hi: we will refer to the subgroups with identity component
Hi as being along the i-th direction. In general zi : T2 → T is a character of T2 with
kernel Hi.

By representation of a compact Lie group G we always mean a finite dimen-
sional real orthogonal representation of G, and sometimes we will restrict attention
to complex representations. We denote SV the one point compactification of a
G-representation V with the added point being the basepoint, these are called repre-
sentation spheres and when V = Rn with fixed G-action we obtain the n-th sphere
Sn. We denote X+ the G-space X with a fixed basepoint added and BG denotes
the classifying space of G. For a G-space X we implement the convention to denote
X also the associated suspension spectrum.

Given a module M we will denote M the 2-periodic version of M : it is a
graded module with M in each even degree and zero in odd degrees. We denote
elements in direct sums and products in the following way: x = {xi}i ∈

⊕
i≥1Mi:

this identifies the element x in the direct sum that has i-th component xi ∈Mi.
We will freely use the standard notation of schemes as well as the notation

for sheaves from [Har66] that we recall in Section 3.1. We denote K(X ) the ring
of meromorphic function for the algebraic variety X , and η(C) the generic point
of a closed set C. We denote C our fixed elliptic curve over C, e is the identity of
the elliptic curve and for a positive integer n: C[n] is the subgroup of elements of
n-torsion, while C〈n〉 is the subset of elements of exact order n. We will use P to
denote a point of C of finite order.

Whenever algebraic models are involved (chapters 4 and 5 and section 2.5),
everything is rationalized without comment (Example 2.4.30): this means that all
spectra are meant localized at the rational sphere spectrum and all the homology
and cohomology is meant with Q coefficients. Tensor products ⊗ are meant over Q,
or over the graded ring with only Q in degree zero and zero elsewhere. We will freely
use the standard notation for algebraic models , and we recall it in Section 2.5. In
particular A(G) is an abelian category with graded objects and no differentials, while
dA(G) is the category of objects of A(G) with differentials. Cohomology is unreduced
unless indicated to the contrary with a tilde, so that H∗(BG/H) = H̃∗(BG/H+) is
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the unreduced cohomology ring. To ease the notation sometimes we will omit the
base ring we are taking the tensor product over and denote it with an index: ⊗i.
This in turn means that we are considering the tensor product over the ring OF/Hi

or its F -th component H∗(BG/Hni
i ). We will make extensive use of the coordinates

H∗(BG/Hj
i ) ∼= Q[cij ] (2.5.17) and H∗(BG/F ) ∼= Q[xA, xB] (2.5.21).

12



Chapter 2

Prerequisites: Equivariant
stable homotopy theory

2.1 Model categories

We provide a brief introduction about model categories following the appendix of
[BR20].

2.1.1 The homotopy category

Definition 2.1.1. A model category C is a category with 3 distinguished classes of
morphisms, closed under composition and all contain the identity: weak equivalences,
fibrations and cofibrations. These data should satisfy 5 axioms (MC(1) - MC(5)
[BR20, pag. 372]).

A model category has all small products and coproducts as well as an initial
object ∅ and a final object ∗, when they are isomorphic the category is pointed. A
morphism that is both a weak equivalence and a cofibration is called an acyclic
cofibration, a morphism that is both a weak equivalence and a fibration is called
acyclic fibration.

Definition 2.1.2. An object X in a model category is cofibrant if the only morphism
∅ → X is a cofibration. An object X in a model category is fibrant if the only
morphism X → ∗ is a fibration.

Definition 2.1.3. For every object X in a model category there is an object CX
called cofibrant replacement of X, such that CX is cofibrant and there is a weak
equivalence CX → X. symmetrically there is an objectRX called fibrant replacement
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of X such that RX is fibrant and there is a weak equivalence X → RX. In all our
cases fibrant and cofibrant replacements are functorial.

In a model category we can formulate the notion of homotopy without using
a unit interval. Namely we can define when two morphisms f, g : X → Y are
homotopic [BR20, definition A.2.5], and we denote it f ' g. If X is cofibrant and Y
is fibrant than being homotopic is an equivalence relation ∼ in C(X,Y ). Moreover
when the objects are both fibrant and cofibrant being homotopic is compatible with
the composition of morphisms.

Definition 2.1.4. Let C be a model category, the homotopy category of C denoted
Ho(C) is defined as follows. It has for objects the same objects as C, and as morphisms:

Ho(C)(X,Y ) := C(RCX,RCY )/ ∼ .

Namely the homotopy classes between the respective fibrant-cofibrant replacements.
We denote Ho(C)(X,Y ) by [X,Y ].

The most important feature of the homotopy category (and what characterize
it) is the following:

Lemma 2.1.5. A morphism [f ] ∈ Ho(C) is an isomorphism if and only if f is a
weak equivalence.

In conclusion the homotopy category is the localization C[W−1] at the class
of weak equivalences W.

2.1.2 Quillen equivalences

Definition 2.1.6. A functor between model categories is said to be:

• A left Quillen functor if it preserves cofibrations and acyclic cofibrations.

• A right Quillen functor if it preserves fibrations and acyclic fibrations.

Moreover a pair of functors
F : C � D : G

between model categories is a Quillen adjunction if F is a left Quillen functor and G
is a right Quillen functor.

A Quillen adjunction is the right notion of morphism between model categories:

Lemma 2.1.7. Let F : C � D : G be an adjunction, TFAE:
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• F preserves cofibrations and G preserves fibrations.

• F is left Quillen.

• G is right Quillen.

• (F,G) is a Quillen adjunction.

• F preserves acyclic cofibrations and cofibrations between cofibrant objects.

• G preserves acyclic fibrations and fibrations between fibrant objects.

A left Quillen functor takes weak equivalences between cofibrant objects to
weak equivalences. A right Quillen functor takes weak equivalences between fibrant
objects to weak equivalences.

Definition 2.1.8. If F : C→ D is a left Quillen functor, define the total left derived
functor

LF : Ho(C)→ Ho(D)

to be LF (X) := F (CX). Dually if G : D→ C is a right Quillen functor, define the
total right derived functor

RG : Ho(D)→ Ho(C)

to be RG(X) := G(RX).

A Quillen adjunction induces an adjunction on the respective model categories
[BR20, Theorem A.4.6]:

Theorem 2.1.9. If (F,G) is a Quillen adjunction, then the derived functors
(LF,RG) form an adjunction for the respective homotopy categories.

Definition 2.1.10. A Quillen adjunction is called a Quillen equivelence if the derived
adjunction is an adjoint equivalence of the respective homotopy categories.

2.2 Closed symmetric monoidal categories

We briefly fix the notation for closed symmetric monoidal categories that will provide
the natural setting for duality statements. We follow [Blu17, pag. 30].

Let (C,∧, S0) be a symmetric monoidal category (the flip map τ : X ∧ Y ∼=
Y ∧X is an isomorphism).

Definition 2.2.1. A symmetric monoidal category is closed if for every X ∈ C the
functor _ ∧X has a right adjoint F (X,_).
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When this happens there is a unique functor (called internal Hom functor)
on the product category

F (_,_) : Cop × C→ C

such that there is a natural isomorphism in all three variables:

C(X ∧ Y,Z) ∼= C(X,F (Y,Z)).

Lemma 2.2.2. The internal Hom functor preserves limits in the second variable
and sends colimits in the first variable to limits.

F (X, lim←−−
j
Yj) ∼= lim←−−

j
F (X,Yj)

F (colim−−−−−→
j

Xj , Y ) ∼= lim←−−
j
F (Xj , Y )

Definition 2.2.3. The evaluation map is the unit ε : F (X,Y ) ∧ X → Y , and
the coevaluation map is the counit η : X → F (Y,X ∧ Y ). The dual of X is
DX := F (X,S0).

Remark 2.2.4. The map η : X → F (S0, X ∧ S0) = F (S0, X) is always an isomor-
phism, with inverse ε.

There are various natural transformations implicit in the structure of a closed
symmetric monoidal category:

1. The natural map ∧ : F (X,Y )∧F (X ′, Y ′)→ F (X ∧X ′, Y ∧Y ′), whose adjoint
is the composite:

F (X,Y ) ∧ F (X ′, Y ′) ∧X ∧X ′ → F (X,Y ) ∧X ∧ F (X ′, Y ′) ∧X ′ → Y ∧ Y ′

2. The natural map ν : F (X,Y ) ∧ Z Id∧η−−−→ F (X,Y ) ∧ F (S0, Z)→ F (X,Y ∧ Z).
Adjoint of the evaluation map F (X,Y ) ∧X ∧ Z → Y ∧ Z.

3. The natural map ρ : X → DDX. Obtained taking the adjoint of the composi-
tion X ∧DX τ−→ DX ∧X ε−→ S0.

4. The natural isomorphism µ : F (X∧Y,Z) ∼=−→ F (X,F (Y,Z)) obtained applying
adjunction twice to the evaluation map F (X ∧ Y,Z) ∧X ∧ Y → Z.

Definition 2.2.5. An object X is said to be finite or strongly dualizable if there
exists a “coevaluation map” η′ : S0 → X ∧ DX such that the following diagram
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commutes
S0 X ∧DX

F (X,X) DX ∧X.

η′

η τ

ν

This implies that the map ν is an isomorphism so that we have an explicit description
of η′ = τ ◦ ν−1 ◦ η.

Remark 2.2.6. For a finite object X the functor _∧DX is right adjoint to _∧X,
so by uniqueness of adjoints there is a natural isomorphism _ ∧DX ∼= F (X,_).

Proposition 2.2.7. The following are true:

1. If X and X ′ are both finite or if X is finite and Y = S0 or if X ′ is finite and
Y ′ = S0 then

∧ : F (X,Y ) ∧ F (X ′, Y ′)→ F (X ∧X ′, Y ∧ Y ′)

is a natural isomorphism.

2. If either X or Z is finite then

ν : F (X,Y ) ∧ Z → F (X,Y ∧ Z)

is a natural isomorphism.

3. If X is finite then ρ : X → DDX is a natural isomorphism.

2.3 Equivariant orthogonal spectra

In this section G is a compact Lie group. We want to give an introduction to orthog-
onal G-spectra. There are various sources for the topic, with different definitions,
different notation and different model structures. Since we will need different bits
from different sources we will point out the differences in definitions and notations for
our sources. For this first part we will mainly follow [HHR16] Section 2 and Appendix
A. We will point out the differences in definition and notation with [MM02].

2.3.1 G-spaces

Definition 2.3.1. Let (T ,∧, S0) be the symmetric monoidal category of pointed,
compactly generated weak hausdorff spaces, with the smash product of pointed
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spaces and unit the 0-sphere S0. A topological category is a category enriched over
(T ,∧, S0).

Definition 2.3.2. Let (T G,∧, S0) be the topological symmetric monoidal category
of pointed spaces with a left G-action (the action should fix the basepoint) and spaces
of equivariant maps as morphisms. We have an internal mapping space TG(X,Y )
which is simply the space of continuous maps from X to Y which is a G-space with
the conjugation action (In [HHR16] is denoted T G). The internal mapping space
makes T G into a closed symmetric monoidal category. A topological G-category,
is a category enriched over (T G,∧, S0). We use TG to denote the G-category with
G-spaces of nonequivariant maps and T G the topological category with equivariant
maps, so that:

T G(X,Y ) ∼= (TG(X,Y ))G.

Definition 2.3.3. The homotopy set (group for n > 0) πHn (X) of a pointed G-
space X is defined to be the set of H-equivariant homotopy classes of pointed maps
Sn → X.

This is the same as the ordinary homotopy groups for the topological space
πn(XH) of H-fixed points.

Definition 2.3.4. A map X → Y in T G is a weak equivalence if for all subgroups
H ⊆ G the induced map on the H-fixed points XH → Y H is an ordinary weak
equivalence of topological spaces.

With this class of weak equivalences T G carries the structure of a topological
model category where a fibration is a map X → Y which is a Serre fibration on fixed
points XH → Y H for every subgroup H. We denote Ho(T G)(X,Y ) by [X,Y ]G.

We will make extensive use of representation spheres SV , which are the
one-point compactification of a representation V of G. When V = Rn with the
trivial action we have the n-sphere Sn. Associated to SV we have the equivariant
homotopy set:

πGV (X) := [SV , X]G

which is a group if dim(V ) > 0 and an abelian group if dim(V G) > 1. We have also
the equivariant suspension and the equivariant loop space:

ΣVX := SV ∧X

ΩVX := TG(SV , X).
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Definition 2.3.5. A continuous G-functor X : C → D between topological G-
categories is a functor X sucht that

X : C(A,B)→ D(X(A), X(B))

is a G-map of G-spaces for all pairs of objects A,B (maps in T G).

Definition 2.3.6. A G-natural transformation α : X → Y between topological
G-functors is a natural transformation of functors which consists of G-maps α :
X(A)→ Y (A).

Let CatG be the collection of topological G-categories (G-categories for short),
which are categories enriched over T G, that is to say that CatG(C,D) is the G-
category of G-functors C → D and left G-spaces of G-natural transformations.
Denote CatG(C,D)G the topological category of functors and spaces of equivariant
natural transformations.

2.3.2 Equivariant orthogonal spectra

By representation of G we mean a real orthogonal representation V of G. Let O(V )
be the orthogonal group of non-equivariant linear isometric maps of V into itself.
Given representations V and W , O(V,W ) is the Stiefel manifold of linear isometric
embeddings of V into W with conjugation action.

Definition 2.3.7. The basic indexing category JG is the topological G-category
whose objects are finite dimensional real orthogonal representations of G and with
G-space of morphisms the Thom complex:

JG(V,W ) := Thom(O(V,W );W − V ).

Where W − V is the orthogonal complement of V in W

As usual denote the underlying topological category with the symbol J G.
When G is the trivial group the topological category and the G-category are the
same, denote them with J .

Remark 2.3.8. In [HHR16] and [MM02] a more calligraphic and fancy J is used
instead of J . It is possible to decorate this category specifying the G-universe U
you are taking the representations from: J UG . A G-universe is a real G-inner product
space which contains the trivial representation (R with the trivial action), and such
that if it contains a finite dimensional representation, than it contains an infinite
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sum of copies of that representation. It is complete when it contains all irreducible
representations, it is trivial if it contains only trivial representations. In Definition
2.3.7 we are implicitly using a complete G-universe U where all the finite dimensional
representation embeds.

Definition 2.3.9. An orthogonal G-spectrum is a functor of topological G-categories:

X : JG → TG.

The topological G-category of orthogonal G-spectra is

SpG := CatG(JG, TG).

The underlying topological category of Orthogonal G-spectra is:

SpG := CatG(JG, TG)G

When G is the trivial group the category of Orthogonal spectra is:

Sp := CatG(J , T ).

In [HHR16] the letter S is used instead of Sp.

Notation 2.3.10. We will sometimes use XV for the value X(V ) of an orthogonal
G-spectrum at a representation V .

There is a lot of freedom in deciding which G-universe consider for the
indexing category, and we can use SpUG to specify J UG as indexing category. We
will always assume a complete G-universe without indication for most of this thesis,
but to define certain functors (for example inflation) changing universe is essential.
Luckily for us our objects are determined at the level of trivial representations, more
precisely.

Remark 2.3.11. If V and W are two representations of the same dimension, then

O(V,W )+ ∧O(V ) XV
∼=−→ XW

is a G-equivariant homeomorphism. In particular this gives a way to extend the
values of a G-spectrum indexed on the trivial G-universe J to all G-representations.

Definition 2.3.12. Let U and U ′ be 2 G-universes, define the change of universe
functor

IU
′
U SpUG → SpU ′G
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extending the values for every representation V ⊂ U ′ of dimension n:

XV := O(Rn, V )+ ∧O(Rn) XRn

The following Lemma is due to Mandell-May [MM02, Lemma V.1.5]:

Lemma 2.3.13. The functors IU ′U and IUU ′ are inverse equivalences of categories.

Definition 2.3.14. Given a G-spectrum X and a G-space K the suspension spec-
trum and the 0-space functors are defined by:

(Σ∞K)V := SV ∧K

Ω∞X := X{0}

Where {0} is the zero vector space.

The suspension spectrum functor is left adjoint to the 0-space functor. The
functors Σ∞ and Ω∞ are topological functors between T G and SpG or T G-enriched
functors between TG and SpG.

Notation 2.3.15. We will denote Σ∞K simply with K.

Definition 2.3.16. For every G-representation V there is an orthogonal G-spectrum
S−V characterized by the functorial isomorphism of G-spaces:

SpG(S−V , X) ∼= XV

We now compare the different approaches to the definition of orthogonal
G-spectra from the various sources we are going to use.

Remark 2.3.17 (Comparison with IG-spaces). In [MM02] a slightly different ap-
proach is taken in the definition of orthogonal spectra. They define the topological
G-category IG on the same objects of JG: finite dimensional real orthogonal repre-
sentations of G, but with morphisms simply the G-space O(V,W ). They then define
an IG-space to be a continuous G-functor

X : IG → TG

and an orthogonal G-spectrum to be an IG-space with additional structure maps

SV ∧X(W )→ X(V ⊕W ).
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The category JG encodes already the data of the structure maps. They call these
IG-spectra. The Topological category of IG-spectra and non-equivariant natural
transformations is denoted in [MM02] with IGS. The topological category of IG-
spectra and equivariant natural transformations is denoted GIS.

Remark 2.3.18 (Comparison with G-prespectra). A G-prespectrum X as defined
in [MM02] and [Blu17] is simply the data of a G-space X(V ) for every V in our
universe, and associative structure G-maps:

σ : SV ∧X(W )→ X(V ⊕W )

i.e. you don’t require functoriality in V . Arrows of G-prespectra are simply based
maps f(V ) : X(V ) → Y (V ) that commute with the structure maps, this gives us
the G-category of G-prespectra, and the topological category of G-prespectra if we
consider equivariant maps. When the adjoints of the structure maps

σ̃ : X(V )→ ΩWX(V ⊕W )

are homeomoprphisms of G-spaces those are called Ω-prespectra in [Blu17] and
G-spectra in [MM02] (as opposite to othogonal). All our orthogonal G-spectra
are G-prespectra by forgetting the functoriality, so we have a forgetful functor.
The definition of homotopy groups for G-prespectra is straightforward [Blu17, pag.
42]. Moreover G-prespectra admits a model structure with weak equivalences the
π∗-isomorphisms, its homotopy category is the Equivariant stable homotopy category.

2.3.3 The smash product

In this subsection we mainly follow [MM02, Chapter II].
The symmetric monoidal structures of JG and TG combine to give SpG a

symmetric monoidal structure (the day convolution) denoted ∧, with unit the sphere
spectrum S0. This construction works in general for diagram spaces [Man+01].

Definition 2.3.19. The smash product of two orthogonal G-spectra X and Y is
defined to be the left Kan extension of the external smash product

∧̄ : JG × JG → TG
(V,W ) 7→ XV ∧ YW

Along the direct sum map ⊕ : JG × JG → JG.
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Remark 2.3.20. It is characterized (universal property) by the isomorphism of
G-spaces

SpG(X ∧ Y, Z) ∼= (X∧̄Y,Z ◦ ⊕)

where on the right we have the G-space of natural transformations of functors
JG × JG → TG.

We can explicitly describe the smash product on a G-representation V by

(X ∧ Y )V = colim−−−−−→
W⊕W ′→V

XW ∧ YW ′

where the colimit is indexed over the over-category whose objects are mapsW⊕W ′ →
V and whose morphisms are pairs of maps making the appropriate diagram commutes.

Definition 2.3.21. The internal function spectrum of two orthogonal G-spectra X
and Y is defined on a G-representation V to be

F (X,Y ) : JG → TG
V 7→ SpG(X,Y (V ⊕_)).

Namely the G-space of continous natural transformations between X and Y (V ⊕_).

Remark 2.3.22. If Z is a functor JG × JG → TG, while X and Y are functors
JG → TG then we have an isomorphism of G-spaces

(X∧̄Y, Z) ∼= (X, F̄ (Y, Z))

where on the left we are considering the G-space of natural transformations of functors
from the product JG × JG, and on the right from JG. This gives immediately the
desired adjunction with the internal smash and internal function spectra. The
external function spectrum is defined

F̄ (Y, Z) : JG → TG
V 7→ SpG(Y, Z(V,_)).

These 2 definitions endow the category of orthogonal G-spectra with the
structure of a closed symmetric monoidal category [MM02, Theroem 3.1]:

Lemma 2.3.23. The categories SpG and SpG are both closed symmetric monoidal
categories under the smash product ∧ of orthogonal G-spectra and unit object the
sphere spectrum S0. The internal Hom functor is the internal function spectrum F .
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Remark 2.3.24. Both SpG and SpG are tensored and cotensored over G-spaces.
For a G-space K and a G-spectrum X we have

(X ∧K)V = XV ∧K

F (K,X)V = F (K,XV ).

So that smash product and function spectrum with suspension spectra can be
computed level-wise with smash and function space of G-spaces. The suspension
spectrum Σ∞ is symmetric monoidal.

2.3.4 Model Structures

We can put a model structure on the category of G-spectra For a representation
V and k ∈ Z we write V > k when dim(V G) > k + 1. The following is [HHR16,
Definition 2.14]:

Definition 2.3.25. For a G-spectrum X and k ∈ Z, define for every subgroup
H ⊆ G the H-equivariant k-th stable homotopy group of X as:

πHk (X) := colim−−−−−→
V >−k

πHV+k(XV )

where the colimit is taken over the partially ordered set of orthogonalG-representations
V satisfying V > −k.

Remark 2.3.26. An increasing sequence · · · ⊂ Vn ⊂ Vn+1 ⊂ . . . of finite dimensional
representations of G is exhausting if any finite dimensional representation V of G
admits an equivariant embedding in some Vn. We can use any exhausting sequence
to compute the stable homotopy groups:

πHk (X) = colim−−−−−→
n

πHVn+k(XVn)

Definition 2.3.27. A stable weak equivalence is a map X → Y in SpG inducing
an isomorphism of stable homotopy groups πHk for all k ∈ Z and subgroups H ⊆ G
(they are called π∗-isomorphisms in [MM02]).

We can define a model structure on SpG where the weak equivalences are
precisely the stable weak equivalences [HHR16, Proposition B.63]:

Proposition 2.3.28. The category SpG equipped with the stable weak equivalences,
the positive complete cofibrations and positive complete fibrations forms a cofibrantly
generated model category.
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We call this the positive complete model structure on orthogonal G-spectra.
This defines for us (Definition 2.1.4) the homotopy category of G-spectra, invert-
ing precisely the stable weak equivalences. As for G-spaces we use [X,Y ]G for
Ho(SpG)(X,Y ).

There are various model structures on G-spectra depending on someone’s
scope and objectives. We point out other 2 model structures in [MM02]. Recall that
in [MM02] the category SpG is denoted GIS and indexed on a complete G-universe
U . We have the Level model structure [MM02, Theorem 2.4] with class of weak
equivalences the level equivalences of G-spectra. There is also the stable model
structure [MM02, Theorem 4.2 and 7.5] with weak equivalences the stable weak
equivalences.

2.3.5 Homology and Cohomology

A G-spectrum E ∈ SpG defines a Z-graded G-equivariant cohomology theory:

EkG(X) := [S−k ∧X,E]G = [X,E]Gk = [S−k, F (X,E)]G = πG−k(F (X,E)).

As well as a Z-graded homology theory:

EGk (X) := [Sk, X ∧ E]G = πGk (X ∧ E).

The RO(G)-graded versions are defined by:

EVG (X) := [S−V ∧X,E]G = [S−V , F (X,E)]G = πG−V (F (X,E)),

EGV (X) := [SV , X ∧ E]G = πGV (E ∧X),

for V = V0 − V1 ∈ RO(G) a virtual representation of G, that is a formal difference
of isomorphism classes of representations.

2.4 Change of group functors

For this section we follow [MM02, Chapter V].

2.4.1 Restriction, induction, coinduction

Let iH : H ↪→ G be a subgroup of G, the restriction functor i∗H : T G → T H has

1. A continuous left adjoint called induction. Sending an H-space Y :

Y 7→ G+ ∧H Y
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where in the wedge we quotient the H-action to obtain an induced G-action.

2. A continuous right adjoint called coinduction. Sending an H-space Y :

Y 7→ T H(G+, Y )

where the H-equivariant maps have the coinduced G-action.

We can extend these functors to orthogonal G and H spectra, maintaining the
adjunctions.

Definition 2.4.1. For X a G-spectrum, Y an H-spectrum, V a G-representation
define respectively restriction, induction and coinduction as:

(i∗HX)(i∗HV ) := i∗H(XV )

(G+ ∧H Y )V := G+ ∧H (YV )

FH(G+, Y )V := T H(G+, YV )

(2.4.2)

Remark 2.4.3. They all preserve stable weak equivalences so they all induce functors
between the respective homotopy categories. They all commute with suspension
spectra. Restriction is strong symmetric monoidal.

Lemma 2.4.4. There are Quillen-adjunctions:

SpG(G+ ∧ Y,X) ∼= SpH(Y, i∗HX)

SpG(X,FH(G+, Y )) ∼= SpH(i∗HX,Y )
(2.4.5)

relating level model structures and stable model structures.

We have two important natural isomorphisms:

G/H+ ∧X ∼= G+ ∧ i∗HX

F (G/H+, X) ∼= FH(G+, i
∗
HX).

(2.4.6)

2.4.2 Inflation, Categorical fixed points, orbits

Let iN : N ↪→ G be a normal subgroup of G with quotient ε : G � G/N = Q.
The inflation functor on spaces InfGQ = ε∗ : T Q → T G has the N -fixed points as
right adjoint and the N -orbits as a left adjoint. Let us extend these definitions and
adjunctions to spectra.

Let U be our complete G-universe and UN the N -fixed sub-universe that is
also called the G-universe of N -trivial G-representations. Notice that we change the

26



universe to UN to allow the use of different model structures, and that UN is also a
complete Q-universe. The following results [MM02, pp. V.1.7, V.1.8] are fundamental
at this point.

Lemma 2.4.7. For G-universes U ⊂ U ′ there is a U-stable model structure on SpGU ′
in which the functor creates the U-stable weak equivalences and the U-fibrations.
Moreover the pair (IU ′U , IUU ′) is a Quillen equivalence between SpGU with the stable
model structure and SpGU ′ with the U-stable model structure. The U-stable weak
equivalences are those maps that induces isomorphisms on the stable homotopy groups
defined using only representations V ⊂ U .

Corollary 2.4.8. For U ⊂ U ′ the identity functor of SpGU ′ is the right Quillen
functor of a Quillen adjunction relating the stable model structure and the U-stable
model structure.

We can apply these results to UN ⊂ U . For a Q-representation V let ε∗V be
V regarded as an N -trivial G-representation.

Definition 2.4.9. For a Q-spectrum Y , define ε∗Y ∈ SpGUN to be the G-spectrum
indexed on V ⊂ UN :

(ε∗Y )V = ε∗(YV ).

Define the inflation functor InfGQ : SpQUN → SpGU simply post-composing with the
change of universe functor:

InfGQ(Y ) := IUUN ◦ ε∗(Y ) (2.4.10)

Remark 2.4.11. Inflation is strong symmetric monoidal and commutes with sus-
pension spectra.

Definition 2.4.12. For a G-spectrum X ∈ SpGUN indexed on N -trivial representa-
tions, define the Q-spectrum XN by passage to N -fixed points level-wise:

(XN )V = (XV )N .

Define the categorical fixed point functor ΨN : SpGU → SpQUN simply pre-composing
with the change of universe functor. For a a generic G-spectrum X indexed on all
G-representations:

ΨN (X) := (IUN

U X)N .

We denote ΨN (X) by XN also for a generic spectrum X.
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Remark 2.4.13. The categorical fixed points functor is a right Quillen functor but
does not preserve stable weak equivalences in general, and therefore needs to be right
derived in the homotopy category. The reason for this is that it does not commute
with fibrant replacement.

Remark 2.4.14. Some sources define categorical fixed points also when N is not
normal in G as XN := (i∗NX)N which is the underlying non-equivariant spectrum of
our definition of a Q-spectrum.

Remark 2.4.15. Categorical fixed points are not strong symmetric monoidal, for
example:

(S0)G ∧ (S0)G 6' (S0 ∧ S0)G

but they are lax symmetric monoidal: there is a natural map:

XN ∧ Y N → (X ∧ Y )N

Inflation and categorical fixed points are still adjoint [MM02, Proposition
3.10]:

Proposition 2.4.16. There is a Quillen adjunction

SpG(InfGQ Y,X) ∼= SpQ(Y,XN )

relating the respective level and stable model structures. The spectrum X is indexed
on a complete G-universe.

Corollary 2.4.17. For any orthogonal G-spectrum X:

πH∗ (X) ∼= [G/H+ ∧ S0, X]G ∼= [S0, i∗HX]H ∼= [S0, XH ] = π∗(XH)

Definition 2.4.18. For a G-spectrum X ∈ SpGUN indexed on N -trivial representa-
tions V , define the orbit Q-spectrum X/N quotienting by N level-wise:

(X/N)V = XV /N

The inflation-orbit adjunction is maintained only forN -trivialG-representations
[MM02, Proposition 3.12]

Proposition 2.4.19. There is a Quillen adjunction

SpGUN (X, ε∗Y ) ∼= SpQ(X/N, Y ) (2.4.20)
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relating the respective level and stable model structures.

Remark 2.4.21. The orbit functor is a left adjoint while change of universe to N -
trivial representations is a right adjoint, so the composition is of no practical use and
the adjunction is relevant only on G-spectra indexed on N -trivial G-representations.

2.4.3 Localization of spectra

We follow [MM02, p. IV.6]

Definition 2.4.22. A map f : X → Y of orthogonal G-spectra is called an H-
equivalence if the induced map on the restricted spectra

ι∗H(f) : ι∗HX → ι∗HY

is a stable weak equivalence of orthogonal H-spectra.

Notation 2.4.23. When H is the trivial subgroup we use the terms 1-equivalence
or non-equivariant equivalence, and denote it X '1 Y .

Let F be a family of subgroups of G, and EF be the universal F-space. It
is a G-CW complex characterized up to weak equivalence of G-spaces by the weak
equivalences of topological spaces:

(EF+)H '

S
0 if H ∈ F

∗ if H /∈ F

such a pointed G-CW complex can be build using cells of the form G/H+ ∧Dn
+.

Let ẼF be the mapping cone of the map EF+ → S0 quotienting EF to a
point. The pointed G-CW complex ẼF is characterized up to weak equivalence of
G-spaces by the weak equivalences of topological spaces:

(ẼF)H '

∗ if H ∈ F

S0 if H /∈ F

Definition 2.4.24. The isotropy separation cofibre sequence for F is the cofiber
sequence of G-spaces:

EF+ → S0 → ẼF

that induces an isotropy separation cofibre sequence for any orthogonal G-spectrum
X:

X ∧ EF+ → X → X ∧ ẼF . (2.4.25)
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Definition 2.4.26. A map f : X → Y is an F -equivalence if it is an H-equivalence
for every H ∈ F . An orthogonal G-spectrum X is said to be an F -object if the first
map of its isotropy separation cofibre sequence X ∧EF+ → X is a stable equivalence.

Definition 2.4.27. Let E be a cofibrant spectrum or a cofibrant based G-space.

• A map X → Y is an E-equivalence if E ∧X → E ∧ Y is a weak equivalence.

• An object Z is E-local if for all E-equivalences f : X → Y the map f∗ :
[Y,Z]G → [X,Z]G is an isomorphism.

• An E-localisation of X is an E-equivalence to an E-local object.

• An object X is E-acyclic if the map from the zero object ∗ → X is an E-
equivalence.

Remark 2.4.28. An E-equivalence between E-local objects is a stable weak equiv-
alence.

The following is [MM02, Theorem 6.3]:

Theorem 2.4.29. Let E be a cofibrant spectrum or a cofibrant based G-space. The
category of orthogonal G-spectra SpG admits an E-model structure with:

• weak equivalences the E-equivalences,

• Same cofibrations,

• E-fibrant objects the fibrant objects of SpG that are E-local.

Moreover the E-fibrant approximation X 7→ LEX constructs a Bousfield localization
of X at E. The notation for this E-model structure is LESpG.

The map X → F (EF+, X) induced by EF+ → S0 is an EF+-localization of
X.

Example 2.4.30. The most important example to us, is when E = S0Q is the
rational sphere spectrum [Bar08, p. 1.5.2]. We call the E-model structure rational
G-spectra and denote it by SpGQ, we call the E-equivalences rational equivalences.

Notation 2.4.31. In chapters 4 and 5 and section 2.5 we will always assume that
everything is rationalized without comment. This means that all spectra are meant
localized at S0Q, the weak equivalences are the rational equivalences, and so on.
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2.4.4 Geometric fixed points

Let N be a normal subgroup of G with quotient Q, and let F = [N *] be the
family of subgroups that do not contain N (For N = G this is the family of proper
subgroups).

Definition 2.4.32. Define the geometric fixed point functor ΦN : SpG → SpQ on
an orthogonal G-spectrum X:

ΦNX := (R(ẼF ∧X))N

where R is the functorial fibrant replacement.

In [MM02, Definition V.4.3] a more intuitive definition in terms of N -fixed
points spaces for certain extended category of JQ is used. The definition we just
gave is equivalent to that one [MM02, Proposition V.4.17].

Proposition 2.4.33. The functor ΦN sends stable weak equivalences to stable weak
equivalences and commutes with filtered homotopy colimits. Moreover for a based
G-space K and G-spectra X and Y :

• ΦN (Σ∞K) ∼= Σ∞(KN ),

• ΦN (X ∧ Y ) ' ΦNX ∧ ΦNY .

2.5 Algebraic models

In this section we present a self-contained account of algebraic models for tori of
any rank, therefore in all this section G = Tr is an r-dimensional torus, with r ≥ 0.
We also specify that all the modules over graded rings are graded and all the maps
between graded modules are graded maps. Here as in Chapters 4 and 5, everything
is rationalized without comment.

Algebraic models are a useful tool to study rational equivariant cohomology
theories. The main idea is to define an abelian category A(G) and homology functor
from the category of rational G-equivariant orthogonal spectra (Example 2.4.30):

πA∗ : SpGQ → A(G) (2.5.1)

equipped with an Adams spectral sequence to compute maps in the homotopy
category of rational G-spectra. More precisely the values of the theory may be
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calculated by a spectral sequence:

Ext∗,∗A (πA∗ (X), πA∗ (Y )) =⇒ [X,Y ]G∗ . (2.5.2)

In the case of tori we have a zig-zag of Quillen-equivalences [GS18, Theorem 1.1]):

SpGQ 'Q dA(G), (2.5.3)

where dA(G) is the model category of differential graded objects in A(G). Therefore
we can build rational G-equivariant cohomology theories simply constructing objects
in dA(G).

2.5.1 Definition of the rings

We start by defining the rings needed for the construction of A(G) [Gre08, Section
3.A.]. We write F for the family of finite subgroups of G.

Definition 2.5.4. For every connected subgroup H of G define the collection:

F/H := {H̃ ≤ G | H finite index in H̃}

and the ring:
OF/H :=

∏
H̃∈F/H

H∗
(
B
(
G/H̃

))
(2.5.5)

Remark 2.5.6. Note OF/G = Q and OF/1 = OF .

Any containment of connected subgroups K ⊆ H induces an inflation map
OF/H → OF/K , defined in the following way.

Definition 2.5.7. The inclusion K ⊆ H of connected subgroups defines a quotient
map q : G/K → G/H, and hence

q∗ : F/K → F/H
K̃ 7→ 〈H, K̃〉

(2.5.8)

For any K̃ ∈ F/K define the K̃-th component of the inflation map OF/H → OF/K
to be the composition:

OF/H =
∏

H̃∈F/H

H∗(BG/H̃)→ H∗(BG/q∗K̃)→ H∗(BG/K̃) (2.5.9)
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given by projection onto the termH∗(BG/q∗K̃) followed by the inflation map induced
by the quotient G/K̃ → G/q∗K̃.

Remark 2.5.10. In particular for any connected subgroup H we have an inflation
map induced by the inclusion of the trivial subgroup:

iH : OF/H → OF (2.5.11)

which is a split monomorphism of OF/H -modules [Gre12, Proposition 3.1]. As a
consequence OF is an OF/H -module for every connected subgroup H.

2.5.2 Euler classes

Fundamental elements of these rings are Euler classes of representations of G, used
in the localization process. For any complex representation V of G we want to
define its Euler class e(V ) ∈ OF [Gre08, Section 3.B.]. We require them to be
multiplicative: e(V ⊕W ) = e(V )e(W ), therefore it’s enough to define Euler classes
for one dimensional complex representations V .

Definition 2.5.12. For a one dimensional complex representation V of G, define its
Euler class e(V ) ∈ OF as follows. For every finite subgroup F the F -th component
e(V )F ∈ H∗(BG/F ) is:

e(V )F =

1 if V F = 0

ē(V F ) if V F 6= 0,
(2.5.13)

where ē(V F ) ∈ H2(BG/F ) is the classical equivariant Euler class for the
G/F representation V F .

Definition 2.5.14. For any connected subgroup H of G define the multiplicatively
closed subset of OF :

EH := {e(V ) | V H = 0}. (2.5.15)

We would like now to localize OF at the multiplicatively closed subset EH ,
but the problem is that we would invert also non-homogeneous elements. To sanitize
this let KG/F be the ring obtained from H∗(BG/F ) by inverting all nonzero elements
in degree 2.

Definition 2.5.16. Define E−1
H OF to be the following subring of homogeneous

elements of ∏F KG/F :

E−1
H OF := {u ∈

∏
F

KG/F | ∃V, V H = 0 and e(V F )uF ∈ H∗(BG/F )∀F finite }
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2.5.3 The 2-torus

We are mainly interested in the case of the 2-torus, therefore let us compute explicitly
rings and Euler classes in this case. Recall that {Hi}i≥1 is the collection of connected
closed codimension 1 subgroups of T2 and Hj

i is the subgroup with j-components and
identity component Hi. Exactly as in Definition 4.1.9 and (4.1.7) zi is a character of
T2 with kernel Hi and zji is a character of T2 with kernel Hj

i . In this case:

• OF/T2 = Q

• OF/Hi
= ∏

j≥1H
∗(BT2/Hj

i )

• OF = ∏
F H

∗(BT2/F ) , where F runs through all the finite subgroups of T2.

For every i, j ≥ 1:

H∗(BT2/Hi) ∼= Q[ci]

H∗(BT2/Hj
i ) ∼= Q[cij ]

(2.5.17)

where ci = e(zi) and cij = e(zji ) both of degree −2 are the Euler classes of the
characters zi and zji (more precisely of the one dimensional complex representations
defined by those characters).

Definition 2.5.18. For every finite subgroup F of T2 and every index i ≥ 1 define
ni = ni(F ) to be the only positive integer such that Hni

i is generated by Hi and F :
〈F,Hi〉 = Hni

i .

Every finite subgroup F can be written as the intersection of two codimension
one subgroups of T2. Therefore for every F there exists two different integers
A = A(F ) ≥ 1 and B = B(F ) ≥ 1 such that

F = HnA
A ∩H

nB
B . (2.5.19)

Choice 2.5.20. For any finite subgroup F we choose a pair of positive integers
(A,B) that give the decomposition (2.5.19).

By (2.5.19) we obtain the decomposition:

H∗(BT2/F ) ∼= H∗(BT2/HnA
A )⊗H∗(BT2/HnB

B ) ∼= Q[xA, xB]. (2.5.21)

Where xA := e(znA
A ), xB := e(znB

B ) have both degree −2 are the Euler classes
respectively of znA

A and znB
B .
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Definition 2.5.22. For every i ≥ 1 define

xi := e(zni
i ) ∈ H2(BT2/F ). (2.5.23)

Notice it is an integral linear combination of xA and xB.

Remark 2.5.24. With these choices of coordinates (2.5.17) and (2.5.21) the inflation
map (2.5.11) on the F -th component of the target OF can be easily described:

OF/Hi
=
∏
j≥1

H∗(BT2/Hj
i )→ H∗(BT2/Hni

i ) � H∗(BT2/F ). (2.5.25)

The first map of (2.5.25) is the projection onto the ni-th component since q∗(F ) =
〈Hi, F 〉 = Hni

i by definition of the index ni. The second map of (2.5.25) is the
natural inclusion of Q-algebras sending the generator ci,ni to xi, since by (2.5.23)
they are the same Euler class e(zni

i ) for the two different rings.

2.5.4 Description of A(G)

We briefly recap the description of A(G) [Gre08, Definition 3.9]. The objects of A(G)
are sheaves of modules over the poset of connected subgroups of G with inclusions.

Definition 2.5.26. An object X ∈ A(G) is specified by the following pieces of data:

1. For every connected subgroup H an OF/H -module ϕHX.

2. For every containment of connected subgroups K ⊆ H an OF/K-modules map:

ϕKX → E−1
H/K
OF/K ⊗

OF/H

ϕHX. (2.5.27)

Then X is a sheaf over the space of connected subgroups of G. This specifically
means that for every connected subgroup H, the sheaf X has value the OF -module:

X(H) := E−1
H OF ⊗

OF/H

ϕHX, (2.5.28)

and that for every containment K ⊆ H of connected subgroups, X has a structure
map of OF -modules:

βHK : X(K)→ X(H). (2.5.29)

The map (2.5.29) is obtained tensoring the OF/K-modules map (2.5.27) with the
OF/K-module E−1

K OF . Moreover X satisfies the condition that for every connected
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subgroup H the OF -modules structure map βH1 : X(1)→ X(H) is the map inverting
the multiplicatively closed subset of Euler classes EH (2.5.15).

Remark 2.5.30. Notice that by Remark 2.5.10 the inflation map iK makes OF an
OF/K-module. Moreover the structure map (2.5.27) is well defined from (2.5.27),
since:

E−1
K OF ⊗

OF/K

E−1
H/K
OF/K ∼= E

−1
H OF . (2.5.31)

Example 2.5.32. For the 2-torus an object X ∈ A(T2) has the shape:

X(T2)

X(H1) X(H2) . . .

X(1)

βT2
H1

β
H1
1

=



X(T2)

X(Hi)

X(1)


with infinitely many values X(Hi) in the middle row, one vertex X(T2) and one
value X(1) at the bottom level. By (2.5.28):

X(T2) = E−1
T2 ⊗

Q
ϕT2

X

X(Hi) = E−1
T2/Hi

OF ⊗
OF/Hi

ϕHiX

X(1) = OF ⊗
OF

ϕ1X = ϕ1X

(2.5.33)

Notation 2.5.34. a tensor product with no ring specified will always mean over Q.
For any i ≥ 1 we denote ⊗i = ⊗OF/Hi

the tensor product over the ring OF/Hi
or

when we are considering the F -th component: ⊗i = ⊗H∗(BT2/H
ni
i ).

Example 2.5.35. For the 2-torus using the coordinates we have defined ((2.5.17),
(2.5.21), and (2.5.23)), we can easily describe the localizations at the Euler classes:

• In E−1
G/Hi

H∗(BT2/Hj
i ) we are inverting the Euler class cij .

• In E−1
Hi
H∗(BT2/F ) we are inverting all the Euler classes xj with j ≥ 1 and

j 6= i.

• In E−1
T2 H

∗(BT2/F ) we are inverting all the Euler classes xj with j ≥ 1.

Example 2.5.36. There is a structure sheaf O ∈ A(G) [Gre08, Definition 3.3]
obtained using as modules the base rings: ϕHO = OF/H , and as structure maps the
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natural inclusions:
OF/K → E

−1
H/K
OF/K ⊗

OF/H

OF/H .

Definition 2.5.37. A morphism f : X → Y in the category A(G) is the data of a
(graded) OF/H -module map ϕHf : ϕHX → ϕHY for every connected subgroup H,
compatible with the structure maps of X and Y (it makes the evident commutative
diagrams between different levels commute [Gre08, Definition 3.6]).

Remark 2.5.38. A morphism f : X → Y in A(G) is almost determined by what
it does at the trivial subgroup level f(1) : X(1)→ Y (1) (that we will call bottom
level). This is because for any connected subgroup H the map f at the H-th
level f(H) : X(H) → Y (H) is then E−1

H f(1). Therefore properties like injectivity,
surjectivity or exactness for a sequence of morphisms can be checked at the bottom
level.

2.5.5 Injectives in A(G)

The injective objects in A(G) that we will use are constant below a certain connected
subgroup H, and zero elsewhere [Gre08, Section 4.A.].

Definition 2.5.39. An objectX ∈ A(G) is concentrated below a connected subgroup
H if X(K) = 0 for every connected subgroup K * H. We denote A(G)H the full
subcategory of A(G) of objects concentrated below H.

Definition 2.5.40. If H is a connected subgroup of G, and T is a graded torsion
OF/H -module, define fH(T ) ∈ A(G) to be the constant sheaf below H with the
following values:

fH(T )(K) :=

E
−1
H OF ⊗OF/H

T if K ⊆ H

0 if K * H
(2.5.41)

and structure maps either identities or zero.

Remark 2.5.42. We require T to be torsion so that when we invert E−1
K for K * H

we obtain zero. Therefore this requirement can be dropped when H = G.

Lemma 2.5.43 (Lemma 4.1 of [Gre08]). For any connected subgroup H of G there
is an adjunction:

A(G)H Tors-OF/H-Mod

ϕH

fH

a
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where the left adjoint is the evaluation ϕH . For any torsion OF/H-module T , and
object X ∈ A(G) we have:

HomOF/H
(ϕHX,T ) ∼= HomA(G)(X, fH(T )). (2.5.44)

This in order allows us to transfer torsion injectives OF/H -modules into
injective objects in A(G). First notice that if we are given for every H̃ ∈ F/H an
H∗(BG/H̃)-torsion module T (H̃), then ⊕F/H T (H̃) is naturally a torsion OF/H-
module, with the action given component by component.

Corollary 2.5.45 (Lemma 5.1 of [Gre08]). Suppose {Hi}i≥1 is the collection of all
connected subgroups of G of a fixed dimension. If fHi(Ti) is injective for every i,
then so is

⊕
i≥1 fHi(Ti).

Corollary 2.5.46 (Corollary 5.2 of [Gre08]). If for every H̃ ∈ F/H, T (H̃) is a
graded torsion injective H∗(BG/H̃)-module. Then fH(⊕F/H T (H̃)) is injective in
A(G).

2.5.6 Spheres of complex representations

We can now define the fundamental homology functor πA∗ [Gre08, Definition 1.4].
Given a rational G-spectrum X we can define the sheaf πA∗ (X) ∈ A(G) that on a
connected subgroup H takes the value

πA∗ (X)(H) := πG∗ (DEF+ ∧ S∞V (H) ∧X)
∼= E−1

H OF ⊗
OF/H

π
G/H
∗ (DEF/H+ ∧ ΦHX). (2.5.47)

We denote ΦH the geometric fixed point functor, EF+ is the universal space for
the family F of finite subgroups with a disjoint basepoint added, and DEF+ =
F (EF+, S

0) is its functional dual (The function spectrum of maps from EF+ to S0).
The space S∞V (H) is a convenient construction for Ẽ[+ H] [Gre08, Section 1.C]:

S∞V (H) := lim−−→
V H=0

SV

when K ⊆ H there is a map S∞V (K) → S∞V (H) inducing the structure map
πA∗ (X)(K) → πA∗ (X)(H). The isomorphism (2.5.47) is proven in [Gre08, Lemma
9.2], and it is one of the steps in the proof that the functor πA∗ takes value in the
abelian category A(G). Another key ingredient is to understand πA∗ (S0):
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Lemma 2.5.48 (Theorem 1.5 of [Gre08]). The image of S0 in A(G) is the structure
sheaf O:

πA∗ (S0)(H) = E−1
H OF ⊗

OF/H

OF/H .

Corollary 2.5.49 (Corollary 1.6 of [Gre08]). The functor πA∗ takes values in the
abelian category A(G).

Given a complex representation V of G we want to make explicit the object
πA∗ (SV ) [Gre12, Section 2.B.]. To do so we need first to introduce suspensions:

Definition 2.5.50. If V is an n-dimensional complex representation of G, divide
the family F of finite subgroups of G into n+ 1 disjoint sets Fi, where

Fi := {F ∈ F | dimC(V F ) = i}.

If M is an OF -module, define the V -th suspension of M to be the OF -module:

ΣVM :=
n⊕
i=0

Σ2ieFiM,

where eFi ∈ OF is the idempotent associated to Fi (it has a one in the F -th
component if F ∈ Fi and zero everywhere else).

The value of the sheaf πA∗ (SV ) at a connected subgroup H is:

πA∗ (SV )(H) = E−1
H OF ⊗

OF/H

ΣV HOF/H . (2.5.51)

To describe the structure maps it is convenient to use the suspension of the units:

ιV H := ΣV H (1) ∈ ΣV HOF/H

so that for every inclusion of connected subgroups K ⊆ H the structure map βHK is
determined by the suspended unit:

βHK (ιV K ) = e(V K − V H)−1 ⊗ ιV H (2.5.52)

where the difference of the two representations simply means the orthogonal comple-
ment:

V K = V H ⊕ (V K − V H).

Remark 2.5.53. The content of this section applies also in the case of a virtual
complex representation V = V0 − V1. The only thing to specify is the Euler class
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e(V ) = e(V0)/e(V1). As a result (2.5.51) becomes:

πA∗ (SV )(H) = E−1
H OF ⊗

OF/H

ΣV H
0 −V

H
1 OF/H .
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Chapter 3

Prerequisites: Algebraic
Geometry

3.1 Cousin Complex

We give an introduction to the Cousin complex following [Har66, Chapter IV]. Let
X be a topological space and Z a generic subset. We need to work with the notion
of support in Z in a more general context than when Z is a closed subset. Therefore
let us revise the definitions in this more general setting.

Definition 3.1.1. The codimension of a point x ∈ X is the largest integer n such
that there exists a sequence of points x0, x1, x2, . . . , xn = x of X where each xi+1 is
a proper specialization of xi, i.e. xi+1 ∈ {xi} and xi+1 6= xi.

Definition 3.1.2. The support of a sheaf of abelian groups F on X is defined to
be the subset:

supp(F) := {x ∈ X | Fx 6= 0}.

Notice it is not necessarily closed. Given a section s ∈ Γ(X,F) the support of s is:

supp(s) := {x ∈ X | sx 6= 0 ∈ Fx}.

Definition 3.1.3. Define the global sections with support in Z ⊆ X to be

ΓZ(X,F) := {s ∈ F(X) | supp(s) ⊆ Z}. (3.1.4)

And the corresponding sheaf ΓZ(F) to be the sheaf with value on each open subset
U of X:

U 7→ ΓZ∩U (U,F|U ).
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More explicitly ΓZ(F)(U) is the set of sections s ∈ F(U) such that s|V = 0 for some
open V with U \ Z ⊆ V ⊆ U . Denote Hn

Z(F) and Hn
Z(F) the respective n-th right

derived functors.

Definition 3.1.5. For every subset Z ′ ⊆ Z define the sheaf

ΓZ/Z′(F) := ΓZ(F)/ΓZ′(F)

and denote Hn
Z/Z′(F) its n-th right derived functor.

Definition 3.1.6. For every point x ∈ X, with closure Z = {x}, define the functor
F 7→ Γx(F), that associates to a sheaf F the subgroup of Fx:

Γx(F) := {α ∈ Fx | α has a representative (s, U), with supp(s) ⊆ Z ∩ U}. (3.1.7)

Denote Hnx(F) its n-th right derived functor.

Remark 3.1.8. If Z = {x} then by [Har66, Variation 8]:

Hnx(F) ∼= (Hn
Z(F))x. (3.1.9)

Notation 3.1.10. Denote HnZ(F) := Hnη(Z)(F).

To apply in full the machinery of Cousin complexes we need a topological
space X and a filtration satisfying the following hypothesis.

Hypothesis 3.1.11. Let X be a sober (i.e. every closed irreducible subset has a
unique generic point), locally Noetherian topological space, endowed with a filtration
by subsets X = Z0 ⊇ Z1 ⊇ . . . which is separated (∩n≥0Z

n = ∅) and strictly
exhausting (Z0 = X). Moreover suppose the filtration is stable under specialization
(if x ∈ Zn then all its specializations are in Zn), and that for every n ≥ 0 every
element in Zn \ Zn+1 is maximal in Zn under specialization (i.e. if x ∈ Zn \ Zn+1

and y is a nontrivial specialization of x, then y ∈ Zn+1).

Example 3.1.12. The prototypical example we have in mind is the codimension
filtration of a topological space

Zn := {x ∈ X | codim(x) ≥ n}. (3.1.13)

Proposition 3.1.14 (Proposition 2.3 and 2.5 of [Har66]). Let X be a topological
space with a filtration by subsets satisfying Hypothesis 3.1.11. Then for every sheaf
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of abelian groups F there is a unique augmented complex of sheaves:

F H0
Z0/Z1(F) H1

Z1/Z2(F) H2
Z2/Z3(F) . . . .

d0 d1 (3.1.15)

called the Cousin Complex of F . Moreover by [Har66, Variation 8 Motif F pg. 225]
there is a canonical functorial isomorphism

Hn
Zn/Zn+1(F) ∼=

∐
x∈Zn\Zn+1

ιx(Hnx(F)). (3.1.16)

where for a group M , the sheaf ιx(M) denotes the constant sheaf with value M on
the closure of the point x (or the constant sheaf on the closed subset D in case of
ιD(M)).

We now ask when the Cousin complex is a resolution of F .

Proposition 3.1.17 (Proposition 2.6 of [Har66]). Under the Hypothesis 3.1.11 for
a sheaf of abelian groups F the following are equivalent:

1. H i
Zn(F) = 0 for all i 6= n.

2. H i
Zn/Zn+1(F) = 0 for all i 6= n.

3. The Cousin complex of F is a flabby resolution of F .

The sheaf F is said to be Cohen-Macaulay when it satisfies any of these equivalent
conditions.

Definition 3.1.18. Given an ideal I of a commutative ring R, define for any
R-module M :

ΓI(M) := {s ∈M | ∃n ≥ 0, Ins = 0}. (3.1.19)

Denote Hn
I (M) its n-th right derived functors.

This definition is analogous to the sheaf version of cohomology with support
since these two cohomologies coincide on affine schemes. More precisely [Har67,
Theorem 2.3]:

Theorem 3.1.20. Let R be a Noetherian ring, U = Spec(R), I a finitely generated
ideal of R with corresponding closed subset V (I), and M an R-module. Then

H∗V (I)(U, M̃) ∼= H∗I (M).

This is because the two support functors identify the same submodule of M :
s ∈ Γ(Spec(R), M̃) is a section with support in V (I) if and only if ∃n ≥ 0 such that
Ins = 0.

43



3.2 Algebraic groups and Abelian varieties

We give an introduction to algebraic groups and Abelian varieties following [Lom18]
and [Mil08].

A variety over a field is a geometrically integral (i.e. reduced and irreducible),
separated scheme of finite type over that field.

Definition 3.2.1. Let S be a scheme. A group scheme over S is an S-scheme X
together with three morphisms:

m : X ×S X →X (multiplication)

i : X →X (inverse)

e : S →X (unit)

(3.2.2)

such that they induce a group structure on the set of Y -valued points X(Y ), for any
S-scheme Y .

Notice that when Y is an S-scheme, Y -valued points X(Y ) are defined to be
maps Y → X over S. If Y is a ring then we mean SpecY -valued points.

Example 3.2.3. The following affine group schemes are the main examples.

• The multiplicative group Gm. Consider as a base scheme the integers S =
SpecZ. The underlying scheme is Gm = SpecZ[t, t−1]. The identity section e
is the map of affine schemes induced by the map of rings

Z[t, t−1]→Z

t 7→1

the inverse i is induced by the map of rings

Z[t, t−1]→Z[t, t−1]

t 7→t−1

and multiplication m is induced by

Z[t, t−1]→Z[t1, t−1
1 ]⊗

Z
Z[t2, t−1

2 ]

t 7→t1t2.

One can check that with these morphisms for any scheme Y we obtain Gm(Y ) =
H0(Y,OY )×, justifying the name multiplicative group. Indeed if R is a ring we
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obtain the multiplicative group of the ring: Gm(SpecR) = R×. For a general
base scheme S the multiplicative group over S is simply Gm,S = Gm ×SpecZ S.

• The additive group Ga. As before it is enough to define it over the integers
SpecZ. The underlying scheme is Ga = SpecZ[t], and the morphisms are the
ones induce by the ring maps:

e : Z[t]→Z

t 7→0

i : Z[t]→Z[t]

t 7→ − t

m : Z[t]→Z[t1, t2]

t 7→t1 + t2

One can check that with these morphisms for any scheme Y we obtain Ga(Y ) =
H0(Y,OY ) with its additive structure, justifying the name additive group.

Remark 3.2.4. Over the complex numbers S = SpecC, a group scheme over C is
a complex variety X together with morphisms

m : X ×C X →X

i : X →X
(3.2.5)

and a C-valued point e ∈ X(C) such that the structure induced on X(C) by m and i
is a group with identity e. Group schemes over C are often called complex algebraic
groups.

Definition 3.2.6. A complex abelian variety is a connected proper group scheme A
over C.

Remark 3.2.7. A complex abelian variety is automatically reduced, projective,
nonsingular, irreducible and commutative. The set of C-valued points A(C) inherits
a complex structure as a submanifold of Pn(C). It is a compact connected complex
manifold with a commutative group structure. If A has dimension d then A(C) is a
complex torus Cd/L for some full lattice L of Cd.

A morphism of abelian varieties is a morphism of the underlying algebraic
varieties that preserves the identity element for the group structure. A morphism of
abelian varieties is called an isogeny if it is surjective, and has finite kernel.

45



Example 3.2.8. • An elliptic curve over C is a smooth projective variety of
dimension 1 and genus 1 over the complex numbers, with a marked C-valued
point e. They are abelian varieties: the point e uniquely determines the group
law, and serves as a neutral element for it.

• If E1, . . . , Eg are elliptic curves, then E1 × · · · ×Eg is a group scheme which is
connected, smooth and projective, hence an abelian variety of dimension g.

3.3 Formal Group Laws and Elliptic cohomology

3.3.1 Formal group laws

We introduce Formal group laws following [Str19].

Definition 3.3.1. A (one dimensional, commutative) formal group law (FGL) over
a commutative ring with unit R is a formal power series F (x, y) ∈ R[[x, y]] such that:

1. F (x, 0) = x ∈ R[[x]]

2. F (x, y) = F (y, x) ∈ R[[x, y]]

3. F (x, F (y, z)) = F (F (x, y), z) ∈ R[[x, y, z]]

4. There is a power series i(x) ∈ R[[x]] such that i(0) = 0 and F (x, i(x)) = 0.

Remark 3.3.2. Condition (4) can be deduced from the other properties. Notice as
well that F (x, y) ≡ x+ y mod (x, y)2.

Example 3.3.3. • The additive FGL is defined to be Fa(x, y) = x+ y and can
be defined over any ring R. It can be obtained from the additive group Ga

that we have previously defined as follows. Pick a coordinate at the identity
element 0 ∈ Ga(R) = R, and write down the formal power series expansion of
the product map:

Ga(R)×Ga(R) m−→Ga(R)

(x, y) 7→x+ y.
(3.3.4)

• The multiplicative FGL is defined to be Fm(x, y) = x + y + xy and can be
defined over any ring R. It can be obtained from the multiplicative group Gm

picking as coordinate 1 + x for Gm(R) so that for x = 0 we obtain the identity
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element 1 for the multiplicative group of R. Under this coordinate choice:

Gm(R)×Gm(R)→Gm(R)

(1 + x, 1 + y) 7→(1 + x)(1 + y) = 1 + Fm(x, y).
(3.3.5)

• More generally we can construct a one dimensional commutative FGL from
any one dimensional algebraic group, again simply picking coordinates at the
identity element and considering the power series expansion of the product
map. In this way we obtain a formal group law associated to any elliptic curve.

Definition 3.3.6. A morphism f : F → G between two formal group laws is
f(x) ∈ R[[x]] with no constant term, such that

f(F (x, y)) = G(f(x), f(y)).

It’s an isomorphism if the coefficient of degree 1 is invertible in R, and a strict
isomorphism if it’s precisely the unit 1.

In characteristic zero we can completely classify isomorphism classes of formal
group laws (see for example [Str19, Proposition 3.1]).

Proposition 3.3.7. Let R be a Q-algebra, then for every formal group law F (x, y) ∈
R[[x, y]], there exists a unique f(x) = x+O(x2) ∈ R[[x]], giving a strict isomorphism
with the additive formal group law. That is such that

f(F (x, y)) = f(x) + f(y).

The series f(x) is called a logarithm for F .

Example 3.3.8. Let F (x, y) = x+ y + xy be the multiplicative formal group law.
If R is a Q-algebra, then F is isomorphic to the additive formal group law via the
isomorphism

g−1(t) = et − 1 = t+ t/2 + t/6 + . . .

3.3.2 Non-equivariant elliptic cohomology

We give a brief introduction to non-equivariant elliptic cohomology following [Lur09],
and we explain the connection with formal group laws.

Let A be a “nice” (non-equivariant) cohomology theory. More precisely
we want A to be multiplicative: A∗(X) is a graded commutative ring for every
topological space X, even: A∗(∗) is concentrated in even degrees, and periodic:
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there exists an invertible element in A−2(∗). Under these assumptions the Atiyah-
Hirzebruch spectral sequence for the space CP∞ degenerates at the second page and
its cohomology is (noncanonically) isomorphic to a formal power series ring

A∗(CP∞) ∼= R[[t]]

over the commutative ring R := A0(∗). The parameter t is a complex orientation for
A, and can be seen as the first Chern class of the universal line bundle O(1) over CP∞.
Moreover once we make a choice for t we can define first Chern classes for any complex
line bundle over any space X. The space CP∞ then is of fundamental importance
since it classifies complex line bundles. In particular we have an associative and
commutative multiplication

m : CP∞ × CP∞ → CP∞ (3.3.9)

which classifies the operation of forming tensor product of two line bundles. The
space CP∞ × CP∞ is the classifying space for pairs of complex line bundles, and
again by the Atiyah-Hirzebruch spectral sequence:

A∗(CP∞ × CP∞) ∼= R[[t1, t2]]

where t1 and t2 are the pullbacks of t along the projections CP∞×CP∞ → CP∞ into
the first and second factor. Under this last isomorphism the map (3.3.9) induces:

R[[t]] ∼= A∗(CP∞) m∗−−→A∗(CP∞ × CP∞) ∼= R[[t1, t2]]

t
m∗7−−→F (t1, t2)

sending the parameter t to a certain power series F (t1, t2). Commutativity and
associativity of (3.3.9) imply that F (t1, t2) is a one dimensional commutative formal
group law over R.

Example 3.3.10. • When A is periodic ordinary cohomology, the associated
formal group law is the additive formal group law Fa(t1, t2).

• When A is complex K-theory, the associated formal group law is the multi-
plicative formal group law Fm(t1, t2).

Definition 3.3.11. An elliptic cohomology theory is an even periodic multiplicative
cohomology theory together with a choice of elliptic curve and a choice of isomorphism
between the formal group associated to the cohomology theory and the formal group
associated to the elliptic curve.
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3.4 Complex abelian surfaces

In this section we want to recollect some results from [Bea96] about complex abelian
surfaces. Therefore in all this section S = E1×E2 is the product of two elliptic curves,
namely a complex abelian variety of dimension 2. By “sheaf” we mean coherent
algebraic sheaf, and by Serre’s “GAGA theorem” [Ser56] there is a bijection between
algebraic and analytic coherent sheaves which preserves exactness and cohomology.
We denote OS the structure sheaf of S, and K(S) the function field of S: the stalk
of the structure sheaf OS at the generic point of S.

Since we are working on a smooth variety Cartier and Weil divisors are the
same and we can use the generic term divisor D on S, i.e. D is a finite sum with
integer coefficients of irreducible closed subvarieties of S of codimension 1 (curves).
The divisor D is said to be effective when all the coefficients are ≥ 0 and D ≥ D′ if
D−D′ is effective. The divisor D is said to be principal if there is a rational function
f ∈ K(S) such that Div(f) = D. Two divisors are said to be linearly equivalent
when they differ by a principal one.

The Picard group of S, Pic(S), is the group of isomorphism classes of invertible
sheaves (or of line bundles) on S. To every divisor D on S there corresponds an
invertible sheaf OS(D) that associates to any open U of S:

Γ(U,OS(D)) = {f ∈ K(S) | Div(f) +D ≥ 0 on U} ∪ {0}

The map D 7→ OS(D) identifies Pic(S) with the group of linear equivalence classes
of divisors on S.

The Picard group of a surface carries a symmetric bilinear form.

Definition 3.4.1. Let C and C ′ be two distinct irreducible curves on a surface S,
and x ∈ C ∩ C ′. If f and g are respectively an equation for C and C ′ in OS,x then
the intersection multiplicity of C and C ′ at x is defined to be:

mx(C ∩ C ′) = dimCOS,x/(f, g).

Remark 3.4.2. We notice immediately that mx(C ∩ C ′) = 1 if and only if f and
g generate the maximal ideal, i.e. they form a system of local coordinates in a
neighbourhood of x. In this case C and C ′ are said to be transverse in x.

Definition 3.4.3. If C and C ′ are two distinct irreducible curves on S, the inter-
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section number (C.C ′) is defined by:

(C.C ′) =
∑

x∈C∩C′
mx(C ∩ C ′). (3.4.4)

For any sheaf L on S let χ(L) = ∑
i(−1)ihi(S,L) be the Euler-Poincaré

characteristic of L, where hi(L) = dimCH
i(S,L).

Definition 3.4.5. For L and L′ in Pic(S), define:

(L.L′) := χ(OS)− χ(L−1)− χ(L′−1) + χ(L−1 ⊗ L′−1). (3.4.6)

Theorem 3.4.7 (Theorem I.4 of [Bea96]). The equation (3.4.6) defines a symmetric
bilinear form on Pic(S) such that if C and C ′ are two distinct irreducible curves on
S with associated line bundles OS(C) and OS(C ′), then:

(OS(C).OS(C ′)) = (C.C ′).

With the right hand side defined by (3.4.4).

Definition 3.4.8. If D and D′ are two divisors on S, define:

(D.D′) := (OS(D).OS(D′)) (3.4.9)

Remark 3.4.10. By Theorem 3.4.7 to compute (3.4.9) we can replace any of the
divisors with a linearly equivalent one.

Let ωS be the line bundle of differential 2-forms on S. It is common to denote
KS any divisor such that OS(KS) = ωS , and call KS a canonical divisor. Serre
duality is one of the most used tools in cohomology [Bea96, Theorem I.1]. For any
line bundle L on S, the cup-product pairing defines a duality

H i(S,L)⊗H2−i(S, ωS ⊗ L−1)→ H2(S, ωS) ∼= C. (3.4.11)

In terms of divisors we have for 0 ≤ i ≤ 2:

hi(D) = h2−i(−D) (3.4.12)

where hi(D) = hi(OS(D)). This is because since S is an abelian surface By [Bea96,
Corollary VIII.7] the canonical divisor KS is linearly equivalent to zero and ωS ∼= OS .
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By [Bea96, Theorem VIII.2] we have the cohomology groups for the structure sheaf:

h0(OS) = 1 h1(OS) = 2 h2(OS) = 1 (3.4.13)

implying χ(OS) = 0. Since both the canonical divisor and the Euler-Poincaré
characteristic of the structure sheaf are zero, Riemann-Roch for surfaces [Bea96,
Theorem I.12] simplifies in:

χ(OS(D)) = 1
2(D.D). (3.4.14)

The genus formula [Bea96, p. I.15] provides us with another tool. If C is an irreducible
curve on the surface S, then the genus of the curve, defined as g(C) = h1(C,OC), is
given by:

g(C) = 1 + 1
2(C.C). (3.4.15)
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Chapter 4

Building T2-equivariant elliptic
cohomology

Let G = T2 be our fixed group of equivariance. This chapter is devoted in building
our theory for rational G-equivariant elliptic cohomology ECG ∈ A(G), and it consists
of the entirety of [Bar22a]. More precisely we want to prove the following, which is
the main Theorem of the chapter.

Theorem 4.0.1. For every elliptic curve C over C and coordinate te ∈ OC,e, there
exists an object ECG ∈ A(G) whose associated rational G-equivariant cohomology
theory EC∗G(_) is 2-periodic. The value on the one point compactification SV for a
complex G-representation V with V G = 0 is given in terms of the sheaf cohomology
of a line bundle O(−DV ) over the complex abelian surface X = XG = C × C:

ECnG(SV ) ∼=

H
0(X ,O(−DV ))⊕H2(X ,O(−DV )) n even

H1(X ,O(−DV )) n odd.
(4.0.2)

The construction of the object can be found in Section 4.4 while the compu-
tation on spheres is Theorem 4.5.1. This theorem suggests the following conjecture.

Conjecture 4.0.3. There exists an exact functor of triangulated categories SpGQ →
D(QCoh(X )) that sends SV to O(−DV ). From this one could recover Theorem 4.0.1
by applying the cohomology functor D(QCoh(X ))→ QCoh(X )∗.

To construct ECG we proceed as follows. We build an exact sequence of three
injective objects in A(G):

I0
ϕ0−→ I1

ϕ1−→ I2 → 0. (4.0.4)

and we define ECG as the kernel of ϕ0, so that this sequence is an injective resolution
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of our theory in A(G). In this way in computing ECG(SV ) via the Adams Spectral
sequence we use (4.0.4), so we only need to build it with the right geometric inputs.

The main input is the Cousin complex of the structure sheaf of the variety
X . To every subgroup H of G we associate a subvariety X̄(H) of X of the same
dimension. We need to change the topology on X from the Zarisky one to a new one
we call TP-topology (torsion point topology) that focuses only on the subvarieties
X̄(H). The TP-topology XTP basically copies the poset structure of the subgroups
of G with a poset of irreducible closed subsets. An essential aspect is that Zarisky
coherent sheaves have the same cohomology in the TP-topology.

Consider the sheaf Cousin complex of the pushforward of the Zariski structure
sheaf of X that we denote OTP

X . We show this is a flabby resolution of OTP
X , whose

n-th term decomposes as a direct sum over the irreducible closed subsets of XTP

of codimension n. In complete analogy the n-th term of the sequence (4.0.4) we
want to build will encode information of the cohomology theory at the subgroups of
codimension n. Therefore for every subgroup H we can use the term in the Cousin
complex over X̄(H) to build (4.0.4).

To compute the value of the theory on a sphere of complex representation
SV , with V G = 0 we use the Adams Spectral sequence, and the injective resolution
(4.0.4). Computations are directly reduced to the Cousin complex of OTP

X twisted
by the coherent sheaf O(−DV ), giving its cohomology as a result.

4.0.1 Structure of the chapter

For all the chapter G = T2 is our fixed group of equivariance, and we have also fixed
an elliptic curve C over C. In Section 4.1 we associate to every subgroup H of G
a subvariety X̄(H) of X (Definition 4.1.3) and we prove its properties: the most
important property is Lemma 4.1.17. In Section 4.2 we define the TP-topology on X
(Definition 4.2.1), and the main result of the section is Corollary 4.2.8. In Section 4.3
we introduce the sheaf Cousin complex (4.3.2), and we prove it is a flabby resolution
(Corollary 4.3.7). Section 4.4 is the core of the construction. We start by defining
ECG (Definition 4.4.2) and discussing its formality, while the rest of the section deals
with the hard work of building (4.0.4). We conclude by proving exactness of the
injective resolution: Lemma 4.4.48. In the final section we compute ECG(SV ): in
Theorem 4.5.11 we have that the second page of the Adams spectral sequence is the
cohomology of the sheaf O(−DV ), forging the direct link with the geometry of C.
We conclude the section extending the computations for virtual negative complex
representations (4.5.34).
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4.1 The correspondence subgroups-subvarieties

The goal of this section is to specify a correspondence between subgroups H of G and
certain subvarieties X̄(H) of X . We have fixed an elliptic curve C over the complex
numbers which defines a functor X from compact abelian Lie groups to complex
manifolds.

Definition 4.1.1. If H is a compact abelian Lie group and C our fixed elliptic curve,
define

X(H) := HomAb(H∗, C). (4.1.2)

Where we are considering group homomorphisms, and H∗ := Hom(H,T) is the
character group of H: continuous group homomorphisms into the circle group T.

Let X := X(G) be the complex abelian surface defined by the 2-torus. The
functor X is exact and induces an embedding X(H) ↪→ X for every subgroup H of G.
Moreover X(H) has the same dimension as H and is a subgroup of X . We will only
be interested in the functor (4.1.2) on subgroups of G, and therefore all the varieties
X(H) will be subvarieties of X .

Definition 4.1.3. For every subgroup H of G define

X̄(H) := X(H) \
⋃
K

X(K) (4.1.4)

where the union is over all the proper subgroups K of H of finite index in H.

Since the union in (4.1.4) is finite, X̄(H) is a subvariety of X , that for G itself
coincide with the all surface X .

Lemma 4.1.5. For H and K subgroups of G the following properties are satisfied:

• X(H ×K) = X(H)× X(K).

• X(H ∩K) = X(H) ∩ X(K)

Proof. The first property follows immediately applying the functor X to the exact
sequence

H H ×K K.

For the second one we only need to prove the containment X(H) ∩ X(K) ⊆
X(H ∩K), since the other containment is immediate from X being a functor. Apply
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the exact functor X to the commutative diagram:

H ∩K G G/H ∩K

G/H ×G/K.
p0×p1

In doing so the right vertical maps remains injective, and therefore the kernel of
X(p0×p1) is X(H∩K). Now it is enough to notice that every element in X(H)∩X(K)
is sent to zero by X(p0 × p1).

Remark 4.1.6. Applying this Lemma to H = 1 × T and K = T × 1, we obtain
X = X(G) = X(H)× X(K) = C × C

4.1.1 The codimension 1 case

Let {Hi}i≥1 be the collection of connected codimension 1 subgroups of G, with
H1 = 1× T and H2 = T× 1. Each one of the Hi can be written as the kernel of a
nonzero character zi : G→ T of G:

Hi G T.zi (4.1.7)

Moreover we may choose zi = zλi
1 z

µi
2 for a pair of coprime integers (λi, µi)

not both zero and with µi ≥ 0. Applying the functor X to (4.1.7), the subvariety
X(Hi) can be described in the same way as the kernel of the projection πi := X(zi):

X(Hi) X C.πi (4.1.8)

Where the relation πi = λiπ1 + µiπ2 holds now by the group law of the elliptic curve.

Definition 4.1.9. For every i ≥ 1 and j ∈ Z \ {0} we define the character zji of G
post-composing zi with the j-th power map of T. We also define πji := X(zji ), note
that this map is obtained post-composing πi with the j-th power map in C.

Definition 4.1.10. For every direction i ≥ 1 and every j ≥ 1 define the (i, j)-divisor:

Dij := X̄(Hj
i ). (4.1.11)

Where Hj
i is the subgroup of G with j connected components and identity component

Hi.
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Definition 4.1.12. For P ∈ C a point of finite order define:

Di,P := π−1
i (P )

Remark 4.1.13. Notice that X(Hj
i ) = π−1

i (C[j]), while Dij = π−1
i (C〈j〉). Therefore

we have the decompositions:

X̄(Hj
i ) = Dij =

∐
P∈C〈j〉

Di,P

X(Hn
i ) =

∐
j|n
Dij .

(4.1.14)

Remark 4.1.15. From now on we will always refer to πi as the projection along
the i-direction. All the varieties X(Hj

i ), Dij and Di,P will all be referred as “along
the i-direction”. We denote Di = Di,1 = Di,e = X(Hi). Note from (4.1.14) that the
subvarieties along the i-direction Dij are all parallel, disjoint and made up of disjoint
pieces Di,P isomorphic to a single copy of C.

4.1.2 The codimension 2 case

If F is a finite subgroup of G, then X(F ) is a finite collection of closed points of X .
The subset X̄(F ) ⊂ X(F ) satisfies some desirable properties.

Lemma 4.1.16. If F 6= F ′ are finite subgroups of G, then X̄(F ) ∩ X̄(F ′) = ∅

Proof. Suppose Q ∈ X̄(F ) ∩ X̄(F ′), then Q ∈ X(F ) ∩ X(F ′) = X(F ∩ F ′). Without
loss of generality F ∩ F ′ is a proper subgroup of F , and therefore Q /∈ X̄(F ).

Lemma 4.1.17. Given F < G finite, then for every direction i ≥ 1 there exists one
and only one index ni = ni(F ) ≥ 1 such that

Di,ni ∩ X̄(F ) 6= ∅,

precisely the only index ni such that Hni
i is the subgroup generated by Hi and F

(Definition 2.5.18). Moreover

X̄(F ) =
⋂
i≥1

Di,ni (4.1.18)

Proof. Given a finite subgroup F , for every direction i ≥ 1 let ni be the integer
such that Hni

i = 〈Hi, F 〉. Since F ⊆ Hni
i then X(F ) ⊆ X(Hni

i ). Recall from (4.1.14)
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the decomposition:
X(Hni

i ) =
∐
j|ni

Dij . (4.1.19)

We start by proving Di,n ∩ X̄(F ) = ∅ for n 6= ni:

• If n - ni then Di,n is disjoint from X̄(F ) since from (4.1.19) it is disjoint from
X(Hni

i ).

• If n | ni but n 6= ni then Hn
i ( Hni

i and F * Hn
i since ni is the minimum

integer for which the containment is true. Therefore F ′ := Hn
i ∩ F is a proper

subgroup of F , and as such:

Di,n ∩ X(F ) ⊆ X(F ′)

which implies Di,n ∩ X̄(F ) = ∅.

To prove Di,ni ∩ X̄(F ) 6= ∅ and the second part of the statement we use again
the decomposition (4.1.19). Since X̄(F ) can intersect only Di,ni and it is contained
in X(Hni

i ), it must be contained in Di,ni . It also follows X̄(F ) is contained in the
intersection (4.1.18).

We are left to prove that if Q ∈ ⋂i≥1Di,ni , then Q ∈ X̄(F ). First, for every
direction i ≥ 1, Q ∈ X(Hni

i ), therefore

Q ∈
⋂
i≥1

X(Hni
i ) = X(

⋂
i≥1

Hni
i ) = X(F ).

Now suppose Q ∈ X(F ′) for a proper subgroup F ′ of F . For every i ≥ 1 define n′i
such that Hn′i

i = 〈Hi, F
′〉. Then

⋂
i≥1

Hni
i = F 6= F ′ =

⋂
i≥1

H
n′i
i .

Therefore it exists an index s for which n′s 6= ns, but then Q ∈ Ds,ns and Q ∈ Ds,n′s

which is absurd since they are disjoint. In conclusion Q ∈ X̄(F ).

Lemma 4.1.20. For every finite subgroup F ≤ G, the subset X̄(F ) is non empty.

Proof. If F = {1} × {1} is the trivial subgroup we have X̄({1} × {1}) = X({1} ×
{1}) = {e} × {e} 6= ∅.

If F = Zpn × Zpm is a p-group, with p prime and n ≤ m, then applying
Lemma 4.1.5:

X(F ) ∼= X(Zpn)× X(Zpm) ∼= C[pn]× C[pm].
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Every proper finite subgroup of F is contained in a maximal one (i.e. proper subgroup
not contained into any other proper subgroup), therefore we can simply consider
the maximal subgroups of F . If F is cyclic (n = 0 and m > 0) the only maximal
subgroup of Zpm is Zpm−1 and since X(Zpm) ∼= C[pm] has p2m points while X(Zpm−1)
has only p2m−2 we have

X̄(Zpm) = X(Zpm)− X(Zpm−1) 6= ∅.

If F is not cyclic, we need to use the following computations and facts. Every maximal
subgroup F ′ of F has index p, therefore X(F ′) has p2n+2m−2 points. There are exactly
p+ 1 maximal subgroups in F . Therefore there are at most (p+ 1)p2m+2n−2 points
contained in ⋃F ′ X(F ′) where F ′ ranges on all maximal subgroups of F . Since X(F )
has p2m+2n points and p+ 1 < p2 it follows X̄(F ) 6= ∅.

For the general case of a finite subgroup F , decompose it into a product of
p-groups:

F ∼= Fp1 × · · · × Fpk
.

Applying the previous case we can pick for each prime pi a point Qi ∈ X̄(Fpi). The
point

(Q1, . . . , Qk) ∈ X(F ) ∼= X(Fp1)× · · · × X(Fpk
)

is a point in X̄(F ). Indeed any maximal subgroup F ′ of F is of the following form:
pick one of the factors 1 ≤ i ≤ k, and a maximal subgroup F ′pi

< Fpi , replace Fpi

with F ′pi
in the product

F ′ = Fp1 × · · · × F ′pi
× · · · × Fpk

.

The point (Q1, . . . , Qk) cannot be in any of these X(F ′) since Qi /∈ X(F ′pi
) for each

i.

The bottom line is that we have associated to subgroups of G, certain
subvarieties of X of the same dimension:

Codimension Subgroups of G subvarieties of X

0 G X
1 Hj

i Dij

2 F X̄(F )
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4.2 Change of topology

In this section we change the topology on the algebraic variety X Zar = C × C. We
use X Zar to denote the algebraic variety with the usual Zariski topology.

Definition 4.2.1. Over the set X Zar define the torsion point topology XTP with
generating closed subsets {Dij}ij , where i ≥ 1 and j ≥ 1 (recall the definition of Dij

in (4.1.11)).

Remark 4.2.2. The irreducible closed subsets of XTP are precisely the sets X̄(H) for
every subgroup H of G. In codimension zero we have only X̄(G) = X . In codimension
one this is due to the fact that the generating closed sets Dij are disjoint when they
have the same index i and transverse for different values of i. In codimension two it
is precisely the content of Lemma 4.1.17: the various X̄(F ) are disjoint, and they
represent all the possible intersections of the codimension one closed subsets.

Remark 4.2.3. A delicate remark is imperative here. The topological space XTP

is not sober: for example every point in X̄(F ) is a generic point for X̄(F ). To
apply in full the theory of Cousin complexes we will need a sober topological space:
i.e. every closed irreducible subset has a unique generic point. This can be fixed
considering the Kolmogorov quotient of XTP: KQ(XTP), the space obtained from
XTP by quotienting together the points that belong to exactly the same open subsets.
In this way we obtain a sober topological space: the closed irreducible subsets of
KQ(XTP) are still the sets X̄(H) and each of these has exactly one generic point.
For the sake of clarity we will work on XTP in this section, since it has the same
underlying set as X Zar. We ask the reader to keep in mind that all the results
we prove for XTP in this section apply word by word to its Kolmogorov quotient
KQ(XTP). This is because topologically undistinguishable points have exactly the
same stalks and nothing changes from the point of view of sheaves. In conclusion we
prove all the sheaves result using XTP, they apply as well to KQ(XTP), and we use
KQ(XTP) when we need a sober topological space for the Cousin complex.

Notice that every subset in the generating collection {Dij}ij is a closed subset
also in the Zariski topology. Therefore every TP-open is also a Zariski-open, and we
have a well defined continuous map ϕ : X Zar → XTP.

4.2.1 The pushforward is exact on quasi-coherent sheaves

Since ϕ is continuous it induces a pair of adjoint functors between the respective
categories of abelian sheaves called pushforward and pullback (or direct and inverse

59



image) of sheaves:

Ab(XTP) Ab(X Zar)

ϕ−1

ϕ∗

a

For F ∈ Ab(X Zar) its pushforward sheaf is defined on a TP-open U by:

(ϕ∗F)(U) := F(ϕ−1(U))

This defines indeed an abelian sheaf on XTP. Denote by

OTP
X := ϕ∗(OZar

X )

the pushforward of the Zariski structure sheaf. The space (XTP,OTP
X ) is a ringed

topological space, but not a locally ringed space in contrast with the usual expectation
from algebraic geometry. The map ϕ is also a morphism of ringed spaces, and
therefore the functor ϕ∗ takes OZar

X -modules to OTP
X -modules. This gives us another

pair of adjoint functors between the respective categories of modules:

Mod(XTP) Mod(X Zar)

ϕ∗

ϕ∗

a

Remark 4.2.4. The map ϕ : X Zar → XTP is a flat map of ringed spaces: i.e. for
every x ∈ X Zar the map of rings OTP

X ,x → OZar
X ,x is flat. This is because by Remark

4.2.16 to obtain the Zarisky-stalk we simply need to invert more elements in the
TP-stalk, and localizations are flat maps.

Corollary 4.2.5. The pushforward map ϕ∗ sends injective objects in Mod(OZar
X ) to

injectives objects in Mod(OTP
X )

Proof. By [Stacks, Tag 02N4] the pullback map ϕ∗ : Mod(OTP
X ) → Mod(OZar

X ) is
exact since ϕ is a flat morphism of ringed spaces. Therefore ϕ∗ preserves injectives
since its left adjoint ϕ∗ is exact.

The functor ϕ∗ is exact if restricted to the subcategory QCoh(OZar
X ) of quasi-

coherent OZar
X -modules since in the TP-topology we still have an open cover of Zariski

affines:

Lemma 4.2.6. Every point in XTP is contained in a TP-open which is an open
affine in the Zariski topology.
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Proof. In X Zar the complement of the union of two TP-closed subsets Dij and
Drs along different directions (i 6= r) is a TP-open which is affine in the Zariski
topology.

Corollary 4.2.7. The functor ϕ∗ restricted to QCoh(OZar
X ) is exact.

Proof. Consider a point x ∈ XTP, applying Lemma 4.2.6 we can compute the TP-
stalk at x as a colimit over TP-opens that are open affines in the Zariski topology. By
[Har77, Theorem 3.5] taking sections over an open affine Γ(Spec(R),F) for a quasi-
coherent Zariski sheaf F is an exact functor. Therefore the functor F → (ϕ∗(F))x is
exact since it is a colimit of exact functors.

Corollary 4.2.8. If F ∈ QCoh(OZar
X ) then:

H∗(X Zar,F) ∼= H∗(XTP, ϕ∗(F)) (4.2.9)

Proof. By Gabber’s result [Stacks, Tag 077K] the category QCoh(X Zar) has
enough injectives. Therefore consider an injective resolution of F in the category
QCoh(X Zar):

0→ F → I0 → I1 → . . .

Applying the functor ϕ∗ we obtain an injective resolution of ϕ∗F in Mod(OTP
X ):

0→ ϕ∗F → ϕ∗I0 → ϕ∗I1 → . . . (4.2.10)

This is because X Zar is a noetherian scheme, and therefore the injective objects in
QCoh(X Zar) are precisely the injective objects in Mod(OZar

X ) that are quasi-coherent.
By Corollary 4.2.5 ϕ∗ preserves injectives in Mod(OZar

X ) and by Corollary 4.2.7 is
exact on QCoh(OZar

X ). It is enough now to notice that

Γ(X Zar, In) = Γ(XTP, ϕ∗In).

Notation 4.2.11. We will denote by H∗(X ,F) the common value of these two
cohomologies.

We are interested in explicitly computing the TP-topology stalks of the
pushforward of a Zariski-sheaf F .
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• If x = η(XTP) is a generic point of the whole space, we can take a colimit of
complements of increasingly bigger unions of the Dij :

(ϕ∗F)x = lim−−→
n→∞

F(X Zar \
⋃
i,j≤n

Dij). (4.2.12)

For F = OZar
X the colimit above picks the regular functions on the complement of

increasingly bigger unions of the Dij . This yields those meromorphic functions
on X Zar that are allowed poles only in the collection {Dij}.

K := OTP
X ,x = {f ∈ K(X Zar) | f is allowed poles only at {Dij}}. (4.2.13)

• If x = η(Dij) is a generic point of a generating closed subset, simply skip Dij

itself in (4.2.12). For F = OZar
X this yields:

ODij := OTP
X ,x = {f ∈ K | f is regular atDij}. (4.2.14)

We also denote mij < ODij the ideal of those functions vanishing at Dij .

• If x ∈ X̄(F ) (which automatically makes it also a generic point for X̄(F )), then
in (4.2.12) simply skip all the Dij containing X̄(F ). By Lemma 4.1.17 for every
direction i ≥ 1, only Di,ni contains X̄(F ). Therefore:

OF := OTP
X ,x = {f ∈ K | ∀i ≥ 1, f is regular atDi,ni}. (4.2.15)

We also denote mF < OF the ideal of those functions vanishing at X̄(F ).

Remark 4.2.16. When F is a quasi-coherent OZar
X -module we can use commutative

algebra to compute the stalk at a point x ∈ XTP. Pick a TP-open containing the
point which is an open affine in the Zariski topology (Lemma 4.2.6): U = Spec(R).
Then F restricted to that open is isomorphic to the sheaf M̃ for an R-module
M . Modulo restricting the affine open U , deleting the closed subset Dij from U

corresponds to inverting those elements in R that vanish at Dij . Therefore the stalk
at x in the TP-topology is S−1M for the multiplicatively closed subset S generated
by those elements vanishing at TP-closed subsets. Notice that it is exactly as in
the Zariski topology, with the only difference that instead of inverting everything
outside that prime, we invert just those elements outside that prime corresponding
to the generating closed subsets for the TP-topology.
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4.2.2 Choice of coordinates

The aim of this subsection is to build a set of uniformizers for the subvarieties Dij

with respect to the TP-topology. We construct them over the algebraic variety X
with its normal Zariski topology, but notice that they are defined for the TP-topology
as well (they belong in K). All the uniformizers we build here only depend upon a
choice of a coordinate te ∈ OC,e vanishing to the first order at e, and with poles only
at points of finite order of C.

We begin by recalling the definition of the TP-topology for the single elliptic
curve [Gre05, Definition 7.1]:

Definition 4.2.17. Over the set C define the torsion point topology CTP with
generating closed subsets {C〈n〉}n≥1, where C〈n〉 are the elements of exact order n
in C.

This is a ringed topological space with the pushforward of the structure sheaf:
OTP
C .

Definition 4.2.18. The fundamental ring is the stalk at the generic point:

KT := OTP
C,η(C) = {f ∈ K(CZar) | f has poles only at points of finite order of C}.

(4.2.19)

Likewise [Gre05, Definition 8.2] choose a coordinate for C at e:

Definition 4.2.20. Define the function te ∈ OTP
C,e ⊂ OC,e with divisor e−3C〈2〉+C〈3〉.

The existence is guaranteed by Abel-Jacobi (Lemma 4.4.51), and moreover it is
unique up to scalar multiple. Notice it vanishes to the first order at e.

Remark 4.2.21. We denote me < OC,e the maximal ideal of those functions
vanishing at e. Then me is principal with generator te, and the same is true if we
restrict me to OTP

C,e . Note that by [Hoc11, Proposition 8.1] we obtain the same result
if we complete those two rings with respect to those two maximal ideals:

(OTP
C,e )∧me

∼= (OC,e)∧me
∼= C[[te]]. (4.2.22)

Elements in (4.2.22) are functions defined in a formal neighbourhood of the identity
of C, and can be written as formal power series with complex coefficients in the
variable te.

The isomorphism X = C × C is given through the two projections π1 : X → C
and π2 : X → C. The pullbacks of the coordinate: t1 := π∗1(te) and t2 := π∗2(te)
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respectively define uniformizers for D1 = {e} × C and D2 = C × {e} and together
they generate the maximal ideal m in the stalk OX ,O of those functions that vanishes
at O = (e, e). Exactly as before when we complete with respect to m we get
(OX ,O)∧m ∼= C[[t1, t2]].

This is a way to manifest the formal group law of the elliptic curve C. If
g : X = C × C → C is the group law of the elliptic curve, we have an induced map on
the completed rings

g∗ : C[[te]] ∼= (OC,e)∧me
→ (OX ,O)∧m ∼= C[[t1, t2]]

te 7→ F (t1, t2)

The element F (t1, t2) is the formal group law of the elliptic curve C with respect to
the uniformizer te. Since we are over a field of characteristic zero by Proposition
3.3.7 there exists a unique logarithm for F , namely a strict isomorphism with the
additive formal group law:

Lemma 4.2.23. There exists a unique element t̂e ∈ (OC,e)∧me
that can be written as

a formal power series with complex coefficients:

t̂e := f(te) =
∞∑
k=1

αkt
k
e ∈ C[[te]] (4.2.24)

with α1 = 1 and such that

f(F (t1, t2)) = f(t1) + f(t2).

As an immediate corollary:

Corollary 4.2.25. Given two integers r, s ∈ Z the linear map

X ∼= C × C (r,s)−−→ C

(x, y) 7→ rx+ sy
(4.2.26)

induces on the completed local rings a map:

(r, s)∗ : (OC,e)∧me
→ (OX ,O)∧m

such that
(r, s)∗(f(te)) = rf(t1) + sf(t2).

We can now simply pullback te and t̂e along the various projections πji : X → C
(Definition 4.1.9). Note that πji = (jλi, jµi) is a linear map of the kind of (4.2.26),
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and therefore it induces maps on the completed and uncompleted local rings at the
identities.

Definition 4.2.27. For every i ≥ 1 and j ≥ 1 define the coordinate

tij := (πji )∗(te) ∈ OX ,O (4.2.28)

Remark 4.2.29. Since te ∈ OTP
C,e we have that tij ∈ K, namely it has poles only in

the collection of generating closed for the TP-topology. Moreover tij vanishes at first
order at X(Hj

i ) and therefore at Dij . This yields tij ∈ ODij (defined in (4.2.14)),
and that it generates the principal ideal mij of those functions vanishing at Dij .

Definition 4.2.30. For every i ≥ 1 and j ≥ 1 define the completed coordinate

t̂ij := (πji )∗(t̂e) ∈ (OX ,O)∧m = (OTP
X ,O)∧m (4.2.31)

Remark 4.2.32. Note that (πji )∗ : (OC,e)∧me
→ (OX ,O)∧m is a continuous map of

completed rings over C, therefore t̂ij can be expressed using the power series (4.2.24)
in the variable tij :

t̂ij = (πji )∗(
∞∑
k=1

αkt
k
e) =

∞∑
k=1

αkt
k
ij . (4.2.33)

From this expansion it is transparent that t̂ij ∈ (ODij )∧mij
.

4.3 Cousin complex

The aim of this section is to prove that the Cousin complex of the structure sheaf
O = OTP

X for the TP-topology is a flabby resolution of O. We conveniently already
introduced all the results we need from [Har66, Chapter 4] in Section 3.1. To apply
in full that section we need a sober topological space, and XTP is not sober as
discussed in Remark 4.2.3. To fix this issue we substitute XTP with its Kolmogorov
quotient to obtain a sober space. We note as explained in Remark 4.2.3 that all the
other results including the ones in the previous section apply indifferently to XTP

and its Kolmogorov quotient. We do not change notation for it, and we highlight
that being sober is necessary in particular for the filtration (3.1.13), and for the
splitting (3.1.16), where we need to index on the generic points of the irreducible
closed subsets. Everything we say about stalks, sheaves, sections and supports apply
unchanged to XTP and its Kolmogorov quotient.

On the Kolmogorov quotient XTP we consider the codimension filtration
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XTP = Z0 ⊃ Z1 ⊃ Z2 ⊃ Z3 = ∅ where

Zn := {x ∈ XTP | codim(x) ≥ n}.

they satisfy Hypothesis 3.1.11, so we obtain the following Corollary to Proposition
3.1.14:

Corollary 4.3.1. Since the Kolmogorov quotient XTP with the codimension filtration
satisfy Hypothesis 3.1.11, by Proposition 3.1.14 we can consider the Cousin complex
of O = OTP

X :

O −→ ιX (H0
X (O)) d0−→

⊕
i,j≥1

ιDij (H1
Dij

(O)) d1−→
⊕
F

ιF (H2
F (O)) −→ 0. (4.3.2)

where the sheaf ιZ(M) denotes the constant sheaf with value M on the closed subset
Z, and Hnx(F) is defined in 3.1.6.

Notation 4.3.3. When the point x is the generic point of a closed subset Z we will
abbreviate Hnη(Z)(F) with HnZ(F). Moreover we use ιF (H2

F (O)) for ιX̄(F )(H2
X̄(F )(O)).

Proof. The Kolmogorov quotient XTP is sober and locally Noetherian (we have
explicitly forced the first condition), and the remaining conditions are satisfied by
the codimension filtration. Moreover notice that Z3 = ∅ and

• Z0 \ Z1 = {η(XTP)}.

• Z1 \ Z2 = {η(Dij)}ij≥1.

• Z2 \ Z3 = {η(X̄(F ))}F , where F ranges over all finite subgroups of G.

so that the decomposition (3.1.16) gives us the terms of (4.3.2).

4.3.1 The Cousin complex is a flabby resolution

We want to show that the Cousin complex (4.3.2) of O is a flabby resolution of
O, namely that O is Cohen-Macaulay. We use Proposition 3.1.17 proving that O
satisfies the second condition. First we need the following Lemma.

Lemma 4.3.4. Let Z be an irreducible TP-closed subset. Then in a TP-open subset
U = Spec(R) which is affine in the Zariski topology, for any quasi-coherent OZar

X -
module F the sections in F(U) with support in Z are the same in both topologies:

ΓZar
Z (U,F) = ΓTP

Z (U,ϕ∗F).
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Moreover their right derived functors are isomorphic:

H∗Z(U,F) ∼= H∗Z(U,ϕ∗F)

Proof. First let us prove the containment ΓTP
Z (U,ϕ∗F) ⊆ ΓZar

Z (U,F). If s ∈ F(U)
is a section whose TP-support is contained in Z then its Zariski-support is also
contained in Z. If x ∈ U \ Z, by Remark 4.2.16, modulo restricting U , the section s
is zero in the Zariski-stalk at x since it is already zero in the TP-stalk at x where
less elements are inverted.

Let us prove the other containment ΓZar
Z (U,F) ⊆ ΓTP

Z (U,ϕ∗F). If s ∈ F(U)
is a section whose Zariski-support is contained in Z, then by Lemma 4.2.6 there
exists n ≥ 0 such that I(U)ns = 0, where I is the ideal sheaf of Z. If x ∈ U \ Z, by
Remark 4.2.16, modulo restricting U , to obtain the TP-stalk at x from F(U) we
are inverting at least one element in I(U). If none of the elements in I(U) were
inverted, then every Dij containing Z will also contain x, implying x ∈ Z since Z is
irreducible in the TP-topology, giving us a contradiction. In conclusion the section s
is zero in the TP-stalk at x since I(U)ns = 0 and at least one element of I(U) is
inverted in the TP-stalk.

To show that their right derived functors are isomorphic use the same argument
of Corollary 4.2.8. Pick an injective resolution of F in quasi-coherent OZar

X -modules.
Applying the pushforward ϕ∗ to this injective resolution we obtain an injective
resolution of ϕ∗F in OTP

X -modules. By [Har66, IV, theme motif C] flabby sheaves
are acyclic with respect to the functor ΓZ(U,_) and therefore we can use these two
resolutions to compute local cohomology.

Corollary 4.3.5. If F is a quasi-coherent OZar
X -module Cohen-Macaulay with respect

to the codimension filtration in X Zar, then ϕ∗F is Cohen-Macaulay with respect to
the codimension filtration in XTP.

Proof. We prove that for the sheaf ϕ∗(F) condition (2) of Proposition 3.1.17 is
satisfied. Since the Hypothesis 3.1.11 are satisfied then by [Har66, Lemma 2.4] we
only need to prove condition (2) when i < n since for i > n is automatically satisfied.
Therefore we need to show that for every x ∈ XTP with closure Z and i < codim(x)
we have:

Hix(ϕ∗F) ∼= (H i
Z(ϕ∗F))x = 0 (4.3.6)

where the first isomorphism is (3.1.9). By Lemma 4.2.6 the TP-stalk (4.3.6) can be
computed using TP-open subsets which are open affines in the Zariski topology, and
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given such an open U , using Lemma 4.3.4:

H i
Z(ϕ∗F)(U) = H i

Z(U,ϕ∗(F)) = H i
Z(U,F) = 0.

This equals zero since F is Cohen-Macaulay with respect to the codimension filtration
in the scheme OZar

X , therefore condition (1) of Proposition 3.1.17 is satisfied and
i < codim(Z).

Corollary 4.3.7. The Cousin complex (4.3.2) of O is a Flabby resolution of O.

Proof. The structure sheaf OZar
X is Cohen-Macaulay with respect to the codimen-

sion filtration in X Zar [Har66, Example pg. 239], therefore by Corollary 4.3.5 its
pushforward ϕ∗(OZar

X ) = O is Cohen-Macaulay with respect to the codimension
filtration in XTP. This means that O satisfies condition (3) of Proposition 3.1.17
and its Cousin complex is a Flabby resolution of O.

4.3.2 Explicit description of the Cousin complex

We want to give an explicit description of the local cohomology terms appearing
in the Cousin complex of O. For this task let us extend Theorem 3.1.20 to the
TP-topology.

Lemma 4.3.8. Let x be a point in XTP with TP-closure Z, and I be the OZar
X -ideal

sheaf associated to Z. The ideal m := (ϕ∗I)x is a well defined ideal of the ring OTP
X ,x.

Then the two local cohomology functors

Γx(ϕ∗F) = Γm((ϕ∗F)x) (4.3.9)

agree on pushforward of quasi-coherent OZar
X -modules F . As a consequence also their

right derived functors agree on the same class:

H∗x(ϕ∗F) ∼= H∗m((ϕ∗F)x) (4.3.10)

Proof. Let us first prove the containment Γx(ϕ∗F) ⊆ Γm((ϕ∗F)x). If α ∈ Γx(ϕ∗F),
then by definition of Γx (3.1.7) there exists a TP-open U (that by Lemma 4.2.6 we
can take to be affine for the Zariski-topology) and a section s ∈ F(U) representing
the germ α such that suppTP(s) ⊆ Z. Therefore

s ∈ ΓTP
Z (U,ϕ∗F) = ΓZar

Z (U,F) = ΓI(U)(F(U)) (4.3.11)

where the first equality is Lemma 4.3.4 and the second one is Theorem 3.1.20. By
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definition of ΓI(U) (3.1.19) there is n ≥ 0 such that I(U)ns = 0. By Remark
4.2.16 simply invert the appropriate elements to obtain the equality mnα = 0 in the
TP-stalk at x.

Let us prove the other containment Γm((ϕ∗F)x) ⊆ Γx(ϕ∗F). If α ∈
Γm((ϕ∗F)x), there exists n ≥ 0 such that mnα = 0. The ideal m is finitely generated,
therefore also mn is finitely generated as well. This implies that we can find a
TP-open U affine for the Zariski topology containing x and a section s representing
the germ α such that I(U)ns = 0. Using again the chain of equalities (4.3.11) the
TP-support of s is contained in Z and since (s, U) represents the germ α we obtain
α ∈ Γx(ϕ∗F).

To prove (4.3.10) use the same argument of Corollary 4.2.8. Pick an injective
resolution of F in quasi-coherent OZar

X -modules. Applying the pushforward ϕ∗ to
this injective resolution we obtain an injective resolution of ϕ∗F in OTP

X -modules.
The TP-stalk at x of this last resolution is an injective resolution of (ϕ∗F)x in
OTP
X ,x-modules, since taking the stalk preserves injectives. By the equality (4.3.9)

just proven we obtain the isomorphism between the respective right-derived functors
(4.3.10).

Corollary 4.3.12. For every ij ≥ 1 we have the isomorphism

H1
Dij

(O) ∼= K/ODij
. (4.3.13)

With K and ODij defined in (4.2.13), and (4.1.11).

Proof. Notice the chain of isomorphisms:

H1
Dij

(O) ∼= H1
mij

(ODij ) ∼=
ODij [tij−1]
ODij

= K
ODij

where the first isomorphism is Lemma 4.3.8, and the second one is the computation
of local cohomology by means of the stable Koszul complex (see for example [Hun07,
pag. 7]), since tij defined in (4.2.28) generates the principal ideal mij of those
vanishing at Dij .

Proposition 4.3.14. Let F be a finite subgroup of G and x = η(X̄(F )) be the generic
(and only) point of X̄(F ) in the Kolmogorov quotient XTP. Then the TP-stalk at x
of the Cousin complex (4.3.2) is

OF � K d0−→
⊕
i≥1
K/ODi,ni

d1−→ H2
F (O)→ 0. (4.3.15)
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Moreover the sequence (4.3.15) is an exact sequence of OF = Ox-modules.

Proof. First of all (CC0(O))x = K simply computing

H0
X (O) = Oη(XTP) = K. (4.3.16)

The next term is (CC1(O))x = ⊕
i≥1K/ODi,ni

, since by Lemma 4.1.17 for
every i ≥ 1 the only Dij containing X̄(F ) is Di,ni , and the local cohomology is
described in (4.3.13).

The last term is (CC2(O))x = H2
F (O) since by Lemma 4.1.16 if F ′ 6= F is

another finite subgroup of G, then X̄(F ′) and X̄(F ) are disjoint.
The sequence of OF modules (4.3.15) is exact since by Corollary 4.3.7 the

Cousin complex of O is a flabby resolution of O.

We can use exactness of (4.3.15) to explicitly describe also the last local
cohomology term:

H2
F (O) ∼= (

⊕
i≥1
K/ODi,ni

)/K. (4.3.17)

We conclude the section considering the global sections of the Cousin complex
(4.3.2), which will provide all the geometric inputs needed later in the construction
of ECG:

Γ(O) −→ K d0−→
⊕
i≥1

(
⊕
j≥1
K/ODij ) d1−→

⊕
F

H2
F (O)→ 0 (4.3.18)

4.4 The main construction

We are now ready to construct ECG. Recall that G = T2 is the 2-torus, and that
we have fixed an elliptic curve C over C together with a coordinate te ∈ OTP

C,e ⊂ OC,e
(Definition 4.2.20). We define ECG ∈ A(G) from an exact sequence of injective
objects in A(G):

I0 I1 I2 0.ϕ0 ϕ1 0 (4.4.1)

Definition 4.4.2. Define ECG := Ker(ϕ0) ∈ A(G).

Remark 4.4.3. The sequence

0 ECG I0 I1 I2 0ϕ0 ϕ1 0 (4.4.4)

is exact and it is an injective resolution of ECG in A(G).

Remark 4.4.5. A priori since ECG needs to be defined in the model category dA(G)
if we define it as the kernel of ϕ0 and we see it as an object in dA(G) without
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differential, still our construction will depend upon choices of lifts of ϕ0 and ϕ1 to
the model category dA(G) since they are maps in the homotopy category A(G). A
more generally applicable method is to define our theory as the following object EC′G,
which is equivalent to ECG. It is a special feature of the object ECG ∈ A(G) that it
is intrinsically formal, so that we are able to give the simpler definition 4.4.2.

Definition 4.4.6. Consider (4.4.1) as a sequence in dA(G). The map ϕ0 factors
through a map ϕ̃0 : I0 → Fib(ϕ1) (where Fib(ϕ1) is the fibre of ϕ1 in dA(G)). Define
EC′G := Fib(ϕ̃0). Moreover by Lemma 4.4.15 EC′G ' ECG, so they represent the
same cohomology theory.

In turn the injectives are constructed by 2.5.41:

I0 := fG(V (G)) I1 :=
⊕
i≥1

fHi(
⊕
j≥1

V (Hj
i )) I2 := f1(

⊕
F

V (F )) (4.4.7)

for a graded injectiveH∗(BG/G)-module V (G), a graded torsion injectiveH∗(BG/Hj
i )-

module V (Hj
i ) for every ij ≥ 1 and a graded torsion injective H∗(BG/F )-module

V (F ) for every finite subgroup F of G.

Remark 4.4.8. Notice that the objects are indeed injective by 2.5.45 and 2.5.46.

We start in 4.4.1 by proving formality of EC′G. The bulk of the section is the
explicit construction of (4.4.1): the objects are built in 4.4.2, 4.4.3 and 4.4.4, while
the maps are built in 4.4.5 and 4.4.6. We conclude proving exactness of (4.4.1) in
4.4.7. All the inputs needed to build (4.4.1) come from the global sections of the
Cousin complex (4.3.18).

Notation 4.4.9. In all this section the local cohomology modules are the ones in
the Cousin complex (4.3.2), therefore we will omit the sheaf O from the notation
and denote H2

F (O) by H2
F .

4.4.1 Formality

Starting from the exact sequence of injectives (4.4.1) we detail the construction of
EC′G and prove it is formal, so that EC′G ' ECG.

Note there is a natural inclusion ι : A(G)→ dA(G) obtained simply regarding
an object of A(G) as an object of dA(G) with zero differential. There is also another
functor H∗ : dA(G) → A(G) obtained taking the homology of the object with
differential.

Definition 4.4.10. An object X ∈ dA(G) is said to be formal when it is quasi-
isomorphic to its homology H∗(X).
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Definition 4.4.11. For a map ϕ : X → Y in dA(G) the fibre Fib(ϕ) ∈ dA(G) is
defined at the level n by: Fib(ϕ)n = Xn ⊕ Yn+1, with differential dFib(ϕ) that on the
Y component is simply the differential of Y , and on the X component is the direct
sum of the differential of X with the map ϕ itself:

Xn ⊕ Yn+1

Xn−1 ⊕ Yn

dX

ϕn
dY

(4.4.12)

Remark 4.4.13. For a map ϕ : X → Y between objects in A(G) we have two
ways to consider the kernel. We have a well defined kernel Ker(ϕ) ∈ A(G) with no
differential in the abelian category A(G), or we can consider ϕ as a map in dA(G)
through the inclusion ι and consider the fibre of that map Fib(ϕ) ∈ dA(G) which is
an object with differential.

When the map is surjective these two objects are equivalent:

Lemma 4.4.14. If ϕ : X → Y is a surjective map in A(G), then there is an
homology isomorphism ι(Ker(ϕ)) '−→ Fib(ϕ).

Proof. Since X and Y have no differential, in (4.4.12) we only have the map ϕ

as differential. There is an obvious inclusion map i : Ker(ϕ) → Fib(ϕ) that on
each level includes the kernel in the X-component of the fibre. It is easy to check
it commutes with the differentials since the kernel has zero differential and the
composition dFib(ϕ) ◦ i is zero as well. Since ϕ is surjective, the image of dFib(ϕ)

is the full Yn component at each level, while the kernel is Ker(ϕ)n ⊆ Xn at each
level. Therefore when we take the homology of dFib(ϕ), the inclusion i induces an
isomorphism.

Consider the following diagram:

Fib(ϕ̃0)

Ker(ϕ0) I0 I1 I2

Ker(ϕ1) Fib(ϕ1)

ϕ̄0

ϕ0

ϕ̃0

ϕ1

i

the map ϕ0 factors trough a map ϕ̃0 := i ◦ ϕ̄0 where ϕ̄0 is the map that ϕ0 induces
to the kernel. Recall EC′G = Fib(ϕ̃0) and ECG = Ker(ϕ0)

72



Lemma 4.4.15. The object EC′G is formal, therefore EC′G ' H∗(EC′G) = ECG.

Proof. Consider the fibre of ϕ̄0, which fits in a commutative diagram in dA(G):

Fib(ϕ̃0) I0 Fib(ϕ1)

Fib(ϕ̄0) I0 Ker(ϕ1)

ϕ̃0

ϕ̄0

= i '

Both rows induce a long exact sequence in homology, and applying Lemma 4.4.14
the right vertical inclusion is an homology isomorphism, since ϕ1 is surjective. As
a consequence also the left vertical map is an homology isomorphism. Now it is
enough to notice that also ϕ̄0 is a surjective map in A(G) because the sequence is
exact at I1, therefore applying again the lemma we have an homology isomorphism
Ker(ϕ̄0) '−→ Fib(ϕ̄0). Summing up we have a chain of homology isomorphisms:

ECG = Ker(ϕ0) = Ker(ϕ̄0) '−→ Fib(ϕ̄0) '−→ Fib(ϕ̃0) = EC′G.

Since ECG is without differential we obtain H∗(EC′G) = ECG, and EC′G is formal.

4.4.2 Building I0.

Associated to the whole group G in the Cousin complex we have the codimension
0 piece H0

X = K (defined in (4.2.13)). This is a Q-vector space, that we can make
graded 2-periodic. Simply consider the 2-periodic version K that has a copy of K in
each even dimension and zero in odd dimensions (in general we will always use this
notation for this 2-periodic operation). This is our graded injective H∗(BG/G) ∼= Q-
module V (G) := K:

I0 := fG(K) (4.4.16)

4.4.3 Building I1.

Associated to every codimension one subgroup Hj
i we have the codimension one

subvariety Dij , and the associated codimension one piece in the Cousin complex
H1
Dij

. Recall from (2.5.17) the isomorphism H∗(BG/Hj
i ) ∼= Q[cij ] and the definition

of the ring ODij and ideal mij in (4.2.14).

Lemma 4.4.17. The module H1
Dij

is a torsion injective H∗(BG/Hj
i ) ∼= Q[cij ]-

module, where the action is defined by restriction along the ring map

Q[cij ]→ (ODij )∧mij
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that sends cij = e(zji ) to t̂ij (defined in (4.2.31)).

To define this action we will need to switch to the completed rings. For the
task we will use the following well-known fact:

Lemma 4.4.18. If I is a finitely generated ideal of the Noetherian ring R, then for
every finitely generated R-module M :

H i
I(M) ∼= H i

Î
(M∧I ).

The second local cohomology is computed with respect to the completed ring R∧I .

Proof. By [Gre07, Lemma 2.4] since I and M are finitely generated H i
I(M) ∼=

H i
I(M∧I ). Now simply change the base ring along the map R→ R∧I which preserves

local cohomology [Hun07, Proposition 2.14]: H i
I(M∧I ) ∼= H i

Î
(M∧I ).

Proof of Lemma 4.4.17. Note the chain of isomorphisms:

H1
Dij
∼= H1

mij
(ODij ) ∼= H1

m̂ij
((ODij )∧mij

) ∼=
(ODij )∧mij

[t̂−1
ij ]

(ODij )∧mij

. (4.4.19)

The first isomorphism is Lemma 4.3.8. The second one is Lemma 4.4.18. The third
isomorphism is simply the computation of local cohomology by means of the stable
Koszul complex ([Hun07]), since t̂ij generates m̂ij . From this chain of isomorphisms
it is clear the module H1

Dij
admits an action of t̂ij , and also that is t̂ij-divisible.

Since Q[cij ] is a PID, divisible implies injective and H1
Dij

is injective.
The more transparent form of the module (4.4.19) and the one we will use

is (4.3.13). From (4.3.13) it is immediate to see that the module is torsion, since
t̂ij adds a zero at Dij to every class, making it regular after a finite number of
iterations.

By the previous lemma the module H1
Dij

is torsion injective. Consider the 2-
periodic version H1

Dij
as before, where cij acts as an element of degree −2. This is the

graded torsion injective H∗(BG/Hj
i )-module that we use: V (Hj

i ) := H1
Dij

= K/ODij .
To build I1, define the direct sum

Ti :=
⊕
j≥1
K/ODij . (4.4.20)

by Corollary 2.5.45 and Corollary 2.5.46 the object

I1 :=
⊕
i≥1

fHi(Ti) (4.4.21)

74



is injective and well defined in A(G).

4.4.4 Building I2

Associated to every finite subgroup F of G we have the codimension two subvariety
X̄(F ), and the codimension two piece in the Cousin complex H2

F . Recall from (2.5.21)
the isomorphism H∗(BG/F ) ∼= Q[xA, xB], and the definition of the ring OF and
ideal mF in (4.2.15).

Lemma 4.4.22. The module H2
F is a torsion injective H∗(BG/F ) ∼= Q[xA, xB]-

module, where the action is defined by restriction along the ring map

Q[xA, xB]→ (OF )∧mF

that sends xA = e(znA
A ) to t̂A,nA

, and xB = e(znB
B ) to t̂B,nB

(defined in (4.2.31)).

Proof. We have the chain of isomorphisms:

H2
F
∼= H2

mF
(OF ) ∼= H2

m̂F
((OF )∧mF

). (4.4.23)

The first isomorphism is Lemma 4.3.8, while the second one is Lemma 4.4.18. From
this chain of isomorphisms it is immediate that H2

F is an (OF )∧mF
-module, and

therefore we can define the action of xA and xB as the action of t̂A,nA
and t̂B,nB

since
mF = 〈tA,nA

, tB,nB
〉. Moreover the module is torsion because m̂F = 〈t̂A,nA

, t̂B,nB
〉.

To prove that H2
F is an injective module we will split it as a direct sum of

local cohomology modules for the Zariski topology and then use regularity. Consider
a TP-open Spec(R) (that we can take to be affine in the Zariski topology) containing
X̄(F ) = {Q1, . . . Qk} (which is a finite collection of closed points in X Zar). Modulo
restricting the open we can consider mi to be the maximal ideal in R associated
to the closed point Qi. By Remark 4.2.16: OF = S−1R for a multiplicatively
closed subset S, therefore in OF the ideal S−1mi remains maximal, and we can
write mF = S−1m1 · S−1m2 . . . S

−1mk. We can now apply Mayer-Vietoris for local
cohomology [Hun07, Theorem 2.3] since {Q1, . . . Qk} are disjoints, obtaining the
desired splitting:

H2
mF

(OF ) ∼= H2
S−1m1

(OF )⊕ · · · ⊕H2
S−1mk

(OF ).

We prove now that each factor H2
S−1mi

(OF ) is injective, so that the direct
sum is injective as well. First of all notice that by Remark 4.2.16 if we localize at
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S−1mi we obtain the local ring for the Zariski structure sheaf at the point Qi:

(OF )S−1mi
∼= Rmi = OZar

X ,Qi
.

Since the ideal S−1mi is maximal we obtain:

H2
S−1mi

(OF ) ∼= H2
mi

(Rmi) ∼= H2
m̂i

((Rmi)∧mi
) (4.4.24)

where first we localize at S−1mi obtaining local cohomology of a local ring with
respect to its maximal ideal [Hoc11, Proposition 8.1], and then we complete with
respect to that maximal ideal. The final module of (4.4.24) is injective since X Zar is
regular. To prove this notice that (Rmi)∧mi

is a completed Noetherian local ring whose
residue field is C, that is therefore isomorphic to a ring of power series C[[xA, xB]]
(here we can use xA and xB since through the action just defined they are sent to
two generators of m̂i). The module 4.4.24 is injective over C[[xA, xB ]]: the base ring
being regular local of dimension 2 is in particular Gorenstein local of dimension 2
and therefore its top local cohomology H2

(xA,xB)(C[[xA, xB]]) is an injective hull of
its residue field [Hoc11, Proposition 11.8]. The module (4.4.24) remains injective
over Q[xA, xB] since the scalar extension to C[[xA, xB]] is faithfully flat.

By the previous lemma the module H2
F is torsion injective. Consider the

2-periodic version H2
F as before, where xA and xB act as elements of degree −2.

This is the graded torsion injective H∗(BG/F )-module that we use: V (F ) := H2
F .

To build I2, simply define the direct sum over all the finite subgroups

N :=
⊕
F

H2
F (4.4.25)

by Corollary 2.5.46 the object
I2 := f1(N) (4.4.26)

is injective and well defined in A(G).

4.4.5 Building ϕ0.

Now we have constructed the relevant injective objects, we turn to constructing maps

fG(K) ϕ0−→
⊕
i≥1

fHi(Ti)
ϕ1−→ f1(N)→ 0 (4.4.27)

between them. Recall the definition of K (4.2.13), Ti (4.4.20), and N (4.4.25).
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Each component ϕi0 is determined by an OF/Hi
-map

ϕi0 : E−1
G/Hi
OF/Hi

⊗K → Ti (4.4.28)

tensored with E−1
Hi
OF (Where the rings are defined in (2.5.5)). Moreover we want

this map to extend the one in the Cousin complex (4.3.18):

Lemma 4.4.29. For every i ≥ 1 there exists an OF/Hi
-map ϕi0, making the following

diagram commute:

K Ti

E−1
G/Hi
OF/Hi

⊗K

di
0

1⊗_
ϕi

0
(4.4.30)

where di0 is the i-th component of the map in the Cousin complex (4.3.18).

Proof. The first step is to extend di0 to an OF/Hi
-map: OF/Hi

⊗ K → Ti. This is
completely determined by the action of OF/Hi

on the target and the fact that di0 is
a Q-map.

We need to extend it further to the localization E−1
G/Hi

, and we can define it
for every j-th component H∗(BG/Hj

i ) ∼= Q[cij ] (2.5.17). Notice that inverting EG/Hi

in Q[cij ] means inverting the Euler class cij = e(zji ) (Example 2.5.35). Therefore
extend the map for negative powers of cij in the following way:

(ϕi0)j : Q[cij±1]⊗K → K/ODij

cij
−k ⊗ f 7→ [t̂−kij · f ]

(4.4.31)

where t̂−1
ij is the power series inverse of t̂ij (see (4.2.33), (4.2.31), and (4.2.28)) with

complex coefficients:

t̂−1
ij = t−1

ij + a0 + a1tij + a2t
2
ij + . . . (4.4.32)

and the ring ODij and ideal mij are defined in (4.2.14). The map in (4.4.31) is well
defined since for every element in the target there is a power of the ideal mij that
annihilates that element and mij = 〈tij〉. Moreover the map in the Cousin complex

di0 : K → K/ODij

is an ODij -module map, so that after a certain power of tij the terms in (4.4.32) do
not contribute and the sum is finite.

77



4.4.6 Building ϕ1.

The map ϕ1 is also determined by its components

ϕi1 : E−1
Hi
OF ⊗

OF/Hi

Ti → N.

Recall the definition of Ti (4.4.20), N (4.4.25), and the notation 2.5.34 ⊗i = ⊗OF/Hi
.

As before we want this map to extend the one in the Cousin complex (4.3.18):

Lemma 4.4.33. For every i ≥ 1 there exists an OF -map ϕi1, making the following
diagram commute:

Ti N

E−1
Hi
OF ⊗i Ti

di
1

1⊗_
ϕi

1
(4.4.34)

where di1 is the i-th component of the map in the Cousin complex (4.3.18).

Remark 4.4.35. First of all di1 should be an OF/Hi
-map. This is more delicate than

it looks, we have defined an OF/Hi
-action on Ti in Lemma 4.4.17 and an OF -action

on N in Lemma 4.4.22 using specific coordinates for every subgroup F . A priori it is
not guaranteed that di1 coming from the Cousin complex commutes with the action
of OF/Hi

on the source and on the target. Here we are considering OF/Hi
acting on

N by restriction along the ring map OF/Hi
→ OF of Remark 2.5.10. Nonetheless

with our choice of coordinates this is indeed the case. In the argument it is crucial
that t̂e is an isomorphism of the formal group law of C with the additive formal
group law.

Lemma 4.4.36. The i-th component of d1 in (4.3.18):

di1 : Ti → N (4.4.37)

is an OF/Hi
-map with respect to the actions defined in Lemma 4.4.17 and Lemma

4.4.22.

Proof. To simplify the notation in this proof we omit the bar to indicate the 2-
periodic version of the various modules. First, the j-th component in the source is
H1
Dij

and it is sent into the j-th component in the target: the direct sum on all F
finite such that F and Hi generate Hj

i :

H1
Dij
→

⊕
〈F,Hi〉=Hj

i

H2
F .
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This is because the induced map (4.4.37) H1
Dij
→ H2

F is non zero if and only
if X̄(F ) ⊆ Dij if and only if 〈F,Hi〉 = Hj

i by Lemma 4.1.17. Fixed F , by the same
lemma the map is non-zero only at the index j = ni.

Therefore it is enough to show that for any finite subgroup F the induced
map (4.4.37)

di1 : H1
Di,ni

→ H2
F (4.4.38)

is an H∗(BG/Hni
i ) ∼= Q[ci,ni ]-map, namely it commutes with the action of

the Euler class ci,ni = e(zni
i ) on the source and on the target.

By Lemma 4.4.17: ci,ni acts as t̂i,ni on H1
Di,ni

. On H2
F the action is defined

in Lemma 4.4.22: H2
F is an H∗(BG/F ) ∼= Q[xA, xB ]-module, and H∗(BG/Hni

i ) acts
by restriction along the F -th component of the inflation map (2.5.25). Therefore
ci,ni acts as

xi = r · xA + s · xB (4.4.39)

defined in (2.5.23), where r and s are the two integers such that

zni
i = (znA

A )r · (znB
B )s (4.4.40)

in the character group of G/F . The equality (4.4.39) can be obtained by taking
Euler classes on both members of (4.4.40) and noticing that the group operation in
the character group translates into sum in Q[xA, xB]. Therefore by Lemma 4.4.22
the Euler class ci,ni acts on H2

F as r · t̂A,nA
+ s · t̂B,nB

.
We are only left to show that these two actions commute with (4.4.38). This

translates in proving that the equality

t̂i,ni = r · t̂A,nA
+ s · t̂B,nB

(4.4.41)

holds in (OF )∧mF
, since t̂i,ni commutes with the OF -module map (4.4.38) (recall the

definition of the ring OF and the ideal mF in (4.2.15)).
To prove (4.4.41) apply the functor X to the characters equality (4.4.40), to

obtain the same linear relation with the projections (Definition 4.1.9):

πni
i = r · πnA

A + s · πnB
B .

Note that in this last equality the group operation is the one of C. Recalling the
definition of the completed coordinates (4.2.31), combined with Lemma 4.2.25 we
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obtain precisely:

t̂i,ni = (πni
i )∗(t̂e) = (πnA

A , πnB
B )∗ ◦ (r, s)∗(t̂e) = r · t̂A,nA

+ s · t̂B,nB

Remark 4.4.42. This proof clarifies the need of using completed coordinates t̂i,ni

instead of the uncompleted ones ti,ni . For the uncompleted functions the relation
(4.4.41) is not true (compute zeroes and poles on both sides). As a consequence the
algebra of the Euler classes simply does not match the algebra of the uncompleted
functions.

Proof of Lemma 4.4.33. Proceed as we did in Lemma 4.4.29 and first extend di1
to an OF -map

OF ⊗
OF/Hi

Ti → N.

This is completely determined by the action of OF on N and Lemma 4.4.36.
We need to extend it further to the localization E−1

Hi
, and we can define it for

every F -th component of OF : H∗(BG/F ) ∼= Q[xA, xB ]. Recall from Example 2.5.35
that inverting E−1

Hi
in Q[xA, xB] means inverting all the Euler classes xj with j ≥ 1

and j 6= i. Therefore define the map for negative powers of the Euler classes in the
following way:

(ϕi1)F : E−1
Hi

Q[xA, xB] ⊗
Q[xi]
K/ODi,ni

→ H2
F

1
xk1

1 x
k2
2 . . . xkr

r

⊗
Q[xi]

[f ] 7→ di1([t̂−k1
1,n1 · t̂

−k2
2,n2 . . . t̂

−kr
r,nr
· f ])

(4.4.43)

and extend it to be a Q[xA, xB]-module map (see (4.4.32) for the power series
inverses).

Remark 4.4.44. The main issue with this definition is that the element

t̂−k1
1,n1 · t̂

−k2
2,n2 . . . t̂

−kr
r,nr

(4.4.45)

is a priori an infinite sum of monomials tj11,n1 · t
j2
2,n2 . . . t

jr
r,nr

and not a well defined
element in K. To address this issue note that every element in H2

F is annihilated
by a power of the ideal mF , that every coordinate tj,nj is in mF , and that di1 is an
OF -module map. Therefore there exists a positive integer d such that in the infinite
sum (4.4.45), elements of total degree higher than d do not contribute in any way
in (4.4.43). In this way we can cap the infinite sum (4.4.45) accordingly so that the
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sum is finite and therefore is a well defined element of K.

It is immediate now to check (4.4.43) is compatible with the already defined
action of the positive powers of xj for j 6= i. Namely tj,nj commutes with di1, and
they simplify with the capped t̂−1

j,nj
anyway since we are left with terms of higher

enough degree to not contribute to the result.
It is immediate also to check that the definition (4.4.43) does not depend on

the representative f picked for the class, since if [f + g] is another representative
with g regular on Di,ni , then g · t̂−1

j,nj
is regular on Di,ni for any j 6= i and does not

contribute in any way.

4.4.7 Exactness

We turn now to prove that the sequence (4.4.1) is exact. From Remark 2.5.38 we
only need to check exactness at the bottom level (the level at the trivial subgroup).
Therefore it is enough to prove that the bottom level of (4.4.1):

E−1
G OF ⊗K

ϕ0−→
⊕
i≥1
E−1
Hi
OF ⊗

i
Ti

ϕ1−→ N → 0 (4.4.46)

is an exact sequence of OF -modules. We can do it for each F -th component of OF
at a time. Namely prove that for every finite subgroup F of G, the F -th component
of (4.4.46):

E−1
G Q[xA, xB]⊗K ϕ0−→

⊕
i≥1
E−1
Hi

Q[xA, xB]⊗
i
K/ODi,ni

ϕ1−→ H2
F → 0. (4.4.47)

is an exact sequence of H∗(BG/F ) ∼= Q[xA, xB]-modules.
The strategy is to use exactness of (4.3.15). For this task we will need

the “Moving” Lemma 4.4.50. In the interest of the exposition we start in proving
exactness of (4.4.47) and will devote the rest of the section in proving Lemma 4.4.50.

Lemma 4.4.48. The sequence (4.4.47) is an exact sequence of Q[xA, xB]-modules.

Proof. We use exactness of the sequence (4.3.15) which is the first row of the
following commutative diagram:

K
⊕

i≥1K/ODi,ni
H2
F 0

E−1
G Q[xA, xB]⊗K ⊕

i≥1 E−1
Hi

Q[xA, xB]⊗i K/ODi,ni
H2
F 0

d0

1⊗_

d1

ι Id

ϕ0 ϕ1

(4.4.49)
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The vertical map ι is the natural inclusion α 7→ 1 ⊗i α on every i-th component.
Note that the commutativity of (4.4.49) is due to the commutativity of (4.4.30) and
(4.4.34).

First of all the composition ϕ1 ◦ ϕ0 is zero. This is because on pure tensor
elements in the source:

ϕ1 ◦ ϕ0( 1
xk1

1 x
k2
2 . . . xkr

r

⊗ f) = d1 ◦ d0(t̂−k1
1,n1 · t̂

−k2
2,n2 . . . t̂

−kr
r,nr
· f) = 0.

The first equality comes from the two definitions (4.4.31), and (4.4.43). This all
equals zero since the composition d1 ◦ d0 is zero in the first row.

The map ϕ1 is surjective being an extension of d1, which is surjective.
We are left to prove that Ker(ϕ1) ⊆ Im(ϕ0). Pick X ∈ Ker(ϕ1). By Lemma

4.4.50, modulo Im(ϕ0) we can suppose X ∈ Im(ι). We can now conclude with
diagram chasing: it exists Y such that ι(Y ) = X, d1(Y ) = 0 and since the first
row of (4.4.49) is exact it also exists F ∈ K such that d0(F ) = Y . Therefore
ϕ0(1⊗ F ) = X.

We devote the rest of this section in proving the “Moving” lemma:

Lemma 4.4.50. In the diagram (4.4.49), every element

X ∈
⊕
i≥1
E−1
Hi

Q[xA, xB]⊗
i
K/ODi,ni

is equivalent, modulo the image of ϕ0 to an element in the image of ι.

To prove this technical lemma we will need to work with the irreducible
components Di,P of the Dij in the Zariski topology, and build different uniformizers
for them. We will also require somme lemmas about the specific geometry of X .

We start recalling Abel’s Theorem [Sil09, Corollary 3.5]:

Lemma 4.4.51 (Abel’s Theorem for elliptic curves). Let C be an elliptic curve with
identity element e, and let D = ∑

nP (P ) be a divisor of C. Then there exists a
meromorphic function f such that Div(f) = D if and only if

∑
nP = 0 and

∑
nPP = e.

Where the first sum is in Z and the second one is addition in C.

Lemma 4.4.52. Given P ∈ C〈n〉 and a direction i ≥ 1 there exists hi,P ∈ K such
that:
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1. for n 6= 1 the function hi,P has zeroes only at Di,P and Di both at first order.

2. for n = 1 the function hi,e has zeroes only at Di and Di,Q for Q a point of
exact order 2, both at first order.

Proof. If P = e and {P1, P2, P3} are the three points of C〈2〉 then the divisor

De := (e) + (P1)− (P2)− (P3)

satisfies Lemma 4.4.51 so there is a meromorphic function he with divisor De. If we
now pullback he along the projection πi the function

hi,e := π∗i (he) ∈ K

satisfies (2).
In the same way if P 6= e pick a point P ′ such that 2P ′ = P , then the divisor

DP := (e) + (P )− 2(P ′)

satisfies Lemma 4.4.51 so there’s a meromorphic function hP with divisor DP . As
before the pullback along the projection πi the function

hi,P := π∗i (hP ) ∈ K

satisfies (1).

Lemma 4.4.53. Consider two different arbitrary directions a, b ≥ 1 such that Da

and Db intersect only in the origin O = {e}×{e} of X . Given a class [f ] ∈ K/ODa,n

for n ≥ 1, there exists a representative f ∈ K of that class such that f has poles only
along the a and b directions (i.e. it’s regular on all Dij such that i 6= a, b).

Proof. Since Da and Db intersect only in O, we can change coordinates (autoisogeny)
on X in such a way that Da = D1 = {e} × C and Db = D2 = C × {e}.

For any point P of finite order of C and direction i ≥ 1, denote ODi,P
the

subring of K of those functions that are regular at Di,P , and mi,P the ideal of those
functions that vanishes at Di,P . The pullback along the projection π2 : X → C
induces an isomorphism

π∗2 : KT
∼=−→ OD1,P/m1,P (4.4.54)

where KT is defined in (4.2.19): the ring of those meromorphic functions on C that
have poles only at points of finite order of C. First notice that with the TP-topology
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on C we pullback functions in K that are regular on D1,P . To prove injectivity of
(4.4.54) consider the inclusion ι1,P : D1,P ∼= C ↪→ X and the pullback

OD1,P/m1,P
ι∗1,P−−→ KT.

Composing the two maps ι∗1,P ◦ π∗2 = (π2 ◦ ι1,P )∗ = Id∗C , so π∗2 is injective. To prove
surjectivity of (4.4.54) pick f ∈ OD1,P

, then

f − π∗2 ◦ ι∗1,P (f) ∈ m1,P

because ι∗1,P (f − π∗2 ◦ ι∗1,P (f)) = ι∗1,P (f)− ι∗1,P (f) = 0.
Consider now a class [f ] ∈ K/OD1,n and an arbitrary representative f ∈ K of

that class. If the class is the trivial one, pick any pullback π∗2(g) as representative.
Otherwise f is not regular on D1,n, which means it has a pole on some of its compo-
nents D1,P with P ∈ C〈n〉. Enumerate those components {D1,P1 , D1,P2 , . . . , D1,Pr},
and suppose f has a pole of order kj ≥ 1 on D1,Pj . Expand f into its principal parts
at every pole D1,Pj using coefficients in OD1,Pj

/m1,Pj

∼= KT and the uniformizer h1,Pj

of D1,Pj (By Lemma 4.4.52: m1,Pj = 〈h1,Pj 〉). Recursively:

f · hk1
1,P1
∈ OD1,P1

\m1,P1 (4.4.55)

therefore using the isomorphism (4.4.54) there exists g ∈ KT whose pullback repre-
sents the same class modulo the ideal m1,P1 :

f · hk1
1,P1
≡ π∗2g (m1,P1)

so that dividing by h1,P1 :

f · hk1−1
1,P1

− π∗2g

h1,P1
∈ OD1,P1

\m1,P1

we can reapply (4.4.55) until we obtain an expansion at the poleD1,P1 with coefficients
that are pullbacks of functions gi,1 ∈ KT:

f −
−1∑

i=−k1

π∗2(gi,1)
hi1,P1

∈ OD1,P1
(4.4.56)

Now move on to the next pole D1,P2 and do the same using (4.4.56) instead of f .
Notice that by Lemma 4.4.52 h1,Pj does not vanish at D1,Pi for Pj 6= Pi both in C〈n〉,
in this way we can deal with the pole at each D1,Pj separately without changing the
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order of pole on the other components.
Continue in this way expanding all the poles {D1,P1 , D2,P2 , . . . , Dr,Pr} until

we have something that is regular on the whole D1,n:

f −
−1∑

i=−k1

π∗2(gi,1)
hi1,P1

− · · · −
−1∑

i=−kr

π∗2(gi,r)
hi1,Pr

∈ OD1,n . (4.4.57)

This gives us an explicit function in the same class of f modulo OD1,n , but with
poles only along the directions 1 and 2.

Proof of Lemma 4.4.50. Doing it for one i-component at a time we can suppose
X has only one component different from zero. Therefore X has all components
equal to zero except the s-th component:

Xs = 1
xk1
c1x

k2
c2 . . . x

kr
cr

⊗
s

[f ] ∈ E−1
Hs

Q[xA, xB]⊗
s
K/ODs,ns

(4.4.58)

where at the denominator we have inverted r ≥ 0 Euler classes xc1 , . . . xcr ∈ EHs

(Example 2.5.35) with cj ≥ 1 for 1 ≤ j ≤ r. Let us prove the lemma by induction on
r. If there are no variables at the denominator (r = 0), then X is in the image of ι.
Therefore we only need to prove we can reduce r by one.

Let us first do the case when one of the directions {Dc1 , . . . , Dcr} intersects
Ds only in the origin O = {e} × {e}, and without lost of generality suppose it is
the direction Dc1 . Applying Lemma 4.4.53 we can find a representative f ∈ K of
the class [f ] ∈ K/ODs,ns

such that f has poles only along the directions s and c1.
Consider the element

X ′ := 1
xk1
c1x

k2
c2 . . . x

kr
cr

⊗ f ∈ E−1
G Q[xA, xB]⊗K.

Then the element X − ϕ0(X ′):

• It has a zero in the component s.

• In the component cj , with 1 ≤ j ≤ r it has less than r Euler classes inverted
at the denominator, since xcj itself is not inverted any more.

• In all the other components it has a zero, since f has poles only along the
directions s and cj .

In case none of the directions {Dc1 , . . . , Dcr} intersects Ds trivially, simply
pick an extra direction Dd that intersects Ds and Dc1 only in O. Now apply the
same argument twice. The first time use Dd instead of Dc1 and notice that we have
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decreased the Euler classes inverted in all components except in the component d.
Then apply the same argument with the component d instead of s, noticing that
now Dd and Dc1 intersect in only one point.

We can apply the same argument in case of a numerator in the component s
of X (4.4.58) different from 1. Note that Q[xA, xB] = Q[xs, xc1 ], and distributing
sums and products we are left with the case

Xs = xkc1 ⊗s [f ]

with Dc1 intersecting Ds only in O. Apply again Lemma 4.4.53 with the directions
s and c1 and proceed exactly as before.

4.5 Values on spheres of complex representations

The goal of this section is to determine the values of ECG (constructed in Section
4.4 for the 2-torus G = T2) on spheres of complex representations. Here resides the
connection with the geometry of the curve:

Theorem 4.5.1. If V is a finite dimensional complex representation of G with
V G = 0, then:

ECnG(SV ) ∼=

H
0(X ,O(−DV ))⊕H2(X ,O(−DV )) n even

H1(X ,O(−DV )) n odd.
(4.5.2)

Where X = C × C, C is our fixed elliptic curve, and DV is a divisor of X
defined as follows:

Definition 4.5.3. If V is a finite dimensional complex representation of G with
V G = 0 and dimension function:

vij := dimC(V Hj
i ) ij ≥ 1 (4.5.4)

where Hj
i is the subgroup of G with j connected components and identity component

Hi, then
DV =

∑
i,j≥1

vijDij (4.5.5)

Remark 4.5.6. Notice that if we write V using characters zni (see Definition 4.1.9):

V =
∑
i≥1

∑
n6=0

ai,nz
n
i
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then the associated divisor is obtained simply applying the functor X (see (4.1.7)
and (4.1.8)):

DV :=
∑
i≥1

∑
n6=0

ainX(H |n|i ).

Definition 4.5.7. Given a divisor DV of the kind (4.5.5), define the sheaf O(−DV )
on XTP twisted by the line bundle DV to be the subsheaf of the structure sheaf
O = OTP

X with values on TP-opens U :

O(−DV )(U) = {f ∈ K | Div(f)−DV ≥ 0 on U}.

(Recall the definition of K (4.2.13)).

The strategy to prove (4.5.2) is to use the Adams spectral sequence (2.5.2)
for the homology functor πA∗ [Gre08, Theorem 1.1]. In our case we obtain a strongly
convergent Adams spectral sequence:

Exts,tA (SV , ECG) =⇒ [SV , ECG]Gt−s = ECt−sG (SV ). (4.5.8)

Notation 4.5.9. In (4.5.8) and for the rest of the section we denote SV both the
spectrum and the corresponding object πA∗ (SV ) in A(G).

Remark 4.5.10. Recall that the index s refers to the s-th Ext-group in the graded
abelian category A(G) while t index the grading of these groups, that are graded
since the objects πA∗ (_) are.

The bulk of the section will be the computation of the Ext groups of (4.5.8):

Theorem 4.5.11. For V as in Theorem 4.5.1 we have the isomorphism of graded
groups:

ExtsA(SV , ECG) ∼= Hs(X ,O(−DV )). (4.5.12)

Where on the right in (4.5.12) we have the 2-periodic version of those cohomology
groups.

As an immediate consequence we obtain (4.5.2):

proof of Theorem 4.5.1. The isomorphism (4.5.12) computes the second page of
the Adams Spectral sequence (4.5.8). This second page has only the first three rows
different from zero (namely for s = 0, 1, 2 in (4.5.12)), because the algebraic surface
X has dimension 2 and therefore its cohomology groups vanishes in higher degrees.
Moreover in these three rows we have a chess pattern of zeroes and cohomology
groups since the groups (4.5.12) are 2-periodic. This yields the Adams spectral
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sequence (4.5.8) to collapse at the second page, since all the differentials in this page
are trivial. In conclusion in this second page we find in the even columns:

H0(X ,O(−DV ))⊕H2(X ,O(−DV ))

while in the odd ones:
H1(X ,O(−DV )).

We devote the rest of this section in proving Theorem 4.5.11. For this task
in 4.5.1 we discuss the Cousin complex of the sheaf O(−DV ) needed in 4.5.2 to
compute the second page of the Adams spectral sequence. We conclude in 4.5.3 briefly
extending the computation on virtual negative complex representations (4.5.34).

4.5.1 Cousin complex of O(−DV )

Here we briefly construct the Cousin complex for O(−DV ) exactly as in Sections 4.2
and 4.3 for the structure sheaf O. Therefore we recall from those sections how the
results change for the sheaf twisted by the line bundle O(−DV ).

Let us start in computing the stalks at the various points x ∈ XTP:

• If x = η(XTP) is a generic point of the whole space, in (4.2.12) nothing changes
and we still obtain (4.2.13):

O(−DV )x = K (4.5.13)

• If x = η(Dij) is a generic point of a generating closed subset, by (4.5.5) Dij

appears with coefficient vij in DV , so (4.2.14) becomes:

O(−DV )x = {Div(f) ≥ vij on Dij} = t
vij

ij ODij (4.5.14)

since tij defined in (4.2.28) generates mij .

• If x ∈ X̄(F ) (which automatically makes it also a generic point for X̄(F )), by
Lemma 4.1.17 for every direction i ≥ 1, only Di,ni contains X̄(F ) which by
(4.5.5) appears with coefficient vi,ni in DV . Therefore (4.2.15) becomes:

O(−DV )x = {f ∈ K | Div(f) ≥ vi,ni onDi,ni for all i ≥ 1} = (
∏
i≥1

t
vi,ni
i,ni

)OF

(4.5.15)
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Proposition 4.3.1 apply as well to the sheaf O(−DV ) and therefore we can
consider its Cousin complex, that can be written as the one for O (4.3.2):

O(−DV )→ ιX (H0
X (O(−DV )))

dV
0−−→
⊕
ij≥1

ιDij (H1
Dij

(O(−DV )))
dV

1−−→
⊕
F

ιF (H2
F (O(−DV )))

(4.5.16)
For each local cohomology term appearing in (4.5.16) we explicit an isomor-

phism with the corresponding term in (4.3.2):

• In codimension 0 by (4.5.13):

H0
X (O(−DV )) = O(−DV )η(XTP) = K (4.5.17)

• In codimension 1 we have the chain of isomorphisms:

H1
Dij

(O(−DV )) ∼= H1
mij

((O(−DV ))η(Dij)) ∼=
t
vij

ij ODij [t−1
ij ]

t
vij

ij ODij

= K
t
vij

ij ODij

∼=
K
ODij

.

(4.5.18)
The first isomorphism is due by (4.3.10) since O(−DV ) is the pushforward
along ϕ of the Zariski twisted sheaf OZar

X (−DV ). Te second is the computation
of local cohomology by means of the stable Koszul complex ([Hun07, pag. 7]),
since tij generates mij , and we have computed the stalk in (4.5.14). The final
isomorphism we define it in the following way using the completed coordinates
(4.2.31):

K/tvij

ij ODij

∼=−→ K/ODij

[f ] 7→ [t̂−vij

ij · f ].
(4.5.19)

Notice it is well defined exactly as in (4.4.31).

• In codimension 2 in the same way we have the chain of isomorphisms:

H2
F (O(−DV )) ∼= H2

mF
((O(−DV ))η(X̄(F ))) ∼= H2

mF
((
∏
i≥1

t
vi,ni
i,ni

)OF ) ∼= H2
mF

(OF ).

(4.5.20)
Like (4.5.18) the first isomorphism is due by (4.3.10) and the second one is the
computation of the stalk (4.5.15). We can define the final isomorphism in the
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following way:

H2
mF

((
∏
i≥1

t
vi,ni
i,ni

)OF )
∼=−→ H2

mF
(OF )

α 7→ (
∏
i≥1

t̂
−vi,ni
i,ni

)α.
(4.5.21)

Notice it is well defined as in Remark 4.4.44.

Now Corollary 4.3.7 holds as well for O(−DV ) since OZar
X (−DV ) is Cohen-

Macaulay with respect to the codimension filtration:

Corollary 4.5.22. The Cousin complex (4.5.16) of O(−DV ) is a flabby resolution
of O(−DV ).

As a consequence we have also Proposition 4.3.14 for O(−DV ) where we use
the isomorphisms (4.5.17), (4.5.18) and (4.5.20) to describe the local cohomology
terms:

Proposition 4.5.23. Let F be a finite subgroup of G and x = η(X̄(F )) be the generic
(and only) point of X̄(F ) in the Kolmogorov quotient XTP. Then the TP-stalk at x
of the Cousin complex (4.5.16) is the exact sequence:

O(−DV )x � K
dV

0−−→
⊕
i≥1
K/ODi,ni

dV
1−−→ H2

F (O)→ 0. (4.5.24)

Remark 4.5.25. Notice (4.5.24) has the same terms as (4.3.15) but different maps:

dV0 (f) = [t̂−vij

ij · f ] ∈ K/ODij . (4.5.26)

dV1 ({[fi]}i) = [{[fi ·
∏
s 6=i

t̂−vs,ns
s,ns

]}i] ∈ H2
F (O). (4.5.27)

Where we have used (4.3.17) to describe H2
F (O).

We conclude with the global sections of the Cousin complex (4.5.16):

Γ(O(−DV )) −→ K
dV

0−−→
⊕
i≥1

(
⊕
j≥1
K/ODij )

dV
1−−→
⊕
F

H2
F (O)→ 0 (4.5.28)

Notice that the terms are the same as the global sections (4.3.18) for O but with
different maps.
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4.5.2 Computing the Adams spectral sequence

We turn now in computing the second page of the Adams spectral sequence (4.5.8),
namely proving Theorem 4.5.11.

Proof of Theorem 4.5.11. The aim is to explicitly compute the following se-
quence:

HomA(SV , I0)
ϕ′0−→ HomA(SV , I1)

ϕ′1−→ HomA(SV , I2)→ 0 (4.5.29)

obtained applying the functor HomA(SV ,_) to the injective resolution (4.4.4) of
ECG (the maps ϕ′0 and ϕ′1 are the ones induced by ϕ0 and ϕ1). For this task it is
essential the algebraic model SV = π∗(SV ) ∈ A(G) that we discussed in detail in
2.5.6.

By using the adjunction (2.5.44) and the explicit form (4.4.27) of the injective
resolution of ECG we can compute each term of (4.5.29):

HomA(SV , fG(K)) ∼= HomQ(Q,K) ∼= K

HomA(SV ,
⊕
i≥1

fHi(Ti)) ∼=
⊕
i≥1

HomOF/Hi
(ΣV HiOF/Hi

Ti) ∼=
⊕
i≥1

Σ−V HiTi,

HomA(SV , f1(N)) ∼= HomOF (ΣVOF , N) ∼= Σ−VN

(4.5.30)

where for the second equation we obtain the direct sum for i ≥ 1 instead of the
product since SV is a small object.

The sequence (4.5.29) than takes the form

K
ϕ′0−→

⊕
i≥1

Σ−V HiTi
ϕ′1−→ Σ−VN → 0 (4.5.31)

with maps:

ϕ′0(f) = {ϕi0(e(V Hi)−1 ⊗ f)}i≥1

ϕ′1({αi}i≥1) = ϕ1({e(V − V Hi)−1 ⊗
i
αi}i)

(4.5.32)

where ϕ0 and ϕ1 satisfy the commutative diagrams (4.4.30) and (4.4.34) and the
Euler classes e(V Hi)−1 ∈ E−1

G/Hi
OF/Hi

and e(V −V Hi)−1 ∈ E−1
Hi
OF pop out from the

structure maps of the object SV (2.5.52).
The sequence (4.5.31) is 2-periodic, therefore we can work at the 0-th level.

Note as well that the desuspensions in the second and third term shift 2-periodic
objects by an even degree, therefore the term at each level does not change. The
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0-th level of (4.5.31) is:

K
ϕ′0−→

⊕
i≥1

(
⊕
j≥1
K/ODij )

ϕ′1−→
⊕
F

H2
F (O)→ 0. (4.5.33)

To conclude, we only need to prove that (4.5.33) is the sequence of global
sections (4.5.28) of the Cousin complex of O(−DV ), since by Corollary (4.5.22)
the Cousin complex is a flabby resolution and therefore the homology of its global
sections (4.5.33) gives us the desired cohomology groups H∗(X ,O(−DV )) (Recall
from Corollary 4.2.8 that the cohomology of O(−DV ) is the same for both topologies).

We only need to check that the maps in (4.5.33) and (4.5.28) are the same.
By (4.5.32) the map ϕ′0 on every component (i, j) is the map:

ϕ′0(f) = ϕ0(c−vij

ij ⊗ f) = [t̂−vij

ij · f ] = dV0 (f),

where the second equality follows by definition of ϕ0 (4.4.31), and the last one is
(4.5.26).

By (4.5.32) the F -th component of ϕ′1 for every finite subgroup F of G is the
map:

ϕ′1({[fi]}i) = ϕ1({
∏
s 6=i

x−vs,ns
s ⊗

i
[fi]}i) = [{[fi ·

∏
s 6=i

t̂−vs,ns
s,ns

]}i] = dV1 ({[fi]}i),

where the second equality follows by definition of ϕ1 (4.4.43), the last one is (4.5.27),
and we have used (4.3.17) to describe elements in H2

F (O).

4.5.3 Virtual negative complex representations

All the computations presented in this section work exactly in the same way for
virtual negative complex representations. If V is a genuine complex representation
with V G = 0, Theorem 4.5.1 changes sign:

ECnG(S−V ) ∼=

H
0(X ,O(DV ))⊕H2(X ,O(DV )) n even

H1(X ,O(DV )) n odd.
. (4.5.34)

Everything starts with the changes in the object S−V ∈ A(G) explained in
Remark 2.5.53 where the desuspensions change sign into suspensions, and therefore
(4.5.31) changes into:

K
ϕ′0−→

⊕
i≥1

ΣV HiTi
ϕ′1−→ ΣVN → 0
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where in the maps (4.5.32) positive powers of the Euler classes appear instead of the
negative ones. As a consequence Theorem 4.5.11 changes sign:

ExtsA(S−V , ECG) ∼= Hs(X ,O(DV )).

and we conclude exactly as before.
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Chapter 5

Circle-equivariant elliptic
cohomology of CP(V )

The aim of this chapter is to compute rational T-equivariant elliptic cohomology of
CP(V ): the T-space of complex lines in V , and it consists of the entirety of [Bar22b].
More precisely we want to prove the following which is the main theorem of the
chapter.

Theorem 5.0.1. For every elliptic curve C over C, if ECT (5.2.12) is the rational T-
equivariant elliptic cohomology theory built in [Gre05], and V is a finite dimensional
complex representation of T, then:

1. If V has one isotypic component, V = αzn with α ≥ 1,

ECkT(CP(V )) ∼= Cα−1

for every k ∈ Z.

2. If V has more than one isotypic component, V = ⊕
n αnz

n,

ECkT(CP(V )) ∼=

0 k even

Cd k odd.

where d = ∑
i<j αiαj(i− j)2, and z is the natural representation of T.

Part (1) of this Theorem simply checks our methods on previously done
computations since CP(αzn) ∼= CPα−1 with the trivial T-action. In contrast part (2)
is the main computational result, and to the knowledge of the author it is the first
time it appears in the literature. We refer to Remark 5.4.36 for a discussion of the
geometry of this Theorem. We revise the construction of ECT in Section 5.2.
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In all this chapter G = T2, and H1 = 1 × T and H2 = T × 1 are the two
privileged subgroups. We have also the quotient Ḡ := G/H1 ∼= H2 ∼= T as group of
equivariance. We have fixed an elliptic curve C over C together with a coordinate
te ∈ OTP

C,e ⊂ OC,e (Definition 4.2.20). This gives us a rational Ḡ-equivariant elliptic
cohomology theory ECḠ ∈ A(Ḡ) (5.2.12), as well as a rational G-equivariant elliptic
cohomology theory ECG ∈ A(G) (Theorem 4.0.1). We have also the complex abelian
surface X = XG = C × C associated to G and C.

5.1 Elliptic cohomology of CP(V )

Given a Ḡ complex representation V we want to compute the reduced cohomology
of the pointed space:

EC∗
Ḡ

(CP(V ))

where CP(V ) is the Ḡ-space of complex lines in V . We start pointing out the
isomorphism of Ḡ-spaces:

CP(V ) ∼= S(V ⊗C w)/H1 (5.1.1)

where w is the natural complex representation of H1 and S(V ⊗C w) is the Ḡ-space
of vectors of unit norm in the complex vector space V ⊗C w. Notice that V ⊗C w is
a complex representation of G of the same dimension of V , where H1 acts on the
second factor of the tensor product, while Ḡ acts on the first one. The computation
is made possible since ECḠ and ECG are H1-split:

Theorem 5.1.2. Let ECG be G-elliptic cohomology (Theorem 4.0.1), and ECḠ be Ḡ-
elliptic cohomology (5.2.12). Then there is a natural transformation of G-cohomology
theories

ε : InfG
Ḡ
ECḠ −→ ECG

which induces an isomorphism

[G/H+, InfG
Ḡ
ECḠ]G∗ ∼= [G/H+, ECG]G∗ (5.1.3)

for every subgroup H of G such that H ∩H1 = {1}.

We prove this Theorem in Sections 5.3 and 5.4. More precisely in Section
5.3 we build the map ε while in Section 5.4 we prove the H-equivalence (5.1.3). We
have an immediate Corollary:
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Corollary 5.1.4. For any H1-free G-space X:

EC∗G(X) ∼= EC∗
Ḡ

(X/H1) (5.1.5)

Proof. Since X is H1-free, it is built using cells G/H+ with H ∩ H1 = {1}, for
which we have the equivalence (5.1.3). Therefore:

EC∗G(X) = [X,ECG]G∗ ∼= [X, InfG
Ḡ
ECḠ]G∗ ∼= [X/H1, ECḠ]Ḡ∗ = EC∗

Ḡ
(X/H1)

where the second isomorphism is the orbits-inflation adjunction (2.4.20).

Applying this corollary to (5.1.1) allows us to reduce the computation of
Ḡ-equivariant elliptic cohomology to a computation of G-equivariant elliptic coho-
mology:

EC∗
Ḡ

(CP(V )+) ∼= EC∗
Ḡ

(S(V ⊗ w)+/H1) ∼= EC∗G(S(V ⊗ w)+). (5.1.6)

Remark 5.1.7. Notice we have to add a disjoint basepoint to S(V ⊗w), leading us
to compute EC∗

Ḡ
(CP(V )+). To obtain CP(V ) without the added basepoint notice

that stably:
CP(V )+ ∼= CP(V ) ∨ S0

and therefore

EC∗
Ḡ

(CP(V )+) ∼= EC∗
Ḡ

(CP(V ))⊕ EC∗
Ḡ

(S0) ∼= EC∗
Ḡ

(CP(V ))⊕ C, (5.1.8)

since by [Gre05, Theorem 1.1] we have

ECk
Ḡ

(S0) ∼=

H
0(C,OC) ∼= C k even

H1(C,OC) ∼= C k odd.

G-equivariant elliptic cohomology of S(V ⊗ w)+ is easier to compute in view
of the cofibre sequence of G-spaces:

S(V ⊗ w)+ −→ S0 −→ SV⊗w (5.1.9)

inducing a long exact sequence:

EC∗G(SV⊗w) −→ EC∗G(S0) −→ EC∗G(S(V ⊗ w)+). (5.1.10)

The first two terms of (5.1.10) are computed in Theorem 4.5.1 from the previous
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chapter, therefore we can deduce the third term from kernel and cokernel of the first
map.

Remark 5.1.11. One might argue that to compute rational T-equivariant elliptic
cohomology of CP(V ) a more straightforward approach can be taken. Namely we
have ECT ∈ A(T) and if we explicitly compute the algebraic model πA(T)

∗ (CP(V )+),
then we can use the Adams spectral sequence for the circle to compute directly
EC∗T(CP(V )+). Originally this was the method tried on this project, with a double
motivation: first as a warm-up in the circle case before generalizing to higher tori,
and second, once ECT2 has been constructed, compute EC∗T2(S(V ⊗ w)+), and see if
the two values match. If indeed EC∗T(CP(V )+) ∼= EC∗T2(S(V ⊗w)+), then one might
expect that ECT and ECT2 are H1-split (Theorem 5.1.2). The problem encountered
with this method is that after computing the algebraic model πA(T)

∗ (CP(V )+) then
computing maps in A(T2) from this object into an injective resolution of ECT still
retains a lot of complexity. More precisely it is still difficult to compute OF -module
maps between arbitrary OF -module when none of them is a suspension of the base
ring OF . Therefore this more conceptual approach of proving H1-splitness and
computing EC∗T2(S(V ⊗ w)+) has been taken. Moreover we hope to replicate and
generalise this to other spaces such as Grassmannians of n-planes Grn(V ) of a
complex T-representation.

To find the associated divisor DV⊗w decompose V as a sum of one dimensional
complex representations V = ⊕

n αnz
n where z is the natural representation of Ḡ

and αn ≥ 0. Notice zn ⊗ w is a one dimensional representation of G with kernel the
connected codimension 1 subgroup:

Hdn := Ker(zn ⊗ w) = {(x, y) ∈ G = T× T | xny = 1}

and corresponding divisor:

Ddn = X(Hdn) = {(P,Q) ∈ X = C × C | nP +Q = e}. (5.1.12)

Therefore V ⊗ w = ⊕
n αn(zn ⊗ w) is a complex representation of G of the same

dimension as V , whose associated divisor is:

DV⊗w =
∑
n

αnDdn . (5.1.13)

We have two distinct proves depending if the divisor (5.1.13) has only one coefficient
different from zero, or more than one coefficient different from zero.
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When V has only one isotypic component, then CP(V ) ∼= CPα−1 with trivial
T-action. We can prove part (1) of Theorem 5.0.1:

Lemma 5.1.14. If V has only one isotypic component: V = αzn with α ≥ 1 then

ECk
Ḡ

(CP(V )) ∼= Cα−1 (5.1.15)

for every k ∈ Z.

Proof. Combining (5.1.6) and (5.1.10) we only need to understand kernel and
cokernel of the map

EC∗G(SV⊗w) −→ EC∗G(S0). (5.1.16)

By (5.1.13) the divisor associated to V ⊗ w is DV⊗w = αDdn , denote D := Ddn the
smooth irreducible curve. By Theorem 4.5.1 it is enough to understand kernel and
cokernel for the map

H∗(X ,O(−αD)) −→ H∗(X ,OX ) (5.1.17)

induced by the inclusion of sheaves O(−αD) ↪→ OX . We compute this map for the
various degrees.

In degree zero H0(X ,O(−αD)) = 0, since X is a compact complex abelian
surface, therefore a function regular on all the surface is constant and since it has a
zero at D it is the constant zero. Therefore (5.1.17) in degree zero has zero kernel
and cokernel C.

In degree 2 by Serre duality

H2(X ,O(−αD)) ∼= H0(X ,O(αD))∨ ∼= Cα (5.1.18)

where the second isomorphism is obtained as follows. Consider the divisor D′ = α(e)
on the single elliptic curve C, defining the line bundle L := OC(α(e)). The projective
morphism f := πdn : X → C is such that f∗L ∼= O(αD), and f∗OX ∼= OC by [Liu02,
Exercise 3.12 Chapter 5]. As a consequence

f∗f
∗L = f∗(OX ⊗OX f∗L) ∼= f∗(OX )⊗OC L ∼= OC ⊗OC L ∼= L (5.1.19)

by the projection formula [Har77, exercise 5.1]. Therefore

H0(X ,O(αD)) ∼= H0(X , f∗L) ∼= H0(C, f∗f∗L) ∼= H0(C,L) ∼= Cα, (5.1.20)

where the second isomorphism is due to the equality of functors Γ(X ,_) =
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Γ(C, f∗(_)), while the last one is Riemann-Roch for the elliptic curve C. Moreover
the map

C ∼= H0(X ,OX ) � H0(X ,O(αD)) ∼= Cα

is injective being the inclusion of the constant functions. By Serre duality the dual
map, (5.1.17) in degree 2, is surjective with kernel Cα−1.

In degree 1 by Serre duality

H1(X ,O(−αD)) ∼= H1(X ,O(αD))∨ ∼= Cα

since by Riemann-Roch (3.4.14)

h0(X , αD)− h1(X , αD) = 1
2α

2(D.D) = 0. (5.1.21)

We can see (D.D) = 0 since D is linearly equivalent to the translated D + λ, which
is an irreducible curve disjoint from D, or alternatively simply using the genus
formula (3.4.15) since D is irreducible of genus 1 being isomorphic to the elliptic
curve C. By Lemma 5.1.22 the image of the map (5.1.17) in degree 1 is precisely
H1(X ,O(−D)) ∼= C, combining this with the computations (5.1.17) we obtain that
the kernel in degree 1 of (5.1.17) is Cα−1 while the cokernel is C.

In conclusion we obtain that ECk
Ḡ

(CP(V )+) has in even degrees the degree
zero cokernel and the degree one kernel of (5.1.17), therefore is isomorphic to Cα.
In odd degrees we have the degree 1 cokernel and the degree 2 kernel of (5.1.17), so
Cα as well. By (5.1.8) ECk

Ḡ
(CP(V )) ∼= Cα−1 for every k ∈ Z.

Lemma 5.1.22. Let D = Ddn be any of the smooth divisors (5.1.12). For every
integer α ≥ 1 the image of the map

H1(X ,O(−αD))→ H1(X ,OX ) (5.1.23)

is precisely H1(X ,O(−D)) ⊂ H1(X ,OX ).

Proof. When α = 1 we have that D is a subvariety of X whose ideal sheaf is
precisely OX (−D), and structure sheaf OD that we can see as a sheaf on X via
the inclusion map ι : D → X . We have the closed subscheme short exact sequence
[Vak17, 14.3.B]:

0→ O(−D)→ OX → ι∗OD → 0 (5.1.24)

inducing a long exact sequence in cohomology. Since H0(X ,OX )
∼=−→ H0(X , ι∗OD) ∼=

C then H1(X ,O(−D))→ H1(X ,OX ) is injective.
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When α ≥ 2 we can tensor the exact sequence (5.1.24) with the invertible
sheaf O(−(α− 1)D) obtaining the exact sequence of sheaves:

0→ O(−αD)→ O(−(α− 1)D)→ ι∗OD(−(α− 1)D)→ 0 (5.1.25)

inducing a long exact sequence in cohomology. By the adjunction formula [Liu02,
Theorem 1.37]:

(ωX ⊗O(D)) �D= ωD

where in our case ωX ∼= OX and ωD ∼= OD, resulting in ι∗OD(D) ∼= ι∗OD and by
induction ι∗OD(βD) ∼= ι∗OD for every integer β.

Therefore we have that the last term of (5.1.25) is ι∗OD, and we can analyse
the degree 2 piece of the long exact sequence induced:

H1(ι∗OD)→ H2(O(−αD))→ H2(O(−(α− 1)D))→ H2(ι∗OD) = 0. (5.1.26)

The first map in (5.1.26) is injective simply by dimension computation: H1(ι∗OD) ∼=
C, and the other two terms are computed in (5.1.18). Consequently the map
H1(O(−αD)) � H1(O(−(α− 1)D)) is surjective. In conclusion we have the chain
of maps:

H1(O(−αD)) � H1(O(−(α− 1)D)) � · · ·� H1(O(−D)) � H1(OX )

where all the maps are surjective except the last one that is injective, giving us the
desired result.

When V has more than one isotypic component, then the proof of part (2) of
Theorem 5.0.1 has a different approach:

Theorem 5.1.27. If V has more than one isotypic component: V = ⊕
n αnz

n with
αn ≥ 0 then

ECk
Ḡ

(CP(V )) ∼=

0 k even

Cd k odd.
(5.1.28)

where d = ∑
i<j αiαj(i− j)2.

Remark 5.1.29. Notice that there are different representations, with different
complex projective spaces that nonetheless have the same value for d and therefore
rational T-equivariant elliptic cohomology does not distinguish them. For example if
ε is C with the trivial action, V = ε⊕4z and V ′ = ε⊕z2 have d = 4, or W = ε⊕16z,
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W ′ = ε ⊕ z4 and W ′′ = ε ⊕ z ⊕ 3z2 have d = 16. Therefore they have the same
elliptic cohomology even if their complex projective spaces are quite different.

Proof. Exactly as in the proof of Theorem 5.1.14 we only need to understand kernel
and cokernel of the map

H∗(X ,O(−D)) −→ H∗(X ,OX ) (5.1.30)

where D := DV⊗w = ∑
n αnDdn is the divisor associated to V ⊗ w (5.1.13).

When V has more than one isotypic components, the associated divisor D is
an ample divisor. To show this we can use the Nakai-Moishezon criterion [Har77,
Theorem V.1.10]. This criterion states that D is an ample divisor on X if and only
if D.D > 0 and D.C′ > 0 for every irreducible curve C′ on X . First let us prove that
Ddr .Dds = (r − s)2 for any two integers r and s. If r = s then Ddr .Ddr = 0 since
Ddr is linearly equivalent to the translated Ddr + λ, which is an irreducible curve
disjoint from Ddr , or alternatively simply using the genus formula (3.4.15) since Ddr

is irreducible of genus 1 being isomorphic to the elliptic curve C. If r 6= s than the two
curves Ddr and Dds are transverse in each point of intersection therefore we simply
need to count the intersection points [Bea96, Definition I.3]. There is an autoisogeny
of X bringing Ddr to Dd0 = D2 = {(P,Q) ∈ X | Q = e}. Under this isogeny Dds is
brought to Dds−r = {(P,Q) ∈ X | (s− r)P +Q = e}. The intersection of these last
two curves is easily computed to be C[s− r] which has cardinality (s− r)2. Therefore:

D.D =
∑
i,j∈Z

αiαj(Ddi
.Ddj

) = 2
∑
i<j

αiαj(i− j)2 > 0 (5.1.31)

since there are at least two different integers r 6= s such that αr, αs > 0 (V has more
than one isotypic component). It remains to show that for every irreducible curve C′

in X , the curve C′ intersects either Ddr or Dds , so that D.C′ > 0. If C′ ∩Ddr = ∅
than C′ is necessarily parallel to Ddr , meaning C′ = Ddr + λ is a translated of Ddr ,
but all these curves intersect Dds since s 6= r.

The sheaf O(D) is invertible and ample, so we can use Kodaira vanishing
theorem [Har77, Remark III.7.15] obtaining H i(X ,O(D)) = 0 for i ≥ 1. Therefore
only the zeroth cohomology is nonzero and we can compute it with Riemann-Roch
(3.4.14):

h0(X , D) = 1
2(D.D) =

∑
i<j

αiαj(i− j)2 = d
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where (D.D) is computed in (5.1.31). Moreover the map

C ∼= H0(X ,OX ) � H0(X ,O(D)) ∼= Cd

is injective being the inclusion of the constant functions. By Serre duality the dual
map, (5.1.30) in degree 2, is surjective with kernel Cd−1.

In conclusion we obtain that ECk
Ḡ

(CP(V )+) has in even degrees the degree
zero cokernel of (5.1.30): H0(X ,OX ) ∼= C. In odd degrees we have the degree 1
cokernel and the degree 2 kernel of (5.1.30), so Cd+1. By (5.1.8) ECk

Ḡ
(CP(V )) has

zero in even degrees and Cd in odd degrees.

5.2 The circle case revisited

We revise the construction of circle equivariant elliptic cohomology from [Gre05].
Recall from Definition 4.2.17 the torsion point topology CTP on the elliptic curve C
and the choice of a coordinate function te ∈ OTP

C,e (Definition 4.2.20). By Theorem
4.2.23 we have a unique logarithm for the formal group law of C: t̂e = f(te) ∈
(OTP
C,e )∧me

∼= C[[te]].
Denoting [n] : C → C the multiplication by n map in the elliptic curve, we

can pullback coordinate for the various C〈n〉:

Definition 5.2.1. For every integer n ≥ 1 define the coordinate and completed
coordinate:

tn := [n]∗(te) ∈ OTP
C,e

t̂n := [n]∗(t̂e) = f(tn) ∈ (OTP
C,e )∧me

(5.2.2)

Remark 5.2.3. Notice tn ∈ OC〈n〉 since it has a zero of degree one on all points of
C[n], so we can use it as a coordinate for the irreducible closed subset C〈n〉. In the
same way t̂n is an element in the completed ring (OC〈n〉)∧.

Definition 5.2.4. The fundamental rings are the stalks in the TP-topology:

KT := OTP
C,η(C) = {f ∈ K(CZar) | f has poles only at points of finite order of C}

OC〈n〉 := OTP
C,η(C〈n〉) = {f ∈ KT | f is regular at C〈n〉}

(5.2.5)

Denote F̄ the family of finite subgroups of Ḡ: for every n ≥ 1 we have the
cyclic subgroup Cn of order n. The fundamental ring for the algebraic models A(Ḡ)
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is
OF̄ =

∏
n≥1

H∗(BḠ/Cn) =
∏
n≥1

Q[cn]

where cn ∈ H∗(BḠ/Cn) of degree −2 is the Euler class (2.5.13) of a character having
kernel Cn.

Definition 5.2.6. Define the torsion injective OF̄ -module

TT :=
⊕
n≥1
KT/OC〈n〉 (5.2.7)

where the action is defined on the n-th component as follows. The Euler class cn
acts as t̂n:

cn · [f ] = [t̂n · f ] ∈ KT/OC〈n〉.

Notice the action is well defined since tn vanishes at first order at C〈n〉, so that
powers of t̂n do not contribute after a certain integer and the sum is finite.

Definition 5.2.8. Define the graded surjective OF̄ -module map

q : E−1
Ḡ
OF̄ ⊗KT � TT (5.2.9)

as follows. On the n-th component on pure tensor elements:

ckn ⊗ f
q7−→ [t̂kn · f ].

Notice this is well defined also for negative powers of the euler class simply considering
the inverse power series t̂−1

n .

Definition 5.2.10. Let NT := Ker(q) be the kernel of the map q (5.2.9). We have
the exact sequence of OF̄ -module:

NT E−1
Ḡ
OF̄ ⊗KT TT.

q (5.2.11)

Define the algebraic model for circle-equivariant elliptic cohomology ECḠ ∈ A(Ḡ) to
be the object:

ECḠ :=


E−1
Ḡ
OF̄ ⊗KT

NT

 ∈ A(Ḡ) (5.2.12)

with structure map the natural inclusion of (5.2.11).
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Remark 5.2.13. Since TT is torsion injective we have immediately the injective
resolution of ECḠ in A(Ḡ):


E−1
Ḡ
OF̄ ⊗KT

NT

�


E−1
Ḡ
OF̄ ⊗KT

E−1
Ḡ
OF̄ ⊗KT

�


0

TT

 .

In this way the object (5.2.12) we have defined here has the same values on
spheres of complex representations as the object constructed in [Gre05]. The analogy
with our construction of T2-equivariant presented in the previous chapter goes further.
Namely the Cousin complex for OTP

C is the following short exact sequence of sheaves
that we can find in [Gre05, Corollary 9.3]:

OTP
C � ιC(KT) �

⊕
n≥1

ιC〈n〉(KT/OC〈n〉) (5.2.14)

where we denote ιZ(M) the sheaf of constant valueM on the closed subset Z. Exactly
as in the previous chapter, (5.2.14) is a flabby resolution of the structure sheaf that
we can use to link the values of (5.2.12) on spheres of complex representations with
the appropriate cohomology of the associated line bundle on C [Gre05, Theorem 1.1].

5.3 Building the map

The aim of this section is to build the map ε : InfG
Ḡ
ECḠ → ECG of Theorem 5.1.2.

The first step is to identify the functor InfG
Ḡ

: A(Ḡ) → A(G) and we do this in
general for tori of any rank.

5.3.1 The inflation functor

Only for this subsection G = Tr is a generic torus of some rank r, we fix a connected
subgroup K and we define the quotient group Ḡ := G/K, with quotient map
q : G → Ḡ. For a generic connected subgroup H of G denote L := 〈H,K〉 the
subgroup generated by H and K, and H̄ := q(L) the image subgroup of H in Ḡ.

Proposition 5.3.1. For a Ḡ-spectrum X̄, the value of πA(G)
∗ (InfG

Ḡ
X̄) (2.5.47) at a

connected subgroup H is given by:

ϕH(InfG
Ḡ
X̄) ∼= OF/H ⊗

OF/L

ϕH̄(X̄), (5.3.2)
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with structure maps induced by the structure maps of πA(Ḡ)
∗ (X̄).

To prove this result we will need some lemmas aboutG-spectra that holds more
generally for compact Lie groups (with the appropriate assumptions of subgroups
being normal). Moreover these results do not rely on the fact that we have rationalized
everything and therefore holds also if we do not localize at S0Q.

Given a G-spectrum X we can pick a strictly increasing indexing sequence
V1 ( V2 ( · · · ( U for the complete G-universe U , and use the canonical presentation
of X [HHR16, pg. 12], namely there is a weak equivalence of G-spectra

X ' hocolim−−−−−−−−→
Vn

Σ−VnΣ∞X(Vn) (5.3.3)

where the homotopy colimit is taken over the indexing sequence {Vn} and Σ∞X(Vn)
is the suspension spectrum of the G-space X(Vn). In general we will prove that two
spectra X and Y are weakly equivalent proving that for every Vn in an indexing
sequence the two G-spaces X(Vn) and Y (Vn) are isomorphic.

Definition 5.3.4. If H ⊆ G is a subgroup of G, we say that the indexing sequence
{Vn} is an H-separated indexing sequence, if the sequence of H-fixed points V H

1 (
V H

2 ( · · · ⊆ UH is a strictly increasing indexing sequence for the G/H-universe UH .

When this happens we have a nice description for the geometric fixed point:

ΦHX ' hocolim−−−−−−−−→
V H

n

Σ−V H
n Σ∞((X(Vn))H). (5.3.5)

In this sense (ΦHX)(V H
n ) = (X(Vn))H as G/H-spaces.

Lemma 5.3.6. Given a Ḡ-spectrum X̄ and a K-separated indexing sequence {Vn}
the values of (5.3.3) for the inflated spectrum are:

(InfG
Ḡ
X̄)(Vn) = ΣVn−V K

n InfG
Ḡ

(X̄(V K
n )) (5.3.7)

where Vn − V K
n is the orthogonal complement of V K

n .

Proof. We prove the statement for suspension spectra, and using (5.3.3) it holds in
general for all spectra. If S̄ is a Ḡ-space:

(Σ∞ InfG
Ḡ
S̄)(Vn) = ΣVn InfG

Ḡ
S̄ = ΣVn−V K

n ΣV K
n (InfG

Ḡ
S̄) = ΣVn−V K

n InfG
Ḡ

(ΣV K
n S̄) =

= ΣVn−V K
n InfG

Ḡ
((Σ∞S̄)(V K

n )).
(5.3.8)
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The first equality is the definition of suspension spectrum 2.3.14, the third equality
is because V K

n is a G/K-representation and commutes with inflation, while the last
one is again the definition of suspension spectrum.

Lemma 5.3.9. for every Ḡ-spectrum X̄ we have a weak equivalence of G/H-spectra:

ΦH(InfG
Ḡ
X̄) ' InfG/H

Ḡ/H̄
(ΦH̄X̄) (5.3.10)

Proof. Denote L := 〈H,K〉 the subgroup generated by H and K in G, and no-
tice that the inflation on the left hand side of (5.3.10) makes sense since Ḡ/H̄ ∼=
(G/K)/(L/K) ∼= G/L ∼= (G/H)/(L/H). Choose an indexing sequence {Vn} for the
complete G-universe U that is H-separated and K-separated, and such that the
indexing sequence {V H

n } is L/H-separated (It is an indexing sequence for the group
G/H). We will show that the two spectra (5.3.10) have isomorphic values on the
indexing sequence {V H

n }.

(ΦH(InfG
Ḡ
X̄))(V H

n ) = ((InfG
Ḡ
X̄)(Vn))H = (ΣVn−V K

n (InfG
Ḡ

(X̄(V K
n ))))H =

= ΣV H
n −V L

n (InfG
Ḡ

(X̄(V K
n )))H .

(5.3.11)

The first isomorphism is (5.3.5), while the second one is (5.3.10). For the right hand
side:

(InfG/H
Ḡ/H̄

(ΦH̄X̄))(V H
n ) = ΣV H

n −V L
n InfG/H

Ḡ/H̄
((ΦH̄X̄)(V L

n )) = ΣV H
n −V L

n InfG/H
Ḡ/H̄

((X̄(V K
n ))H̄).

(5.3.12)
The G/H-spaces (5.3.11) and (5.3.12) are isomorphic since (5.3.10) is an isomorphism
for the Ḡ-space X̄(V K

n ):

(InfG
Ḡ

(X̄(V K
n )))H = InfG/H

Ḡ/H̄
((X̄(V K

n ))H̄)

Proof of Proposition 5.3.1. Let us first prove the case when H = {1} is the
trivial subgroup, by (2.5.47) we need to prove the isomorphism:

πG∗ (InfG
Ḡ

(X̄) ∧DEF+) ∼= OF ⊗
OF/K

πḠ∗ (X̄ ∧DEF/K+). (5.3.13)

The proof works exactly as the proof of [Gre08, Lemma 9.2]. Both sides of (5.3.13)
are homology theories of X̄ (for the right hand side of (5.3.13): by [Gre08, Corollary
5.7] the ring OF is flat over OF/K so that tensoring with it is an exact functor) and
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we have a natural transformation of homology theories induced by:

[S0, X̄∧DEF/K+]Ḡ∗ → [InfG
Ḡ
S0, InfG

Ḡ
(X̄∧DEF/K+)]G∗ → [S0, (InfG

Ḡ
X̄)∧DEF+]G∗

The first map is induced by the inflation map, and the second one is induced by
a map of G-spectra InfG

Ḡ
DEF/K+ → DEF+ described in [Gre08, pag.22]. We

only need to prove that this natural transformation of homology theories is an
isomorphism for the various cells of Ḡ. When X̄ = S0 is the sphere spectrum (5.3.13)
holds since by [Gre08, Theorem 7.4]: πG∗ (DEF+) = OF . For more general cells of
Ḡ the isomorphism (5.3.13) follows from the case of the sphere spectrum by the
“Rep(G)-iso argument” [Gre08, Theorem 11.2] since both homology theories satisfy
Thom isomorphism (smashing with DEF+ gives Thom isomorphism by [Gre08,
Corollary 8.5]).

For the case when H is an arbitrary connected subgroup of G we need to
prove the more general isomorphism:

π
G/H
∗ (ΦH(InfG

Ḡ
X̄) ∧DEF/H+) ∼= OF/H ⊗

OF/L

π
Ḡ/H̄
∗ (ΦH̄X̄ ∧DEF/H̄+). (5.3.14)

We can reduce it to the case of the trivial subgroup since by (5.3.10) the left hand
side of (5.3.14) becomes

π
G/H
∗ (ΦH(InfG

Ḡ
X̄) ∧DEF/H+) ∼= π

G/H
∗ (InfG/H

Ḡ/H̄
(ΦH̄X̄) ∧DEF/H+).

With this substitution (5.3.14) is precisely (5.3.13) for the new ambient group G/H,
with inflation along the quotient map G/H → G/L and the G/L-spectrum ΦH̄X̄.

5.3.2 Building the map

We can now return to our case G = T2 and Ḡ = G/H1, and apply proposition 5.3.1
to ECḠ ∈ A(Ḡ) (5.2.12) to explicitly obtain

InfG
Ḡ

(ECḠ) =



E−1
G OF ⊗KT

E−1
H1
OF ⊗1 NT E−1

Hi
OF ⊗KT

OF ⊗1 NT


(5.3.15)
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where in codimension 1 (middle row) the value at H1 (middle row left) is the only
one different from the values at all the other connected codimension one subgroups
Hi with i 6= 1 (middle row right).

We can also explicitly compute ECG ∈ A(G) (Definition 4.4.2) as the kernel
of the map ϕ0 (4.4.4).

Definition 5.3.16. For every connected codimension 1 subgroup Hi of G define Ni

to be the kernel of the surjective OF/Hi
-map ϕi0 (4.4.28):

Ni E−1
G/Hi
OF/Hi

⊗K Ti.
ϕi

0 (5.3.17)

Then we can explicitly compute ECG:

ECG =



E−1
G OF ⊗K

E−1
Hi
OF ⊗i Ni

Ker(ϕ0(1))


(5.3.18)

Definition 5.3.19. Define the map ε : InfG
Ḡ
ECḠ −→ ECG in A(G) to be the map

that at the vertex:
ϕG(ε) := π∗1 : KT → K (5.3.20)

is the graded map that has the pullback π∗1 in each even degree, where π1 : X → C is
the projection (4.1.8) defining H1.

Lemma 5.3.21. The map (5.3.20) extends to a well defined map ε : InfG
Ḡ
ECḠ −→

ECG in A(G).

Proof. Notice that the structure maps of ECG (5.3.18) are all injective, therefore
(5.3.20) determines the map ε at each level. We only need to verify that for each
connected subgroup the target is the correct one.

For the subgroup H1, the induced map ϕH1(ε) : NT → N1 is the only map
that completes the diagram:

NT E−1
G/H1

OF/H1
⊗KT TT

N1 E−1
G/H1

OF/H1
⊗K T1

ϕH1 (ε)

q

Id⊗π∗1 π∗1

ϕ1
0

(5.3.22)
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where the top row is the exact sequence (5.2.11) whose pullback π∗1 gives the bottom
row which is the exact sequence (5.3.17) for the subgroup H1. The right vertical
map is induced by π∗1 since for every integer j ≥ 1 we have π−1

1 (C〈j〉) = D1,j so
that in the j-th component we have an induced map π∗1 : KT/OC〈j〉 → K/OD1,j . The
right square of (5.3.22) commutes due to our particular choice of coordinates t̂j for
C〈j〉 and t̂1,j for D1,j (4.2.28) (4.2.31)

t1,j = (πj1)∗(te) = π∗1 ◦ [j]∗(te) = π∗1(tj)

t̂1,j = (πj1)∗(t̂e) = π∗1 ◦ [j]∗(t̂e) = π∗1(t̂j).
(5.3.23)

For all the other connected codimension one subgroups Hi with i 6= 1 to show
the existence of the induced dotted arrow ϕHi(ε):

OF/Hi
⊗KT E−1

G/Hi
OF/Hi

⊗KT

Ni E−1
G/Hi
OF/Hi

⊗K Ti

ϕHi (ε) Id⊗π∗1
ϕi

0

(5.3.24)

we only need to verify that the zig-zag from the top left to the bottom right is the
zero map, since the bottom row is exact. The map ϕi0 (4.4.28) is zero on every
element in OF/Hi

⊗ Im(π∗1) since in the image of π∗1 there are only meromorphic
functions with poles at D1j , so they are regular on all Dij with i 6= 1.

For the trivial subgroup to show the existence of the induced dotted arrow
ϕ1(ε):

OF ⊗1 NT E−1
G OF ⊗KT

Ker(ϕ0(1)) E−1
G OF ⊗K

⊕
i≥1 E−1

Hi
OF ⊗i Ti

ϕ1(ε) Id⊗π∗1
ϕ0(1)

(5.3.25)

we need to verify that the zig-zag from the top left corner to the bottom right corner
is zero. The bottom row of (5.3.25) is the beginning of the trivial subgroup level
of the injective resolution (4.4.4) of ECG. This zig-zag is indeed zero because of
the previous diagrams. For the component i = 1 the map is zero because the same
zig-zag in (5.3.22) is zero. In the same way for all the other components i 6= 1 the
map is zero because the same zig-zag in (5.3.24) is zero.
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5.4 Proving the H-equivalence

To finish the proof of Theorem 5.1.2 we are left to show that for every subgroup H
of G such that H ∩H1 = 1 the map ε (Definition 5.3.19) induces an isomorphism

[G/H+, InfG
Ḡ
ECḠ]G∗ ∼= [G/H+, ECG]G∗ . (5.4.1)

To do so we will use the Adams spectral sequence (2.5.2) for the homology functor
πA∗ (2.5.1), and show that ε induces an isomorphism of the second page of the two
Adams spectral sequences:

Ext∗,∗A (πA∗ (G/H+), InfG
Ḡ
ECḠ) ∼= Ext∗,∗A (πA∗ (G/H+), ECG). (5.4.2)

The first step is to identify the algebraic model for the natural cells G/H+

which is done in 5.4.1. We turn then in building an injective resolution for InfG
Ḡ
ECḠ

in 5.4.2 to compute the Ext groups in Theorem 5.4.26. Recall that we already have
an injective resolution of ECG (4.4.4) that we recall in 5.4.3.

5.4.1 Algebraic model for natural cells

We explicitly compute the algebraic model for the natural cells: πA∗ (G/Hi+) for
the connected codimension one subgroups Hi of G, and πA∗ (G/F+) for the finite
subgroups F .

Lemma 5.4.3. For every i ≥ 1 the algebraic model πA∗ (G/Hi+) has values:

ϕHi(πA∗ (G/Hi+)) = ΣH∗(BG/Hi)/e(zi) = ΣQ (5.4.4)

ϕ1(πA∗ (G/Hi+)) =
⊕
F⊆Hi

ΣH∗(BG/F )/e(zi) (5.4.5)

while ϕG(πA∗ (G/Hi+)) = ϕHj (πA∗ (G/Hi+)) = 0 for j 6= i. The structure maps are
the ones induced by the suspended sphere πA∗ (Szi) (2.5.52). Here e(zi) is the Euler
class (2.5.13) of the character zi (4.1.7) having Hi as kernel.

Proof. We start from the cofibre sequence of G-spaces:

G/Hi+ −→ S0 e(zi)−−−→ Szi . (5.4.6)

Applying the suspension functor we obtain a cofibre sequence in G-spectra, which
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induces a long exact sequence for the homology functor πA∗ :

πA∗ (G/Hi+) −→ πA∗ (S0) e(zi)−−−→ πA∗ (Szi). (5.4.7)

By (2.5.51) the induced map e(zi) in (5.4.7) at the levels of the subgroups G
and Hj with j 6= i is the identity since zGi = z

Hj

i = 0, therefore we obtain zero as
kernel and cokernel at those levels. At the level of the subgroup Hi since zHi

i = zi

the map e(zi) is induced by the map

ϕHi(e(zi)) : OF/Hi
→ ΣziOF/Hi

(5.4.8)

that sends the unit ι ∈ OF/Hi
to precisely the Euler class e(zHi

i ) ∈ OF/Hi
as defined

in (2.5.13). Using the coordinate ci (2.5.17), the Euler class e(zHi
i ) has ci in the

Hi-th component and 1 in all the other components. Therefore the map (5.4.8) is
injective so it has no kernel, while the cokernel is Σ2Q[ci]/(ci), which is the only
contribution to (5.4.4).

At the bottom level we can apply the same argument, the map:

ϕ1(e(zi)) : OF → ΣziOF (5.4.9)

sends the unit ι ∈ OF to precisely the Euler class e(zi) ∈ OF , which by (2.5.13) and
(2.5.23) has components:

e(zi)F =

1 if F * Hi

xi if F ⊆ Hi

(5.4.10)

Therefore the map (5.4.9) is injective and the cokernel is precisely the suspension of
(5.4.5).

Lemma 5.4.11. For every finite subgroup F of G the algebraic model πA∗ (G/F+)
has a zero at each subgroup level except at the bottom level (2.5.33) where it has the
value:

πA∗ (G/F+)(1) =
⊕
F ′⊆F

Σ2H∗(BG/F ′)/(xA, xB) =
⊕
F ′⊆F

Σ2Q (5.4.12)

the suspended rationalized Burnside ring of F . We are using the coordinates
H∗(BG/F ′) ∼= Q[xA, xB] (2.5.21).

Proof. In this case we use directly the definition of the homology functor πA∗
(2.5.47). If H is a connected subgroup of G different from the trivial one, then
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ϕH(πA∗ (G/F+)) = 0, since ΦH(G/F+) = 0 because the H-fixed points of the G-
space G/F+ is only the basepoint.

At the bottom level we have the rationalized Burnside ring of F [Bar08,
Definition 1.3.5]:

πG∗ (DEF+ ∧G/F+) ∼= πG∗ (G/F+) ∼= Σ2A(F ) ∼=
⊕
F ′⊆F

Σ2Q. (5.4.13)

For the first isomorphism of (5.4.13) we use that natural cells are strongly dualizable
2.2.5, more precisely by [GM95a, (4.16)]:

D(G/F+) = F (G/F+, S
0) ' S−L(F ) ∧G/F+ (5.4.14)

where L(F ) is the tangent F -representation at the identity coset G/F . Therefore:

πG∗ (DEF+ ∧G/F+) ∼= πG∗ (DEF+ ∧ SL(F ) ∧D(G/F+))
∼= πG∗ (SL(F ) ∧D(EF+ ∧G/F+))
∼= πG∗ (SL(F ) ∧D(G/F+)) ∼= πG∗ (G/F+).

(5.4.15)

The weak equivalence EF+ ∧ G/F+ ' G/F+ can be obtained from the isotropy
separation cofibre sequence of G/F+ (2.4.25):

EF+ ∧G/F+ → G/F+ → ẼF ∧G/F+ (5.4.16)

noticing the last term is nullhomotopic since G/F+ has stable isotropy in F . The
second isomorphism of (5.4.13) can be obtained with (2.4.6) and the restriction-
coinduction adjunction (2.4.5):

[S0, G/F+]G ∼= [S0, SL(F ) ∧ F (G/F+, S
0)]G

∼= [S−L(F ), FF (G+, S
0)]G

∼= [i∗FS−L(F ), S0]F ∼= Σ2[S0, S0]F = Σ2A(F )

5.4.2 Injective resolution of InfGḠ ECḠ

We build an injective resolution of InfG
Ḡ
ECḠ (5.3.15) in the abelian category A(G):

0 InfG
Ḡ
ECḠ I′0 I′1 I′2 0.

ϕ′0 ϕ′1 (5.4.17)
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We first rewrite InfG
Ḡ
ECḠ in a more convenient form:

InfG
Ḡ
ECḠ =



E−1
G OF ⊗1 NT

E−1
Hi
OF ⊗1 NT

OF ⊗1 NT


(5.4.18)

where at each level we are tensoring the OF -module of πA∗ (S0) (Lemma 2.5.48) with
the nub NT (5.2.12) of ECḠ:

Remark 5.4.19. To obtain (5.4.18) from (5.3.15) simply notice that when i 6= 1 we
have EG/H1 ⊆ EHi ⊆ EG and therefore:

E−1
Hi
OF ⊗

1
NT ∼= E−1

Hi
OF ⊗

1
E−1
G/H1

NT ∼= E−1
Hi
OF ⊗

1
(E−1
G/H1

OF/H1
⊗KT) ∼= E−1

Hi
OF ⊗KT.

The same is true for E−1
G OF ⊗1 NT ∼= E−1

G OF ⊗KT.

Notice that for the family of all subgroups of G the universal space is precisely
E[All]+ ' S0. Therefore combining [Gre08, p. 12.3] and [Gre08, p. 10.2] we obtain
the injective resolution of S0 in A(G):

S0 −→ fG(Q) −→
⊕
i≥1

fHi(
⊕
j≥1

Σ2H∗(BG/Hj
i )) −→ f1(

⊕
F∈F

Σ4H∗(BG/F )) −→ 0.

We can rewrite this last sequence in a more convenient form for us:

S0 −→ fG(Q) −→
⊕
i≥1

fHi(
E−1
G/Hi
OF/Hi

OF/Hi

) −→ f1(M) −→ 0, (5.4.20)

where M is the OF -module:

M := (
⊕
i≥1

E−1
G OF
E−1
Hi
OF

)/∆ (5.4.21)

and ∆ is the diagonal submodule: the image of the map

E−1
G OF −→

⊕
i≥1

E−1
G OF
E−1
Hi
OF

.

Since NT is flat over OF/H1
[Gre05, Lemma 5.3], we can simply tensor over this ring
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every OF -module of (5.4.20) to obtain an injective resolution of InfG
Ḡ
ECḠ in A(G).

More precisely the terms of the injective resolution (5.4.17) are:

I′0 = fG(KT)

I′1 = fH1(TT)
⊕
i>1

fHi(
E−1
G/Hi
OF/Hi

OF/Hi

⊗KT)

I′2 = f1(M ⊗
1
NT),

(5.4.22)

where M is defined in (5.4.21), NT in (5.2.11), and we have used Remark 5.4.19.
Notice we obtain fH1(TT) in I′1 since by [Gre12, Proposition 3.1] the module E−1

H1
OF

is flat over OF/H1
. Moreover I′1 is indeed injective by 2.5.45 and 2.5.46 since TT is a

torsion injective OF/H1
-module and

Σ2H∗(BG/Hj
i )⊗KT

is a torsion injective H∗(BG/Hj
i
)-module.

5.4.3 Injective resolution of ECG

For convenience we recall the injective resolution built in 4.4 of ECG. By (4.4.4) we
have an injective resolution of ECG in A(G):

0 ECG I0 I1 I2 0ϕ0 ϕ1 0 (5.4.23)

where the terms are:

I0 := fG(K)

I1 :=
⊕
i≥1

fHi(Ti)

I2 := f1(N),

(5.4.24)

with

N :=
⊕
F

H2
F

Ti :=
⊕
j≥1
K/ODij

(5.4.25)

as defined in (4.4.25) and (4.4.20), with all local cohomology modules coming from
the Cousin complex of OTP

X (4.3.18).
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5.4.4 Computing the Ext groups

We are finally ready to finish the proof of Theorem 5.1.2, namely to show the
isomorphism of the Ext groups in the Adams spectral sequences (5.4.1). To do so
we will need some technical results that we prove after the main Theorem, and that
we use in the proof.

Theorem 5.4.26. For every subgroup H of G such that H ∩H1 = {1} the map ε
(5.3.20) induces an isomorphism between the terms in the Adams spectral sequence:

Ext∗,∗A (G/H+, InfG
Ḡ

(ECḠ)) ∼= Ext∗,∗A (G/H+, ECG) (5.4.27)

Proof. First recall the injective resolutions of InfG
Ḡ
ECḠ (5.4.17), and ECG (5.4.23),

as well as the algebraic model for the natural cells (Lemma 5.4.3, and Lemma 5.4.11).
It is enough to show that for every such H, in the following commutative

diagram (obtained taking morphisms into the injective resolutions):

HomA(G/H+, I′0) HomA(G/H+, I′1) HomA(G/H+, I′2) 0

HomA(G/H+, I0) HomA(G/H+, I1) HomA(G/H+, I2) 0

δ′1

ε1 ε2

δ1

(5.4.28)
the vertical maps (induced by ε) are all isomorphisms. We will first show this when
H has codimension 1, and then when H is finite. Recall the definition of the injective
objects in the first row (5.4.22), and in the second one (5.4.24).

If H has codimension 1, then necessarily H is connected and without loss of
generality we can suppose H = H2. The first column of (5.4.28) is zero since by the
adjunction (2.5.44):

HomA(G/H2+, fG(KT)) ∼= HomQ(0,KT) = 0

and with the same argument: HomA(G/H2+, fG(K)) = 0.
Moving to the second column, by Lemma 5.4.3 the object G/H2+ has a zero

at each subgroup Hs with s 6= 2. Therefore the only summands of I′1 and I1 that do
contribute are the ones constant below H2, using the coordinate H∗(BG/H2) ∼= Q[c2]
(2.5.17) by the adjunction (2.5.44) we obtain:

HomA(G/H2+, I
′
1) ∼= HomA(G/H2+, fH2(

E−1
G/H2

OF/H2

OF/H2

⊗KT))

∼= HomQ[c2](ΣQ,Q[c±1
2 ]/Q[c2]⊗KT) ∼= ΣKT.
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Explicitly the morphism f ∈ KT is the one that sends the unit to the element
[c−1

2 ]⊗ f . In the same way:

HomA(G/H2+, I1) ∼= HomA(G/H2+, fH2(T2))
∼= HomQ[c2](ΣQ,K/OD2

) ∼= ΣOD2/m2

where m2 is the ideal of OD2 of those functions vanishing at D2 and explicitly the
morphism [f ] ∈ OD2/m2 is the one that sends the unit to the element [t̂−1

2 f ] ∈ K/OD2
.

By Lemma 5.4.38 the map ε1 (5.4.28) is an isomorphism, since in each even
degree it is the map:

π∗1 : KT
∼=−→ OD2/m2.

Moving to the third column of (5.4.28), using the adjunction (2.5.44):

HomA(G/H2+, I
′
2) ∼= HomA(G/H2+, f1(M ⊗

1
NT))

∼= HomOF (
⊕
F⊆H2

ΣH∗(BG/F )/(x2),M ⊗
1
NT)

∼=
⊕
F⊆H2

HomH∗(BG/F )(ΣH∗(BG/F )/(x2), (M ⊗
1
NT)F )

∼=
⊕
n1≥1

ΣKT/OC〈n1〉
.

(5.4.29)

where M is defined in (5.4.21), NT in (5.2.11) and x2 in (2.5.23). The last iso-
morphism of (5.4.29) is obtained as follows. First for every n1 ≥ 1 we have the
finite cyclic subgroup F = Cn1 = Hn1

1 ∩ H2 ⊆ H2. By Lemma 5.4.41 an element
in the F -th component of the third row of (5.4.29) is a map sending the unit of
ΣH∗(BG/F )/(x2) to a sum of elements of the form (5.4.42) with h = 1. Therefore
the F -th component of the map δ′1 (5.4.28):

(δ′1)F : ΣKT → HomH∗(BG/F )(ΣH∗(BG/F )/(x2), (M ⊗
1
NT)F ) (5.4.30)

is surjective with kernel ΣOC〈n1〉, since (5.4.30) sends f to the map which sends the
unit to the element

[(0, [x−k1 x−1
2 ], 0, . . . )] ⊗

Q[x1]
(xk1 ⊗ f) ∈ (M ⊗

1
NT)F

with ftkn1 regular on C〈n1〉. Therefore (δ′1)F induces the last isomorphism of (5.4.29).
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In the same way:

HomA(G/H2+, I2) ∼=
⊕
F⊆H2

HomH∗(BG/F )(ΣH∗(BG/F )/(x2), NF )

∼=
⊕
F⊆H2

Σ(OD2/m2)/(OF /m2).
(5.4.31)

where by (4.3.17) the F -th component of N (5.4.25) can be described as:

NF = H2
F
∼=
⊕
i≥1

(K/ODi,ni
)/K, (5.4.32)

and OF is defined in (4.2.15). The last isomorphism of (5.4.31) is obtained as before.
The F -th component of the map δ1 (5.4.31):

(δ1)F : ΣOD2/m2 → HomH∗(BG/F )(ΣH∗(BG/F )/(x2), NF ) (5.4.33)

is surjective, with kernel ΣOF /m2. This is because By Lemma 4.4.53 every element
in (5.4.32) admits a representative [(0, [g], 0, . . . )] with only the second component
different from zero. Therefore an element in the F -th component of (5.4.31) is a map
sending the unit to an element of the form: [(0, [t̂−1

2 f ], 0, . . . )] with [f ] ∈ OD2/m2,
which is precisely the F -th component of δ1([f ]). This shows that (δ1)F induces the
last isomorphism of (5.4.31).

By Lemma 5.4.38 the map ε2 (5.4.28) is an isomorphism, since in every F -th
component and in each even degree it is the map:

π∗1 : KT/OC〈n1〉
∼=−→ (OD2/m2)/(OF /m2).

where F = Hn1
1 ∩H2.

Let us prove the case when H is a finite subgroup of G such that H∩H1 = {1}.
By Lemma 5.4.37 we have H ∼= Cn is cyclic and without loss of generality H ⊆ H2.
Notice that H = Hn

1 ∩ H2. Using the adjunction (2.5.44), the first two columns
of (5.4.28) are zero, since by Lemma 5.4.11 the algebraic model for G/H+ is zero
everywhere except at the trivial subgroup. Therefore we are only left to prove that
the map ε2 (5.4.28) is an isomorphism. By the adjunction (2.5.44):

HomA(G/H+, I′2) ∼=
⊕
F⊆H

HomH∗(BG/F )(Σ2Q, (M ⊗
1
NT)F ) ∼=

⊕
n1|n

OC〈n1〉/m,

(5.4.34)
where m < OC〈n1〉 is the ideal of those functions vanishing at C〈n1〉. The last
isomorphism of (5.4.34) can be proven similarly to (5.4.29) term by term for every
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F = Hn1
1 ∩H2. An element in the F -th component of (5.4.34) is an H∗(BG/F ) ∼=

Q[x1, x2]-module map sending the unit of Q to an element of (M ⊗1 NT)F which is
zero if multiplied by x1 or x2 (2.5.23). By Lemma 5.4.41 such an element is sum of
elements of the form:

[([x−1
1 x−1

2 ], 0, 0, . . . )] ⊗
Q[x1]

(x1 ⊗ f/tn1
)

with [f ] ∈ OC〈n1〉/m, hence we obtain (5.4.34). Similarly:

HomA(G/H+, I2) ∼=
⊕
F⊆H

HomH∗(BG/F )(Σ2Q, NF ) ∼=
⊕
F⊆H

OF/〈m1,m2〉, (5.4.35)

where mi < OF is the ideal of those functions vanishing at Di,ni . The second
isomorphism of (5.4.35) is proven for every F similarly to (5.4.31). The element
[f ] ∈ OF/〈m1,m2〉 defines the H

∗(BG/F ) ∼= Q[x1, x2]-module map that sends the
unit of Q to the following element with only the first component different from zero:

[([ f

t̂1,n1 t̂2,1
], 0, 0, . . . )] ∈ NF ,

where we have used (5.4.32).
By Lemma 5.4.38 the map ε2 (5.4.28) is an isomorphism, since in every F -th

component and in each even degree it is the map:

π∗1 : OC〈n1〉/m
∼=−→ OF/〈m1,m2〉

where π−1
1 (C〈n1〉) = D1,n1 , so that a function in m has pullback in m1.

Remark 5.4.36. The form of this proof suggests a geometric counterpart of the
statement directly in Algebraic Geometry. The Lie group homomorphism z1 : G� Ḡ

induces the projection π1 = X(z1) : X � C, while for every subgroup H such
that H ∩ H1 = 1 we have the inclusion iH : H ↪→ G inducing the immersion
ι = X(iH) : X(H) ↪→ X . This induces the following dictionary between Topology
and Algebraic geometry:
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Topology Algebraic Geometry

ECG OX
ECḠ OC

InfG
Ḡ
ECḠ π∗1OC

SW OX (DW )
S(V ⊗ w)+ Σ−1OX (DV⊗w)/OX
CP(V )+ (π1)∗(Σ−1OX (DV⊗w)/OX )

i∗H InfG
Ḡ
ECḠ ' i∗HECG ι∗π∗1OC ∼= ι∗OX

where V is a T-representation and W is a G-representation. Denoting F =
Σ−1OX (DV⊗w)/OX , we can also translate the statement of Corollary 5.1.4 (using
homology instead of cohomology):

πG∗ (S(V ⊗ w)+ ∧ ECG) ∼= πḠ∗ (CP(V )+ ∧ ECḠ)

into its Algebraic Geometry counterpart:

H∗(X ,F ⊗OX ) ∼= H∗(C, (π1)∗(F ⊗OX )) ∼= H∗(C, (π1)∗F ⊗OC),

that possibly can be proven directly using geometric arguments like (5.1.19), (5.1.20),
and working on the higher images functors.

We conclude with the results needed for the proof of Theorem 5.4.26.

Lemma 5.4.37. If F ⊆ G is a finite subgroup of G such that F ∩H1 = {1}, then
F is cyclic and there is a connected codimension 1 subgroup Hi such that F ⊆ Hi

and Hi ∩H1 = {1}.

Proof. Suppose F is not cyclic, then it contains at least a p-group of the form
F ′ ∼= Z/pZ × Z/pZ for a prime p. But inside G there is only one copy of such a
p-group, namely the subgroup of elements of order p in G: G[p] = T[p]× T[p]. This
is immediate to see since every element in F ′ has order p, therefore F ′ ⊆ G[p] and
they have the same cardinality. This gives us a contradiction since |F ′ ∩H1| = p > 1.

To prove the existence of such an Hi let us think about G as the quotient
G = T × T ∼= (R × R)/(Z × Z). Every connected codimension 1 subgroup Hi is
determined by a point Pi = (λi, µi) ∈ Z × Z for a pair of coprime integers λi and
µi, namely Hi is the image in the quotient (R × R)/(Z × Z) of the line in R × R
connecting the origin to the point Pi. For example H1 is determined by the point
P1 = (0, 1). By the first part of the Lemma F is cyclic and generated by a point
Q = [(a/n, b/n)] ∈ (R × R)/(Z × Z) with a, b ∈ Z and where n is the order of F .
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Since F ∩H1 = {1} we have a 6= 0 and that a and n are coprimes, otherwise we can
find a non-trivial multiple of Q not in Z× Z but that lies in H1. Therefore we can
find r, s ∈ Z such that rn+ sa = 1. For obvious reason s and n are coprimes, so the
s-th multiple of Q:

Q′ = sQ = [(sa
n
,
sb

n
)] = [(r + sa

n
,
sb

n
)] = [( 1

n
,
sb

n
)]

is a generator for the subgroup F . The subgroup Hi defined by the point Pi = (1, sb)
satisfies all the requirements. We have Hi ∩H1 = {1} since the line connecting the
origin to Pi does not intersect any integer vertical line. Moreover the line connecting
the origin to Pi passes through Q′, therefore F ⊆ Hi since Q′ generates F .

Lemma 5.4.38. The pullback along the projection π1 : X → C induces an isomor-
phism:

π∗1 : KT
∼=−→ OD2/m2, (5.4.39)

that restricted to OC〈n1〉 for any integer n1 ≥ 1 gives an isomorphism:

π∗1 : OC〈n1〉
∼=−→ OF/m2 (5.4.40)

where F = Hn1
1 ∩H2.

Proof. The isomorphism (5.4.39) is (4.4.54) for the point P = {e} and for the
projection π1 instead of π2. To prove (5.4.40) it is enough to notice that π−1

1 (C〈n1〉) =
D1,n1 and therefore (5.4.39) restricted to OC〈n1〉 gives functions that are regular also
at D1,n1 , by Lemma 4.4.53 we obtain that the image is precisely OF (4.2.15).

Lemma 5.4.41. For every finite subgroup F = Hn1
1 ∩H2 ⊆ H2, every element in

the F -th component (M ⊗1 NT)F is sum of elements of the form

[([x−k1 x−h2 ], 0, 0, . . . )] ⊗
Q[x1]

(xk1 ⊗ f) ∈ (M ⊗
1
NT)F (5.4.42)

such that h, k ≥ 1 and ftkn1 ∈ OC〈n1〉. Here M is defined in (5.4.21), NT in (5.2.11),
and we have used the coordinates H∗(BG/F ) ∼= Q[x1, x2] (2.5.23).

Proof. Every element in the F -th component of M (5.4.21) can be written as:

[([p(x1, x2)
xk1x

h
2

], 0, 0, . . . )] ∈ (
⊕
i≥1

E−1
G Q[x1, x2]
E−1
Hi

Q[x1, x2]
)/∆

with k, h ≥ 1 and only the first component of the representative of the class different
from zero.
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Every element in (NT)n1 can be written as xs1xr1 ⊗ f for s ≥ 0, with trn1f

regular at C〈n1〉 and that does not vanish on C〈n1〉.
Therefore every element in (M ⊗1 NT)F is sum of elements of the form:

[([x−k1 x−h2 ], 0, 0, . . . )] ⊗
Q[x1]

(xr1⊗f) = [([x−k1 x−h2 ], 0, 0, . . . )] ⊗
Q[x1]

(xk1⊗(ftr−kn1 )). (5.4.43)

The equality (5.4.43) is true since under the isomorphism:

E−1
G Q[x1, x2]
E−1
H1

Q[x1, x2]
⊗

Q[x1]
(NT)n1

∼= E−1
H1

Q[x1, x2] ⊗
Q[x1]

KT/OC〈n1〉
(5.4.44)

the two elements in the left hand side: [x−k1 x−h2 ]⊗Q[x1] (xr1 ⊗ f) and [x−k1 x−h2 ]⊗Q[x1]

(xk1 ⊗ (ftr−kn1 )) are sent to the same element in the right hand side.
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Chapter 6

Future directions

6.1 Higher Tori

In Chapter 4 we built rational T2-equivariant elliptic cohomology ECT2 ∈ A(T2). A
really natural question is how to generalize this construction and the construction for
the circle ECT ∈ A(T) to tori of any rank Tk, namely building rational Tk-equivariant
elliptic cohomology ECTk ∈ A(Tk) starting from an elliptic curve C over C and a
coordinate te ∈ OC,e. First we need to ask which kind of properties we want ECTk

to satisfy. An obvious thing to ask is for ECTk to be 2-periodic, and the value on
spheres of complex representations SV with V Tk = 0 to be given in terms of the
sheaf cohomology of a line bundle O(−DV ) over XTk

∼= Ck:

ECeven
Tk (SV ) ∼= Heven(XTk ,O(−DV ))

ECodd
Tk (SV ) ∼= Hodd(XTk ,O(−DV )).

(6.1.1)

The isomorphism in (6.1.1) might be too much to ask for our theory, namely in the
T2-case we obtained an isomorphism since by (4.5.12) the second page of the Adams
spectral sequence:

ExtsA(SV , ECT2) ∼= Hs(XT2 ,O(−DV )). (6.1.2)

has only three rows different from zero (namely for s = 0, 1, 2), since XT2 has
dimension 2. As a consequence all the differentials in the second page are zero and
the Adams spectral sequence degenerates at the second page. For k ≥ 3 the complex
abelian variety XTk has dimension k, and therefore in the Adams spectral sequence
(6.1.2) we obtain more than 3 rows different from zero and the differential might be
non-trivial. Therefore we might get simply a convergent spectral sequence in (6.1.1)
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instead of an isomorphism. The associated divisor DV might be defined in the same
way, for every subgroup H of Tk we have the associated subvariety of XTk :

X(H) := HomAb(H∗, C).

where H∗ := Hom(H,T) is the character group of H. Therefore if V = ⊕
n αnz

n,
where zn is the one dimensional complex representation of Tk with weight vector
n = (n1, . . . , nk) ∈ Hom(Tk,T), the associated divisor of V can still be defined as:

DV :=
∑
n

αnX(Ker(zn)).

The main difficulty in building ECTk resides in the combinatorics of the intersections
of the subvarieties X(H). For ECT2 we started by defining the codimension 1
subvarieties Dij (4.1.11) associated to the codimension one subgroups Hj

i of T2. In
codimension 2 the way the Hj

i intersect in the finite subgroups F , is mirrored in
geometry in how the Dij intersect in the X̄(F ) (Lemma 4.1.17). For T2 we don’t
need to go further, but for Tk we might need an inductive argument to replace
Lemma 4.1.17, and starting from the subvarieties in codimension 1, define the lower
dimensional subvarieties as the appropriate intersections of the one above so to mirror
the poset of subgroups in Tk. Moreover all the Lemmas to fit the geometric inputs
from the Cousin complex as modules in the algebraic model (Lemmas 4.4.17, 4.4.22,
4.4.29, 4.4.33), are somehow a doc constructions for the T2-case. For general tori we
need a more rigorous framework to obtain those results at each dimension. This goal
can probably be achieved by a more generic use of Local cohomology modules and
their properties (for T2 we have often used a specific form of those modules (4.3.17),
(4.3.13)).

6.2 General complex abelian surfaces

We can also consider a totally different direction, and try to generalize the construction
of ECT2 towards more general geometric inputs instead of generalizing the group of
equivariance. Namely one can consider a complex abelian surface S that might not
be X = C × C for a complex elliptic curve C, for example a good first generalization
could be a surface S which is isogeneous to the product of two elliptic curves. One
can then try to define a poset of subvarieties to mirror the intersection pattern of
subgroups of T2 4.1, consider the Cousin complex (which will still have the same
length) and try to define the action (Lemmas 4.4.17, 4.4.22) on the pieces of the
cousin complex to build an exact sequence of injective objects (4.4.1) in A(T2). From
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this exact sequence we can define a theory EST2 ∈ A(T2) whose values on spheres
of complex representations SV are given in terms of the sheaf cohomology of a line
bundle O(−DV ) on the surface S. It would be really interesting to see if such theories
can be defined, which properties do they have and if they are bonded in some sense to
elliptic cohomology or they differ from it in a significant way. It seems unlikely that
every complex abelian surface S gives rise to a T2-equivariant cohomology theory,
probably it could be done for surfaces satisfying certain conditions. Investigating the
right hypothesis for a surface to generate a rational T2-equivariant elliptic cohomology
theory could lead to interesting results.

6.3 Grassmanians

In Chapter 5 we computed rational T-equivariant elliptic cohomology of the space of
complex lines CP(V ) for a T-representation V . The next natural step would be to
compute elliptic cohomology of grassmanians of n-planes Grn(V ) for n > 1 (notice
Gr1(V ) = CP(V )). To generalize the same method used in Chapter 5 notice that
Grn(V ) ∼= Frn(V )/U(n) is the quotient of the space of n-frames of V by the free U(n)-
action. Therefore we would need first to build unitary versions of rational equivariant
elliptic cohomology ECG for G = T× U(n), and then prove a U(n)-splitness result
like 5.1.2.
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