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Abstract

We study participation games with negative feedback, i.e. games where
players choose either to participate in a certain project or not and where the
payoff for participating decreases in the number of participating players. We
use the replicator dynamics to model the competition between different behav-
ioral rules that specify how to play the game in a repeated setting. This results
in an analytically tractable model which is able to describe the type of behav-
ior found in the experimental and computational literature. We find that an
increase in the number of players destabilizes the unique symmetric mixed strat-
egy Nash equilibrium. The time series of perpetually fluctuating participation
rates typically exhibits linear autocorrelation structure and underparticipation.
We investigate whether this time series structure can be exploited, and we re-
late underparticipation to the payoff structure of the participation game.

Keywords: Participation games; Evolutionary game theory; Nonlinear dynam-
ics.

JEL Classification: C72; C73.

1 Introduction

Many decisions, such as companies choosing whether or not to enter a new market or
to invest in a new technology, commuters choosing a route to the workplace, work-
ers deciding on union membership or citizens deciding to vote or not, involve the
choice between only two alternatives. These situations can be modeled as participa-
tion games where each player has to decide whether or not to participate in a certain
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‘project’ and where the payoff associated with participating depends upon the number
of other players participating. Where different players compete for a scarce resource,
as in market entry or route choice, these payoffs decrease as the number of partici-
pating players increases. In this case there is a negative feedback from the aggregate
participation rate to individual payoffs. Public good provision, union membership or
technology adoption, on the other hand, may be characterised by positive feedback,
where payoffs for participating increase with the number of participating agents. The
character of the feedback is particularly relevant when participation games are played
repeatedly. In a negative feedback participation game, when a player believes that
few players will participate in the next period, he\she is more likely to participate.
However, if many other players think this way, the participation rate in the next pe-
riod will in fact be high. In contrast, for positive feedback participation games beliefs
about participation rates are self-reinforcing.!

In this paper we focus on negative feedback participation games, where players have
to compete for a scarce resource. Typically, these participation games allow for mul-
tiple Nash equilibria. When communication is impossible, and in the absence of
market institutions that act as a coordination device, players have to rely on their
private beliefs and observations of previous aggregate outcomes to solve this non-
trivial coordination problem. Negative feedback participation games can be divided
in two classes of games, which we refer to as market entry games and route choice
games, respectively. In the first the payoff for participating depends upon aggregate
decisions of other players, whereas the payoff for not participating is constant. This
is for example the case when firms have to decide to enter a new market or not.
In route choice games, on the other hand, both alternatives, participating and not
participating, are subject to strategic uncertainty in the sense that their respective
payoffs depend on the decisions made by the other agents. A typical example are
commuters traveling every day between their residential area and their office facilities
and having to decide which of two possible roads they should take.

Market entry games, with payoffs for entering the market linearly decreasing in the
number of entrants, have been extensively analysed experimentally, see e.g. Sundali
et al. (1995), Erev and Rapoport (1998), Rapoport et al. (1998), Zwick and Rapoport
(2002) and Duffy and Hopkins (2005). A robust finding from this literature is that
participation rates keep on fluctuating and that players do not coordinate on a pure
strategy Nash equilibrium. Aggregate behavior seems to be roughly consistent with
the symmetric mixed strategy Nash-equilibrium. At the individual level, however,
subjects typically do not randomize and a large variation of strategies can be ob-
served, with some subjects always participating, others never participating and yet
other subjects conditioning their behavior on the outcome in previous rounds. These
results are confirmed in experiments of the route choice type. Meyer et al. (1992),
for example, consider suppliers who have to choose between two locations to sell their
product and lida et al. (1992) and Selten et al. (2006) report on laboratory experi-

In a related expectations feedback framework Heemeijer et al. (2006) present experimental
evidence that shows there indeed exist substantial differences between behavior in environments
characterised by positive expectations feedback and environments characterised by negative expec-
tations feedback.



ments where subjects have to choose between two roads for a number of consecutive
periods. There is thus abundant experimental evidence that, particularly at the in-
dividual level, Nash equilibrium is not a good description of actual behavior, and
that participation rates typically do not settle down. Goeree and Holt (2005) argue
that a quantal response equilibrium is more succesful than the Nash-equilibrium in
explaining data from market entry experiments. The reinforcement learning model
(Erev and Roth, 1998) has also been advanced to explain the experimental results
(see e.g. Erev and Rapoport, 1998 and Duffy and Hopkins, 2005). An important
drawback of these explanations is that they assume that subjects randomize their
participation decision, which is not supported by the experimental evidence.

The computational economics literature on negative feedback participation games
starts out with Arthur (1994) who considers N players that independently and re-
peatedly decide whether to go to a bar or not. The night in the bar is pleasant
(unpleasant) when N, people or less (more than N, people) go, whereas staying at
home would result in an intermediate neutral experience. This so-called El Farol bar
problem is, in fact, a market entry game with payoffs given by a step function. Arthur
(1994) uses computer simulations to analyse the interaction of 100 agents each choos-
ing from their own set of predictors for the participation rate. Agents make their
participation decision on the basis of the selected predictor. Forecasting accuracy of
the predictors determines which of them is chosen by the player.?2 The simulations
show that fluctuations persist in the long run, although average participation seems
to converge to the capacity of the bar. Moreover, regularities in participation rates
are ‘arbitraged’ away by rules that predict cycles. Zambrano (2004) shows that the
average participation rate coincides with the set of mixed strategy Nash equilibria of
the prediction game that underlies the El Farol bar problem. Franke (2002) applies a
reinforcement learning model to the El Farol bar problem and finds that the long run
distribution of the probability to participate is either centered around the symmetric
mixed strategy Nash equilibrium or is binomial with peaks at very low and very high
probabilities to participate. He concludes that the long run outcomes are rather sen-
sitive to the model specification. A ‘route choice’ variant of the El Farol bar problem
is the so-called minority game. This game, introduced and studied by physicists (see
e.g. Challet and Zhang, 1997 and 1998) using tools from statistical mechanics, has an
odd number of players and positive payoffs only for the players making the minority
choice. Bottazzi and Devetag (2003) present experimental results on a minority game
with 5 players. A drawback of all of these computational models is that they are quite
complicated and therefore typically analyzed by simulation methods only.

In this paper we introduce a framework where agents play the negative feedback
participation game by using simple deterministic rules. Each behavioral rule pre-
scribes exactly, given past aggregate outcomes, when to participate. An evolutionary
competition between those rules, based upon the well-known replicator equation,
determines the fraction of the population using each rule. These fractions depend
positively upon the payoffs generated in the previous periods by the corresponding

ZNotice that, although payoffs of the El Farol bar game are of the ‘market entry’-type, by
rewarding rules according to prediction accuracy the game is in fact transformed into a route choice
game. We will return to this issue in Section 6.



rule. This approach has been applied in other environments (see e.g. Brock and
Hommes, 1997, 1998, and Droste et al., 2002) but is new for participation games. We
show that our simple and tractable analytic model is able to describe the results of
the high dimensional computational models and is consistent with the experimental
evidence. Moreover, we establish that as the number of players (which we refer to as
the size of the game) increases the Nash equilibrium destabilizes. Note that if players
would play the symmetric MSNE fluctuations in the participation rate decrease as
the number of players increases. The effect of the size of the game is of interest since
laboratory experiments can typically deal only with up to 25 players whereas natural
experiments such as the route choice problem or internet congestion involve many
more players. We also show that the introduction of new rules which try to exploit
any regularities in the time series of participation rates do not stabilize participation,
but instead make the time series more irregular and more unpredictable.

The remainder of the paper is structured as follows. In Section 2 the negative feed-
back participation game is introduced, its Nash-equilibria are characterised and some
illustrative experimental results are discussed. Section 3 introduces a framework for
studying evolutionary competition between different behavioral rules and in Section 4
this framework is applied to the simplest possible environment. The relation between
stability and the number of players is also discussed there. In Section 5 we investigate
whether new rules can profit from regularities in the time series of participation rates
and Section 6 relates the ‘participation premium’ found in experiments and in the
numerical simulations to the difference between market entry and route choice games.
Section 7 concludes. The appendix contains proofs of the main results.

2 A participation game with negative feedback

Consider a market entry game with N players. Each player chooses an action a €
{0,1}, where a = 1 stands for participating and a = 0 for not participating. The
action space is given by A = {0,1}" and an action profile by a€A. By a_; =
(a1, ..., Gi_1,0i11,---,an) we denote the set of actions played by all players but player
i. Payoffs m; (a;,a_;; N, N) are given as:

T (Oaa—i;NcaN) =
. N
at+f—y i X ma <N (1)
Uy (La—i;NcaN) = )
a—v if Z;.V:L#iaijc

where the parameter N, denotes the capacity of the project. Participating gives
payoff o — v if N, or more of the other NV — 1 players participate, and payoff a4+ 3 —~
if less than N, of the other N — 1 players participate.® We assume o > < to ensure
that payoffs are always strictly positive and 8 > 7 to ensure that a; = 1 is not a
dominated strategy. The payoff a corresponds to some outside payment, v to the
cost or effort of participation and § to the (uncertain) return of a succesful project.

3Note that for N = 2 and N, = 1, this payoff structure is similar to the well-known Hawk-Dove
game (see e.g. Fudenberg and Tirole, 1991, pp. 18-19).
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Notice that in many experimental market entry games the payoff for participating is
linearly decreasing in the number of other entrants. The present formulation, using
a step function for the payoffs, is equivalent with the payoff function for the Fl Farol
bar game used in Arthur (1994) and Franke (2002). We chose this stylized version of
the market entry game since it facilitates analyzing the effect of NV on the dynamics.
A strategy s; for player i is the probability with which he \she chooses action a = 1.
The strategy space is therefore given by S = [0, 1]N, s € S denotes a strategy profile
and s_; the set of strategies for all players, except player 7. We assume all players
are risk neutral and want to maximize their expected payoffs. The expected payoff
of playing a mixed strategy s; is given by

i (85,8 i3 Ney N) = (1—s;))a+s;(a+Pr{N_; < N.—1} —7)
a+s (BPr{N_; < N.—1} —7) (2)

where Pr{N_; < N, — 1} is the probability that the number of other agents partici-
pating, N_;, which is a random variable, is strictly smaller than N,.. Obviously, this
probability depends upon the strategy profile s_;.

2.1 Nash equilibria

The game described above has many pure strategy Nash equilibria (henceforth PSNE).
Any strategy profile s such that exactly N, players participate with certainty (s = 1)
and the other N — N, participants abstain with certainty (s = 0) corresponds to a
strict PSNE. Evidently, there are (N ) of these PSNE. Note that such a PSNE leads
to an uneven distribution of payoffs, with exactly N, players obtaining o+ 3 —~ and
the other N — N, players receiving .

Now consider mixed strategy Nash equilibria (henceforth MSNE), where some play-
ers randomize between the two possible actions. We will establish that there exists a
unique symmetric mixed strategy Nash equilibrium s* € (0, 1). If each player partic-
ipates with probability s*, the probability that the number of players participating is
strictly smaller than N, is given by:

Ne—1

pia =3 (V) et ®)

k=0

Notice that p(s*; N, N) is a polynomial of degree N — 1 in s*. In particular,
p(s*; N, N) is the cumulative distribution function evaluated at N.— 1 of a binomial
distribution with NV — 1 degrees of freedom and probability s*. By the definition of a
Nash equilibrium, s* is a best response for player 7 only when, given that every player
uses strategy s*, player i is indifferent between participating and not participating.
That is, at s* we must have:

i (1,8 Ney N)=a+ (Bp(s*; N;, N) —v) =a =m;(0,8"; N, N) .

Hence the equilibrium value of s* is implicitly given as the solution to the following
equation:
. Y



Since we are interested in the case where N becomes large, but where the (relative)
capacity of the project remains the same, we define b = % and consider different
values of N but constant values of b. The following proposition summarizes the
properties of the symmetric MSNE.

Proposition 1 For any N, N. < N, «, v, B > 7, there exists a unique symmetric
MSNE s* of the N-player participation game with payoff function (1). The value of
s* solves (4) and does not depend upon a. Moreover, s* — b as N — oo for all v
and B, and s* = b for all N when b=1/2 and v/ = 1/2.

The exact value of s* depends on the threshold value b and on the ratio /3. Gener-
ically it is unequal to b, but it approaches b as the number of players becomes large.
This is illustrated by Fig. 1 which shows s* as a function of N for b = % and dif-
ferent values of /3. Furthermore s* = $ for all N when b = ; and 8 = 27, that is
when the standard payoff « is exactly in between the payoffs of a successful and a
non-successful participation. We will use this specification as a benchmark for most
of the numerical analyses in the rest of this paper. Note that when the symmetric
MSNE is played, the total number of participating players N has mean Ns* and
variance Ns* (1 — s*). The participation rate sequence {z;}, with z; = %, would
therefore be randomly distributed around s* with variance $20=5") and would have
zero autocorrelations at all lags. Observe that as N becomes large, the distribution

of z will converge to a point mass at s*.
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Figure 1: Symmetric mixed strategy Nash equilibrium. Every curve shows
an approximation of the MSNE s*, for N up to 100 and b = &= = 1. Each curve
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Asymmetric MSNE, with players randomizing with different probabilities, also exist,
for example, with M < N, agents always participating and the other N — M agents
randomizing with equal probability. In fact, in this case the players randomizing are
playing the symmetric MSNE of the participation game with payoff structure (1) but
with size N — M and capacity N, — M.
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Figure 2: Upper left panel: Time series of number of participating players in exper-
imental group 1. Upper right panel: Histogram of the number of particpations for
the 42 participants. Lower left panel: Histogram of the number of switches. Lower
right panel: Relation between individual payoffs and number of participations.

The PSNE has the characteristic that it extracts all rents from the game, but dis-
tributes them asymmetrically over the players, whereas the symmetric MSNE gives
the same expected payoff to each of the players, but may lead to allocative inefficien-
cies. The symmetric MSNE is the only symmetric equilibrium. Moreover, it is also
the unique evolutionary stable strategy (see Dindo, 2006).

2.2 Some experimental results

We will now briefly describe some experimental results on a negative feedback partic-
ipation game from Heemeijer (2006). Our aim is not to provide a full-fledged analysis
of the experimental data, but to illustrate and motivate the model introduced in
this paper. The experiment was conducted in October 2005 and February 2006 at
the CREED laboratory of the University of Amsterdam. It involved 6 groups of



N = 7 players, which had to make a participation decision for 50 subsequent periods.
Group composition remained the same over the course of the experiment. Capacity
was equal to N, = 4 and payoff parameters were given by a = 100, § = 50 and
v = 25. Moreover, a stochastic term &; from a symmetric triangular distribution on
[—25, 25] was added to the payoff for participating in every period. Subjects did know
the value of «, but not those of 3, v and ¢;. Following the analysis above we have
(Z) = 35 PSNE. The symmetric MSNE s* is implicitly given by p (s*;4,7) = 5. This
gives s* =~ 0.5786, which is slightly larger than b = % = % ~ 0.5714.

The results from this experiment are consistent with the experimental evidence dis-
cussed in the introduction. The upper left panel of Fig. 2 shows, for the first experi-
mental group, the dynamics of the number of participating subjects over 50 periods.
Behavior in the other groups was similar. Aggregate participation decisions are un-
stable and keep on fluctuating until the end of the experiment. Subjects did not
coordinate on one of the PSNE and, at the aggregate level, the symmetric MSNE
seems to provide a better description of the data. The first row of Table 1 shows
that average participation rates in all groups are quite close to s* &~ 0.5786, although
there seems to be some ‘underparticipation’: for five of the six groups the average
participation rate is somewhat lower than predicted by the symmetric MSNE.

‘ ng.l ‘gr.2 ‘gr.S ‘gr.4 ‘gr.5 ‘gr.G Hmean

230 1 0.5743 | 0.5943 | 0.5600 | 0.5629 | 0.5714 | 0.5543 || 0.5695
group-switches 25 14 25 25 26 22 222
individual switches || 152 | 82 157 |13 172 | 14 14
% naivety 0.7364 [ 0.7414 | 0.7156 | 0.8242 | 0.6885 | 0.7143 || 0.7330

Table 1: Experimental results. The first row gives the average participation rate
for each group. The second row gives the number of times, per group, that participa-
tion changed from four or less to five or more subjects or vice versa. The third row
gives, per group, the number of individual switches between participating and not
participating, averaged over subjects. The last row gives the percentage of individual
switches that follow directly after a negative payoff experience.

At the individual level, however, the symmetric MSNE is not supported by the data.
The upper right panel of Figure 2, for example, shows a histogram of the number
of times the 42 subjects participated. Apparently, some subjects participate almost
always, whereas others participate almost never. This suggests that many subjects
do not randomize. Further evidence is given by the second and third row of Table
1, which show that, although the number of switches in aggregate participation are
roughly consistent with the symmetric MSNE, individual subjects change their par-
ticipation decision much less frequently. The histogram of the number of individual
switches, depicted in the lower left panel of Fig. 2 also provides compelling evidence
that many subjects are quite reluctant to change. Instead of playing according to the
symmetric MNSE, subjects seem to condition their decision on past payoffs. The last
row of Table 1 shows that about 73% of individual switches were preceded directly



by a negative payoff signal (i.e., start (stop) to participate when that gave a higher
(lower) payoff in the previous period). A last observation worth noting is the evi-
dence for a ‘participation premium’ in the lower right panel of Fig 2. Subjects that
participated more often did, on average, earn higher payoffs. We will return to this
issue in Section 6.

3 A behavioral model

The experiment discussed above suggests, together with the earlier experimental ev-
idence, that our negative feedback participating game is inherently unstable, with
persistent fluctuations in the participation rate. Moreover, individual subjects do
not seem to randomize their decisions and these fluctuations therefore cannot be
easily attributed to mixed strategy Nash equilibria. Instead, subjects seem to base
their decisions on deterministic behavioral rules. The existing behavioral models of
negative feedback participation games are complex computational models, and some
of them (such as reinforcement learning) do assume that agents randomize. In this
section we introduce a behavioral model which is analytically tractable and consistent
with the experimental findings.

3.1 Behavioral rules

Consider an infinite population of agents, which is randomly matched in groups of
N players in every period to play the participation game introduced in the previous
section. Each of the players is programmed to play the game according to one of K
different behavioral rules. Each rule prescribes, conditional on the aggregate infor-
mation, whether the agent using that rule should participate or not. Let z; be the
population-wide participation rate, i.e. the fraction of players in the entire population
that participates in period ¢. A behavioral rule has the following form

Prt = Ix (It—l) ) (5)
where the information set is given by past participation rates:
iy ={x4_1,049,...,T1,%0} -
and where p;; € {0,1}.* Examples of simple rules are:

1 if zp 1 <b
pl,tZl,pQ,tZOandp&t:{O if xi71>b

Rule 1 prescribes to participate always, whereas rule 2 specifies to never participate.
According to rule 3 the player should participate if and only if the participation rate
in the previous period turned out to be lower than the threshold value b. In fact,

4Notice that it would be straightforward to extend the setup to ‘randomizing’ decision rules, by
allowing py + to be a number between 0 and 1, which then specifies the probability with which the
player participates.



rule 3 is a special case of a best-response rule. Generally, a best-response rule can be
written as

Pkt = BR (gk (mt—la Tty oo aiﬁo)) ) (6)
where g () is a predictor for the time ¢ participation rate and BR corresponds to

the best-responses to that prediction: BR (gx) = 1 if and only if g, < b, otherwise
BR (gy) = 0.

3.2 Evolutionary competition

A behavioral rule that performs relatively well in period ¢ is adopted by a larger frac-
tion of the population of players in period t+1. Let x;; denote the fraction of the pop-
ulation using rule k in period t. The vector x, € AKX~ = {xt € lRf : 2521 Tpt = 1}
then gives the distribution of agents over the rules. Notice that at time ¢ aggregate
participation z; is completely characterized by x; and p; = (p14,...,Pk,.). In fact,
we have ;, = x; - p; = Z,If:l Tk tPkt-

The distribution x; and the behavioral rules p; induce a probability distribution over
payoffs (a — 7, a,a + 8 — 7). Because we assume there are infinitely many players,
the realized payoff m;, of the players using rule k is equal to its ex-ante expected
payoff. The payoff for rule k is given by 1 — p, times a plus p; times the payoff from
participating, which is 7, = a+ Sp (z; N., N) —~y, where p(z; N,, N) is again (see (3))
the probability that the number of other agents participating is less than N, given
that the participation rate is x. We therefore get®

k(23 Ney N) = a + (Bp (z; Ne, N) — ) .- (7)

The evolution of the distribution of rules, characterised by the vector x;, is deter-

mined by the payoffs 7, generated by these rules. Given m; = (w14, Moy, ..., Tk
evolutionary competition between the rules is specified by

x41 = H (Xt, 7Tt) (8)

where H : AKX ! x [a—7v,a+8—9]" — AK!is assumed to be a continuous
and differentiable function with % > 0 and ZTH,Z < 0 for j # k. It is straightfor-
ward to extend this evolutionary model by including lagged values x;_, and m;_,,
for 7 > 1. An equilibrium of the evolutionary process (8) is a vector (x*,p*) =
(xf,...,2%,p},...,D%), such that x* = H (x*,7*). The equilibrium participation
rate is then given by z* = x* - p*. In this case p; = fi (z*,...,2*) and equilibrium
profits are given by 7 = 7 (x*, p*; N, N).

There exist different specifications for (8) in the literature. In this paper we consider
the replicator dynamics (see e.g. Taylor and Jonker, 1978, and Weibull, 1995), which
is probably the most widely used updating mechanism in evolutionary economic dy-
namics and which takes the following format

TktTkt
Tpppr = TR 9
i > TjtTjt ®)

®Note that since there is a one-to-one correspondence between z and 7, the information set 7,
is equivalent with {mp ¢, 7pt—1,...,Tp0}-
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Such an updating mechanism can be interpreted as a biological reproduction model,
where each period the number of agents using rule £ grows proportionally to the
performance of that rule, as measured by its payoff m,. Nevertheless (9) also arises
in imitation processes in large populations of interacting agents (see e.g. Chapter 4
of Weibull, 1995).
Using (7), (9), z; = Zj xj 4P and T, = Zj Tj 4T We can Write AZy 11 = Tg 141 —Thy
as
Tpy (Tt — 1) Ty (BP (w43 Ney N) — ) (Pryt — Tt)
i’ a+ (Bp (@ Ny, N) —v) e
Steady states of the replicator dynamics (9) correspond to zeros of (10) for all £.
Notice that there are K trivial steady states with z; = 1 for k = £* and z}, = 0 for
k # k*, that is, where only one rule is used in the population. Such a steady state
typically does not correspond to a Nash-equilibrium of the one-shot participation
game. All other steady states require that ).z} ,77, = m, for all k& with z > 0.
One type of these steady states is characterised by z* such that Sp(z*; N, N) = 7. We
will denote those steady states, which correspond to the symmetric MSNE, generic.
There might also be non-generic steady states, where py(z*,...,z*) = p* for all &
with 27 > 0, such that z* = p*. These non-generic steady states only arise in the
special case where the rules all intersect at a point z* when evaluated at that point
z*. We have now proven the following result.

(10)

A331c,t+1 =

Proposition 2 The system given by (5), (7) and (9) has K fized points for which the
whole population of players uses the same rule. Other fixed points satisfy the property
that wj; = m}, for all k and k' such that x}, z}, > 0. In the generic case z* = s*, where
s* is the symmetric MSNE.

In the next section we investigate under which conditions the replicator dynamics
converges to the symmetric mixed strategy Nash equilibrium, and whether the repli-
cator dynamics can describe the experimental and computational results discussed
before.

4 Persistent participation fluctuations
Consider the model of evolutionary competition with the following two rules

piy = lforallt (11)
poy = 0 forall t. (12)

The “optimistic” rule 1 specifies to always participate and the “pessimistic” rule 0
prescribes to never participate. The experiment discussed in Section 2 suggests that
many subjects use one of these rules for a substantial number of periods. Rules (11)
and (12) can also be understood as best-reply rules (6), with (11) the best reply to
an optimistic predictor (always predicting below b), and (12) the best-reply rule to a
pessimistic predictor.

11
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Using (9) the fraction of optimists evolves as

T1,tT1,t

(13)

FLt+l L1414 + To Mot
where mo; = « and m1; = a + fp (x;bN, N) — 7. The left panel of Fig. 3 shows
examples of the payoffs of the two rules as a function of z, for b = % and different
values of N. As N becomes large, the optimistic payoff m;; converges to the step
payoff function given in (1). On the other hand when N is small the expected payoff
function becomes less steep.

Notice that since z; = 14 = 1 — o4, (13) can be written as

zi(a + p(xs; DN, N)3 — )
zi(p(z; BN, N)B —v) + o

This first order nonlinear difference equation is parametrized by N, b = % and the
payoff parameters o, § and 7. The right panel of Fig. 3 shows (14) for different
values of N given fixed values of the other parameters.

First notice that, since p; # po there are no non-generic steady states. By Proposition
2 and inspection of the right panel of Fig. 3 we find that the steady states are given
by z = 0, z = 1 and the symmetric MSNE z = s*. To characterize local stability of
these steady states it is convenient to define

Op (z;bN, N)
ox

Obviously 6 (z;b, N) < 0 since an increase in the fraction of agents participating
always decreases the probability that less than b/N of them indeed participate.
The following proposition characterises the stability properties of the steady states.

Ti41 = f (xt;ba N) =

(14)

d(z;6,N) =

Proposition 3 The dynamics of the participation rate given by (14) has three steady
states: 0, s* and 1. The steady states 0 and 1 are locally unstable. The interior steady
state s* is locally stable when 1 = s* (1 — s*) % > —2, where 6* = 0 (s*;b, N).
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The stability condition in Proposition 3 depends, through 6* and s*, implicitly on
b and N. We are particularly interested in characterising this stability of s* as a
function of N. Fig. 3 already suggests that s* becomes unstable for /V large enough.
The following proposition corroborates that.

Proposition 4 For any given value of o, v < 3, and b the dynamics of the partic-
ipation rate is locally unstable around s* in the limit N — oco. Moreover, if f = 2v

and b = % there exists a unique M such that equation (14) is locally stable around s*
if and only if N < M.

Fig. 4 shows that ¢ is decreasing in N and crosses —2 when N is larger than
some treshold M. The intuition behind Proposition 4 is that as N increases the
average population payoff of the optimistic rule gets closer to the step payoff of the
underlying one shot game (see left panel of Fig. 3). As a result, for any value of
the payoff parameters, «, 3 > v, as N increases (14) becomes steeper at the steady
state s* and the system looses stability. This dependence of the dynamics upon N
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is due to the assumption of random matching. In fact, for N = 2 (with N, = 1) the
expected payoff function is linear in x, since p (x; 1,2) = 1—xz, which is the probability
of meeting a player using the pessimistic rule. However, the probability of having
less than half of the players participating when each player participates (or, is an
optimist) with probability larger than % becomes small as N becomes large. That is,
as N increases (and for given b) the function p (z; N., N) will look more and more
like a step function. We can therefore also interpret the parameter N as a measure of
the shape and steepness of the payoff function at the steady state. In that case a low
value of N would present a payoff function which decreases slowly as the number of
participating players increases, similar to the the linear one used in the early market
entry experiments (see, for example, Sundali et al., 1995). A high value of N, on the
other hand, would represent an expected payoff function close to the step function
used in the El Farol bar game, with payoffs at the symmetric MSNE dropping rapidly
as an extra player participates.

1 T T T T T T T 1

0.8

0.6

0.4 -

Participation rate
Lypunov exponent
o
(9}

0.2 r

Figure 6: Left panel: Bifurcation diagram with respect to N. Right panel: Lya-

punov exponents for different values of N. Parameters values are b = % = %, a=1,
v = % and B = 2v. For every value of NV, 100 iterations are shown after an initializa-

tion period of 100.

Now we consider the global dynamics of our evolutionary model when the steady
state s* is locally unstable. For the benchmark case with b = 1/2 and g = 2y
the critical value of M from Proposition 4 is given exactly by M = 100. Fig. 5
shows the participation rate generated by (14) when N = 300 (and consequently
N. = bN = 150). The time series (left panel) looks aperiodic. In fact, for certain
parameter regions the dynamics is chaotic.® Even such a simple one-dimensional
system is therefore able to produce complicated times series similar to those obtained
by the computationally intensive simulation models of Arthur (1994) and others. The
left panel of Fig. 6 shows, for every even value of N between 2 and 400, the effect
on the dynamics of z; (after a suitable initialization period). Clearly, as N increases

the dynamics of the participation rate x becomes unstable (at N = M = 100),

6The left panel of Fig. 7 shows that for some parameter values (for example, for 3 — v ~ 0.6)
this one-dimensional system has a 3-cycle which implies, by the Li-Yorke theorem (Li and Yorke,
1975) that the dynamics for those parameter values is chaotic.
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tion period of 100.

after which a period-doubling route to chaos sets in. The right panel of Fig. 6
shows the Lyapunov exponents of the corresponding participation rate for each N. A
positive Lyapunov exponent (e.g. for N = 300) characterizes sensitive dependence on
initial conditions and implies that the system is chaotic for that parameter setting.
Fig. 7 shows the dynamics and Lyapunov exponents for different values of 5 — 7.
The right panel shows that there are many values of § — v for which the dynamics
is chaotic. The left panel suggests that fluctuations increase, and thus allocative
efficiency decreases, as [ — 7 increases. Nevertheless, for given 8 — v the size of the
fluctuations of the participation rate seems to be constant in N for NV larger than,
say, 250 players (see left panel of Fig. 6). Note that at the symmetric MSNE the
fluctuations in the participation rate go to zero as the number of players increases,
since each of these players is randomizing independently. Experiments with different
values of N, but constant b, may shed light on the relationship between N and the
size of the fluctuations. As a final observation note that if the dynamics are unstable
the average participation rate is below s*. This ‘underparticipation’ is most apparent
in the left panel of Fig. 7, but can also be found in the other numerical results.

5 The scope for arbitrage

In the previous section we established that for large N the evolutionary competition
between an optimistic and a pessimistic rule induces fluctuations of the aggregate
participation rate z around the steady state s*. The right panel in Fig. 5 shows
that there is a significant correlation between the participation rates and its lagged
values. The participation rate series is therefore not informationally efficient and
one might argue that the competition between the optimistic and pessimistic rule is
not evolutionary stable against other rules. The aim of this section is to investigate
whether new rules may succeed in exploiting these regularities and how the inclusion
of such new rules affects the participation rate dynamics. Similar analyses have been
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performed in Hommes (1998) and Brock et al. (2006) for the cobweb model.

Since there is a strong positive autocorrelation at the second lag, indicating ‘up-and-
down’ behavior, a best response to predicting x;_5 for period ¢ seems to be a sensible
strategy. This so-called “two lags best reply” rule reads’

1 if z2<b
Pae = BR(@1-2) = { 0 i ma>b (15)

Letting x5, be the fraction of two lags best responders, the participation rate at time
t is given as:
Ty = 14 + T2 BR(24-9),

where z,1; and xo; = 1 — z1; — x2; are the fractions of optimists and pessimists,
respectively. As before, the latter have payoffs a and expected payoff for optimists
is given by 7, (z;) = a + Bp(xt; N, N) — 7. Expected payoffs for two lags best
responders are:

mar = (1 — BR(xt2))a + BR(x_o)m,(x4).

Fractions o441, Z14+1 and xg441 develop according to the replicator dynamics (9),
which is based upon payoffs generated by the different rules, which, in turn, depend
upon z; and z;_o. This leads to a four-dimensional dynamical system. The interior
steady state of this system is characterised by x = s*. At x = s* every rule generates
the same expected payoff. If s* > b (as in our benchmark specification with s* = b =
%) the two lags best responders are not participating at the steady state. Therefore,
there is a continuum of steady state fractions with 7 = s* and 25 +25 = 1—s*. Given
that the rule p,; is discontinuous we rely on numerical simulations to determine local
stability of these steady states. The evolutionary model with these rules is unstable
for the same values of N as before (that is, when N > M = 100) and leads to
persistent fluctuations in participations rates for N large enough. The left panel of
Fig. 8 shows the time average of the fraction of two lagged best responders along 100
iterations. This average fraction approaches zero when the steady state s* is locally
stable and is strictly positive otherwise. The reason for this is that for N < M the
dynamics converges to the steady state x = s* along a “shrinking” 3-cycle. Along
such a cycles a two lagged best responder is more often wrong in its prediction than
right and slowly disappears. Notice that, even if x5 approaches zero, it could happen
that the participation rate = settles at s* before x5 equals zero. The simulations show
that this typically does not happen. A different participation rate dynamics occurs
when N > M. In this case the dynamics is typically non-periodic and two lags best
responders survive. The upper left panel of Fig. 9 shows the resulting participation
rate for N = 300. Even though the time series is not periodic, the autocorrelation
diagram (upper right panel of Fig. 9) shows that the autocorrelation at the second lag
has indeed decreased substantially (and in fact is not significantly different from zero).
However, the autocorrelation at the third lag is strongly positive now, suggesting that
the time series of participation rates has elements of a noisy 3-cycle.

"The reader may wonder why we do not investigate a “one lag best reply” rule. Since the in-
teraction between the optimistic and the pessimistic rule generates a strong first order negative
autocorrelation in participation rates, one lag best responders are very often wrong in their predic-
tion. Simulations confirm that these one lag best responders are quickly driven out.
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This begs the question as to what would happen if a new rule that tries to exploit
this feature is introduced. To that end, we introduce the “three lags best reply”
rule ps; = BR(x;_3). The evolutionary competition of the four rules gives a six-
dimensional dynamical system. Given that s* > b there is a continuum of steady
states of the type z; = s* and zo + 2o + x3 = 1 — s*. The steady state s* is
unstable again for N > M = 100 and leads to erratic participation rates for high
values of N, as can be seen in the middle left panel of Fig. 9. The right panel of
Fig. 8 shows the average fraction (over 100 iterations) of two and three lags best
responders. When N < M the participation rate converges to s* and the fractions
of both types of best responders go to zero. This is because the participation rate
converges to x = s* along 4-cycles of decreasing amplitude, along which both types of
best responders are more often wrong than right in their predictions. Instead, when
N > M, the dynamics is unstable and both types of best responders may survive
as can be seen. It is interesting to see that typically these best response rule are
driven out when the dynamics is stable so that only the optimistic and pessimistic
rule survive. The autocorrelation diagram depicted in the middle right panel of
Figure 9 suggests that z; 4 would be a good predictor of x;. Again therefore, the
evolutionary competition leads to a regularity in participation rates that cannot be
exploited by the rules that are present in the population. Adding new rules does
not stabilize the dynamics, it merely drives out one regularity at the expense of
introducing higher-order regularities. This is illustrated by the lower left panel of
Fig. 9 where the results are shown of an evolutionary model with the optimistic
rule, the pessimistic rule, and two, three, four, five and six lags best responders,
for N = 300. The participation rate still exhibits perpetual fluctuations, in this case
with positive autocorrelation at the 7th lag. Autocorrelation at lower lags is exploited
efficiently by the existing behavioral rules and is not significantly different from zero.
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Figure 9: Upper panels: Participation rate and autocorrelation diagram for com-
petition between optimists, pessimists and two lag best responders. Middle panels:
Participation rate and autocorrelation diagram for competition between optimists,
pessimists two and three lag best responders. Lower panels: Participation rate and
autocorrelation diagram for competition between optimists, pessimists and two to six
lag best responders. The dotted lines show the significance level of 100 observations.
Parameters values N =300, b= 3, a=1, =2y and y = 3.
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This numerical analysis shows that introducing rules that try to exploit a particular
time series structure indeed makes sure that cycles are arbitraged away but they do
not necessarily stabilize the dynamics. In fact, adding rules typically complicates the
dynamics and makes it more unpredictable.

6 The participation premium

Both the market entry experiment discussed in Section 2 and the behavioral model
from Sections 4 and 5 exhibit underparticipation, that is, the average participation
rates are below the steady state value s*, when this steady state is unstable. This
underparticipation may result in a ‘participation premium’: the lower right panel of
Fig. 2, for example, shows that subjects in the experiment that participate more
often typically earn higher average payoffs. We conjecture that this participation
premium results from the payoff-asymmetry of the two alternatives in the market
entry game. That is, players choose between a strategically uncertain alternative
(participating), for which the payoff depends upon the actions of the other players
and a sure alternative (not participating), where the payoff is independent of other
player’s actions. In this section we consider route choice games to investigate this
conjecture. For the route choice game both alternatives are subject to strategic
uncertainty and payoffs always depend upon the choices of the other players.

In the route choice game the payoff of player i for participating, 7; (1,a_;; N¢, N), is
still given by (1), but the payoff for not participating changes into

Uy (Oaafi;Nc,N) - { a+ﬂ_7 Zé\'\%i’jZIGj = Ne .
oa—y Zj;ﬁi,j:l a; < N,

There are ( ]]\Z ) pure strategy Nash equilibria (PSNE) where exactly N, players par-
ticipate. These Nash equilibria are not strict: a player not participating is indifferent
between ¢ = 0 and a = 1. In fact, there are ( Nﬁl) other PSNE where exactly N, + 1
players participate. These equilibria are also not strict since a participating player
is now indifferent between participating and not. Consequently there is an infinite
number of asymmetric MSNE. There is only one symmetric MSNE, which is given by
s* such that p (s*; N, N) = % In contrast to the market entry game (see condition
(4)) the symmetric MSNE s* is independent of the ratio 7/3. Note that here, for any
value of @ and for any v < 3, the probability s* has to be such that the distribution
of the participation rate of N — 1 players has N, — 1 as its median.
In Fig. 10 we present the dynamics of the participation rate resulting from the
interaction of optimists (always choosing alternative 1), pessimists (always choosing
alternative 0) and ‘two lag best responders’. As before, two lag best responders have
an effect on the dynamics only when the steady state is locally unstable. Furthermore,
fluctuations seem to be symmetrically distributed around s*, and underparticipation
indeed disappears. Also notice that the condition for the local stability is more
stringent here than for the market entry game, since the system loses stability at a
much lower value of N.
The following result may help us in understanding the relationship between under-
participation and the asymmetric payoff structure of the market entry game.
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Parameters are b= 5, a =1, 8 =27, 7y = 3.

Proposition 5 Consider an evolutionary competition between the optimistic and pes-
simistic rule and let b=1/2 and § = 2v. Denote by z, = xy — s* the deviations of the
participation rate from the MSNE and define Az 1 = 2401 — 2. For the market entry
game we can write Azyy = m(2;), where m(z) + m(—z) <0, for z ¢ {—3,0,1}.
For the route choice game we can write Az 1 =1 (2), where —r (2) = r (—2).

The left panel of Fig. 11 shows the functions m (z) and r (z) and illustrates that,

outside the three steady states z = —1, z = 0 and z = 3, we have m (z) < r (). This,

together with Proposition 5 suggests chat there is a tendency for z; to be downward
biased in the market entry game, since innovations in z are lower than in the route
choice game (this is corroborated for example in the left panel of Fig. 7). The origin
of the ‘asymmetry’ of m (z) lies in the denominator of (10), the population average
payoff 7y = ), x;;m; ;. The right panel of Fig. 11 shows that average payoffs 7 are
symmetric in z around s* = % for the route choice game, but not for the market entry
game.

This asymmetry in 7 leads to underparticipation in the market entry game, and a
participation premium for those agents using the optimistic rule, since the project is
more often profitable. This is illustrated by the left panel of Fig. 12 which shows the
difference between average payoff of optimists and pessimists for the market entry
and the route choice game. For the route choice game average payoffs of optimists
and pessimists are, due to symmetry, always the same. For the market entry game
however, just as in the experiment discussed in Section 2, optimists do better on
average, whenever the steady state s* is unstable.

One might expect that this payoff difference in the market entry game disappears
when some “memory” is introduced. In fact when memory plays a role more agents
should imitate the action of the optimists, which are performing better, and thus
eliminate underparticipation. Consider the evolutionary competition of optimists
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Figure 11: Comparison of the evolutionary competition of optimists and pessimists
for market entry games and route choice games. Left panel: Innovation function
for the market entry game and for the route choice game compared. Right panel:
Population average payoffs, 7, in the two cases. Parameters are b = %, a=1,0=2y
and v = 1.

versus pessimists where evolution is governed by a fitness measure that is a weighted
average of past payoffs, that is, F; = puFy_; + (1 — p) m14—1. The resulting dynamical
system is two dimensional, with variables z; and F}, and given by:

.Z'tFt
T = fl (l‘t’ Ft) - ,’IJtFt -+ (]. — .Z't) (8]

Fipn = falz, Fy) = pFy+ (1 — p) (o — v+ Bp (fi(2s, Fy); Ne, N))

The following proposition characterizes its behavior.

(16)

Proposition 6 The dynamics of the participation rate and of the optimists’ payoff
given by the system (16) has three steady states: (0, — v+ (), (s*, @) and (1, — 7).
The steady states (0,a0— v+ ) and (1, —7y) are locally unstable. The interior
steady state (s*, ) is locally stable when 1 = s* (1 — s*) % > —Qi—l‘j.

The effect of memory is to stabilize the dynamics. For 1 = 0 we retrieve the stability
condition from Proposition 3, but as p increases the critical value of ¢ increases.
Nevertheless, when the dynamics is unstable the same difference in time averages
payoffs as before emerges. The right panel of Fig. 12 shows that when the steady state
s* is unstable over time optimists outperform pessimists. Therefore, the participation
premium persists.

Summarizing, the asymmetric payoff-structure of the market entry game is indeed
responsible for underparticipation and the participation premium. Note that if we
assume agents are driven by payoff differences instead of absolute payoffs, the mar-
ket entry game transfers naturally into a route choice problem. To see this, con-
sider the payoff function (1) and define the payoff difference by ¢; (a;,a_;; N, N) =
mi (a;,a_4; Ney N) — m; (1 — a;,a_4; N, N). This payoff difference is equal to 5 — vy or
—~ for participating players, and equal to v — 3 or « for players that do not partici-
pate, depending on the number of participating players. Clearly, ¢; (1,a_;; N., N) +

21



0.1 T 0.1

Market émry ‘Market en}fy

008 L Route choice -~ ] 008 | Route choice - 1
8 8
§ 0.06 § 0.06
2 2
5 004 5 004
S S
< 0.02 < 0.02
Q. Q.
(0] (0]
& 0 & 0
[ [
> >
< 002t < 002t

-0.04 R -0.04

0 50 100 150 200 250 300 350 400 0 100 200 300 400 500
N N

Figure 12: Optimists - pessimists time average payoff differences for market entry
games and route choice games. Left panel: Time average payoff difference without
memory. Right panel: Time average payoff difference with memory. Parameters
areb=%,a=1 =2y, v=4%and = 1.

¢ (0,a_;; N;, N) = 0 and choosing not to participate is subject to strategic uncer-
tainty about payoff differences. Therefore, if players care about payoff differences
between the alternatives participation rate dynamics are less stable and underpartic-
ipation is alleviated.

7 Conclusions

Many (economic) decision problems can be characterised as negative feedback par-
ticipation games and understanding human behavior in these participation games is
important. The experiment from Section 2 shows that, although a reasonable descrip-
tion at an aggregate level, the symmetric mixed strategy Nash equilibrium does not
explain individual behavior very well. In particular, rather than randomizing their
decisions, subjects typically use deterministic rules, possibly conditional on past out-
comes. Moreover, the participation rate is inherently unstable, in all experimental
groups. A series of contributions from computational economics, starting with the
famous El Farol bar problem from Arthur (1994), also shows that complicated dy-
namics arise naturally in negative feedback participation games. Other complex and
computationally intensive models assume that agents are randomizing their partici-
pation decision. In general, these models are difficult to study analytically and results
from thise literature are typically based upon numerical simulations.

In this paper we introduce an alternative type of behavioral model that is able to
explain the experimental and computational results, but still is sufficiently simple to
be analyzed theoretically. We consider an evolutionary competition between different
deterministic behavioral rules, where players switch between these rules on the basis
of past performance. For the simplest possible case, where the only available two rules
are those that specify to always participate, or to never participate, respectively, the
participation rate dynamics evolves according to a nonlinear one-dimensional differ-
ence equation. This difference equation can be studied analytically, and local stability

22



of the symmetric mixed strategy Nash equilibrium turns out to depend upon the num-
ber of players. For a large number of players this simple model exhibits perpetual
fluctuations in the participation rate, similar to those found in the experiments and
the, much more complex, computational models. A testable prediction of our model
is that these fluctuations, in contrast to the mixed strategy Nash equilibrium, are not
vanishing even when a very large group of players is involved.

The erratic time series of participation rates has two other features. First, the time
series exhibits certain regularities. When rules that try to exploit this structure are
introduced, this particular structure disappears, but fluctuations around the sym-
metric mixed strategy Nash equilibrium do not vanish. Instead, other (higher order)
regularities are introduced. Again, adding more sophisticated behavioral rules drives
out these regularities again, but does not stabilize the fluctuations, which therefore
seem to be quite robust. Secondly, the time series exhibits underparticipation and
a premium for participating. This is consistent with the experimental results. We
establish that this is due to the asymmetry in the strategic uncertainty of the market
entry game. This has interesting economic implications. In our future research we
will try to use our behavioral model to explain certain economic or financial stylized
facts, such as excess volatility and the so-called equity premium puzzle (Mehra and
Prescott, 1985). Consider, for example, the decision to invest money in bonds, or in
an index of stocks as an application of our model. The uncertainty of investing in
the stock index is high and may depend on other agents choices, whereas investing in
bonds is relatively safe. Our behavioral model predicts an excess return to investing
in the stock index. This is consistent with the equity premium puzzle, which refers
to empirical evidence that, after adjusting for risk, investing in stocks indeed is more
profitable than investing in bonds.

Appendix: Proofs of the main results

Proof of Proposition 1 As argued in the text, the symmetric mixed strategy equi-
librium s* corresponds to the solution Eq. (4) from Section 2.The function p (z; N,, N)
on the right-hand side of (4) is the cumulative distribution function (c.d.f.) of a bi-
nomial distribution, with N — 1 degrees of freedom and probability of participating
x, evaluated at N, — 1. This implies that for every N, < N, it holds true that
p(0; N, N) = 1 and p(1; N, N) = 0. Furthermore p (z; N., N) is continuous in z
and w < 0: if we increase the probability of participating the value of the
c.d.f. at any fixed value between 0 and N — 1 decreases. Consequently, since v < £,
p(z; N, N) = % has a unique solution s* for any value of N > 1, any N, € [0, N — 1]
and any v < (. Furthermore, since equation (4) does not depend on «, neither does
its solution s*.

Typically s* # % We first show that when N, = %N and 8 = 2v then s* = % = %
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Note that for all N > 1 we have

- ETE R

k
3N-1 N_1 INF /1\N-1E NS g I\F 71\ N1k
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k=0 k=3N
_ (L1y ). NS A AT,
ERATICRS j 2 2
j=N—-1—k=0
11 11 11
= —-N,N —3=N,N| = —=N,N
p (27 2 7 ) +p 2’ 2 7 > p (2’ 2 7 )
which gives p (%, %N, N) = % = % Therefore s* = % is the unique MSNE for this

specification.

In the final part of this proof we show that for general values of 5, v < 8, N and b =
Xe € (0,1) we have s* — b as N — oo. Define the random variable n = =2 where
N — 1 is a random variable with Bernoulli distribution with probability s* and N —1
degrees of freedom. Given the fact that s* solves Eq. (4), the /8 percentile of the
distribution of n is given by (bN —1) /(N —1)=b— (1 —b) /(N —1). Also notice
that the distribution of n has mean s* and variance s* (1 — s*) /(N —1). Notice
that when N — oo the distribution of n is concentrated more and more around s*.
Assume there exists an € > 0 such that when N — oo, |b — s*| > e. This implies
that either s* > b or s* < b. If s* > b, then Pr(n<b—-(1-0)/(N—-1)) —- 0
when N — oo. This contradicts that s* has been chosen such that the v/ percentile
of nis b— (1—0)/(N —1). On the other hand, if s* < b, then when N — oo,
Pr(n <b- (1-150)/(N —1)) — 1. This also contradicts that s* is such that the v/3
percentile of n is given by b — (1 —b) /(N — 1). We conclude that for every ¢ > 0,
|b—s*| <eas N — 0. O

Proof of Proposition 2 In text. O

To prove Propositions 3 and 4 the following result is useful.

Lemma 1 Define, 6* = 6 (s*;b,N,) = 2| then, for a fived value of b, 6* is

dzr r=s
decreasing in N and 0* — —oo as N — oc.

Proof The cumulative distribution of a binomial distribution with parameters z and

N — 1 evaluated at bN — 1 can be written in terms of the Beta-function, B (z,y) =
(z—1)(y—1)! -
(z+y—1)t
TgNb-1 () — )NOO L gy

. P
p(@;bN, N) =1 - B (Nb,N (1 —10))

(17)
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Equation (17) implies that we have

Op (z;bN,N)  aNo1 (1 —g)N0~0

5 (230, N) = _
(25, ) oz B (N6, N (1))
The function 6 (z;b, N) has a unique maximum at Zy = %=. The associated
minimum value of § is given by get
v =0 (Tynib,N) = — W= 1) (o)™ (1 = Ty ) VOO
’ N3 b, GN DI (N1 —b)—1) ’
(N Z1) (N = 2)!

N ' (/x\b,N)bN_l (1 o /x\b,N)N(l—b)—l )

(N — 1) (N(1—b) — 1)

Taking the logarithm of —gb,N and applying the Stirling approximation formula,
log (n!) = nlog (n) — n + &(n) where £(n) — 0 as n — oo, we getlog

log (—Eb,N) = log(N—1)+ (N —2)log(N —2) — (N —2)

— (Nb—1)log (Nf_ 1)

Tp,N
N(1-b)—1
1—Tyn

—(N(l—b)—l)log(
= log(N —1) +&(N)

)+ =24

which goes to oo as N — oo with the same speed as log(N) and therefore ;5\,,, N — —00
as N — oo. For the special case b = % we have T y = % for all values of N and, by
Proposition 1, s* = % for all even values of N. This implies that for b = % we have
0* - —o0 as N — oo. For the general case with b # %, both s* and Z, 5 converge
to b as N goes to infinity. Moreover, § (z;b, N) is conitnuous in z. Consequently it

must be the case that also then 6* — —oco0 as N — oo. O

Proof of Proposition 3 A simple computation shows that the equation f (z;b, N) =

x, with f (z;b, N) given by (14) has three steady states: x = 0, z = 1 and z = s*,

where s* is the unique number solving p (s*; bN, N) = /. The derivative of (14) is

given by

1 —2)zB0+ (a+ Bp (z;bN,N) — 7))
(@ (p (z4;bN, N) B — 7) + )?

From (18) it follows immediately that f'(1) = ;% > 1 and f'(0) = |
implying that both steady states x = 1 and z = 0 are locally unstable. Evaluating
(18) at s* gives

f'(z;b,N) = el

(18)

1 — s*) s*B6*
"

f'(s*;b,N):1+( =14+

where ¢ = (1 — s*) s*6*8/a. Notice that the negativity of 0* is always negative (see
proof of Lemma 1) implies that 1) is also negative and therefore f’(s*;b, N) < 1. The
steady state x = s* is therefore stable if and only if ¢ > —2. O
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Proof of Proposition 4 First observe that for any value of o, any v > 3 and
any b € (0,1) the derivative of f (z;b, N), as given in (18), goes to —oc as N — oc.
The latter is true since (18) is proportional to 5* and from Lemma 1 it follows that
6* — —oo as N = +oo. When 3 =27 and b = 1, we have s* = 1 (Proposition 1) for
every N. As a result (18) can be written as

N
! *b N _ N
f (8 1 ) 40{
where Voo

)TN =)

&y = — 1(2) '( - ) .- (19)
(3N -1)I (3N —1)!

Notice that 05 = 1 and that for N > 4 we have 6} = —2 x 2 x --- x Z=L. Notice
that &% is monotonically decreasing in N and that §% — —oo as N — oo (by Lemma
1). We then have that ¢ = ¢y = ——5* Thus there exists an integer M such that

Yy < —2 when N > M. Since thls is the local stability condition of s*, we have
proved that there exists an integer M such that s* is locally stable if and only if
N<M. O

Proof of Proposition 5 Recall that a function f () is even when f(—z) = f (x)
for all x and odd when f (—z) = —f (z) for all z. Rewriting (10) in terms of z gives

0 _Ablat 55N =) (e ) (=),
d(Zt) (zt-l-g),@(p(zt-i-;,g’,N)——)—i-oz

From (3) it follows that p (z + 3; 3, N) +p (-2 + $; 5, N) =1 orp(z—i— 2 5.N) -
% = (p ( z+ ;, ];, N) — —) Together with the fact that (z + ) (2 z) is an even
function of z this implies that n (z) is odd, that is, n(—z) = —n (z). Now consider

z € (—1,0). We then have

d(z)zﬂ(z—l—%)( (z—l-; ];[ N)—%)+a>0

since p (z + ;, 2’ , N ) 5 is positive if and only if 2z is negative. Moreover, we then
also have

i (L) (o (b)) wane

Where the inequality follows from the fact that the d (—z) is bounded from below by
—|— «, which is positive since &« —y > 0 and 5 = 2v. So for z € ( ,0) we have

Azgy1 =m (Zt) =

a@—de@:ﬁ(pe+;fyw>—%>>u

Summarizing, for all z € (—3,0) we have d (2) > d(—2) > 0and —n (—z) =n(z) >0
which implies —m (—2) > m (2). Similarly, for z € (0,3) it can be shown that
—m (z) > m(—z). Combining those we find that m (z) + m(—z) < 0, for z ¢

{=3:0,5}
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For the route choice problem straightforward computations from the equivalent of
(10) lead to:

28 (p (2 + 35, N) —3) (2 +3) (5—2)
2ztﬁ( (zt-l-;,];,N)——)-i-a .

Here the denominator is an even function and the numerator is odd, making r (z) an
odd function. O

Azgp1 =1 (Zt) =

Proof of Proposition 6 The steady states of (16) solve z = % and F =

a— v+ Bp(x; N, N). The three steady states (z, F') are given by (0,a+ 5 —7),
(1, — 7) and (s*, «), respectively. The Jacobian of (16), J (z, ), is given by

oF (1 2z)a
J T = N E z(l—x)a ’
er) ((1—u)65§—§ u+(1—u)55(1F72))

where F' = 2F + (1 — ) . Tt follows immediately that J (0, o — v + /3) has eigenval-
ues Ay = £ = %ﬂ_”’ > 1and Ay = p € (0,1) and that J (1, — ) has eigenvalues
M=f=>land a=p € (0,1). These boundary steady states are therefore
unstable for any value of . The characteristic equation for the Jacobian evaluated
at (s*, ) is

N=[l+p+Q-pm)A+p=0 (20)
where, as before, ¢ = s* (1 — s*) 2 5 When u € (0,1) one can show that the eigen-
(tvi) +f) (i) f)

<Y< - . If this condition holds then
we have|\;| = |Ao| = p € (0,1) and the interior steady state is locally stable. If the
eigenvalues are real the local stability conditions are given by A\; < 1 and Ay > —1
(where we have labeled the eigenvalues such that A; > X9). From (20) it follows that
(1 — p) < 0 implies that A; < 1 always holds. On the other hand, Ay > —1 as long

values are complex as long as —

as ¥ > Y* = —Qi—ﬁ. Moreover, since for ¢ < ¢* the eigenvalues are real it follows
that the interior steady state (s*, «) is locallys stable if and only if ¢ > )*. O
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