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Abstract

In this work we study the directed polymer in random environment and some associated prob-
lems. In Chapter 2, we focus in spatial dimensions d > 3 and study the spatial fluctuations of the
field of partition functions and log-partition functions in the subregion of the weak disorder regime
called L? regime. We prove convergence of the two fields, under centering and suitable scaling, to
the solution of the Edwards-Wilkinson model, thus establishing Gaussian fluctuations, in the full
L? regime.

In Chapter 3 we study the directed polymer in random environment in the case of spatial di-
mension d = 2 and in the so-called subcritical regime. We establish that all moments of the
partition function are bounded in the full subcritical regime and compute their limit. As a byprod-
uct, we obtain that the logarithmically scaled total collision local time between h, (h € N, h > 3),
independent simple symmetric random walks on Z? converges in distribution to a Gamma ran-
dom variable. Based on this result, we formulate the conjecture that the joint distribution of the
h(h —1)/2 logarithmically scaled collision local times between h simple symmetric random walks
on Z? converges to that of a vector of h(h — 1)/2 independent exponential random variables.

Last, in Chapter 4, we prove the aforementioned conjecture on the logarithmically scaled col-
lision local times by exactly computing their limiting joint Laplace transform. In order to prove
this result, we build on tools developed in Chapter 3 and further analyse the microscopic structure
of the collision local times.
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Notation

‘We note that

note constants that may change from line to line. Furthermore, given any two positive sequences

throughout Chapters 2, 3 and 4 we will use the letters ¢, ¢/, C,C’, ...

N—

(an)NeN, (bN)NeN, we will write ay ~” by or simply ay ~ by when limy_,, $& = 1.

N

Below, we summarise the main notation we will use in the following chapters.

Notation | Definition
S symmetric simple random walk in Z¢
P, E, | probability and expectation w.r.t. the law of S starting from z
gn(z) | P(Sn =)
w random environment
P, E probability and expectation w.r.t. the law of w
B inverse temperature / strength of disorder parameter
DPRE,; | d-dimensional directed polymer in random environment
AB) | logE[e?]
a(8) | A28) - 2A(8)
a(B) er2(6) — 1, (Chapter 2)
Oni | Jh= (Chapter3)
a7 (B) clEN 1, (Chapter 4)
&n,z %, (ePNwnz=ABN) _ 1 in Chapter 3)
Zn 5(x) Ex[ezﬁzl{ﬁwn,sn—m)}]
Z]/\\[,B(-TJ) E. [GZ(W)EA{Bw”’z_A(ﬁ)}ﬂ{S"ZZ}] for A = N x zZ4
z

Znple) | 2 w(@) (Zn,5(x) — 1) for p € Cc(RY)

zezd 2
en() | e(F)
T return probability of d-dimensional simple random walk
Ly 25:1 I¢s,,—0}
Ry E[Ly]
Lg\i,’j) 25:1 ]l{sy(j):s’(lj)} - collision local time between random walks S(®), S()

We note that in Chapter 3, the sums used to define Zy g(x), Ly and L*’ will run fromn = 1

(4,5)

ton = N — 1 instead of V.

Bibliography. Citations of works that, to the best of our knowledge, have not yet been published

to a scientific journal will be denoted ending with a + symbol (e.g. [L21+]) to avoid any chrono-

logical confusion.




CHAPTER 1

Introduction

1.1. The directed polymer in random environment

The main focus of this work is the study of the directed polymer in random environment in
dimensions d > 2, DPRE, for short, which is a model consisting of a random walk interacting
with a space-time random environment placed on the vertices of the d-dimensional lattice Z%. In
particular, consider S = (Sy,)n>0 to be a d-dimensional simple symmetric random walk, whose
law and expectation we will denote by P,, E,, respectively, when starting from z € Z¢ and let
alsow = (Wn,z) (n,z)eNxz¢ be a family of independent and identically distributed random variables

with law P and expectation E such that
E[w] =0, E[w?] =1, A(B) :=logE[e?] < o0, VYB e (0,0).

The law of DPRE, of length N, starting from = € Z% and at inverse temperature 3 € (0, 0) is
defined by

dPn g,z 1 SN {Bwn.s, —ANB)}
DA It il = — n= w”ﬂ, n 111
dP, (5 Znp() e 7 ( :
where
I s(x) = B [625_1{5wn,5nx<5>}] ' (1.1.2)

Zn () is a (random) normalising constant which makes the polymer measure a probability mea-
sure. It is called the partition function of the model and its importance stems form the fact that it
contains crucial information about all the thermodynamic quantities of interest, see [Bov06]. The
study of its statistical properties in the infinite volume limit, i.e. as N — oo, will be the main
interest of this work. When the starting point of the random walk is 0 € Z% we will simply write
Zn g instead of Zy g(x). Note that, due to the translation invariant nature of the random environ-
ment w, Zy, 3(x) has the same law with Zy g for every « € z4 7z ~,3- We note that including the
factor A(3) in the exponential in (1.1.1) and (1.1.2) turns Zy g into a martingale with respect to
the natural filtration (F,,)p>0 with 7, = 0 (wpe 0 1 < £ < n,z € Z%), such that E[Zy g(z)] = 1
for all N € N. The significance of this modification will become apparent in Section 1.2.

The DPRE; models a competition between entropy, stemming from the underlying random
walk and energy,which takes the form of rewards provided by the environment w that are collected
by the random walk as it traverses the lattice Z¢. One can almost immediately distinguish two
extreme cases of the directed polymer, one that is dominated by entropy and one that is dominated
by energy. In particular, when 5 = 0 in (1.1.1) one recovers the law of the simple random walk
under which every path of length N has the same probability (2d) V. On the other hand, by (1.1.1)
we see that as 3 increases (temperature decreases) the polymer measure tends to assign larger
probability to directed paths along which the environment w is more favorable, i.e. it attains higher
values. In particular, in the limit 3 — oo the polymer measure is concentrated on the directed

random walk paths 7 along which the energy >, __w, is maximized. Therefore, the DPRE, at

Qe
inverse temperature 3 € (0,00) can be seen as an interpolation between those two extreme cases,
and as such it is interesting to study how the transition between the entropy dominated phase to

the energy dominated phase happens as one varies the inverse temperature 5 as well as the spatial



dimension d. Before we delve into a more detailed exposition of the main established results about
the DPRE, we present some of the main questions around it as well as links with other models that

further motivate its study.

1.1.1. DPRE, as a disordered system. One of the main questions the directed polymer in random
environment poses is whether the introduction of the disorder, i.e. the random environment w, is
sufficient to alter the large scale statistical properties of the underlying random walk, a question
which falls under the more general scope of disorder relevance/irrelevance in the field of disordered
systems. In particular, if even a small amount of disorder is enough to change the large scale
properties of a system we say that disorder is relevant, otherwise we say that disorder is irrelevant.

In the context of the polymer, one can imagine two possible scenarios for the DPRE; depend-
ing on the dimension d and inverse temperature 3. If the spatial dimension d is large and /3 is small
then the environment should not have much effect on the polymer, because there is enough space
for the polymer to avoid large values of the environment and also the environment is weak due to
high temperature. On the other hand, if the dimension is small or the strength of the disorder (3 is
high, there is not much room for the polymer to avoid the influence of the environment and it will
have an advantage to travel to atypically far distances to collect disorder that is more favourable.

According to a powerful but heuristic criterion due to Harris [Har74] which was first for-
mulated in the context of the ferromagnetic Ising model with random impurities, the question of
whether disorder is relevant or irrelevant for a statistical physics model can be determined by look-
ing at a suitably defined correlation length exponent v and the effective dimension dcg of the pure
2

d disorder is deemed irrelevant and a small amount of random
(&

impurities is not sufficient to alter the large scale properties of the model, if v > d%f disorder is

model. In particular, if v <

relevant and even a small amount of external randomness is sufficient to change the macroscopic
behaviour of the system, while for the case v = d%f, the Harris criterion is inconclusive and one
(&

has to look at the fine details of each specific model to rule whether disorder is relevant or not.

For the simple random walk on Z¢, diffusivity suggests that we have deiy = d + 2 and v = %

1
2

is, d < 2 and disorder is irrelevant when % > (%2 or equivalently, d > 2. The case of dimension

Therefore, for DPRE, according to the Harris criterion, disorder is relevant when 5 < d%2 that
d = 2 is dubbed marginal and the Harris criterion is inconclusive.

In the present work we will be concerned with the disorder irrelevant case of d > 3 in Chapter
2 and the marginal case of d = 2 in Chapters 3 and 4.
1.1.2. DPRE,; and singular SPDEs. Besides the question of disorder relevance/irrelevance, one
of the main reasons to study the DPRE, is its close connection with certain singular stochastic par-
tial differential equations. In particular, let £ denote space-time white noise, that is the generalised

centred Gaussian process with covariance structure

E[£(t,2)E(s,y)] = 6(t — s)6(x — y) t,s >0, z,ye€R? (1.1.3)
and consider the stochastic heat equation with multiplicative white noise £, (mSHE), that is
dwu(t,x) = 2Au(t, ) + Blu-&)(t, x) t>0, xeR?
(mSHE) 2 . (1.1.4)
u(0,2) =1

The physical interpretation of the solution to mSHE (1.1.4) is that it represents the density, at
a given time ¢ and point in space = € R?, of independent particles performing diffusions in an
environment where particles can be generated or killed independently in space and time with a rate
that depends on § and the sign of &.



Notice that, while in dimension d = 1, one can make sense of equation (1.1.4) by using
classical It6 theory, this is no longer possible in dimensions d > 2, due to the very singular nature
of space-time white noise which makes the product w - £ ill-defined. More specifically, the d-

dimensional space-time white noise £ is a random distribution that belongs to the (parabolically

_d_q_
scaled) Holder space C; 2 " for every K > 0, see [CW17], Section 2. Taking into account the
smoothing effect of the Laplacian operator which improves spatial regularity by 2 degrees, see
d

for example [CW17], the solution is expected to have the regularity of C; 2 for all k> 0,
or lower. This suggests that in dimensions d > 2, the solution to mSHE should be a random
distribution leading to the aforementioned ambiguities, see [CW17], Theorem 2.13.

Nevertheless, a first investigation of what properties a solution to mSHE should satisfy can be
carried out by a scaling argument which probes the large scale behaviour of the solution to (1.1.4).
More specifically, let € denote a small positive parameter and consider the parabolically rescaled
version of wu, that is

Ue(t, x) == u(L,2). (1.1.5)
Note that this tranformation leaves the standard heat equation (d;u = %Au) invariant. An easy
calculation shows that 7. satisfies the equation

Odiic(t,) = JAT(t, ) + B’ (@ E)(ta)  t>0,weR? (1.1.6)

where E is a space-time white noise which has the same distribution with ¢ and appears due to the

fundamental scaling property of space-time white noise

£(t,x) T el g(4,2), (1.17)

which is understood as a distributional equality when testing against L? functions.

Observe that when € | 0, the coefficient in front of the noise E in (1.1.6), vanishes when d > 3,
blows up when d = 1 and it is constant and equal to 1 when d = 2. This suggests that the noise
should have a non-trivial effect in dimension d = 1 when one moves to larger and larger scales,
while the opposite should be true in dimensions d > 3. This heuristic argument fails whatsoever
to make any prediction in dimension d = 2. A similar argument in small scales, that is considering
e (t, ) := u(e?t, ex) produces a coefficient £=“%" in front of the noise thus yielding analoguous
predictions as in the case of the large scales, but reversed. Notice that this picture matches exactly
the disorder relevance/irrelevance picture based on the Harris criterion that we discussed in the
previous subsection. In the language of SPDEs, dimension d = 1 corresponds to the subcritical
dimension, dimensions d > 3 correspond to the supercritical dimensions while d = 2 is the critical
dimension.

A similar scaling argument can also be derived after first centering and then scaling u. More
specifically, let

bty x) = e~ (3D (u(a%,f) . 1). (1.1.8)
Note that (0, ) = 0 and the scaling (1.1.8) is chosen because it is the scaling which leaves the
additive stochastic heat equation (also referred as Edwards-Wilkinson model [EW82])

ow(t,z) = $Av(t,z) + BE(L, x) t>0, zeR?

(aSHE) {U(O,x)EO (1.1.9)



invariant. A simple (formal) calculation shows then that 9 satisfies the equation

~

o(t,x) = LAN(ta) + BT (B &)(ta) + BE(t,x)  t>0,zeRY
5:(0,2) =0 ’

Then, similar conclusions can be drawn regarding the classification of the equation depending on
the spatial dimension d. In particular, in dimensions d > 3, the vanishing coefficient 2" in front
of v - E suggests that 7. should converge to the solution of the Edwards-Wilkinson model (1.1.9).
As we will see in the next section, this is only partly true. In dimension d = 2, the coefficient
£“s" = £0 is constant and equal to 1. We will see in the next section though, that the correct
interpretation is not a constant but a logarithmically vanishing coefficient.

To bypass the analytical obstacles and be able to define some notion of solution to (1.1.4) in
dimensions d > 2, one resorts to a regularisation procedure which is carried out by replacing the
original noise ¢ with a spatially mollified version . and considering the corresponding regularised
equation. More specifically, given a probability density j € C.(RY), with j(z) = j(—x) for z € R?
and ¢ > 0, we define j.(z) := ¢4 (%) and

E(t,x) = (Exjo)(t,x) = edf dz (8, 2) j(52) (1.1.10)

R4
Then, for every ¢ > 0 and fixed ¢ > 0, x — S(t) &:(s,x)ds is a smooth function while for fixed
x € R?, the process t +— Sé £.(s,x)ds is a Brownian motion with variance ||5]|3. In that case,
replacing £ by & in (1.1.4) leads to a well-posed equation by It6 theory.
In order to reveal the link with directed polymers, let us consider mSHE with mollified noise
and at large scales, that is the equation
due(t,r) = SAuc(t,x) + BT (u-&)(tx),  t>0,z€R?

(mSHE, ) (1.1.11)
us(0,z) =1

The solution u, satisfies, by [BC95], the following Feynman-Kac formula

T e e (LR
(1.1.12)

. —2
dist Ee_lx[eﬂ&i tSRdf(s,u)ﬂu—Bs)dsdu—éﬁ%Qtlljlli]

where B = (Bs)s>0 is a d-dimensional Brownian motion starting from By := z € R? and to
derive (1.1.12), we used that the distribution of £ is invariant under time-reversal and satisfies the
scaling relation (1.1.7). Therefore, under the natural identification N = 72, (—swand B« S,
we see that Zx g(z) can be regarded as the discrete analogue to the solution of equation (1.1.11)
and in that sense discretisation is equivalent to mollification of the noise.
The study of (1.1.4) is also motivated by the fact that h := logu (Cole-Hopf transformation)
formally solves the Kardar-Parisi-Zhang equation
{ath(t,x) = LAR(t,2) + VR (t,2) + BE(t,a)  t>0,zeR?
(KPZ) (1.1.13)
h(0,z) =0,
Equation (1.1.13), which was introduced in [KPZ86] by the physicists Kardar, Parisi and Zhang
is by now considered to be the universal model for random growth phenomena. It has attracted
a lot of interest recently after the celebrated work of M. Hairer [H13] and his subsequent theory
of regularity structures [H14], as well as the theories of paracontrolled distributions [GP17] and

4



energy solutions [GJ14] for the case of dimension d = 1. Contrary to the case of (1.1.4), the KPZ
equation is ill-posed in any dimension d > 1 due the irregularity of the noise which causes the
|Vh|2 term in (1.1.13) to be apriori ill-defined.

Although the Cole-Hopf transformation providing the link between mSHE and KPZ consists in
a formal calculation that does not apriori make sense, there are important reasons why one should
consider it to be the correct notion of solution to the KPZ equation, originating from the case of one
spatial dimension d = 1. First, as we stressed out previously, in dimension d = 1, equation (1.1.4),
is well posed in its mild form and the solution w is positive [Mii91]. Moreover, if we consider the
solution . to the counterpart of (1.1.4) where the noise has been mollified, then u. — u uniformly
on compact sets and and since u(t,x) > 0 for ¢ > 0 we may define h. := log u.(¢,z). Then, by

1t6’s formula h. satisfies the equation
Othe(t,z) = %Aha(tvx) + %’thfz(t,x) + BE&(t,x) — Ce

where C. := %72 |5]|3 is the Itd correction. Second, it was proven some years ago in a seminal
work by Bertini and Giacomin [BG97], that the fluctuations of a discrete particle system, the
stationary weakly asymmetric simple exclusion (WASEP), under a suitable rescaling, are governed
by the Cole-Hopf solution. An additional argument in favour of the Cole-Hopf solution as the
canonical solution to the KPZ equation is that it has the conjectured in [KPZ86] scaling exponents
as it was established in [BQS11].

1.2. Overview of the existing literature and our results

We will now present in more details some established results for DPRE,; in the case of the
supercritical/disorder irrelevant dimensions d > 3 for the directed polymer, mSHE and KPZ equa-
tions, as well as in the case of the critical/marginal dimension d = 2. We will also present our

results and explain how they fit in the existing literature.

1.2.1. The case of dimensions d > 3. The first contributions in this direction came from the
works of Imbrie-Spencer [IS88] and Bolthausen [B89] who showed the existence of a weak disor-
der regime for DPRE,; in dimensions d > 3 when the strength of disorder § is small enough. In
particular, it was shown that almost surely, paths weighted by the polymer measure (1.1.1) are dif-
fusive in the large scale limit. The regime of /3 that was considered in these works was what we call
here the L? regime, which is characterised by the L?(P) boundedness of the partition function Z N3
as N — oo. This regime can be explicitly characterised as follows. Let \o(5) := A\(28) — 2A(f)
and denote by 7, the probability that a simple symmetric random walk on Z¢ starting from the
origin, will return to the origin. Then, the L? regime corresponds to the interval (0, B Lz(d)),
where

Br2 i= Bra(d) :=sup {5 : Ma(B) <log (7)}-
This characterisation is achieved by the simple and standard computation

(1,2)

E[(Znp)?] = E®? [ DNT] = E[e2Ptr] (1.2.1)

where LS\}’Q) =SV 1

el faw Ly := 25:1 1¢s,,=0y- Since, the simple random walk is

(s =5t}
transient in dimensions d > 3, Ly converges almost surely to a random variable L., as N — oo

and L., follows a geometric distribution with success probability 74 < 1. Specifically, it is not

5



hard to see that limy .. E[(Zn,8)?] = E[ex\z(ﬁ)Loo] and

1—m :
B[] = {Hd% if X2(B) < log(5,) (12.2)

@ otherwise.

In the L?-regime it was also proven by Sinai [S95] and later by Vargas [V06], also in the continuum,
that a local limit theorem holds for the polymer.

The weak disorder regime was subsequently characterised by the works of Comets, Shiga,
Yoshida [CSYO03, CSY04, CY06] as the regime of 3 < f.(d), such that Z g is a uniformly inte-
grable martingale sequence and as such converges almost surely to a strictly positive random vari-
able Z, . It was proven in [CY06] that the polymer is diffusive in this regime, extending previous
results that were limited to the L? regime. For 8 > B.(d), Z ~,3 converges to 0 as N — 0. The
latter is called the strong disorder regime. Clearly, one has (5.(d) = [r2(d) and in fact it took some
time to resolve the nontriviality of the interval (872(d), Bc(d)), see [BS10, BS11, BT10, BGH11].
The parameter (3. marks the transition to a stronger disorder phase where the polymer localises in
a few regions where the environment is more favorable, see [Ch19], [BC20a], [BC20b], [Ba21].
In the strong disorder phase it is expected that the polymer exhibits super-diffusive behaviour but
this has yet to be proven. Additional limitations for studying the directed polymer above or at
the weak/strong disorder transition poses the fact that that a concrete characterisation of 5. is still
missing. Some indirect descriptions have been given in [CYO06] in terms of the overlap between
two independent paths under the polymer measure and more recently by Junk, in [J22], in the case
of bounded environment w, in terms of the integrability of the running supremum sup yen £, 3-
Let us note that although little is known for the limit of the partition function Z, g in dimensions
d > 3, limiting theorems have been established for the difference Zy g — Zy g for small 3 > 0,
by Comets and Liu in [CL17] and later extended in the full L? regime by Cosco and Nakajima
[CN21]. See also [CCM22] for results of similar flavour in the continuum.

weak disorder strong disorder
A N
r N N
| |
I |
0 BLQ 56 0

L? regime

FIGURE 1.2.1. The phase diagram of DPRE,; in dimensions d > 3.

A weak/strong disorder transition similar to that of the directed polymer in dimensions d > 3
has been established for the solution of the regularised mSHE (1.1.6) by Muhkerjee, Shamov and
Zeitouni [MSZ16]. Particular focus has been devoted to studying spatial correlations of the solution
to the regularised mSHE as € | 0, when viewed as a field

{ug(t,x) C T E Rd}

or equivalently for the diffusively rescaled polymer partition function field
{ZNﬁ([\/Na:J) = Rd} ,

as well as the corresponding questions for the solution to the KPZ equation and log-partition func-
tion. The first contribution in this direction in the supercritical dimensions d > 3 was the work of

6



by Magnen and Unterberger [MU18] for the KPZ equation. In particular, the authors of [MU18]
considered a regularised KPZ equation (with noise regularised both in space and time) and proved,
using the Cole-Hopf mapping to the solution of the mSHE, that as the regularisation is removed
the solution to the KPZ equation converges as a field to the Edwards-Wilkinson model, that is, the
fluctuations of the limiting field are described by the solution to the additive stochastic heat equa-
tion (1.1.9), but with an effective noise strength. Their work was based on rigorous adaptation of
ideas originating in Quantum Field Theory, in particular, perturbation expansions and multi-scale
analysis via the renormalisation group. It was later shown by Gu, Ryzhik and Zeitouni in [GRZ18]
that when centred and scaled appropriately, the solution of the regularised mSHE also converges
as a field to the Edwards-Wilkinson model, again with an effective noise strength, strictly larger
than the noise strength parameter used to define the original equation. Moreover, the Edwards-
Wilkinson fluctuations for the KPZ equation obtained by Magnen and Unterberger [MU18] was
also proved by Dunlap et al. in [DGRZ18] using Malliavin calculus techniques. Both works were
restriced in a small 3 regime.

Our first contribution, contained in Chapter 2 is the proof of the limiting Edwards-Wilkinson
fluctuations for the diffusively rescaled, centred and scaled random field

{N% (ZN,B([\/NxJ) _ 1) ze Rd} : (12.3)

(corresponding to the solution of the regularised mSHE at fixed time ¢ = 1) and for the diffusively
rescaled, centred and scaled random field of log-partition functions

{5 (108 Zn5(1VNal) — E[log Zn s (IVN])]) : e R}, (1.2.4)

(corresponding to the solution of the regularised KPZ equation at time ¢ = 1). In particular, if
¢ € C.(R?) is a test function, we prove that the sequences

NN (Znsto) 1)

xeZd N

o(

&

[SIIoH

and
d

N Z <log Znp(T) — E[log ZN,B(CU)D ‘P(]\\Z/dﬁ)
xeZd ’

both converge as N — oo in distribution to the same limiting Gaussian random variable Z3(y).
Our result unlike the previous works [MU18], [GRZ18] and [DGRZ18] covers the full L? regime
B € (0,Br2) and is in some sense optimal since the variance of the limit, Z3(¢), blows up at L?
critical point 5 = S2. Our methods, as we will explain in more detail Chapter 2, are based on
analysis of chaos expansions inspired by works on scaling limits of disordered systems [CSZ17a,
CSZ16] and two dimensional polymers, SHE and KPZ [CSZ17b, CSZ20] (alternative methods to
the two dimensional case, which however do not cover the whole L? - in this case also subcritical
- regime, are those of [CD20, G20]).

Let us also mention that analogous to our results, for regularisations of SHE and KPZ as in
(1.1.11), (1.1.13) were simultaneously and independently established by Cosco, Nakajima and
Nakashima [CNN22] via quite different methods than ours, based on stochastic calculus and local
limit theorems for polymers inspired by earlier works of Comets, Neveu [CNe95] and of Sinai
[S95] (see also [V06, CN21, CCM22)).

Twe stick to time ¢ = 1 for simplicity, while the case of general time ¢ is recovered by replacing Zn,g with Zn¢ g
in (1.2.3)



A very interesting, open problem is to go beyond the L? regime in dimension d > 3. Currently,
the only work in this direction is a recent paper by Junk [J22+], in the case of bounded environment
w, where it is shown that for 5 € (812, 8.) the centred, diffusively rescaled field averages with
respect to test functions ¢ € C.(RY),

Znsle)i= Y, (Znpla) —1) w(]ﬁ) (12.5)
xeZd 2

converge to zero, as N — o0, at a rate N~ "(5:d+e(1) with h(3,d) > %. This however leaves
open the question of what the limiting fluctuations of the sequence (N h(B.d) Z N, 5(@)) N> are as
N — 0.

1.2.2. The case of dimension d = 2. As we mentioned earlier, the case of dimension d = 2
is called marginal since the Harris criterion can not rule whether in this case the polymer exhibits
disorder relevance or irrelevance and similarly d = 2 is called the critical dimension in the language
of SPDE. It was proved in [CY06] that DPRE; exhibits strong disorder for every 3 € (0, o), that
is the partition function Zy g converges almost surely to 0 as N — co.

An underlying transition was later unveiled by the work of Caravenna, Sun and Zygouras in

[CSZ17b], when one focuses on a regime where the strength of the disorder is tuned down to 0 as
B NZ®

A RN -

BA/ o > Where Ry = E[Lg\l,’m] = 27]1\7:1 g2n(0) is the expected collision local time between two

N — 0. More specifically, the authors of [CSZ17b] showed that if one chooses By :=

independent random walks S(), S(2) and the asymptotic Ry N % log N follows by [ET60], it
is true that as N — oo,

@ Jexp(ggX —303), if 3 (0,1)

IN gy~ (1.2.6)

1
1-42
encompasses also a large class of so called marginally relevant disordered systems which display

where X follows a standard normal distribution A (0,1) and 05 = log < ) Their result

the same universal behaviour, along with the regularised mSHE with logarithmically attenuating

disorder strength

Oue(t, ) = %Aug(t,l‘) + B n (ue - &) (t, ). (1.2.7)

loge—1

0 Ber/ 52w
L Y,
~

subcritical (L?) regime

Y

strong disorder

FIGURE 1.2.2. The phase diagram of DPREs, highlighting the presence of the
intermediate disorder regime when Sy = B, / 2~ with BC = 1 marking the

log N

transition from the subcritical to the critical (Bc = 1) and supercritical (BC =1
regimes.



Note that (1.2.6) indicates a weak/strong disorder transition in the intermediate disorder regime
reminiscent of the weak/strong disorder transition observed in higher dimensions. Such a transition
can be guessed by a second moment computation. In particular, we have that in spatial dimension
d=2,asin (1.2.1),

E[(Z,5)7] = B[] = B[]
where we recall that if S, $(2) S are independent simple symmetric random walks on Z2, then
L%’Q) = 25:1 ]I{Sr(f):Sff)}’ Ly := Zfl\le 1s,,-0y and L%’z) o by the symmetry of S.
Contrary to the case of dimensions d > 3, in the 2-dimensional case, due to the recurrence of the
simple random walk, L does not converge as N — oo. Instead, due to a classical result of Erdos
and Taylor [ET60], we have that

d
gV LNV 9y, (1.2.8)

where Y is a random variable having exponential distribution with parameter 1, namely the density
of Y is given by fy (y) = e™¥ 1,~¢. Itis not hard to prove then, that for the second moment of the

partition function Z g, with By ~ B \/og v Ve have

N—w 1
E[(Znsy)?] = 1
which evidently blows up at 3 =1. The regime B € (0, 1) is called the subcritical regime while the
regime B = 1is called the supercritical regime and B = 1, the critical point of the transition. Let
us note that contrary to the case of dimensions d > 3, in dimension d = 2 and in this intermediate
disorder regime, the L? regime coincides with the subcritical regime.
In the same work [CSZ17b], Caravenna, Sun and Zygouras showed that in the subcritical

regime the limiting fluctuations of the centred, diffusively scaled and logarithmically rescaled field

{M(ZN,/;N([\/M) - 1) Lz e R2} (1.2.9)

are Gaussian (together with the analoguous result on mSHE). Both the pointwise and averaged re-
sults (1.2.6) and (1.2.9) relied on polynomial chaos expansions of the partition function Zy g, ()
(see next Chapters for more details), multi-scale analysis and the celebrated Fourth moment theo-
rem to show that certain multilinear polynomials of disorder variables are asymptotically Gauss-
ian, see also [CC22] for more recent results in this direction. What crucially underlies the analysis
carried out in [CSZ17b, CC22] is the exponential time scale induced by the logarithmic scaling
(1.2.8).

We also note a more recent generalisation due to Dunlap and Gu [DG22], who studied the
semilinear regularised mSHE

Orte o(t, ) = %Aug,a(t, x) + L (u&a(t,m)) &(t,x), t>0,xeR?

g
Viege™! (1.2.10)

Ueo(0,2) =a

with o : [0,00) — [0,0) Lipschitz with o(0) = 0 and Lipschitz constant oy, < /27 and flat
initial condition @ > 0. They showed that the limiting one-point distribution of the solution u. ,
is described by a forward-backward SDE (FBSDE), recovering the log-normal fluctuations (1.2.6)
when o(z) = .



In the context of the KPZ equation, Chatterjee and Dunlap in [CD20] showed that the solution
of the regularised KPZ equation

Orhe(t, x) = %Abe(tﬂv) + %Beyvhs‘z(tﬂ@ + & (t, x) t>0,ze€ R? (12.11)
h-(0,2) =0, B
with 5, = B lo;g_l and B small enough, when viewed as a random field, centred and rescaled,

is tight as € | 0. Moreover, any subsequential limit is not the solution of aSHE one obtains by
naively dropping the nonlinearity. Shortly after, Caravenna, Sun and Zygouras showed in [CSZ20]
considered the regularised KPZ equation

Ouhe(t, x) = $Ahe(t, ) + |Vhe*(t,2) + B: &(t, 2) — C: t>0,zeR?
(1.2.12)
he(0,2) =0,
with 8, = 3 10;?_1 and C. := 272 ||5||3, and showed that the centred and scaled solution

3 (he(t,) — E[he(t,2)])

converges when ¢ | 0 (as random fields) for all B € (0, 1) to the solution of the Edwards-Wilkinson

equation
ow(t,x) = $Av(t,z) + cz&(t @) t>0, zeR?
(1.2.13)
v(0,z) =0
with ¢ 5= 4 /ﬁ, (see also [G20] where the same result was proven but for B sufficiently small).

The two equations (1.2.11) and (1.2.12) are equivalent, which can be seen through the relation

L (ha(t, z) — E[h(t, @]) By (t,2) — E[ba(t, 2)],

see [CSZ20], Appendix A.

As we discussed earlier, outside the subcritical regime, namely, for Sy = 3 m(log N)—1
with 3 > 1 the partition function Zy g, converges in distribution to 0, while for all ~ € N with
h > 2 the h™ moment E[(Zy g, )" | blows up as N — o0, see [CSZ19a]. This suggests that, at
criticality, the field

{ZNﬂN([\/NxJ) . ze RQ} (1.2.14)

becomes rough as N — oo and the correct point of view is therefore to look at it as a random
distribution, that is when tested against test functions. The first work in this direction was carried
out by Bertini and Cancrini [BC98], who showed that in the context of the critical mSHE, there
exists a critical window of disorder strength around B. = 1 for which the field (1.2.14) is tight,
and explicitly computed the limiting covariance structure. Their analysis was based on the spectral
theory of Schrodinger operators with point interactions.

The result of Bertini and Cancrini for the critical 2-dimensional mSHE was later rediscovered
by Caravenna, Sun and Zygouras via probabilistic methods in the context of the directer polymer
[CSZ19a, CSZ19b], where they also showed that the third moment of the field tested against test
functions is bounded as N — o0 and as a consequence all subsequential limits are non-trivial and
have the covariance structure computed by Bertini and Cancrini. The work of Gu, Quastel and
Tsai [GQT21] further showed that all centred positive integer moments of the field (1.2.14) are
bounded as N — o0, inspired by the works of Dell’ Antonio, Figari, Teta [DFT94] and Dimock,
Rajeev [DR04] on the 2-dimensional delta Bose gas. However, these moment estimates are not
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sufficient to determine the distribution because the moments grow too fast. More recently, the
question of uniqueness of the limiting field was settled by Caravenna, Sun and Zygouras. Utilising
chaos expansions, a space-time renewal structure, moment estimates and a Lindeberg principle
for multilinear polynomials of dependent variables, the authors showed that, indeed, there exists a
unique limiting field, named thereafter, the Critical 2d Stochastic Heat Flow, which is the natural
candidate for the long sought solution to the critical 2-dimensional mSHE.

Let us also mention that there has been significant progress in understanding the so called
Anisotropic KPZ (aKPZ) equation in dimension d = 2, which is formally given by

Oth = AR + A((01h)? — (62h)?) + €. (1.2.15)

The first work in this direction is due to Cannizzaro, Erhard and Schonbauer who showed in
[CES21] that the regularised aKPZ

ohN = LARN + ANV RN + ¢ (1.2.16)

where NV [hV] := Iy (TIx 1A )2 — (ILn02h™)?) and Iy cuts the Fourier modes larger than

.. . . . . . A .
N, has non-trivial subsequential limits when A is going to 0 as A = TR Note that, instead

of discretisation or mollification of the noise, the regularisation of (1.2.15) is done by replacing
the nonlinearity with the regularised version N"V[h"], where the regularisation is taking place
in Fourier space. Furthermore, Cannizzaro, Erhard and Toninelli showed in [CET21+] that the

solution to the regularised aKPZ (1.2.16) with A = \/loiﬁ viewed as a random field converges to
the Edwards-Wilkinson model with non-trivial coefficients. Focusing on a different scaling regime,
Cannizzaro, Erhard and Toninelli showed in [CET20a+], [CET20b+] that when A is being kept
fixed and not varying with N, the solution to aKPZ is logarithmically superdiffusive. We stress
that contrary to the isotropic KPZ (1.1.13), there is no Cole-Hopf transform for the anisotropic
KPZ and therefore it cannot be reduced to a problem involving directed polymers. One important
ingredient crucially utilised in the above works however, is that aKPZ in the form (1.2.15) (the
anisotropic problem can be formulated more generally, see [CES21]) admits the Gaussian Free

Field as an invariant measure.

We will devote the rest of this introduction to a specific problem concerning the 2-dimensional
directed polymer partition function in the intermediate disorder regime which was the motivation
for the material presented in Chapters 3 and 4, and draw the connection with other models that are
of interest.

1.2.3. Moments of the polymer partition function and collisions of independent random
walks in d = 2. It is an interesting and non-trivial question whether all moments of the parti-
tion function Zy g, remain uniformly bounded as N — o0 in the same regime of 3 where the
second moment remains uniformly bounded. Information on moments higher than two in the sub-
critical regime has already appeared necessary in a number of situations, in particular in proving
tightness and regularity properties of the approximations to the solutions of the 2d-KPZ [CD20]
or Edwards-Wilkinson universality for the 2d-KPZ [CSZ20, G20]. The lack of control on higher
moments was resulting into restrictions to strict subsets of the subcritical regime in [CD20, G20],
while this was circumvented in [CSZ20] by employing hypercontractivity to show, for any B <1,

~ A~

the uniform boundedness of moments up fo certain order h(/3) > 2 with lim i h(B) = 2.



In Chapter 3 we resolve this question, showing that all moments of Zy g, are uniformly
bounded as N — oo in the subcritical regime Be (0,1). Combining this result with the distribu-
tional convergence (1.2.6) we can actually compute the limit of all moments. More specifically,
we show that for By = 3, /e With B e (0,1) and for all h > 07,

h(h—1)

1 2
A}iinooE[(ZNﬁN)"] — <1 = 32) . (1.2.17)

We also apply our techniques to show that the moments of the averaged field are uniformly bounded

and therefore converge to those of a Gaussian free field due to [CSZ17b]. Our approach for proving
moment boundedness generalises moment bounds that were established in [CSZ21+] and used
therein to prove uniqueness of the scaling limit of the polymer field at the critical temperature
scaling. The work of Caravenna, Sun and Zygouras was inspired by the previous work of Gu,
Quastel and Tsai [GQT21] in the context of the critical 2d mSHE, which was based on the works
of Dell’ Antonio, Figari, Teta [DFT94] and Dimock, Rajeev [DR04] on the delta Bose gas. The
main idea used in [GQT21], [CSZ21+] and also in our setting is to expand the centred R moment
of the partition function into a chaos series, and then rewrite this expansion into the form of a
composition of certain transition operators applied to an initial condition and a terminal condition.
The required moment bounds are then a result of norm operator estimates. In [GQT21] these
norm operator estimates are carried out in an L? setting, while in [CSZ21+] they are extended,
in a discrete setting, to ¢¢ for all ¢ € (0,00). In order to be able to prove moment boundedness
and consequently convergence (1.2.17), it was necessary to compute sharp asymptotics of these
operator norms as ¢ — 00, see Chapter 3 for a detailed outline of our proof.

As we further explain in Chapter 3, moment convergence (1.2.17) has more implications be-
yond the directed polymer and in particular in the context of collisions between independent ran-
dom walks on the 2-dimensional lattice Z2. More specifically, let A € N and S, S®?) . 5"
denote independent simple symmetric random walks on Z2, all starting from the origin. If we
choose the law of w to be standard Gaussian (0, 1) then a standard computation shows that

%) iy (4,7)
E[(ZN,ﬂN)h] = E®" [65221<i<a<h wEv N ] (1.2.18)

where L%’j ). SN 1 )_ () denotes the collision local time of walks S and SU). Therefore,

n=1 Sr(f
as we show in Chapter 3, (1.2.18) in conjunction with (1.2.17) implies that the logarithmically
scaled total pairwise collision local time between SV, S S namely,
(4,9)
10;r N 2 Ly
1<i<j<h
h(h—1)

converges in distribution as N — oo to a F( T 1) distributed random variable, where I'(a, 1)

is the law with density function ﬁx“‘lg—x]l{:mo} and in the last expression I'(a) denotes the
gamma function.

Given that a gamma distribution T'(k, 1), with parameter & > 1, arises as the distribution
of the sum of k£ independent random variables each one distributed according to an exponential
random variable with parameter one (denoted as Exp(1)), the convergence of the total collision

local time, @ Di<ic j<h Lg\z,’] Jtoall ( @, 1) distributed random variable raises the question

"The result extends to all A < 0, provided that the law of w satisfies a concentration condition, see the statement of
Theorem 3.0.1 for more details.



as to whether the joint distribution of the individual rescaled collision times { I Og N Lg\i,’j )

} 1<i<j<h
converges to that of a family of independent Exp(1) random variables. Chapter 4 is devoted to the

proof of this fact.

An intuitive way to understand the convergence of the individual collision times, or equiva-
lently of the local time of a planar walk, to an exponential variable is the following. By (1.2.8), the
number of visits to zero of a planar walk, which starts at zero, is O(log N) and, thus, much smaller
than the time horizon 2N. Typically, also, these visits happen within a short time, much smaller
than 2V, so that every time the random walk is back at zero, the probability that it will return there
again before time 2N is not essentially altered. This results in the local time Ly being close to
a geometric random variable with parameter of order (log N)~! (as also manifested by (1.2.8)),
which when rescaled suitably converges to an exponential random variable.

The fact that the joint distribution of {logLN L%’j )} ~ converges to that of independent

1<i<j<h
exponentials is much less apparent as the collision times have obvious correlations. A way to
understand this is, again, through the fact that collisions happen at time scales much shorter than
the time horizon N and, thus, every time two walks start colliding they have essentially ’forgot-
ten’ their previous collisions with other walks. More crucially, the logarithmic scaling, as indi-
cated via (1.2.8), introduces a separation of scales between collisions of different pairs of walks,

which is what, essentially, leads to the asymptotic factorisation of the joint Laplace transform of

{1 N L%’j )} . This intuition is reflected in the two main steps in our proof, which are
og 1<i<j<h
carried out in Sections 4.2.3 and 4.2.4.

Even though the Erdds-Taylor theorem (1.2.8) appeared a long time ago, the multivariate ex-
tension we establish in Chapter 4 appears to be new. In [GS09] it was shown that the law of

log ~ Lg\l,’Q), conditioned on S™), converges a.s. to that of an Exp(1) random variable. This im-

plies that {log N L%’z) }1<i <, converge to independent exponentials. However, it does not address

the full independence of the family of all pairwise collisions {

s L(’L,J) }
logN "N fi<i<j<h’
In the continuum, phenomena of independence in functionals of planar Brownian motions have

appeared in works around log-scaling laws see [PY86] (where the term log-scaling laws was in-
troduced) as well as [Y91] and [Kn93]. These works are mostly concerned with the problem of
identifying the limiting distribution of windings of a planar Brownian motion around a number of
points z1, ..., 2, different than the starting point of the Brownian motion, or the winding around
the origin of the differences B(Y) — B() between k independent Brownian motions B, ..., B*),
starting all from different points, which are also different than zero. Without getting into details, we
mention that the results of [PY86, Y91, Kn93] establish that the windings (as well as some other
functionals that fall within the class of log-scaling laws) converge, when logarithmically scaled,
to independent Cauchy variables. [Kn93] outlines a proof that the local times of the differences
BW — BU 1 < i < j < k, on the unit circle {z € R?: |z| = 1} converge, jointly, to inde-
pendent exponentials Exp(1), when logarithmically scaled, in a fashion similar to the scaling of
Theorem 4.0.1. The methods employed in the above works rely heavily on continuous techniques
(It6 calculus, time changes etc.), which do not have discrete counterparts. In fact, the passage from
continuous to discrete is not straightforward either at a technical level (see e.g. the discussion on
page 41 of [Kn93] and [Kn94]) or at a phenomenological level (see e.g. discussion on page 736 of
[PYS86]).

Exponential moments of collision times arise naturally when one looks at moments of partition

functions of the model of directed polymer in a random environment, see (1.2.18). We note that the
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asymptotic independence of the logarithmically scaled collision local times { I Og N Lg\i,’j )

}1<i<j<h
that we establish provides an explanation for the exponent @ in (1.2.18) since asymptotic

independence implies the asymptotic factorisation

E®h [6[3221gi<]<h ngLg\Z/J)] N;oo 1—[ E[65210§N'-§$’J>]

1<i<j<h

which produces the exponent w in (1.2.18).

Let us close this introduction with some possible further prospects of the work we develop in
Chapters 3 and 4. A first application of the overall methodology that we develop here could be used
to investigate the growth of the moments of the point-to-plane partition (or equivalently the solution
of the SHE with delta initial conditions) at the critical temperature scaling B = 1. It is known
[CSZ19a] that the second moment of this quantity grows as log /N. Moreover, boundedness of the
moments of the averaged field (3.0.8) at this critical temperature scaling has been established in
[GQT21, Che21+] for all moments and in [CSZ19b] for the third moment. See also [CSZ22+] for
explicit moment lower bounds for the averaged field at the critical temperature scaling. However,
the rate of growth of the ~*"* moment of the point-to-plane partition function, in this case, is not
known. It is expected to be of the form (log N )™(") but the exponent m(h) has not been determined,
yet. We believe that the approach we develop here can shed some light to this question.

Moment estimates are also important in establishing fine properties, such as structure of max-

ima, of the field of log-partition functions

{ V105 (og Zy 5(IVNel) ~ E[log Zw s (IVN=l)] ) : 2 € R*}

which is known to converge to a log-correlated Gaussian field [CSZ20]. We refer to [CZ21+]
for more details. We expect that the independence structure of the collision local times, that we
establish here, to be useful towards these investigations. An interesting problem, in relation to
this (but also of broader interest), is how large can the number h of random walks be (depending
on N), before we start seeing correlations in the limit of the rescaled collisions. The work of
Cosco-Zeitouni [CZ21+] has shown that there exists Sy € (0, 1) such that for all § € (0, 5y) and

h = hy € N such that
3831 (h
li <1
Ve 1 Blog N (2) ’

one has that

9

. h
E®h e%ﬁsiqsh L%u) < 0(5)( 1 )(2)(1+6N)
1-p
with ¢(8) € (0,00) and 0 < ey = (8, N) | 0 as N — co. This suggests that the threshold might

be h = hy = O(v/log V).



CHAPTER 2

Edwards-Wilkinson fluctuations for the directed polymer
in the full Z?-regime for dimensions d > 3

In this chapter we study the directed polymer in random environment (DPRE,) in dimensions
d = 3. We recall that the random environment (wn@')(n’x)eNxzd is a collection of i.i.d. random

variables with law P such that
E[w] =0, E[w?] =1, A(B) :=logE[e?] < o0, VYB e (0,0).

and S is a simple symmetric random walk on Z¢, whose distribution we denote by P, when starting
from 2 € Z%. When starting from 0 we will refrain from using the subscript and just write P. We
will use the notation ¢, (x) := P(S,, = z) for the transition kernel of the random walk. The

partition function is defined as
Zng(x) = B, [e 25:1{BWn»Sn*A(5>}] . 2.0.1)
We work in the so called L? regime 3 € (0, 312), where

Brz := Br2(d) := sup {B: Xa(B) < log (%d) 1,

with A2(8) := A(28) — 2\(B). In this regime, the L?(P) norm of Zy g is uniformly bounded.
Recall that N
A _11
E[(ZN’B(:L‘))Q] _ E®2 [6 2(8) Zn—l Sq(ql):sf’?)] _ E[e/\g(ﬂ)LN] , (202)

where S, S(2) are two independent copies of the simple random walk, starting from the origin,

with joint law denoted by P®2 Moreover, Ly := Zle 1g,,—0 denotes the number of times that a

d-dimensional simple random walk returns to zero and for the second equality we made use of the

equality in law Y | Tg1_g2 W SN g, —o. In particular, we have that E[(Zy 5())?] 222
E[e’\Q(ﬁ)Lw] and

B[] {1_;@ if 22(8) < log(=5) (2.0.3)

0 , otherwise.
Our first result is the Edwards-Wilkinson fluctuations for the field of the partition functions,

namely,

Theorem 2.0.1. Let d > 3, 5 € (0,B12(d)) and consider the field of partition functions of the
d-dimensional directed polymer (Zn g (x))zezd. If ¢ € C.(RY) is a test function, denote by

Znplp) = ), (ZN,ﬁ(fC) - E[ZN,,B(IE)]) 80(7117)

zezd Nz (2.0.4)
= > (Znpla)—1) gp(\/iflv) :
xeZd Nz

the centred and averaged partition function over p. The rescaled sequence (N Tz N, 5(@)) N>1

converges in distribution to a centred Gaussian random variable Z3(p) with variance given by

1
VarlZ5(0)] = G | dt [ dedy plalay (2 = )eto). 20.5)
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where g(-) is the d-dimensional heat kernel, Cg = () E[e*?P)t=] and o%(B) = *2(¥) — 1.

We also establish a similar result for the field of log-partition functions. In this case we will
additionally require that the disorder satisfies a (mild) concentration property (2.2.1). More pre-
cisely,

Theorem 2.0.2. Let d > 3, 8 € (0, 812(d)) and consider the fields of log-partition functions of

the d-dimensional directed polymer ( log Zn, 5(3;)) with disorder that satisfies concentration

xeZd

property (2.2.1). If ¢ € C.(R?) is a test function, we have that

)

o

=

NT Y <logZN,B($)—E[IOgZN’ﬂ(x)D N
zeZd

: (2.0.6)

[SlIsH

converges in distribution to the centred Gaussian random variable Z3() defined in Theorem 2.0.1.

Remark 2.0.3. We remark that, in fact, the sequences defined in (2.0.4) and (2.0.6) converge
jointly to the random vector (Z3(¢), Z5(¢)). This follows from the proof of Theorem 2.0.2 which
shows, after a series of approximations, that the difference of the two sequences converges to 0 in
L'(P)as N — co.

We will now describe the method we follow as well as the new ideas required. The basis of

our analysis is the chaos expansion of the polymer partition function as

N k k
Znp@) =1+ >0 > gz —2) [ [gmn(zi—z) [ [ 20.7)
k=1 1<ni<..<ny<N, i=2 i=1
21,...,zk€Zd
where ¢, (z) = P(S, = 2), 0 = o(B) := Ver2B) —1land &, , := 0! (eﬁw"vz_/\(ﬂ) — 1), see

(2.1.1) for the details of this derivation.

To prove the central limit theorem for (N Tz ~N,3(¢))N=1 we make use of the so-called
Fourth Moment Theorem [dJ87, NP0O5, NPR10, CSZ17b], which states that a sequence of ran-
dom variables in a fixed Wiener chaos, normalised to have mean zero and variance one, converges
to a standard normal random variable if its fourth moment converges to 3. Of course, in order
to be able to reduce ourselves to a fixed chaos, we need to perform truncation and for this, the
assumption of bounded second moments (L? regime) plays an important role. This approach of
analysing chaos expansions of partition functions was first used in [CSZ17b] in a framework that
also included the analysis of the two dimensional directed polymer and SHE. The work, which is
needed to carry out this approach in d > 3, is actually easier than the d = 2 case in [CSZ17b]. The
reason for this is that the variance of Zy g is a functional of the local time L, see (2.0.2), which
stays bounded in d > 3 but grows logarithmically in d = 2, introducing, in the latter case, a certain
multiscale structure. Still, a careful combinatorial accounting and analytical estimates, which ac-
tually deviate from those in [CSZ17b], are needed to handle the d > 3 case. The detailed analysis
of such expansion is what allows to go all the way to the L? critical temperature, as compared to
the previous works [GRZ18], [MU18].

For the Edwards-Wilkinson fluctuations of the log-partition function, namely Theorem 2.0.2,
we also adapt the approach of “linearisation” via chaos expansion proposed in [CSZ20]. However,
the analysis in d > 3, required to achieve the goal of going all the way to S12(d), is rather more
subtle. The reason is that the power law prefactor N T in (2.0.6) (as opposed to the corresponding

log N prefactor in [CSZ20]) does not allow for any “soft” (or even more intricate) bounds a la
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Cauchy-Schwarz or triangle inequalities in the approximations. Instead, we have to look carefully
at the correlation structure that will cancel the N “T°. This correlation structure is rather obvious
in the case of the partition function and can be already understood by looking at the first term of
the chaos expansion of N Tz ~,5() as derived from (2.0.7), which is

N% Z SO(@) Z Qn(z - x)é‘n,z ,

2
reZd 2€Z4 1<n<N

and whose variance is easily computed as

L

i 3 AGR)

Nd qn(2 — 2)gn(z — y)
z,y€eZd 2eZd 1<n<N
e o P(E)e(k)
=Nz ) IZ D @z —y)
z,y€eZd 1<n<N

The factor N “Z" is then absorbed by the sum ) g2,(x — y) in a Riemann sum approximation.
What underlies the above computation is that correlations are captured by two independent copies
of the random walk, one starting at x and another at y, meeting at some point by time N. The
probability of such a coincidence event compensates for the N .

When considering the log-partition functions, the above described mechanism is not obvious,
as log Zy g does not admit an equally nice and tractable chaos expansion. Nevertheless, it is neces-
sary (which was not the case in [CSZ20]) to tease out the aforementioned correlation structure, in
order to absorb N “7° and carry out the approximation. The way we do this is by writing log Zy g
(or more accurately a certain approximation, which we call log Z 1137 > see (2.2.9)) as a martingale
difference:

log Zn.s — E[log Zns] = 3 (E[log Zn.s | 73] — E[log Zn, | Fj-1])
j=1

where {F;: j > 1}, Fy = {J,Q} is a filtration generated as F; = o(wg,: @ = 1,...,7) with
{a1,as,...} an enumeration of N x Z?. By adding the information from the disorder at a single
additional site at each time, we keep track of how the polymer explores the disorder and this allows
(after a certain “resampling” procedure) to keep track of the correlations. The martingale difference
approach we introduce has in some sense some similarity to the Clark-Ocone formula, which was
used in the work of [GRZ18, DGRZ18]. However, our approach of exploring a single new site
disorder at a time seems to be necessary for the precise estimates that we need, in order to reach
the whole L? regime. Along the way, a fine use of concentration and negative tail estimates of the
log-partition function (e.g. Proposition 2.2.1) is made.

Once all the necessary approximations to the log-partition function are completed, the task is
then reduced to a central limit theorem for a partition function of certain sorts, thus bringing us
back to the context of Theorem 2.0.1. The previous work of [DGRZ18] seems to be necessarily
restricted to a small subregion of (0, 8z2), as a consequence of both the linearisation approach
employed but also more importantly (as far as we can tell) due to the use of the so-called “second
order Poincaré inequality” for the central limit theorem, which requires higher moment estimates

that lead outside the L? regime, if 3 is not restricted to be small enough.



2.1. The Central Limit theorem for Zy 5(¢)

This section is devoted to the proof of Theorem 2.0.1. Throughout this chapter we rely on
polynomial chaos expansions of the partition function. Specifically, consider the partition function

of a polymer chain of length /V starting from x at time zero. We can write

Zng(z) = EZ{ H e{ﬁwn,z—,\(ﬁ)}nsnz}

1<n<N, zeZ4

B
1

<n<N, 2ez4 (2.1.1)
N
=1+ Z O'k Z qnl anl_nL 1 — Zi— 1 Hgn“zl .
k=1 I<ni<..<np<N,
zl,...7zk€Zd
For (n,z) € N x Z? we have denoted by &n,» the centred random variables
5wn,z—>\(,8) _ 1
e
fnpi=—"—. (2.1.2)

g

The number o = o(/3) is chosen so that for (n, z) € N x Z¢ the centred random variables &, . have

unit variance. A simple calculation shows that o = /e 28)-2(8) — 1. Also, the last equality
in (2.1.1) comes from expanding the product in the second line of (2.1.1) and interchanging the
expectation with the summation. By using the expansion (2.1.1) we can derive an expression for
the averaged partition function. Let us fix a test function ¢ € C.(R?). In the following we shall
use the notation

k
gON(xl, ,mk) = H(P(jﬁ)

k>=1. (2.1.3)
i=1
We have
> on(T)
Zng(p) = ), (Znplx)—1)—
xeZd N2
v SON(
= Z Uk 2 ( qnl z,z1 > H(Im—m 1 Zl laZZ :l_‘[é-nﬂ“zZ
k=1 1<ni<..<np<N, \ gezd N2
21,...,Zk€Zd
S (k)
= Z Nﬁ(@)a
k=1
(2.1.4)
where

—(k N
](VEB(SO) = Uk Z ( 7 x 21 ) Hanfm 1 Zz 1, %4 Hgm,zl'
zeZd

I<ni<..<np<N,
215025, €20

(2.1.5)

2.1.1. Computation of the limiting variance. The first step towards the proof of Theorem 2.0.1
is the following proposition which identifies the limiting variance of the scaled sequence of centred
and averaged over ¢ partition functions, (/N 7z N3(P))N=1.



Proposition 2.1.1. Let d > 3, 5 € (0, B12) and fix o € C.(R?) to be a test function. Consider the
sequence (N 7z N.8(9))N=1, where Zy () is defined in (2.0.4). Then, one has that

1
a2 N
Var [N"T Zy 5(¢)] = Cs f dtf dady p(z)gz: (x — y)e(y),
0 R xRd d
where Cg = o2(B) E[e*2(Oe], 62(B8) = e*28) — 1 and g denotes the d-dimensional heat kernel.

For the proof of Proposition 2.1.1, we will need the following standard consequence of the
local limit theorem, which we prove for completeness.

Lemma 2.1.2. For any test function ¢ € C.(R?) we have that

lim N 12 ) @ny gon(@ — y)

N—0 n—1 g,y ezd
- f dtJ dady o(x)g2: (z — y)e(y) .
Rd x Rd d

Proof. Recall that by the local limit theorem for the d-dimensional simple random walk, see
[LL10], one has that g2, (7) = 2(92771 (z) + o(n_g))]lxezedven, uniformly in x € Z%, as n — oo,
where Z2 .. := {x = (21,...,24) € Z%: 21 + ... + x4 € 2Z}. The factor 2 comes from the period-
icity of the random walk. The kernel g 2n (x) appears instead of g2, (), because after n steps the
d-dimensional simple random walk S, has covariance matrix 4 I. Let us fix 9 € (0, 1). Let us also
use the notation

Ay, Nz—lZ 3 ‘mey Gon( — ),

n= 1zyeZd
SON x y
By := N2 Z > Gn(r —y) .
n>19nyeZd

Observe that if we bound (p(ﬁ) in o (2, y) by its supremum norm and use that Y. -4 gon(2) =
1 we obtain that

poy <ol S5 8@ 5oy ol 5 > 2208 <l e

n=1zezd N2 yezd n=1gezd

On the other hand, by using the local limit theorem and Riemann approximation one obtains that

1
Bow =% [ ar f dedy o(2)ga: (x — y)o(y)
Rd xRd d

By combining those two facts and letting ¥ — 0, one obtains the desired result. O
We are now ready to present the proof of Proposition 2.1.1.

Proof of Proposition 2.1.1. Recalling (2.1.4) and using also the fact that terms of different degree
in the chaos expansion are orthogonal in L?(P), one arrives into the following expression for the
variance of Zy g(¢)

N
Var [ZN”g(cp)] = Z ok Z 2 W G2ny (T — Y)

k=1 1<ni<..<np<N gyezd

qZ(ni—ni,ﬂ (0) .

.
Il >
(V)
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We can factor out the £ = 1 term and change variables to obtain the expression:

N

N—n k
Z o2 ‘wq%(gj_w <1+ Z o2k Z qu(fi—zi—l)(0)>’ (2.1.6)
k=1

n=1 ‘Lyezd I<lhi<..<lp<N-—mi=1

where, by convention if n = N the sum on the rightmost parenthesis is equal to 1. Furthermore,
one can observe that the right parenthesis is exactly equal to E[e’\Z(ﬁ)LN —"], where we recall that

Ly := Zévzl 1s,, —o denotes the number of times a random walk returns to 0 up to time V. Thus,

Var [N T Zy 5(¢ = Z 3 “’N ’ y gon(z — y)E[?2@v=n] (2.1.7)
x,yeZd

The heuristic idea here is that, if in the expression (2.1.7) we ignore n in the expectation, then
the sum would factorise. Then, by noticing that E[eAQ(ﬁ)LN ] converges and by using also Lemma
2.1.2, we obtain the conclusion of Proposition 2.1.1. Let us justify this heuristic idea rigorously.
We have that

E[ekz(B)Lan] _ E[e>\2(5)LN] + E[( 20BN —n _ 6)\2(6)LN)]1LN>LN777.] ) (2.1.8)

Also,
]]'LN>LN—n] 2E[ 2(8 )LN]lLN>LN n], 2.1.9)

by triangle inequality and because L is non-decreasing. Using Holder inequality we can further

o

bound the error in (2.1.8) as follows: We choose p > 1 very close to 1, such that pA2 () < log(wid),
thus E[ep/\Q(B)LN] < o, for every N e N. This is only possible when £ is in the L?-regime. Then,
by Holder:

Ble@tvg o ] < E[epxz(mLN]% P(Ly > LN—n)% _

Hence,

Q=

’E (BILN—n _ e/\z(ﬁ)l—zv)

Liysiy ]| < CpsP(Ly > Lynoyn)?,

1
where C), 5 := ZE[eP/\Z(ﬁ)'—w]E < 0.

Now, we split the sum in (2.1.7) into two parts. Let J € (0, 1). We distinguish two cases:
(Case 1) If n < YN, then N —n > (1 —J)N. Thus,

1
Cp5P<LN> L(l 9N )‘1

s o, |

since L is non-decreasing in /N. We also have that

0

(LN>|_(1 ﬂ)N) P(Eln>( —19)]\72 SQnZO)é Z q2n(0)m07
n>(1-9)N
since Y., q2n(0) < o0, because d > 3. Therefore, in this case we obtain that,
N§—1 Z Z QON €T y 2 (x _ y)E[eAQ(ﬁ)LN_n]
= x,yeZd
é x
= NE Z > B o) (B 1 o))
= x,yeZd
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(Case 2) If n > 97N, we have that:

NELY 2 S NI (e
n>9N af;7yezd
d_ N\, Y
<NETL Y o2 W%(m_y)E[e&(mLm}

n>9N x,yEZd

By combining the two cases above we get that, for every ¢ € (0, 1)

o 9
limsupVar[V 5 Zy s(0)] < 0% [t [ dady pla)gy (o~ )B4 k().
X

N—o

where )
k(D) < B[ ke] o2 f at f dady o(x)ga (z — y)o(y)
Rd xRd d

and
d—2 — g L
lim inf Var[N "5 Zy 5(¢)] > o f dtf dzdy p()g (x — y)p(y)E[e** =]
N—w ’ 0 R xRd d

It is clear that k() — 0 as ¥ — 1, hence we obtain the desired result. O

2.1.2. Reduction to finite chaoses. We proceed towards the proof of the Central Limit Theorem

for the sequence (Z Nﬁ((p)) of the averaged partition functions. In order to determine the

Nx1
limiting distribution of the sequence (N 7 N, 5(90)) N>1- We use the Fourth Moment Theorem,
see [dJ87, NP0O5, NPR10, CSZ17b]. The strategy we deploy is the following: First, we show that
it suffices to consider a large M € N and work with a truncated version of the partition function,

namely

SOUID N O OF PIERE)) | CARNEESE) | CHY

k=1 I<ni<..<np<N, zeZd
21,...,Z]¢€Zd
(2.1.10)
To do this it is enough to show that for any ¢ > 0 we can choose a large M = M () such that
N Zﬁ/‘é(cp) and N7 Zn.5(p) are e-close in L%(P), uniformly for N € N large. Then, by
using the Fourth Moment Theorem and the Cramer-Wold device, we show that the random vector

N (Z](\})ﬂ( ), - ZJ(V B)( )) converges in distribution to a centred Gaussian random vector. This

allows us to conclude that the limiting distribution of N Z Ny ( ) is a centred Gaussian. After

removing the truncation in M, we obtain the desired result for N Z ~,3(¢), namely Theorem
2.0.1.

We begin by proving that we can approximate Zy s(¢) in L?(P), uniformly for large enough
N, by Zf,”é(cp) for some large M € N.

Lemma 2.1.3. For every € > 0, there exists My € N, such that for all M > My
: d-2 d-2 —_,
lim sup HN T Znplp)— N 7 Né(cp)‘

N—o

<e€
L2(P)

21



Proof. Consider € > 0. One has that
Zns(¢) = Z5'5(#)

N
ez (g e e

k>M I<ni<..<np<N, \ zezd
Z1yeeey zkeZd

By an analogous computation as in Proposition 2.1.1 we have that

d-2 - =2 —_,
|V Zwpe) - N 2500

N—n k
SON z y
<NE! 2 > ea=n( Y Y Jlew )
7yeZd k=M 1<bi<..<lp<N—n1i=1
k
g SON x Z/
N2t Z Z Qon(z — y)( Z ok Z Hfh(e,-—ei_l)(o)) -
n=1 x,yezd k=M 1<li<..<€p<Ni=1

By Lemma 2.1.2 we have that

1
a_ z y
N? 1 Z 2 SON Gon(z —y) —— . dt fRd ” dzdy ap(m)g% (z—y)e(y) .

N—oo
= x,ycZd

On the other hand, the sum in the rightmost parenthesis can be bounded by

N k N N 0
2k 2k pk 2k pk 2k pk
(S % [lewaoO)< ) o*mh< 3 o™/ < > %R,

k=M 1<l <...<lp<N i=1 k=M k=M k=M

where Ry = Zszl q2n(0) is the expected number of visits to zero before time N of the simple
random walk and Ry, = limy_o Ry = Dy g2 (0). Since 3 is in the L2-regime, the series
Sis1 0(B)* RE is convergent. Therefore, we have that

ee}
> o®RE ——o0.
ey M—o0

Therefore, we conclude that if we take M to be sufficiently large we have that

d—2 _ d—2 —_
HN T Znplp) - N 7 Zﬁ?é(w)‘

<e¢
L2(P)

uniformly for all large enough N € N, hence there exists My € N, so that for M > Mj:

. a2 2 a2 o _
hmsupHN T Zng(p) — N 7 ZN]’%((,D)‘

N—o

<e¢
L2(P)
g
2.1.3. Joint convergence of chaoses of bounded degree. We proceed by showing that for any
M e N, the random vector N “T° (Z](\Pﬁ( )y s Z (M)( )) converges in distribution to a Gaussian
vector. To do this we employ the Cramér-Wold device. Namely, we prove that for any M -tuple of

. . . =2 M (k) . .. .
real numbers (1, ..., ¢a) the linear combination N1 > ;7 ¢, Zy 5(ip) converges in distribution
to a Gaussian random variable.

Proposition 2.1.4. For all M € N and (ty,...,ty;) € RM, N 224:1 th](\];?B(go) converges in

distribution to a Gaussian random variable with mean zero and variance equal to

ZtkC(k f dtf drdyp(z)gz (z = y)e(y) ,

22



where Cék) = o(B)%* Z H @(t—t;_1)(0) for k > 1 and C( ) = o(B)?.

0::£0<€1<...<£k 12 1

Proof. We start by introducing some shorthand notation that is going to be useful for a concise

presentation of the rest of the proof. For any u € Z%, (% will denote a time-increasing sequence

of (k + 1) space-time points (1, z;)o<i<k = N x Z¢ with a starting point (ng, zo) := (0,u). We
(k)

. . ¢
will use the convention that for two sequences 75~ = (n;, 2;)o<i<k and 7@5 ) = (mj, w;)o<i<e, the

(k) (£)

equality 7, ~ = 7, ' means that k = £ and (n;, z;) = (m;,w;) fori = 1, ..., k, that is for all points

in the sequences ngk) and TZSE) except the starting ones.

Given a sequence 7" = (n;, 2;)1<i<k, We will use the following notation

q( (k)) _qnl anzfnz 1 — Ri— 1) and (k) anuzz :

Furthermore, recall from (2.1.3), that for a finite set {x1, ..., zx} C Z¢ we use the notation

on(en ez =[] () Q.1.11)

UE{T 1,0, Tk }

.. . . a=2 M (k)
We start by deriving the limiting variance of N" 1" >~ ¢4 Zy/5(¢). We have that

M M
Var<Nd42 3 tkzgi’ﬁ(go)> = D @ NTE[(Z0,0)°)
k=1

k=1
because for every k > 1, E[Z](\];?B(go)] = 0andif 1 < k </, we have that
—(k (£
E| Z35(0) Z05(9)| = 0,
see (2.1.5). One can follow the steps of the proof of Proposition 2.1.1 to conclude that

1
im 4 E[(Z00(0))%] = ¢ | JRdexdyw(w)gg(x—y)w(y%

N—w

where Cék) = (B)% Z H @2(¢;,—¢;_1)(0) for k > 1 and C( )= a(B)2.
0:=ly<l1<...<lp_q i=1
da—2 M (k) . . . . .

In order to show that N1 > .7 | ¢}, Z B(gp) converges in distribution to a Gaussian limit we
will employ the Fourth Moment Theorem, which states that a sequence of random variables in
a fixed Wiener chaos or multilinear polynomials of finite degree converge to a Gaussian random
variable if the 4th moment converges to three times the square of the variance, see [dJ87, NP0S5,
NPR10, CSZ17b] for more details. Namely, we will show that as N — oo,

d—2 M _ 4 d—2 M _ 2
E[<N4 3t }@g(gp)) ] = 3Var [N4 St }5}5(@)] +o(1).
k=1

k=1
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that is, the fourth moment of N = ch\/[: 1t Z](\];)B(go) converges to 3 times its variance, squared. In
view of the chaos expansion (2.1.5) we have that

e| (v L)

- (b > ~(d
“NT2 N tatleta E| Z8 5 (0) 205 (0) 255 (2) 24(4) |
1<a,b,c,ds<M

_ a2 Z totptety o@tPHerd Z oN (@, y, 2, w)
- a C 2d
1<a,b,c,d<M x,y,z,weZd N

X Z H q(t%) E[ H 5(75))] -

72 70 70 LD (us) e{(z.a),(y.b), (u,8) €{(=,2),(y,b),
(Z,C),('Ll),d)} (Z,C),('Ll),d)}
(2.1.12)
Since M is finite, we can fix a quadruple (a, b, c,d) and deal with the rest of the sum which
varies as N — 00. Thus, we will focus on the sum

Nd—2 Z YN (l‘, Y, 2, w) O_a+b+c+d
N2d

x,y,2,weZ4
(2.1.13)
<oy NI I

260 0O @ (us) e{(x.a),(u.b), () €{(z.2),(v.b),
T (2.0),(w,d)} (2.0, (w.d)}

instead of (2.1.12). We note that the expectation

E ] 5(7&5))] : 2.1.14)

(u,s) €{(z,a),(y,b),
(2,¢),(w,d)}

is non-zero only if the random variables £ appearing in the product, are matched to each other. This
is because, if a random variable ¢ stands alone in the expectation (2.1.14), then due to independence
and the fact that every £ has mean zero, the expectation is trivially zero. The possible matchings
among the £ variables can be double, triple or quadruple. We cannot have more than quadruple
matchings, because points in a sequence 7 are strictly increasing in time, thus they cannot match
with each other.

We will show that when N — oo, only one type of matchings contributes to (2.1.13) and
hence also to (2.1.12). Specifically, the only configuration that contributes, asymptotically, is the
one where four random walk paths meet in pairs without switching their pair. In terms of the
sequences 7., 70”, 7{9, 7V, this condition translates to that 7%, 7”, 7(9, 7’ must be pairwise
equal to two sequences which do not share any common points. For the rest of the proof, when
we say pairwise equal we will always mean pairwise equal to two distinct sequences which do not
share any common points. We will first focus on sequences 7., 77, 79, 7\, which do not satisfy

this condition and show that their contribution is negligible.

Consider sequences 7., 7,7, 79, 7P and let 7 := 77 U 7P U TV U TS = (fi, hi)1<igr]
with fi < fa < -+ < fi;. Let 1 < 4 < [7] be the first index, so that for all (u,s) €

{(z,a), (y,b), (z,¢), (w,d)}, the sequences 7" n ([1, fi,) x Z?) are pairwise equal, but this fails
to hold for 7 n ([1, f;,] x Z¢), see figures 2.1.1, 2.1.2.

24



(0.2)
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(0,2)

(0, w)

Zd

(0,2)

0,9)

©.2)]

0wl

Zd

(b)

FIGURE 2.1.1. (a) A sample T; configuration. The walks start matching in pairs
(x « y,z < w), but then switch pair at (f;,, h;,). (b) The same configuration
after summation of all the possible values of the points (f;, h;)i>q,, of the initial
positions (0, z), (0, w) and of all the points (f;, h;)1<i<b-

If there does not exist such index 1 < 4, < |7|, then the four sequences 7>, 7", 79, 7 have

to be pairwise equal. Their contribution to (2.1.12) is

1<a,bs<M
x Z,Ww
X (PN(]’Vyz;’ : () a(r) a(r) a(r) .
z,y,2,weZd 7—:1<:a>=7—y(a>77—151b)=7—z(b)7
nga)mféb):z

(2.1.15)

The factor 3 accounts for the number of ways we can pair the sequences 7., 7.”, 79, 7(V. The

sum in (2.1.15) equals 3N 92 E[(Zﬁil th](\’Z)B(w))Q]z + o0(1) as N — oo. The o(1) factor is a

consequence of the restriction 7) n 7{» # & in (2.1.15), which excludes configurations of the

four random walk paths such that four walks meet simultaneously at a single point. It is part of the

proof below to show that the contribution of these configurations is negligible in the large N limit.
Hence, for now we can focus on the cases for which such a point (f;,, h;, ) exists and show

that their contribution is negligible for (2.1.12).

We distinguish the following cases for such sequences 7%, 7, 79, 7.
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e Type 1 (T;). For all (u,s) € {(z,a),(y,b), (z,¢), (w,d)}, we have 7 n ([l,fi*) X
z9) + .

e Type 2 (T2). For exactly two of the points (u,s) € {(x,a), (y,b), (z,¢c), (w,d)}, we have
that 79 n ([1, fi,) x Z%) # @.

e Type 3 (Ts). Forall (u,s) € {(z,a), (y,b), (z,¢), (w,d)} we have that 7 ~ ([1, fi,) X
z%) = 2.

Note that we have not included the case that three of the sets 79 N ([1, fi,) x Zd) are non-empty.
This is because, in this case, by the definition of 7., we have that 75 N ([17 fi,) % Zd) have to be
pairwise equal, therefore all four of them are non-empty. Thus, this is the case of T; sequences.

(T1 sequences). We begin with the case of T1 sequences 7>, 7", 7{9, 7. In this case, the four
random walks meet pairwise without switching their pair before time f;,. Let us suppose at first
that the walk starting from (0, z) is paired to the walk starting from (0, y) and the walk starting

from (0, 2) is paired to the walk starting from (0, w), that is
o o (1 fi) x 2 = 7 o ([0, i) x Z°)
and
790 ([1 £i) x 29 =70 o ([L, fi) x 27).
We shall refer to this type of sequences as T{”". Analogously, we define T{~* and T{"*. By
symmetry it only suffices to consider T7". We will first show how we can perform the summation

N2 Z oN(T,y, 2, W) atbretd
N2d

x,y,2,weZ4

<Y I q(Tfi’)E[ I 5(7&”)]-

D) 200 @) cprey (us) e{(@,0),(u:b),

(2,¢),(w,d)} (2,c
(2.1.16)

Since the & variables have to be paired to each other, we can bound the expectation in (2.1.16) as

E [T )| <, C = max{l, E[¢3], E[§4]}. 2.1.17)

(u,s) €{(x,a),(y,b),
(Z7C)7(w7d)}
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Moreover, since M is fixed and 1 < a,b,c,d < M we have that 0®+P*<+d < (5 v 1) There-
fore,

N2y PN Y. W) aibietd
N2d

x > 11 q(r)E ] &(r)

78 70 29 2 eTrov (us) €{(x,2),(y,b), (18) E{(@a), (1b),
(=.0), ()} () (wd)}
_ QDN(ZI?, Y, % ’UJ) S
< Moy VN2 Y T A > I1 q(r).
z,y,z,weZl 7@ 2 10 @) cproy (us) €{(z.a),(y,b),
3 vtz 1 (z@),(’lﬂ,d)}
(2.1.18)

By the definition of T; sequences, we have that for a given T{™" sequence 7, 7.”, 79, 7{, with
=100 T uTrd = (fi,hi)i<icp and p = |7|, we can decompose the sequence
(fi, hi)1<i<i, into two disjoint subsequences (f1,h1), ..., (fa, ha) and (fi,h1),..., (fp, hs), see
Figure 2.1.1, so that

H q(7) = q5, (b1 — x)qz,(h1 — y) Hq(Qﬁ,ﬁfl)(ﬁi — hi—1)

(u,s) € (m,a),(gi,b), i=2

(Z,C),(w7d)
x qp, (b1 — 2)qp, (b Hq(ﬁ gy (i = hisy)
) q(;i*_fa)(hi* — ha) q(fi* *fb)(h — hy)
Miy+1
% H qf“+1 ]”*+1 (hz*+1 Z*—H H qf f<p) h( ))‘

(2.1.19)

For every i, + 1 < j < p, the number m; ranges from 2 to 4 and indicates whether (f;, h;)
is a double, triple or quadruple matching. Furthermore, for every i, + 1 < j < pand 1 <
m < mj, ( fgn) ) (J ) ") is some space -time point which belongs to the sequence (f;, k)i, <i<p U
{(fasha), (fo, ho)}, such that me < fj. Also, the exponents v,, 1} in (2.1.19) can take values
in {1,2} and indicate whether the matching in (f;,, h;,) was double, triple or quadruple. In any
case the product above is bounded by the corresponding expression for v,, 1, = 1, since we have
gn(z) < 1.

In order to perform the summation in (2.1.16) for T{™ sequences we make the following
observation. We can start by summing the last point (f,, ;) as follows: We use the fact that
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qn(x) < 1 and Cauchy-Schwarz to obtain that

Mp
2 gy g =h0) < 30 ap oo =By o (hy =)

(fp,hp) m=1 (fp,hp)
<< Z qf f<p> —h )é< Z qf f<p> h(rpg)))é
(fp,hp) (fp,hp) (2.1.20)
(Z% (s (O )é(zqw i) (© )é
<(VRy)? = Ry < Ryo= 1 idﬂd <1.

For the last inequality, we used that the range of f, — f{?’ is contained in {1,2, ..., N'} and the fact
that, 7y < % for d = 3, since w3 ~ (.34, see [Sp76], and my,1 < g for d = 3, see [OS96].
We can successively iterate this estimate for all values of (f;, h;) as long as i > i,. Therefore, by
recalling (2.1.16), (2.1.18) and (2.1.19) we deduce that

_ en(z,y, 2, w) .
(U A\ 1)4M02MNd 2 Z T Z H Q(Tfj))
x,y,z,w eZ% < T(b),’rz(c), (d) eTToV (u,s) €{(z,a),(y,b),
! (2,0),(w,d)}
<cuy (O'V 1)4M CZMNd72 Z @N(l"yasz)
= 2d
x,y,2z,weZ N
2M B B a B B

3 (Y aptn-2ap -y [ a5 B —hin)

ab=1" (fi,hi)1<i<a =2

X

b
qfl (b Z)qﬁ (h1 — w) H Q(Zfiffifl)(hi - hi—1))

(X ]
(fl: z) 1=2
(X

x q(f,, — ) (hiw = Pa)a s, — g,) (P, —

>
>
=
S—
N———

(f'L* ) 'L*)

(2.1.21)
where c,s is a constant combinatorial factor which bounds the number of different ways that the
points of T{~" can be mapped to a fixed sequence (fi, h;)i<i<p, for all p < % < 2M.
Therefore, the last step for showing that the sum (2.1.16) has negligible contribution in (2.1.12) is
to show that for all fixed a, b the following sum vanishes when N goes to infinity:

a

~ — YN(T, Y, 2z, W 7 7

CuN*2 ) v (@:y,2,w) N )( D1 g (b —2)qp, (hn — y) Hq hi—l))
x,y,z,weZl (fi-hi)1<i<a =2

b

(X anlln =2 (- Hq ICE Y

(fishi)1<i<o )

X( 20 gy (b = ha)ags,,— ) (i, — bb>> :
(fi*7hi*)
(2.1.22)

where 5’M =cy(ov 1)4M C?M  1et us describe how this can be done. In (2.1.22), we can
_w_

bound cp(\/iﬁ)@(\/ﬁ) by ||¢||%, and sum out z, w using that 3, 4 gn(u) = 1 so that we bound
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(2.1.22) by

CMllsoHoo > NN g - a)a G ]‘[q(fl 5y hi = hi))

z,yezd (fishi)i<i<a

X( 9 s~ fy (hiw = ha)ag,, g, (hi, = bz))‘
(2.1.23)

We sum out all points (f;—1, hi—1)2<i<p Successively, starting from ( f1,h1) and moving forward.
The contribution of each of these summations is bounded by Ry < 1, since for each 2 < ¢ < b,

0oy (i = Z @o(si— g (0) < By < 1. (2.1.24)
)

because the range of f; — f; 1 is contained in {1, ..., N}. Therefore, we are left with estimating

C 7 2 - h; — h
Culile 5, extmil( g qﬁwl—x>qﬁ<h1—y>nq%ﬁ_ﬁfl><m—hwl>)
=2

@M

(fi-

z,yezZd (fihi)1<is<a
DX g i~ B, (i — ).
(fis Pix) (fo,h0)
The contribution of the sums over (fy, hy) and (f;, , hi, ) is
Z q(f.— 7y (his = ha) Z q(,, gy (hin — bo) < N?. (2.1.25)
(f’itvhi*) (fb’bb)

by summing first over space, using that » -4 ¢, (u) = 1 and then summing over time using that
the range of f;, — f, and f;, — fpis contained in {1, ..., N'}. Therefore, it remains to show that the
following sum vanishes as N — co:

~ 2 QON(Q:’ y) 7 7
Oullels, X (X antn o (-] ]y
x,yeZd (fi,hi)i1<i<a =2

We perform the summation over (f;, h;) for 2 < i < a starting from (f,, hy) and moving back-
ward. The contribution of each of these summations is bounded by Ry < 1. Consequently, we
need to show that

~ @N(xuy) 7 T
Cullel > —NT D1 s (b1 —2)qp, (hn — y) ~= 0
L —w0
xz,yeZd (f1,h1)

By summing out the points h; € Z% it suffices to show that

~ 2 <PN z Z/
Cwrllell, qufl (x—y) —— 0.

N~>OO
xz,yeZd

But it follows from Lemma 2.1.2 that the last sum is O(N1~ ) hence vanishes as N — o0, since
d > 3. Therefore, we have proved that the sum (2.1.16) vanishes as N — c0. It is exactly the same
to prove the analogous sums for T{~* and T{~* sequences vanish as N — c0.

29



(0, 2)

0,v)

(0,2)

(0, w)

zd

() (®)

FIGURE 2.1.2. (a) A sample Ts configuration. (b) The same configuration after
summation of all possible values of the points ( f;, h;);~;, and of the initial posi-
tions (0, 2), (0, w).

(T, sequences) Recall that by the definition of Ty sequences we have that for exactly two of the
points (u,s) € {(z,a), (y,b), (,¢), (w,d)}, it holds for the corresponding sets 7.~ n ([1, f;,) X
Z%) + & that

78 0 ([1 fi) x Z27) =7 o (L i) x Z9) #

and

790 ([1, fi) xZY) =79~ ([, fi.) x 29 = .
We will refer to this type of Ty sequences as T5~Y. Analogously, we can define T5~* and T5~>.
We will show that the sum

N2 Y PN(2,Y,2,W) ipicid

x,y,2z,weZ4 N2
s ] el
)2 O @ e (us)ef(z.2).(u.b), (u,5) €{(2,2), (b)),
Y (2,0),(w,d)} (#,0),(w,d)}

(2.1.26)
vanishes as N — o0. By using (2.1.17) and the bound 0@+P*<+4 < (5 v 1)*™ we obtain that

Ni2 Y PN Y. 2 W) aibietd
N2d

z,1,2,w eZ

9 v I q(rff))E[ [T 6(75?)]
(u.s) €]

0 0 00 prey (us)e((wa). () (r.0),(1:5),
(2,6),(w,d)} (z,0),(w,d)}
2M AM prd—2 on(z,y,2,w) s
< CM(ov )N Z # Z H q(1Y).
z,Y,2,w ezd (a)ﬂ_(b)ﬂ_z(c) ,T(d) ETIHy (u S) € (xva))(yzb)’
(2,6),(w,d)}

(2.1.27)

By the definition of (f;,, h;,) we have that (f;,, h;,) is the first point of at least one of the
sequences 7.9, 7\#. Let us assume that it is the first point of exactly one of them. We will refer
to this type of sequences, 7, 7", 7{9, 7, as T57” sequences, see figure 2.1.2. Without loss
of generality, we may assume that (f;,, h;,) is the first point of 7{. In that case, (f;,, h;,) can
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be a double or triple matching. Let (f;,, h;,) be the first point of 7. We have that f;, < f;..
Therefore, we first show that
— QON (.T, y: Z, U))
(U v 1)4MC2M Nd—2 Z i

x,1,z,w €Z
s (2.1.28)
.Y e p—

N—o0
e e
’ c

(wd)}
Similarly to the case of T1 sequences, for given T5" sequences 77, 7,", 7/, 7 with 7 = 7} U

P U TP uTE = (fi, hi)1<i<p and p = |7|, the cardinality of 7, we have that (see Figure 2.1.2)

[T ) =a5(h —2)qz (h qul 7y (hi = hiz1)
(u,s) €{(z,a),(y,b),
(2,¢),(w,d)}

L ha) 4, (hi, = 2) 4y, (hi, — w)

Miy+1 mi,—1
< |1 9 oo (Rip1 = he) T a5, _ gtio) (hi = hi=))
m=1 m=1
Mis+1 mp
H 0, o gtior (Rirr = BETY) Hl st (o = D).
m=
(2.1.29)
where, for every i, + 1 < j < p, the number m; ranges from 2 to 4 and indicates whether (f;, h;)
was a double triple or quadruple matching. Also, forevery i, +1 < j <pand1l < m < mj,
( frm, ) is some space-time point which belongs to the sequence ( fz, hi)iy<i<p 9 {(far ha)}s

such that fp’ U fj. However, note that in the third line of (2.1.29), the product for (f;,, hs, ) runs

from m = 1to m;, — 1, since gy, (h;, — w) appears in the second line. The exponent v, in the

second line of (2.1.29) can take values 1 or 2 and indicates whether (f;, , h;, ) is a double or triple
(c)

matching; it cannot be a quadruple matching since we assumed that it is contained only in 7, * and

(d) 7 _ 7
(- (hie = ha) by 4, 7,y (Ri, = ha)-

not in 7y, . In any case, we can bound ¢
We first make some observations so that the presentation is more concise. By iterating (2.1.20)

we obtain that

Miy 41
2 Il 4 e i =R ) ) H a4, g (hp=h2)) < 1. (2.1.30)
(fi<>+17hz<>+l) m=1 (fpyhp)m 1

We also have that

SDN 1
(h; _ - Ve (i —
ar, (b, ) %Z@( ) ag, (s, )

weZd wezZd

H H el 213D
2 ®
Mol 5 =3
weZd N2
and then we can sum
mi, —
Z H qy, <w> - Z . (m hfff)) <N, (2.1.32)

(flov L<>) (fbo hzo)
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Having summed out the points ( f;, h;)i>i,, we can iterate estimate (2.1.20) again to obtain that

Mi,+1

Z H dp — u+1)(hz*+1 hg’:‘*‘l))

(fix+1,hig+1) m=1

(2.1.33)

Miy_1

X Z H Qf%ilf ,Effl_n(hio—l — hgizfl)) <1.

(fio—1,hig—1) m=1
Therefore, in view of (2.1.29), (2.1.28) and by using (2.1.30), (2.1.31), (2.1.32) and (2.1.33) in
their respective order, we get that

(o v MM N2 Y W v T )
z,y,2,weZ? 7P 7 2D eTsoy (ws)€{(z.2),(vb),
(2,¢),(w,d)}
- on (.Y, 2)
< el ento (0 v DM C2M Nt 3 ZE
x,y,2€Z4 Nz

2M ) ) a -
x ( Y apth—2)ag (=) | [af sy (hi - hz’—l))

a=1" (fi,hi)1<i<a =2
X( 20 Ui his = ha) ag,, (hi, — 2)) ;

(fix his)
where cjy . is a constant combinatorial factor which bounds the number of possible assignments

of Ty " sequences, 7.7, 707, 749, 700 to (fi, hi)1<i<p. Weset Caso 1= cyo (0 Vv DAM O2M T

order to establish (2.1.28), we need to show that for all fixed a < 2M

a

Il Craro N30 (3 a O —2)ag, (=) [T %7z, (i = hin))

(fishi)1<i<a i=2

x( D0 g — gy (i = ha)ag,, (hi, — Z)) —— 0.

(fixshiy)

In analogy to (2.1.31), we have that
N < el

hi, 4
2

2€Zd N

Furthermore, by summing over ( f;, , h;, ) we deduce that
Z a5, ) (hiv = ha) <N,
(fi* 7hi*)

since the spatial sum is equal to 1 and f;, — f, € {1,..., N}. Therefore, the last step in order to
establish (2.1.28) is to show that

@N(xay) 7 7
Z Nd __Z qfl(hl_ qfl quz fz h'_l) N—o0 O
z,yezd (fishi)1<i<a

By summing over the points (f;, h;)2<i<a, this amounts to proving that

~ 9 on(z,y)
Chro [l Z —Nd Zqul(x—y)—>N 0,
— —00
a;,yeZd fi

which is true by Lemma 2.1.2. The same procedure can be followed for sequences of type T57*

and T572". So, this concludes the estimate for T5 ™" sequences in the case that (fi,, hi,) is the ﬁrst
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point of only one of the sequences 7., 7 and by symmetry also for the analogous cases for T4~
and T5.

Let us treat the case where (f;,,h;,) is the first point of both sequences 7{9, 7{#. Then,
(fi,, hi,) is a triple or quadruple matching, i.e. either (f;,,h;,) € 7,79, 7\, or (fi,, hi,) €
T T, T or (fiy, i) € T, 7P, 7O, 7). Both cases can be treated as we did for T se-
quences. Namely, we can first restrict ourselves to the sequence (f;, h;)1<i<i, by using the bound
we used in (2.1.20). After following the procedure we described for T; sequences we get that the
sum in this case is either O(N_%) if (fi,, hi,) is a triple matching and O(N_l_%) when (f;, , hi,)
is a quadruple matching. Thus, in total the contribution of T9 sequences to (2.1.12), is O(N -5 ).

(T3 sequences). For all (u,s) € {(z,a), (y,b), (z,¢), (w,d)} we have that 7 n ([1, fi,) x Z%) =

. This implies that i, = 1 and (f;,, h;,) is a triple or quadruple matching. It is easy to see,

using the technique for T; and T, sequences, that the contribution of T3 sequences to (2.1.12) is
d

O(N™2).

Therefore, we have showed that the part of the sum (2.1.12) which is over sequences of Type
1 (T1), Type 2 (T2) or Type 3 (T3) is negligible in the N — oo limit. Thus, the proof is complete.
O

2.1.4. Proof of the CLT.

Proof of Theorem 2.0.1. By Proposition 2.1.4 we obtain that N En Zﬁ%(gp) converges in distri-
bution to a centred Gaussian random variable Gy; as N — oo, with variance equal to

M 1
Var[gu] = 3, ¢ JO d de dz dy p(z)g2: (z = y)p(y)-
k=1

We also have that
SPON
Jim Var [Ga] = kZl Cs L dt de dz dy p(z)gze (z — y)e(y) = Var Z5(p) ,

where Z3(¢) is the random variable defined by Theorem 2.0.1, since

0 0 k—1
0 =3 oY 3 [[awa )0 = PBE[O].
k=1 k=1

0::£0<£1<‘..<£k,1 =1
Combining this with Lemma 2.1.3, we obtain the conclusion of Theorem 2.0.1, that is

(d)
— Zg(p).

N—o0

d—2 —
N T Zng(p)

2.2. Edwards-Wilkinson fluctuations for the log-partition function

In this section we prove Theorem 2.0.2, namely, the Edwards-Wilkinson fluctuations for the log-
partition function.

We will need to impose one more condition to the random environment for technical reasons.
Specifically, we require that the law of the random environment satisfies a concentration inequality.
In particular, we assume that there exists an exponent v > 1 and constants C', Co > 0, such that

for every n € N, 1-Lipschitz function f : R” — R and i.i.d. random variables wy, ..., w, having
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law P, we have that
Y
PQf@quum)—AQ|>t><(ﬁem)(—67>, 2.2.1)
2
where M denotes a median of f(wi, ..., w,). One can replace the median by E[ f (w1, ...,wy)], by
changing the constants C, Cy appropriately. Condition (2.2.1) is satisfied if w is bounded or has a
density of the form exp(—V'(-) + U(-)), where V is uniformly strictly convex and U is bounded,
see [LedO1].
Condition (2.2.1) allows us to formulate the following estimate. For A = N x Z%, let Z ]f\\, ﬁ(w)

denote the partition function which contains disorder only from A, that is
Zy 5(z) = B, [e Z(n,zm{BwnﬂZ‘A(ﬁ)}ﬂSn—z] :

Then, we have the following Proposition:

Proposition 2.2.1 (Left-tail estimate). For every 3 € (0, B12) there exists a constant cg > 0, such
that: for every N € N, A © N x Z% one has that ¥t > 0

A t
P(logZNﬁ(:L‘) < —t) < cg exp ( - —) ,
where 7, is the exponent in (2.2.1).

As a consequence of Proposition 2.2.1 we also get the following boundedness of moments.

Proposition 2.2.2. For every 3 € (0, 872), A = N x Z% and p > 0,
su E[ AL _p] <o,
NeIlzl ( N”B( ))
sup E[‘ log Z]/\\,ﬁ(a:)’p] < 0.
NeN

We refer to [CSZ20] for the proofs of Propositions 2.2.1, 2.2.2, as the method presented there
can be followed exactly to give those results in our case. For Proposition 2.2.1 see also [CTT17],
where this method appeared in the context of pinning models.

We will also need the existence of higher than 2 moments for the partition function. This can
be established with the use of hypercontractivity, for which we refer to Section 3 of [CSZ20] for a

detailed exposition. In particular, we have the following proposition:

Proposition 2.2.3. For every 3 € (0, 32) and A = N x Z% there exists p = p(3) € (2, 0), such
that

sup E[(ij\\[’ﬁ(@)p] <.

Let us proceed to the sketch of the proof for the Edwards-Wilkinson fluctuations for the log-
partition function. For every z € Z? we define a microscopic space-time window around x as
follows

%:ﬁmdzliniNﬂx—d<N%%}, 22.2)
fore € (%, 1) and o, = € - 6. with §, € (O, %) In particular, o, € (O, &). We decompose the
partition function as:

A A
Zng(x) = Zyg(z) + Zi g(2)
where

Zi o) = | B, {pen 01
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is the partition function which contains disorder indexed only from the set A%;, while the remain-
der, Z j{‘,’ s(x) = Znp(x) — Z ]’\4,, (), necessarily contains disorder from points outside of A%
in its chaos decomposition, see also [CSZ20], Section 2, for analoguous definitions. The chaos

expansions of Zj{‘,ﬁ(a:), Zﬁ,ﬁ(:c) are

ZNB =1+ Z g Z in Hin—nl 1 — Zi— 1 Hém,zl ) (2 2. 3)

k=1 (ng,2:)1<i<k S A% =

and
X k
73 g(z) = > o* 3 tny (21 = 2) | [ dnynis (20 = 201 Hgm .. (2.2.4)
k=1 (ng,2:)1<i<kN (AR #2 i=2
We can then write, for every = € Z¢,
234 5(x)
log Zn g(x) = log Zjé,ﬁ(:n) + log <1 + ]X’ﬁ ) . (2.2.5)
’ 7 Zy ()

The first step we take is to show that the contribution of the term log Z j{‘, 3 (z) to the fluctuations
of log Zn () is negligible, when averaged over z, in the following sense

Proposition 2.2.4. Let p € C, (Rd) be a test function. Then,

d2 SDN

( 8 7k () — E[log Z3 5(2)] ) ———> 0. (2.2.6)

xeZd

zZ4 z4
The second step is to prove that we can replace log (1 + ZIX’ﬁ (I)) by -3~ (= . In particular, if
N8 (z) Zz\j’@ (

we define

ZAJf\lfﬁ(fC) > B Z4 5(2)

Zy ()

On(z) :=log <1+ folfg(x) ,

then we will show that

Proposition 2.2.5. Let ¢ € C.(RY) be a test function. Then,

Ny el ( N () — E[On(@)])

xeZd

1
L*(P) 0

N—o

Therefore, we need to identify the fluctuations of the quotient Z ]‘37 5(z)/Z j{‘,’ s(z). Note that this
quantity has mean zero since each term in the chaos expansion of Z f\}, 3 (x) contains disorder outside
AR, see (2.2.4). To study the fluctuations of 7 f\‘,’ 5(z)/Z J‘(‘,’ () we define, for a suitable p € (¢, 1),
the set

B3 = ([N%,N]nN) x z¢, (2.2.7)
and show, employing the local limit theorem for random walks, that the asymptotic factorisation
ZA]’é,ﬂ(x) ~ Z3 () (Zﬁ?(m) — 1) takes place when we average over z, namely

Proposition 2.2.6. Let o € C’C(Rd) be a test function. Then,

o 50 (5 n-0) 2200

xeZd

The last step is to show that the fluctuations of Z ﬁz (z)—1 when averaged over x, are Gaussian

with variance equal to that of Theorem 2.0.1, namely
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Proposition 2.2.7. Let ¢ € C.(RY) be a test function. Then, we have the following convergence in
distribution,

N ) ey 1y D 5,

% N—00
zezZd

where Zg(¢) is the centred normal random variable appearing in Theorem 2.0.1.

2.2.1. The contribution of log Z ]‘3,7 5 through martingale difference decomposition. We begin
with the proof of Proposition 2.2.4.

Proof of Proposition 2.2.4. It suffices to restrict the summation and show that

d_ en(z,y)
NE-1 3 Tcov(1og253ﬂ(ac),1og Zx 5()) —— 0, (2.2.8)
|z—y\<2N%+aE

because, by the definition of the sets A%, if | —y| > 2N 27 then log Zj{‘w(x) and log Zfé/,ﬁ(y)
are independent, so their covariance is zero. The proof will be divided in four steps.

(Step 1) - Martingale decomposition. We will expand the covariance appearing in (2.2.8) by using
a martingale difference decomposition. Let {wq, ,wq,, ...} be an arbitrary enumeration of the dis-
order indexed by N x Z¢. We can then define a filtration (F;);>1, such that Fj = o(wa,, .., Wa;)-
We define also Fy = {&, 2}, where 2 is the underlying sample space where the random vari-
ables (Wn,z) (n,»)

Ellog Z4 5(2)] as a telescoping sum, namely

cNxzd, are defined. Using this filtration we can write the difference log Z slz) —

log Z4t (x) — E[log Zf 4(2)] = 3 (E[log Z3 5(x)| F;] — E[log Zf\‘,ﬂ(;c)\fj_l]) . (229

j>1
Then, using the shorthand notation D; x(z) = E[log Za 5(z)|F;]—E[log zZi ()| Fj—1] we have
that:

Cov (log Zy 5(x), log Z 5(y) = D, E[Den(@)Din(w)]-

k,j=1
In fact, all the non-diagonal terms in the above sum are zero, since, if j < k,

E[ D). (@) Dix ()] = E|E[Djn () Div ()15 ]| = E| D (@) E[Din ()1 F]| = 0.

because D; n(z) is F;-measurable and also

E[ D (1)1 = E[E[10g 23 5 (9) 1 7] | 73] — E[E[10g 28 51 Fi 1] 75
— E[log Z3 5(y)|F;] — E[log Z3 5(y)|F;]
-0,

since F; < Fj_1, F. Therefore, we can rewrite the sum in (2.2.8) as

d_ PN\T,Y

NETE ]ifd) 2 E[D; v (#)Djx(y)]- (22.10)
|z—y|<2NETee j=1

One has to make an important observation at this point. If a; is not contained in A%, then

Dj n(xz) = 0. Hence, the rightmost expectation in (2.2.10) is non-zero only for j > 1, such

. Y
that a; € A% ~ AY,.
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(Step 2) - Resampling. In this step we derive a closed form of the martingale differences D; ().
In particular, let j > 1 such that a; € A% n AY%. Then, we claim that
- AT,
Djn(z) = JH P(dwg, ) JP(dwaj)[log Zjéw(x) —logZy 5"’ (z)], (2.2.11)
k>j

A7Ta‘7 . . . . . ~ ~ .
where Z N5 (z) denotes the partition function in the environment {wy, }rx; U @q;, Where &g, is
an independent copy of wg; .

Note that if f(w) is a function of the i.i.d. family of random variables w = {wq, }{~, and

fj = U({wak}lgkgj), then

ELf|F;] = JH P(dwa,) f(w) . (2.2.12)
k>j
Applying this observation to log Z f\‘,, () we obtain that
E[log Zﬁﬁ(xﬂ]:j] = JH P(dwy,) log Zjéw(:n) .
k>j

By resampling w,, with an independent copy &, we can also write

~ ATa.
E[log Z& 4(2)|Fj-1] = fHP(dwak)fP(dwaj) log Zy 5" ().
k>j
Therefore,
A ~ A,Taj
Djn(x) = HP(dwak)[logZNﬁ(x)— P(d&;) log Zy 4 (x)]

k>j
(2.2.13)

~ ATa,
- J H P(dwa, ) JP(dwaj)[log Z§75($) —log Zy 5" ()],
k>j
since Zf\‘[ B(x) does not depend on &W,,. This concludes the proof of equation (2.2.11). The next
step shows how we can remove the logarithms.
l1—¢

(Step 3) - Removing the logarithms. We fix a positive number h € (0, -5%) and for = € Z%, we
define

ATa, _
Ej(x) = {Z{&ﬁ(x),zw ()= N "}. (2.2.14)
We then decompose D; () as follows
- ATa,
D;n(z) = J [T P(dewy) f P(d5,)[ Tog 74 5(x) — 108 Za'" (1) |1 5, o
. - (2.2.15)
+ f H P(dwak) J P(d@a])[log Z]l?[’ﬂ(ﬂj') — lOg ZN:Baj (x)]]lE;(m) .
k>j

We hereafter use the notation D](.b]i\%) (x), D;s]n\;all) (z) for the two summands on the right hand side

of (2.2.15), respectively. The corresponding superscripts refer to the events E;(z) (2.2.14). We
then have that
| I
> EDin@Dnw| = Y >, E[DiN@DJ)]
j=1:a;€eA% NAY LI e{big,small} j>1: aje A% nAY

(2.2.16)
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and in view of (2.2.8) the rest of the proof will be devoted to showing that every sum in (2.2.16)
converges to zero after testing against ¢ and scaling by N 5=1. We will first prove that

: d_ QDN(JZ’, y) bi bi
Jim NETL Y D 3 E[Dj(.ﬁ)(:c)DJ("]'\%)(y)] 0. (217
lz—y|<2N 3 tee j=1:a;€A% NAY

Using that if 2, y € [¢, c0) for some positive ¢ > 0, then |logz — logy| < 1|z — y|, implies that

bi ~ ATa
D( g) JHP dwak J dwaj)\longéw( ) logZNﬂ ‘]IE
k>j
~ ATa
<N JHP dway ) Jp(dwaj)lzﬁ,ﬁ(x)—zm 2)[Lp; @) (2.2.18)
k>j
~ ATq,
< N [ TP [ Pla)| 2 o0 - 205" @),
k>j

where we dropped the indicator function 1, ;) to obtain the third inequality. For the sake of the

presentation, we adopt the notation

N ATa.
w3 (@ f [T P(dn,) f P(dah,)| 28 5(2) — Zi " ()

k>j

, (2.2.19)

omitting the dependence in N. Using the estimate (2.2.18) and summing over j > 1, such that
aj € A% n A%, we deduce that

> E[pR@plwl < n* Y Elun@wine)]|. @220
j=lia;e A% nAY j=l:aje A% NAY,

If we denote by S7 the path of a random walk starting at = we have

AT, - W
Zﬁ:ﬁ(aj) B ZN,B ! (:II) = O’(IB)(gaj - gaj)Ex [6 A\aj]lajes-’”] ) (2221)
where
I, @) = D [Bwa = A(B)[Laes (2.2.22)
ac A3 \a;}
and recall from (2.1.2) that
Pwa; =AB) _ - Bia;—A(B) _ 1
§a; = £ T° and £a; = €
a(B) o(B)

At this point, we will bound w; y (). By (2.2.19) and (2.2.21) we have that

~ ATg.
wj N (T IH P(dwq,,) JP(dwaj) |24 5(2) — Zy 5" ()]
k>j

J [TP(dwa,) J (d,) 0(B) |Ea; — ay| Bafe ™0, o]

k>j

. .. . . H%
We will perform this integration in steps. The expectation, E; [e *\% g

aze s ], does not depend
on W, by (2.2.22), and we have by triangle inequality

[ Paz,) o816, &1 < o(8) (16 +1). 2223)
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Furthermore, by exchanging the integral and the expectation we deduce that
x H(E
JH P(dwak)Ez[eHA\aj (W)]lajesz] — Em[e An{ay,..., ajil}(w)]lajesz] 7 (2.2.24)
k>j

where

zr\{ah...,aj,l}(w) = 2 [/Bwak - )‘(/8)]]1(116651 .

akeAﬁ,

If j = 1, we set the corresponding energy to be equal to 0. Hence, combining (2.2.23) and (2.2.24)
we obtain that

HI
win(2) < o(8) (16, + 1) By [e e, o]
Therefore, by Fubini we get that

2 Hmm a a.; (w)+Hym a a.; (w)
win (@) win (y) < (8) (60,1 +1) Bay[e Ateres @ ntern 0™y o]

which after taking the expectation E[ - | leads to
E[w; v (@) wy v (1) | <402 (BE, [V, 5] @229

Therefore, by summing over j > 1 such that a; € A% N A%, we deduce that
> E[wj,N(x) wj,N(y)] < 40%(B)Eyy [NV @Dy (2, )] . (2.2.26)
j=1l:ia;€eA%,NAY,
Note that the rightmost overlap, L= (z,y), goes up to time N¢, since by (2.2.2), for every j > 1,
such that a; € A% N AY;, a; has time index ¢ < N¢, therefore

NE
Z ]la]-ESZmSy < Z 15%:5’}{ = LNE(m)y) .
n=1

j=1: ajeAf\,mA;“'V
Recalling (2.2.20) we get that
bi bi
> E[DER@DIR )] < N 40P () By [ O ED Ly (2,)].
j=l:a;e A% NAY

So far, we have shown that

d_ on(T,y) bi bi

N I L O]

lz—y|<2N 3 Hee j=1:a;eA%nAY

(2.2.27)

<4‘72(6) N%—1+2h Z W Ea:’y[6)\2(ﬁ)L1\r(gc,y)LNE (m,y)] )

le—yl<2N+oe

Therefore, to establish (2.2.17), we derive an upper bound for E, , [e’\2(5)LN (@) Ne(z, y)] Let
us denote by 7, the first meeting time of two independent random walks starting from z, y € z4,
respectively. By conditioning on 7, , we obtain

NE
E.., [eAz(B)LN(w,y) L e (z,y)] — Z E., [eAz(B)LN(x,y) L= (2, y)| 7oy = n]P(Tx,y —n).
n=1
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Using the Markov property we obtain
NE
3 E., [eAQ(ﬁ)LN(x,m Lvs (2, )| oy = n]pm,y = n)

n=1
_ Z [ A2 (B)(1+Ln_n) (1 + LNs )]P(Tx,y = ’I’L) .

For every 1 < n < N¥, we can bound the expectation
EI:e/\2(B)(1+LN7n)(1 + LNE—n)] < e2(P) <E[€/\2(5)Loo] + E[ A2(B)Loo | ]) e(B) < o,
because (5 € (0, 512), see (2.0.3). Moreover, we have that

P(Tuy =1) < Y, qn(z = 2)ga(z —y) = qanlz — ) .

zeZ4
Therefore,
NE
Ex,y [e>\2(5)LN($,y) LNe ($, y)] < C(ﬁ) Z an(,I — y) . (2.2.28)
n=1
Recalling (2.2.17), (2.2.27) and (2.2.28), in order to conclude Step 3, we need to show that
N%71+2h Z (z ?J ZQQ" (r—y) ——0.

E N—>OO
[z—y|<2N 3T

We bound Lp(\/iﬁ) by its supremum norm and use the fact that Y}, _-a g2,(2) = 1, to obtain that

Ng_1+2h Z m y Z CI2n T —y ||90||00N2h+5 1 Z ‘PN( )
le—y|<2NZFee S N: (2.2.29)

<llelloo lllly N2PFETE

Since h € (0,52), we have that 2h + & < 1, hence the last bound vanishes as N — o, which

concludes the proof of (2.2.17).

(Step 4) - Events of small partition functions. Let us see how one can treat the rest of the terms
in the expansion (2.2.16), which involve the complementary events E]C(a:), defined in (2.2.14). We
need to show that

4 en(z,y) [ bi
N by B Y E[ DR @p0R )| — 0.
lr—y|<2N T +oe j=1:a;€A% NAY 22.30)
Ni1 Z on(z,y) Z E[D(small)(x)D(Small)( )] . 2.
—Nd 3N [ I
|x—y|<2N%+a5 j?l:(leA:fVﬁAva

It suffices to show one of the these results, since all of them can be treated with similar arguments.
Let us present for example the proof that

. d_q en(z,y) (big) (small)
g N2 OGS Y D@D )] =o.
lz—y|<2N 5 +ae j=1:a;€A% NAY,
Recall from (2.2.15) that
bi ATg.
D](-7 8 (g JH P(dwq, ) J (S )[longé’B(x) —log Zy 4 ](x)]ILEj(x),

k>j
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and
mall ) e
D](',SNa )(y) - J | | P(dwak)JP(dwaj)[log Zjé/ﬁ(:c) —logZy 5"’ (SE)]]lEJ‘?(x) .

k>j
By Cauchy-Schwarz one has that

=[P @nE o] <o) el o]

Note that then,

E| (D5 (@))?]
2
= f H P(dwak)<fn P(dwg, ) JP(dcT)a].)[log Zjéw(a:) —log Zﬁ:;a]’ (z)] - ]lEj(l,)>
k=1 k>j
< f T[] P(dwa) f P(dB,)[ 108 24 5(2) — log Zu 3™ (1) - 15,0
k=1
< JH P(dwak)fP(d&aj)[log Zf\‘,ﬂ(x) — log Z}‘é:;%’ (x)]2
k=1

(2.2.31)

by Jensen’s inequality and because 1, (,) < 1. Therefore, using the elementary inequality (a —
b)? < 2(a®+b?) and Proposition (2.2.2) we deduce that there exists a constant C' = C(f3) € (0, )
such that

. 1
E[(Dj(f’ﬁ)(m)f]2 < (2E[(log Z 5)?])7 < C, (2.2.32)
Similarly, we obtain that
m ~ ATg.
E[(D](.fNa”)(y))Q] < J [ P(dwa,) J P(di,)[log Zit 5(2) — log Zy 5" (#)]"  Lpe(ay -

k=1

and via Cauchy-Schwarz we deduce that

E| (D8R ()]

< (f H P(dwa,) J P(d@q, )| log Z4 3(z) — log Zﬁ:;aj (@]4) P (Ej-(m))%

k=1

N

(2.2.33)
<4E[(log Z4 )] P (ES(x)) 2
<CP,5(E@)?,

where we used the shorthand notation P, (EJC(CL')) for

f [T P(dw,) | P, e -

k=1

By a union bound we have that
Pu.o(E5(y) <2P(Zygly) <N") =2P(Zy, <N7").

Therefore, by (2.2.32) and (2.2.33) there exists a constant C = C() € (0, ), such that for all
Jj=1,
E[D®® ) ptma )] < cp(z4 , < NN
[ 3.N (x) 3N (?/)] S ( NB < ) :
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Substituting the above upper bound to (2.2.30) we obtain that

Ni-1 D SON](VQZZ y) 3 E[Dg?ﬁ)(x>D§fﬁal|)(y>]

e—y|<2N 2t 7=1:a,€A%NAY,

<onzt Y QDNJSL; v) N P(ZR < NN

le—y|<2N 3 +oe j=1:a;€A% nAY

I

<CP(Zfs<NMinstt % W | A%, A AY,|

|o—y|<2N 2zt
From definition (2.2.2), we have |A%, N A%| = O(N=Fd5+ee)) = O(N'*+9). We also have
that the probability P(Z J‘(‘,’ g <N ~h) decays super-polynomially by Proposition 2.2.1 and so does
1
P(Z% 3 < N~")%. Indeed, by Proposition 2.2.1,
i1 hlog N)7
A —h)1 (hlog
P(ZN75<N ) Scéexp<—406>, ’}/>1,

Thus, we have that

N%—l Z SDN](\ZZ y) Z E[Dj(’bjl\%) ({L‘)D](-?Ea”) (y)]

|z—y|<2N 5 tee j=1:a;eA%,NAY,

el d_ on(z,y)
<CP(Z]<47WB<N h)4|A7:VﬁA:§/V|N2 ! Z T

lz—y|<2N 3 Hoe
2 A _ 1 d
<C |lell; P(Zy3 <N~ M)a N2t
_ O(N# )0 (togN))
Since v > 1, the last bound vanishes and therefore we conclude that
- SDN(QL’7 y) bi "
ARV Y i ] bl
jr—yl<anEres j>1:a,eA% N AY,
g

2.2.2. Taylor approximation. We now proceed to the proof of Proposition 2.2.5. We will need
the following lemma which provides a bound on the rate of decay of E[(Z f\‘, 3 (a:)) 2] .

Lemma 2.2.8. For every 3 € (0, 812) there exists a constant C = C(f3,d,¢) € (0,0), such that
E[(Zﬁ,g(x))Q] < CN-e(zD),

Proof. By (2.2.4), the chaos expansion of E[(Z]‘é,ﬁ(m)f] is as follows.

N k
E[(Z85))*] = 3] o™ D [T (o= 2i1).

k=1 I<ni<..<np<N, =1
T:=20,%1,...,2,EZY,
Jdie {1,...,k}: (ni,zi) (2147\,

Since the rightmost summation is over sequences of k space-time points (7, 2;)1<i<k» such that at
least one of the points (n;, 2;)1<i<k is not in A%, for every such sequence, there exists at least one
index i € {1,..., k}, such that |n; — nj_1| > N or |z — zi_1| > %N%“‘E; recall the definition
of A% from (2.2.2). Thus, by changing variables w; := z; — z;_1, {; := n; — n;_1 and extending
the range of summation from 1 < ¢; + ... + £ < N to {1, ..., ¢, € {1,..., N}, we obtain that
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][f ] k k
<)% 2 Z( vy Ty e 1 N2+a5})1_[qi(wi)-

k=1 617 7€k€{17 7N} J= 1 i=1
wkEZd

By changing the order of summation, for each 7 # j we have that

N
Z D ai(wi) =) g (0) = R
n=1

=1 w;ezd

Thus,

e[(24 ()] < Zk ZRET Y (n{n%m+]1{n<%N67|w‘>%N%+%})qg(w). (2.2.34)

1<n<N,
weZ4

Let us consider the contribution of the two indicator functions separately. For the first one, by

summing w € Z¢, we obtain that

N
D ReFRET Y Ly Z“%Rk b aw(0) (2.2.35)
k=1 1$n§£V k=1 N <n<V

we

By the local limit theorem we have that ¢, (0) < - for a constant C = C(d) € (0,00) and
2
moreover using the standard estimate "

V]

oo (4
Z L gA_d+j .1‘2(1.%'_142+1421<CA_(3_1).
A

Q

n=AMN?
we obtain that there exists a constant C'(d) € (0, o) so that

N @a(0) < CkETINTEGY,
NTE<n<N
Consequently, the contribution of the first indicator function (2.2.35) is bounded by
CN* < 3 k% (62(B)Rx) ) :
k=1

where Ry, := Y, -1 ¢q2n(0) < 1. Since 3 lies in the L*-region, we have that 0(8) Ry < 1, and

i k2 )k<oo.

Therefore, the contribution of the first indicator function to E[(Z ~,5(x))?] that is, (2.2.35), is
bounded by C N=<(2=1 for some constant C' = C(B,d) € (0,00).
For the contribution of the second indicator function in (2.2.34), namely the sum

therefore

SL

N
2k pk—1 2
Z g RN k Z H{HS%N5,|w|>%N%+(’E}qn(w) ) (2236)
k=1 ne{l,.. N},
weZ?
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we have that

_d
2 Ycane s tngra) @) < € 30 n 2 P(ISi] > e v/n),
1<n<N, k ’ % 1gng%]\/s
weZ?

with 0y, v := ﬁ]\f @e_ which by the following moderate deviation estimate
P( max |Sg| > ﬁ\/ﬁ) <Ce
0<k<n
with ¥ = 9,y implies that
2 —£N?2ee -
2 Y e oo pirac) dn(w) < Ce7F >, n

1<n<N, 1<n<%N5
d
we”Z

Nl

for a constant C'(d) € (0, c0). Notice that since d > 3, the sum ), n™% is finite therefore, there
exists a constant C'(d) € (0, c0) such that (2.2.36) can be bounded as

N
2k pk—1 2 2k pk—1 — < N2ae
2 BT DL e s e () S € 0 Rot Ry

k=1 ne{l,.,N}, k=1
weZ?
Moreover,

_1 <& N2« _ _c N2« _ _ ¢ N2«
Dk RE eIV < 3 ko RN 4 Y ko RE e iV
k=1 k<Noe k>Noe

_ (e _ —
< e N Z ka%Rﬁ,1+ Z k:anlevl
1<k<Nae k>Noe

Nae
<Cn"

for constants 7 = n(f) € (0,1) and C = C(B, ¢) € (0, 0). Therefore, we deduce that there exists
aconstant C' = C(3,d, ¢) € (0, 00) such that E[(Zf\‘,ﬂ(ﬂs))Q] < CON—s(E-1), O

Proof of Proposition 2.2.5. It suffices to prove that:
d—2
lim N 1 E[!ON(:U)H =0.
N—w
As in [CSZ20] this is a careful Taylor estimate. We define

Dt ._{+%<w> 24} p(a) >Np}
N - - A A ’
Z]\f,ﬁ(x) ZNWB(x)

for p = %p*, with 0 < p* < 1 to be defined later. For g = %q* with 0 < ¢* < 1, also to be

>Np} and DN:=D;(,UD;,=H

specified later, we have that
P(Dy) < P(Dy 0 {28 5(2) = N71}) + P(Dy 0 {23 5(2) < N79})
< P<|Z;$ﬁ(x)| > N—(W)) + P(Zf\‘w(:z) < N‘q> (2.2.37)
< NQ(pW)E[(Z]’éw(x))Q] + P(Zf\‘w(x) < N—q) .
For the last inequality we used Chebyshev’s inequality. By Lemma 2.2.8 we have that
5 (4
E|(Z3 5(@))?| < NEY
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for some constant C' = C(3) € (0,00). By Proposition 2.2.1 we have that P(Zf\‘,ﬁ(:c) < N_q)
vanishes super-polynomially i.e.
—q"(log N )”)

P(Zjéﬁ(:c) < Nq> < cgexp ( o

Therefore, by plugging those estimates into (2.2.37) we get that for a constant C' = C(3) € (0, o0),

, v>1.

P(Dy) < C N2+a)—e(3-1) (2.2.38)
Furthermore, for a constant C' € (0, 00), it is true that,

|y]

[log(1+y) —yl < C- {42 if —l<y<?i.
ly| if0<y<ow

Hence,

74 (2)\?2 74 (x
ZNﬁ(:n) ZN”Q(ZL‘)
Let us deal with each term separately. We have that

Z3 5(x) > 2 ] »
E . Tpe | <K NP, (2.2.40)
[<Z]f\lf,g(x) P

1y ey 240

1 DN] . (2.2.39)

by the definition of Dy . We split the second term as follows:

1,.|=E Zﬁﬁ(m)n
ot | =Ell7a
Zy p(x)

Zﬁ,g(w)
o | +E[[E2
DY, iz 6(z)>N } Zl’éﬁ(l’)

Z4 oz
EH N,5(@) 1

Zﬁ,ﬁ(m)

Dﬁﬁ{Zﬁ,B(l‘kN"}} )
(2.2.41)
For the first summand of (2.2.40) we have that
H Zf\‘/,,@(l“)
E A
Z p(@)

1D$m{Z§75($)>Nq}:| <NqE7|ZN,B |]lD+m{Z Np@)=N- q}]

< NTE[| 28 5(@)[1 e |

1
< NYE (Zﬁﬁ(;p))z] ’P(Dy)z,
by Cauchy-Schwarz. By Lemma 2.2.8, we get that E[(ZAﬁﬁ(x))ﬂ < ON—<G-D and P(Dn) <
C N2(p+a)=e(5-1) by (2.2.38). Hence,

o d=2 a3
]lDﬁﬂ{Zﬁﬂ(x»Nq}] < O NeN—=(7) ypta—e(557)

— O NP+2a-2e(932)

for some constant C' = C(f5) € (0, ) For the second summand of (2.2.40) we use Holder
inequality with exponents a = % b=c= 1 to obtain that
73 4(x) 3 1 i 1
B 2|2 4 A 1
E 1 E[ Z ] E[i] P(Z <N 93
sze,gcc) btz n-n | <E[ B sta) Zay) FANale) <N
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The term P(Z4 s(z) <N _q)% vanishes super-polynomially therefore, recalling (2.2.41) we con-
clude that

c H 23t 5(@)
Zfé/,g(x)
for some constant C' = C(f3) € (0,00). The second summand of (2.2.39) can be treated similarly.

1 D+] < O NP+2=2(52) (2.2.42)
N

In particular, we split it as follows

1
2

~ 1 ~
E[ Zlf\‘f,ﬂ(x) 2]1 ] B E[‘Zﬁ’ﬁ(x)
A T Dy | — A T Dyr{Zng(x)=N—4}
~,8(2) N(®) ) (2.2.43)
e[| 2
ZN,g(x) Dyn{Zng(@m)<N—a} [ *
For the first term we have that
. 1
Z]léfﬁ(x) ’ a T[54 1
HZM(:C) ]lDNm{ZN,@(x>>N-q}] <NEE[| 28 5)I21 |
[ 5 (2.2.44)

N
3
N
Zh
=
B
=
]
e

N

<NEE[(Z3 5(@))?| "P(DN)T.

by Holder inequality. Using aforementioned upper bounds on E[(Z ~,5(x))?] and P(Dy) we get
that for a constant C' = C(f3) € (0, «0),

1 .
N2E[(Z# 5())?|"P(Dn)T <C N3EN—2(F) Na(r+a-A(52)
|(Z3% (@) | "P(D) 0245

where we used Holder inequality for the last inequality as well as bound (2.2.38) and Lemma 2.2.8.

For the second term in (2.2.43) we can proceed as before, namely

B

1
2

DI—Vm{ZN,B(w)UVq}} (2.2.46)

1 1 .
Za] P <N

by Holder inequality. The super-polynomial decay of P(Zy g(x) < N ~7) together with the bounds
(2.2.38), (2.2.44), (2.2.45), (2.2.46) and Proposition 2.2.1, allows us to conclude that

. 1

Zféf,ﬁ(m)

2
E[ 2 1 DN] < O N3p+2a-2e(3%) (2.2.47)

for some constant C' = C'(3) € (0, c0). Recall now that we wanted to prove that

< E[(Zﬁﬂ(:g))?]iE[

lim N%E[yoN(xn] ~0.

N—o
By the estimates (2.2.40), (2.2.42) and (2.2.47) respectively, we see that it suffices to find exponents
p*, ¢* and ¢, so that

3
1-2p* <0, 1—2e+4p*+2¢" <0, 1—25+§p*+2q*<0.
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The second inequality is implied by the third therefore, it suffices to find exponents p*, ¢* and e,
so that 3
1-2p* <0, 1—25+§p*+2q*<0.

This would lead to ¢ > %(1 + %p* + 2¢*) and since we can take p* > % arbitrarily close to %
and ¢* > 0 arbitrarily small, it suffices to choose £ > % in the definition of the sets A%;, recall

(2.2.2). U

2.2.3. Main contribution and identification of the fluctuations. We proceed now to the proof
of Proposition 2.2.6.

Proof of Proposition 2.2.6. We need to prove that

5 A
d=2 en(2) (ZNg(fU) B> ) L'(P)
N1 E : — (Zyg(x)—1) ) —— 0. (2.2.48)
= yi \Z8,@ (285 )) o

We remind the reader that By, := ([N¢, N] n N) x Z¢ for some g € (e, 1), the choice of which is
specified by (2.2.76). We also define the sets

By := ((N°,N] nN) x z%,
C% :={(n,2) eN xZ24:1<n<Ne, |z—2 >N%+O‘E}.
We decompose Z jé,, B(a:) into two parts
Zipla) = Zyg (@) + 2y (@),
where

Z]’?,:BB(QJ) = Z olmlg @) (7)¢(r),

TCA UBN: TNBN#@

Zy§ (@) = D Mg (r)e(r) .
7c{1,...,N}xZ%: 7nCF, #2

(2.2.49)

and if 7 = (ny, 2;)1<i<k

k
q(OJ)(T) =Gy (21 — 55) H Qni—m‘—1(zi - Zi_l) )
=2

The proof will consist of three steps.

(Step 1) The first task is to show that ZAf\l,g(x) has a negligible contribution to (2.2.48). The
proof of this is based on the fact that ZAﬁg(x) consists of random walk paths which are super-
diffusive: the walk will have to travel at distance greater than N 37 from z within time N°.
Therefore, by standard moderate deviation estimates one can show that

d=2 Z on(x) ' iji‘[:g(x) L%(P)
vezd Nz Z]‘:l]ﬂ(l‘) N—w0
super-polynomially.The proof follows the same lines of the proof of Proposition 2.3. in [CSZ20]
and for this reason we omit the details.
(Step 2) The second step will be to show that in the chaos expansion of Z}:‘,ﬁB(x) the contri-
bution from sampling disorder &, ., with r < N¢ is negligible, for every o € (¢, 1). In particular,
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let us denote by B3 the set

BP {(n, 2) € (N%, N?) x zd}. (2.2.50)
We can decompose ZAf,g(x) into two parts Z]‘?,’BB (x) = Z]’?]’g< () + Z],?[,g? (x) such that
N
z):= Y o > qu nio (20— 2im1)Eny 2y - (22.51)
k=1 0:=no<ni<..<nip<N,

T:=20,21,...,2,EZ%,
k k strip
(niazi)i:1CAf\r uBy, (ni,zi)i:lﬂBN #J

and

N
- Z o-k Z qu ni_ 1 — Zi— 1)£nl,zl .

k=1 0:=npg<ni<..<np<N
T:=20,71,...,25EZ%
stri
(nmzz) 1CAI UBN:(n’uzz)1<1<kﬂB P=g

(2.2.52)
In this step we will show that
Z ‘PN Nﬁ (95) L2(P) 0
— Nﬁ(m) N—aw
or equivalently
5 A,B< 5 A,B<
NE-1 on(z,y) | 2N (@) Zys ()
2 T E|l 77 7 0. (2.2.53)
x,yeZd N ZN,ﬁ(:U) Zng(y) N—ow

Let us denote by S, S¥ the paths of two independent random walks starting from z, y respectively.
We will use the notation

x Y
Cy (@, y) = Exvy[(eHA,B(w — (M@ g, B 7&@] : (2.2.54)
where
x .
apw) = Z {Bwn,: — A(B)}lsz=2,
(n,2)eA¥, UBN
and
= Hz 5 Hy -
Cﬁ’,? (z,y) == Eg, [(e ap=@) 1)(e ap=@) 1)]lszmsym3§\t]r;p¢®] , (2.2.55)
where

G (W) = > {Bwn,: — A(B) gz
(n,2)e A%, U(BN\BYP)

is the energy which does not contain disorder indexed by space-time points in the region Bs‘t”p

Note that, even though in the definition (2.2.54) of Cﬁg/ (z,y), H} p=(w) and Hff‘ 5> (w) do not

contain disorder indexed by BStrlp

strlp

there is still the constraint that the two random walks S*, SY
meet at some point in By
We will control (2.2.53), by showing that
~ A B< 5 A B< A.B A,B>
ZNﬁ (2) ZN,B (y)] _ E[CN’ﬁ (z,y) — CN,/g (z,y)
Z

E . ,
Ziw  Zi,) 78,0

(2.2.56)
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and then showing that when the right-hand side is inserted into (2.2.53), it leads to vanishing
contribution. Let us first check equality (2.2.56). The chaos expansion of Cﬁ’g is

A,B HZ HY
Chs () =Ery[(e 48 —1)(e A5() _ 1)]lSzm5ymB§$”p¢@]

N3
_ E k+¢ E | | X )
= (2 E‘T’y ]lS;LL’L =z; ]lSEJnJ =w, ]lsz ﬁSyﬂBi\t,”p#@
1<k <N -2k AT UB 1<i<k,
(nzyzz)lzl NYDN, 1$j§€

(mj,’LUj);:lCA:]uVUBN

x H gm,zi fmj:wj'

1<i<k
I
Similarly,
A,B>
CNﬁ (CC,y)
_ HY p= (@) HY 5= (@)
=By (€457 = 1)(e 4= ™ = D, g, peoe, ]
— k+t '
- Z g Z Ezy H ]lszi:zi]lsgnj:wj]lSImSymB;t,”p#@
l<k,b<N (ni,20)f_ CAR L (BN\BY™), Lisk)

. 1<l
(mj,wj‘)§:1CA?vu(BN\B§\t;lp)

X H gni,zi fmj,wj .
1<i<k,
1<j<t
The constraints (n;, z;)%_, © A% U (By\BE™) and (mj,wy)i, < A% U (BN'\B?\tfrip) come
from the fact that H% .- (w), H% 5= (w) do not sample ¢ indexed by points in B3"". The chaos

expansion of the difference, Cﬁ’g(aﬁ, y) — C]"\l,’]g2 (z,y), is then
A,B A,B>
CN”B (.CU, y) - CNﬁ (xv y)

_ Z okt Z
1<k,b<N (”ivzi);c:lCA?vUBNv("ini)fﬂmB;\tfrip#g

or
£ Y ¢ strip
(mj,w;)5_1CAN VBN, (mj,w;);_1NBy " #9

X By y H ]ls'fii:zi]lsﬁ’nj:wj]lsznsymB;t,”P;z&@ H gni,zl'fmj,wj-

1<i<k, 1<i<k,
1<j<t 1<t
A,B A,B>
Therefore, the expansion of E — B is
ZN,ﬁ(fU)ZNﬂ(Z/)
AB A,B>
CN”B (.CL', y) - CNyﬁ (CL’, y)
23 5(2)Z3 5(y)
1 ke
70w 2
NBNENET 1<k <N (n5,20)5_, CAR UBN, (ni,20) 5y A BP0 (2.2.57)

or
) y ¢ strip
(mjw;)j_q CAN VBN, (mjw;)j_ nBy " #9

XEW[ I1 ]lsﬁizzi]lsr%—wj]ISwmsymij""#@] [ &nicimsmy

1<i<k 1<i<k
1<j<t 1<j<d
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Note that if for example (n;, 2;)¥; N B?\t,rip # o, the expectation E[-] will impose that also
(mj,zj)§:1 N Bf\t,rip # @ and in particular, (n;, z;)¥_; N Bj'\t,rip = (mj,fwj)§:1 N B]s\t,rip, due to
the fact that the £ variables indexed by space-time points with time index ¢ > N® appearing in
the expansion of Cﬁ’fg (x,y) — Cﬁ”g? (x,y) have to match pairwise, because they are independent
of Zﬁ‘,’ 5(2), Z ]f‘,’ 5(y), and so if a disorder variable &y, -, Or {m, w; is unmatched, their mean zero
property will lead to vanishing of the whole expectation E[-]. Thus, the indicator 1, _, . B 2
will always be equal to 1 for every summand of the last expansion, since we are summing space-
time sequences, such that (n;, zi)i-“:l N (mj, zj)fz1 N B']S\t,rip # @. Therefore, the expansion of
[Cf@’ﬁ(w, y) — Cal (2.9)
Z35 5(2)Z3 5(y)

A, A, B>
CN,g(z’y)_CN7§ (l‘,y)]
(

] is actually equal to

Zy 5(2) 2y 5(v)
A

) Uk+£ 2
IShESN (ni,) 1 CAR UBN, (ni,20) iy VBN 72,

(mjij)ﬁzchqfquN, (mj,wj)gzl mB;\t]r'p#@

[ (x)
1
= [ ZN,B x)Zj(‘,”B(y

X Ear:,y|: ﬂs,ﬁizzi]]-sgn]. —w]-j| H gni,zigmj,wj] )
1<i<k 1<i<k
1<yt 1<j<t

A, B< 5 A, B<
ZNﬂ (2) _ ZN,ﬁ (y)
Zy () Zy ()

which matches exactly the expansion of E [ ] , by (2.2.51), thus allowing us

to conclude that
5 A, B< 5 A, B< A,B A,B>
E ZN,B (2) . ZNﬁ (y) _E CNﬂ(m7y) - CN,/g (z,9)
Zys(x)  Zy5(y) Z4 5(2) 25 5(y)

Having established this equality, to finish the proof of (2.2.53), we will prove that

) en@y) [ CNs@y)
N Y V) gl N 0, (2.2.58)
z,yez? N _ZN,/B(:E)ZNﬁ(y)_ N
and _ A B> .
Cyva (z,
= v cpN(xd,y)E b (Ay) 0. (2.2.59)
ezt V0 [N 2R 50) | N

We start by showing the validity of (2.2.58), since (2.2.59) can be treated with the same arguments.
In view of (2.2.54) we have that

CAB () =B, [(H25®) — 1)(Hhs® 1)1

N,B SImSymBﬁrip;ég]

— H% B(W)"‘Hi (W) . _ H% 5 (W) )
=By y[e" ’ ﬂszmSymBjy'P;é@] Epyle™ ]lSzmSymBj\t,”p#z]

—E,,[eM45®)1 | +Puy(5% A SY A BEP £ o).

SzmSymB;t;ip;é@
(2.2.60)
We begin by showing that

HZ o (w)+HY 5 (w)
E A,B A,B .
a:,y[e ]lSImS?!mB;t,”p;éQ]

Z]‘é,ﬂ(m)Zf,’ﬂ(y) N—o0

d_q on(z,y)
NETh Y T E

x,yeZd

50



The main point here will be to remove the denominators. Consider the set
En == {Zjp(®), Zy 5(y) = N "}

for some h € (0, %) We have that

c [ Ezy [e

:E[E%y [e

HY g (@) +HY p(@) g

SmeymB;t,ripyéQ] ]
Zyy () 2 5(v)
H%,B(w)""H%,B(“”)]l

. A SmmSymB?,riP;ég] ]IEN] (2.2.61)
Zyp(@) 2y 5(y)

H (W) +HY 5 (@) ,
[Ew [ ’ ]lSZmSymB?\t,”p#@]

1 5e ] .
Zf\‘f,g(x)zféfﬂ(y) N

We can bound the first summand using the definition of the sets E, as follows

HE 5 (w)+HY 5(w) _
e ’ nsmeymng"P;é@]

{E:c,y
Z3 5(2) 25 5(y)

0]

x Yy
<VTE [Ex’y [eHAyB(WHHA’B(W)1Sfm5ymB§§'i"sé®ﬂ

2h A2 (B)Ln (z, .
SN2 B,y [Py y)]lszmsymBié””#@]-

(2.2.62)
We condition on the first time, 7 4, that the two random walk paths meet, to obtain that
E:L',y [e>\2(/3)LN(.Z‘7y)ILSmeymBstrip#Z]
N N
Ne
A2 (B)Ln (z, , _ _
= Z ELy[C 2(’8) N(I y)]]'SzmSyﬁB;tfnp¢®|Tx’y = n]P(Tx7y = ’I’l)
n=1
Ne
< Z Ezy [€>\2(ﬁ)LN(x7y)’Tz,y = n]P(Tahy =n).
n=1
By the Markov property
Ne Ne
Z Ex’y[em(ﬁ)LN(x’y)hx,y — n]P:p,y(T:p,y — n) - Z E[€>\2(6)(LN7'H+1)]Px,y(Tx,y = n)
n=1 n=1
Ne
- Z M@ E[GAQ(B)LN_n]PLy(Tz,y =n)
n=1
Ne¢e
< e2(B) E[ekz(ﬂ)Lw] Z Gon(z — y).
n=1
(2.2.63)
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We remind the reader that E[e’\2(5)'-@] < o because 3 € (0,3r2). Therefore, if we combine
(2.2.62), (2.2.63), we deduce the estimate

SzﬁSymB?,'ip;é@]
Z]éfwg(x)zféfwg(y)

A )
§-1 on(a,y) [ Bayle e sy
N2 Z o E{
z,yezd

Ne
i en(z,y)
x,yeZd n=1

0]

The last bound vanishes because h € (0, %), see (2.2.29) for the derivation of this fact.

We now deal with the complementary event £, in (2.2.61). Recall that
By ={Zys(x) < N""}u{Zys(y) < N7"}.

By Proposition 2.2.1 and a union bound we obtain that

(2.2.64)

—h7(log N)7
P(EY) < 2P(Zjé,75(af) < N™") < 2cgexp ((og)) )

cs
Recall that we need to show that
HE L (w)+HY 5 (w) _
Ez,y [6 s B ]lSzmSy mBi\tfr'p;é@] 1
EN

Z3y (%) 23 5(y)

d_q PN (JI, y)
eSS Na E
r,ycZd
We have that

x Y
ELy[eHA’B(w)JrHA’B(w)]l . strip ] E eHﬁ,B(W)'*'H%,B(w)
E STASYNBN T #D ILE]C\, <E I‘ay[ ] ]lE]C\,

Zf\l;ﬁ(:c)Zjé,’B(y) Zj:‘,ﬁ(x)Z]‘é,’ﬁ(y)
A,B A,B
Z3 @) Ziygly) N

where

248 (@) = B[ BomesgmyBens X0

In order to bound the last expectation, we use Holder inequality with exponents p, p, ¢ > 1, so that
% + % = 1, with p € (2, o0) sufficiently close to 2 so that sup yen E[(Z]‘?,’g(:c))p] < o0, thanks to
Proposition 2.2.3. In particular, we obtain that

AB AB AB 2
Zip(x) Zys(y) ZNB N\ |7 o ey 2
E 1 =) . ]IEICV <E ) P(EN)‘? .
Zn () ZNs) Zng

We apply Holder inequality again on the first term, with exponents r, s > 1, so that % + % = 1and
r > 1 is sufficiently close to 1 so that we have sup ey E[(Zﬁ’g)pr] < o0, by Proposition 2.2.3.

This way, we obtain that

2
AB\ p;i

(2] <eenrleios -

By Proposition 2.2.2, we also have that sup yen E[(Z ]Iél ﬁ) —PS] < 0. Therefore, we have showed
that there exists a constant C' = C () € (0, c0), such that

H}TAB(W)+H,y4 (w) )
[Em)y[e , " ﬂswﬁsymB?{'p#@]

1
Ige | < CP(ES)q.
23 5@ 23 () N]
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for some ¢ > 1. Thus,

Z 90N33?J

HY p(w)+HY p(w) 4
[E [6 A,B A,B ]lszﬂsyﬁB;tfnp?gg] 1 ]
E<

2yezd Z]é]ﬁ (x)Zféf”g (y)
—h7(log N)?
<o Ni- exp< (log V) ) @N(fcd,y) 0
qgcs N N—w

r,ycZd

because v > 1 and 3, 7a ‘pN]\(fﬁ’y) < C |||, Recall now decomposition (2.2.60). We have
shown that

d_q @N(xay
Nz Nd

Ha 5 (@) +HY 5(w) .
) [Emj[e e P ]lswmsymBj\t,”p;&@]

0. (2.2.65)
2350 23 5() ] N

x,yeZd

Similarly, we can show that

r H% o (w) . _
Z SON T y Exay[e 4B ]lSImSymBj\t,”p;éz] 0
A A ;
x,yeZd L ZN,,B(x)ZN’g(ZD | N—o
— Hy’ (w) . _
3 SDN 2y e[ Pt Aj ]ISZZSMBW#@] 0, (2.2.66)
z,yeZd | ZN,B(w)ZN,g(?J) | N—oo
7_1 SON v y 1 x strip
P (S nSYnB -+ @) - 0.
A A x,Y N
’ygzd ZN,B(x>ZN7ﬁ(y)] N—w

The steps to do that are quite similar to the steps we followed to prove (2.2.65). Therefore, the
proof of (2.2.58) has been completed. Then, the proof of (2.2.59) follows exactly the same lines,
since Cﬁ’,g/ (x,y) admits a similar decomposition to (2.2.60).

(Step 3) Recall from (2.2.48) that we have to show that

zeZd (ﬂ?) N=oo
In Steps 1 and 2 we showed that if one decomposes Z i (@) as

> > 5 A, B>
Zféf,ﬁ( ) = ZNﬁ( )+ZNﬁ () + 2y (@)

(recall their definitions from (2.2.49), (2.2.51), (2.2.52)) then one has that

Z on(x (1‘) L2(P) 0
S NE Z{ ) v
and
d 2 Z (pN (JU) L%(P) 0

zeZd N2 ZA ( ) N—w
Therefore, this last step will be devoted to showing that
5AB>

@N N (@) > > L1(P)
NT < —(Z2B5) -1) ) —Lo.
xéd fo’g(l‘) ( .o ) N—ow

= . .
We can rewrite the expansion of Z]’?,’g (x), according to the last point that the polymer samples
inside A%, and the first point that it samples in BZ, where we recall the definition of B]%,, from
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(2.2.7). In particular,

Zyd (z) = > Zgh s(@,w) - Groi(z —w) o0& Zrnplz).  (22.67)

(t,w)eA%,, (T,Z)EBI%]

where x,w) is the point-to-point partition function from (0, x) to (¢, w), define
h Z(ft,ﬁ is the poi point partition function fi 0 defined by

Ziy,pa, w) = > olmg@D (m)e(r) . (2.2.68)

TC A% N ([0,t]xZ):73(t,w)

and by Zé“tﬁ(x, w) = 1if (t,w) = (0,z). We will show that if we replace ¢,_+(z — w) by
gr(z — x) in the expansion of

via (2.2.67), then the corresponding error vanishes in Ll(P), as N — 0. Note that if we perform
this replacement, then the right hand side of (2.2.67) becomes exactly equal to

Z3 5(x)(Z8 5(x) — 1)

and this will lead to the cancellation of the corresponding denominator. We define the set
1
Bﬁ(m) = {(T, z) € Bﬁ: |z — x| < r§+65} .

where a. is defined in (2.2.2). Then by first restricting to (r, z) € Bx (), we want to show that
the L' (P) norm of
a2 N (z) i, w)
N3 Z d Z 7A (x)
xeZd N> (t,w)eA%,, N.,B
(r,z)er, (z)

(q,«,t(z —w)—qr(z —;1:)) 0& 2 ZrNp(2), (2.2.69)

vanishes as N — oo. We note that the rightmost sum in (2.2.69) is essentially over points (¢, w) €
A%, so that ¢;(x — w) # 0, because otherwise the point to point partition function Zét, sz, w) is
zero. In that case, we observe that if due to the periodicity of the random walk, ¢,_+(z — w) = 0
then we also have that ¢,(z — z) = 0, since ¢:(x — w) # 0. Therefore, we shall assume that
Gr—t(z — w),q-(z — x) # 0 from now on. By Theorem 2.3.11 in [LL10], we have that for
(r.2) € B3 (2),

4
qr(z —x) =2gr (2 — x) exp (O 1y @ ) o P
g (4 557)) Taemarso (2.2.70)
=2g: (2 — @) exp (O(r %)) - Ly (a0
Furthermore, for (¢, w) € A%, we have that
- 1 [l
@r—i(z = w) _29%(2 —w)exp <O(m HRGE )) aritemu)20 (2.2.71)

:29% (Z - w) exp (O(T_H_ME)) : ]lqr_t(sz);ﬁ() ’
because we have that

|Z — w| < |Z *x| + |x —w| < 7«%+(55 + N%-&-ag _ T%.HSE I (NE)%J'_&E < 21‘%"'55,

for large NV since r € [N?, N]. Also, we have that for large N, [r — t| > ir, since t < N°.
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Let us derive some bounds for

sup{ qr(f_x)) — 17> N%, t < N°,|w—a| < N2*% |z — g <T;+5E}. (2.2.72)
Qr—t\Z — W
We have that
g (z—x) _ g3(z—2) Oy (r;)% T e )
Gr—1(2 —w)  grt(z —w) " 7
(2.2.73)
by (2.2.70) and (2.2.71). First, we have that 20" < cOW#*=™) and for large N

12 (F)F = (- 0F 2 (- NT9E s 1 g

r Y

using the inequality (1 + z)” > 1 + ~a for x > —1 and v > 0. Moreover, looking at the exponent
in (2.2.73) we have

|z—w|? lz—z|2 [ |z—w] |z—x| |z—w| |z—zx|
r—t 7 _(\/ﬁ_ ﬁ)(\/ﬁ—i_ \/;) (2.2.74)
Then, for the first factor in the right hand side of (2.2.74) we have by triangle inequality that
lz—w| _ |e—z| _ o=z  |z—z| | |z—w|
Vit v St o T (2.2.75)

For the first summand on the right hand side of (2.2.75),

|z—z| _ |z—z| 1

= . S U R O t
v ol (G- ) Tl sy
< 2 t-|z—x|
\1+\/§ r3/2

. 1
where we used thatr — ¢ > %r for large N. Since, |z — x| < 721% and r > N¢ we have that

|z—z| _ |z—z| <

2
Vr—t VT 1RV2 T2 T 142 1+v2

For the second summand on the right hand side of (2.2.75) we have, using r — ¢ > %r

t-|z—z| < 2 _trée—l < 2 . N8+Q(55_1).

|z—w] . Jz=w| LN e
T S V2 V2 N e
sincer > N¢and |z —w| < N 3+ Moreover, for the second factor in the right hand side of

(2.2.74) we have that

ol 4 B < oot ot < (14 2V2) N

Therefore, we have that for the left hand side of (2.2.74) that there exists a constant C' € (0, o)
such that

—wl? —z|? S+ 5e—1),552+ —o+2
|z—w| _\er\ < C N°* max{s-i—g(E )55 a5}<CNs 0+20-

r—t
Therefore,
qr(z — ) i< 95(2’ — ) . ONets==)
Gr—t(z — w) gr=t(z —w)

< eO(N€79+265)+0(N9(46571)) 1= O(Ns—g+4§g).
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Through similar reasoning we obtain that

@ (z —x) s

gz (z — ) o~ O(Ne(3==D)
e w) T g w)

-1

> (1 _ %NE—Q) . 6—0(N¥+355)_O(Ng(468—1)) _ 1

\%

(1— 4N - (1-O(N T+ —1
> _O(NSEQ+455) .

Combining both upper and lower bounds we conclude that

sup M—l cr> N2 t < N° |w—x| < N2t |z — g <rate
¢Gr—t(2 —w)
—O(N 2 4% |

By Cauchy-Schwarz we obtain the following estimate for the L'-norm of (2.2.69),

NT Y

xeZd

on(x)
NS

1
: [Zféf,g(x)

x ’ Z Z(ft,ﬂ(xa w) (%“(Z - 1‘) - QT—t(Z - w)) : Ugr,z ) ZT‘,N,ﬁ(Z)’ ]
(t,w)eAZ,,
(r,z)eBI%,(x)

<NT Y

reZd

241/2
X E[( Z Z(ftﬁ(a:,w) (qr(z —x) — gr—t(z — w)) o0& ZT’N,B(Z)> ] .
(

t,w)eé'}”\,,
(r,z)eBy (z)

on(T)
NS

1 1/2
E[Zf\‘w(x)Q]

By the negative moment estimate, i.e. Proposition 2.2.2 we have that
sup E[Zjé,ﬁ(x)_Z] < .
NeN ’

Also, by expanding the square in the second expectation we have that it is equal to

S e[z w?] (az - 2) - aalz - w)) 0 E[Zo s (2)?]
(t,w)eA%,,
(T,Z)EB]%](QE)

2
= 2 | Zslaw)’] {1—‘1“(2‘”““)} @i (z — )0 E| Zn5(2)]

(tw)eAZ,, gr-+(2 —w)
(r,2)eBZ ()

< O(Ns;zg+458) Z E[Z&‘tﬁ(:c, w)Q] qz_t(z —w)o? E[Z,@N”B(z)Q] ,

(t,w)eAZ,
(r,z)eB]%, (z)
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by using estimate (2.2.72) and (2.2.70), (2.2.71). The last sum is bounded by E[(ZAJ(‘[’?;)Q]. By
adapting the proof of Lemma 2.2.8, one can show that E[(Zf\‘,’g? ) 2] =0 (N_Q(%_l)). Therefore,

a2 en(z) 1
N 4 ‘ E
3 [ e
qr\z — T
U5 g B0 L e
(ta0)e AT Gr—t(z — w)
El N>

(r,z)er, (z)

)

<C ol E[ (24 5(a) | N4 N ol

In order for the last bound to vanish we need that
2 4 S0 445, — 0(932) < 0.

Rearranging this inequality, we need that
2 4 g + 46,

- <o. (2.2.76)
T+

N[

d—2
e + % + 46,

p € (0,1) because 0. € (0,15%) and second, because

This is possible since, first,

given a choice of € € (0, 1), we pr20V6d ?n Step 2 that (2.2.53) is valid for any p € (g, 1), therefore
we can choose p, large enough, so that (2.2.76) is satisfied. To complete Step 3, one needs to show
that we can lift the restriction (r, z) € Bx(z), that is, allow (r, z) € Bz, such that |z — 2| > r3+oe
but this follows by standard moderate deviation estimates and is quite to similar to the proof of

[CSZ20], thus we omit the details. O

In order to complete the steps needed to prove Theorem 2.0.2, one has to show that also Propo-
sition 2.2.7 is valid. But, this is a corollary of Theorem 2.0.1. Since we are using the diffusive
scaling, the fact that Z ﬁzﬁ(a:) is the partition function of a polymer which starts sampling noise
after time N ¢ for some o € (0, 1), does not change the asymptotic distribution.

Proof of Proposition 2.2.7. This Proposition is a corollary of Theorem 2.0.1, since one can see
that the difference of

”ZSON vp(z)—1) and NT on (@ ZNﬁ() 1).

4
N2
reZd rezZd

vanishes in L?(P). More specifically, we have that

| Y (Znate) 1) - VT Y 20D (2@ - )

N2
xeZd xeZd

2

L*(P)

d__ xr
1 Z Z (PN y Gon (:L' _ y)E[ekz(ﬁ)LN—n]'

= x,yeZd

57



by recalling expression (2.1.7). We can bound the last quantity as follows

YN T, Y) :ry 5 .
12 S ENY) o — y) B[O tr ]

x,ycZd

N(z y
<E[e* 12 Y, P ala—y).
n=1  zyezd
By Lemma 2.1.2 the main contribution to the sum
<PN z y
! 2 Z @2n(r —y).
n=1 xz,ycZd

comes from n € [¢N, N] for ¢ small, therefore it converges to 0 as N — o0.
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CHAPTER 3

Moments of the 2d directed polymer in the subcritical
regime and a generalisation of the Erdos-Taylor theorem

In this chapter we study DPRE, in the critical dimension d = 2. Since the framework we are
going to work with presents slight variations compared to the previous chapter we describe it in
detail in the following. Let S = (S,,)n>0 be a two-dimensional simple symmetric random walk
and QU”J)UudeNX
A(B) := log E[e?¥] < oo forall B > 0. We use the notation P, , and E, ,, to denote the probability

and the expectation with respect to the distribution of the random walk when the walk starts from

> @ space-time field of i.i.d. random variables with E[w] = 0, E[w?] = 1 and

x € Z? at time a € N. If either @ or x are zero, we will omit them from the subscripts. We consider

the (point-to-point) partition function

N—-1
Zng(z,y) = B, {ean {Bwn,s, —A(B)} ]l{SN_y}] (3.0.1)

of the directed polymer, i.e. random walk, in the random environment w, at inverse temperature
B > 0. We also denote the point-to-plane partition function

Znp(x) = ) Zng(z,y), (3.0.2)
yeZ?
and simply write Zy g if z = 0.

We are going to focus on the intermediate disorder regime where inverse temperature vanishes

By ~ B, / with 3 > 0. (3.0.3)

We remind the reader that it was shown in [CSZ17b], that for Sy ~ /3 log ~ With Be (0,1),

as

@
ZN px exp(ggX — 503),

N—o

) while for B > 1, Zn g, converges in distribution to 0.

where X ~ N(0, 1) and Qﬁ log ( -z
In particular, the subcritical regime B € (0,1) coincides with the range of A for which the second
moment of the partition function is uniformly bounded, that is supy~1 E[(Zn s, )?] < .

We recall that the emergence of such intermediate scaling can be guessed as follows. Using
Gaussian environment for simplicity one has that

E(2n5)°] = B[P 7| = B[], (3.0.4)

where E®? denotes the law of two independent, 2d simple random walks starting both at the ori-

(1, 2) ZN

n=1

gin, Ly L(s1_g2) denotes their collision local time up to time N — 1 and Ly :=

ZN 1 Is,,-0y denotes the number of returns to zero, up to time NV — 1, of a single random

n=1
1,2 MW

walk starting at 0. The second equality in (3.0.4) follows since L Ly. A classical result of

Erdos-Taylor [ET60] states that

T L (d)
log N N N

Exp(1), (3.0.5)
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where Exp(1) denotes an exponential random variable of parameter 1. Thus, it is not hard to see
that under (3.0.3), one has supy=; E[(Zn gy )?] < o0 if and only if 5 < 1.

The first result of this chapter is to show that all positive moments of the point-to-plane parti-
tion function Zy g,, are uniformly bounded in the whole subcritical regime B < 1 while, obviously,
no moment higher than one exists in the limit at 3 > 1. Combining this with the distributional
convergence (3.0.3) allows us compute the limit of all moments. In particular, our first theorem is
stated as:

Theorem 3.0.1. Consider the point-to-plane partition function Zy g, defined in (3.0.2) with an
intermediate disorder scaling By as in (3.1.1), which is asymptotically equivalent to (3.0.3). Then,
for every 3 € (0,1) and h = 0, it holds that

h(h—-1) h(h—-1)

. h 1 2 . 2 2
dm ela)'] = (25) T - (mE[@ar]) T eos
Furthermore, (3.0.6) is valid also for all h < 0 if we assume that the law of w satisfies the following
concentration property:
There exists v > 1 and constants c1,co € (0,00) such that for all n € N, (w1, ... ,wy) i.id.

and all convex, 1-Lipschitz functions f : R — R,
el
P<|f(w1,...,wn)—Mf‘>t><01 exp(——), (3.0.7)

C2

where My is a median of f.

Remark 3.0.2. We note that (3.0.7) is satisfied if w is bounded or if it has a density of the form
exp(—V + U) for V,U : R — R, where V is strictly convex and U is bounded, see [Led01].

The above theorem in combination with an analogous to (3.0.4) computation for the A moment
will, almost immediately, lead us to a generalisation of the Erdos-Taylor theorem (see [ET60] and
[GS09] for a quenched path generalisation), to the case of the rescaled, total pairwise collision
times of h (instead of just two as in [ET60, GS09]) independent, two-dimensional simple random
walks. More specifically, let I'(a, 1) denote the Gamma distribution, which is the law with density
function ﬁx“_le_“ 1{;~0y and in the last expression I'(a) is the gamma function. Then,
Theorem 3.0.3. Consider h € N such that h > 2 and fori = 1,...,h let SO = (Sy(f))n>0
be independent simple symmetric random walks in Z* starting all from the origin at time zero.
Moreover, for 1 < i < j < hlet

N
LV i= 2 Liso_stoy
n=1
denote the collision local time of SV and SU) until time N. Then

™ (i,5) (d) h(h—1
loe N Z I‘NJ Nooo F( (2 )’]‘))
g 1<i<j<h

More precisely, if Yy 1= @ Zl<i<j<h Lg\i,’j), Y is a random variable with law F(h(hz_l) , 1) and

My, (t), My (t) denote the associated moment generating functions, respectively, we have that
MYN (t) — My(t) )
N—w0

forallte (0,1) := I, which is the maximum interval I < (0,0) where My (t) < oo, t € I.

60



The main step towards the above two theorems is to establish that, in the subcritical regime, the
moments of the two-dimensional point-to-plane partition function Zy g, are uniformly bounded.
To state the corresponding theorem, let us briefly introduce the averaged partition functions. For
test functions ¢, : R? — R such that ¢ has compact support and 1) is bounded, we define the

averaged partition function to be

ZNpx () Zso ) Zn,n () U(J5) (3.0.8)

and introduce its centred version as Zn g, (0, %) := Zn gy (0, V) — E[Zn gy (0, %)]. Similarly,
we introduce the centred version of the point-to-plane partition function as

ZNgy = ZNpy —E[Znpy] = Znpy — 1.

Theorem 3.0.4. Let 0,1 : R2 — R be such that ¢ has compact support and 1 is bounded and
consider the centred, averaged field 7 N3y (0, 0) with respect to p,, as in (3.0.8). Let also
w : R — R be a weight function such that log w is Lipschitz continuous. Then, for every h € N
with h = 3, B € (0,1), there exist a, = a.(h, 3,w) € (0,1) and C = C(h, B, w) € (0,0) such
that for any p,q € (1,00) that satisfy % + % = land pq < a,log N, the following inequality
holds:

2o < (S20)F o |25 pomtlpontts . G099

where for x € Z? we have pn(z) := (/v N), ¥n(x) := (x/v/N) and wy () := w(x/v/N).

Moreover, for Z N3y being the centred, point-to-plane partition function, it holds that

sup
NeN

E[(ZNﬁN)h” < . (3.0.10)

A version of inequality (3.0.9) at the critical temperature was established in [CSZ21+], where
inequalities of this type were used as an input to prove uniqueness of the scaling limit of the
polymer field at the critical temperature scaling. Here, we had, first, to extend this methodology
to cover the subcritical regime and, most importantly, we had to pull out the explicit dependence
of the constant on the right-hand-side of (3.0.9) on the parameters p and ¢q. The subcriticality
assumption, B € (0,1), is reflected on the fact that the constant C' is finite, compared to the
critical case where it grows logarithmically with IV and gets cancelled out by the logarithmically
attenuating factor seen in (3.0.9). The precise knowledge of this dependence is crucial in order
to derive the moment estimate (3.0.10) of the point-to-plane partition function. This is because in
order to obtain the point-to-plane moment estimate, we would need to insert in (3.0.9) a delta-like
function oy (z) := N1,_gy (as well as 1y (x) = 1, but this is innocuous), which, however, leads
to a blowing in N constant in the right hand side of (3.0.9). The idea to overcome this difficulty is
to optimise the choice of p, ¢ of the corresponding #7 and ¢? norms and for this one needs to have
the dependence of the right-hand constant on p, g. The latter turns out to be of the form pq leading
to an optimal choice depending on N as ¢ := alog N, which washes out the dependence on N.

As already mentioned, the general framework towards (3.0.9) is inspired by estimates in
[CSZ21+], The latter was subsequently inspired by and generalised the work of Gu, Quastel and
Tsai [GQT21], who introduced methods from spectral theory of Schrédinger operators with point
interactions of Dell’ Antonio, Figari and Teta [DFT94] and Dimock, Rajeev [DR04] to prove ex-
istence of all moments for the solution of the 2d stochastic heat equation (mSHE) at the critical

temperature with L? initial data 1), when averaged against a smooth test function ¢. A novelty here
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(as well as in [CSZ21+], with the latter having a different focus and scope) is the extension from
an L? setting to an /4 setting® with ¢ € (1, 00), which, in combination with the optimisation idea
introduced here, allows to also reach the case ¢ = co. The desired extension comes from a combi-
nation of a renewal framework (see Section 3.1.2 and Proposition 3.2.4) as well as an extension of
an inequality of Dell’ Antonio, Figari and Teta (Proposition 3.1 in [DFT94]) (using a different and
more robust methodology than [DFT94]) from an L? to an #4 setting with ¢ € (1, ).

The method we develop also allows to compute the asymptotics of the moments of the loga-

rithmically scaled and averaged field
\/log Z

x€Z?

ZNBN( ) 1)7

for ¢ € C.(R?), thus allowing for the computation of higher moment correlations, answering,
in the discrete setting, a question of Gu, Quastel and Tsai (see Remark 1.10 in [GQT21]). In

particular, we establish that

Theorem 3.0.5. Let ¢ € C.(R?) and consider the centred and averaged field with respect to o,
that is

Znpy(p,1) = & Z ) (Zn gy (2) = 1) .

17622

Then, for every h € N with h = 2 ana’ﬁ2 e (0,1),

Qw(ﬁ)h ~(h—=1D | ifhiseven

) h =
lim (log N)* E[ Zw sy ()" | = S
N—wo 0 , if his odd

where 0, (B) is defined by

2= ], e@at a0

1- 52
jaf? /2t

with gi(z) 1= 5= e~ the two-dimensional heat kernel.

3.1. Auxiliary tools

In this section we develop all the necessary machinery for the proof of the main results.
3.1.1. Partition functions and chaos expansion. Let us start by denoting the transition proba-
bility kernel of the underlying, two-dimensional, simple random walk S by g, (x) for n € N and
x € Z2, that is g,(x) := P(S, = x). Recall from (3.0.1) the definition of the point-to-plane

partition function

ZN’ﬁN (x> = ECL’ |:6 Zg;ll {'BN w""7S'VLA(/8N)}:| ,

where [ is chosen so that

012\773 — A2BN)2M(BN) _ 1 — R7N’ G.1.1)
where
Ry i= E®? [Z 5 s2>}] D1 an(2)? = D] @2a(0), (3.1.2)
n=1 n=1zeZ2 n=1

*the adaptation to the continuous L? spaces is also possible
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denotes the expected collisions until time N of two independent, two-dimensional, simple random
walks, starting from the origin. Note that [ET60]

log N
BN L2y ),

Ry =

s
where o := v + log 16 — m ~ 0.208 and v ~ 0.577 is the Euler constant. By Taylor expansion in
(3.1.1), this implies the asymptotic scaling of By as Sy ~ B, /logN for N — 0.

We shall also need the definition of the point-to-point partition functions. In particular, for
a,b € N with a < band z,y € Z2, we define the point-to-point partition function from the
space-time point (a, z) to (b, y) by

b—1
Zap gy (®,9) = Bag [e Zn=atr (B wn.sn =A(BN)} ll{sb_y}] , (3.1.3)
Note that with these definitions,
Znpy ()= D Zon gy (@,y).
yeZ?

Given ¢, : R> — R such that ¢ has compact support and 1 is bounded, we can further define the

averaged partition functions by,

Zappx (0 y) 1= Z () Zabsn (T, Y)

reZ?
ZabﬁN(-T 77[} Z Zab,ﬁN(x y)@b(%)
yeZ?
and
Zappx(9,0) NZ@ ) Za o (2.9) U(J5) - (3.1.4)
For (a, ), (b,y) € N x Z? with a < b, the mean of each of the quantities above is computed
as
E[Zapox (0:9)] = dab(0:y) == 22 P(F) dap(, ),
el
(3.1.5)
E[Zmb,ﬁz\f (CC, w)] = Qé\,[b(xvdj) = Z qa,b(xvy) w(\/yiﬁ)
yeZ2
and 1
E[Za,b,[)’N (903 @ZJ)] = qu\,[b(gov ¢) = N ZZQ 90(\/%) Qa,b(xa ?JW)(%) .
RS

Next, we derive an expansion for the point-to-point partition function Z, 3, (, y) as a multilinear
polynomial, which goes by the name of chaos expansion. This is the starting point of our analysis.
Recalling (3.1.3) we have

Za7b’BN (x7 y) = Ea,7a;|: 1_[ H e{BN wn,z*)\(ﬁN)}‘ﬂ{Sn:Z} ]].{Sb_y}:|

a<n<b zeZ2

and by using the fact that for A € R, e Hsn=2) = 1 4 (&} — 1)1yg,—-) we obtain

ZabﬁN(x y [ H H +§n,z]l{sn=z}) ]I{Sb=y}] (3.1.6)

a<n<b zeZ2
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where &, . := ePNwn.==ABN) _ 1 are i.i.d. random variables with

E[¢) =0, E[¢?] =200 —1— 02 MR E[lgff] < Crof; fork >3,

(3.1.7)
for some constants C, € (0,00), k > 3. The asymptotic and the bound in (3.1.7) follow by Taylor
expansion. Expanding the product in (3.1.6) yields the following expansion of Z,, 5, (z,y) as a
multilinear polynomial of the variables &, .,

Zappn(T,Y) = qap(z,y)
k

+ Z Z Ga,ny ($, Zl) £n1,zl { H an_l,nj (Zj—17 Zj) gnj,zj } an,b(zka y) )

k=la<ni<---<nip<b j=2
zl,.‘.,zkEZQ
(3.1.8)
which also leads to
Zappy (0:0) 1= a0y (0,1))
k

1
+ N 2 Z chz\,]m (‘Pv Zl)§n17z1 { H An;_1,n; (Zj—lv Zj)énjvzj} qr]i,b(zb ¢)

k=1la<ni<--<np<b Jj=2
21,e00,2,€EZ2

for the averaged point-to-point partition function. Using the notation

ZN,,BN(()Da ¢) = ZN,,BN(%W - EI:ZN,BN (¢>w)]

for the centred averaged partition function we have that

ZN gy (9, %)
k

1
= N Z Z Q(])Ynl ((pv Zl)gnl,zl{ anj_1,nj (ZjI?Zj)énj7zj}q7{xg,]\7(zk7w)‘

k=1 215225052k j=2
O<ni<---<np<N

(3.1.9)

For simplicity, we will use the notation Z s, (¢) := Zn gy (¢, 1) and Zy g, (p) 1= Zn gy (0, 1)

3.1.2. Renewal representation. We will also need certain renewal representations for the second
moment of the point-to-point partition functions. These were introduced in [CSZ19b] but only
mainly studied in the context of the critical directed polymer therein. Let (a, ), (b,y) € N x Z?2
with a < b. We define

URY ((a,2), (0,9) i= 0% 5 E| Zag o (@,0)?] . (3.1.10)

By translation invariance
Uﬁ,N ((a, x), (b, y)) = Uf,"’(b —a,y—x):= 012\/,/3’ E[Zo7b,a75N(y — x)z],

therefore it suffices to work with U]@N (n,x). We furthermore define U f,” (n,x) = lg_gy if
n = 0. Using (3.1.8) and (3.1.7) we derive the expansion

Uf,N (n,z) = a?vﬁ ¢2(x)

k
2(k+1
+ ) OJ\I(,B ) > 4.1, (0, 21){ [1an, n,(zi1s Zj)} G (205 )

k>1 O<ni<---<nip<n j=2
21,22,...,Zk622

(3.1.11)
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Moreover, for 0 < n < N we define

UﬁN(n) = Z Uf,N(n,:U). (3.1.12)

reZ?

We will, now, recast U f,N (n,z) and U ]/f,N (n) in a renewal theory framework. We define a family
of i.i.d. random vectors (tZ(N), XZ(N))izl, such that

2
P( (th)vng)) = (nwr)) = an(]j) ]l{néN}

and moreover we let T’gN) = th) +-- t;N) and S,gN) = ng) +-- x,(cN) iftk>1 Fork=0

we set (79, 5p) := (0,0). Using this framework we see by (3.1.11) and (3.1.12) that
Uf,N(n,x) = Z B2kP(TI§N) =n, SIEN) = :c)
k=0
and
5 N
U]@N(n) = 2 ﬁ2kP(T]§ ) = n).
k=0
Finally, we remark that

N
N U (n) = E[(ZNH,ﬂN)Q] . (3.1.13)
n=0

3.1.3. Some useful results. We will make use of the following results on the limiting distribution
of Zx s, and the fluctuations of Z N,8x (), which were established in [CSZ17b].

Theorem A. [CSZ17b] Fix 3 € (0, 1) and let g% .= log (1_132 ). Then,

(4)
INpy > exp (05X =3 3),

where X has a standard normal distribution A/(0, 1).

Theorem B. [CSZ17b] Fix (3 € (0,1) and ¢ € C.(R?). Then,

VIog N Z 5 () % N(0.%(8)) .

where Zy g, (¢) := Zn gy (p, 1) is defined in (3.1.4),

2(3 i d dxd
= - t _
%P =175 L J(RQ)Q zdy p(z)gi(z — y)e(y)
and g;(z) 1= 55 ¢~ 1#1/2t denotes the two-dimensional heat kernel.

3.2. Expansion of moments and integral inequalities

‘We shall hereafter use the notation

MEY = E| Zway (0. 9)"]

for the A" centred moments of the averaged field (3.1.4).
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3.2.1. Chaos expansion of moments. By (3.1.9) we have

1
711}
M]ff,h = m
x E [< Z Z q(J)\,[nl (‘107 Zl)énl,zl
k=1 21 ,25,...,2,,€Z2 (3.2.1)

O<ni<---<np<N

k h
X {anjhnj (Zj_17Zj)gnj,Zj}QTJL\;,N(Zka)> ] .

=2
When h € N, the power h on the right hand side of (3.2.1) can be expanded as

h
2 2 [ Qé\fngm 2 Zgr))§n<lr>7zy>

ki1,....kp=1 (nET),zy))ENXZ2, r=1
1<i<ky, 1<r<h,
O<ng7')<---<n,(c:)<N (3.2.2)

kr
GG N0
X { jll qn('r) n;'r) (ijl’ Z] )gngr)7zj(r) }qng),N(zkr s ) .

=1

Note that every term in that expansion contains a product of disorder variables of the form
h

kr
H H gny),xy) '

r=1 j=1
Therefore, after taking the expectation with respect to the environment and taking into account that
the & variables have mean zero and are independent if they are indexed by different space time
points, see (3.1.7), we see that the non-zero terms of the expansion of (3.2.1) will be those such
(r) ,.(r)

that for every point (nj ' T ),1 < j <kq1<r < hthereexists (at least one) 1 < ' < h,1 <

j < ks such that r # ' and (ngr),mgr)) = (ng.f/),ngl)), that is, every disorder variable fn@’xm
should appear at least twice in a product of disorder variables. Hence, a natural way to paran;etri]se
the sum (3.2.1) is to sum over the space-time locations of these coincidence points along with all
the possible coincidence configurations. We will also use iteratively the Chapman-Kolmogorov
equation gz, ¢, (2,Y) = D,cz2 Gt ,s(%,2) Gs 15 (2, 1), t1 < s < to, for the simple random walk, to
break down ’long range jumps’, appearing in (3.2.2) via their transition probabilities, into smaller
jumps, so that we can track the location of each random walk at each time ¢, see Figure 3.2.1. Let
us introduce the framework which will allow to formalise the above.

For h > 3, let I + {1,...,h} denote a partition I = Iy L Io Ly -+ I, of {1,...,h}

into disjoint subsets I, ..., I,, with cardinality |I| = m. Given I  {1,...,h}, we define the
equivalence relation L such that for k0 € {1,...,h}, we have k L vifkand? belong to the
same component of the partition I. For & = (1, ...,z) € (Z%)" and a partition I we will denote

@ ~ I if 7, = 2 for all k L ¢. We shall also use the notation (22 = {x e (Z)": z ~ I}.
For p € (1, 0) we define the I-restricted ¢F spaces (7 ((Z?)%) via the norm

Hf”ep((zz)?) = ( Z |f(x)|p)1/p

:ce(ZQ)?
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11 IQ ]3 14 I5

v =y3=13

FIGURE 3.2.1. A diagrammatic representation of the expansion (3.2.10) for
E[(Zny)*]- The horizontal direction is the time direction, while the vertical
lines correspond to different time slices, {n} x Z2, n € N. We use straight lines
to represent free evolution (3.2.5) and wiggly lines to represent replica evolution,
see (3.2.8). We use filled dots to represent space-time points where disorder £ is
sampled.

for functions f: (Z2)® — R. In shorthand, we will often write % or just P if there is no risk of
confusion. For an integral operator T : £7((Z%)) — ¢9((Z?)}), we define the pairing

(f,Tgy = >, @ T(@ ). (3.2.3)

ze(Z%)},ye(Z?))
The operator norm will be given by

IThaspa := sup ([ Tgllps = sup — (f,Tg) (3.2.4)

I
Hg”g‘l <1 ”fHePgLHQHZ‘I <1
J I J

for p, ¢ € (1, 00) conjugate exponents, i.e. % + % =1.

For two partitions I,.J  {1,...,h} and z,y € (Z?)" with  ~ I and y ~ J we define the

free evolution subject to constraints I, J as

h
Qy'(@,y) == lgepy [ [an(yi —2i) Liyeyy,  forneN. (32.5)
i=1
Q{L’* and Q;‘Z"] will denote the particular cases where I and J, respectively, are the partitions
consisting only of singletons, i.e. I = {1} 1 --- 1 {h}. Moreover, if I,J — {1,...,h}, p, ¢ :
R? — Rand n € N we define

h
Q;,J(¢®h’y) = Hquv((pvyl) : ]l{y~J}
=t . (3.2.6)
Qé’*(az, ¢®h> = ]l{m~f} : H%{y(xuw) )

i=1
see also (3.1.5). The mixed moment subject to a partition [ = I; 1 - - - L I,,, will be denoted by
El¢'1:= ]  E[EP]. (3.2.7)
1<j<|l, 1122
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Using this formalism, we can then write

) Vi h I
MG = N Z 2. Qi (¢® 7y1)E[5 1]
k=1 0:=ng<ni<- <nkSN
(It 11 )ET,

m:=|I;|<h, y;€ e(z2)mi
i—1, I; Iy, h
X Hin—lm 1 yz lvyz) [6 ] : Q]G_*nk(ykv¢® )a

where Z is the set of all finite sequences of partitions of {1, ..., A}, (I1,..., I), which satisfy the
following condition: For every r € {1,..., h} there exists 1 < i < k such that the block of I; that
contains 7 is non-trivial, i.e. it has cardinality equal or larger than 2. This restriction comes from
the fact that M ]‘f, 5, are centred moments and the fact that all terms in the expansion of (3.2.2) that
contain a standalone £ variable, vanish after taking the expectation E, see also the discussion below
(3.2.2).

Let B = B(0,7) < R? be a ball containing the support of v (allowing the possibility of r = o0
in case supp ¢ = R?). We then have that
QR (e ") < QY™ (ups 0]l 19") < % > Qe (i 0] 1")

ng1€{N+1,...,2N}

with the latter inequality following because the probability that a random walk starts inside the
ball B(0,v/Nr) — R? at time N — ny, and is still inside B(0,+/Nr) at time ny,; — nj with

ng+1 € {N +1,...,2N} is uniformly bounded away from zero.
Thus,
M(P,QZJ < CHQJZ)H?O *,11 E I
| N,h | = Nh+1 Z Z Q ( >y1) ‘£|
k=10:=ng<ni<--<ngy1<2N,
(In,....Ix)EZ,

‘1=|I"<h y;€(Z%)™:
4 ’ k3 I )
X 1_1627117171Z 1 yz lvyz) [’g‘l] : n2+1 nk(yk,]l%?h).
We also need to define the replica evolution. For I — {1,... h} of the form I = {kz,é}uuj;&u{j}

UL (@, y) o= L(gyary - UN (e — ) - [ anlyi — ), (32.8)
i#k, 0
where U ]@N (n,yr, — ) is defined in (3.1.10). The replica evolution operator will be used to
contract consecutive appearances of the same partition I, with |I| = h — 1 in the right-hand side
of (3.2.8). In particular, note that if / - {1,..., h}, such that |I| = h — 1, then
k

U{L(may) = Z E[£2]k Z 2 Hanfnz 1 yz lvyz) :

k=0 O:=ng<n1<--<np:=n y g(Z2 ?,1§i<k 1 i=1
Yo' =T, Y=Y

To be able to estimate the right-hand side of (3.2.8) we will upper bound it by enlarging the domain
of the temporal sum in the right—hand side of 3.2.8) from 1 < n; < -+ < ngr1 < 2N to
n; —n;—1 € {1,...,2N} forall 1 < i < k + 1. This enlargement of the domain of summation
deconvolves the temporal sum in the rlght—hand side of (3.2.8).
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On this account, we introduce the discrete Laplace transforms of the operators Q and U,

2N

N)\ ya Z QIJ y7 )7 y7z € <Z2)h7
n=1
2N

UN)\ Y,z Z ) Yy,ze€ (Z2}h

for A > 0. In our case, it will be sufficient to work with A = 0.
Let us define
o QN Jif|J] <h—1
N QL Uk, L if1TI =R 1.
Note that the appearance of the operator U o 1s necessarily preceded by a free evolution operator

QN o» With |J| = h — 1, see also Figure 3.2.1. In view of (3.2.8) and the discussion above we can
now write

’MN’,h

k
= CJ‘\%E({O Z Z < R Pjvlp-le Pf\;f - nyﬁ]l%h’B>HE[‘§|h] ’
k=1 (Ih,...,I})eT i=1

where we recall the definition of the pairing (-, -) form (3.2.3) and note that the sum runs over
partitions Iy, ..., I such that I; # I; 1 if |I;| = [[j41| =h—1for1 <j <k -1

Because of the assumption of Theorem 3.0.4 on 1 being merely a bounded function we will
need to introduce weighted versions of the operators U4 N QL N, )\ and P B In particular, if w :
R? — R is such that logw is Lipschitz continuous with Lipschitz constant denoted by C,, > 0,
wy(x) = w(f—ﬁ), we define for A > 0,

w@)h(w) I;J
QA (@, y) = o= Qi (),
wMy)
~ w®h x)
U][V,)\(wvy> = gh UJ[V,)\(:va> )
N (?J)

w
where we recall that W (x) = wN(:cl) ~wn (xp), ifx = (x1,...,2,). We modify accordingly

the operator P/ into a new operator P LJ

N3 N3’
1 QNQO Jif[J|<h—1

PI\}B =\ ALy o _ (3.2.9)

’ Qz\},oUN,o ,if [J|=h—1.

Therefore, we can now write
Mgy < C‘W)Hgo SOy o priipinla . plit®h @h ﬁE gl
NRT= Nhtt ®h’ NGNS NB VN BY
k>1(I4,..., 1) YN i=1

(3.2.10)

e 52 5 <@”®h, propiL. . Pl ®">H [le1" ]

k=1 (Il’ aIk
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where we bounded the indicator function ]l?/’l N B by 1 to obtain the second inequality. Passing to

the operator norms (see (3.2.4)) we estimate

v el
|MJ<€7,1I€ < Nh+io Z Z

k=1 (In,...,Ix)e

P*Jl 90%
N3 ,,®h
'BwN

||H7,17

Prse] 11 [lf\ i
(3.2.11)

09504

This is the key expansion we will use for the Proof of Theorem 3.0.4.

3.2.2. Integral inequalities for the operators QJ[V‘{] and O{V,O' At this point, we will prove some
intermediate results about the operators (f)f\,‘{), G{v,o that we will need along the way. In what
follows we shall use the letter C' to denote constants that may depend only on £, B and w but not
on p and q. We will also use the letter ¢ to denote absolute constants, i.e. constants that do not
depend on h, B, w or p, q. Their value may change from line to line.

We start this subsection by stating a lemma from [CSZ21+] on the operator

2N \n

Qua(@.y) = Y. € N Qulz,y).

n=1

Lemma 3.2.1 ((CSZ21+]). Let N > 1, h > 2 and =,y € (Z>)". Then, there exists a constant

C € (0, 00) such that uniformly in N, ,y and X\ = 0
C

(1+]z—y)""

o — |2
exp<|aéNy|> iflx —y| > VN.

forall x,y € (Z*)",

QN,/\(w7 y) <

Nh—1

We will use Lemma 3.2.1 to prove the following operator norm estimate.
The next proposition contains the central estimate. It is on the operator norm of operator Qf\}JO,
as an operator from an ¢ — /9, containing the explicit dependence on the parameters p, q.

Proposition 3.2.2. Let p,q € (1, 00) such that % + % = 1. There exists a constant C = C'(h,w) €
(0, 00), independent of p and q, such that for all I,J + {1,... h} with1 < |I|,|J| < h— 1 and
I # Jwhenl|I|=|J|=h-1,

~I;J
N,0

o SCpU (3.2.12)
Proof. Let [, J - {1,...,h} with 1 < |I],|J|<h—1land I # J when |I| = |J| = h— 1 and
consider f € (P((Z%)h), g € £4((Z*)"). In view of (3.2.4), in order to prove (3.2.12), we need to
prove that there exists a constant C' € (0, 00) such that

LJ w%h(fc)
> f@)Qyo(@y) =g —9W) < Cpq || fllw lglle - (3.2.13)
(22)1 ye(ZQ)"} Wy (y)
Let
Ey = {(m,y) e (Z2)h x (22" |z —y| < CO\/N}. (3.2.14)
for some C > 0 to be determined. By the second inequality in Lemma 3.2.1 and the Lipschitz
condition on log w, we can choose Cj large enough so that for all (x,y) € E; we have

: wh (x) C o
Q]\},O(w’y) w%h(y) < Nhfl €xp ( o |\/Ny|) :
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Therefore,

Z f( )QI;J( )w%h(m) < C _ |z—y|
€T N,0 T,y ’LU®h Y g(:‘/) = Nh-1 Z f(x) eXp( VN )g(y)

(xz,y)eES N ( ) (x,y)eES

and by Holder’s inequality,
1

i Y J@esn (=)
(z,y)ELS,
1 1
1 eyl )" eyl )"
<l Y f@Pen(-2Y) Y lel)lTexp (- 22
me(Z2)h yE(Z2)f} mE(Z2)?,yE(Z2)f}

I 1] _
<CNP+ —(h—1

<C | fllew llgllea »

11l gl

(3.2.15)

where the inequality in the last line of (3.2.15) follows by the assumption |I|,|.J| < h — 1. Thus,

®h
S @k ) o) < C Il ol
N

(. y)ELS,
for a constant C' € (0,00). On the other hand, recalling that log w is Lipschitz with Lipschitz
constant Cy, and (3.2.14), we get that

w®hw
v f<w>Q5¢;g<w,y>wgh<y>g<y><e0w00 S f@Ql @ y)e(y)

(wvy)EEN N( ) ( 7y)€EN

Therefore, using the first inequality of Lemma 3.2.1, the key step is to show that there exists a
constant C' € (0, o0) that may depend on % and w but not on p and g, such that

f(®)g(y)
ze(Z2)h, ye(Z2)h (1+Zz T inQ)

=1 <Cpallfllew gl - (3.2.16)

By assumption there exist 1 < k, ¢ < h such that & Lrand1 < m,n < h such that m £ n. Since
we have assumed that [ # J when |I| = |J| = h — 1, we may assume without loss of generality
thatm # k,¢. Leta € (0, min{p~?, q_l}) to be determined later. By multiplying and dividing by

14| @ — 25 |2®

and using Holder’s inequality, the left-hand side of (3.2.16) is upper bounded by

1+ yk—ye[>*
1
( | ()]? (14 o - xn|2a)”> ’
h—1 _ 2a\P
we(Z2)h, ye(22)h <1—|—ZZ 1z — y,P) (1+|y’f yel a)
1
5 l9(y)|* (L e =)\
h—1 (1—1—\1’ —x \QG)Q ’
we@fve@y (1+ Sy l2i - uil2) e

(3.2.17)

By symmetry, it is enough to bound one of the two factors in (3.2.17). By triangle inequality and

the fact that m < n, which means that y,,, = y,, we have

’2 < | — @n|* + |20 — ya|®
- 4

‘xm - Z/m‘Q + ‘:L'n ~Yn
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Therefore,

x)P 1+xm—xn2“p%
( y ()] (1+] |>>

h—1 "~ 2a\P
h 1+ —
we(Z2)h, ye(Z2)h <1 + D i — yiP) (1 + e — wel?)

<4h?< ST F@)P (L + [ — 2

()}

D=

1
X h—1 p>
ve@ (14 [om = 2l + Lol = l2) " (1 g — )
(3.2.18)
By using (3.2.39) of Lemma 3.2.5 and summing successively the y; variables for i # k, £ we obtain

that
1

h—1
ve@; (14 [ = @al? + S |0 = wl2) (L g = wel?)?

<2 1

h1—1J| :
Yks YoEZ2 (1 + |Zm — xn|? + lyp — zx]? + |y — $e|2) (1 + |ye — yel?*)”

2 2
We make a change of variables wy = y;, — y¢ and we = yx + y¢ — 221, and observe that % =

I
2 where we used that k ~ ¢ thus z;, = x;. Therefore, we have

lyk — @kl® + lye — @

12 Z 1

1—|J]
Yk, Ye€Z? (1 + T — 2p]? + |yr — Tkl + ye — xf|2) (1 + lyr — yﬂ‘Qa)p
1
ht1—|J| |J|—2
<2 c Z 1—|J] p
wiwaez? (14 [om — a2 + [un]2 + Joal?) (1 + Jwi|?)
By summing wo and using (3.2.39) of Lemma 3.2.5 we have,
1
h+1—|J| |J|—2
2 ¢ Z h1—|J] »
w2 (14 = al? + fun 2 + sl (1 + wy [22)
< ohH1-1| I 1 -
w1eZ2 <1 + ’:L-m _ ‘Tn‘Q + ‘w1‘2> (1 + "Ll)l’Qa)P
By (3.2.40) of Lemma 3.2.5 we have that
2h+1—|J| C|J|—1 1
h—|J]
w1€Z2 <1 + |Tm — Tn|? + \w1|2) (1 + |wy[2%)”
1 1
< ol t1=1J1 I
ap(1 — ap) (1 + |2m — xn|2)ap+h717\J|
1 1

h+1—
< ol 11l (]

ap(1 —ap) (1 + |2y — 2, [2) "
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where in the last inequality we used that |.J| < h— 1 by assumption. Therefore, the right-hand side
of (3.2.18) is bounded by

<4h—1 oh+1 <g)|J| ap(ll_ — >1

() )

Note furthermore, that

1
p (1 + |zm — xn|2a)p :
(1 + |zm — l‘n|2)ap

]
8
m
hd
=

(3.2.19)

=

s
Y
8
m
g
=

p (1 + |z — $n|2a)p !
(1+ |2m — xn|2)ap

+ |z — xn|*® max <1, |x, — x, 2
(1+] zn|?)? 2P {1,] |}

&S ~ 2177
(1 + |zm — :cn|2)ap (1 + |zm — xn|2)ap <

therefore,

1+ lom =) :
<w; @) (1+|§m—in|2)“p> <2<w;)hf(w)!p> = 21l -

()} (z2

Hence, setting

1
. ren\ ] 1 P
CZ;]JL =2 23h 1(5) e e—
ap(1 — ap)
and recalling (3.2.18), (3.2.19) we get that

( (@)l (1+ |om — )
h—1 " _ 2a\P
xe(Z2)},ye(Z22)} (1 + 3 | — yi|2> (1 Ly = wel*)
By symmetry we also obtain that
( 3 9wl (1 g — )
h—1 o 2a\4
xe(Z22)}, ye(22)} (1 + Z?:l |z; — yi|2> (1 + |zm — 2n[?)

with

) < C;{,h 1fllep - (3.220)

) < Cyp l1gllea » 3:221)

1
11 1 ¢
TS PRy (o L——
h ( 2/ aq(1 - ag)
Consequently, recalling (3.2.16) and using (3.2.20), (3.2.21) we deduce that
f(®)g(y)

ze(Z2)h, ye(22)h (1 30 | — il?

J I
1 < Cpﬁ Cq,h Hf”zp HgHEq :

1

We optimise by choosing a = (pg) ™" so as to obtain

1 1
. ren M P . e 7
C;;J],h =2. (23h ! <§> pq) and C’;h =2. (23h ! (5) pq> ,

which implies that

oy g
*) pq.

CJ’h CI]—L _ 23h+1 (2

p a9,
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[Ripngi] —
Noting that () 7 < max {1, (%)h 1}, we deduce that there exists C' = C'(h,w) € (0,00)

such that

f(x)g(y)
1 < Cpa | flle ll9lle
we(ZQ)I,ye(ZQ <]. + Zz 1 |CL‘1 yz|2)
which together with (3.2.15) imply (3.2.13). O

The next proposition is the analogue of Proposition 3.2.2 for the boundary operators.

Proposition 3.2.3. Let p, g € (1, 00) such that 217 + % = 1. There exists a constant C = C(h,w) €
(0, 00), independent of p and q, such that for all T + {1,... h} with |I| < h — 1 and g € (9(Z?),

1
= h
HQNog ng < CpN¥lglga -

Proof. Let I i~ {1,...,h} with |I| < h — 1. In order to prove Proposition 3.2.3, we need to show
that

w%h(m) ®h L h
> F(@)Qyy (@, v) T (y) <CpN7[[fllpllgllea -
xe(Z2)}, ye(Z2)h wy' (v)

for any f € /P ((ZQ) 1 ‘). The proof of this Proposition is a modification of the proof of Proposition
3.2.2. Let
By = {(a:, y) € (Z2)h x (22" : |z — y| < COW} .

For (z,y) € EY;, following (3.2.15) we have

+ 44— (n-1)

S @) V(@) ol (0 )@ (y) <ONY 1l gl

(z,y)eES ( )

1
= h
SCON? [ fllew llgllga
since |I| < h— 1. Therefore, in light of the first inequality of Lemma 3.2.1, it remains to show that
f(x)g®" (y)

1
N = SCPN7 Ifllgw gl - (3.2.22)

We can assume without loss of generality that 1 L 2, that is 1 = x3. We multiply and divide by

2
the factor ( log (1 + H‘Zfii\;mz

f(x)g®"(y)
h—1
(zy)eLN (1 + Z?:l |z; — yl|2)

g( S @) (tog (1+ o)
aremy (14X f—ul?)

)) “in (3.2.22) and apply Hélder’s inequality, namely

r
q

) (3.2.23)

Qe

Ay 9= @)l
h 9 h—1 CQN
(z,y)eEN (1 + et | — il ) log (1 + H\yfw>

By triangle inequality and using that z; = z9 we have that

lyr — 12 + |22 — o
4 b)

21 — 12+ |2 — o =
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therefore

1
( S 6% (v)| )
h—1 2
12 _ &GN
(,y)eEn ( + 30 i — il > log (1 + 1+|y1—y2\2) (3.2.24)

1
_ ®h q q
s 6% ()

1
h—1 2N
<(w,y)€EN (1 +ly1 — 2l + 2?22 |x; — yz|2> log (1 + 07_)

1+]y1—y2|?

We sum the z; variables for ¢ > 2 successively, so that by inequality (3.2.39) of Lemma 3.2.5,
1

2y, 1+ Jyn — gol? + S0 |2 — wil? log (1 4+ —GaN
xe(Z2?)}: (v,y)eEN Y1 — Y2 i=2 |Ti = Yi 0g N ——p

- 1 s 2 : h—|1] *
C§N —
log (1 + 1+|yf7—y2|2> x9€Z? (1 + |y1 — y2‘2 + |332 — y2|2)
|za—y2|<CovVN

(3.2.25)

We also note that since |I| < h — 1,

> 1 U :

_ 2 _ 2
29672 (1 + |y1 — y2|2 + |l‘2 — y2| 1+ |y1 y2| + |x2 y2|

x2€Z2
|z2—y2|<CovVN |22 —y2| <CovV'N
C2N
B
L+ |y1 — 2|

(3.2.26)

where the last inequality in (3.2.26) follows from inequality (3.2.48) of Lemma 3.2.6. Thus, taking
into account (3.2.25) and (3.2.26) we deduce that
1

<l < bt
h 2 h 2 hl CEN 7
a:E(ZQ)I:(:l:,y)EEN 1+ |y1 — y2| + Zi=2 |l‘1 — yl| 10g 1+ m
since |I| < h — 1. By (3.2.24) we obtain that
1
3 19%" () !
e (1+ Sy b - uil?) " log (14 82 )
’ e Frv el (3.2.27)

q

<<4c)h?( >, |g®h<y>|q> — (1) T gllty -
ye

(z2)n
On the other hand, for the first term in (3.2.23), using that z; = x, by (3.2.39) of Lemma 3.2.5,

we have that
C32N
Z <log (1 + 1+\y107y2\2))

<log (1 + 1+|yl y2\2>)
h—

ve@ (1+ X0y [ - wil?) oz (Tl =2+ o — pal?)
ly1—a1.ly2—21|<Cov'N

P ya
q q

,_.

(3.2.28)
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We make the change of variables w; := y; — y2 and wy := y; + ya — 221, so that |wy|, |we| <
2CoV/' N and |w1 |? + |wa|? = 2|y1 — z1|? + 2|y2 — z1|*. Note that then,

C2N
h—2 Z (log (1 + 1+\yf—y2\2)>

2 2
y1,y26Z2 <1 + ‘131 - yl‘ + ‘xl - y2‘ )
ly1—z1],|ly2—z1|<CoVN

C2N ))
<2ch2 D (10g (1 t TP

1+ |wi|? + |wel?

2
q

r
q

wl,w2622
|w1 H'wQ‘SQ Cov N

Next, we sum over we and use inequality (3.2.48) of Lemma 3.2.6 to obtain

P
q

<log <1+1+C|ST]\1[‘2)) C2N Py
2ch2 Z < 2cht Z <log <1+07)> .

2 L+ fwi [ + [wo]? ) 1+ |wy|?
w1,w2€Z wi€Z
|wi |, wa|<2 Cov'N |w1]<2 CovV'N
(3.2.29)
By (3.2.50) of Lemma 3.2.6 and noting that % + 1 = p we have
C2N P
3 <1og (1+07)) <cCENpP. (3.2.30)
9 1+ |w1]2
w1€Z
lw1|<2CoVN

Therefore, by (3.2.28), (3.2.29) and (3.2.30) we have that

Q3

C3N > 1 z
( 51 e (o (14 i) ) g@gqg)pN;p< Z]ﬂwW>
(zy)EEN "

(1 + 2?;1 |lz; — yi|2> xe(Z2

1
P At
<(2¢"C3)" N p |l
(3.2.31)

Taking into account (3.2.27), (3.2.31) and (3.2.23) we obtain that there exists C' = C'(h,w) €
(0, 00) such that

f(x)g®"(y) 1 h
: i1 < CpNT [ fl gl
(x,y)eEN (1 + Zi:l ‘1'1 - yj|2>
which concludes the proof of (3.2.22) and thus, the proof of Proposition 3.2.3. (|

Proposition 3.2.4. Let p, g € (1, 0) such that %—k% — 1. There exists a constant C = C(h, 3, w) €
(0, 00), independent of p and q, such that forall I - {1, ..., h} with |I| = h — 1,

HG{W <C.

09—>0q

Proof. Using (3.2.4) it suffices to prove that if f € (7 ((Z*)%), g € £7((Z*)%), then we have

w§ (x)
Z f(w)va,o(-’L',y) gh g(y) <C ”f”gp ngzq .
2. ye(Z2)) wy'(Y)
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By the Lipschitz condition on log w we first have

w®h$ z—y
S @)Ul y) ghé Jywy < Y f@)Ukolm e T g(y),
Y

x,ye(Z2)h v) x,ye(Z2)}h

which by Holder’s inequality is bounded by

( 2. @) Uil m)e “ %y( D 9@l Uk g(e, y) Cwlm*/ﬁ;)q.

m7y€(22)[ wvye(ZQ)]

Therefore, in order to conclude the proof of (3.2.4) it suffices to prove that there exists a constant

C' such that uniformly in x € (Z2)",

I Cy 2l
D1 Uhp(m,y)e™ Vv <C. (3.2.32)
ye(Z2)h

Recall from (3.2.8) that if I is of the form I = {k, ¢} 1| |, ,{j} thenforz,y € (Z2)" the
operator U{V o(x,y) is defined as

2N
UNo € y Z U 33 y ]l{w,ywl} : Zo Uﬁ/"(n,yk - xkz) : l_klz%(yi - SUz)
n= i#k,

Therefore, in view of (3.2.32), we shall prove that uniformly in 0 < n < 2N,

E]

N URY (n,2)e VN < CURN () (3.2.33)
zeZ?
and n
3 4a(2)e7 VN < Cgal2) . (3.2.34)
zeZ2

Inequality (3.2.34) follows easily by the local CLT, see [LL10] and Gaussian concentration. For
the sake of the presentation, we will prove (3.2.33) for 0 < n < N, that is,

E]

Z U]gN(T% Z)ecw NS CUZQN(W’) ) VOs<n<N. (3.2.35)
26272

Note that, by (3.1.13) we have,

Z U (n [(Zﬁﬁl)z] <- _CBQ . (3.2.36)

Moreover, following the renewal framework we introduced in Section 3.1, we have

2]
> URY (n, 2)e %

2€Z2
~2k C ﬂ (N)
DN E[e VTV Ty —n] (3.2.37)
k=0
2k O S (V)
:ZB Z E[e wTUN ‘ti :ni,1<z’<k]HP(ti =ni).
k=0 ni+-+ng=n i=1

Therefore, in order to establish (3.2.35) it suffices to prove that there exists C' € (0, o), such that
forallk > 1

s

|
E[eCwm‘tz(N) _ni,1<i<k] <C. (3.2.38)
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are

(N))

We note that when we condition on the times (t; the space increments (x\™)

1<k’ 1<i<k

independent with distribution

2
(N) ) a5, (@)
P(xy ' =z|t;y ' =n) = 1y, .
( 1 | 1 1) Q2n1(0> {n1<N}

Let A > 0 and (;)1<i<k independent random variables such that ; faw

show that

XEN)‘ t§N) = n,;. We will

EI:e/\|Zf:1 £z| :| < 2640)\2717

for some ¢ > 0. Therefore, taking A = 3—% will lead to (3.2.38). To this end, foreach 1 < ¢ < k,

let &1, &2 € Z be the two components of §; € Z? .Then we can find ¢ > 0 such that
E[ei)\&’j] < ec)\Qni

for j = 1, 2, since by the local CLT we have

R _ swepan)
P60 - 2 < (TEEG

and g, (v) = 2(gn,/2(z) + o(1)), thus g, has Gaussian tail decay. By Cauchy-Schwarz we

) s (&) < C'ga (@)

1 1
E[esz:lsn ] < E[ewz?:l sm] 2 [emzi;l sm] 2

Also, by the inequality el”l < e® + e~ and independence, we obtain for j = 1,2

1
1 k k 2 1
E[eQMZ?:l&J'] < <HE[€2’\&J] + HE[e_Q/\&‘j]) < (2640’\2") °,
i=1

i=1
therefore,

E[eﬂzizlm ] < 2¢deNn
Given the inequality above and choosing A = 3—% we get that

. 2
=ni,1<z<k} < 2¢4C%

since 1 < n < N. Therefore, recalling (3.2.36) and (3.2.37),we have

N
Z Uﬁ”(n,z)eCw«/ﬁ < 2e%Ch Z UJ@N (n) < 2¢1¢C E[(ZN+1,5N)2] <C,
n=0

2€Z2,
0os<n<N

for a constant C' = C(h, 3, w) € (0, ). O

3.2.3. Some technical estimates. We state here the integral estimates we used for proving Propo-
sitions 3.2.2 and 3.2.3.

Lemma3.2.5. Let \>1,p> 1 a < %- Then,

1
3 e < Nil ifr =2, (3.2.39)
yeZ?2

3 E o< < ifr=>1, (3.2.40)

S (A [yP) (14 [yPe)” — ap (1 —ap)Ar—ttor

for a constant c € (0, 00), that does not depend on \,p,a orr.
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1 1
——andy — -
O ) T O )+ [y2e)

Proof. We note that since y — are decreasing in

the radial direction we have that

1 1 1
Ol <S> e Dorwey @ 3241
yezz2 (A+1y?)" A Lz O+ )Y (3.2.41)
and 1 1 1
' sy o Ay (3.2.42)
Zz (A Iyl2) (1 fyPe)” = A L2 (A lyP) Ty

In order to prove (3.2.39), we switch to polar coordinates in (3.2.41), so that

1 o} 0 ()\+92)1—r
—d =27TJ — = _dp=m-
JRQ ()\—F’y‘Z) Y 0 ()\—i-gz)r 1—7r

Therefore, by (3.2.41) and (3.2.43) we get that

D 1 S S S SRR S S
S (A ?) A =t A 1)

=00
¢ T 1

r—1 X x—1°

(3.2.43)

0=0

Thus, since r > 2 and A > 1 we conclude (3.2.39) withc = 7 + 1.

For (3.2.40) we split the integral in (3.2.42) into two regions,

«

1 1 1
T dy = J T dy +J T dy
JRQ (A =+ y]?)" [y/|?e» wl<va (A + [y[2)" [y[2e» wisva (A =+ [yl?) y[?er

=1 =1

First,

VA 1—ap
AT |y|$ﬁ ‘y|2ap A" 0 QZap—l A"l — ap 1— ap )\r—l-i-ap

Similarly,

@ 1 T -1 |
-72<J dy=27rf ————dp =
\y|>ﬁ |y|2r+2ap VoY Q2T+2ap71 r—14+ ap Q2T+2ap72 g:\/X
B T 1
r—1+4ap\—ltap’
Therefore,
1 T 1 T 1
dy =L + 12 < +
f X+ yl? "1, 12ap 1 — gp \"—1+ap r—1-+ap \r—1tap
r2 (A+[yl?)" |yl p - 1 p (32.44)

B (1 —ap)(r — 1+ ap) \r—1+ap’

By (3.2.42) and (3.2.44) we thus obtain

Z 1 <l 1 dy
A_A'_erl_‘_yQap\)\T‘ R2 )\+y2ry2ap
2 (v o) (1 ) (A 1) Ty 245

1 Tr 1

o (1 —ap)(r — 1+ ap) \r—1+aep’

<

Note that
Tr T

<
(1 —ap)(r—1+ap) ~ (1 —ap)ap’
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since that inequality is equivalent to (r — 1)(ap — 1) < 0, which is valid since we have assumed
that ap < 1 and r = 2. Therefore,

1 . mr 1 1 n us 1
X (1 —ap)(r—1+ap) \r—1+ap = A (1 — ap)ap \r—1+ap

E— LT 3.2.46
B \r—1l+ap \ \l1—ap (1 _ap)ap ( e )

<t (14T
T Ar—ltap (1—ap)ap)’
since A > 1 and 1 — ap > 0, by assumption. Last, we have that

1-— 1
4™ _mtap(l-aep)  dim (3.2.47)
(I—ap)ap ~ ap(1l — ap) ap(1 — ap)
Hence, by (3.2.45), (3.2.46) and (3.2.47),
Z 1 < C
5o (V) (1 + [yf*e)” (1 —ap)ap Xr—ttar
with ¢ = 1 + m, thus concluding the proof of (3.2.40). U
Lemma 3.2.6. There exists a constant ¢ € (0, 0) such that uniformly in A, \,p > 1,
1 A
<l (1 7) : 3.2.48
2 xrpe ety (5:248)
yeZ
lyl<vA
1
4 AN\P » 1
J (log (£))'dx ) <pApr, (3.2.49)
1
and
A P
3 (log (1 n 72» <cApP. (3.2.50)
) 1+ [yl
yeZ
lyl<2vA
Proof. For (3.2.48), using the same reasoning as in the proof of Lemma 3.2.5 we have
1 J‘ 1
S + dy (3.2.51)
2212 A+ |y|2 wl<vA A+ [yl?
ly|<vA

Switching to polar coordinates in (3.2.51) we have
o=VA

0=0

VA 0
dy = 27rf ——do =7 log(\ + Q2)’

A
R ~rlog(1+5). 3252)

1
Jy|<\/Z At lyf?
A simple computation shows that when \ > 1, one has that % < 2log (1 + %) < 2log (1 + %)
the latter following since A > 1, by assumption. Therefore, by (3.2.51) and (3.2.52) we have that

Z 2\1+j L 5 y\(2+7r)log( é),
2 Aty wl<va A+ [yl A

Iyléf
which implies (3.2.48) with ¢ = 2 + 7.
Let us now prove (3.2.49) and (3.2.50). First, we prove (3.2.49). We have

1 A A log A
AJ (log (%))p de V=2 J e tuPdu< T(p+1) <pP, (3.2.53)
1 0
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since I'(p + 1) < p? for p > 1. After raising both sides of (3.2.53) to the ]% we get (3.2.49).
To prove (3.2.50) we first note that
A
Z <log <1+72))p < (log(1+A))p+f (10g (
: 1+ y| ly|<2VA
yeZ
lyl<2v'A

1 ))p dy. (3.2.54)

J’,i
1+ [yl?

Using polar coordinates in (3.2.54) we compute

2vA

Jyeava e ) o e | e (1 555)) e
u:gf WL1+4A (1Og (1 N %))pdu.

1+4A A 1+4A 1 5
WJ (log(1+>>pdu<7rf (log( i
1 u 1 u

< WLHE)A (log (1 +U5A)>pdu.

Furthermore,

N
~—
~—

=

(oW
IS

Note that by (3.2.49), we further have that

WLHM (1og(”u5A))pdu< (1+54) 7p" <6AxpP,

since A > 1. Combining this inequality with (3.2.54) we get that

A p
log (1+ —F— <log(l+ AP +6AmpP. (3.2.55)
3 (lon{1+ ) < stt 4
lyl<2vA

We are going to prove that forall A > 1,
1
ve—1

thus deducing inequality (3.2.50), via (3.2.55), with ¢ = \/61—1 +67. To this end, consider ky(z) :=
(log(1+=))?
x

(log(1+ A))P < ApP,

for x = 0 and p > 1. We have that

K () = (log(1 + ))P~t < p  log(l+ x)) ’
P x 1+z x
therefore, k, is increasing in [0, x,,| and decreasing in [z, ), where x,, > 0 is the solution to the

equation ky,(z,) = 0, or equivalently

1+ @) log(1
p— L 2) xog( 7). (3.2.56)
p

(14)log(1+x)

- , one can see that equation (3.2.56) has a unique solution

By working with g(x) :=
xp = 0 for every p > 1, since ¢'(z) > 0 for all z > 0, lim, o g(z) = 1 and lim,_, g(x) = 0.
We distinguish two cases:

Suppose first that x;, > 1. Then

log(1 4+ xp) < p < 2log(l+xp), (3.2.57)
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by (3.2.56) and since x;,, > 1. Therefore, in this case, for all z > 1,

log(1 log(1 p
(Og( + II,')) _ ]Cp($) < kp(xp) _ (Og( + xp)) < p7p < ppp ’
x Tp Tp ez —1
where the last two inequalities follow by the first and second inequality in (3.2.57), respectively.
Since, p > 1 we have that es — 1> v/e — 1, thus we conclude that in the case where z, > 1 we

have forall x > 1,

(log(1 + x))? 1

k = < pP. 3.2.58
»(@) x ve—1 ( )

Moving to the second case, i.e. 0 < x, < 1, we have that since k,, is decreasing in [1,0) <

[zp, 0), we have that for all z > 1,

k() = JOBLEDN" 0y (log(2))? < 1., (3.2.59)

since p > 1 and log2 < 1. Therefore, by (3.2.58), (3.2.59) and since p > 1, for all z > 1 and

p = 1 we have that
1

1
o v
Recalling that k,(x) = Mamd applying (3.2.60) to (3.2.55) for z = A > 1 we get that
A
log (1+ ———— < (log(l1+A))P+6 A <
22 (0g< +1+|yl2>> (log(1+A))P +6 Amp?

yeZ
lyl<2vA

with ¢ = \/5171 + 67, thus concluding the proof of (3.2.50). U

ky(z) < max {1, . (3.2.60)

\/E_lApp+6A7rpp=cApp,

3.3. Proofs of Theorems 3.0.1, 3.0.3, 3.0.4 and 3.0.5.

Now we have all the ingredients to prove the main results. We begin with Theorem 3.0.4.

Proof of Theorem 3.0.4. We first prove (3.0.9). Recall from (3.2.11) that

g <l 5y HH e Q57 T [lélh]-

k>1 117 7Ik)

Q* Il SON

09504

(3.3.1)

By Proposition 3.2.3, we have the following bounds on the boundary operator norms

PN
wN

Q* Il (pN

1
< Can a Qe <opd punll . G32)

op e

for a constant C' = C'(h,w) € (0,00). By Propositions 3.2.2 and 3.2.4 we also have that for all
2 < i < k, there exists a constant C' = C'(h, B, w) € (0, 00), such that

H I 17

By inserting the bounds (3.3.2) and (3.3.3) in (3.3.1) we obtain that

< Cpgq. (3.3.3)

09—>0q

Rlio \W)’w” H wllya 5 (Cpa) Z ]_[E[|£|] (3.3.4)

k>1 (I, Iy )ET i=1
We now distinguish two cases depending on the range of k.
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(Casel). If k > [%J we use the bound

k
=1

which is a consequence of the fact that E[\§|Ii] <C 012\/6 O(1/log N), see (3.2.7) and (3.1.7).
Therefore, in this case ’
: Cpg\Fk
Cpg)* Eller] < Y (£2n) 335
> (Cpg) [ 1[I > o) (3.3.5)
k>|%] (I1se Ik )eT i=1 k>|%]

for a constant C' = C'(h, B,w) € (0,0), which also incorporates the fact that the number of
possible choices for a sequence of partitions (Iy, ..., I;) is bounded by C* where C = C/(h) is
some positive constant.

(Case 2). The second case is when 1 < k < [%J, for which we claim that there exists a constant
C = C(h, B) € (0,0) such that

To see this fix 1 < k < [%J and (I,...,I;) € Z, and let I; = |—|1$j<\1¢| I; j. By (3.2.7) and
(3.1.7), we have that

k
[TE[IE"] < CF (g, gyt Fassmiuin =2l

i=1
From the definition of Z (see below (3.1.7)), we have that
> > |Iij| = h
1<i<k 1<5<|L)5| I 5] =2

since every r € {1, ..., h} necessarily belongs to a non-trivial block of some partition I;, 1 < i <
k. Therefore, as before we have that there exists a constant C' = C (h, B, w) € (0, 00) such that

> ©pot Y HE[ifl] (logN) 2 3 (Cpa). (3.3.6)

1<k<|%] Iy, I €T i=1 1<k<| b

Combining estimates (3.3.5) and (3.3.5) we deduce from (3.3.4) that

Y Cpg\* iy ~
gl < oMl e g (5 (C20)" 4 ogryt Y @),
k> 1<k<| 4]
(3.3.7)
Let p, ¢ > 1, conjugate exponents, that satisfy the growth condition
Cpq U1
= 338
logN 2" ( )
In particular, pq < ay log N with a, = ax(h, 3,w) € (0,1) defined as a, := (2C)~!. We then
have that N - X
C k C [5]+1
Y () <2(o)” (3.3.9)
0 0
k>[%] & &



by summing the tail of the geometric series, which is possible due to the growth condition (3.3.8)
imposed on p, g. On the other hand, we have that

~ h ~
_n (Cpg' = Cpg

(logN)’% Z (Cpg)* < (logN)
1<k<| 2] Cpg—1
S )51+
Cpqg—1
<2(logN)"2 (C'pg)e!, (3.3.10)

since C pq > 2 (pg = 4 because % + é = 1 and we can choose C' > 1). Combining estimates
(3.3.9) and (3.3.10) we obtain that

C k _h ~ C [51+1 PN
( Z (lopjgf> + (log N)~ 2 (C’pq)k> <2<10p]€]) 4 2(logN)"2 (Cpg)lz!
k> & 1<k<| 4] 8

~ h
<4<Cpq>27
log N

by using that ggp]% < % and [%J < % < [%J + 1. Inserting this bound to (3.3.7) we finally obtain
that .
Cpgye 1 ||on h h
MG < ( ) — = 3.3.11
| N,h logN Nk wn || o H’(Z}Hoo ”wNHéq 3 ( )

for a constant C' = C'(h, B, w) > C, which establishes (3.0.9).
Let us now prove (3.0.10). By choosing ¢ := 6§ := Nl g, =1andw(z) = el we
deduce from (3.0.9) that

- C 5 C L oon 1
E[(Zns)"| < (logp]i]]> “Nwnllya = <logi]3>2 NT - ol - (3.3.12)
q

Since w(z) = e~1*l is decreasing in the radial direction we have

h h
1 W (1 1 [ gl \i o (1 J } ;
_ < | = _ VN d — [ — qlz| d
N4 lronle (N " NJRQ ‘ x) (N - R2 ‘ x)

1 27\ (3.3.13)

We choose ¢ = g := alog N with a = a(h, B, w) € (0, 1) small enough such that lggpj‘\][ < % (and
therefore (3.3.8) is satisfied). For this choice of ¢ we have by (3.3.13) that

1 )
— lwnlj < O(10eM=) < o (3.3.14)

q

Furthermore, again with ¢ = gy = alog N and thus p = py = 1 + o(1), since % + % =1, we get

Cpq % h _h 5
(logN) No <272 exp (3) <0, (3.3.15)

since lggp ﬁ, < % We note that the parameter a = a(h, B ,w) on the right-hand side of (3.3.15)

depends non-trivially on &, and therefore the true order of the bound in (3.3.15) is not exponential
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in h. Finally, by (3.3.12), (3.3.14) and (3.3.15), we obtain that

sup E[(ZNﬁN)h] <.
NeN

Proof of Theorem 3.0.1. By binomial expansion, for h € N we have that
"I o 5 hoh _
e[28] = Y (el < 3 (7).
k=0 k=0
Therefore, by estimate (3.0.10) of Theorem 3.0.4, for every h > 3 we obtain that

sup E[(ZWV)] < oo.
NeN

Hence, for every h > 0 the sequence {(Z]@N )h}N ) is uniformly integrable and therefore, by
=

Theorem A for every h > 0,

h(h—1)
: BNyAT _ 127\ _ h(h=1) 2 _ 1 :
A}linooE[(ZNN) ] = E[exp (QB hX— 305 h)] = exp (T QB) = (1 - BZ>
As can be seen in [CSZ20], section 3, (3.0.7) implies that for all A > 0,
sup E[(Z]@N)*h] < 0,
NeN
which in combination with Theorem A implies the convergence of negative moments. U

Proof of Theorem 3.0.3. We note that if we choose the law of the environment w to be Gaussian,
ie. w ~ N(0,1), then for h € N

ez = e (3 3 L4)]

1<i<j<h

= E®h[exp (15;7\7 (1+0(1)) Z L%ﬂ’))] '

1<i<j<h

Therefore, by Theorem 3.0.1 we have that

h(h—1)

®h 527” (i.0)\ | N—w 1 2
E [exp(logN 3oL )} (132) , (3.3.16)

1<i<j<h

for all 5 € [0,1). The right-hand side of (3.3.16) is equal to My (3?), where My () := E[e"]

denotes the moment generating function of a random variable Y with law F(h(h2_1) , 1). By exer-

cise 9, chapter 4 in [K97], (3.3.16) implies the convergence of @ 21 <i<j<h L%’j ) in law, to a
T (=1 1) distribution. O

Proof of Theorem 3.0.5. We are going to show that for all h € N with h > 3 we have that

sup (log N)2 [MEY| < o0 (3.3.17)
NeN ’

In that case we obtain uniform integrability of (log V)3 (Zn gy (0 w))h for all h € N and the
convergence of moments in Theorem 3.0.5 follows by Theorem B. But, (3.3.17) is an immediate
consequence of (3.0.9) of Theorem 3.0.4. Indeed, let us fix p, ¢ € (1, 00) such that % + é = 1. By
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(3.0.9) of Theorem 3.0.4 we have that
h

h h h
2 lwnllea 1PN llo -
/4

(log N) |Mﬁ1,f

a1
2

PN
Nt {lwy

< (Cpq) o

¢
Furthermore, by Riemann approximation we have that
" 1

h h
lonllea [¥nllo = —=
Y24 p

1

Nh

PN

oN
Nllep Na

Therefore, by (3.3.18) and (3.3.19) we obtain that

sup (log N) 2 |[MEY| < o0,
NeN ’

which concludes the proof.
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CHAPTER 4

A multivariate extension of the Erdos-Taylor theorem

Let S, ..., S be independent, simple, symmetric random walks on Z?2 starting at the
origin. As in previous chapters, we will use P, and E, to denote the probability and expectation
with respect to the law of the simple random walk when starting from = € Z2 and we will omit
the subscripts when the walk starts from 0. For 1 < 7 < j < h we define the collision local time
between S and SU) up to time N by

N

Notice that given 1 < ¢ < j < h, Lg\if’j ) has the same law as the number of returns to zero,
before time 2N, for a single simple, symmetric random walk S on Z?2, that is L%’j ) vy N
2711\;1 1¢s,,—0y- This equality is a consequence of the independence of S (@), () and the symmetry

of the simple random walk. A first moment calculation shows that

Al N—w log N
RN = E[LN] = Z P(Sgn = 0) x . 5 (4-0-1)
n=1

see Section 4.1 for more details. We recall from chapter 3, the classical result of Erdos and Tay-
lor, [ET60], which establishes that under normalisation (4.0.1), L satisfies the following limit

theorem.

Theorem A ([ET60]). Let Ly := 25:1 L(s,,-0} be the local time at zero, up to time 2NV, of a
two-dimensional, simple, symmetric random walk (S, ),,>1 starting at 0. Then, as N — oo,

m (d)
Ly —Y
logN ’

where Y has an exponential distribution with parameter 1.

Theorem A was recently generalised in [LZ21+], see Chapter 3. In particular,

Theorem B ([LZ21+]). Let h € Nwith & = 2and SU), ..., S® be h independent two-dimensional,
simple random walks starting all at zero. Then, for all § € (0, 1), it holds that the total collision
time ), L3 satisfies

I<i<j<h =N

h(h—1)
2

E®h B%ZKiqshL%J) N L ,
N—© 1*B

and, consequently,

™ (i,5) (@) h(h—1)
L r 1
logN1<;j<h N Now %=1,
h(h—1) h(h=1) 1
where I'(“"—, 1) denotes a Gamma variable, with density I'(h(h—1)/2) 'z~ 2 e %, T'(:),
in the expression of the density, denotes the Gamma function.

Given the fact that a gamma distribution I'(k, 1), with parameter k£ > 1, arises as the distribu-
tion of the sum of k independent random variables each one distributed according to an exponen-

tial random variable with parameter one (denoted as Exp(1)), Theorem B raises the question as to
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whether the joint distribution of the individual rescaled collision times

{logN L%’j)}1<i<j<h

converges to that of a family of independent Exp(1) random variables. This is what we prove in
this chapter. In particular,

Theorem 4.0.1. Let hh € Nwith h > 2 and B := {Bij}1<icjen € R 2 with Bi; < 1 for all
1 <t < j < h. Then we have that

E®h {elogzv Yici<j<h 51%]'*])] SN ! (4.0.2)
N—oo 1<i<j<h 1— 51'7]'

and, consequently,

(4,4) (d) (4,5)
{10;\1 Ly }1<i<j<h N Y }1<i<j<h’
where {Y(i’j ) }1 <icj<n 4T€ independent and identically distributed random variables following an

Exp(1) distribution.

We remark that the additional difficulty in proving theorem 4.0.1 stems form the fact that we
need an exact computation of the joint Laplace transform of the collision local times as opposed to
Theorem B which was derived through moment bounds and a distributional convergence result on
the directed polymer partition function, see Chapter 3 for more details.

The approach we follow towards proving asymptotic independence of the family

{ U (m‘)}
log N "N fycici<h
starts with expanding the joint Laplace transform in the form of chaos series, which take the form
of Feynman-type diagrams. To control (and simplify) these diagrams, we start by inputing a re-
newal representation as well as a functional analytic framework. The renewal theoretic framework
was originally introduced in [CSZ19a] in the context of scaling limits of random polymers (we will
come back to the connection with polymers later on) and it captures the stream of collisions within
a single pair of walks. The functional analytic framework can be traced back to works on spec-
tral theory of delta-Bose gases [DFT94, DR04] and was also recently used in works on random
polymers [GQT21, CSZ21+, LZ21+]. The core of this framework is to establish operator norm
bounds for the total Green’s functions of a set of planar random walks conditioned on a subset of
them starting at the same location and on another subset of them ending up at the same location.
Roughly speaking, the significance of these operator estimates is to control the redistribution of
collisions when walks switch pairs. The operator framework (together with the renewal one) al-
lows to reduce the number of Feynman-type diagrams that need to be considered. For the reduced
Feynman diagrams one, then, needs to look into the logarithmic structure, which induces the sep-
aration of scales and leads to the fact that, asymptotically, the structure of the Feynman diagrams
becomes that of the product of Feynman diagrams corresponding to Laplace transforms of single
pairs of random walks.

The structure of this chapter is as follows: In Section 4.1 we set the framework of the chaos
expansion, its graphical representations in terms of Feynman-type diagrams, as well as the renewal
and functional analytic frameworks. In Section 4.2 we carry out the approximation steps, which

lead to our theorem. At the beginning of Section 4.2 we also provide an outline of the scheme.
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4.1. Chaos expansions and auxiliary results

In this section we will introduce the framework, within which we work, and which consists of
setting chaos expansions for the joint Laplace transform

)

B85 5 1 (3,5)
ME, = E@h{e&siqshlogz& N’ ] (4.1.1)

for a fixed collection of numbers 8 := {f; j}1<i<j<h € R™5™ with Bij € (0,1)forall 1 <
< h. We denote by

8= 1<rln3]X<hB” <1, 4.1.2)
and define 5
o =W (Biy) =PV — 1 with V= bgﬁ. (4.1.3)

We will use the notation ¢, () := P(S,, = z) for the transition probability of the simple, symmet-
ric random walk. The expected collision local time between two independent simple, symmetric
random walks will be

N N
Ry =B Y 10 _go| = D) @a(0) (4.1.4)
n=1 " " n=1
and by Proposition 3.2 in [CSZ19a] we have that in the two-dimensional setting
log N
Ry =28 + +o(1), (4.1.5)

as N — oo, with @ = v+ log 16 — 7w ~ 0.208 and vy ~ 0.577 is the Euler constant.

4.1.1. Chaos expansion for two-body collisions and renewal framework. We start with the
Laplace transform of the simple case of two-body collisions E[eﬁN Ly J)] and deduce its chaos

expansion as follows:

i (i i3 N ) )
E[eﬁﬁj Lg\lfj)] = E[eBN Zin=1 Leez? H{SSLZ)—I}B{SQ)—I}]

AL

1<n<N
xeZ?
(4.1.6)
= 1 + Z Z |:1_[ ]l nga a} {S(J2=$a}:|
k=1 1<ni<---<np<N a=1

Z1,...,LEZ2

k
=1+ Z (o))" Z H @ —no (Ta — Ta-1)

k>1 1$n1<---<nk§N, a=1
xl,...7xk622

where in the last equality we used the Markov property, in the third we expanded the product and
in the second we used the simple fact that

BN 1 () _g) BN 1) _g) |4
e N s =S =at = 1 4 (e N sy =5y =2y 1) =1+ (eﬂN — 1)]1{57(5):&(3):%}
=1+oy Ligo_g0)_pp
with o/ J defined in (4.1.3). We will express (4.1.6) in terms of the following quantity UN(n x),
_nB_
which plays an important role in our formulation. For 5 > 0, oy := on(5) := els¥ — 1 and
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(n,z) € N x Z2, we define

Uﬁ,(n, x):=o0onN q?l(x)

k
- Z Ui;rl Z qgl (Zl){ H qij*”jf1 (Zj - Zj—l)} qunk (l' - Zk). (4'1'7)
j=2

k=1 O<ni<--<np<n
21,225, 2,EZ2

and Uﬁ(n, x) 1= 1,_q}, if n = 0. Moreover, for n € N we define
Upn(n) =Y Ug(n,z).
zeZ2

U f,(n, x) represents the Laplace transform of the two-body collisions, scaled by 3, between a pair
of random walks that are constrained to end at the spacetime point (n,x) € {1,...,N} x Z2,
starting from (0, 0). In particular, for any 1 < i < j < h, we can write (4.1.6) as

N N
iy (09) iy -
E[e N Ln? ] = Z Z U}%’J(n,x) = Z U]’%’J(n).
n=0 geZ2 n=0
8
We will call U ﬁ,(n,m) a replica and for on(8) = eleN — 1 we will graphically represent
on(B) Uy (n, ) as
JN(,B)Uﬁ(b—a,y—x)E [ WV VNV

kZLnL=" =k (a,2) (n1,21) (n2,22) (e, ) (b, y)

In the second line we have assigned weights ¢,»_, (2’ — z) to the solid lines going from (n, z) to
(n',2’) and we have assigned the weight oy () = BN — 1 to every solid dot.

U f, (n)and U ﬁ, (n, x) admit a very useful probabilistic interpretation in terms of certain renewal
processes. More specifically, consider the family of i.i.d. random variables (TZ-(N), XZ-(N))Z;l with

law

2
P X)) = 00.0) = By

and Ry defined in (4.1.4). Define the random variables T]iN) = Tl(N) + -+ T,im, S,(CN) =
XM XM if k> 1, and (19, So) := (0,0), if k = 0. It is not difficult to see that Uy (n, z)
and U f,(n) can, now, be written as

Ujl\gf(nvl') = Z(UNRN)ICP(TIE,N) =n, S](CN) = x) and Uf[(n) = Z(JNRN)kP(TIiN) = n)

k=0 k=0
(4.1.8)
This formalism was developed in [CSZ19a] and is very useful in obtaining sharp asymptotic es-
(N) (M)
timates. In particular, it was shown in [CSZ19a] that the rescaled process (%, %)
(V)
converges in distribution for N — oo with the law of the marginal limiting process for Tls%\?m

being the Dickman subordinator, which was defined in [CSZ19a] as a truncated, zero-stable Lévy

process.
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An estimate that follows easily from this framework, which is useful for our purposes here, is
the following: for 5 < 1, it holds

N
lim sup Z Uﬁ,(n) = lim sup Z (O’NRN)k P(T]i,N) < N)

N—cowo 5 N—o >0

< limsup ) (onRy)" (4.1.9)
N— k>0

1
= limsu = ,
Naoop l—oyRy 1-p

where we used the fact that

UNRNZ(Q%—l)-(

log N +9+o(1)) . B<l (4.1.10)
™ s N—0
4.1.2. Chaos expansion for many-body collisions. We now move to the expansion of the Laplace
transform of the many-body collisions M ][\3, n- The goal is to obtain an expansion in the form of
products of certain Markovian operators. The desired expression will be presented in (4.1.17).
This expansion will be instrumental in obtaining some important estimates in Section 4.1.3.
The first steps are similar as in the expansion for the two-body collisions, above. In particular,

we have

E®h |:621<i<j<h BN L%J)}

:E[ 1_[ H <1+U§\’[j ]l{Sy(Li)—:B}]l{Sy(Lj)—x}>}

1<i<j<h 1<n<N
xeZ?

k
=1+ ), 2 B Hlajw 60y L5 =2
a=

k=1 (iq,ja,na,Ta)EAR, for a=1,... .k
distinct

4.1.11)

where the last sum is over k distinct elements of the set
Ap = {(i,4,n,2) eN*> x Z*: 1 <i < j <h}.

The graphical representation of expansion (4.1.11) is depicted in Figure 4.1.1. There, we have
marked with black dots the space-time points (n,x) where some of the walks collide and have
assigned to such each one the weight [ [, ; ., 0%1{S$f)=553)=x}'

We now want to write the above expansion as a convolution of Markovian operators, following
the Markov property of the simple random walks. We can partition the time interval {0, 1, ..., N}
according to the times when collisions take place; these are depicted in Figure 4.1.1 by vertical
lines. In between two successive times m, n, the walks will move from their locations (CU(i) )i=1’.__7 h
at time m to their new locations (y(i))izl,m,h at time n (some of which might coincide) according
to their transition probabilities, giving a total weight to this transition of 1_[?:1 Gn—m (y(i) — :c(i)).
We, now, want to encode in this product the coincidences that may take place within the sets
(x(i))i:h“,h and (y(i))l-:l,wh. To this end, we consider partitions I of the set of indices {1, ..., h},
which we denote by I + {1,...,h}. We also denote by |I| the number of parts of I. Given a
partition I - {1,..., h}, we define an equivalence relation Lin {1,...,h} such that k L ¢if and
only if k£ and £ belong to the same part of partition I. Given a vector y = (y1,...,y5) € (Z*)"
and I + {1,...,h}, we shall use the notation y ~ I to mean that y, = y, for all pairs k Ly
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FIGURE 4.1.1. This is a graphical representation of expansion (4.1.11) corre-
sponding to the collisions of four random walks, each starting from the origin.
Each solid line will be marked with the label of the walk that it corresponds to
throughout the diagram. The solid dots, which mark a collision among a subset A
of the random walks, is given a weight [ [, jeA o/ . Any solid line between points
(m,x),(n,y) is assigned the weight of the simple random walk transition kernel
Gm-n(y — x). The hollow dots are assigned weight 1 and they mark the places
where we simply apply the Chapman-Kolmogorov formula.

We use the symbol o to denote the one-part partition”, that is, o := {1, ..., h}, and * to denote the
partition consisting only of singletons, that is = := |_|?:1{z} Moreover, given I - {1,...,h} such
that [I| = h —1and I = {i,j} u | |, ;{k}, by slightly abusing notation, we may identify and
denote I by its non-trivial part {7, j}.

Given this formalism, we denote the total transition weight of the h walks, from points * =
(M, ..., 2(M) e (Z*)", subject to constraints = ~ I at time m, to points y = (y1),...,y") e
(Z%)", subject to constraints y ~ J at time n, by

Qn m(:l) y = IL{:z:~I} HQn m i -T(i))]l{yNJ}- 4.1.12)

We will call this operator the constrained evolution. Furthermore, for a partition I - {1,...,h}
and B = {B; j}1<i<j<n We define the mixed collision weight subject to I as
on(I) = on(I, {Bijh<icjen) = [ oW, (4.1.13)

1<i<j<h,

LT
1~]

with aj\’,j as defined in (4.1.3). We can then rewrite (4.1.11) in the form

14> > J]onm) > HQ7 Ul (@) (4.1.14)

r=10:=Ip,I1,...Iy i=1 l<ni<--<n.<N i=1
0:=x0,21,...,2r€(Z%)"

We want to make one more simplification in this representation, which, however, contains an
important structural feature. This is to group together consecutive constrained evolution operators
UN(Ii)fo[f;lIiil(wi—l, a;) for which I;_y = I;,. An example in Figure 4.1.1 is the sequence of
evolutions in the first three strips and another one is the group of evolutions in strips five and six.

*the notation o, with which we denote the one-part partition, here, should not be confused with the o that appears
in the figures, where it just marks places where we apply the Chapman-Kolmogorov.
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FIGURE 4.1.2. This is the simplified version of Figure’s 4.1.1 graphical repre-
sentation of the expansion (4.1.14), where we have grouped together the blocks
of consecutive collisions between the same pair of random walks. These are now
represented by the wiggle lines (replicas) and we call the evolution in strips that
contain only one replica as replica evolution (although strip seven is the beginning
of another wiggle line, we have not represented it as such since we have not com-
pleted the picture beyond that point). The wiggle lines (replicas) between points
(n, ), (m,y), corresponding to collisions of a single pair of walks S*), S are

assigned weight Uﬁ,’“’e (m —n,y — x). A solid line between points (m, x), (n, y)
is assigned the weight of the simple random walk transition kernel ¢, (y — ).

Such groupings can be captured by the following definition: For a partition I - {1,...,h} of the
form I = {k, 0} u|]; ., {j} and & = (M, 2y, y = (yO, .. yP)) e (Z2)", we define
the replica evolution as

UL(2,y) = Ligyury - Un(nyy ) [T any® — @), (4.1.15)
i#k,0
with U ﬁ (n,y®) —2(*¥)) defined in (4.1.7). We name this replica evolution since in the time interval
[0,n] we see a stream of collisions between only two of the random walks. The simplified version
of expansion (4.1.14) (and Figure 4.1.1) is presented in Figure 4.1.2.
In order to re-express (4.1.14) with the reduction of the replica evolution (4.1.15), we need to
introduce one more formalism, which is

> @, 2)- Uy (z,y), if[J]=h—1,
Pl (,y) = 4 T (4.1.16)
Q?i;‘](may)a lf|J| <h_17

where we recall that |.J| is the number of parts of J and so |J| = h — 1 means that J has the form
{k, 0} | Uik e{i}, corresponding to a pairwise collision, while |.J| < h — 1 means that there are
multiple collisions (the latter would correspond to the end of the eighth strip in Figure 4.1.1). In
other words, the operator pl/ groups together the replica evolutions with its preceding constrained
evolution.
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We, finally, arrive to the desired expression for the Laplace transform of the many-body colli-
sions:

0 T
MR, =1+ > Jlon) > HPnj_ln’L (i), (4.117)

r=1o:=Io,11,....Ir =1 Isni<--<n.<N, =1
0:=xg,x1,...,xr(Z2)"

4.1.3. Functional analytic framework and some auxiliary estimates. Let us start with some,

fairly easy, bounds on operators (Q and U (with the estimate on the latter being an upgrade of
estimate (4.1.9)).

Lemma 4.1.1. Let the operators Q,I{J, U be defined in (4.1.12) and (4.1.15), respectively. For all
partitions I # J with |J| = h—1, B < 1 defined in (4.1.2) and o (1) defined in (4.1.13), we have
the bounds

Z U/ (z,y) < L and on(J) - ( Z Q{j%m,y)) < B/,

1-p57
0<n< N, ye(Z2)h 1<n<N,ye(Z2)h
(4.1.18)
for all large enough N and a B’ € (3,1).
Proof. We start by proving the first bound in (4.1.18). By definition (4.1.15) we have that
B
Z Ui(iE, y) = Z ]l{w,y~J} ’ UNk’Z( H q (]) - .1‘ )
n=0,ye(Z2)h n>=0,ye(Z2)h Jj#k,L
= Y Up(n)
n=0

by using that s ¢, (2) = 1 to sum all the kernels g, (y) — 2\)) for j # k, ¢ and
D UN(n,2) = Ug(n).
26272
Moreover, by definition (4.1.7) and (4.1.3), since 3 ¢ < B, we have
2L UN ) < X, UR(n) = Y (on(DRN) P(r = n).
n=0 n=0 k=0
and by (4.1.10) we have that for any 3’ € ($,1) and all N large enough

DU () < Y (B P = ><2<5/>k:1_15,.

n=0 k=0 k=0

Therefore,

Y, Uiy <(a-8"""

nz>0,ye(Z2)h
For the second bound in (4.1.18) we recall from (4.1.12) that when J = {k, ¢} 1| |; ;. ,{j}. then

Q@)= (Lo [T a0 ~2)) s = a0, — 210),

kL

since y ~ J means that y;, = y,. Therefore, on(J) = on(B;;) < on(B). We, now, use that
> ez2Gn(2) = 1 in order to sum the kernels g,(y") — z)), j # k, ¢, while we also have by
Cauchy-Schwarz that

w0 (N ¥ —a®)a6® ) <on®)- (X wnl0) <5

1<n<N, yeZ2



by (4.1.10), for all N large enough, thus establishing the second bound in (4.1.18). O

Next, in Proposition 4.1.2, we are going to recall some norm estimates from [LZ21+], pre-
sented also in detail in Chapter 3, on the Laplace transform of operators Pl defined (4.1.16).
For this, we need to set up the functional analytic framework. We start by defining (ZQ)’]I ={ye
(Z2)h . y ~ I} and, for g € (1,0), the £9((Z2)") space of functions f : (Z%)" — R which have
finite norm

||f”zq((z2);1) 12( 2 ’f(y)‘q> :
ye(

Z)h
For ¢ € (1, 00) and for an integral operator T : £4(( 2)@) — (1((Z* ) one can define the pairing
(f,Tgy = >, @ T(@v)(y). (4.1.19)
we(Z2)h ye(z2)h

The operator norm will be given by

I Tllparspa := sup || Tglle = sup {f,Tgy, (4.1.20)

I
<1 <1, <1
Il 11l < lglg

for p, ¢ € (1,0) conjugate exponents, i.e. % + é =1.

We introduce the weighted Laplace transforms of operators Q!*/ and U”. In particular, let
w(z) be any continuous function in L®(R?) n L'(R?) such that log w(x) is Lipschitz (one can
think of w(z) = e~ 1) and define wy (z) := w(z/v/N). Also, for a function g: R?> — R we
define the tensor product g®" (1, ..., 2,) = g(z1) - - - g(x1), The weighted Laplace transforms are
now defined as

QR (.y) = (26 Qi) H

n=1 (y)

o) (4.1.21)
U’ £r e N J T N v .
Uz, y) (;0 U;( y)> o (o)

The passage to a Laplace transform will help to estimate convolutions involving Q{{J(w, y) and
UJ(z, y) and the introduction of the weight comes handy in improving integrability when these
operators are applied to functions which are not in £!((Z2)"). We will see this in Lemma 4.1.3

below. We also define the Laplace transform operator of the combined evolution (4.1.16):
BIJ _ QNw if|[J|<h-—1

W= . . (4.1.22)
QN)\UN>\7 lf|J|:h—1

For our purposes, it will be sufficient to take A = 0 and consider operators Qf\f{), U ;{,70 and Isfv‘{)

Using the above formalism we summarise in the next proposition some key estimates of
[LZ21+], which are refinements of estimates in [CSZ21+] (Section 6) and [DFT94] (Section 3).
These are also presented in detail in Chapter 3, Section 3.2.

Proposition 4.1.2. Consider the operators (55\}:]0 and FA’g\’,"]O defined in (4.1.21) and (4.1.22) with
A\ = 0 and a weight function w € L®(R?) n L'(R?) such that log w(x) is Lipschitz. Then there
exists a constant C = C(h, 3, w) € (0,00) (recall § from (4.1.2)) such that for all p,q € (1,0)
with % + % = 1 and all partitions 1,J + {1,...,h}, such that I # J and |I|,|J| < h — 1, we

95



have that

Pt <Cpg. 4.1.23
H N0\ g pq pq ( )
Moreover, if g € (1(Z?),
1
HQ*NIog@H@ <CqNa gl , (4.1.24)

for ¢®"M(xq, ...,xp) = g(x1) -~ glan).

Let us now present the following lemma, which demonstrates how the above functional ana-
lytic framework will be used. This lemma will be useful in the first approximation, that we will
perform in the next Section, in showing that contributions from multiple, i.e. three or more, colli-

sions are negligible.

Lemma 4.1.3. Let H, y be the " term in the expansion (4.1.17), that is,

T
Hon= > J]on) > ]_[Pn;_l,;zlxi,l,mi), (4.1.25)

o:=Io,I1,....I, i=1 I<ni<--<n,<N, 1i=1
0:=xg,21,...,2r€(Z?)"

and H T(";\;”t') be the corresponding term with the additional constraint that there is at least one

multiple collision (i.e. at some point, three or more walks meet), that is,

T
Iti
Hﬁnf\;‘ V= > (HUN(Ii)> L31<j<r: |1;|<h—1}
oi=Io 1, Ir \i=1
X Z Hpnz_lﬁl 1 mi,1,$i).

I<ni<-—<n,<N =1
0:=xg,x1,...,x-€(Z2)"

Then the following bounds hold:

Cpg\r, htl (multi) r (Cpg\r  ni
Hyn < ( ) N da  HM < —( ) N
N log N an nN log N \log N

(4.1.26)

forany p,q € (1,0) with 112 + % = 1 and a constant C that depends on h and (3 but is independent
of N,7,p,q.

Proof. We start by considering w(z) = e~ |*l, wy () := w(\/“’”—ﬁ) and

w]%h(xl,...,xh) = U)N<l'i)

~.
Il >
—

and by including in the expression (4.1.25) the term

1 T w® (xiq)
e L i o @ =1

thus rewriting H,. y as

Hy N = Z ﬁUN(Iz)

o:=lo,I1,....Ir i=1

®h
i—13 w Ti—-1
x Z Hpnrlnl Nz h%’)% w%h(acr).
1<ni<<n,<N wN wy'(x;)
0:=xg,1,..., zr(Z2)"
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We can extend the summation on xq from 2o = 0 to &g € Z? by introducing a delta function (58%

at zero. Then

Ho= Y f[owz)

s:=1o,I1,....[r 1=1
®h
CL'() 151, wN (mifl) Xh
C N BRI e T e,
I<ni<--<n,<N wN 330 =1 w (wl)
®0,21,..., ¢r(Z%)h

We can, now, bound the last expression by extending the temporal range of summations from
I<ni<---<n,<Nton; —n;—1 €{1,...,N} forall i = 1,...,r. Recalling the definition of
the Laplace transforms of the operators (4.1.21), (4.1.22), we, thus, obtain the upper bound

s 6(?}1(:1:0) s i—1;1; ®h
H, N < Z HUN(Ii> Z % PNo (i1, @;) - wy" (@)
i=1

si=I0, 11,0, I i=1 @o,@1,. re(22)h N

77777

which we can write in the more compact and useful notation, using the brackets (4.1.19), as

Z < ®h’Q*hPIl]2“ plr- 1,[r ®h>HUN

We note, here, that in the right-hand side we set the I partition to be equal to [y = {1} Li--- L {h}.
The delta function 5((?}’(930) will force all points of xq to coincide at zero, thus, forcing Iy to be
equal to the partition o = {1, ..., h} but, at the stage of operators, we do not yet need to enforce
this constraint. At this stage we can proceed with the estimate using the operator norms (4.1.20) as

.
Hoy< Y |Quh ]_[ HP’ 3 . w%hHEq JTov). 4.1.27)
In,..Ir o - i=1
By (4.1.24) of Proposition 4.1.2 we have that
5" 1 6 || 1
Q*I1 @h ngN‘l’ HO :CqN‘ll,
7 w wN
and by (4.1.23) we have that forall 1 <7 <r — 1,
i— 17
HP e S Cra.

Inserting these estimates in (4.1.27) we deduce that

1)
w;H fotly 3, [Tow()

I i=1

H,x < (Cpq)'N

(4.1.28)
— (Cpq)" N7 [lwyll%, > ch

for a constant C = C'(h, ) € (0, ), not depending on p, ¢,r, N. We now notice that for any
partition I  {1,..., h}, it holds that on(I) < C/log N (recall definitions (4.1.13) and (4.1.3))
and that, by Riemann summation, N~/ ||lwy ||Zq is bounded uniformly in N. Therefore, applying
these on (4.1.28) we arrive at the bound

CpQ)TNw

Hyx < (
N log N
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which is the first claimed estimate in (4.1.26). For the second estimate in (4.1.26) we follow the

same steps until we arrive at the bound

T
HﬁTVUIti) <(Cpq)' N7 lwn 17 Z HUN([z')ﬂ{a 1<j<ri|I;| <h—1}-
In,.Ii=1
Then we notice that for a partition I + {1,...,h} with |[I| < h — 1 it will hold that on(]) <
C(log N )_2 (recall definitions (4.1.13) and (4.1.3)). This fact, together with the fact that there are
7 possible choices among the partitions I1, ..., I, that can be chosen so that |1 j] < h —1, leads to
the second bound in (4.1.26). Il

4.2. Approximation steps and proof of the main theorem

In this section we prove Theorem 4.0.1 through a series of approximations on the chaos ex-
pansion (4.1.11), (4.1.17). The first step, in Section 4.2.1, is to establish that the series in the chaos
expansion (4.1.17) can be truncated up to a finite order and that the main contribution comes from
diagrams where, at any fixed time, we only have at most two walks colliding. The second step,
Section 4.2.2, is to show that the main contribution to the expansion and to diagrams like in Fig-
ure 4.2.1, comes when all jumps between marked dots (see Figure 4.2.1) happen within diffusive
scale. The third step, in Section 4.2.3, captures the important feature of scale separation. This is
intrinsic to the two-dimensionality and can be seen as the main feature that leads to the asymptotic
independence of the collision times. With reference to Figure 4.2.1, this says that the time between
two consecutive replicas, say a4 — bs in Figure 4.2.1 must be much larger than the time between
the previous replicas, say bs — by. This would then lead to the next step in Section 4.2.4, see also
Figure 4.2.2, which is that we can rewire the links so that the solid lines connect only replicas be-
tween the same pairs of walks. The final step, which is performed in Section 4.2.5 is to reverse all
the above approximations within the rewired diagrams, to which we arrived in the previous step.
The summation, then, of all rewired diagrams leads, in the limit, to the right hand of (4.0.2), thus

completing the proof of the theorem.

4.2.1. Reduction to 2-body collisions and finite order chaoses. In this step, we use the func-
tional analytic framework and estimates of the previous section to show that for each r > 1, H, y
decays exponentially in 7, uniformly in N € N and that it is concentrated on configurations which
contain only two-body collisions between the h random walks.

Proposition 4.2.1. There exist constants a € (0,1) and C = C(h, 3,a) € (0, 0) and such that for
allr > 1,

_ i C
H,y<Ca d  H™YW < = o 42.1

New PNSVE. @ rNCS g 4.2.1)
Proof. We use the estimates in (4.1.26) and make the choice ¢ = gy := Cil log N with a € (0,1)
and a constant C'; such that Cra. 5 (recall that % + % = 1). Moreover, this choice of ¢ implies

log N
that

h+1 h+1 log N Cq (h+1)
q = e a

N« =e
. = Oy (ht1) | . . .
Therefore, choosing C = e~ a2 implies the first estimate in (4.2.1).

The second estimate follows from the same procedure and the same choice of ¢ = gn :=
Cil log N in the second bound of (4.1.26). O
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Proposition 4.2.2. If M f\'}, i, 18 the joint Laplace transform of the collision local times

{ s (7’7.])}
log N "N f1cici<h’

as defined in (4.1.1) and H, y is the r* term in its chaos expansion (4.1.25), then for any € > 0
there exists K = K. such that
K
‘Mff,h — Z Hr,N’ <eg,
r=0
uniformly for all N € N.

Proof. By Proposition, 4.2.1, H,. y decay exponentially in 7, uniformly in N € N and therefore

lim sup (sup Z H,,,N> =0,

K—w N=1 r>K

which means that we can truncate the expansion of M ]?, 5, to a finite number of terms K depending
only on €. U

By Proposition 4.2.1 we can focus on only two-body collisions, since higher order collisions
bear a negligible contribution as N — co. Let us introduce some notation to conveniently describe
the expansion of H, y, after the reduction to only two-body collisions, which we will use in the
sequel. Given r > 1 we will denote by a;,b; € N U {0}, a; < b;, ¢ = 1,...,r the times where
replicas start and end respectively, see (4.1.15) and Figure 4.1.2, where replicas are represented by
wiggle lines. Thus, a; will be the time marking the beginning of the i** wiggle line and b; the time
marking its end. Note that, a; = 0. Moreover, we use the notation & = (x1, xa, ..., x,) € (Z2)"
to denote the starting points of the r replicas and § = (yy,...,y,) € (Z%)"" the corresponding
ending points. Again, notice that 1 = 0. We then define the set

Con = {(6,5,5:@)‘0:: ap <by<ag<---<a.<b. <N, & ge (Z>)" ,xz,=0}.

4.2.2)
We also define a set of finite sequences of partitions
0
7(2) — U {(Il,...,lr) L # L and|Ij| =h—-1,Vje {1,...,7‘}}.
r=0

Using the notational conventions outlined above we can write H, y = H ;2]3, +H r(";\,“m) with

T
HY = ) >ooupr oy [JeEE iy x)Up (i y)on (L),
(Ity-sdr) €I?) (G 5.2,5) € Cp iy =2
(4.2.3)
(2)

In the next sections will focus on H "5;, which by Proposition 4.2.1 contains the main contributions.

4.2.2. Diffusive spatial truncation. In this step we show that we can introduce diffusive spatial
truncations in all the kernels appearing in (4.2.3) which originate from the diffusive behaviour of
the simple random walk in Z2. For a vector = (z(1), ..., (") € (Z2)", we shall use the notation
— ()
|2l = max, |27,
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where | - | denotes the usual Euclidean norm on R2. For each 7 € N, define H ﬁd]i\?) to be the sum in
(4.2.3) where C,. y is replaced by

diff =
W = Con 0 {(@5,%,9) gy — il < RvVbi — i
and H:r:Z — yi_lHoo < Ry/a; — b;_q foralll <i < r}

4.2.4)
and similarly we define
(superdiff)
Hr,]l\J/,R
- Z Z Ulﬁ 0 y Y1 H Q I 17 yz 1 ml) Uéjfai(mia yl) UN(Ii),
(I1,...,.I,) e I(2) (ﬁ,g,f,ﬂ) CSL;\?e}rslfF)
4.2.5)
where

Ci,s]u\fgd'ff) =C.n N {(6,5,5,@) 31 <i<r:|y;—xil, > RVbi —a;

or H:BZ — yl-_lHoo > R+/a; — b;_1 } .

Note that then we have that
H = H + BT

We have the following Proposition.

Proposition 4.2.3. Forallr > 1,

lim sup H 5™ = 0. (4.2.6)

R—0 NeN
Proof. We use the bounds established in Lemma 4.2.4, below, and (4.1.18) to show (4.2.6). We
can use a union bound for (4.2.5) to obtain that
H(superdiff)

rN,R
= Ul (o Ql v ) Ul (i, y,) on (D)
- bl yl y'L 1y 4 b;—a; ’Layi N\47
(T3 Ir) €IR) (@5 ) e COR™
T
<2 2
J=1(I,...,.I;) e Z(2) 0:=a1 <b1 <az<-<ar<br<N,

0:=21,Yy,...,r,Y,€(Z2)"

(]l{llijjll Ryb=a} T ]l{\|wjyj—1||w>3vajba’1})

X Uh 0,9,) HQ o yz 1, %) Uiﬁ_ai(wi,yi)m\](h).
=2
(4.2.7)
We split the sum on the last three lines of (4.2.7) according to the two indicator functions that
appear therein. By repeated successive application of the bounds from (4.1.18) for j < 7 < r and
then by using (4.2.10), which reads as

> Uy ot
2 P Ny et S

ij(ZZ)h7 a; <b; <N
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we deduce that

2 ]l{\lyrijm>var%}

0:=a1<b; <ag<--<ar<b.<N,
— 2
0:=x1,Yq,,Tr,Y, € (z )h

< UL (0,,) HQ”’ (yi 1.2 Ui, (@i y;) on (1)

< e_”R<1 €/B/>T_J

Jj—
I i 3 17,
X Z Ubi 0 Y1 H Qazflbz 1 yl 1 xz) sz‘*ai (wi’ yi) UN(Ii)

O:=a1<bi<az<--<bj_1<a;<N,
0:=21,Yq,....2; e(z?)h

XQajrl’ (yg 1xj)on (L) .
(4.2.8)

We then continue the summation using the bounds from (4.1.18), to obtain that the right-hand side
of the inequality in (4.2.8) is bounded by

—kR B/ I B/ - _ _—kR B/ -
‘ (1—B’> <1—B’> — ¢ (1—6’) '

Similarly, for the sum involving the second indicator function in (4.2.7) we obtain by using (4.1.18)
and (4.2.9) of Lemma 4.2.4 that

Z 1 Uil (Ovyl)
0:=a<b1 <as<-<ar<b <N, {||zJ_yJ*1||oc>R aj— .7_1} !
0::$17y17"'7$7'7yre(22)h

i—150; i
HQ i yz lvml) Uéi—ai(wivyi) JN(Ii)

< —kR? 1 " (Bl)rfl
<e = .
1-p
Therefore, the right-hand side of the inequality in (4.2.7) is bounded by

R (I (= L B G = g

where the ( ) factor comes from the fact that there are at most ( ) choices for the sequence
(I1,...,I.) € T Thus, recalling (4.2.7) we get that

superai Byr—1 h " —
sup HUPerdm) o —HR<2T ((5)_ <2> > Roo o

NeN L—=p)r

Lemma 4.24. Let I,J +— {1,...,h} such that |I| = |J| = h — 1 and I # J. For large enough
R € (0,00) and uniformly in x € (Z*)" we have that for a constant k = k(h, 3) € (0, ),

on(J) - ( Z QI J(iB Y) {Hw y||oc>R\/7}> _KRQ 4.2.9)

1<n<N, ye(Z2)h
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and

1<n<NZy€(22)h ( y) {Hw—ylloc>R\/ﬁ}

Proof. We start with the proof of (4.2.9). Since |J| = h—1, let us assume without loss of generality
that J = {k, £} u| ;. ,{j}. Inthis case, QL7 (2, y) contains h — 2 random walk jumps with free

endpoints yY), j £ k. 0, that is A _
H gn(y?) — 20Dy

Jj#k
Moreover, J imposes the constraint that y*) = (), which appears in Q,I{J(a:,y) through the

product of transition kernels
an(y® —2®) g, (y™ — ),

recall (4.1.12). The constraint | — y||,, > R+/n implies that there exists 1 < j < h such that
129) — y)| > Ry/n. We distinguish two cases:

(1) There exists j # k, ¢ such that |2(9) — 4U)| > R\/n, or
@) |29 — 49| > Ry/nforj=Fkorj=¢.

In both cases, we can use Y 2 ¢n(2) = 1 to sum the kernels g, (y"9) — z)), j # k, £ to
which we do not impose any super-diffusive constraints. By symmetry and translation invariance
we can upper bound the left-hand side of (4.2.9) by

on(J) - ((h ~-2) D @n(2) Ly { sup Y| Gn(2)an(z + U)}
1<n<N, zeZ2 uezZ? 7o

42.11)
+2sup > gu(2)gn(z +u) - ]1{z|>Rﬁ}> -

uez? 1<n<N, zeZ2
Looking at the first summand in (4.2.11) we have by Cauchy-Schwarz that

sup Y n(2) gn(z + ) < ( > qri(Z))l/2 . sup ( D an(z+ u)>1/2 <qan(0), (42.12)

uez? z€Z2 2€Z2 uez? zeZ

since >, 72 q2(2) = q2n(0). Let us recall the deviation estimate for the simple random walk,
which can be found in [LL10], that is
P( max |Sg| > R\/ﬁ) < e’ 4.2.13)
0<k<n

for a constant ¢ € (0,00) and all R € (0,00). By using bound (4.2.12) and subsequently (4.2.13)
on the first summand of (4.2.11) we get that

Y al?) Mepnya - { Y] ta()aa(z + )}

2
1<n<N, zeZ2 UEZ® 72

< D @2n(0) - gu(2) L= pymy

1<n<N, 2€Z2
—cR?
<e ““ Ryn.
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We recall from (4.1.4) and (4.1.5) that Ry = 25:1 q2n(0) N3 log N therefore,

T 0

on(J)- ((h =2 Y @) Lengm {0 Y] aa(aalz + u>}>
1<n<N, 2622 wez? 72 @214
<(h—2)on(J) Ry e %’ -
<(h—2)B e,
for some 3’ € (3,1). The second summand in the parenthesis in (4.2.11) can be bounded via
Cauchy-Schwarz by

< PEEHOR ]1{z|>Rﬁ}>

1<n<N, zeZ2

2

( > qji(z+u)> : (4.2.15)

1<n<N, zeZ2

D=

For the first term in (4.2.15), using that sup,.z> gn(2) < < we get

~—

qn\? —cR2
Y @@ Lprm < C D, 12 Amrymy < Ce ™ log N (42.16)

1<n<N, zeZ2 1<n<N, zeZ2

For the second term in (4.2.11), we have that for all u € Z2

N N—ow log N
Z (2 +u) = Z qon(0) & .
n=1

T
1<n<N, zeZ2

Thus, by (4.2.15) together with (4.2.16) we conclude that for the second summand in (4.2.11) we
have

c 2
on(J) - (2 sup Z an(2)gn(z +u) - ]1{|Z>R\/g}> <Ce 5

2
uezZ 1<n<N, zeZ2

Therefore, recalling (4.2.14) we deduce that there exists a constant x(h, 3) € (0, 00) such that

on(J)- ( 2 o (@ y)- ]l{z-ynwwﬁ}) <e

1<n< N, ye(Z2)h
We move to the proof of (4.2.10). Similar to the proof of (4.2.9), we can bound the left-hand side
of (4.2.10) by

(h—l) Z Uﬁ(n,w)qn(z)]l{|z‘>3ﬁ} + Z Uﬁ,(n,z)]l{‘sz\/ﬁ} . (4.2.17)

1<n<N, w, z€Z2 1<n<N,zeZ2

For the first summand in (4.2.17), by (4.2.13) we have that

—c 2
2 an(@ s pym < €
zeZ?
and Zl<n<N,wez2 Uzéf(m w) < 1f5,, therefore
5 h—1 _ e
(h=1) > URmw) - qu(2) Lo nymy < . R 4218

1<n< N, w, zeZ2
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For the second summand, we use the renewal representation of U E,( -, +) introduced in (4.1.8). In

particular, we have that

_ N
Y Un(m,2)  Lyspymy = O, (on(B)RN)F D P (]S(N | > Ryn, ") = n) .
n=0

1<n<N,zeZ2 k=0
(4.2.19)

Then, by conditioning on the times (T( ))1<z<k for which 7 (N) Tl(m 4+ 4 T,f;N) we have that

P(ys,;my >Ry, 7V = n)

K (4.2.20)
= X P(ISY] > BY| b (T = ni}) [[P(I = i)
ni+--+ng=n i=1
Note that when we condition on mi-“:l{Ti(N) = n;}, S is a sum of k independent random
variables (£;)1<;<x taking values in Z2, with law
2
I, (%)
P& =x2)=—" .

The proof of Proposition 3.2.4 in Chapter 3 showed that there exists a constant C' € (0, o) such
that for all A > 0
E[eMlem] < 264CN°n (4.2.21)

Therefore, by (4.2.21) with A = \F and Markov’s inequality we obtain that

P<|S,;N>| > R\/ﬁ‘ AR T = ni}) < 2¢1C-F.
Thus, looking back at (4.2.20) we have that for all £ > 0
(’S(N)’ > Ry/n, 7V = n) <247 PV =),

therefore, plugging the last inequality into (4.2.19), we get that

B WOR 3 2¢4CH
D UM 2) Ay pymy <2677 ) Up(n) < _ (4.2.22)

1—p5""
1<n<N,zeZ2 n=1 5

therefore by (4.2.18) and (4.2.22) we have that there exists a constant x(h, 3) € (0,0) such that

—kR
2 Un(z,y) ey, >rym) S ’

1<n< N, ye(Z2)h

for large enough R € (0, o), thus concluding the proof of (4.2.10). 0

4.2.3. Scale separation. In this step we show that given » € N, » > 2, the main contribution to
H ﬁd]'\];r) comes from configurations where a;+1 —b; > M (b; —b;—1) forall 1 < ¢ < r and large M,
as N — o0. Recall from (4.2.4) that

diff i—13 i
HNR = ) > U0 H@a;bz (i) U (@i y)on (L)

(1) €T3 (G5, g)e O

Define the set
e ur = CN O { @ 5.3,8)  aia by > M(bi—biy) forall 1 <i <r—1}, (4223)
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with the convention by := 0 and accordingly define

(main)
HT,N,IR,M
.
I Ii151; I;
= Z Ubi (anl) Qaijbifl(yi—lami)Ubifai(whyi) UN(Il) .
(11,...717«)61(2) (6757£7g)ec(rm13i:11)2y]\/[ =2
(4.2.24)
We then have the following approximation proposition:
Proposition 4.2.5. For all fixed r € N, r = 2 and M € (0, o0),
lim  sup |HN p — HN g = 0. (4.2.25)

N—=0 Re(0,m)

Proof. Fix M > 0. Let us begin by showing (4.2.25) for the simplest case which is r = 2. We

have
(diff) (main)
HZ,N,R - Hz,N,R,M
I I;1 I
< ) > U (0,41) Q% (1, ®2) on (I2)Up2 (2, y5).

(117[2)51(2) 0<bi<ags<N,az2—b1<Mby,
Y1,22,Y2€(Z%)"

We can bound o ([2) by %, for some 3’ € (/3,1) and use (4.1.18) to bound the last replica, i.e.
the sum over (b2, y,), thus getting
H(difF) . H(main)

2,N,R 2,N,R,M
ﬂ_B/ 1— B/ —1 i
< (log ¥ ) > > Upt (0,90)Q, %5, (w1, @2) . (42:20)

(I,I2)e T(® 0<bi<a2<N,az—b1<Mby,
yl’w27y2€(22)h

Notice that at this stage we can sum out the spatial endpoints of the free kernels in (4.2.26) and
bound the coupling strength [, ; of any replica Ulﬁ (0,9q) with Iy = {k, ¢} ||, {4} by f3 to
obtain

H(difF) o H(main)

2.N,R 2,N,R,M
mB'1 -t ;
< lo—N Z Uf](blayl)(](m—bl(x2 *yl)Qa2($2)
g (I1,I2)e T(2) 0<bi<az<N,as—b1<Mbs,
y1,w2€Z2
mB'(1— B~ (h\? g
< T e Z Uﬁ(bl, y1)qa2—b1 ($2 - yl) das (.732) :
g 0<bi<az2<N,a2—b1<Mby,
y1,12€Z2

(4.2.27)

For the last inequality we also have used that the number of possible partitions (11, 2) € Z ) js

bounded by (g) 2. For every fixed value of b; in (4.2.27), we use Cauchy-Schwarz for the sum over
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(az,x2) € (0, (1 4+ M)by] x Z2% in (4.2.27) to obtain that
> Gas—by (T2 = Y1) Gay (22)

b1<as<(14+M)b1, 2622

1
2
2 2
< < Z Ty, (T2 — yl)) ( 2 Qay (552))
0<(J,2S(1-‘r]\4)bl,IQEZ2 bl<(12€(].-‘y-]\4)b1,.TQGZ2

1 1
2
= ( Z QQ(az—bl)(0)> ( Z q2a- (0)>
0<aa<(14+M)by bi<a2<(1+M)by

3
.. . 1/2 N 1/2

We can bound the leftmost parenthesis in the last line of (4.2.28) by Ry~ = ( Dine1 @n (0)) =

O(+/log N). For the other term we have

Yo ew®<e Y L<clogl+ M). (4.2.29)
b1<(l2§(1+M)bl b1<a2<(1+M)b1

1
2

(4.2.28)

Therefore, using (4.2.28) and (4.2.29) along with 3o, < v ez Uﬁ(bl,yl) < (1-p8)"tin
(4.2.27) we obtain that

diff main = — o [log(l1+ M) N
HED g < ongl(1 - )Y | fogN ) N g

Let us show how this argument can be extended to work for general » € N. The key observation

is that for every fresh collision between two random walks, thatis ;41 = {k, ¢} u ||, ,{j},
happening at time 0 < a;+1 < N, we have I; # I;11, therefore one of the two colliding walks
with labels k, £ has to have travelled freely, for time at least a; 1 — b;—1 from its previous collision.
More precisely, every term in the expansion of H, T(d]'\;% —-H T(Tva'}g) s contains forevery 1 < <r—1

a product of the form

Qaz1—b; (Tig1 = Yi) * Qagr—bi 1 (Tig1 — Yiz1),

see Figure 4.2.1. Recall from (4.2.2) and (4.2.24) that we have the expansion

(diff) (main)
HT,N,R - HT,N,R,M

r

I Li—1;1; I;
= Z 2 Ubi (0,97) Qaﬁlbifl (Yi—1, i) Ubifai (@i, y;) on (L),
(I dr) €I (G5 3 ) e 9D cmain) =2

(4.2.30)
where by definition (4.2.23) we have that

AN G {(a, b,&,§) : aip1 — b < M(b—bi1) } (4.2.31)
i=1

The strategy we are going to follow is to start the summation of (4.2.30) from the end until we find
the index 1 < ¢ < r — 1 for which the sum over a;1 is restricted to (b;, b; + M (b; — bj—1)]. in
agreement with (4.2.31), using (4.1.18) to bound the contribution of the sums over b;, a;1 and the
corresponding spatial points for ¢ < j < r — 1. Next, notice that we can bound the contribution
of the sum over a;+1 € (bi, bi + M(b; — bi_l)] and z;41 € Z2, using a change of variables, by a
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{2,3} {1,2} {3,4} {2,3}

N

0:=a; by az b as b3 aq ba

FIGURE 4.2.1. A diagramatic representation of a configuration of collisions be-
tween 4 random walks in H\*), with I; = {2,3}, I, = {1,2}, Is = {3,4} and
= {2, 3}. Wiggly lines represent replica evolution, see (4.1.15).

factor of

C log(1+ M)
log N ( sup Z In(2)qn4t(z + u)) C log N

2
I<t<N,ueZ 1<n<Mt, zeZ2

N

using Cauchy-Schwarz as in (4.2.28) and (4.2.29). The remaining sums over b;,a;_1,1 < j <@
can be bounded again via (4.1.18). Therefore, taking into account that by (4.2.31) there are r — 1
choices for the index ¢ such that the sum over a;1 is restricted to (bi, b; + M (b; — bi_l)], we can

give an upper bound to H, (O}'\ffj)q H ﬁ"]?'g) s as follows:
T 2/
(diff) _ pp(main) h BT\ [log(1 + M) Now
Hr,JI\LR - HTT\?,EM <C(r—1) <2> (1 _ B’) log N 0,
where we also used that the number of distinct sequences (11, ..., I,) € Z() is bounded by (%)".
O
4.2.4. Rewiring. Recall the expansion of H ﬁ"]?'}%) M
(main)
HT,T\?,II;,M
,
= Z Z Uii 0,91 H Qai,lb’l 1 (Yi1, i) Uij,ai (i, y;) on (L) -
(I 1) €@ @5z g)ecly"
(4.2.32)

We also remind the reader that we may identify a partition I = {k, ¢} u [ |, ,{j} with its
non-trivial part {k, ¢}. Moreover, if ({i1,j1},-- , {ir,jr}) € Z2) we will use the notation

p(m) = max{k <m: {Zmajm} = {Zkvjk}}v

with the convention that p(m) = 01if {ix, jx} # {im,Jm} forall 1 <k < m. Given this definition,
the time bp(m) represents the last time walks 4,,, j,, collided before their new collision at time a,,.
Note that since we always have {i, jr} # {ix+1, jrk+1} by construction, p(m) < m — 1.
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Consider a sequence of partitions ({i1,j1}, ..., {im,jm}) € Z® and letm € {2,...,r}. The
goal of this step will be to show that we can make the replacement of kernels

Qam—bm_1 (96‘7(3") - ygﬂ) “Qay —bm 1 (95%"1) - y%ﬁ) — qszbp(m) (x%m) - yff(?i)) .

(4.2.33)
by inducing an error which is negligible when M — co. We iterate this procedure for all partitions
Iy, ..., I.. We call the procedure described above rewiring, see Figures 4.2.1 and 4.2.2. The first
step towards the full rewiring is to show the following lemma which quantifies the error of a single
replacement (4.2.33).

Lemma 4.2.6. Let r > 2 fixed and m € {2,...,r} with I, = {im,Jm}. Then, for every fixed

R € (0,0) and uniformly in (@, b, &,§) € Cg*tT]]\?,i;%),M and all sequences of partitions (I1,...,I,) €
7@,
qam_bmfl (xgllm) - y’ETZLT)l) : qam_bmfl <:C?(%m) - yﬁirj)l) = qg"b_bp(m) (ZL‘?(’sz) - yff(:j)) ’ 601\/1(1) ’
(4.2.34)

where or(1) denotes a quantity such that lim ;o opr(1) = 0.

Proof. We will show that

and by symmetry we will get (4.2.34). To this end, we invoke the local limit theorem for simple
random walks, which we recall from [LL10]. In particular, by Theorem 2.3.11 [LL10], we have
that there exists ¢ > 0 such that for all n > 0 and = € Z? with |z| < gn,

1 et
an(2) = gz (z) - €O<n+ " ) 2.1 b (4.2.36)

{(n2)€Z3,e,

2
e 2t

T denotes the 2-dimensional heat kernel and

where g;(x) =

3
Zeven

= {(n,2) €Zx2Z%: n+x1 +x2 =0 (mod 2)}.

The last constraint in (4.2.36) is a consequence of the periodicity of the simple random walk. Let
us proceed with the proof of Lemma 4.2.6.

First, we derive some inequalities which are going to be useful for the approximations using
the local limit theorem. We claim that

am — b1 > (M = 1) (brn—1 — bp(m)) - (4.2.37)
The proof of the latter is done by a finite recursion. In particular, notice that since the inequality
ag+1 — by, > M (b, — br—1) holds forall 1 < k < r — 1, we have
am — b1 > M (by—1 — bn—2) = M(by—1 — am—1) + M(am—1 — bpm—2) . (4.2.38)
We can then write
M(am—1 —bm—2) = (M —1)(am—1 — bm—2) + (am—1 — by—2)
> (M —1)(am—1 — bm—2) + M (byp—2 — byp—3)
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and repeat the same steps for M (by,,—2 — b;,,—3) as we did in (4.2.38) for M (b;,—1 — bip—2). After
telescoping we get the lower bound in (4.2.37). Moreover, by triangle inequality we have that

o) =yl =) =l | < Jlh =l + 5 = ol i
(4.2.39)

Note that by the diffusivity constraints of C(r?\?';%) s We have that

) | 4 |2l — ylm)| 4l

(Zm

[y 1~ Yo

<R'< Z a1 — b + Z \/bk—ak>.
k=p(m) k=p(m)+1
(4.2.40)

By Cauchy-Schwarz on the right hand side of (4.2.40), (4.2.37) and the fact that m < r, we
furthermore have that

( \ g1 — bg + \ by — ak)
k=p(m) k=p(m)+1
m—2 m—1 1/2
<V2r—1 ( Z (ag+1 —bg) + Z (b — ak)>
k=p(m) k=p(m)+1

<\V2r—1- am_ibm_l‘

Thus, taking into account (4.2.39) we conclude that

3 m m bm—l
o) = oS = o) =y | < R var =1y [2m2met (4.2.41)
Now, we are ready to show approximation (4.2.35). By (4.2.36) we have
qam_bmfl (x%m) - yT(:LM)l)
(im) (im

qam_bp(m) (Qjm -y (m)))

i i (im) (im),2 (im) _ (’Lm) 4 I(Zm) (’bm) 4
_|I£nm)*y§nTi\2 +|Imm P(%)l Ay — b (m) O( 1 + [ Z1 P(m)‘ >
=e am—bpy, 1 am_bp(m) . <p > .e am—=bm_1 (am bm71)3
am — b1
(4.2.42)
Let us look at each term on the right hand side of (4.2.42), separately. First, by (4.2.41) we have
; im)_ (im)|?
e am — bm 1 am*bp<m)

(im)_, (im)|%_| (im)_ (im)|?
< eam_ll’mfl ( Im " Ypm)| T|Fm _ym71| )
~

am*ll’mfl <| (ZM) PZT”Z§| | Zm) y’EVZlT)) (

x
m Yp(m)

(i) _y im0 (m))
=e -
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Using (4.2.41) we have

i) =yl |+ o) — g < 2falir) =y + Ry2r -1 &

b
< 2R\/ap, — b1 + RV2r —1 %

2r—1
—bm71<2+ ]\;—1>'
Therefore, by (4.2.41) we get
sy (1 et i) (i il i) e (oo B0 VBE

Similarly, we can get a lower bound of

e

. . 2 . . 2

m - 2 1 2r—1 2r—1
- + - (1) (2432
e am—bm—1 am—bp(m) >e ( M) M—1 M—1 7

since @y, — bp(m) < (1 + 77 ) (@m — bm—1) by (4.2.37). The second term in (4.2.42) can be
handled by (4.2.37) as

am — b b1 —0 (m) 1 M—o0
1< <7p<m>> _ (1 7"> 1 Mooy
Am — b1 + am — bim—1 <4 M—-1

For the last term in (4.2.42) we have that
’1’ : yr(n 1 + ‘x : y[(j(m))‘
(am - bm—1)3

(i ) (Z ) 4 ( (Z’m am bm 1 4
|z — gyl (\ﬂf —Ymoal + R-v2r —1 )
< E +

(am - bmfl)

(am —bm—1
- 9R* SR*(2r — 1)?
= (am —bme1) (@ —bp1) - (M — 1)

where we used (4.2.41) along with the inequality (z + y)* < 8(z* + y*) for =, y € R. Therefore,

lim) _ (z'm>|4+ Qlim) _ m) |1
m Ym—1 m Yp(m) o Rr4 srR%(2r—1)2 or? | sR*(2r—1)2 M
e (am—by—1)3 < e@m=bm—1) " am=bm 1) (M=) o & T ar(r—1) 2%, 1

where we used in the last inequality that a,, — by,—1 > M (by—1 — bn—2) = M by (4.2.23). O

4.2.5. Final step. Now that we have Lemma 4.2.6 at our disposal, we can prove the main approx-
imation result of this step. Recall from (4.2.32) that
(main)
HT,N,IR,M
.

I 7 ) Ii
= Z Ubi (0,9, HQaFlbz Y- 15 i) Ubifai(wz"yz’)UN(Ii)-

(It,..,dr) €I (@b,%,7) € CiTJS’i,nl)%,M

Define H T(,r]e\,wl)% s to be the resulting sum after rewiring has been applied to every term of

H(T\??M, that is, given a sequence of partitions (I1,...,1,) € Z®) and (@, b, &, Yy) € C(";\?']n%)M,
we apply the kernel replacement (4.2.33) to all partitions [y, ..., I, starting from I,, and moving

backward. We remind the reader that that we may denote a partition I = {i, j} u| |, ., ,{k} € T (2)
by its non-trivial part {7, j}, see subsection 4.1.2.
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{2,3} {1,2} {3,4} {2,3}

0:=a; by az b as b3 aq ba

FIGURE 4.2.2. Figure 4.2.1 after rewiring. We use blue lines to represent the new
kernels produced by rewiring. The dashed lines represent remaining free kernels
from the rewiring procedure as well as kernels coming from using the Chapman-
Kolmogorov formula for the simple random walk.

Proposition 4.2.7. Fix 0 < r < K. We have that

HES) = o) ) @249

and

(rew)
Hrr]eVWR M

= Z Z 1_[ 5% Jk 7y](€ k) I(;Ic))

({1151} {indr} ) €T (@5:2,8) € CR" K=

Y4
X H Qbk_(lk(yk _SU]E;))

1<0<h,
LFig,Jk
HJ““’”’" ooy (57 = 000) [T e (o) L)
am—bp(m) m p(m) = am—0m—1 m—1
<U< 5

(4.2.44)

Proof. Equation (4.2.43) is a consequence of Lemma 4.2.6 and the fact that » < K, while expan-
sion (4.2.44) is a direct consequence of the rewiring procedure we described in the previous step,
see also Figures 4.2.1 and 4.2.2. U

(rew)

Next, we derive upper and lower bounds for H, 5 ,,. We begin with the upper bound.

Proposition 4.2.8. We have that

.
Hf,rifv,vgz,M < Z Z H Uf;’“’jk (bk — ak, yi — k)

i iy i V) eT(2) 0:=a1<b;<ag<--<ar<br-<N, k=1
({7‘17‘71}7 ’{7‘7“7]7‘}) 0:=21,y1,.. ,wr,yrEZQ

X H O-Zm’]m qgm—bp(m) (xm - yp(m)) .
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Proof. Fix » > 1 and from (4.2.44) recall that

(rew)
HT,N,R,M

_ Z Z ﬁ Uﬁ;kvjk (bk _ ak,y,(f’“) _ :L.Sk))
({ihjl}r-w{imjf})61(2) (@b25)€ Cﬁm;rm% it

X H Qbk—ak( xl(f))

1<t<h,
LA,
T
‘TIL7 -7"/ m é
X H O’?V ! : qgm—bp(m) (:1;‘(Z Z ) 1_[ qam bm 1 ( ) - y’l(’)’b)—l) °
m=2 1</<h,
e?élm»]m
(4.2.45)
For the sake of obtaining an upper bound on H (r;w}% A We can sum (@, b ,Y) in (4.2.45) over

C,. n, see definition in (4.2.2), instead of Cf«"}\?';%) - We start the summation of the right hand side

of (4.2.45) from the end. Using that forn € N, >} -2 gn(2) = 1 we deduce that

> I e -2 =1

yﬁ‘e) eZ2. LFir,Jr
1<l<h, b#ir,jr

We leave the sum Zb e[ N], ylir) 22 Un (br - a, y1(jr) _ l‘f}r)) intact and move on to the time

interval [b,_1, a,]. We use again that forn € N, > . 52 gn(2) = 1, to deduce that

2 [T b i@ —y%) =1.

oVez2,  HHinir
1<t<h, b#ir,jr

_ 2 (ir) _  (ir)Y : .
are (b1 br], 200 ez2 Dar—byir, (mr yp(r)) intact. We can iterate this

(0)

procedure inductively since due to rewiring all the spatial variables y,”,, £ # i,_1, jr—1 are free,

O

that is, there are no outgoing laces starting off v, ,, ¢ # i,_1, j,—1 at time b,_;. The summations

Again, we leave the sum )

we have performed correspond to getting rid of the dashed lines in Figure 4.2.2. Iterating this
procedure inductively then implies the following upper bound for H 7(‘I’ZEVW)R M-

Hr(r;fwz)z M S 2 Z H Ujﬁvi'“’jk (bk — ar, yi — k)

i iy L i V) e T(2) 0:=a1<b1<ag<-<ar<b.<N, k=1
({217.71}7 7{ZT7JT}) OZ:ml,y1,-~~7xr7yT‘ez2

X H JZm,Jm qg’m_bp(m) (xm o yp(m)) :

In the next proposition we derive complementary lower bounds for H, (T;,WI)% - Given 0 <7 <

K and a sequence of partitions I = ({i1,j1}, ..., {ir, jr}) € T we define the set CS}E\\;V}% y()to

be CS?;'}? s Where for every 2 < m < r we replace the diffusivity constraint H:z:m — Ym—1 HOO <

RA/ap, — by—1 by the constraints
20 — 49 | < R/t — b1, L€ {1,...,h} ~ {im,jm} and

. 1 2K —1
) _ 1 — _
|z, p(m | < Ry/1 M<1 M—l) am — bp(m)> 0" € {im, jm} -
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This replacement transforms the diffusivity constraints imposed on the jumps of two walks
{im, jm} from their respective positions at time b,,,_1 to time a,,,, which is the time they (re)start
colliding, to a diffusivity constraint connecting their common position at time bp(,,), Which is
the last time they collided before time a,,, to their common position at time a,,, when they start
colliding again.

We have the following Lemma.

Lemma 4.2.9. Let 0 <r < K and M > 2K. Forall I = ({il,jl}, ol {ir,jr}) e Z@ we have
that

Proof. Fix 0 < r < K, asequence I = ({i1,j1},...,{ir,jr}) € Z? and (@,b,%,7) €
Cgi‘;"?w R(f ). Moreover, let 2 < m < r. By symmetry it suffices to prove that

AP e (= W oy B (R N

Indeed, by the definition of C(r?\‘;vzw s [') and (4.2.41) we have that for (a ,Y) € Cfff\‘;v?\/[ R(f )s

el =yl | = Jefe) = S| | < R var =1 vﬁqu (4.2.46)

Moreover by (4.2.37) we have that

m — bm,1 > (M — 1)(bm71 — bp(m)) = Am — bp(m) > M(bm,1 — bp(m)) .

Therefore,
1
A = b1 = am = Bpgm) = (bm—1 = bp(m)) > am = Bpgmy — 7 (am = bp(m))
1 4.2.47)
(1= L) = by
Combining inequalities (4.2.46) and (4.2.47) we get the result.
Il

Proposition 4.2.10. Let 0 < r < K. For M > 2K we have that

(rew)
Hr,N,R,M

>(1- e—cR2)2Kh Z Z

7 (i s .. (2) 0:=a1<b1<as<-<ar<br<N,
I ({11,]1}7 7{11“7.77‘})62 @ip1—bi>M (bi—bi_1), 1<i<r—1,
0:=z1,y1,..., 1'7‘71/7"622

r
X H U}%’“'”" (bk — ak, yk — k)
k=1
r . .
X TN by (Tm = Ypmy) - 1 .
m~—Yp(m) plm {|yk*$k‘§R\/bk76L ,|xmfyp(m>|SRCK’]\/1 amfbp(m)}’

m=2

with Cg v :=1/1—<1— 2]\}4(_11>
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Proof. Recall from (4.2.44) that

(rew)
HT‘,N,R,M

- 2 2

T=({irg1}div dr}) €Z®  (@b.8,5) € CN Y

. Biy i ?
% HUNk ik (bk—ak,y(k (lk H oy —a ( _xl(g))
k=1 i,k

< T o8 Gt @0 = 050) [T oot () =)

m=2 Z#%n 7jm

> 2 2

f: ({7"17j1}7"'7{i7‘7j7‘})€1-(2) (d$gai’y) € ij’e]:[v?R’]u(f)

,
Biy. i (¢ ?
< [ToN o —ae g =) - [T dhmon () =)
k=1 LFig,j

% H O_Zm Jm qgm—bp(m) (l'(lm lm) H Qayy—by 1 ( ) _ yf’r?—l) .
LF-im,Jm

(4.2.48)

The first step in getting a lower bound for H. (er]){ a 1s to get rid of the dashed lines, see Figure

4.2.2. We follow the steps we took in the proof of Proposition 4.2.8 for the upper bound. In
particular, we start the summation of (4.2.48) beginning from the end. Using that for n € N and
R e (0,0)
N =1 > gz z1-e R (4.2.49)
2€Z2: |z|<R+/n 2€Z2:|z|>R+/n
by (4.2.13), we get that

4 {4 —cR?\h
3 [T tba 0 —2) > (1 — )
y,{[)622:|yg)—x$z>|<R\/m, f?éimj'r
1<t<h, L£ir,jr

We leave the sum

5 Un (b — ar, 3% — 2li)
. b_,»e[aT,]_V],
yimez2: |yl —a (") |<RVB—a,

as is and move on to the time interval [b,_1, a,]. We use (4.2.49) to deduce that

) [T darb (@9 —52)) = (1 —ec)h.

x$4)622:\xg)—y5£)1|<1% ar—br_1, LFir,jr
L<e<h, (i, jr
( (ir) _ (ir)

Again, we leave the sum Za ~Yo(r )) intact. We can continue this

_ 2
€ (by_1,br], 2l ez2 Qar—byy \ T
procedure since due to rewiring all the spatial variables y(é_)l, £ # i._1,jr—1 are free, i.e. there are

no outgoing laces starting off y( )

r) _ Gr)

1» ¥ # iyr_1, jr—1 at time b,_1, and there are no diffusivity con-

(ir) , (r) (rew)

straints linking x, withy. "}, yr 1 by definition of Cr N R M(I ). Tterating this procedure
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we obtain that

(rew)
H. Ny ey

> (1- e—cR2)2Kh Z Z

P (g1 i) fi i (2) 0:=a1<bi<as<--<ar<br<N,
I ({7'17]1}7 a{lrJT‘})GI aip1—bi>M (bi—bi_1), 1<i<r—1,
0:=21,y1,....Tr,YrZ>

.
X H Uf;’“'j’“ (b, — ak, yx — k)
k=1

T
imyJm 2
X | | o . _ Tm — -1
: N qam bp(m)( m yp(m)) {|yk*$k‘§R\/bk*ak,|xm*yp(m)|<RCK,1uw/am*bp(m)}’
m=

with C v = 1f]\14<1— %\fj_—ll). O

Proposition 4.2.11. We have that
K
lim lim lim lim Y B =[]

K—00 M0 R—00 N> & 1<i<j<h 1- /Bi,j

Proof. We are going to prove this Proposition via means of the lower and upper bounds established
in Propositions 4.2.8 and 4.2.10. By Proposition 4.2.8 we have that

.
Hﬁrzevwl)%M < Z Z H Ufrik’jk (br — ak, yr — k)

vt Yfin g cT(2) O:=a1<b1<as<-<a,<br.<N , k=1
({11731}, {Z’H]T}) Oty iy 22

r
y H U;\T,]m . q2m7bp(m) (Cl','m - yp(m)) :

m=2
(4.2.50)
Summing the spatial points on the right hand side of (4.2.50) we obtain that
(rew)
C Y IEDY )
({’il»jl}p..,{imjr})EI(Q) 0:=a1<b1<ag<--<ar<br<N 42.50)

. T
X H UJ%W"' (b, — ag) H TN @2 —byim)) (0)
k=1 m=2

Note that the right hand sides of (4.2.50) and (4.2.51) describe a system of (g) pairs of random
walks which collide only between themselves. The times a; < b; mark when a pair of random
walks starts and terminates colliding (temporarily) before the next pair starts colliding. The order
of these collision events is encoded in I = ({il, Jits ooy {in, jr}) e Z(®. Using (4.1.6) and (4.1.7)
one can deduce that

mBig | (6.4)

SN < ] Blems ] = 1+ on) ]

1—08; ;"
r=0 1<i<j<h 1<i<j<h Bij

1

(4.2.52)
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Next, by Proposition 4.2.10 we have that
(rew)
Hr,NV:IR,M
> (1— e—cR2)2Kh Z Z

P (g s . (2) O=a1<bi<az<--<ar<br<N,
I ({“’Jl}’ ’{Z“jr})eI aiy1—bi>M(b;—b;_1), 1<i<r—1,

0:=x1,Y1,...,Tr,Yr€Z2

X HUBZ“'“ (br — ar, yr — xx)

zmy,]m 2

X oN T, — -1

1_[ Qam—bp(m) ( m yp(m)) {|yk—xk\<R«/bk—ak, |.’L’m—yp(m)|$RcK’]w am_bp(m)}’
(4.2.53)

Lifting the diffusivity conditions imposed on the right-hand side of (4.2.53) can be done using
arguments already present in Lemma 4.2.4. More specifically, we use that for 0 < m < N,
weZ?and1 <i<j<h,

Z U]%i’j (n -—m,z— w)

ne[m,NJ,

2€Z2: |z—w|<R/n—m

Z B” )— Z Uﬁ”(nfm,sz)
ne[m,N| ne[m,N]J,

2€Z2: |z—w|>R/n—m

Z Bz] m o —RR Z ﬂz] )

ne[m N] ne[m,N]|
>(1- e_“R) Z U’B” (n—m),
ne[m,N]|

where in the first inequality we used (4.2.22) from Lemma 4.2.4 with a suitable constant /@(B) €
(0,00). Similarly we have that

Z ng_m(z - w)

ne[m,N|,
2€Z2%:|2—w|<RCk p v/n—m

= 2 @n-m)(0) - > G2 (z —w)

ne[m,N| ne[m,NJ,
2€Z%:|z—w|>R Cr,mv/n—m

2(1 - e_HR2 Cg{’M) Z 42(n—m) (O)
ne[m,N|
by tuning the constant « if needed. Therefore, we finally obtain that

H(r]e;]wl)zM > (1- e—cRQ)QKh (1- e—nR)K (1— B*HRQ C%{,]\/I)K

~ 2 2

o o (2) O=a1<bi<as<--<ar<br<N,
(tG1d1}ein gi}) e O=rshizuas =i ehr <, (4.2.54)

. T
X H U]%k’]k (b, — ax) H TN 42 am by (0) -
k=1 m=2

The last restriction we need to lift is the restriction a;+1 — b; > M (b; — b;—1), 1 <i<r— 1.
This can be done via the arguments used in Proposition 4.2.5, so we do not repeat it here, but
only note that there exists a constant Cxx = C'x (B, h) € (0,0) such that for all 0 < r < K, the
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corresponding sum to the right-hand side of (4.2.54), but with its temporal range of summation be
such that there exists 1 < i <r—1: a;41 — b; < M(b; — b;—1), satisfies the bound

2 2

. . (2) 0:=a1<b;<ag<--<ar<b.<N,
({7’17.]1}7 7{717‘7.]T})€I 31<z<7‘—1:ai+1—bi<M(bi—bi_1)

T I
x H U}%’“’Jk (b, — ax) H TN " Go(am—bymy) (0)
k=1 m=2

< Ck -enMm,

where €y 37 is such that limy_, en 3 = O for any fixed M € (0,0). Therefore, the resulting
resulting lower bound on H (re ])% o Will be then

H(rew) > (1 _ 6—cR2)2Kh (1 _ e—l-iR)K (1 o e*HRQ Cf(’M)K

x 5 v [TU2e (b — )

({i1.41} s fir gr} ) e 7@ Oimarsbr<az<e-<ar<br<N k=1 (4.2.55)

H O—Zm"]m ’ m_bp(m))(o) B CK ’ 6N7M> .

Note that

i | (6.)
E |:€ logN —N ]
1

K ™
> > > [TUN " (b — ar) (4.2.56)

<i<j<h
=0 (i1 by fir i} eI Oim1Sh1<a2<<ar<b SN k=1

T iim 1 2
X H on 'Q2(am—bp<m))(0) + Agv) + ASV,)Kv

mBig | (4,9)
where Ag\l,) denotes the part of the chaos expansion of J [, _;_ i<h E[e log N =N ] which contains

multiple collisions for at least some time 1 < n < N and A%)K denotes the corresponding sum on
the right-hand side of (4.2.56) but from r = K + 1 to o0, that is

AR =S 3 3 [TUx " (b — ar)

r>K ({i17j1}7 ,{ir,jr})GZ@) 0:=a1<bi<as<<a,-<b-<N k=1

T
X H TN @2 —by(my) (0) -
m=2

Next, we will give bounds for AS\}) and Ag\%)K. Beginning with A%)K, let o := [ﬁJ . Since we
’ 2

are summing over r > K, there has to be a pair 1 < ¢ < j < h which has recorded more than ox

collisions. We recall from (4.1.8) that U N() admits the renewal representation

Un(n) = Y (on(B) Rx)FP(r™ = n).

k=0
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There are (g) choices for the pair with more than g collisions. We can also use the bound (4.1.9)

to bound the contribution of the rest (g) — 1 pairs in A%)K. Therefore, we can then write

2 - (g) 2 ™) < (}QL) =k K—ow
ANk S *Z( N(B)RN)"P(7 N) < 72(5)—’07

— h — h
(1-— B/)(2) Py (1— ,8/)(2) Pyl
uniformly in NV, where 3’ € (3, 1).
Similarly, for AS\I,), we can choose two pairs which collide at the same time in ( )

(g) 2 ways and we can use bound (4.1.9) to bound the contribution in Agv) of the rest ( ) — 2 pairs.

Therefore, we obtain that

() 50 )0 ()’ ;
AW < — UL (n,2) UL (n,y) < — U 2(n)
(1-pnG) n)(],acz,yEZQ Y v (1-p)() go ()

By Proposition 1.5 of [CSZ19a] we get the estimate

C'k q2n,(0) - C'k
Ry n(logN)’
where the second inequality follows by the local limit theorem. Therefore, by (4.1.8) and the

P(r) =n) <

aforementioned estimate we get that

(UR)*(n) = Y (on(B)RN)H P(rY = n) P(r{¥) =) < W( Sk (@)

2 2
kL0 n?(log N)* \ (=

for some 8’ € (B,1). Since 8/ < 1 we have that ok - (3')F < o0, therefore we deduce that
there exists a constant C' = C(/3') such that (Uf,)Q(n) <
exists a constant C = C(f3') € (0, 00) such that
3 C N—o
U%)%(n) < 0,
Z ( N) (n) (10gN)2

n=0

C . 1
T llog W72+ Since Y~ 77 < 0, there

The two bounds above, in combination with (4.2.55) and (4.2.56), allow us to write:
K

Z Hﬁr;]wj)%M > (1 . e—cRQ)QKh (1 o e—nR)K (1 _ e—ﬁRQ C%{,]\/I)K
r=0

7B, (4,7) ~
X ( H E|:€log]\]]|_ ]]_K-CK-&‘]\LM—ON(I)—OK(I)),

1<i<j<h

which together with upper bound (4.2.52) entail that

X 1
Iim lim lim lim H (r]e\,wl)% M= H
K—oo M—o R—00 N—w r L4 1_Bz ;
r=0 1<i<j<h J

g

We are now ready to put all pieces together and prove the main result of the paper, Theorem
4.0.1.

Proof of Theorem 4.0.1. Let ¢ > 0. There exists large K = K. € N such that uniformly in
NeN
K
‘Mﬁh -Y'm, N‘ <e, (4.2.57)
r=0
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by Proposition 4.2.2. We have
K
(rew) (superdiff) (multi) (diff) main)
‘ZHTN_ZH RM‘ <2Hr11<m HT,NU )J’_‘ZHTNR rNRM)’
r=0

+ Z (N R = )|
By Propositions 4.2.1, 4.2.3 we have that
X (superdiff) (multi) diff) X (multi)
. . superdi multi superdi . multi
lim lim (Z (Hr,N',)R +H, \ )) lim sup Z HT NpR + A}linoo Z H, 7 =0.

R—o0 N—o0 =0 R—w0 NeN [ Ty

r=0

Moreover, by Proposition 4.2.5 we have that

R—o0 M —00 N—o0

lim lim i | 2 7 - Z H Ry = 0.
r=0 r=0
Last, by Proposition 4.2.7 we have that

Iim lim lim

main rew
o, Jm | Z Hy R~ Z ] = 0.

therefore
lim lim i ‘ Hoy— STH" | = 4.2.58
REI;OMIElooNl—rPoo 2 N rZO r.N,R,M =0. ( )
By Proposition 4.2.11 we have that
X 1
lim lim lim lim Y B =[] : (4.2.59)

K—00 R—ow0 M—o0 N—owo — I<i<j<h 1 _/Biyj

Therefore, by (4.2.57), (4.2.58) and (4.2.59) we obtain that

1
lim M?% .
N—w N~ H — Bl,j

1<i<j<h
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