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Abstract

In this work we study the directed polymer in random environment and some associated prob-
lems. In Chapter 2, we focus in spatial dimensions d ě 3 and study the spatial fluctuations of the
field of partition functions and log-partition functions in the subregion of the weak disorder regime
called L2 regime. We prove convergence of the two fields, under centering and suitable scaling, to
the solution of the Edwards-Wilkinson model, thus establishing Gaussian fluctuations, in the full
L2 regime.

In Chapter 3 we study the directed polymer in random environment in the case of spatial di-
mension d “ 2 and in the so-called subcritical regime. We establish that all moments of the
partition function are bounded in the full subcritical regime and compute their limit. As a byprod-
uct, we obtain that the logarithmically scaled total collision local time between h, ph P N, h ě 3q,
independent simple symmetric random walks on Z2 converges in distribution to a Gamma ran-
dom variable. Based on this result, we formulate the conjecture that the joint distribution of the
hph´1q{2 logarithmically scaled collision local times between h simple symmetric random walks
on Z2 converges to that of a vector of hph´ 1q{2 independent exponential random variables.

Last, in Chapter 4, we prove the aforementioned conjecture on the logarithmically scaled col-
lision local times by exactly computing their limiting joint Laplace transform. In order to prove
this result, we build on tools developed in Chapter 3 and further analyse the microscopic structure
of the collision local times.

viii



Notation

We note that throughout Chapters 2, 3 and 4 we will use the letters c, c1, C, C 1, . . . to de-
note constants that may change from line to line. Furthermore, given any two positive sequences

paN qNPN, pbN qNPN, we will write aN
NÑ8

« bN or simply aN « bN when limNÑ8
aN
bN

“ 1.

Below, we summarise the main notation we will use in the following chapters.

Notation Definition

S symmetric simple random walk in Zd

Px, Ex probability and expectation w.r.t. the law of S starting from x

qnpxq PpSn “ xq

ω random environment

P, E probability and expectation w.r.t. the law of ω

β inverse temperature / strength of disorder parameter

DPREd d-dimensional directed polymer in random environment

λpβq logEreβωs

λ2pβq λp2βq ´ 2λpβq

σpβq
a

eλ2pβq ´ 1, (Chapter 2)

σN,β̂
β̂

?
RN

, (Chapter 3)

σi,jN pβq e
πβi,j
logN ´ 1, (Chapter 4)

ξn,z
eβωn,z´λpβq´1

σpβq
, (eβNωn,z´λpβN q ´ 1 in Chapter 3)

ZN,βpxq Ex

”

e
řN

n“1tβωn,Sn´λpβqu
ı

ZΛ
N,βpxq Ex

”

e
ř

pn,zqPΛtβωn,z´λpβqu1tSn“zu

ı

for Λ Ă N ˆ Zd

sZN,βpφq
ÿ

xPZd

φ
`

x?
N

˘

N
d
2

`

ZN,βpxq ´ 1
˘

for φ P CcpRdq

φN pxq φ
`

x?
N

˘

πd return probability of d-dimensional simple random walk

LN
řN
n“1 1tS2n“0u

RN ErLN s

L
pi,jq

N

řN
n“1 1tS

piq
n “S

pjq
n u

- collision local time between random walks Spiq, Spjq

We note that in Chapter 3, the sums used to define ZN,βpxq, LN and L
pi,jq

N will run from n “ 1

to n “ N ´ 1 instead of N .

Bibliography. Citations of works that, to the best of our knowledge, have not yet been published
to a scientific journal will be denoted ending with a ` symbol (e.g. [L21+]) to avoid any chrono-
logical confusion.
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CHAPTER 1

Introduction

1.1. The directed polymer in random environment

The main focus of this work is the study of the directed polymer in random environment in
dimensions d ě 2, DPREd for short, which is a model consisting of a random walk interacting
with a space-time random environment placed on the vertices of the d-dimensional lattice Zd. In
particular, consider S “ pSnqně0 to be a d-dimensional simple symmetric random walk, whose
law and expectation we will denote by Px, Ex, respectively, when starting from x P Zd and let
also ω “ pωn,xqpn,xqPNˆZd be a family of independent and identically distributed random variables
with law P and expectation E such that

Erωs “ 0, Erω2s “ 1, λpβq :“ logEreβωs ă 8 , @β P p0,8q.

The law of DPREd of length N , starting from x P Zd and at inverse temperature β P p0,8q is
defined by

dPN,β,x
dPx

pSq :“
1

ZN,βpxq
e
řN

n“1tβωn,Sn´λpβqu , (1.1.1)

where

ZN,βpxq “ Ex

„

e
řN

n“1tβωn,Sn´λpβqu

ȷ

. (1.1.2)

ZN,βpxq is a (random) normalising constant which makes the polymer measure a probability mea-
sure. It is called the partition function of the model and its importance stems form the fact that it
contains crucial information about all the thermodynamic quantities of interest, see [Bov06]. The
study of its statistical properties in the infinite volume limit, i.e. as N Ñ 8, will be the main
interest of this work. When the starting point of the random walk is 0 P Zd we will simply write
ZN,β instead of ZN,βpxq. Note that, due to the translation invariant nature of the random environ-
ment ω, ZN,βpxq has the same law with ZN,β for every x P Zd. ZN,β . We note that including the
factor λpβq in the exponential in (1.1.1) and (1.1.2) turns ZN,β into a martingale with respect to
the natural filtration pFnqně0 with Fn “ σ

`

ωℓ,x : 1 ď ℓ ď n, x P Zd
˘

, such that ErZN,βpxqs “ 1

for all N P N. The significance of this modification will become apparent in Section 1.2.
The DPREd models a competition between entropy, stemming from the underlying random

walk and energy,which takes the form of rewards provided by the environment ω that are collected
by the random walk as it traverses the lattice Zd. One can almost immediately distinguish two
extreme cases of the directed polymer, one that is dominated by entropy and one that is dominated
by energy. In particular, when β “ 0 in (1.1.1) one recovers the law of the simple random walk
under which every path of lengthN has the same probability p2dq´N . On the other hand, by (1.1.1)
we see that as β increases (temperature decreases) the polymer measure tends to assign larger
probability to directed paths along which the environment ω is more favorable, i.e. it attains higher
values. In particular, in the limit β Ñ 8 the polymer measure is concentrated on the directed
random walk paths π along which the energy

ř

αPπ ωα is maximized. Therefore, the DPREd at
inverse temperature β P p0,8q can be seen as an interpolation between those two extreme cases,
and as such it is interesting to study how the transition between the entropy dominated phase to
the energy dominated phase happens as one varies the inverse temperature β as well as the spatial
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dimension d. Before we delve into a more detailed exposition of the main established results about
the DPREd we present some of the main questions around it as well as links with other models that
further motivate its study.

1.1.1. DPREd as a disordered system. One of the main questions the directed polymer in random
environment poses is whether the introduction of the disorder, i.e. the random environment ω, is
sufficient to alter the large scale statistical properties of the underlying random walk, a question
which falls under the more general scope of disorder relevance/irrelevance in the field of disordered
systems. In particular, if even a small amount of disorder is enough to change the large scale
properties of a system we say that disorder is relevant, otherwise we say that disorder is irrelevant.

In the context of the polymer, one can imagine two possible scenarios for the DPREd depend-
ing on the dimension d and inverse temperature β. If the spatial dimension d is large and β is small
then the environment should not have much effect on the polymer, because there is enough space
for the polymer to avoid large values of the environment and also the environment is weak due to
high temperature. On the other hand, if the dimension is small or the strength of the disorder β is
high, there is not much room for the polymer to avoid the influence of the environment and it will
have an advantage to travel to atypically far distances to collect disorder that is more favourable.

According to a powerful but heuristic criterion due to Harris [Har74] which was first for-
mulated in the context of the ferromagnetic Ising model with random impurities, the question of
whether disorder is relevant or irrelevant for a statistical physics model can be determined by look-
ing at a suitably defined correlation length exponent ν and the effective dimension deff of the pure
model. In particular, if ν ă 2

deff
, disorder is deemed irrelevant and a small amount of random

impurities is not sufficient to alter the large scale properties of the model, if ν ą 2
deff

disorder is
relevant and even a small amount of external randomness is sufficient to change the macroscopic
behaviour of the system, while for the case ν “ 2

deff
, the Harris criterion is inconclusive and one

has to look at the fine details of each specific model to rule whether disorder is relevant or not.
For the simple random walk on Zd, diffusivity suggests that we have deff “ d ` 2 and ν “ 1

2 .
Therefore, for DPREd, according to the Harris criterion, disorder is relevant when 1

2 ă 2
d`2 that

is, d ă 2 and disorder is irrelevant when 1
2 ą 2

d`2 or equivalently, d ą 2. The case of dimension
d “ 2 is dubbed marginal and the Harris criterion is inconclusive.

In the present work we will be concerned with the disorder irrelevant case of d ě 3 in Chapter
2 and the marginal case of d “ 2 in Chapters 3 and 4.

1.1.2. DPREd and singular SPDEs. Besides the question of disorder relevance/irrelevance, one
of the main reasons to study the DPREd is its close connection with certain singular stochastic par-
tial differential equations. In particular, let ξ denote space-time white noise, that is the generalised
centred Gaussian process with covariance structure

E
“

ξpt, xqξps, yq
‰

“ δpt´ sqδpx´ yq t, s ą 0, x, y P Rd (1.1.3)

and consider the stochastic heat equation with multiplicative white noise ξ, (mSHE), that is

pmSHEq

#

Btupt, xq “ 1
2∆upt, xq ` βpu ¨ ξqpt, xq t ą 0, x P Rd

up0, xq ” 1
. (1.1.4)

The physical interpretation of the solution to mSHE (1.1.4) is that it represents the density, at
a given time t and point in space x P Rd, of independent particles performing diffusions in an
environment where particles can be generated or killed independently in space and time with a rate
that depends on β and the sign of ξ.

2



Notice that, while in dimension d “ 1, one can make sense of equation (1.1.4) by using
classical Itô theory, this is no longer possible in dimensions d ě 2, due to the very singular nature
of space-time white noise which makes the product u ¨ ξ ill-defined. More specifically, the d-
dimensional space-time white noise ξ is a random distribution that belongs to the (parabolically

scaled) Hölder space C´ d
2

´1´κ
s for every κ ą 0, see [CW17], Section 2. Taking into account the

smoothing effect of the Laplacian operator which improves spatial regularity by 2 degrees, see

for example [CW17], the solution is expected to have the regularity of C´ d
2

`1´κ
s for all κ ą 0,

or lower. This suggests that in dimensions d ě 2, the solution to mSHE should be a random
distribution leading to the aforementioned ambiguities, see [CW17], Theorem 2.13.

Nevertheless, a first investigation of what properties a solution to mSHE should satisfy can be
carried out by a scaling argument which probes the large scale behaviour of the solution to (1.1.4).
More specifically, let ε denote a small positive parameter and consider the parabolically rescaled
version of u, that is

ruεpt, xq :“ u
`

t
ε2
, xε

˘

. (1.1.5)

Note that this tranformation leaves the standard heat equation (Btu “ 1
2∆u) invariant. An easy

calculation shows that ruε satisfies the equation
$

&

%

Btruεpt, xq “ 1
2∆ruεpt, xq ` β ε

d´2
2 pruε ¨ rξ qpt, xq t ą 0, x P Rd

ruεp0, xq ” 1
, (1.1.6)

where rξ is a space-time white noise which has the same distribution with ξ and appears due to the
fundamental scaling property of space-time white noise

ξpt, xq
dist
“ ε´ d

2
´1 ξ

`

t
ε2
, xε

˘

, (1.1.7)

which is understood as a distributional equality when testing against L2 functions.
Observe that when ε Ó 0, the coefficient in front of the noise rξ in (1.1.6), vanishes when d ě 3,

blows up when d “ 1 and it is constant and equal to 1 when d “ 2. This suggests that the noise
should have a non-trivial effect in dimension d “ 1 when one moves to larger and larger scales,
while the opposite should be true in dimensions d ě 3. This heuristic argument fails whatsoever
to make any prediction in dimension d “ 2. A similar argument in small scales, that is considering
ruεpt, xq :“ upε2t, εxq produces a coefficient ε´ d´2

2 in front of the noise thus yielding analoguous
predictions as in the case of the large scales, but reversed. Notice that this picture matches exactly
the disorder relevance/irrelevance picture based on the Harris criterion that we discussed in the
previous subsection. In the language of SPDEs, dimension d “ 1 corresponds to the subcritical
dimension, dimensions d ě 3 correspond to the supercritical dimensions while d “ 2 is the critical
dimension.

A similar scaling argument can also be derived after first centering and then scaling u. More
specifically, let

rvεpt, xq :“ ε´p d
2

´1q
´

u
`

t
ε2
, xε

˘

´ 1
¯

. (1.1.8)

Note that rvεp0, xq ” 0 and the scaling (1.1.8) is chosen because it is the scaling which leaves the
additive stochastic heat equation (also referred as Edwards-Wilkinson model [EW82])

paSHEq

#

Btvpt, xq “ 1
2∆vpt, xq ` β ξpt, xq t ą 0, x P Rd

vp0, xq ” 0
(1.1.9)

3



invariant. A simple (formal) calculation shows then that rvε satisfies the equation
$

&

%

Btrvεpt, xq “ 1
2∆rvεpt, xq ` β ε

d´2
2 prvε ¨ rξ qpt, xq ` βrξpt, xq t ą 0, x P Rd

rvεp0, xq ” 0
,

Then, similar conclusions can be drawn regarding the classification of the equation depending on
the spatial dimension d. In particular, in dimensions d ě 3, the vanishing coefficient ε

d´2
2 in front

of rvε ¨ rξ suggests that rvε should converge to the solution of the Edwards-Wilkinson model (1.1.9).
As we will see in the next section, this is only partly true. In dimension d “ 2, the coefficient
ε

d´2
2 “ ε0 is constant and equal to 1. We will see in the next section though, that the correct

interpretation is not a constant but a logarithmically vanishing coefficient.
To bypass the analytical obstacles and be able to define some notion of solution to (1.1.4) in

dimensions d ě 2, one resorts to a regularisation procedure which is carried out by replacing the
original noise ξ with a spatially mollified version ξε and considering the corresponding regularised
equation. More specifically, given a probability density j P CcpRdq, with jpxq “ jp´xq for x P Rd

and ε ą 0, we define jεpxq :“ ε´dj
`

x
ε

˘

and

ξεpt, xq :“ pξ ˚ jεqpt, xq “ ε´d

ż

Rd

dz ξpt, zq j
`

x´z
ε

˘

. (1.1.10)

Then, for every ε ą 0 and fixed t ą 0, x ÞÑ
şt
0 ξεps, xqds is a smooth function while for fixed

x P Rd, the process t ÞÑ
şt
0 ξεps, xq ds is a Brownian motion with variance ∥j∥22. In that case,

replacing ξ by ξε in (1.1.4) leads to a well-posed equation by Itô theory.
In order to reveal the link with directed polymers, let us consider mSHE with mollified noise

and at large scales, that is the equation

pmSHEεq

$

&

%

Btuεpt, xq “ 1
2∆uεpt, xq ` β ε

d´2
2 puε ¨ ξεqpt, xq , t ą 0, x P Rd

uεp0, xq ” 1
. (1.1.11)

The solution uε satisfies, by [BC95], the following Feynman-Kac formula

uεpt, xq “ Ex

„

eβ ε
d´2
2

şt
0 ξεpt´s,Bsq ds´ 1

2
β2 εd´2 E

“`

şt
0 ξεpt´s,Bsq ds

˘2‰
ȷ

dist
“ Eε´1x

„

eβ
şε´2t
0

ş

Rd ξps,uqjpu´Bsq dsdu´ 1
2
β2ε´2 t ∥j∥22

ȷ (1.1.12)

where B “ pBsqsą0 is a d-dimensional Brownian motion starting from B0 :“ x P Rd and to
derive (1.1.12), we used that the distribution of ξ is invariant under time-reversal and satisfies the
scaling relation (1.1.7). Therefore, under the natural identification N “ ε´2t, ξ Ø ω and B Ø S,
we see that ZN,βpxq can be regarded as the discrete analogue to the solution of equation (1.1.11)
and in that sense discretisation is equivalent to mollification of the noise.

The study of (1.1.4) is also motivated by the fact that h :“ log u (Cole-Hopf transformation)
formally solves the Kardar-Parisi-Zhang equation

pKPZq

#

Bthpt, xq “ 1
2∆hpt, xq ` 1

2 |∇h|2pt, xq ` βξpt, xq t ą 0, x P Rd

hp0, xq ” 0 ,
(1.1.13)

Equation (1.1.13), which was introduced in [KPZ86] by the physicists Kardar, Parisi and Zhang
is by now considered to be the universal model for random growth phenomena. It has attracted
a lot of interest recently after the celebrated work of M. Hairer [H13] and his subsequent theory
of regularity structures [H14], as well as the theories of paracontrolled distributions [GP17] and

4



energy solutions [GJ14] for the case of dimension d “ 1. Contrary to the case of (1.1.4), the KPZ
equation is ill-posed in any dimension d ě 1 due the irregularity of the noise which causes the
|∇h|2 term in (1.1.13) to be apriori ill-defined.

Although the Cole-Hopf transformation providing the link between mSHE and KPZ consists in
a formal calculation that does not apriori make sense, there are important reasons why one should
consider it to be the correct notion of solution to the KPZ equation, originating from the case of one
spatial dimension d “ 1. First, as we stressed out previously, in dimension d “ 1, equation (1.1.4),
is well posed in its mild form and the solution u is positive [Mü91]. Moreover, if we consider the
solution uε to the counterpart of (1.1.4) where the noise has been mollified, then uε Ñ u uniformly
on compact sets and and since upt, xq ą 0 for t ą 0 we may define hε :“ log uεpt, xq. Then, by
Itô’s formula hε satisfies the equation

Bthεpt, xq “ 1
2∆hεpt, xq ` 1

2 |∇hε|2pt, xq ` β ξεpt, xq ´ Cε

where Cε :“ β2ε´2 ∥j∥22 is the Itô correction. Second, it was proven some years ago in a seminal
work by Bertini and Giacomin [BG97], that the fluctuations of a discrete particle system, the
stationary weakly asymmetric simple exclusion (WASEP), under a suitable rescaling, are governed
by the Cole-Hopf solution. An additional argument in favour of the Cole-Hopf solution as the
canonical solution to the KPZ equation is that it has the conjectured in [KPZ86] scaling exponents
as it was established in [BQS11].

1.2. Overview of the existing literature and our results
We will now present in more details some established results for DPREd in the case of the

supercritical/disorder irrelevant dimensions d ě 3 for the directed polymer, mSHE and KPZ equa-
tions, as well as in the case of the critical/marginal dimension d “ 2. We will also present our
results and explain how they fit in the existing literature.

1.2.1. The case of dimensions d ě 3. The first contributions in this direction came from the
works of Imbrie-Spencer [IS88] and Bolthausen [B89] who showed the existence of a weak disor-
der regime for DPREd in dimensions d ě 3 when the strength of disorder β is small enough. In
particular, it was shown that almost surely, paths weighted by the polymer measure (1.1.1) are dif-
fusive in the large scale limit. The regime of β that was considered in these works was what we call
here theL2 regime, which is characterised by theL2pPq boundedness of the partition functionZN,β
as N Ñ 8. This regime can be explicitly characterised as follows. Let λ2pβq :“ λp2βq ´ 2λpβq

and denote by πd the probability that a simple symmetric random walk on Zd starting from the
origin, will return to the origin. Then, the L2 regime corresponds to the interval

`

0, βL2pdq
˘

,
where

βL2 :“ βL2pdq :“ sup
␣

β : λ2pβq ă log
`

1
πd

˘(

.

This characterisation is achieved by the simple and standard computation

E
“

pZN,βq2
‰

“ Eb2
“

eλ2pβqL
p1,2q

N
‰

“ E
“

eλ2pβqLN
‰

, (1.2.1)

where L
p1,2q

N :“
řN
n“1 1tS

p1q
n “S

p2q
n u

law
“ LN :“

řN
n“1 1tS2n“0u. Since, the simple random walk is

transient in dimensions d ě 3, LN converges almost surely to a random variable L8 as N Ñ 8

and L8 follows a geometric distribution with success probability πd ă 1. Specifically, it is not
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hard to see that limNÑ8 E
“

pZN,βq2
‰

“ E
“

eλ2pβqL8
‰

and

E
“

eλ2pβqL8
‰

“

#

1´πd
1´πde

λ2pβq , if λ2pβq ă logp 1
πd

q

8 , otherwise.
(1.2.2)

In theL2-regime it was also proven by Sinai [S95] and later by Vargas [V06], also in the continuum,
that a local limit theorem holds for the polymer.

The weak disorder regime was subsequently characterised by the works of Comets, Shiga,
Yoshida [CSY03, CSY04, CY06] as the regime of β ă βcpdq, such that ZN,β is a uniformly inte-
grable martingale sequence and as such converges almost surely to a strictly positive random vari-
able Z8,β . It was proven in [CY06] that the polymer is diffusive in this regime, extending previous
results that were limited to the L2 regime. For β ą βcpdq, ZN,β converges to 0 as N Ñ 8. The
latter is called the strong disorder regime. Clearly, one has βcpdq ě βL2pdq and in fact it took some
time to resolve the nontriviality of the interval

`

βL2pdq, βcpdq
˘

, see [BS10, BS11, BT10, BGH11].
The parameter βc marks the transition to a stronger disorder phase where the polymer localises in
a few regions where the environment is more favorable, see [Ch19], [BC20a], [BC20b], [Ba21].
In the strong disorder phase it is expected that the polymer exhibits super-diffusive behaviour but
this has yet to be proven. Additional limitations for studying the directed polymer above or at
the weak/strong disorder transition poses the fact that that a concrete characterisation of βc is still
missing. Some indirect descriptions have been given in [CY06] in terms of the overlap between
two independent paths under the polymer measure and more recently by Junk, in [J22], in the case
of bounded environment ω, in terms of the integrability of the running supremum supNPN ZN,β .
Let us note that although little is known for the limit of the partition function Z8,β in dimensions
d ě 3, limiting theorems have been established for the difference ZN,β ´ Z8,β for small β ą 0,
by Comets and Liu in [CL17] and later extended in the full L2 regime by Cosco and Nakajima
[CN21]. See also [CCM22] for results of similar flavour in the continuum.

0 βL2 βc 8

L2 regime

weak disorder strong disorder

FIGURE 1.2.1. The phase diagram of DPREd in dimensions d ě 3.

A weak/strong disorder transition similar to that of the directed polymer in dimensions d ě 3

has been established for the solution of the regularised mSHE (1.1.6) by Muhkerjee, Shamov and
Zeitouni [MSZ16]. Particular focus has been devoted to studying spatial correlations of the solution
to the regularised mSHE as ε Ó 0, when viewed as a field

!

uεpt, xq : x P Rd
)

or equivalently for the diffusively rescaled polymer partition function field
!

ZN,β
`

t
?
Nxu

˘

: x P Rd
)

,

as well as the corresponding questions for the solution to the KPZ equation and log-partition func-
tion. The first contribution in this direction in the supercritical dimensions d ě 3 was the work of
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by Magnen and Unterberger [MU18] for the KPZ equation. In particular, the authors of [MU18]
considered a regularised KPZ equation (with noise regularised both in space and time) and proved,
using the Cole-Hopf mapping to the solution of the mSHE, that as the regularisation is removed
the solution to the KPZ equation converges as a field to the Edwards-Wilkinson model, that is, the
fluctuations of the limiting field are described by the solution to the additive stochastic heat equa-
tion (1.1.9), but with an effective noise strength. Their work was based on rigorous adaptation of
ideas originating in Quantum Field Theory, in particular, perturbation expansions and multi-scale
analysis via the renormalisation group. It was later shown by Gu, Ryzhik and Zeitouni in [GRZ18]
that when centred and scaled appropriately, the solution of the regularised mSHE also converges
as a field to the Edwards-Wilkinson model, again with an effective noise strength, strictly larger
than the noise strength parameter used to define the original equation. Moreover, the Edwards-
Wilkinson fluctuations for the KPZ equation obtained by Magnen and Unterberger [MU18] was
also proved by Dunlap et al. in [DGRZ18] using Malliavin calculus techniques. Both works were
restriced in a small β regime.

Our first contribution, contained in Chapter 2 is the proof of the limiting Edwards-Wilkinson
fluctuations for the diffusively rescaled, centred and scaled random field

!

N
d´2
4

´

ZN,β
`

t
?
Nxu

˘

´ 1
¯

: x P Rd
)

, (1.2.3)

(corresponding to the solution of the regularised mSHE at fixed time t “ 1†) and for the diffusively
rescaled, centred and scaled random field of log-partition functions

!

N
d´2
4

´

logZN,β
`

t
?
Nxu

˘

´ E
“

logZN,β
`

t
?
Nxu

˘‰

¯

: x P Rd
)

, (1.2.4)

(corresponding to the solution of the regularised KPZ equation at time t “ 1). In particular, if
φ P CcpRdq is a test function, we prove that the sequences

N
d´2
4

ÿ

xPZd

´

ZN,βpxq ´ 1
¯φp x?

N
q

N
d
2

and

N
d´2
4

ÿ

xPZd

´

logZN,βpxq ´ E
“

logZN,βpxq
‰

¯φp x?
N

q

N
d
2

both converge as N Ñ 8 in distribution to the same limiting Gaussian random variable Zβpφq.
Our result unlike the previous works [MU18], [GRZ18] and [DGRZ18] covers the full L2 regime
β P p0, βL2q and is in some sense optimal since the variance of the limit, Zβpφq, blows up at L2

critical point β “ βL2 . Our methods, as we will explain in more detail Chapter 2, are based on
analysis of chaos expansions inspired by works on scaling limits of disordered systems [CSZ17a,
CSZ16] and two dimensional polymers, SHE and KPZ [CSZ17b, CSZ20] (alternative methods to
the two dimensional case, which however do not cover the whole L2 - in this case also subcritical
- regime, are those of [CD20, G20]).

Let us also mention that analogous to our results, for regularisations of SHE and KPZ as in
(1.1.11), (1.1.13) were simultaneously and independently established by Cosco, Nakajima and
Nakashima [CNN22] via quite different methods than ours, based on stochastic calculus and local
limit theorems for polymers inspired by earlier works of Comets, Neveu [CNe95] and of Sinai
[S95] (see also [V06, CN21, CCM22]).

†we stick to time t “ 1 for simplicity, while the case of general time t is recovered by replacing ZN,β with ZNt,β

in (1.2.3)
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A very interesting, open problem is to go beyond the L2 regime in dimension d ě 3. Currently,
the only work in this direction is a recent paper by Junk [J22+], in the case of bounded environment
ω, where it is shown that for β P pβL2 , βcq the centred, diffusively rescaled field averages with
respect to test functions φ P CcpRdq,

sZN,βpφq :“
ÿ

xPZd

´

ZN,βpxq ´ 1
¯φp x?

N
q

N
d
2

(1.2.5)

converge to zero, as N Ñ 8, at a rate N´hpβ,dq`op1q, with hpβ, dq ą d´2
4 . This however leaves

open the question of what the limiting fluctuations of the sequence
`

Nhpβ,dq
sZN,βpφq

˘

Ně1
are as

N Ñ 8.

1.2.2. The case of dimension d “ 2. As we mentioned earlier, the case of dimension d “ 2

is called marginal since the Harris criterion can not rule whether in this case the polymer exhibits
disorder relevance or irrelevance and similarly d “ 2 is called the critical dimension in the language
of SPDE. It was proved in [CY06] that DPRE2 exhibits strong disorder for every β P p0,8q, that
is the partition function ZN,β converges almost surely to 0 as N Ñ 8.

An underlying transition was later unveiled by the work of Caravenna, Sun and Zygouras in
[CSZ17b], when one focuses on a regime where the strength of the disorder is tuned down to 0 as

N Ñ 8. More specifically, the authors of [CSZ17b] showed that if one chooses βN :“ β̂
?
RN

NÑ8
«

β̂
b

π
logN , where RN “ E

“

L
p1,2q

N

‰

“
řN
n“1 q2np0q is the expected collision local time between two

independent random walks Sp1q, Sp2q and the asymptotic RN
NÑ8

« 1
π logN follows by [ET60], it

is true that as N Ñ 8,

ZN,βN
pdq

ÝÑ

$

&

%

exp
`

ϱβ̂X ´ 1
2ϱ

2
β̂

˘

, if β̂ P p0, 1q

0 , if β̂ ě 1 ,
(1.2.6)

where X follows a standard normal distribution N p0, 1q and ϱβ̂ :“ log
´

1
1´β̂2

¯

. Their result
encompasses also a large class of so called marginally relevant disordered systems which display
the same universal behaviour, along with the regularised mSHE with logarithmically attenuating
disorder strength

Btuεpt, xq “ 1
2∆uεpt, xq ` β̂

b

2π
log ε´1 puε ¨ ξεqpt, xq . (1.2.7)

0 8

strong disorder

0 β̂c

b

π
log N

subcritical pL2
q regime

FIGURE 1.2.2. The phase diagram of DPRE2, highlighting the presence of the
intermediate disorder regime when βN “ β̂

b

π
logN with β̂c “ 1 marking the

transition from the subcritical to the critical (β̂c “ 1) and supercritical (β̂c ě 1)
regimes.
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Note that (1.2.6) indicates a weak/strong disorder transition in the intermediate disorder regime
reminiscent of the weak/strong disorder transition observed in higher dimensions. Such a transition
can be guessed by a second moment computation. In particular, we have that in spatial dimension
d “ 2, as in (1.2.1),

E
“

pZN,βq2
‰

“ E
“

eλ2pβqL
p1,2q

N
‰

“ E
“

eλ2pβqLN
‰

,

where we recall that if Sp1q, Sp2q, S are independent simple symmetric random walks on Z2, then
L

p1,2q

N :“
řN
n“1 1tS

p1q
n “S

p2q
n u

, LN :“
řN
n“1 1tS2n“0u and L

p1,2q

N
law
“ LN , by the symmetry of S.

Contrary to the case of dimensions d ě 3, in the 2-dimensional case, due to the recurrence of the
simple random walk, LN does not converge as N Ñ 8. Instead, due to a classical result of Erdös
and Taylor [ET60], we have that

π
logN LN

pdq
ÝÑ Y , (1.2.8)

where Y is a random variable having exponential distribution with parameter 1, namely the density
of Y is given by fY pyq “ e´y 1yą0. It is not hard to prove then, that for the second moment of the
partition function ZN,βN with βN « β̂

b

π
logN we have

E
“

pZN,βN q2
‰ NÑ8

ÝÑ
1

1 ´ β̂2
,

which evidently blows up at β̂ “ 1. The regime β̂ P p0, 1q is called the subcritical regime while the
regime β̂ ě 1 is called the supercritical regime and β̂ “ 1, the critical point of the transition. Let
us note that contrary to the case of dimensions d ě 3, in dimension d “ 2 and in this intermediate
disorder regime, the L2 regime coincides with the subcritical regime.

In the same work [CSZ17b], Caravenna, Sun and Zygouras showed that in the subcritical
regime the limiting fluctuations of the centred, diffusively scaled and logarithmically rescaled field

!

a

logN
´

ZN,βN pt
?
Nxuq ´ 1

¯

: x P R2
)

(1.2.9)

are Gaussian (together with the analoguous result on mSHE). Both the pointwise and averaged re-
sults (1.2.6) and (1.2.9) relied on polynomial chaos expansions of the partition function ZN,βN pxq

(see next Chapters for more details), multi-scale analysis and the celebrated Fourth moment theo-
rem to show that certain multilinear polynomials of disorder variables are asymptotically Gauss-
ian, see also [CC22] for more recent results in this direction. What crucially underlies the analysis
carried out in [CSZ17b, CC22] is the exponential time scale induced by the logarithmic scaling
(1.2.8).

We also note a more recent generalisation due to Dunlap and Gu [DG22], who studied the
semilinear regularised mSHE

$

&

%

Btuε,apt, xq “ 1
2∆uε,apt, xq ` 1?

log ε´1
σ
`

uε,apt, xq
˘

ξεpt, xq , t ą 0, x P R2

uε,ap0, xq ” a
(1.2.10)

with σ : r0,8q Ñ r0,8q Lipschitz with σp0q “ 0 and Lipschitz constant σLip ă
?
2π and flat

initial condition a ą 0. They showed that the limiting one-point distribution of the solution uε,a
is described by a forward-backward SDE (FBSDE), recovering the log-normal fluctuations (1.2.6)
when σpxq “ x.
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In the context of the KPZ equation, Chatterjee and Dunlap in [CD20] showed that the solution
of the regularised KPZ equation

#

Bthεpt, xq “ 1
2∆hεpt, xq ` 1

2βε|∇hε|
2pt, xq ` ξεpt, xq t ą 0, x P R2

hεp0, xq ” 0 ,
(1.2.11)

with βε “ β̂
b

2π
log ε´1 and β̂ small enough, when viewed as a random field, centred and rescaled,

is tight as ε Ó 0. Moreover, any subsequential limit is not the solution of aSHE one obtains by
naively dropping the nonlinearity. Shortly after, Caravenna, Sun and Zygouras showed in [CSZ20]
considered the regularised KPZ equation
#

Bthεpt, xq “ 1
2∆hεpt, xq ` |∇hε|2pt, xq ` βε ξεpt, xq ´ Cε t ą 0, x P R2

hεp0, xq ” 0 ,
(1.2.12)

with βε “ β̂
b

2π
log ε´1 and Cε :“ β2εε

´2 ∥j∥22, and showed that the centred and scaled solution

1
βε

´

hεpt, xq ´ E
“

hεpt, xq
‰

¯

converges when ε Ó 0 (as random fields) for all β̂ P p0, 1q to the solution of the Edwards-Wilkinson
equation

#

Btvpt, xq “ 1
2∆vpt, xq ` cβ̂ ξpt, xq t ą 0, x P R2

vp0, xq ” 0
(1.2.13)

with cβ̂ :“
b

1
1´β̂2

, (see also [G20] where the same result was proven but for β̂ sufficiently small).

The two equations (1.2.11) and (1.2.12) are equivalent, which can be seen through the relation

1
βε

´

hεpt, xq ´ E
“

hεpt, xq
‰

¯

dist
“ hεpt, xq ´ E

“

hεpt, xq
‰

,

see [CSZ20], Appendix A.
As we discussed earlier, outside the subcritical regime, namely, for βN “ β̂

a

πplogNq´1

with β̂ ě 1 the partition function ZN,βN converges in distribution to 0, while for all h P N with
h ě 2 the hth moment E

“

pZN,βN qh
‰

blows up as N Ñ 8, see [CSZ19a]. This suggests that, at
criticality, the field

!

ZN,βN
`

t
?
Nxu

˘

: x P R2
)

(1.2.14)

becomes rough as N Ñ 8 and the correct point of view is therefore to look at it as a random
distribution, that is when tested against test functions. The first work in this direction was carried
out by Bertini and Cancrini [BC98], who showed that in the context of the critical mSHE, there
exists a critical window of disorder strength around β̂c “ 1 for which the field (1.2.14) is tight,
and explicitly computed the limiting covariance structure. Their analysis was based on the spectral
theory of Schrödinger operators with point interactions.

The result of Bertini and Cancrini for the critical 2-dimensional mSHE was later rediscovered
by Caravenna, Sun and Zygouras via probabilistic methods in the context of the directer polymer
[CSZ19a, CSZ19b], where they also showed that the third moment of the field tested against test
functions is bounded as N Ñ 8 and as a consequence all subsequential limits are non-trivial and
have the covariance structure computed by Bertini and Cancrini. The work of Gu, Quastel and
Tsai [GQT21] further showed that all centred positive integer moments of the field (1.2.14) are
bounded as N Ñ 8, inspired by the works of Dell’Antonio, Figari, Teta [DFT94] and Dimock,
Rajeev [DR04] on the 2-dimensional delta Bose gas. However, these moment estimates are not
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sufficient to determine the distribution because the moments grow too fast. More recently, the
question of uniqueness of the limiting field was settled by Caravenna, Sun and Zygouras. Utilising
chaos expansions, a space-time renewal structure, moment estimates and a Lindeberg principle
for multilinear polynomials of dependent variables, the authors showed that, indeed, there exists a
unique limiting field, named thereafter, the Critical 2d Stochastic Heat Flow, which is the natural
candidate for the long sought solution to the critical 2-dimensional mSHE.

Let us also mention that there has been significant progress in understanding the so called
Anisotropic KPZ (aKPZ) equation in dimension d “ 2, which is formally given by

Bth “ 1
2∆h` λ

`

pB1hq2 ´ pB2hq2
˘

` ξ . (1.2.15)

The first work in this direction is due to Cannizzaro, Erhard and Schönbauer who showed in
[CES21] that the regularised aKPZ

Bth
N “ 1

2∆h
N ` λNN rhN s ` ξ (1.2.16)

where NN rhN s :“ ΠN
`

pΠNB1h
N q2 ´ pΠNB2h

N q2
˘

and ΠN cuts the Fourier modes larger than

N , has non-trivial subsequential limits when λ is going to 0 as λ “ λ̂?
logN

. Note that, instead
of discretisation or mollification of the noise, the regularisation of (1.2.15) is done by replacing
the nonlinearity with the regularised version NN rhN s, where the regularisation is taking place
in Fourier space. Furthermore, Cannizzaro, Erhard and Toninelli showed in [CET21+] that the
solution to the regularised aKPZ (1.2.16) with λ “ λ̂?

logN
viewed as a random field converges to

the Edwards-Wilkinson model with non-trivial coefficients. Focusing on a different scaling regime,
Cannizzaro, Erhard and Toninelli showed in [CET20a+], [CET20b+] that when λ is being kept
fixed and not varying with N , the solution to aKPZ is logarithmically superdiffusive. We stress
that contrary to the isotropic KPZ (1.1.13), there is no Cole-Hopf transform for the anisotropic
KPZ and therefore it cannot be reduced to a problem involving directed polymers. One important
ingredient crucially utilised in the above works however, is that aKPZ in the form (1.2.15) (the
anisotropic problem can be formulated more generally, see [CES21]) admits the Gaussian Free
Field as an invariant measure.

We will devote the rest of this introduction to a specific problem concerning the 2-dimensional
directed polymer partition function in the intermediate disorder regime which was the motivation
for the material presented in Chapters 3 and 4, and draw the connection with other models that are
of interest.

1.2.3. Moments of the polymer partition function and collisions of independent random
walks in d “ 2. It is an interesting and non-trivial question whether all moments of the parti-
tion function ZN,βN remain uniformly bounded as N Ñ 8 in the same regime of β̂ where the
second moment remains uniformly bounded. Information on moments higher than two in the sub-
critical regime has already appeared necessary in a number of situations, in particular in proving
tightness and regularity properties of the approximations to the solutions of the 2d-KPZ [CD20]
or Edwards-Wilkinson universality for the 2d-KPZ [CSZ20, G20]. The lack of control on higher
moments was resulting into restrictions to strict subsets of the subcritical regime in [CD20, G20],
while this was circumvented in [CSZ20] by employing hypercontractivity to show, for any β̂ ă 1,
the uniform boundedness of moments up to certain order hpβ̂q ą 2 with limβ̂Ò1 hpβ̂q “ 2.
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In Chapter 3 we resolve this question, showing that all moments of ZN,βN are uniformly
bounded as N Ñ 8 in the subcritical regime β̂ P p0, 1q. Combining this result with the distribu-
tional convergence (1.2.6) we can actually compute the limit of all moments. More specifically,
we show that for βN “ β̂

b

π
logN with β̂ P p0, 1q and for all h ě 0†,

lim
NÑ8

E
”

`

ZN,βN
˘h
ı

“

ˆ

1

1 ´ β̂2

˙

hph´1q

2

. (1.2.17)

We also apply our techniques to show that the moments of the averaged field are uniformly bounded
and therefore converge to those of a Gaussian free field due to [CSZ17b]. Our approach for proving
moment boundedness generalises moment bounds that were established in [CSZ21+] and used
therein to prove uniqueness of the scaling limit of the polymer field at the critical temperature
scaling. The work of Caravenna, Sun and Zygouras was inspired by the previous work of Gu,
Quastel and Tsai [GQT21] in the context of the critical 2d mSHE, which was based on the works
of Dell’Antonio, Figari, Teta [DFT94] and Dimock, Rajeev [DR04] on the delta Bose gas. The
main idea used in [GQT21], [CSZ21+] and also in our setting is to expand the centred hth moment
of the partition function into a chaos series, and then rewrite this expansion into the form of a
composition of certain transition operators applied to an initial condition and a terminal condition.
The required moment bounds are then a result of norm operator estimates. In [GQT21] these
norm operator estimates are carried out in an L2 setting, while in [CSZ21+] they are extended,
in a discrete setting, to ℓq for all q P p0,8q. In order to be able to prove moment boundedness
and consequently convergence (1.2.17), it was necessary to compute sharp asymptotics of these
operator norms as q Ñ 8, see Chapter 3 for a detailed outline of our proof.

As we further explain in Chapter 3, moment convergence (1.2.17) has more implications be-
yond the directed polymer and in particular in the context of collisions between independent ran-
dom walks on the 2-dimensional lattice Z2. More specifically, let h P N and Sp1q, Sp2q, . . . , Sphq

denote independent simple symmetric random walks on Z2, all starting from the origin. If we
choose the law of ω to be standard Gaussian N p0, 1q then a standard computation shows that

E
”

`

ZN,βN
˘h
ı

“ Ebh

„

e
β̂2

ř

1ďiăjďh
π

logN
L

pi,jq

N

ȷ

(1.2.18)

where Lpi,jq

N :“
řN
n“1 1Spiq

n “S
pjq
n

denotes the collision local time of walks Spiq and Spjq. Therefore,
as we show in Chapter 3, (1.2.18) in conjunction with (1.2.17) implies that the logarithmically
scaled total pairwise collision local time between Sp1q, Sp2q, . . . , Sphq, namely,

π
logN

ÿ

1ďiăjďh

L
pi,jq

N ,

converges in distribution as N Ñ 8 to a Γ
`hph´1q

2 , 1
˘

distributed random variable, where Γpa, 1q

is the law with density function 1
Γpaq

xa´1e´x1txą0u and in the last expression Γpaq denotes the
gamma function.

Given that a gamma distribution Γpk, 1q, with parameter k ě 1, arises as the distribution
of the sum of k independent random variables each one distributed according to an exponential
random variable with parameter one (denoted as Expp1q), the convergence of the total collision
local time, π

logN

ř

1ďiăjďh L
pi,jq

N to a Γ
`hph´1q

2 , 1
˘

distributed random variable raises the question

†The result extends to all h ă 0, provided that the law of ω satisfies a concentration condition, see the statement of
Theorem 3.0.1 for more details.
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as to whether the joint distribution of the individual rescaled collision times
!

π
logN L

pi,jq

N

)

1ďiăjďh

converges to that of a family of independent Expp1q random variables. Chapter 4 is devoted to the
proof of this fact.

An intuitive way to understand the convergence of the individual collision times, or equiva-
lently of the local time of a planar walk, to an exponential variable is the following. By (1.2.8), the
number of visits to zero of a planar walk, which starts at zero, is OplogNq and, thus, much smaller
than the time horizon 2N . Typically, also, these visits happen within a short time, much smaller
than 2N , so that every time the random walk is back at zero, the probability that it will return there
again before time 2N is not essentially altered. This results in the local time LN being close to
a geometric random variable with parameter of order plogNq´1 (as also manifested by (1.2.8)),
which when rescaled suitably converges to an exponential random variable.

The fact that the joint distribution of
!

π
logN L

pi,jq

N

)

1ďiăjďh
converges to that of independent

exponentials is much less apparent as the collision times have obvious correlations. A way to
understand this is, again, through the fact that collisions happen at time scales much shorter than
the time horizon N and, thus, every time two walks start colliding they have essentially ’forgot-
ten’ their previous collisions with other walks. More crucially, the logarithmic scaling, as indi-
cated via (1.2.8), introduces a separation of scales between collisions of different pairs of walks,
which is what, essentially, leads to the asymptotic factorisation of the joint Laplace transform of
!

π
logN L

pi,jq

N

)

1ďiăjďh
. This intuition is reflected in the two main steps in our proof, which are

carried out in Sections 4.2.3 and 4.2.4.
Even though the Erdös-Taylor theorem (1.2.8) appeared a long time ago, the multivariate ex-

tension we establish in Chapter 4 appears to be new. In [GS09] it was shown that the law of
π

logN L
p1,2q

N , conditioned on Sp1q, converges a.s. to that of an Expp1q random variable. This im-

plies that
␣

π
logN L

p1,iq
N

(

1ăiďh
converge to independent exponentials. However, it does not address

the full independence of the family of all pairwise collisions
␣

π
logN L

pi,jq

N

(

1ďiăjďh
.

In the continuum, phenomena of independence in functionals of planar Brownian motions have
appeared in works around log-scaling laws see [PY86] (where the term log-scaling laws was in-
troduced) as well as [Y91] and [Kn93]. These works are mostly concerned with the problem of
identifying the limiting distribution of windings of a planar Brownian motion around a number of
points z1, ..., zk, different than the starting point of the Brownian motion, or the winding around
the origin of the differences Bpiq ´Bpjq between k independent Brownian motions Bp1q, ..., Bpkq,
starting all from different points, which are also different than zero. Without getting into details, we
mention that the results of [PY86, Y91, Kn93] establish that the windings (as well as some other
functionals that fall within the class of log-scaling laws) converge, when logarithmically scaled,
to independent Cauchy variables. [Kn93] outlines a proof that the local times of the differences
Bpiq ´ Bpjq, 1 ď i ă j ď k, on the unit circle tz P R2 : |z| “ 1u converge, jointly, to inde-
pendent exponentials Expp1q, when logarithmically scaled, in a fashion similar to the scaling of
Theorem 4.0.1. The methods employed in the above works rely heavily on continuous techniques
(Itô calculus, time changes etc.), which do not have discrete counterparts. In fact, the passage from
continuous to discrete is not straightforward either at a technical level (see e.g. the discussion on
page 41 of [Kn93] and [Kn94]) or at a phenomenological level (see e.g. discussion on page 736 of
[PY86]).

Exponential moments of collision times arise naturally when one looks at moments of partition
functions of the model of directed polymer in a random environment, see (1.2.18). We note that the
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asymptotic independence of the logarithmically scaled collision local times
!

π
logN L

pi,jq

N

)

1ďiăjďh

that we establish provides an explanation for the exponent hph´1q

2 in (1.2.18) since asymptotic
independence implies the asymptotic factorisation

Ebh

„

e
β̂2

ř

1ďiăjďh
π

logN
L

pi,jq

N

ȷ

NÑ8
«

ź

1ďiăjďh

E

„

e
β̂2 π

logN
L

pi,jq

N

ȷ

which produces the exponent hph´1q

2 in (1.2.18).
Let us close this introduction with some possible further prospects of the work we develop in

Chapters 3 and 4. A first application of the overall methodology that we develop here could be used
to investigate the growth of the moments of the point-to-plane partition (or equivalently the solution
of the SHE with delta initial conditions) at the critical temperature scaling β̂ “ 1. It is known
[CSZ19a] that the second moment of this quantity grows as logN . Moreover, boundedness of the
moments of the averaged field (3.0.8) at this critical temperature scaling has been established in
[GQT21, Che21+] for all moments and in [CSZ19b] for the third moment. See also [CSZ22+] for
explicit moment lower bounds for the averaged field at the critical temperature scaling. However,
the rate of growth of the hth moment of the point-to-plane partition function, in this case, is not
known. It is expected to be of the form plogNqmphq but the exponent mphq has not been determined,
yet. We believe that the approach we develop here can shed some light to this question.

Moment estimates are also important in establishing fine properties, such as structure of max-
ima, of the field of log-partition functions

!

a

logN
´

logZN,β
`

t
?
Nxu

˘

´ E
“

logZN,β
`

t
?
Nxu

˘‰

¯

: x P R2
)

,

which is known to converge to a log-correlated Gaussian field [CSZ20]. We refer to [CZ21+]
for more details. We expect that the independence structure of the collision local times, that we
establish here, to be useful towards these investigations. An interesting problem, in relation to
this (but also of broader interest), is how large can the number h of random walks be (depending
on N ), before we start seeing correlations in the limit of the rescaled collisions. The work of
Cosco-Zeitouni [CZ21+] has shown that there exists β0 P p0, 1q such that for all β P p0, β0q and
h “ hN P N such that

lim sup
NÑ8

3β

1 ´ β

1

logN

ˆ

h

2

˙

ă 1 ,

one has that

Ebh

„

e
π β

logN

ř

1ďiăjďh L
pi,jq

N

ȷ

ď cpβq

´ 1

1 ´ β

¯ph2qp1`εN q

,

with cpβq P p0,8q and 0 ď εN “ εpβ,Nq Ó 0 as N Ñ 8. This suggests that the threshold might
be h “ hN “ Op

?
logNq.
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CHAPTER 2

Edwards-Wilkinson fluctuations for the directed polymer
in the full L2-regime for dimensions d ě 3

In this chapter we study the directed polymer in random environment (DPREd) in dimensions
d ě 3. We recall that the random environment pωn,xqpn,xqPNˆZd is a collection of i.i.d. random
variables with law P such that

Erωs “ 0, Erω2s “ 1, λpβq :“ logEreβωs ă 8 , @β P p0,8q.

and S is a simple symmetric random walk on Zd, whose distribution we denote by Px when starting
from x P Zd. When starting from 0 we will refrain from using the subscript and just write P. We
will use the notation qnpxq :“ PpSn “ xq for the transition kernel of the random walk. The
partition function is defined as

ZN,βpxq :“ Ex

”

e
řN

n“1tβωn,Sn´λpβqu
ı

. (2.0.1)

We work in the so called L2 regime β P p0, βL2q, where

βL2 :“ βL2pdq :“ sup
␣

β : λ2pβq ă log
`

1
πd

q
(

,

with λ2pβq :“ λp2βq ´ 2λpβq. In this regime, the L2pPq norm of ZN,β is uniformly bounded.
Recall that

E
“

pZN,βpxqq2
‰

“ Eb2
“

e
λ2pβq

řN
n“1 1S

p1q
n “S

p2q
n

‰

“ E
“

eλ2pβqLN
‰

, (2.0.2)

where Sp1q, Sp2q are two independent copies of the simple random walk, starting from the origin,
with joint law denoted by Pb2. Moreover, LN :“

řN
n“1 1S2n“0 denotes the number of times that a

d-dimensional simple random walk returns to zero and for the second equality we made use of the
equality in law

řN
n“1 1S1

n“S2
n

law
“

řN
n“1 1S2n“0. In particular, we have that E

“

pZN,βpxqq2
‰ NÑ8

ÝÝÝÝÑ

E
“

eλ2pβqL8
‰

and

E
“

eλ2pβqL8
‰

“

#

1´πd
1´πde

λ2pβq , if λ2pβq ă logp 1
πd

q

8 , otherwise.
(2.0.3)

Our first result is the Edwards-Wilkinson fluctuations for the field of the partition functions,
namely,

Theorem 2.0.1. Let d ě 3, β P p0, βL2pdqq and consider the field of partition functions of the
d-dimensional directed polymer

`

ZN,βpxq
˘

xPZd . If φ P CcpRdq is a test function, denote by

sZN,βpφq :“
ÿ

xPZd

´

ZN,βpxq ´ E
“

ZN,βpxq
‰

¯φ
`

x?
N

˘

N
d
2

“
ÿ

xPZd

`

ZN,βpxq ´ 1
˘

φ
`

x?
N

˘

N
d
2

,

(2.0.4)

the centred and averaged partition function over φ. The rescaled sequence
`

N
d´2
4 sZN,βpφq

˘

Ně1

converges in distribution to a centred Gaussian random variable Zβpφq with variance given by

VarrZβpφqs “ Cβ
ż 1

0
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyq , (2.0.5)

15



where gp¨q is the d-dimensional heat kernel, Cβ “ σ2pβq Ereλ2pβqL8s and σ2pβq “ eλ2pβq ´ 1.

We also establish a similar result for the field of log-partition functions. In this case we will
additionally require that the disorder satisfies a (mild) concentration property (2.2.1). More pre-
cisely,

Theorem 2.0.2. Let d ě 3, β P p0, βL2pdqq and consider the fields of log-partition functions of
the d-dimensional directed polymer

`

logZN,βpxq
˘

xPZd , with disorder that satisfies concentration
property (2.2.1). If φ P CcpRdq is a test function, we have that

N
d´2
4

ÿ

xPZd

´

logZN,βpxq ´ E
“

logZN,βpxq
‰

¯φ
`

x?
N

˘

N
d
2

, (2.0.6)

converges in distribution to the centred Gaussian random variable Zβpφq defined in Theorem 2.0.1.

Remark 2.0.3. We remark that, in fact, the sequences defined in (2.0.4) and (2.0.6) converge
jointly to the random vector pZβpφq,Zβpφqq. This follows from the proof of Theorem 2.0.2 which
shows, after a series of approximations, that the difference of the two sequences converges to 0 in
L1pPq as N Ñ 8.

We will now describe the method we follow as well as the new ideas required. The basis of
our analysis is the chaos expansion of the polymer partition function as

ZN,βpxq “ 1 `

N
ÿ

k“1

σk
ÿ

1ďn1ă...ănkďN,
z1,...,zkPZd

qn1pz1 ´ xq

k
ź

i“2

qni´ni´1pzi ´ zi´1q

k
ź

i“1

ξni,zi , (2.0.7)

where qnpxq “ PpSn “ xq, σ “ σpβq :“
a

eλ2pβq ´ 1 and ξn,z :“ σ´1
`

eβωn,z´λpβq ´ 1
˘

, see
(2.1.1) for the details of this derivation.

To prove the central limit theorem for pN
d´2
4 sZN,βpφqqNě1 we make use of the so-called

Fourth Moment Theorem [dJ87, NP05, NPR10, CSZ17b], which states that a sequence of ran-
dom variables in a fixed Wiener chaos, normalised to have mean zero and variance one, converges
to a standard normal random variable if its fourth moment converges to 3. Of course, in order
to be able to reduce ourselves to a fixed chaos, we need to perform truncation and for this, the
assumption of bounded second moments (L2 regime) plays an important role. This approach of
analysing chaos expansions of partition functions was first used in [CSZ17b] in a framework that
also included the analysis of the two dimensional directed polymer and SHE. The work, which is
needed to carry out this approach in d ě 3, is actually easier than the d “ 2 case in [CSZ17b]. The
reason for this is that the variance of ZN,β is a functional of the local time LN , see (2.0.2), which
stays bounded in d ě 3 but grows logarithmically in d “ 2, introducing, in the latter case, a certain
multiscale structure. Still, a careful combinatorial accounting and analytical estimates, which ac-
tually deviate from those in [CSZ17b], are needed to handle the d ě 3 case. The detailed analysis
of such expansion is what allows to go all the way to the L2 critical temperature, as compared to
the previous works [GRZ18], [MU18].

For the Edwards-Wilkinson fluctuations of the log-partition function, namely Theorem 2.0.2,
we also adapt the approach of “linearisation” via chaos expansion proposed in [CSZ20]. However,
the analysis in d ě 3, required to achieve the goal of going all the way to βL2pdq, is rather more
subtle. The reason is that the power law prefactorN

d´2
4 in (2.0.6) (as opposed to the corresponding

logN prefactor in [CSZ20]) does not allow for any “soft” (or even more intricate) bounds à la
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Cauchy-Schwarz or triangle inequalities in the approximations. Instead, we have to look carefully
at the correlation structure that will cancel the N

d´2
4 . This correlation structure is rather obvious

in the case of the partition function and can be already understood by looking at the first term of
the chaos expansion of N

d´2
4 sZN,βpφq as derived from (2.0.7), which is

N
d´2
4

ÿ

xPZd

φp x?
N

q

N
d
2

ÿ

zPZd,1ďnďN

qnpz ´ xqξn,z ,

and whose variance is easily computed as

N
d´2
2

ÿ

x,y PZd

φp x?
N

qφp
y

?
N

q

Nd

ÿ

zPZd,1ďnďN

qnpz ´ xqqnpz ´ yq

“N
d´2
2

ÿ

x,y PZd

φp x?
N

qφp
y

?
N

q

Nd

ÿ

1ďnďN

q2npx´ yq .

The factor N
d´2
2 is then absorbed by the sum

ř

n q2npx ´ yq in a Riemann sum approximation.
What underlies the above computation is that correlations are captured by two independent copies
of the random walk, one starting at x and another at y, meeting at some point by time N . The
probability of such a coincidence event compensates for the N

d´2
2 .

When considering the log-partition functions, the above described mechanism is not obvious,
as logZN,β does not admit an equally nice and tractable chaos expansion. Nevertheless, it is neces-
sary (which was not the case in [CSZ20]) to tease out the aforementioned correlation structure, in
order to absorb N

d´2
4 and carry out the approximation. The way we do this is by writing logZN,β

(or more accurately a certain approximation, which we call logZAN,β , see (2.2.9)) as a martingale
difference:

logZN,β ´ E
“

logZN,β
‰

“
ÿ

jě1

´

E
“

logZN,β |Fj
‰

´ E
“

logZN,β |Fj´1

‰

¯

,

where tFj : j ě 1u,F0 “ tH,Ωu is a filtration generated as Fj “ σpωai : i “ 1, ..., jq with
ta1, a2, ...u an enumeration of N ˆ Zd. By adding the information from the disorder at a single
additional site at each time, we keep track of how the polymer explores the disorder and this allows
(after a certain “resampling” procedure) to keep track of the correlations. The martingale difference
approach we introduce has in some sense some similarity to the Clark-Ocone formula, which was
used in the work of [GRZ18, DGRZ18]. However, our approach of exploring a single new site
disorder at a time seems to be necessary for the precise estimates that we need, in order to reach
the whole L2 regime. Along the way, a fine use of concentration and negative tail estimates of the
log-partition function (e.g. Proposition 2.2.1) is made.

Once all the necessary approximations to the log-partition function are completed, the task is
then reduced to a central limit theorem for a partition function of certain sorts, thus bringing us
back to the context of Theorem 2.0.1. The previous work of [DGRZ18] seems to be necessarily
restricted to a small subregion of p0, βL2q, as a consequence of both the linearisation approach
employed but also more importantly (as far as we can tell) due to the use of the so-called “second
order Poincaré inequality” for the central limit theorem, which requires higher moment estimates
that lead outside the L2 regime, if β is not restricted to be small enough.
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2.1. The Central Limit theorem for sZN,βpφq

This section is devoted to the proof of Theorem 2.0.1. Throughout this chapter we rely on
polynomial chaos expansions of the partition function. Specifically, consider the partition function
of a polymer chain of length N starting from x at time zero. We can write

ZN,βpxq “ Ex

„

ź

1ďnďN, zPZd

etβωn,z´λpβqu1Sn“z

ȷ

“ Ex

„

ź

1ďnďN, zPZd

`

1 ` peβωn,z´λpβq ´ 1q1Sn“z

˘

ȷ

“ 1 `

N
ÿ

k“1

σk
ÿ

1ďn1ă...ănkďN,
z1,...,zkPZd

qn1pz1 ´ xq

k
ź

i“2

qni´ni´1pzi ´ zi´1q

k
ź

i“1

ξni,zi .

(2.1.1)

For pn, zq P N ˆ Zd we have denoted by ξn,z the centred random variables

ξn,z :“
eβωn,z´λpβq ´ 1

σ
. (2.1.2)

The number σ “ σpβq is chosen so that for pn, zq P NˆZd the centred random variables ξn,z have
unit variance. A simple calculation shows that σ “

a

eλp2βq´2λpβq ´ 1. Also, the last equality
in (2.1.1) comes from expanding the product in the second line of (2.1.1) and interchanging the
expectation with the summation. By using the expansion (2.1.1) we can derive an expression for
the averaged partition function. Let us fix a test function φ P CcpRdq. In the following we shall
use the notation

φN px1, ..., xkq :“
k
ź

i“1

φ
`

xi?
N

˘

, k ě 1 . (2.1.3)

We have

sZN,βpφq :“
ÿ

xPZd

pZN,βpxq ´ 1q
φN pxq

N
d
2

“

N
ÿ

k“1

σk
ÿ

1ďn1ă...ănkďN,
z1,...,zkPZd

˜

ÿ

xPZd

φN pxq

N
d
2

qn1px, z1q

¸

k
ź

i“2

qni´ni´1pzi´1, ziq
k
ź

i“1

ξni,zi

“

N
ÿ

k“1

sZ
pkq

N,βpφq ,

(2.1.4)

where

sZ
pkq

N,βpφq :“ σk
ÿ

1ďn1ă...ănkďN,
z1,...,zkPZd

˜

ÿ

xPZd

φN pxq

N
d
2

qn1px, z1q

¸

k
ź

i“2

qni´ni´1pzi´1, ziq
k
ź

i“1

ξni,zi .

(2.1.5)

2.1.1. Computation of the limiting variance. The first step towards the proof of Theorem 2.0.1
is the following proposition which identifies the limiting variance of the scaled sequence of centred
and averaged over φ partition functions, pN

d´2
4 sZN,βpφqqNě1.
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Proposition 2.1.1. Let d ě 3, β P p0, βL2q and fix φ P CcpRdq to be a test function. Consider the
sequence pN

d´2
4 sZN,βpφqqNě1, where sZN,βpφq is defined in (2.0.4). Then, one has that

Var
“

N
d´2
4 sZN,βpφq

‰ NÑ8
ÝÝÝÝÑ Cβ

ż 1

0
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyq ,

where Cβ “ σ2pβqEreλ2pβqL8s, σ2pβq “ eλ2pβq ´ 1 and g denotes the d-dimensional heat kernel.

For the proof of Proposition 2.1.1, we will need the following standard consequence of the
local limit theorem, which we prove for completeness.

Lemma 2.1.2. For any test function φ P CcpRdq we have that

lim
NÑ8

N
d
2

´1
N
ÿ

n“1

ÿ

x,y PZd

φN px, yq

Nd
q2npx´ yq

“

ż 1

0
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyq .

Proof. Recall that by the local limit theorem for the d-dimensional simple random walk, see
[LL10], one has that q2npxq “ 2

`

g 2n
d

pxq ` opn´ d
2 q
˘

1xPZd
even

, uniformly in x P Zd, as n Ñ 8,

where Zdeven :“ tx “ px1, ..., xdq P Zd : x1 ` ...` xd P 2Zu. The factor 2 comes from the period-
icity of the random walk. The kernel g 2n

d
pxq appears instead of g2npxq, because after n steps the

d-dimensional simple random walk Sn has covariance matrix n
d I . Let us fix ϑ P p0, 1q. Let us also

use the notation

Aϑ,N :“ N
d
2

´1
ϑN
ÿ

n“1

ÿ

x,y PZd

φN px, yq

Nd
q2npx´ yq ,

Bϑ,N :“ N
d
2

´1
N
ÿ

nąϑN

ÿ

x,y PZd

φN px, yq

Nd
q2npx´ yq .

Observe that if we bound φp
y

?
N

q in φN px, yq by its supremum norm and use that
ř

zPZd q2npzq “

1 we obtain that

Aϑ,N ď
∥φ∥8

N

ϑN
ÿ

n“1

ÿ

xPZd

φN pxq

N
d
2

ÿ

yPZd

q2npx´ yq ď
∥φ∥8

N

ϑN
ÿ

n“1

ÿ

xPZd

φN pxq

N
d
2

ď ∥φ∥8 ∥φ∥1 ϑ .

On the other hand, by using the local limit theorem and Riemann approximation one obtains that

Bϑ,N
NÑ8
ÝÝÝÝÑ

ż 1

ϑ
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyq .

By combining those two facts and letting ϑ Ñ 0, one obtains the desired result. □

We are now ready to present the proof of Proposition 2.1.1.

Proof of Proposition 2.1.1. Recalling (2.1.4) and using also the fact that terms of different degree
in the chaos expansion are orthogonal in L2pPq, one arrives into the following expression for the
variance of ZN,βpφq

Var
“

sZN,βpφq
‰

“

N
ÿ

k“1

σ2k
ÿ

1ďn1ă...ănkďN

ÿ

x,yPZd

φN px, yq

Nd
q2n1px´ yq

k
ź

i“2

q2pni´ni´1qp0q .
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We can factor out the k “ 1 term and change variables to obtain the expression:

N
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq

˜

1 `

N´n
ÿ

k“1

σ2k
ÿ

1ďℓ1ă...ăℓkďN´n

k
ź

i“1

q2pℓi´ℓi´1qp0q

¸

, (2.1.6)

where, by convention if n “ N the sum on the rightmost parenthesis is equal to 1. Furthermore,
one can observe that the right parenthesis is exactly equal to E

“

eλ2pβqLN´n
‰

, where we recall that
LN :“

řN
k“1 1S2k“0 denotes the number of times a random walk returns to 0 up to time N . Thus,

Var
“

N
d´2
4 sZN,βpφq

‰

“ N
d
2

´1
N
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yqEreλ2pβqLN´ns . (2.1.7)

The heuristic idea here is that, if in the expression (2.1.7) we ignore n in the expectation, then
the sum would factorise. Then, by noticing that Ereλ2pβqLN s converges and by using also Lemma
2.1.2, we obtain the conclusion of Proposition 2.1.1. Let us justify this heuristic idea rigorously.
We have that

E
“

eλ2pβqLN´n
‰

“ E
“

eλ2pβqLN
‰

` E
“

peλ2pβqLN´n ´ eλ2pβqLN q1LNąLN´n

‰

. (2.1.8)

Also,
ˇ

ˇ

ˇ
E
“

peλ2pβqLN´n ´ eλ2pβqLN q1LNąLN´n

‰

ˇ

ˇ

ˇ
ď 2E

“

eλ2pβqLN1LNąLN´n

‰

, (2.1.9)

by triangle inequality and because LN is non-decreasing. Using Hölder inequality we can further
bound the error in (2.1.8) as follows: We choose p ą 1 very close to 1, such that pλ2pβq ă logp 1

πd
q,

thus Erepλ2pβqLN s ă 8, for every N P N. This is only possible when β is in the L2-regime. Then,
by Hölder:

E
“

eλ2pβqLN1LNąLN´n

‰

ď E
“

epλ2pβqLN
‰
1
p P

`

LN ą LN´n

˘
1
q .

Hence,
ˇ

ˇ

ˇ
E
“

peλ2pβqLN´n ´ eλ2pβqLN q1LNąLN´n

‰

ˇ

ˇ

ˇ
ď Cp,β P

`

LN ą LN´n

˘
1
q ,

where Cp,β :“ 2E
“

epλ2pβqL8
‰
1
p ă 8.

Now, we split the sum in (2.1.7) into two parts. Let ϑ P p0, 1q. We distinguish two cases:
(Case 1) If n ď ϑN , then N ´ n ě p1 ´ ϑqN . Thus,

ˇ

ˇ

ˇ
E
“

peλ2pβqLN´n ´ eλ2pβqLN q1LNąLN´n

‰

ˇ

ˇ

ˇ
ď Cp,β PpLN ą Lp1´ϑqN q

1
q ,

since LN is non-decreasing in N . We also have that

PpLN ą Lp1´ϑqN q ď P
`

Dn ą p1 ´ ϑqN : S2n “ 0
˘

ď

8
ÿ

nąp1´ϑqN

q2np0q ÝÝÝÝÑ
NÑ8

0 ,

since
ř8
n“1 q2np0q ă 8, because d ě 3. Therefore, in this case we obtain that,

N
d
2

´1
ϑN
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yqEreλ2pβqLN´ns

“N
d
2

´1
ϑN
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq

´

Ereλ2pβqLN s ` op1q

¯

.
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(Case 2) If n ą ϑN , we have that:

N
d
2

´1
ÿ

nąϑN

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yqEreλ2pβqLN´ns

ďN
d
2

´1
ÿ

nąϑN

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yqEreλ2pβqL8s .

By combining the two cases above we get that, for every ϑ P p0, 1q

lim sup
NÑ8

VarrN
d´2
4 sZN,βpφqs ď σ2

ż ϑ

0
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyqEreλ2pβqL8s ` kpϑq ,

where

kpϑq ď Ereλ2pβqL8s σ2
ż 1

ϑ
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyq ,

and

lim inf
NÑ8

VarrN
d´2
4 sZN,βpφqs ě σ2

ż ϑ

0
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyqEreλ2pβqL8s .

It is clear that kpϑq ÝÑ 0 as ϑ ÝÑ 1, hence we obtain the desired result. □

2.1.2. Reduction to finite chaoses. We proceed towards the proof of the Central Limit Theorem
for the sequence

`

sZN,βpφq
˘

Ně1
of the averaged partition functions. In order to determine the

limiting distribution of the sequence
`

N
d´2
4 sZN,βpφq

˘

Ně1
, we use the Fourth Moment Theorem,

see [dJ87, NP05, NPR10, CSZ17b]. The strategy we deploy is the following: First, we show that
it suffices to consider a large M P N and work with a truncated version of the partition function,
namely

sZďM

N,βpφq :“
M
ÿ

k“1

σk
ÿ

1ďn1ă...ănkďN,
z1,...,zkPZd

˜

ÿ

xPZd

φN pxq

N
d
2

qn1pz1 ´xq

¸

k
ź

i“2

qni´ni´1pzi´zi´1q

k
ź

i“1

ξni,zi .

(2.1.10)
To do this it is enough to show that for any ε ą 0 we can choose a large M “ Mpεq such that
N

d´2
4 sZďM

N,βpφq and N
d´2
4 sZN,βpφq are ε-close in L2pPq, uniformly for N P N large. Then, by

using the Fourth Moment Theorem and the Crámer-Wold device, we show that the random vector
N

d´2
4

`

sZ
p1q

N,βpφq, ..., sZ
pMq

N,β pφq
˘

converges in distribution to a centred Gaussian random vector. This

allows us to conclude that the limiting distribution of N
d´2
4 sZďM

N,βpφq is a centred Gaussian. After

removing the truncation in M , we obtain the desired result for N
d´2
4 sZN,βpφq, namely Theorem

2.0.1.

We begin by proving that we can approximate sZN,βpφq in L2pPq, uniformly for large enough
N , by sZďM

N,βpφq for some large M P N.

Lemma 2.1.3. For every ε ą 0, there exists M0 P N, such that for all M ą M0

lim sup
NÑ8

∥∥∥N d´2
4 sZN,βpφq ´N

d´2
4 sZďM

N,βpφq

∥∥∥
L2pPq

ď ε .
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Proof. Consider ε ą 0. One has that
sZN,βpφq ´ sZďM

N,βpφq

“

N
ÿ

kąM

σk
ÿ

1ďn1ă...ănkďN,
z1,...,zkPZd

˜

ÿ

xPZd

φN pxq

N
d
2

qn1pz1 ´ xq

¸

k
ź

i“2

qni´ni´1pzi ´ zi´1q

k
ź

i“1

ξni,zi .

By an analogous computation as in Proposition 2.1.1 we have that∥∥∥N d´2
4 sZN,βpφq ´N

d´2
4 sZďM

N,βpφq

∥∥∥2
L2pPq

ďN
d
2

´1
N
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq

´

N´n
ÿ

kěM

σ2k
ÿ

1ďℓ1ă...ăℓkďN´n

k
ź

i“1

q2pℓi´ℓi´1qp0q

¯

ďN
d
2

´1
N
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq

´

N
ÿ

kěM

σ2k
ÿ

1ďℓ1ă...ăℓkďN

k
ź

i“1

q2pℓi´ℓi´1qp0q

¯

.

By Lemma 2.1.2 we have that

N
d
2

´1
N
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq ÝÝÝÝÑ

NÑ8

ż 1

0
dt

ż

RdˆRd

dxdy φpxqg 2t
d

px´ yqφpyq .

On the other hand, the sum in the rightmost parenthesis can be bounded by

´

N
ÿ

kěM

σ2k
ÿ

1ďℓ1ă...ăℓkďN

k
ź

i“1

q2pℓi´ℓi´1qp0q

¯

ď

N
ÿ

kěM

σ2kRkN ď

N
ÿ

kěM

σ2kRk8 ď

8
ÿ

kěM

σ2kRk8 ,

where RN “
řN
k“1 q2np0q is the expected number of visits to zero before time N of the simple

random walk and R8 “ limNÑ8 RN “
ř8
n“1 q2np0q. Since β is in the L2-regime, the series

ř8
kě1 σpβq2kRk8 is convergent. Therefore, we have that

8
ÿ

kěM

σ2kRk8 ÝÝÝÝÑ
MÑ8

0 .

Therefore, we conclude that if we take M to be sufficiently large we have that∥∥∥N d´2
4 sZN,βpφq ´N

d´2
4 sZďM

N,βpφq

∥∥∥
L2pPq

ď ε ,

uniformly for all large enough N P N, hence there exists M0 P N, so that for M ą M0:

lim sup
NÑ8

∥∥∥N d´2
4 sZN,βpφq ´N

d´2
4 sZďM

N,βpφq

∥∥∥
L2pPq

ď ε .

□

2.1.3. Joint convergence of chaoses of bounded degree. We proceed by showing that for any
M P N, the random vector N

d´2
4

`

sZ
p1q

N,βpφq, ..., sZ
pMq

N,β pφq
˘

converges in distribution to a Gaussian
vector. To do this we employ the Cramér-Wold device. Namely, we prove that for any M -tuple of
real numbers pt1, ..., tM q the linear combination N

d´2
4

řM
k“1 tk

sZ
pkq

N,βpφq converges in distribution
to a Gaussian random variable.

Proposition 2.1.4. For all M P N and pt1, ..., tM q P RM , N
d´2
4

řM
k“1 tk

sZ
pkq

N,βpφq converges in
distribution to a Gaussian random variable with mean zero and variance equal to

M
ÿ

k“1

t2k C
pkq

β

ż 1

0
dt

ż

R2d

dx dy φpxqg 2t
d

px´ yqφpyq ,
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where Cpkq

β “ σpβq2k
ÿ

0:“ℓ0ăℓ1ă...ăℓk´1

k´1
ź

i“1

q2pℓi´ℓi´1qp0q for k ą 1 and Cp1q

β “ σpβq2.

Proof. We start by introducing some shorthand notation that is going to be useful for a concise
presentation of the rest of the proof. For any u P Zd, τ pkq

u will denote a time-increasing sequence
of pk ` 1q space-time points pni, ziq0ďiďk Ă N ˆ Zd with a starting point pn0, z0q :“ p0, uq. We
will use the convention that for two sequences τ pkq

x “ pni, ziq0ďiďk and τ pℓq
y “ pmi, wiq0ďiďℓ, the

equality τ pkq
x “ τ

pℓq
y means that k “ ℓ and pni, ziq “ pmi, wiq for i “ 1, ..., k, that is for all points

in the sequences τ pkq
x and τ pℓq

y except the starting ones.
Given a sequence τ pkq

u “ pni, ziq1ďiďk, we will use the following notation

qpτ pkq

u q :“ qn1pz1 ´ uq

k
ź

i“2

qni´ni´1pzi ´ zi´1q and ξpτ pkq

u q :“
k
ź

i“1

ξni,zi .

Furthermore, recall from (2.1.3), that for a finite set tx1, ..., xku Ă Zd we use the notation

φN px1, ..., xkq :“
ź

uPtx1,...,xku

φ
`

u?
N

˘

. (2.1.11)

We start by deriving the limiting variance of N
d´2
4

řM
k“1 tk

sZ
pkq

N,βpφq. We have that

Var

ˆ

N
d´2
4

M
ÿ

k“1

tk sZ
pkq

N,βpφq

˙

“

M
ÿ

k“1

t2kN
d
2

´1 E
”

`

sZ
pkq

N,βpφq
˘2
ı

,

because for every k ě 1, E
”

sZ
pkq

N,βpφq

ı

“ 0 and if 1 ď k ă ℓ, we have that

E
”

sZ
pkq

N,βpφq sZ
pℓq
N,βpφq

ı

“ 0 ,

see (2.1.5). One can follow the steps of the proof of Proposition 2.1.1 to conclude that

lim
NÑ8

N
d
2

´1 E
”

`

sZ
pkq

N,βpφq
˘2
ı

“ Cpkq

β

ż 1

0
dt

ż

R2d

dx dy φpxqg 2t
d

px´ yqφpyq ,

where Cpkq

β :“σpβq2k
ÿ

0:“ℓ0ăℓ1ă...ăℓk´1

k´1
ź

i“1

q2pℓi´ℓi´1qp0q for k ą 1 and Cp1q

β :“σpβq2.

In order to show that N
d´2
4

řM
k“1 tk

sZ
pkq

N,βpφq converges in distribution to a Gaussian limit we
will employ the Fourth Moment Theorem, which states that a sequence of random variables in
a fixed Wiener chaos or multilinear polynomials of finite degree converge to a Gaussian random
variable if the 4th moment converges to three times the square of the variance, see [dJ87, NP05,
NPR10, CSZ17b] for more details. Namely, we will show that as N Ñ 8,

E

«

ˆ

N
d´2
4

M
ÿ

k“1

tk sZ
pkq

N,βpφq

˙4
ff

“ 3Var

«

N
d´2
4

M
ÿ

k“1

tk sZ
pkq

N,βpφq

ff2

` op1q .
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that is, the fourth moment of N
d´2
4

řM
k“1 tk

sZ
pkq

N,βpφq converges to 3 times its variance, squared. In
view of the chaos expansion (2.1.5) we have that

E

«

ˆ

N
d´2
4

M
ÿ

k“1

tk sZ
pkq

N,βpφq

˙4
ff

“Nd´2
ÿ

1ďa,b,c,dďM

tatbtctd E
”

sZ
paq

N,βpφq sZ
pbq

N,βpφq sZ
pcq

N,βpφq sZ
pdq

N,βpφq

ı

“Nd´2
ÿ

1ďa,b,c,dďM

tatbtctd σ
a`b`c`d

ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ˆ
ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

.

(2.1.12)

Since M is finite, we can fix a quadruple pa, b, c, dq and deal with the rest of the sum which
varies as N Ñ 8. Thus, we will focus on the sum

Nd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d
σa`b`c`d

ˆ
ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

,
(2.1.13)

instead of (2.1.12). We note that the expectation

E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

, (2.1.14)

is non-zero only if the random variables ξ appearing in the product, are matched to each other. This
is because, if a random variable ξ stands alone in the expectation (2.1.14), then due to independence
and the fact that every ξ has mean zero, the expectation is trivially zero. The possible matchings
among the ξ variables can be double, triple or quadruple. We cannot have more than quadruple
matchings, because points in a sequence τ psq

u are strictly increasing in time, thus they cannot match
with each other.

We will show that when N Ñ 8, only one type of matchings contributes to (2.1.13) and
hence also to (2.1.12). Specifically, the only configuration that contributes, asymptotically, is the
one where four random walk paths meet in pairs without switching their pair. In terms of the
sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w , this condition translates to that τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w must be pairwise
equal to two sequences which do not share any common points. For the rest of the proof, when
we say pairwise equal we will always mean pairwise equal to two distinct sequences which do not
share any common points. We will first focus on sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w , which do not satisfy
this condition and show that their contribution is negligible.

Consider sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w and let τ :“ τ paq

x Y τ pbq

y Y τ pcq

z Y τ pdq

w “ pfi, hiq1ďiď|τ |

with f1 ď f2 ď ¨ ¨ ¨ ď f|τ |. Let 1 ď i‹ ď |τ | be the first index, so that for all pu, sq P

tpx, aq, py, bq, pz, cq, pw, dqu, the sequences τ psq
u X

`

r1, fi‹q ˆ Zd
˘

are pairwise equal, but this fails
to hold for τ psq

u X
`

r1, fi‹s ˆ Zd
˘

, see figures 2.1.1, 2.1.2.
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Zd

...

...

p0, xq

p0, yq

p0, zq

p0, wq

pfi‹ , hi‹ q

pf̄a, h̄aq

p
¯
fb,

¯
hbq

...

...

...

...

pf̄1, h̄1q

p
¯
f1,

¯
h1q

(a)

Zd

...

...

p0, xq

p0, yq

p0, zq

p0, wq

pfi‹ , hi‹ q

pf̄a, h̄aq

p
¯
fb,

¯
hbq

...

...

...

...

pf̄1, h̄1q

(b)

FIGURE 2.1.1. (a) A sample T1 configuration. The walks start matching in pairs
px Ø y, z Ø wq, but then switch pair at pfi‹ , hi‹q. (b) The same configuration
after summation of all the possible values of the points pfi, hiqiąi‹ , of the initial
positions p0, zq, p0, wq and of all the points p

¯
fi,

¯
hiq1ďiăb.

If there does not exist such index 1 ď i‹ ď |τ |, then the four sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w have
to be pairwise equal. Their contribution to (2.1.12) is

3Nd´2
ÿ

1ďa,bďM

t2at
2
b σ

2pa`bq

ˆ
ÿ

x,y,z,wPZd

φN px, y, z, wq

N2d

ÿ

τ
paq
x “τ

paq
y , τ

pbq
w “τ

pbq
z ,

τ
paq
x Xτ

pbq
z “∅

qpτ paq

x q qpτ paq

y q qpτ pbq

w q qpτ pbq

z q .

(2.1.15)

The factor 3 accounts for the number of ways we can pair the sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w . The

sum in (2.1.15) equals 3Nd´2 E
”

`
řM
k“1 tk

sZ
pkq

N,βpφq
˘2
ı2

` op1q as N Ñ 8. The op1q factor is a

consequence of the restriction τ paq

x X τ pbq

z ‰ ∅ in (2.1.15), which excludes configurations of the
four random walk paths such that four walks meet simultaneously at a single point. It is part of the
proof below to show that the contribution of these configurations is negligible in the large N limit.

Hence, for now we can focus on the cases for which such a point pfi‹ , hi‹q exists and show
that their contribution is negligible for (2.1.12).
We distinguish the following cases for such sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w :
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‚ Type 1 pT1q. For all pu, sq P tpx, aq, py, bq, pz, cq, pw, dqu, we have τ psq
u X

`

r1, fi‹q ˆ

Zd
˘

‰ ∅.

‚ Type 2 pT2q. For exactly two of the points pu, sq P tpx, aq, py, bq, pz, cq, pw, dqu, we have

that τ psq
u X

`

r1, fi‹q ˆ Zd
˘

‰ ∅.

‚ Type 3 pT3q. For all pu, sq P tpx, aq, py, bq, pz, cq, pw, dqu we have that τ psq
u X

`

r1, fi‹q ˆ

Zd
˘

“ ∅.

Note that we have not included the case that three of the sets τ psq
u X

`

r1, fi‹q ˆ Zd
˘

are non-empty.
This is because, in this case, by the definition of i‹, we have that τ psq

u X
`

r1, fi‹q ˆ Zd
˘

have to be
pairwise equal, therefore all four of them are non-empty. Thus, this is the case of T1 sequences.

(T1 sequences). We begin with the case of T1 sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w . In this case, the four
random walks meet pairwise without switching their pair before time fi‹ . Let us suppose at first
that the walk starting from p0, xq is paired to the walk starting from p0, yq and the walk starting
from p0, zq is paired to the walk starting from p0, wq, that is

τ paq

x X
`

r1, fi‹q ˆ Zd
˘

“ τ pbq

y X
`

r1, fi‹q ˆ Zd
˘

and

τ pcq

z X
`

r1, fi‹q ˆ Zd
˘

“ τ pdq

w X
`

r1, fi‹q ˆ Zd
˘

.

We shall refer to this type of sequences as TxØy

1 . Analogously, we define TxØz
1 and TxØw

1 . By
symmetry it only suffices to consider TxØy

1 . We will first show how we can perform the summation

Nd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d
σa`b`c`d

ˆ
ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

1

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

.

(2.1.16)

Since the ξ variables have to be paired to each other, we can bound the expectation in (2.1.16) as

E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

ď C2M , C “ max
!

1,Erξ3s,Erξ4s

)

. (2.1.17)
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Moreover, since M is fixed and 1 ď a, b, c, d ď M we have that σa`b`c`d ď pσ _ 1q4M . There-
fore,

Nd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d
σa`b`c`d

ˆ
ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

1

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

ď C2M pσ _ 1q4MNd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

1

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q .

(2.1.18)

By the definition of T1 sequences, we have that for a given TxØy

1 sequence τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w , with
τ “ τ paq

x Y τ pbq

y Y τ pcq

z Y τ pdq

w “ pfi, hiq1ďiďp and p “ |τ |, we can decompose the sequence
pfi, hiq1ďiăi‹ into two disjoint subsequences pf̄1, h̄1q, ..., pf̄a, h̄aq and p

¯
f1,

¯
h1q, ..., p

¯
fb,

¯
hbq, see

Figure 2.1.1, so that

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q “ qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

ˆ q
¯
f1p

¯
h1 ´ zqq

¯
f1p

¯
h1 ´ wq

b
ź

i“2

q2p
¯
fi´

¯
fi´1qp¯

hi ´
¯
hi´1q

ˆ qνa
pfi‹ ´f̄aq

phi‹ ´ h̄aq qνb
pfi‹ ´

¯
fbq

phi‹ ´
¯
hbq

ˆ

mi‹`1
ź

m“1

q
fi‹`1´f

pi‹`1q
rm

phi‹`1 ´ hpi‹`1q
rm q ...

mp
ź

m“1

q
fp´f

ppq
rm

php ´ hppq
rmq .

(2.1.19)

For every i‹ ` 1 ď j ď p, the number mj ranges from 2 to 4 and indicates whether pfj , hjq

is a double, triple or quadruple matching. Furthermore, for every i‹ ` 1 ď j ď p and 1 ď

m ď mj , pf
pjq
rm , h

pjq
rmq is some space-time point which belongs to the sequence pfi, hiqi‹ďiďp Y

tpf̄a, h̄aq, p
¯
fb,

¯
hbqu, such that f pjq

rm ă fj . Also, the exponents νa, νb in (2.1.19) can take values
in t1, 2u and indicate whether the matching in pfi‹ , hi‹q was double, triple or quadruple. In any
case the product above is bounded by the corresponding expression for νa, νb “ 1, since we have
qnpxq ď 1.

In order to perform the summation in (2.1.16) for TxØy

1 sequences we make the following
observation. We can start by summing the last point pfp, hpq as follows: We use the fact that
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qnpxq ď 1 and Cauchy-Schwarz to obtain that

ÿ

pfp,hpq

mp
ź

m“1

q
fp´f

ppq
rm

php ´ hppq

rmq ď
ÿ

pfp,hpq

q
fp´f

ppq
r1

php ´ hppq

r1 qq
fp´f

ppq
r2

php ´ hppq

r2 q

ď

´

ÿ

pfp,hpq

q2
fp´f

ppq
r1

php ´ hppq

r1 q

¯
1
2
´

ÿ

pfp,hpq

q2
fp´f

ppq
r2

php ´ hppq

r2 q

¯
1
2

“

´

ÿ

fp

q
2pfp´f

ppq
r1

q
p0q

¯
1
2
´

ÿ

fp

q
2pfp´f

ppq
r2

q
p0q

¯
1
2

ďp
a

RN q2 “ RN ď R8“
πd

1 ´ πd
ă 1 .

(2.1.20)

For the last inequality, we used that the range of fp ´ f ppq

ri is contained in t1, 2, ..., Nu and the fact
that, πd ă 1

2 for d ě 3, since π3 « 0.34, see [Sp76], and πd`1 ă πd for d ě 3, see [OS96].
We can successively iterate this estimate for all values of pfi, hiq as long as i ą i‹. Therefore, by
recalling (2.1.16), (2.1.18) and (2.1.19) we deduce that

pσ _ 1q4MC2MNd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

1

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q

ď cM pσ _ 1q4M C2MNd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ˆ

2M
ÿ

a,b“1

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

ˆ

´

ÿ

p
¯
fi,

¯
hiq1ďiďb

q
¯
f1p

¯
h1 ´ zqq

¯
f1p

¯
h1 ´ wq

b
ź

i“2

q2p
¯
fi´

¯
fi´1qp¯

hi ´
¯
hi´1q

¯

ˆ

´

ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aqqpfi‹ ´
¯
fbqphi‹ ´

¯
hbq

¯

,

(2.1.21)

where cM is a constant combinatorial factor which bounds the number of different ways that the
points of TxØy

1 can be mapped to a fixed sequence pfi, hiq1ďiďp, for all p ď a`b`c`d
2 ď 2M .

Therefore, the last step for showing that the sum (2.1.16) has negligible contribution in (2.1.12) is
to show that for all fixed a, b the following sum vanishes when N goes to infinity:

rCMN
d´2

ÿ

x,y,z,wPZd

φN px, y, z, wq

N2d

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

ˆ

´

ÿ

p
¯
fi,

¯
hiq1ďiďb

q
¯
f1p

¯
h1 ´ zqq

¯
f1p

¯
h1 ´ wq

b
ź

i“2

q2p
¯
fi´

¯
fi´1qp¯

hi ´
¯
hi´1q

¯

ˆ

´

ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aqqpfi‹ ´
¯
fbqphi‹ ´

¯
hbq

¯

,

(2.1.22)

where rCM “ cM pσ _ 1q4M C2M . Let us describe how this can be done. In (2.1.22), we can
bound φp z?

N
qφp w?

N
q by ∥φ∥28 and sum out z, w using that

ř

uPZd qnpuq “ 1 so that we bound

28



(2.1.22) by

rCM ∥φ∥28
N2

ÿ

x,y PZd

φN px, yq

Nd

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

ˆ

´

ÿ

p
¯
fi,

¯
hiq1ďiďb

b
ź

i“2

q2p
¯
fi´

¯
fi´1qp¯

hi ´
¯
hi´1q

¯

ˆ

´

ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aqqpfi‹ ´
¯
fbqphi‹ ´

¯
hbq

¯

.

(2.1.23)

We sum out all points p
¯
fi´1,

¯
hi´1q2ďiăb successively, starting from p

¯
f1,

¯
h1q and moving forward.

The contribution of each of these summations is bounded by RN ă 1, since for each 2 ď i ă b,
ÿ

p
¯
fi´1,

¯
hi´1q

q2p
¯
fi´

¯
fi´1qp¯

hi ´
¯
hi´1q “

ÿ

¯
fi´1

q2p
¯
fi´

¯
fi´1qp0q ď RN ă 1 . (2.1.24)

because the range of
¯
fi ´

¯
fi´1 is contained in t1, ..., Nu. Therefore, we are left with estimating

rCM ∥φ∥28
N2

ÿ

x,y PZd

φN px, yq

Nd

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

ˆ

´

ÿ

pfi‹ ,hi‹ q

ÿ

p
¯
fb,

¯
hbq

qpfi‹ ´f̄aqphi‹ ´ h̄aqqpfi‹ ´
¯
fbqphi‹ ´

¯
hbq

¯

.

The contribution of the sums over p
¯
fb,

¯
hbq and pfi‹ , hi‹q is

ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aq
ÿ

p
¯
fb,

¯
hbq

qpfi‹ ´
¯
fbqphi‹ ´

¯
hbq ď N2 . (2.1.25)

by summing first over space, using that
ř

uPZd qnpuq “ 1 and then summing over time using that
the range of fi‹ ´ f̄a and fi‹ ´

¯
fb is contained in t1, ..., Nu. Therefore, it remains to show that the

following sum vanishes as N Ñ 8:

rCM ∥φ∥28
ÿ

x,y PZd

φN px, yq

Nd

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

.

We perform the summation over pf̄i, h̄iq for 2 ď i ď a starting from pf̄a, h̄aq and moving back-
ward. The contribution of each of these summations is bounded by RN ă 1. Consequently, we
need to show that

rCM ∥φ∥28
ÿ

x,y PZd

φN px, yq

Nd

ÿ

pf̄1,h̄1q

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq ÝÝÝÝÑ
NÑ8

0 .

By summing out the points h̄1 P Zd it suffices to show that

rCM ∥φ∥28
ÿ

x,y PZd

φN px, yq

Nd

ÿ

f̄1

q2f̄1px´ yq ÝÝÝÝÑ
NÑ8

0 .

But it follows from Lemma 2.1.2 that the last sum is OpN1´ d
2 q hence vanishes as N Ñ 8, since

d ě 3. Therefore, we have proved that the sum (2.1.16) vanishes as N Ñ 8. It is exactly the same
to prove the analogous sums for TxØz

1 and TxØw
1 sequences vanish as N Ñ 8.
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Zd

p0, xq

p0, yq

p0, zq

p0, wq

...

...

pfi‹ , hi‹ q

pfi˛ , hi˛ q

(a)
Zd

p0, xq

p0, yq

p0, zq

p0, wq

...

...

pfi‹ , hi‹ q

pfi˛ , hi˛ q

(b)

FIGURE 2.1.2. (a) A sample T2 configuration. (b) The same configuration after
summation of all possible values of the points pfi, hiqiąi˛ and of the initial posi-
tions p0, zq, p0, wq.

(T2 sequences) Recall that by the definition of T2 sequences we have that for exactly two of the
points pu, sq P tpx, aq, py, bq, pz, cq, pw, dqu, it holds for the corresponding sets τ psq

u X
`

r1, fi‹q ˆ

Zd
˘

‰ ∅ that

τ paq

x X
`

r1, fi‹q ˆ Zd
˘

“ τ pbq

y X
`

r1, fi‹q ˆ Zd
˘

‰ ∅

and

τ pcq

z X
`

r1, fi‹q ˆ Zd
˘

“ τ pdq

w X
`

r1, fi‹q ˆ Zd
˘

“ ∅ .

We will refer to this type of T2 sequences as TxØy

2 . Analogously, we can define TxØz
2 and TxØw

2 .
We will show that the sum

Nd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d
σa`b`c`d

ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

2

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

(2.1.26)

vanishes as N Ñ 8. By using (2.1.17) and the bound σa`b`c`d ď pσ _ 1q4M we obtain that

Nd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d
σa`b`c`d

ˆ
ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

2

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q E

«

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

ξpτ psq
u q

ff

ď C2M pσ _ 1q4MNd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

2

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q .

(2.1.27)

By the definition of pfi‹ , hi‹q we have that pfi‹ , hi‹q is the first point of at least one of the
sequences τ pcq

z , τ pdq

w . Let us assume that it is the first point of exactly one of them. We will refer
to this type of sequences, τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w , as TxØy

2,˛ sequences, see figure 2.1.2. Without loss
of generality, we may assume that pfi‹ , hi‹q is the first point of τ pcq

z . In that case, pfi‹ , hi‹q can
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be a double or triple matching. Let pfi˛ , hi˛q be the first point of τ pdq

w . We have that fi‹ ď fi˛ .
Therefore, we first show that

pσ _ 1q4MC2M Nd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ˆ
ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

2,˛

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q ÝÝÝÝÑ

NÑ8
0 .

(2.1.28)

Similarly to the case of T1 sequences, for given TxØy

2,˛ sequences τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w with τ “ τ paq

x Y

τ pbq

y Y τ pcq

z Y τ pdq

w “ pfi, hiq1ďiďp and p “ |τ |, the cardinality of τ , we have that (see Figure 2.1.2)

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q “ qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

ˆqνa
pfi‹ ´f̄aq

phi‹ ´ h̄aq qfi‹
phi‹ ´ zq qfi˛

phi˛ ´ wq

ˆ

mi‹`1
ź

m“1

q
fi‹`1´f

pi‹`1q
rm

phi‹`1 ´ hpi‹`1q
rm q ...

mi˛ ´1
ź

m“1

q
fi˛ ´f

pi˛q
rm

phi˛ ´ hpi˛q
rm q

ˆ

mi˛`1
ź

m“1

q
fi˛`1´f

pi˛`1q
rm

phi˛`1 ´ hpi˛`1q
rm q ...

mp
ź

m“1

q
fp´f

ppq
rm

php ´ hppq
rmq ,

(2.1.29)

where, for every i‹ ` 1 ď j ď p, the number mj ranges from 2 to 4 and indicates whether pfj , hjq

was a double, triple or quadruple matching. Also, for every i‹ ` 1 ď j ď p and 1 ď m ď mj ,
pf

pjq
rm , h

pjq
rmq is some space-time point which belongs to the sequence pfi, hiqi‹ďiďp Y tpf̄a, h̄aqu,

such that f pjq
rm ă fj . However, note that in the third line of (2.1.29), the product for pfi˛ , hi˛q runs

from m “ 1 to mi˛ ´ 1, since qfi˛
phi˛ ´ wq appears in the second line. The exponent νa in the

second line of (2.1.29) can take values 1 or 2 and indicates whether pfi‹ , hi‹q is a double or triple
matching; it cannot be a quadruple matching since we assumed that it is contained only in τ pcq

z and
not in τ pdq

w . In any case, we can bound qνa
pfi‹ ´f̄aq

phi‹ ´ h̄aq by qpfi‹ ´f̄aqphi‹ ´ h̄aq.
We first make some observations so that the presentation is more concise. By iterating (2.1.20)

we obtain that
ÿ

pfi˛`1,hi˛`1q

mi˛`1
ź

m“1

q
fi˛`1´f

pi˛`1q
rm

phi˛`1 ´hpi˛`1q
rm q ...

ÿ

pfp,hpq

mp
ź

m“1

q
fp´f

ppq
rm

php´hppq
rmq ď 1 . (2.1.30)

We also have that
ÿ

wPZd

φN pwq

N
d
2

qfi˛
phi˛ ´ wq “

1

N
d
2

ÿ

wPZd

φ
`

w?
N

˘

qfi˛
phi˛ ´ wq

ď
∥φ∥8

N
d
2

ÿ

wPZd

qfi˛
phi˛ ´ wq “

∥φ∥8

N
d
2

,

(2.1.31)

and then we can sum

ÿ

pfi˛ ,hi˛ q

mi˛ ´1
ź

m“1

q
fi˛ ´f

pi˛q
rm

phi˛ ´ hpi˛q
rm q ď

ÿ

pfi˛ ,hi˛ q

q
fi˛ ´f

pi˛q
r1

phi˛ ´ hpi˛q
r1 q ď N , (2.1.32)
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Having summed out the points pfi, hiqiěi˛ , we can iterate estimate (2.1.20) again to obtain that

ÿ

pfi‹`1,hi‹`1q

mi‹`1
ź

m“1

q
fi‹`1´f

pi‹`1q
rm

phi‹`1 ´ hpi‹`1q
rm q ...

ˆ
ÿ

pfi˛´1,hi˛´1q

mi˛´1
ź

m“1

q
fi˛´1´f

pi˛´1q
rm

phi˛´1 ´ hpi˛´1q
rm q ď 1 .

(2.1.33)

Therefore, in view of (2.1.29), (2.1.28) and by using (2.1.30), (2.1.31), (2.1.32) and (2.1.33) in
their respective order, we get that

pσ _ 1q4MC2MNd´2
ÿ

x,y,z,w PZd

φN px, y, z, wq

N2d

ÿ

τ
paq
x ,τ

pbq
y ,τ

pcq
z ,τ

pdq
w PTxØy

2,˛

ź

pu,sq Ptpx,aq,py,bq,
pz,cq,pw,dqu

qpτ psq
u q

ď ∥φ∥8 cM,˛ pσ _ 1q4M C2MN
d
2

´1
ÿ

x,y,z PZd

φN px, y, zq

N
3d
2

ˆ

2M
ÿ

a“1

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

ˆ

´

ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aq qfi‹
phi‹ ´ zq

¯

,

where cM,˛ is a constant combinatorial factor which bounds the number of possible assignments
of TxØy

2,˛ sequences, τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w to pfi, hiq1ďiďp. We set rCM,˛ :“ cM,˛ pσ _ 1q4M C2M . In
order to establish (2.1.28), we need to show that for all fixed a ď 2M

∥φ∥8
rCM,˛ N

d
2

´1ˆ

´

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1 ´ xqqf̄1ph̄1 ´ yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i ´ h̄i´1q

¯

ˆ

´

ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aq qfi‹
phi‹ ´ zq

¯

ÝÝÝÝÑ
NÑ8

0 .

In analogy to (2.1.31), we have that
ÿ

zPZd

φN pzq

N
d
2

qfi‹
phi‹ ´ zq ď

∥φ∥8

N
d
2

.

Furthermore, by summing over pfi‹ , hi‹q we deduce that
ÿ

pfi‹ ,hi‹ q

qpfi‹ ´f̄aqphi‹ ´ h̄aq ď N ,

since the spatial sum is equal to 1 and fi‹ ´ f̄a P t1, ..., Nu. Therefore, the last step in order to
establish (2.1.28) is to show that

rCM,˛ ∥φ∥28
ÿ

x,y PZd

φN px, yq

Nd

ÿ

pf̄i,h̄iq1ďiďa

qf̄1ph̄1´xqqf̄1ph̄1´yq

a
ź

i“2

q2
pf̄i´f̄i´1q

ph̄i´h̄i´1q ÝÝÝÝÑ
NÑ8

0 .

By summing over the points pf̄i, h̄iq2ďiďa, this amounts to proving that

rCM,˛ ∥φ∥28
ÿ

x,y PZd

φN px, yq

Nd

ÿ

f̄1

q2f̄1px´ yq ÝÝÝÝÑ
NÑ8

0 ,

which is true by Lemma 2.1.2. The same procedure can be followed for sequences of type TxØz
2,˛

and TxØw
2,˛ . So, this concludes the estimate for TxØy

2 sequences in the case that pfi‹ , hi‹q is the first
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point of only one of the sequences τ pcq

z , τ pdq

w and by symmetry also for the analogous cases for TxØz
2

and TxØw
2 .

Let us treat the case where pfi‹ , hi‹q is the first point of both sequences τ pcq

z , τ pdq

w . Then,
pfi‹ , hi‹q is a triple or quadruple matching, i.e. either pfi‹ , hi‹q P τ paq

x , τ pcq

z , τ pdq

w , or pfi‹ , hi‹q P

τ pbq

y , τ pcq

z , τ pdq

w , or pfi‹ , hi‹q P τ paq

x , τ pbq

y , τ pcq

z , τ pdq

w . Both cases can be treated as we did for T1 se-
quences. Namely, we can first restrict ourselves to the sequence pfi, hiq1ďiďi‹ by using the bound
we used in (2.1.20). After following the procedure we described for T1 sequences we get that the
sum in this case is either OpN´ d

2 q if pfi‹ , hi‹q is a triple matching and OpN´1´ d
2 q when pfi‹ , hi‹q

is a quadruple matching. Thus, in total the contribution of T2 sequences to (2.1.12), is OpN1´ d
2 q.

(T3 sequences). For all pu, sq P tpx, aq, py, bq, pz, cq, pw, dqu we have that τ psq
u X

`

r1, fi‹q ˆ Zd
˘

“

∅. This implies that i‹ “ 1 and pfi‹ , hi‹q is a triple or quadruple matching. It is easy to see,
using the technique for T1 and T2 sequences, that the contribution of T3 sequences to (2.1.12) is
OpN´ d

2 q.

Therefore, we have showed that the part of the sum (2.1.12) which is over sequences of Type
1 (T1), Type 2 (T2) or Type 3 (T3) is negligible in the N Ñ 8 limit. Thus, the proof is complete.

□

2.1.4. Proof of the CLT.

Proof of Theorem 2.0.1. By Proposition 2.1.4 we obtain that N
d´2
4 sZďM

N,βpφq converges in distri-
bution to a centred Gaussian random variable GM as N Ñ 8, with variance equal to

Var
“

GM
‰

“

M
ÿ

k“1

Cpkq

β

ż 1

0
dt

ż

R2d

dx dy φpxqg 2t
d

px´ yqφpyq.

We also have that

lim
MÑ8

Var
“

GM
‰

“

8
ÿ

k“1

Cpkq

β

ż 1

0
dt

ż

R2d

dx dy φpxqg 2t
d

px´ yqφpyq “ VarZβpφq ,

where Zβpφq is the random variable defined by Theorem 2.0.1, since

8
ÿ

k“1

Cpkq

β “ σ2pβq

8
ÿ

k“1

σpβq2pk´1q
ÿ

0:“ℓ0ăℓ1ă...ăℓk´1

k´1
ź

i“1

q2pℓi´ℓi´1qp0q “ σ2pβqEreλ2pβqL8s .

Combining this with Lemma 2.1.3, we obtain the conclusion of Theorem 2.0.1, that is

N
d´2
4 sZN,βpφq

pdq
ÝÝÝÝÑ
NÑ8

Zβpφq .

□

2.2. Edwards-Wilkinson fluctuations for the log-partition function
In this section we prove Theorem 2.0.2, namely, the Edwards-Wilkinson fluctuations for the log-
partition function.

We will need to impose one more condition to the random environment for technical reasons.
Specifically, we require that the law of the random environment satisfies a concentration inequality.
In particular, we assume that there exists an exponent γ ą 1 and constants C1, C2 ą 0, such that
for every n P N, 1-Lipschitz function f : Rn Ñ R and i.i.d. random variables ω1, ..., ωn having
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law P, we have that

P
´

ˇ

ˇfpω1, ..., ωnq ´Mf

ˇ

ˇ ě t
¯

ď C1 exp
´

´
tγ

C2

¯

, (2.2.1)

where Mf denotes a median of fpω1, ..., ωnq. One can replace the median by Erfpω1, ..., ωnqs, by
changing the constants C1, C2 appropriately. Condition (2.2.1) is satisfied if ω is bounded or has a
density of the form expp´V p¨q ` Up¨qq, where V is uniformly strictly convex and U is bounded,
see [Led01].

Condition (2.2.1) allows us to formulate the following estimate. For Λ Ă N ˆ Zd, let ZΛ
N,βpxq

denote the partition function which contains disorder only from Λ, that is

ZΛ
N,βpxq “ Ex

«

e
ř

pn,zqPΛtβωn,z´λpβqu1Sn“z

ff

.

Then, we have the following Proposition:

Proposition 2.2.1 (Left-tail estimate). For every β P p0, βL2q there exists a constant cβ ą 0, such
that: for every N P N, Λ Ă N ˆ Zd, one has that @t ě 0

P
´

logZΛ
N,βpxq ď ´t

¯

ď cβ exp
´

´
tγ

cβ

¯

,

where γ, is the exponent in (2.2.1).

As a consequence of Proposition 2.2.1 we also get the following boundedness of moments.

Proposition 2.2.2. For every β P p0, βL2q, Λ Ă N ˆ Zd and p ě 0,

sup
NPN

E
”

`

ZΛ
N,βpxq

˘´p
ı

ă 8 ,

sup
NPN

E
”

ˇ

ˇ logZΛ
N,βpxq

ˇ

ˇ

p
ı

ă 8 .

We refer to [CSZ20] for the proofs of Propositions 2.2.1, 2.2.2, as the method presented there
can be followed exactly to give those results in our case. For Proposition 2.2.1 see also [CTT17],
where this method appeared in the context of pinning models.

We will also need the existence of higher than 2 moments for the partition function. This can
be established with the use of hypercontractivity, for which we refer to Section 3 of [CSZ20] for a
detailed exposition. In particular, we have the following proposition:

Proposition 2.2.3. For every β P p0, βL2q and Λ Ă N ˆ Zd there exists p “ ppβq P p2,8q, such
that

sup
NPN

E
”

`

ZΛ
N,βpxq

˘p
ı

ă 8 .

Let us proceed to the sketch of the proof for the Edwards-Wilkinson fluctuations for the log-
partition function. For every x P Zd we define a microscopic space-time window around x as
follows

AxN “

!

pn, zq : 1 ď n ď N ε, |x´ z| ă N
ε
2

`αε

)

, (2.2.2)

for ε P
`

7
8 , 1

˘

and αε “ ε ¨ δε with δε P
`

0, 1´ε
8

˘

. In particular, αε P
`

0, ε64
˘

. We decompose the
partition function as:

ZN,βpxq “ ZAN,βpxq ` ẐAN,βpxq ,

where

ZAN,βpxq “ Ex

„

e
ř

pn,zqPAx
N

␣

βωn,z´λpβq

(

1Sn“z

ȷ

,
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is the partition function which contains disorder indexed only from the set AxN , while the remain-
der, ẐAN,βpxq “ ZN,βpxq ´ ZAN,βpxq, necessarily contains disorder from points outside of AxN
in its chaos decomposition, see also [CSZ20], Section 2, for analoguous definitions. The chaos
expansions of ZAN,βpxq, ẐAN,βpxq are

ZAN,βpxq “ 1 `
ÿ

kě1

σk
ÿ

pni,ziq1ďiďkĂAx
N

qn1pz1 ´ xq

k
ź

i“2

qni´ni´1pzi ´ zi´1q

k
ź

i“1

ξni,zi , (2.2.3)

and

ẐAN,βpxq “
ÿ

kě1

σk
ÿ

pni,ziq1ďiďkXpAx
N qc‰∅

qn1pz1 ´ xq

k
ź

i“2

qni´ni´1pzi ´ zi´1q

k
ź

i“1

ξni,zi . (2.2.4)

We can then write, for every x P Zd,

logZN,βpxq “ logZAN,βpxq ` log

ˆ

1 `
ẐAN,βpxq

ZAN,βpxq

˙

. (2.2.5)

The first step we take is to show that the contribution of the term logZAN,βpxq to the fluctuations
of logZN,βpxq is negligible, when averaged over x, in the following sense

Proposition 2.2.4. Let φ P CcpRdq be a test function. Then,

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

´

logZAN,βpxq ´ E
“

logZAN,βpxq
‰

¯

L2pPq
ÝÝÝÝÑ
NÑ8

0 . (2.2.6)

The second step is to prove that we can replace log
´

1 `
ẐA
N,βpxq

ZA
N,βpxq

¯

by
ẐA
N,βpxq

ZA
N,βpxq

. In particular, if

we define

ON pxq :“ log

ˆ

1 `
ẐAN,βpxq

ZAN,βpxq

˙

´
ẐAN,βpxq

ZAN,βpxq
,

then we will show that

Proposition 2.2.5. Let φ P CcpRdq be a test function. Then,

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

´

ON pxq ´ ErON pxqs

¯

L1pPq
ÝÝÝÝÑ
NÑ8

0 .

Therefore, we need to identify the fluctuations of the quotient ẐAN,βpxq{ZAN,βpxq. Note that this
quantity has mean zero since each term in the chaos expansion of ẐAN,βpxq contains disorder outside
AxN , see (2.2.4). To study the fluctuations of ẐAN,βpxq{ZAN,βpxq we define, for a suitable ϱ P pε, 1q,
the set

Bě
N “

`

rNϱ, N s X N
˘

ˆ Zd , (2.2.7)

and show, employing the local limit theorem for random walks, that the asymptotic factorisation
ẐAN,βpxq « ZAN pxq

`

ZB
ě

N,βpxq ´ 1
˘

takes place when we average over x, namely

Proposition 2.2.6. Let φ P CcpRdq be a test function. Then,

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ˆ

ẐAN,βpxq

ZAN,βpxq
´
`

ZB
ě

N,βpxq ´ 1
˘

˙

L1pPq
ÝÝÝÝÑ
NÑ8

0 .

The last step is to show that the fluctuations ofZB
ě

N,βpxq´1 when averaged over x, are Gaussian
with variance equal to that of Theorem 2.0.1, namely
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Proposition 2.2.7. Let φ P CcpRdq be a test function. Then, we have the following convergence in
distribution,

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

`

ZB
ě

N,βpxq ´ 1
˘ pdq

ÝÝÝÝÑ
NÑ8

Zβpφq ,

where Zβpφq is the centred normal random variable appearing in Theorem 2.0.1.

2.2.1. The contribution of logZAN,β through martingale difference decomposition. We begin
with the proof of Proposition 2.2.4.

Proof of Proposition 2.2.4. It suffices to restrict the summation and show that

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd
Cov

`

logZAN,βpxq, logZAN,βpyq
˘

ÝÝÝÝÑ
NÑ8

0 , (2.2.8)

because, by the definition of the sets AxN , if |x´ y| ą 2N
ε
2

`αε , then logZAN,βpxq and logZAN,βpyq

are independent, so their covariance is zero. The proof will be divided in four steps.

(Step 1) - Martingale decomposition. We will expand the covariance appearing in (2.2.8) by using
a martingale difference decomposition. Let tωa1 , ωa2 , ...u be an arbitrary enumeration of the dis-
order indexed by N ˆ Zd. We can then define a filtration pFjqjě1, such that Fj “ σpωa1 , ..., ωaj q.
We define also F0 “ t∅,Ωu, where Ω is the underlying sample space where the random vari-
ables pωn,zqpn,zqPNˆZd , are defined. Using this filtration we can write the difference logZAN,βpxq ´

ErlogZAN,βpxqs as a telescoping sum, namely

logZAN,βpxq ´ E
“

logZAN,βpxq
‰

“
ÿ

jě1

´

ErlogZAN,βpxq|Fjs ´ ErlogZAN,βpxq|Fj´1s

¯

. (2.2.9)

Then, using the shorthand notationDj,N pxq “ ErlogZAN,βpxq|Fjs´ErlogZAN,βpxq|Fj´1s we have
that:

Cov
`

logZAN,βpxq, logZAN,βpyq
˘

“
ÿ

k,jě1

ErDk,N pxqDj,N pyqs .

In fact, all the non-diagonal terms in the above sum are zero, since, if j ă k,

E
“

Dj,N pxqDk,N pyq
‰

“ E
”

E
“

Dj,N pxqDk,N pyq|Fj
‰

ı

“ E
”

Dj,N pxq E
“

Dk,N pyq|Fj
‰

ı

“ 0 ,

because Dj,N pxq is Fj-measurable and also

E
“

Dk,N pyq|Fj
‰

“ E
”

E
“

logZAN,βpyq|Fk
‰

ˇ

ˇ

ˇ
Fj

ı

´ E
”

E
“

logZAN,βpyq|Fk´1

‰

ˇ

ˇ

ˇ
Fj

ı

“ E
“

logZAN,βpyq|Fj
‰

´ E
“

logZAN,βpyq|Fj
‰

“ 0 ,

since Fj Ă Fk´1,Fk. Therefore, we can rewrite the sum in (2.2.8) as

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1

ErDj,N pxqDj,N pyqs . (2.2.10)

One has to make an important observation at this point. If aj is not contained in AxN , then
Dj,N pxq “ 0. Hence, the rightmost expectation in (2.2.10) is non-zero only for j ě 1, such
that aj P AxN XAyN .
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(Step 2) - Resampling. In this step we derive a closed form of the martingale differencesDj,N pxq.
In particular, let j ě 1 such that aj P AxN XAyN . Then, we claim that

Dj,N pxq “

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

, (2.2.11)

where Z
A,Taj

N,β pxq denotes the partition function in the environment tωakuk‰j Y rωaj , where rωaj is
an independent copy of ωaj .

Note that if fpωq is a function of the i.i.d. family of random variables ω “ tωaku8
k“1 and

Fj “ σ
`

tωaku1ďkďj

˘

, then

E
“

f |Fj
‰

“

ż

ź

kąj

Ppdωakq fpωq . (2.2.12)

Applying this observation to logZAN,βpxq we obtain that

E
“

logZAN,βpxq|Fj
‰

“

ż

ź

kąj

Ppdωakq logZAN,βpxq .

By resampling ωaj with an independent copy rωaj we can also write

E
“

logZAN,βpxq|Fj´1

‰

“

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q logZ
A,Taj

N,β pxq .

Therefore,

Dj,N pxq “

ż

ź

kąj

Ppdωakq

”

logZAN,βpxq ´

ż

Ppdrωaj q logZ
A,Taj

N,β pxq

ı

“

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

,

(2.2.13)

since ZAN,βpxq does not depend on rωaj . This concludes the proof of equation (2.2.11). The next
step shows how we can remove the logarithms.
(Step 3) - Removing the logarithms. We fix a positive number h P p0, 1´ε

2 q and for x P Zd, we
define

Ejpxq :“
!

ZAN,βpxq, Z
A,Taj

N,β pxq ě N´h
)

. (2.2.14)

We then decompose Dj,N pxq as follows

Dj,N pxq “

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

1Ejpxq

`

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

1Ec
j pxq .

(2.2.15)

We hereafter use the notation Dpbigq

j,N pxq, D
psmallq
j,N pxq for the two summands on the right hand side

of (2.2.15), respectively. The corresponding superscripts refer to the events Ejpxq (2.2.14). We
then have that

ÿ

jě1 : ajPAx
NXAy

N

E
”

Dj,N pxqDj,N pyq

ı

“
ÿ

l,l1 Ptbig,smallu

ÿ

jě1: ajPAx
NXAy

N

E
“

D
plq
j,N pxqD

pl1q
j,N pyq

‰

(2.2.16)
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and in view of (2.2.8) the rest of the proof will be devoted to showing that every sum in (2.2.16)
converges to zero after testing against φ and scaling by N

d
2

´1. We will first prove that

lim
NÑ8

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
pbigq

j,N pxqD
pbigq

j,N pyq

ı

“ 0 . (2.2.17)

Using that if x, y P rt,8q for some positive t ą 0, then | log x´ log y| ď 1
t |x´ y|, implies that

ˇ

ˇD
pbigq

j,N pxq
ˇ

ˇ ď

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
ˇ

ˇ logZAN,βpxq ´ logZ
A,Taj

N,β pxq
ˇ

ˇ1Ejpxq

ď Nh

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
ˇ

ˇZAN,βpxq ´ Z
A,Taj

N,β pxq
ˇ

ˇ1Ejpxq

ď Nh

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
ˇ

ˇZAN,βpxq ´ Z
A,Taj

N,β pxq
ˇ

ˇ ,

(2.2.18)

where we dropped the indicator function 1Ejpxq to obtain the third inequality. For the sake of the
presentation, we adopt the notation

wj,N pxq :“

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
ˇ

ˇZAN,βpxq ´ Z
A,Taj

N,β pxq
ˇ

ˇ , (2.2.19)

omitting the dependence in N . Using the estimate (2.2.18) and summing over j ě 1, such that
aj P AxN XAyN we deduce that

ÿ

jě1: ajPAx
NXAy

N

E
”

ˇ

ˇD
pbigq

j,N pxqD
pbigq

j,N pyq
ˇ

ˇ

ı

ď N2h
ÿ

jě1 : ajPAx
NXAy

N

E
”

wj,N pxqwj,N pyq

ı

. (2.2.20)

If we denote by Sx the path of a random walk starting at x we have

ZAN,βpxq ´ Z
A,Taj

N,β pxq “ σpβqpξaj ´ rξaj qEx
“

e
Hx
AKaj1ajPSx

‰

, (2.2.21)

where
HxAKaj pωq :“

ÿ

aPAx
NKtaju

“

βωa ´ λpβq
‰

1aPSx , (2.2.22)

and recall from (2.1.2) that

ξaj “
eβωaj ´λpβq

´ 1

σpβq
and rξaj “

eβrωaj ´λpβq
´ 1

σpβq
.

At this point, we will bound wj,N pxq. By (2.2.19) and (2.2.21) we have that

wj,N pxq “

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
ˇ

ˇZAN,βpxq ´ Z
A,Taj

N,β pxq
ˇ

ˇ

“

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj qσpβq |ξaj ´ rξaj |Ex
“

e
Hx
AKaj

pωq
1ajPSx

‰

.

We will perform this integration in steps. The expectation, Ex
“

e
Hx
AKaj

pωq
1ajPSx

‰

, does not depend
on rωaj by (2.2.22), and we have by triangle inequality

ż

Ppdrωaj qσpβq |ξaj ´ rξaj | ď σpβq

´

|ξaj | ` 1
¯

. (2.2.23)
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Furthermore, by exchanging the integral and the expectation we deduce that
ż

ź

kąj

PpdωakqEx
“

e
Hx
AKaj

pωq
1ajPSx

‰

“ Ex
“

e
Hx
AXta1,...,aj´1u

pωq
1ajPSx

‰

, (2.2.24)

where
HxAXta1,...,aj´1upωq :“

ÿ

1ďkďj´1,
akPAx

N

“

βωak ´ λpβq
‰

1akPSx .

If j “ 1, we set the corresponding energy to be equal to 0. Hence, combining (2.2.23) and (2.2.24)
we obtain that

wj,N pxq ď σpβq

´

|ξaj | ` 1
¯

Ex
“

e
Hx
AXta1,...,aj´1u

pωq
1ajPSx

‰

.

Therefore, by Fubini we get that

wj,N pxqwj,N pyq ď σ2pβq

´

|ξaj | ` 1
¯2

Ex,y
“

e
Hx
AXta1,...,aj´1u

pωq`Hy
AXta1,...,aj´1u

pωq
1ajPSxXSy

‰

,

which after taking the expectation Er ¨ s leads to

E
”

wj,N pxqwj,N pyq

ı

ď 4σ2pβqEx,y
“

eλ2pβqLN px,yq1ajPSxXSy

‰

. (2.2.25)

Therefore, by summing over j ě 1 such that aj P AxN XAyN we deduce that
ÿ

jě1 : ajPAx
NXAy

N

E
”

wj,N pxqwj,N pyq

ı

ď 4σ2pβqEx,y
“

eλ2pβqLN px,yqLNεpx, yq
‰

. (2.2.26)

Note that the rightmost overlap, LNεpx, yq, goes up to time N ε, since by (2.2.2), for every j ě 1,
such that aj P AxN XAyN , aj has time index t ď N ε, therefore

ÿ

jě1 : ajPAx
NXAy

N

1ajPSxXSy ď

Nε
ÿ

n“1

1Sx
n“Sy

n
:“ LNεpx, yq .

Recalling (2.2.20) we get that
ÿ

jě1 : ajPAx
NXAy

N

E
”

ˇ

ˇD
pbigq

j,N pxqD
pbigq

j,N pyq
ˇ

ˇ

ı

ď N2h 4σ2pβqEx,y
“

eλ2pβqLN px,yq LNεpx, yq
‰

.

So far, we have shown that

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
pbigq

j,N pxqD
pbigq

j,N pyq

ı

ď 4σ2pβqN
d
2

´1`2h
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd
Ex,y

“

eλ2pβqLN px,yqLNεpx, yq
‰

.

(2.2.27)

Therefore, to establish (2.2.17), we derive an upper bound for Ex,y
“

eλ2pβqLN px,yqLNεpx, yq
‰

. Let
us denote by τx,y the first meeting time of two independent random walks starting from x, y P Zd,
respectively. By conditioning on τx,y we obtain

Ex,y

”

eλ2pβqLN px,yqLNεpx, yq

ı

“

Nε
ÿ

n“1

Ex,y

”

eλ2pβqLN px,yqLNεpx, yq|τx,y “ n
ı

Ppτx,y “ nq .
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Using the Markov property we obtain

Nε
ÿ

n“1

Ex,y

”

eλ2pβqLN px,yqLNεpx, yq|τx,y “ n
ı

Ppτx,y “ nq

“

Nε
ÿ

n“1

E
”

eλ2pβqp1`LN´nq
`

1 ` LNε´n

˘

ı

Ppτx,y “ nq .

For every 1 ď n ď N ε, we can bound the expectation

E
”

eλ2pβqp1`LN´nq
`

1 ` LNε´n

˘

ı

ď eλ2pβq
´

E
“

eλ2pβqL8
‰

` E
“

eλ2pβqL8L8

‰

¯

:“ cpβq ă 8 ,

because β P p0, βL2q, see (2.0.3). Moreover, we have that

Ppτx,y “ nq ď
ÿ

zPZd

qnpz ´ xqqnpz ´ yq “ q2npx´ yq .

Therefore,

Ex,y

”

eλ2pβqLN px,yqLNεpx, yq

ı

ď cpβq

Nε
ÿ

n“1

q2npx´ yq . (2.2.28)

Recalling (2.2.17), (2.2.27) and (2.2.28), in order to conclude Step 3, we need to show that

N
d
2

´1`2h
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

Nε
ÿ

n“1

q2npx´ yq ÝÝÝÝÑ
NÑ8

0 .

We bound φp
y

?
N

q by its supremum norm and use the fact that
ř

zPZd q2npzq “ 1, to obtain that

N
d
2

´1`2h
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

Nε
ÿ

n“1

q2npx´ yq ď ∥φ∥8 N2h`ε´1
ÿ

xPZd

φN pxq

N
d
2

ď ∥φ∥8 ∥φ∥1N
2h`ε´1 .

(2.2.29)

Since h P p0, 1´ε
2 q, we have that 2h ` ε ă 1, hence the last bound vanishes as N Ñ 8, which

concludes the proof of (2.2.17).
(Step 4) - Events of small partition functions. Let us see how one can treat the rest of the terms
in the expansion (2.2.16), which involve the complementary events Ecj pxq, defined in (2.2.14). We
need to show that

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
psmallq
j,N pxqD

pbigq

j,N pyq

ı

ÝÝÝÝÑ
NÑ8

0 ,

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
psmallq
j,N pxqD

psmallq
j,N pyq

ı

ÝÝÝÝÑ
NÑ8

0 .

(2.2.30)

It suffices to show one of the these results, since all of them can be treated with similar arguments.
Let us present for example the proof that

lim
NÑ8

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
pbigq

j,N pxqD
psmallq
j,N pyq

ı

“ 0 .

Recall from (2.2.15) that

D
pbigq

j,N pxq “

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

1Ejpxq ,
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and
D

psmallq
j,N pyq “

ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

1Ec
j pxq .

By Cauchy-Schwarz one has that

E
”

D
pbigq

j,N pxqD
psmallq
j,N pyq

ı

ď E
”

`

D
pbigq

j,N pxq
˘2
ı

1
2

E
”

`

D
psmallq
j,N pyq

˘2
ı

1
2
.

Note that then,

E
”

`

D
pbigq

j,N pxq
˘2
ı

“

ż

ź

kě1

Ppdωakq

ˆ
ż

ź

kąj

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰

¨ 1Ejpxq

˙2

ď

ż

ź

kě1

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰2

¨ 1Ejpxq

ď

ż

ź

kě1

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰2

(2.2.31)

by Jensen’s inequality and because 1Ejpxq ď 1. Therefore, using the elementary inequality pa ´

bq2 ď 2pa2`b2q and Proposition (2.2.2) we deduce that there exists a constantC “ Cpβq P p0,8q

such that

E
”

`

D
pbigq

j,N pxq
˘2
ı

1
2

ď
`

2E
“

plogZAN,βq2
‰˘

1
2 ď C , (2.2.32)

Similarly, we obtain that

E
”

`

D
psmallq
j,N pyq

˘2
ı

ď

ż

ź

kě1

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰2

¨ 1Ec
j pxq .

and via Cauchy-Schwarz we deduce that

E
”

`

D
psmallq
j,N pyq

˘2
ı

ď

ˆ
ż

ź

kě1

Ppdωakq

ż

Ppdrωaj q
“

logZAN,βpxq ´ logZ
A,Taj

N,β pxq
‰4
˙

1
2

¨ Pω, rω
`

Ecj pxq
˘

1
2

ď 4E
“

plogZAN,βq4
‰

Pω, rω
`

Ecj pxq
˘

1
2

ďC Pω, rω
`

Ecj pxq
˘

1
2 ,

(2.2.33)

where we used the shorthand notation Pω, rω
`

Ecj pxq
˘

for
ż

ź

kě1

Ppdωakq

ż

Ppdrωaj q1Ec
j pxq .

By a union bound we have that

Pω, rω
`

Ecj pyq
˘

ď 2P
`

ZAN,βpyq ă N´h
˘

“ 2P
`

ZAN,β ă N´h
˘

.

Therefore, by (2.2.32) and (2.2.33) there exists a constant C “ Cpβq P p0,8q, such that for all
j ě 1,

E
”

D
pbigq

j,N pxqD
psmallq
j,N pyq

ı

ď C P
`

ZAN,β ă N´h
˘

1
4 .
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Substituting the above upper bound to (2.2.30) we obtain that

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
pbigq

j,N pxqD
psmallq
j,N pyq

ı

ďC N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

P
`

ZAN,β ă N´h
˘

1
4 .

ďC P
`

ZAN,β ă N´h
˘

1
4 N

d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ˇ

ˇAxN XAyN
ˇ

ˇ

From definition (2.2.2), we have |AxN X AyN | “ O
`

N ε`dp ε
2

`αεq
˘

“ O
`

N1`d
˘

. We also have
that the probability PpZAN,β ă N´hq decays super-polynomially by Proposition 2.2.1 and so does

P
`

ZAN,β ă N´h
˘

1
4 . Indeed, by Proposition 2.2.1,

P
´

ZAN,β ă N´h
¯

1
4

ď c
1
4
β exp

ˆ

´
ph logNqγ

4cβ

˙

, γ ą 1 ,

Thus, we have that

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
pbigq

j,N pxqD
psmallq
j,N pyq

ı

ďC P
`

ZAN,β ă N´h
˘

1
4 |AxN XAyN |N

d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ďC ∥φ∥21 P
`

ZAN,β ă N´h
˘

1
4 N

d
2

`d

“OpN
3d
2 qe´O

`

plogNqγ
˘

.

Since γ ą 1, the last bound vanishes and therefore we conclude that

N
d
2

´1
ÿ

|x´y|ď2N
ε
2 `αε

φN px, yq

Nd

ÿ

jě1 : ajPAx
NXAy

N

E
”

D
pbigq

j,N pxqD
psmallq
j,N pyq

ı

ÝÝÝÝÑ
NÑ8

0 .

□

2.2.2. Taylor approximation. We now proceed to the proof of Proposition 2.2.5. We will need
the following lemma which provides a bound on the rate of decay of E

”

`

ẐAN,βpxq
˘2
ı

.

Lemma 2.2.8. For every β P p0, βL2q there exists a constant C “ Cpβ, d, εq P p0,8q, such that
E
”

`

ẐAN,βpxq
˘2
ı

ď C N´εp d
2

´1q.

Proof. By (2.2.4), the chaos expansion of E
”

`

ẐAN,βpxq
˘2
ı

is as follows.

E
”

`

ẐAN,βpxq
˘2
ı

“

N
ÿ

k“1

σ2k
ÿ

1ďn1ă...ănkďN,
x:“z0,z1,...,zkPZd,

D i P t1,...,ku: pni,ziq RAx
N

k
ź

i“1

q2ni´ni´1
pzi ´ zi´1q .

Since the rightmost summation is over sequences of k space-time points pni, ziq1ďiďk, such that at
least one of the points pni, ziq1ďiďk is not in AxN , for every such sequence, there exists at least one
index i P t1, ..., ku, such that |ni ´ ni´1| ą 1

kN
ε or |zi ´ zi´1| ą 1

kN
ε
2

`αε ; recall the definition
of AxN from (2.2.2). Thus, by changing variables wi :“ zi ´ zi´1, ℓi :“ ni ´ ni´1 and extending
the range of summation from 1 ď ℓ1 ` ...` ℓk ď N to ℓ1, ..., ℓk P t1, ..., Nu, we obtain that
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E
”

`

ẐAN,βpxq
˘2
ı

ď

N
ÿ

k“1

σ2k
ÿ

ℓ1,...,ℓkPt1,...,Nu,

w1,...,wkPZd

k
ÿ

j“1

´

1tℓją 1
k
Nεu ` 1␣

ℓjď 1
k
Nε,|wj |ą 1

k
N

ε
2 `αε

(

¯

k
ź

i“1

q2ℓipwiq.

By changing the order of summation, for each i ‰ j we have that

N
ÿ

ℓi“1

ÿ

wiPZd

q2ℓipwiq “

N
ÿ

n“1

q2np0q “ RN .

Thus,

E
”

`

ẐAN,βpxq
˘2
ı

ď

N
ÿ

k“1

k σ2kRk´1
N

ÿ

1ďnďN,
wPZd

´

1tną 1
k
Nεu ` 1␣

nď 1
k
Nε,|w|ą 1

k
N

ε
2 `αε

(

¯

q2npwq . (2.2.34)

Let us consider the contribution of the two indicator functions separately. For the first one, by
summing w P Zd, we obtain that

N
ÿ

k“1

k σ2kRk´1
N

ÿ

1ďnďN,
wPZd

1tną 1
k
Nεuq

2
npwq “

N
ÿ

k“1

k σ2kRk´1
N

ÿ

Nε

k
ănďN

q2np0q (2.2.35)

By the local limit theorem we have that q2np0q ď C

n
d
2

for a constant C “ Cpdq P p0,8q and

moreover using the standard estimate

ÿ

něA

1

n
d
2

ď A´ d
2 `

ż 8

A
x´ d

2 dx “ A´ d
2 `

A´p d
2

´1q

d
2 ´ 1

ď CA´p d
2

´1q .

we obtain that there exists a constant Cpdq P p0,8q so that
ÿ

Nε

k
ănďN

q2np0q ď C k
d
2

´1N´εp d
2

´1q .

Consequently, the contribution of the first indicator function (2.2.35) is bounded by

C N´εp d
2

´1q ¨

ˆ

ÿ

kě1

k
d
2

`

σ2pβqR8

˘k
˙

,

where R8 :“
ř

ně1 q2np0q ă 1. Since β lies in the L2-region, we have that σ2pβqR8 ă 1, and
therefore

8
ÿ

k“1

k
d
2

`

σ2pβqR8

˘k
ă 8 .

Therefore, the contribution of the first indicator function to E
“

pẐN,βpxqq2
‰

that is, (2.2.35), is

bounded by C N´εp d
2

´1q for some constant C “ Cpβ, dq P p0,8q.
For the contribution of the second indicator function in (2.2.34), namely the sum

N
ÿ

k“1

σ2kRk´1
N k

ÿ

n P t1,...,Nu,

wPZd

1␣
nď 1

k
Nε,|w|ą 1

k
N

ε
2 `αε

(q2npwq , (2.2.36)
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we have that
ÿ

1ďnďN,
wPZd

1␣
nď 1

k
Nε,|w|ą 1

k
N

ε
2 `αε

(q2npwq ď C
ÿ

1ďnď 1
k
Nε

n´ d
2 Pp|Sn| ą ϑk,N

?
nq ,

with ϑk,N :“ 1?
k
Nαε , which by the following moderate deviation estimate

P
´

max
0ďkďn

|Sk| ą ϑ
?
n
¯

ď C e´cϑ2 ,

with ϑ “ ϑk,N implies that
ÿ

1ďnďN,
wPZd

1␣
nď 1

k
Nε,|w|ą 1

k
N

ε
2 `αε

(q2npwq ď Ce´ c
k
N2αε

ÿ

1ďnď 1
k
Nε

n´ d
2 .

for a constant Cpdq P p0,8q. Notice that since d ě 3, the sum
ř

ně1 n
´ d

2 is finite therefore, there
exists a constant Cpdq P p0,8q such that (2.2.36) can be bounded as

N
ÿ

k“1

σ2kRk´1
N k

ÿ

n P t1,...,Nu,

wPZd

1␣
nď 1

k
Nε,|w|ą 1

k
N

ε
2 `αε

(q2npwq ď C
ÿ

kě1

k σ2kRk´1
N e´ c

k
N2αε

.

Moreover,
ÿ

kě1

k σ2kRk´1
N e´ c

k
N2αε

ď
ÿ

kďNαε

k σ2kRk´1
N e´ c

k
N2αε

`
ÿ

kąNαε

k σ2kRk´1
N e´ c

k
N2αε

ď e´cNαε
ÿ

1ďkďNαε

k σ2k Rk´1
N `

ÿ

kąNαε

k σ2k Rk´1
N

ď C ηN
αε
,

for constants η “ ηpβq P p0, 1q and C “ Cpβ, εq P p0,8q. Therefore, we deduce that there exists
a constant C “ Cpβ, d, εq P p0,8q such that E

”

`

ẐAN,βpxq
˘2
ı

ď C N´εp d
2

´1q. □

Proof of Proposition 2.2.5. It suffices to prove that:

lim
NÑ8

N
d´2
4 E

”

ˇ

ˇON pxq
ˇ

ˇ

ı

“ 0 .

As in [CSZ20] this is a careful Taylor estimate. We define

D˘
N :“

"

˘
ẐAN,βpxq

ZAN,βpxq
ą N´p

*

and DN :“ D`
N YD´

N “

" ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

ą N´p

*

,

for p “ d´2
4 p˚, with 0 ă p˚ ă 1 to be defined later. For q “ d´2

4 q˚ with 0 ă q˚ ă 1, also to be
specified later, we have that

PpDN q ď P
´

DN X

!

ZAN,βpxq ě N´q
(˘

` P
´

DN X

!

ZAN,βpxq ă N´q
(˘

ď P
´

ˇ

ˇẐAN,βpxq
ˇ

ˇ ą N´pp`qq
¯

` P
´

ZAN,βpxq ă N´q
¯

ď N2pp`qqE
”

pẐAN,βpxqq2
ı

` P
´

ZAN,βpxq ă N´q
¯

.

(2.2.37)

For the last inequality we used Chebyshev’s inequality. By Lemma 2.2.8 we have that

E
”

pẐAN,βpxqq2
ı

ď C N´εp d
2

´1q
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for some constant C “ Cpβq P p0,8q. By Proposition 2.2.1 we have that P
´

ZAN,βpxq ă N´q
¯

vanishes super-polynomially i.e.

P

ˆ

ZAN,βpxq ă N´q

˙

ď cβ exp

ˆ

´qγplogNqγ

cβ

˙

, γ ą 1 .

Therefore, by plugging those estimates into (2.2.37) we get that for a constant C “ Cpβq P p0,8q,

PpDN q ď C N2pp`qq´εp d
2

´1q . (2.2.38)

Furthermore, for a constant C P p0,8q, it is true that,

| logp1 ` yq ´ y| ď C ¨

$

’

’

’

&

’

’

’

%

b

|y|

1`y if ´ 1 ă y ă 0

y2 if ´ 1
2 ď y ď 1

2

|y| if 0 ă y ă 8

.

Hence,

E
”

ˇ

ˇON pxq
ˇ

ˇ

ı

ď E

„ˆ

ẐAN,βpxq

ZAN,βpxq

˙2

1Dc
N

ȷ

` E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
N

ȷ

` E

„

d

ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1D´
N

ȷ

. (2.2.39)

Let us deal with each term separately. We have that

E

„ˆ

ẐAN,βpxq

ZAN,βpxq

˙2

1Dc
N

ȷ

ď N´2p , (2.2.40)

by the definition of DN . We split the second term as follows:

E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
N

ȷ

“ E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
NXtZA

N,βpxqěN´qu

ȷ

` E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
NXtZA

N,βpxqăN´qu

ȷ

.

(2.2.41)

For the first summand of (2.2.40) we have that

E

„
ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
NXtZA

N,βpxqěN´qu

ȷ

ďN q E
”

ˇ

ˇẐAN,βpxq
ˇ

ˇ1D`
NXtZA

N,βpxqěN´qu

ı

ďN q E
”

ˇ

ˇẐAN,βpxq
ˇ

ˇ1D`
N

ı

ďN q E
”

`

ẐAN,βpxq
˘2
ı

1
2
PpDN q

1
2 ,

by Cauchy-Schwarz. By Lemma 2.2.8, we get that E
”

pẐAN,βpxqq2
ı

ď C N´εp d
2

´1q and PpDN q ď

C N2pp`qq´εp d
2

´1q by (2.2.38). Hence,

E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
NXtZA

N,βpxqěN´qu

ȷ

ď C N qN´εp d´2
4

qNp`q´εp d´2
4

q

“ C Np`2q´2εp d´2
4

q .

for some constant C “ Cpβq P p0,8q. For the second summand of (2.2.40) we use Hölder
inequality with exponents a “ 1

2 , b “ c “ 1
4 to obtain that

E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
NXtZA

N,βpxqăN´qu

ȷ

ď E
”

pẐAN,βpxqq2
ı

1
2
E
” 1

pZAN,βpxqq4

ı
1
4
PpZAN,βpxq ă N´qq

1
4 .
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The term PpZAN,βpxq ă N´qq
1
4 vanishes super-polynomially therefore, recalling (2.2.41) we con-

clude that

E

„
ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZAN,βpxq

ˇ

ˇ

ˇ

ˇ

1D`
N

ȷ

ď C Np`2q´2εp d´2
4

q . (2.2.42)

for some constant C “ Cpβq P p0,8q. The second summand of (2.2.39) can be treated similarly.
In particular, we split it as follows

E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1
2

1D´
N

ȷ

“ E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1
2

1D´
NXtZN,βpxqěN´qu

ȷ

` E

„
ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1
2

1D´
NXtZN,βpxqăN´qu

ȷ

.

(2.2.43)

For the first term we have that

E

„
ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1
2

1D´
NXtZN,βpxqěN´qu

ȷ

ďN
q
2 E

”

|ẐAN,βpxq|
1
21D´

N

ı

ďN
q
2 E

”

|ẐAN,βpxq|
1
21DN

ı

ďN
q
2 E

”

pẐAN,βpxqq2
ı

1
4
PpDN q

3
4 .

(2.2.44)

by Hölder inequality. Using aforementioned upper bounds on E
“

pẐN,βpxqq2
‰

and PpDN q we get
that for a constant C “ Cpβq P p0,8q,

N
q
2 E

”

pẐAN,βpxqq2
ı

1
4
PpDN q

3
4 ďC N

q
2N´λ

2
p d´2

4
qN

3
2

pp`q´λp d´2
4

qq

“C N
3
2
p`2q´2λp d´2

4
q ,

(2.2.45)

where we used Hölder inequality for the last inequality as well as bound (2.2.38) and Lemma 2.2.8.
For the second term in (2.2.43) we can proceed as before, namely

E

„ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1
2

1D´
NXtZN,βpxqăN´qu

ȷ

ď E
”

pẐAN,βpxqq2
ı

1
4
E

„

1

pZAN,βpxqq4

ȷ
1
4

PpZN,βpxq ă N´qq
1
2 ,

(2.2.46)

by Hölder inequality. The super-polynomial decay of PpZN,βpxq ă N´qq together with the bounds
(2.2.38), (2.2.44), (2.2.45), (2.2.46) and Proposition 2.2.1, allows us to conclude that

E

„
ˇ

ˇ

ˇ

ˇ

ẐAN,βpxq

ZN,βpxq

ˇ

ˇ

ˇ

ˇ

1
2

1D´
N

ȷ

ď C N
3
2
p`2q´2εp d´2

4
q , (2.2.47)

for some constant C “ Cpβq P p0,8q. Recall now that we wanted to prove that

lim
NÑ8

N
d´2
4 E

”

|ON pxq|

ı

“ 0 .

By the estimates (2.2.40), (2.2.42) and (2.2.47) respectively, we see that it suffices to find exponents
p˚, q˚ and ε, so that

1 ´ 2p˚ ă 0, 1 ´ 2ε` p˚ ` 2q˚ ă 0, 1 ´ 2ε`
3

2
p˚ ` 2q˚ ă 0 .
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The second inequality is implied by the third therefore, it suffices to find exponents p˚, q˚ and ε,
so that

1 ´ 2p˚ ă 0, 1 ´ 2ε`
3

2
p˚ ` 2q˚ ă 0 .

This would lead to ε ą 1
2p1 ` 3

2p
˚ ` 2q˚q and since we can take p˚ ą 1

2 arbitrarily close to 1
2

and q˚ ą 0 arbitrarily small, it suffices to choose ε ą 7
8 in the definition of the sets AxN , recall

(2.2.2). □

2.2.3. Main contribution and identification of the fluctuations. We proceed now to the proof
of Proposition 2.2.6.

Proof of Proposition 2.2.6. We need to prove that

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ˆ

ẐAN,βpxq

ZAN,βpxq
´
`

ZB
ě

N,βpxq ´ 1
˘

˙

L1pPq
ÝÝÝÝÑ
NÑ8

0 . (2.2.48)

We remind the reader that Bě
N :“

`

rNϱ, N s X N
˘

ˆ Zd for some ϱ P pε, 1q, the choice of which is
specified by (2.2.76). We also define the sets

BN :“
`

pN ε, N s X N
˘

ˆ Zd ,

CxN :“
␣

pn, zq P N ˆ Zd : 1 ď n ď N ε, |z ´ x| ě N
ε
2

`αε
(

.

We decompose ẐAN,βpxq into two parts

ẐAN,βpxq “ ẐA,BN,β pxq ` ẐA,CN,β pxq ,

where

ẐA,BN,β pxq :“
ÿ

τĂAx
NYBN : τXBN‰∅

σ|τ |qp0,xqpτqξpτq ,

ẐA,CN,β pxq :“
ÿ

τĂt1,...,NuˆZd: τXCx
N‰∅

σ|τ |qp0,xqpτqξpτq .
(2.2.49)

and if τ “ pni, ziq1ďiďk,

qp0,xqpτq :“ qn1pz1 ´ xq

k
ź

i“2

qni´ni´1pzi ´ zi´1q .

The proof will consist of three steps.

(Step 1) The first task is to show that ẐA,CN,β pxq has a negligible contribution to (2.2.48). The

proof of this is based on the fact that ẐA,CN,β pxq consists of random walk paths which are super-
diffusive: the walk will have to travel at distance greater than N

ε
2

`αε from x within time N ε.
Therefore, by standard moderate deviation estimates one can show that

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

¨
ẐA,CN,β pxq

ZAN,βpxq

L2pPq
ÝÝÝÝÑ
NÑ8

0 ,

super-polynomially.The proof follows the same lines of the proof of Proposition 2.3. in [CSZ20]
and for this reason we omit the details.

(Step 2) The second step will be to show that in the chaos expansion of ẐA,BN,β pxq, the contri-
bution from sampling disorder ξr,z , with r ă Nϱ is negligible, for every ϱ P pε, 1q. In particular,
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let us denote by Bstrip
N the set

Bstrip
N :“

!

pn, zq P pN ε, Nϱq ˆ Zd
)

. (2.2.50)

We can decompose ẐA,BN,β pxq into two parts ẐA,BN,β pxq “ ẐA,B
ă

N,β pxq ` ẐA,B
ě

N,β pxq such that

ẐA,B
ă

N,β pxq :“
N
ÿ

k“1

σk
ÿ

0:“n0ăn1ă...ănkďN,
x:“z0,z1,...,zkPZd,

pni,ziq
k
i“1ĂAx

NYBN , pni,ziq
k
i“1XBstrip

N ‰∅

k
ź

i“1

qni´ni´1pzi ´ zi´1qξni,zi . (2.2.51)

and

ẐA,B
ě

N,β pxq :“
N
ÿ

k“1

σk
ÿ

0:“n0ăn1ă...ănkďN
x:“z0,z1,...,zkPZd

pni,ziq
k
i“1ĂAx

NYBN , pni,ziq1ďiďkXBstrip
N “∅

k
ź

i“1

qni´ni´1pzi ´ zi´1qξni,zi .

(2.2.52)
In this step we will show that

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

¨
ẐA,B

ă

N,β pxq

ZAN,βpxq

L2pPq
ÝÝÝÝÑ
NÑ8

0 ,

or equivalently

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

ẐA,B
ă

N,β pxq

ZAN,βpxq
¨
ẐA,B

ă

N,β pyq

ZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 . (2.2.53)

Let us denote by Sx, Sy the paths of two independent random walks starting from x, y respectively.
We will use the notation

CA,BN,β px, yq :“ Ex,y

”

peH
x
A,Bpωq

´ 1qpeH
y
A,Bpωq

´ 1q1
SxXSyXBstrip

N ‰∅

ı

, (2.2.54)

where
HxA,Bpωq :“

ÿ

pn,zqPAx
NYBN

tβωn,z ´ λpβqu1Sx
n“z ,

and

CA,B
ě

N,β px, yq :“ Ex,y

”

pe
Hx

A,Bě pωq
´ 1qpe

Hy

A,Bě pωq
´ 1q1

SxXSyXBstrip
N ‰∅

ı

, (2.2.55)

where
HxA,Běpωq :“

ÿ

pn,zqPAx
NYpBNKBstrip

N q

tβωn,z ´ λpβqu1Sx
n“z

is the energy which does not contain disorder indexed by space-time points in the region Bstrip
N .

Note that, even though in the definition (2.2.54) of CA,B
ě

N,β px, yq, HxA,Běpωq and HyA,Běpωq do not

contain disorder indexed by Bstrip
N , there is still the constraint that the two random walks Sx, Sy

meet at some point in Bstrip
N .

We will control (2.2.53), by showing that

E

«

ẐA,B
ă

N,β pxq

ZAN,βpxq
¨
ẐA,B

ă

N,β pyq

ZAN,βpyq

ff

“ E

«

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

, (2.2.56)

48



and then showing that when the right-hand side is inserted into (2.2.53), it leads to vanishing
contribution. Let us first check equality (2.2.56). The chaos expansion of CA,BN,β is

CA,BN,β px, yq “Ex,y
“

peH
x
A,Bpωq

´ 1qpeH
y
A,Bpωq

´ 1q1
SxXSyXBstrip

N ‰∅
‰

“
ÿ

1ďk,ℓďN

σk`ℓ
ÿ

pni,ziq
k
i“1ĂAx

NYBN ,

pmj ,wjqℓj“1ĂAy
NYBN

Ex,y

«

ź

1ďiďk,
1ďjďℓ

1Sx
ni

“zi1Sy
mj

“wj
1
SxXSyXBstrip

N ‰∅

ff

ˆ
ź

1ďiďk
1ďjďℓ

ξni,zi ξmj ,wj .

Similarly,

CA,B
ě

N,β px, yq

“Ex,y
“

pe
Hx
A,Bě pωq

´ 1qpe
Hy

A,Bě pωq
´ 1q1

SxXSyXBstrip
N ‰∅

‰

“
ÿ

1ďk,ℓďN

σk`ℓ
ÿ

pni,ziq
k
i“1ĂAx

NYpBNKBstrip
N q,

pmj ,wjqℓj“1ĂAy
NYpBNKBstrip

N q

Ex,y

«

ź

1ďiďk,
1ďjďℓ

1Sx
ni

“zi1Sy
mj

“wj
1
SxXSyXBstrip

N ‰∅

ff

ˆ
ź

1ďiďk,
1ďjďℓ

ξni,zi ξmj ,wj .

The constraints pni, ziq
k
i“1 Ă AxN Y pBNKB

strip
N q and pmj , wjq

ℓ
j“1 Ă AyN Y pBNKB

strip
N q come

from the fact that HxA,Běpωq,HyA,Běpωq do not sample ξ indexed by points in Bstrip
N . The chaos

expansion of the difference, CA,BN,β px, yq ´ CA,B
ě

N,β px, yq, is then

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

“
ÿ

1ďk,ℓďN

σk`ℓ
ÿ

pni,ziq
k
i“1ĂAx

NYBN , pni,ziq
k
i“1XBstrip

N ‰∅
or

pmj ,wjqℓj“1ĂAy
NYBN , pmj ,wjqℓj“1XBstrip

N ‰∅

ˆ Ex,y

«

ź

1ďiďk,
1ďjďℓ

1Sx
ni

“zi1Sy
mj

“wj
1
SxXSyXBstrip

N ‰∅

ff

ź

1ďiďk,
1ďjďℓ

ξni,zi ξmj ,wj .

Therefore, the expansion of E

«

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

is

E

«

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

“E

«

1

ZAN,βpxqZAN,βpyq

ÿ

1ďk,ℓďN

σk`ℓ
ÿ

pni,ziq
k
i“1ĂAx

NYBN , pni,ziq
k
i“1XBstrip

N ‰∅
or

pmj ,wjqℓj“1ĂAy
NYBN , pmj ,wjqℓj“1XBstrip

N ‰∅

ˆ Ex,y

„

ź

1ďiďk
1ďjďℓ

1Sx
ni

“zi1Sy
mj

“wj
1
SxXSyXBstrip

N ‰∅

ȷ

ź

1ďiďk
1ďjďℓ

ξni,zi ξmj ,wj

ff

.

(2.2.57)
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Note that if for example pni, ziq
k
i“1 X Bstrip

N ‰ ∅, the expectation Er¨s will impose that also
pmj , zjq

ℓ
j“1 X Bstrip

N ‰ ∅ and in particular, pni, ziq
k
i“1 X Bstrip

N “ pmj , wjq
ℓ
j“1 X Bstrip

N , due to
the fact that the ξ variables indexed by space-time points with time index t ą N ε appearing in
the expansion of CA,BN,β px, yq ´ CA,B

ě

N,β px, yq have to match pairwise, because they are independent
of ZAN,βpxq, ZAN,βpyq, and so if a disorder variable ξni,zi or ξmj ,wj is unmatched, their mean zero
property will lead to vanishing of the whole expectation Er¨s. Thus, the indicator 1

SxXSyXBstrip
N ‰∅

will always be equal to 1 for every summand of the last expansion, since we are summing space-
time sequences, such that pni, ziq

k
i“1 X pmj , zjq

ℓ
j“1 X Bstrip

N ‰ ∅. Therefore, the expansion of

E

«

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

is actually equal to

E

«

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

“E

«

1

ZAN,βpxqZAN,βpyq

ÿ

1ďk,ℓďN

σk`ℓ
ÿ

pni,ziq
k
i“1ĂAx

NYBN , pni,ziq
k
i“1XBstrip

N ‰∅,
pmj ,wjqℓj“1ĂAy

NYBN , pmj ,wjqℓj“1XBstrip
N ‰∅

ˆ Ex,y

„

ź

1ďiďk
1ďjďℓ

1Sx
ni

“zi1Sy
mj

“wj

ȷ

ź

1ďiďk
1ďjďℓ

ξni,ziξmj ,wj

ff

,

which matches exactly the expansion of E

«

ẐA,B
ă

N,β pxq

ZAN,βpxq
¨
ẐA,B

ă

N,β pyq

ZAN,βpyq

ff

, by (2.2.51), thus allowing us

to conclude that

E

«

ẐA,B
ă

N,β pxq

ZAN,βpxq
¨
ẐA,B

ă

N,β pyq

ZAN,βpyq

ff

“ E

«

CA,BN,β px, yq ´ CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

.

Having established this equality, to finish the proof of (2.2.53), we will prove that

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

CA,BN,β px, yq

ZAN,βpxqZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 , (2.2.58)

and

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

CA,B
ě

N,β px, yq

ZAN,βpxqZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 . (2.2.59)

We start by showing the validity of (2.2.58), since (2.2.59) can be treated with the same arguments.
In view of (2.2.54) we have that

CA,BN,β px, yq “Ex,y
“

peH
x
A,Bpωq

´ 1qpeH
y
A,Bpωq

´ 1q1
SxXSyXBstrip

N ‰∅
‰

“Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

´ Ex,y
“

eH
x
A,Bpωq

1
SxXSyXBstrip

N ‰∅
‰

´Ex,y
“

eH
y
A,Bpωq

1
SxXSyXBstrip

N ‰∅
‰

` Px,y
`

Sx X Sy XBstrip
N ‰ ∅

˘

.

(2.2.60)

We begin by showing that

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 .
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The main point here will be to remove the denominators. Consider the set

EN :“
␣

ZAN,βpxq, ZAN,βpyq ě N´h
(

for some h P p0, 1´ϱ
2 q. We have that

E

„Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq

ȷ

“E

„Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1EN

ȷ

` E

„Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1Ec

N

ȷ

.

(2.2.61)

We can bound the first summand using the definition of the sets EN , as follows

E

„Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1EN

ȷ

ďN2h E

„

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ȷ

ďN2h Ex,y
“

eλ2pβqLN px,yq1
SxXSyXBstrip

N ‰∅
‰

.

(2.2.62)

We condition on the first time, τx,y, that the two random walk paths meet, to obtain that

Ex,y
“

eλ2pβqLN px,yq1
SxXSyXBstrip

N ‰∅
‰

“

Nϱ
ÿ

n“1

Ex,y
“

eλ2pβqLN px,yq1
SxXSyXBstrip

N ‰∅

ˇ

ˇτx,y “ n
‰

Ppτx,y “ nq

ď

Nϱ
ÿ

n“1

Ex,y
“

eλ2pβqLN px,yq
ˇ

ˇτx,y “ n
‰

Ppτx,y “ nq .

By the Markov property

Nϱ
ÿ

n“1

Ex,y
“

eλ2pβqLN px,yq
ˇ

ˇτx,y “ n
‰

Px,ypτx,y “ nq “

Nϱ
ÿ

n“1

E
“

eλ2pβqpLN´n`1q
‰

Px,ypτx,y “ nq

“

Nϱ
ÿ

n“1

eλ2pβq E
“

eλ2pβqLN´n
‰

Px,ypτx,y “ nq

ď eλ2pβq E
“

eλ2pβqL8
‰

Nϱ
ÿ

n“1

q2npx´ yq .

(2.2.63)
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We remind the reader that E
“

eλ2pβqL8
‰

ă 8 because β P p0, βL2q. Therefore, if we combine
(2.2.62), (2.2.63), we deduce the estimate

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

„Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1EN

ȷ

ďC N
d
2

´1`2h
ÿ

x,yPZd

φN px, yq

Nd

Nϱ
ÿ

n“1

q2npy ´ xq .

The last bound vanishes because h P p0, 1´ϱ
2 q, see (2.2.29) for the derivation of this fact.

We now deal with the complementary event EcN in (2.2.61). Recall that

EcN “
␣

ZAN,βpxq ă N´h
(

Y
␣

ZAN,βpyq ă N´h
(

.

By Proposition 2.2.1 and a union bound we obtain that

PpEcN q ď 2P
`

ZAN,βpxq ă N´h
˘

ď 2cβ exp

ˆ

´hγplogNqγ

cβ

˙

. (2.2.64)

Recall that we need to show that

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1Ec

N

ff

ÝÝÝÝÑ
NÑ8

0 .

We have that

E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1Ec

N

ff

ď E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
‰

ZAN,βpxqZAN,βpyq
1Ec

N

ff

“ E

«

ZA,BN,β pxq

ZAN,βpxq
¨
ZA,BN,β pyq

ZAN,βpyq
1Ec

N

ff

,

where
ZA,BN,β pxq “ Ex

”

e
ř

pn,zqPAx
N

YBN
tβωn,z´λpβqu1tSx

n“zu

ı

.

In order to bound the last expectation, we use Hölder inequality with exponents p, p, q ą 1, so that
2
p ` 1

q “ 1, with p P p2,8q sufficiently close to 2 so that supNPN E
“

pZA,BN,β pxqqp
‰

ă 8, thanks to
Proposition 2.2.3. In particular, we obtain that

E

«

ZA,BN,β pxq

ZAN,βpxq
¨
ZA,BN,β pyq

ZAN,βpyq
¨ 1Ec

N

ff

ď E

«

ˆ

ZA,BN,β

ZAN,β

˙p
ff

2
p

PpEcN q
1
q .

We apply Hölder inequality again on the first term, with exponents r, s ą 1, so that 1
r ` 1

s “ 1 and

r ą 1 is sufficiently close to 1 so that we have supNPN E
”

`

ZA,BN,β

˘pr
ı

ă 8, by Proposition 2.2.3.
This way, we obtain that

E

«

ˆ

ZA,BN,β

ZAN,β

˙p
ff

2
p

ď E
”

`

ZN,β
˘pr

ı
2
pr

E
”

`

ZAN,β
˘´ps

ı
2
ps
.

By Proposition 2.2.2, we also have that supNPN E
”

`

ZAN,β
˘´ps

ı

ă 8. Therefore, we have showed
that there exists a constant C “ Cpβq P p0,8q, such that

E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1Ec

N

ff

ď C PpEcN q
1
q .
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for some q ą 1. Thus,

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq
1Ec

N

ff

ďC N
d
2

´1 exp

ˆ

´hγplogNq
γ

q cβ

˙

ÿ

x,yPZd

φN px, yq

Nd
ÝÝÝÝÑ
NÑ8

0 ,

because γ ą 1 and
ř

x,yPZd
φN px,yq

Nd ď C ∥φ∥21. Recall now decomposition (2.2.60). We have
shown that

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

Ex,y
“

eH
x
A,Bpωq`Hy

A,Bpωq
1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 . (2.2.65)

Similarly, we can show that

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

Ex,y
“

eH
x
A,Bpωq

1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 ,

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

Ex,y
“

eH
y
A,Bpωq

1
SxXSyXBstrip

N ‰∅
‰

ZAN,βpxqZAN,βpyq

ff

ÝÝÝÝÑ
NÑ8

0 ,

N
d
2

´1
ÿ

x,yPZd

φN px, yq

Nd
E

«

1

ZAN,βpxqZAN,βpyq

ff

Px,y
`

Sx X Sy XBstrip
N ‰ ∅

˘

ÝÝÝÝÑ
NÑ8

0 .

(2.2.66)

The steps to do that are quite similar to the steps we followed to prove (2.2.65). Therefore, the
proof of (2.2.58) has been completed. Then, the proof of (2.2.59) follows exactly the same lines,
since CA,B

ě

N,β px, yq admits a similar decomposition to (2.2.60).
(Step 3) Recall from (2.2.48) that we have to show that

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ˆ

ẐAN,βpxq

ZAN,βpxq
´
`

ZB
ě

N,βpxq ´ 1
˘

˙

L1pPq
ÝÝÝÝÑ
NÑ8

0 .

In Steps 1 and 2 we showed that if one decomposes ẐAN,βpxq as

ẐAN,βpxq “ ẐA,CN,β pxq ` ẐA,B
ă

N,β pxq ` ẐA,B
ě

N,β pxq

(recall their definitions from (2.2.49), (2.2.51), (2.2.52)) then one has that

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ẐA,CN,β pxq

ZAN,βpxq

L2pPq
ÝÝÝÝÑ
NÑ8

0

and

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ẐA,B
ă

N,β pxq

ZAN,βpxq

L2pPq
ÝÝÝÝÑ
NÑ8

0 .

Therefore, this last step will be devoted to showing that

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ˆ

ẐA,B
ě

N,β pxq

ZAN,βpxq
´
`

ZB
ě

N,βpxq ´ 1
˘

˙

L1pPq
ÝÝÝÝÑ
NÑ8

0 .

We can rewrite the expansion of ZA,B
ě

N,β pxq, according to the last point that the polymer samples
inside AxN and the first point that it samples in Bě

N , where we recall the definition of Bě
N , from
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(2.2.7). In particular,

ẐA,B
ě

N,β pxq “
ÿ

pt,wqPAx
N , pr,zqPBě

N

ZA0,t,βpx,wq ¨ qr´tpz ´ wq ¨ σ ξr,z ¨ Zr,N,βpzq . (2.2.67)

where ZA0,t,βpx,wq is the point-to-point partition function from p0, xq to pt, wq, defined by

ZA0,t,βpx,wq :“
ÿ

τĂAx
NXpr0,tsˆZdq:τQpt,wq

σ|τ |qp0,xqpτqξpτq . (2.2.68)

and by ZA0,t,βpx,wq :“ 1 if pt, wq “ p0, xq. We will show that if we replace qr´tpz ´ wq by
qrpz ´ xq in the expansion of

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

¨
ẐA,B

ě

N,β pxq

ZAN,βpxq
,

via (2.2.67), then the corresponding error vanishes in L1pPq, as N Ñ 8. Note that if we perform
this replacement, then the right hand side of (2.2.67) becomes exactly equal to

ZAN,βpxqpZB
ě

N,βpxq ´ 1q

and this will lead to the cancellation of the corresponding denominator. We define the set

Bě
N pxq :“

␣

pr, zq P Bě
N : |z ´ x| ă r

1
2`δε

(

.

where αε is defined in (2.2.2). Then by first restricting to pr, zq P Bě
N pxq, we want to show that

the L1pPq norm of

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

ZA0,t,βpx,wq

ZAN,βpxq

´

qr´tpz´wq´qrpz´xq

¯

¨σ ξr,z ¨Zr,N,βpzq , (2.2.69)

vanishes as N Ñ 8. We note that the rightmost sum in (2.2.69) is essentially over points pt, wq P

AxN , so that qtpx ´ wq ‰ 0, because otherwise the point to point partition function ZA0,t,βpx,wq is
zero. In that case, we observe that if due to the periodicity of the random walk, qr´tpz ´ wq “ 0

then we also have that qrpz ´ xq “ 0, since qtpx ´ wq ‰ 0. Therefore, we shall assume that
qr´tpz ´ wq, qrpz ´ xq ‰ 0 from now on. By Theorem 2.3.11 in [LL10], we have that for
pr, zq P Bě

N pxq,

qrpz ´ xq “2g r
d

pz ´ xq exp
´

O
`

1
r `

|z´x|4

r3

˘

¯

¨ 1qrpz´xq‰0

“2g r
d

pz ´ xq exp
`

Opr´1`4δεq
˘

¨ 1qrpz´xq‰0 .
(2.2.70)

Furthermore, for pt, wq P AxN we have that

qr´tpz ´ wq “2g r´t
d

pz ´ wq exp
´

O
`

1
r´t `

|z´w|4

pr´tq3

˘

¯

¨ 1qr´tpz´wq‰0

“2g r´t
d

pz ´ wq exp
`

Opr´1`4δεq
˘

¨ 1qr´tpz´wq‰0 ,
(2.2.71)

because we have that

|z ´ w| ď |z ´ x| ` |x´ w| ď r
1
2

`δε `N
ε
2

`αε “ r
1
2

`δε ` pN εq
1
2

`δε ď 2r
1
2

`δε ,

for large N since r P rNϱ, N s. Also, we have that for large N , |r ´ t| ě 1
2r, since t ď N ε.
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Let us derive some bounds for

sup

#

ˇ

ˇ

ˇ

ˇ

qrpz ´ xq

qr´tpz ´ wq
´ 1

ˇ

ˇ

ˇ

ˇ

: r ą Nϱ , t ď N ε , |w ´ x| ă N
ε
2

`αε , |z ´ x| ă r
1
2

`δε

+

. (2.2.72)

We have that

qrpz ´ xq

qr´tpz ´ wq
“

g r
d

pz ´ xq

g r´t
d

pz ´ wq
¨ eOpr´1`4δε q “

`

r´t
r

˘
d
2 ¨ e

2
d

`

|z´w|2

r´t
´

|z´x|2

r

˘

¨ eOpr´1`4δε q ,

(2.2.73)

by (2.2.70) and (2.2.71). First, we have that eOpr´1`4δε q ď eOpNϱp4δε´1qq and for large N

1 ě
`

r´t
r

˘
d
2 “

`

1 ´ t
r

˘
d
2 ě

`

1 ´N ε´ϱq
d
2 ě 1 ´ d

2N
ε´ϱ ,

using the inequality p1` xqγ ě 1` γx for x ě ´1 and γ ą 0. Moreover, looking at the exponent
in (2.2.73) we have

|z´w|2

r´t ´
|z´x|2

r “

´

|z´w|
?
r´t

´
|z´x|

?
r

¯

¨

´

|z´w|
?
r´t

`
|z´x|

?
r

¯

. (2.2.74)

Then, for the first factor in the right hand side of (2.2.74) we have by triangle inequality that

|z´w|
?
r´t

´
|z´x|

?
r

ď
|z´x|
?
r´t

´
|z´x|

?
r

`
|x´w|
?
r´t

. (2.2.75)

For the first summand on the right hand side of (2.2.75),
|z´x|
?
r´t

´
|z´x|

?
r

“ |z ´ x| ¨
`

1?
r´t

´ 1?
r

˘

“|z ´ x| ¨ t?
r

?
r´t p

?
r`

?
r´tq

ď 2
1`

?
2

t¨|z´x|

r3{2 ,

where we used that r ´ t ě 1
2r for large N . Since, |z ´ x| ď r

1
2

`δε and r ą Nϱ we have that

|z´x|
?
r´t

´
|z´x|

?
r

ď 2
1`

?
2

t¨|z´x|

r3{2 ď 2
1`

?
2

¨ t rδε´1 ď 2
1`

?
2

¨N ε`ϱ pδε´1q .

For the second summand on the right hand side of (2.2.75) we have, using r ´ t ě 1
2r

|x´w|
?
r´t

ď
?
2 ¨

|x´w|
?
r

ď
?
2 ¨N

ε´ϱ
2

`αε ,

since r ą Nϱ and |x ´ w| ď N
ε
2

`αε . Moreover, for the second factor in the right hand side of
(2.2.74) we have that

|z´w|
?
r´t

`
|z´x|

?
r

ď 2
?
2rδε ` rδε ď p1 ` 2

?
2qN δε .

Therefore, we have that for the left hand side of (2.2.74) that there exists a constant C P p0,8q

such that
|z´w|2

r´t ´
|z´x|2

r ď C N δε`max
␣

ε`ϱpδε´1q, ε´ϱ
2

`αε

(

ď C N ε´ϱ`2δε .

Therefore,

qrpz ´ xq

qr´tpz ´ wq
´ 1 ď

g r
d

pz ´ xq

g r´t
d

pz ´ wq
¨ eOpNϱp4δε´1qq ´ 1

ď eOpNε´ϱ`2δε q`OpNϱp4δε´1qq ´ 1 “ OpN ε´ϱ`4δεq .
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Through similar reasoning we obtain that

qrpz ´ xq

qr´tpz ´ wq
´ 1 ě

g r
d

pz ´ xq

g r´t
d

pz ´ wq
¨ e´OpNϱp4δε´1qq ´ 1

ě
`

1 ´ d
2N

ε´ϱ
˘

¨ e´OpN
ε´ϱ
2 `3δε q´OpNϱp4δε´1qq ´ 1

ě
`

1 ´ d
2N

ε´ϱ
˘

¨
`

1 ´OpN
ε´ϱ
2

`4δεq
˘

´ 1

ě ´OpN
ε´ϱ
2

`4δεq .

Combining both upper and lower bounds we conclude that

sup

#

ˇ

ˇ

ˇ

ˇ

qrpz ´ xq

qr´tpz ´ wq
´ 1

ˇ

ˇ

ˇ

ˇ

: r ą Nϱ , t ď N ε , |w ´ x| ă N
ε
2

`αε , |z ´ x| ă r
1
2

`c

+

“OpN
ε´ϱ
2

`4δεq .

By Cauchy-Schwarz we obtain the following estimate for the L1-norm of (2.2.69),

N
d´2
4

ÿ

xPZd

ˇ

ˇ

ˇ

ˇ

φN pxq

N
d
2

ˇ

ˇ

ˇ

ˇ

E

«

1

ZAN,βpxq

ˆ

ˇ

ˇ

ˇ

ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

ZA0,t,βpx,wq

´

qrpz ´ xq ´ qr´tpz ´ wq

¯

¨ σ ξr,z ¨ Zr,N,βpzq

ˇ

ˇ

ˇ

ff

ďN
d´2
4

ÿ

xPZd

ˇ

ˇ

ˇ

ˇ

φN pxq

N
d
2

ˇ

ˇ

ˇ

ˇ

E
” 1

ZAN,βpxq2

ı1{2

ˆ E

«˜

ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

ZA0,t,βpx,wq

´

qrpz ´ xq ´ qr´tpz ´ wq

¯

¨ σ ξr,z ¨ Zr,N,βpzq

¸2 ff1{2

.

By the negative moment estimate, i.e. Proposition 2.2.2 we have that

sup
NPN

E
”

ZAN,βpxq´2
ı

ă 8 .

Also, by expanding the square in the second expectation we have that it is equal to
ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

E
”

ZA0,t,βpx,wq2
ı ´

qrpz ´ xq ´ qr´tpz ´ wq

¯2
σ2 E

”

Zr,N,βpzq2
ı

“
ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

E
”

ZA0,t,βpx,wq2
ı

#

1 ´
qrpz ´ xq

qr´tpz ´ wq

+2

q2r´tpz ´ wqσ2 E
”

Zr,N,βpzq2
ı

ďOpN
ε´ϱ
2

`4δεq
ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

E
”

ZA0,t,βpx,wq2
ı

q2r´tpz ´ wqσ2 E
”

Zr,N,βpzq2
ı

,
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by using estimate (2.2.72) and (2.2.70), (2.2.71). The last sum is bounded by E
”

`

ẐA,B
ě

N,β

˘2
ı

. By

adapting the proof of Lemma 2.2.8, one can show that E
”

`

ẐA,B
ě

N,β

˘2
ı

“ O
`

N´ϱp d
2

´1q
˘

. Therefore,

N
d´2
4

ÿ

xPZd

ˇ

ˇ

ˇ

ˇ

φN pxq

N
d
2

ˇ

ˇ

ˇ

ˇ

E

«

1

ZAN,βpxq

ˆ

ˇ

ˇ

ˇ

ÿ

pt,wqPAx
N ,

pr,zqPBě
N pxq

ZA0,t,βpx,wq

#

1 ´
qrpz ´ xq

qr´tpz ´ wq

+

qr´tpz ´ wq ¨ σ ξr,z ¨ Zr,N,βpzq

ˇ

ˇ

ˇ

ff

ďC ∥φ∥1 E
”

`

ZAN,βpxq
˘´2

ı
1
2
N

d´2
4 ¨N

ε´ϱ
2

`4δε ¨N´ϱp d´2
4

q .

In order for the last bound to vanish we need that

d´2
4 `

ε´ϱ
2 ` 4δε ´ ϱpd´2

4 q ă 0 .

Rearranging this inequality, we need that
d´2
4 ` ε

2 ` 4δε
d´2
2 ` 1

2

ă ϱ . (2.2.76)

This is possible since, first,
d´2
4 ` ε

2 ` 4δε
d´2
2 ` 1

2

P p0, 1q because δε P p0, 1´ε
8 q and second, because

given a choice of ε P p0, 1q, we proved in Step 2 that (2.2.53) is valid for any ϱ P pε, 1q, therefore
we can choose ϱ, large enough, so that (2.2.76) is satisfied. To complete Step 3, one needs to show
that we can lift the restriction pr, zq P Bě

N pxq, that is, allow pr, zq P Bě
N , such that |z´x| ě r

1
2

`δε

but this follows by standard moderate deviation estimates and is quite to similar to the proof of
[CSZ20], thus we omit the details. □

In order to complete the steps needed to prove Theorem 2.0.2, one has to show that also Propo-
sition 2.2.7 is valid. But, this is a corollary of Theorem 2.0.1. Since we are using the diffusive
scaling, the fact that ZB

ě

N,βpxq is the partition function of a polymer which starts sampling noise
after time Nϱ for some ϱ P p0, 1q, does not change the asymptotic distribution.

Proof of Proposition 2.2.7. This Proposition is a corollary of Theorem 2.0.1, since one can see
that the difference of

N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

`

ZN,βpxq ´ 1
˘

and N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

`

ZB
ě

N,βpxq ´ 1
˘

.

vanishes in L2pPq. More specifically, we have that∥∥∥∥∥N d´2
4

ÿ

xPZd

φN pxq

N
d
2

`

ZN,βpxq ´ 1
˘

´N
d´2
4

ÿ

xPZd

φN pxq

N
d
2

`

ZB
ě

N,βpxq ´ 1
˘

∥∥∥∥∥
2

L2pPq

ďN
d
2

´1
Nϱ
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yqEreλ2pβqLN´ns .
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by recalling expression (2.1.7). We can bound the last quantity as follows

N
d
2

´1
Nϱ
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yqEreλ2pβqLN´ns

ďEreλ2pβqL8sN
d
2

´1
Nϱ
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq .

By Lemma 2.1.2 the main contribution to the sum

N
d
2

´1
Nϱ
ÿ

n“1

σ2
ÿ

x,yPZd

φN px, yq

Nd
q2npx´ yq .

comes from n P rϑN,N s for ϑ small, therefore it converges to 0 as N Ñ 8. □
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CHAPTER 3

Moments of the 2d directed polymer in the subcritical
regime and a generalisation of the Erdös-Taylor theorem

In this chapter we study DPREd in the critical dimension d “ 2. Since the framework we are
going to work with presents slight variations compared to the previous chapter we describe it in
detail in the following. Let S “ pSnqně0 be a two-dimensional simple symmetric random walk
and

`

ωn,z
˘

pn,zqPNˆZ2 a space-time field of i.i.d. random variables with Erωs “ 0, Erω2s “ 1 and

λpβq :“ logEreβωs ă 8 for all β ą 0. We use the notation Pa,x and Ea,x to denote the probability
and the expectation with respect to the distribution of the random walk when the walk starts from
x P Z2 at time a P N. If either a or x are zero, we will omit them from the subscripts. We consider
the (point-to-point) partition function

ZN,βpx, yq “ Ex

„

e
řN´1

n“1 tβωn,Sn´λpβqu 1tSN“yu

ȷ

(3.0.1)

of the directed polymer, i.e. random walk, in the random environment ω, at inverse temperature
β ą 0. We also denote the point-to-plane partition function

ZN,βpxq :“
ÿ

yPZ2

ZN,βpx, yq, (3.0.2)

and simply write ZN,β if x “ 0.
We are going to focus on the intermediate disorder regime where inverse temperature vanishes

as

βN « β̂

c

π

logN
with β̂ ą 0 . (3.0.3)

We remind the reader that it was shown in [CSZ17b], that for βN « β̂
b

π
logN with β̂ P p0, 1q,

ZN,βN
pdq

ÝÝÝÝÑ
NÑ8

exppϱβ̂X ´ 1
2ϱ

2
β̂

q ,

where X „ N p0, 1q and ϱ2
β̂

“ log
`

1
1´β̂2

˘

, while for β̂ ě 1, ZN,βN converges in distribution to 0.

In particular, the subcritical regime β̂ P p0, 1q coincides with the range of β̂ for which the second
moment of the partition function is uniformly bounded, that is supNě1 E

“

pZN,βN q2
‰

ă 8.
We recall that the emergence of such intermediate scaling can be guessed as follows. Using

Gaussian environment for simplicity one has that

E
”

`

ZN,β
˘2
ı

“ Eb2
”

eβ
2 L

p1,2q

N

ı

“ E
”

eβ
2 LN

ı

, (3.0.4)

where Eb2 denotes the law of two independent, 2d simple random walks starting both at the ori-
gin, Lp1,2q

N :“
řN´1
n“1 1tS1

n“S2
nu denotes their collision local time up to time N ´ 1 and LN :“

řN´1
n“1 1tS2n“0u denotes the number of returns to zero, up to time N ´ 1, of a single random

walk starting at 0. The second equality in (3.0.4) follows since L1,2N
law
“ LN . A classical result of

Erdös-Taylor [ET60] states that

π

logN
LN

pdq
ÝÝÝÝÑ
NÑ8

Expp1q , (3.0.5)
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where Expp1q denotes an exponential random variable of parameter 1. Thus, it is not hard to see
that under (3.0.3), one has supNě1 E

“

pZN,βN q2
‰

ă 8 if and only if β̂ ă 1.
The first result of this chapter is to show that all positive moments of the point-to-plane parti-

tion functionZN,βN are uniformly bounded in the whole subcritical regime β̂ ă 1 while, obviously,
no moment higher than one exists in the limit at β̂ ě 1. Combining this with the distributional
convergence (3.0.3) allows us compute the limit of all moments. In particular, our first theorem is
stated as:

Theorem 3.0.1. Consider the point-to-plane partition function ZN,βN defined in (3.0.2) with an
intermediate disorder scaling βN as in (3.1.1), which is asymptotically equivalent to (3.0.3). Then,
for every β̂ P p0, 1q and h ě 0, it holds that

lim
NÑ8

E
”

`

ZN,βN
˘h
ı

“

ˆ

1

1 ´ β̂2

˙

hph´1q

2

“

ˆ

lim
NÑ8

E
”

`

ZN,βN
˘2
ı

˙

hph´1q

2

. (3.0.6)

Furthermore, (3.0.6) is valid also for all h ă 0 if we assume that the law of ω satisfies the following
concentration property:

There exists γ ą 1 and constants c1, c2 P p0,8q such that for all n P N, pω1, . . . , ωnq i.i.d.
and all convex, 1-Lipschitz functions f : Rn Ñ R,

P
´

ˇ

ˇfpω1, . . . , ωnq ´Mf

ˇ

ˇ ě t
¯

ď c1 exp
´

´
tγ

c2

¯

, (3.0.7)

where Mf is a median of f .

Remark 3.0.2. We note that (3.0.7) is satisfied if ω is bounded or if it has a density of the form
expp´V ` Uq for V,U : R Ñ R, where V is strictly convex and U is bounded, see [Led01].

The above theorem in combination with an analogous to (3.0.4) computation for the hmoment
will, almost immediately, lead us to a generalisation of the Erdös-Taylor theorem (see [ET60] and
[GS09] for a quenched path generalisation), to the case of the rescaled, total pairwise collision
times of h (instead of just two as in [ET60, GS09]) independent, two-dimensional simple random
walks. More specifically, let Γpa, 1q denote the Gamma distribution, which is the law with density
function 1

Γpaq
xa´1e´x 1txą0u and in the last expression Γpaq is the gamma function. Then,

Theorem 3.0.3. Consider h P N such that h ě 2 and for i “ 1, . . . , h let Spiq “
`

S
piq
n

˘

ně0

be independent simple symmetric random walks in Z2 starting all from the origin at time zero.
Moreover, for 1 ď i ă j ď h let

L
pi,jq

N :“
N
ÿ

n“1

1
tS

piq
n “S

pjq
n u

,

denote the collision local time of Spiq and Spjq until time N . Then

π

logN

ÿ

1ďiăjďh

L
pi,jq

N

pdq
ÝÝÝÝÑ
NÑ8

Γ
`hph´1q

2 , 1
˘

,

More precisely, if YN :“ π
logN

ř

1ďiăjďh L
pi,jq

N , Y is a random variable with law Γ
`hph´1q

2 , 1
˘

and
MYN ptq, MY ptq denote the associated moment generating functions, respectively, we have that

MYN ptq ÝÝÝÝÑ
NÑ8

MY ptq ,

for all t P p0, 1q :“ I , which is the maximum interval I Ă p0,8q where MY ptq ă 8, t P I .
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The main step towards the above two theorems is to establish that, in the subcritical regime, the
moments of the two-dimensional point-to-plane partition function ZN,βN are uniformly bounded.
To state the corresponding theorem, let us briefly introduce the averaged partition functions. For
test functions φ,ψ : R2 Ñ R such that φ has compact support and ψ is bounded, we define the
averaged partition function to be

ZN,βN pφ,ψq :“
1

N

ÿ

x,y

φp x?
N

qZN,βN px, yqψp
y

?
N

q (3.0.8)

and introduce its centred version as sZN,βN pφ,ψq :“ ZN,βN pφ,ψq ´ E
“

ZN,βN pφ,ψq
‰

. Similarly,
we introduce the centred version of the point-to-plane partition function as

sZN,βN :“ ZN,βN ´ ErZN,βN s “ ZN,βN ´ 1 .

Theorem 3.0.4. Let φ,ψ : R2 Ñ R be such that φ has compact support and ψ is bounded and
consider the centred, averaged field sZN,βN pφ,ψq with respect to φ,ψ, as in (3.0.8). Let also
w : R2 Ñ R be a weight function such that logw is Lipschitz continuous. Then, for every h P N

with h ě 3, β̂ P p0, 1q, there exist a˚ “ a˚ph, β̂, wq P p0, 1q and C “ Cph, β̂, wq P p0,8q such
that for any p, q P p1,8q that satisfy 1

p ` 1
q “ 1 and p q ď a˚ logN , the following inequality

holds:
ˇ

ˇ

ˇ

ˇ

E
”

sZN,βN pφ,ψqh
ı

ˇ

ˇ

ˇ

ˇ

ď

´ C p q

logN

¯
h
2

¨
1

Nh
¨

∥∥∥∥φNwN
∥∥∥∥h
ℓp
∥ψN∥h8 ∥wN∥hℓq , (3.0.9)

where for x P Z2 we have φN pxq :“ φpx{
?
Nq, ψN pxq :“ ψpx{

?
Nq and wN pxq :“ wpx{

?
Nq.

Moreover, for sZN,βN being the centred, point-to-plane partition function, it holds that

sup
NPN

ˇ

ˇ

ˇ

ˇ

E
”

`

sZN,βN
˘h
ı

ˇ

ˇ

ˇ

ˇ

ă 8. (3.0.10)

A version of inequality (3.0.9) at the critical temperature was established in [CSZ21+], where
inequalities of this type were used as an input to prove uniqueness of the scaling limit of the
polymer field at the critical temperature scaling. Here, we had, first, to extend this methodology
to cover the subcritical regime and, most importantly, we had to pull out the explicit dependence
of the constant on the right-hand-side of (3.0.9) on the parameters p and q. The subcriticality
assumption, β̂ P p0, 1q, is reflected on the fact that the constant C is finite, compared to the
critical case where it grows logarithmically with N and gets cancelled out by the logarithmically
attenuating factor seen in (3.0.9). The precise knowledge of this dependence is crucial in order
to derive the moment estimate (3.0.10) of the point-to-plane partition function. This is because in
order to obtain the point-to-plane moment estimate, we would need to insert in (3.0.9) a delta-like
function φN pxq :“ N1tx“0u (as well as ψN pxq ” 1, but this is innocuous), which, however, leads
to a blowing in N constant in the right hand side of (3.0.9). The idea to overcome this difficulty is
to optimise the choice of p, q of the corresponding ℓp and ℓq norms and for this one needs to have
the dependence of the right-hand constant on p, q. The latter turns out to be of the form pq leading
to an optimal choice depending on N as q :“ a logN , which washes out the dependence on N .

As already mentioned, the general framework towards (3.0.9) is inspired by estimates in
[CSZ21+], The latter was subsequently inspired by and generalised the work of Gu, Quastel and
Tsai [GQT21], who introduced methods from spectral theory of Schrödinger operators with point
interactions of Dell’Antonio, Figari and Teta [DFT94] and Dimock, Rajeev [DR04] to prove ex-
istence of all moments for the solution of the 2d stochastic heat equation (mSHE) at the critical
temperature with L2 initial data ψ, when averaged against a smooth test function φ. A novelty here
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(as well as in [CSZ21+], with the latter having a different focus and scope) is the extension from
an L2 setting to an ℓq setting* with q P p1,8q, which, in combination with the optimisation idea
introduced here, allows to also reach the case q “ 8. The desired extension comes from a combi-
nation of a renewal framework (see Section 3.1.2 and Proposition 3.2.4) as well as an extension of
an inequality of Dell’Antonio, Figari and Teta (Proposition 3.1 in [DFT94]) (using a different and
more robust methodology than [DFT94]) from an L2 to an ℓq setting with q P p1,8q.

The method we develop also allows to compute the asymptotics of the moments of the loga-
rithmically scaled and averaged field

?
logN

N

ÿ

xPZ2

φp x?
N

q
`

ZN,βN pxq ´ 1
˘

,

for φ P CcpR2q, thus allowing for the computation of higher moment correlations, answering,
in the discrete setting, a question of Gu, Quastel and Tsai (see Remark 1.10 in [GQT21]). In
particular, we establish that

Theorem 3.0.5. Let φ P CcpR2q and consider the centred and averaged field with respect to φ,
that is

sZN,βN pφ, 1q :“
1

N

ÿ

xPZ2

φp x?
N

q
`

ZN,βN pxq ´ 1
˘

.

Then, for every h P N with h ě 2 and β̂ P p0, 1q,

lim
NÑ8

plogNq
h
2 E

”

sZN,βN pφqh
ı

“

$

&

%

ϱφpβ̂qh ¨ ph´ 1q!! , if h is even

0 , if h is odd ,

where ϱφpβ̂q is defined by

ϱ2φpβ̂q :“
π β̂2

1 ´ β̂2

ż 1

0
dt

ż

pR2q2
dx dy φpxqgtpx´ yqφpyq,

with gtpxq :“ 1
2πt e

´|x|2{2t the two-dimensional heat kernel.

3.1. Auxiliary tools
In this section we develop all the necessary machinery for the proof of the main results.

3.1.1. Partition functions and chaos expansion. Let us start by denoting the transition proba-
bility kernel of the underlying, two-dimensional, simple random walk S by qnpxq for n P N and
x P Z2, that is qnpxq :“ PpSn “ xq. Recall from (3.0.1) the definition of the point-to-plane
partition function

ZN,βN pxq :“ Ex

„

e
řN´1

n“1 tβN ωn,Sn´λpβN qu

ȷ

,

where βN is chosen so that

σ2
N,β̂

:“ eλp2βN q´2λpβN q ´ 1 “
β̂2

RN
, (3.1.1)

where

RN :“ Eb2
”

N
ÿ

n“1

1
tS

p1q
n “S

p2q
n u

ı

“

N
ÿ

n“1

ÿ

zPZ2

qnpzq2 “

N
ÿ

n“1

q2np0q , (3.1.2)

*the adaptation to the continuous Lq spaces is also possible
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denotes the expected collisions until time N of two independent, two-dimensional, simple random
walks, starting from the origin. Note that [ET60]

RN “
logN

π
`
α

π
` op1q ,

where α :“ γ ` log 16 ´ π » 0.208 and γ » 0.577 is the Euler constant. By Taylor expansion in
(3.1.1), this implies the asymptotic scaling of βN as βN „ β̂

b

π
logN for N Ñ 8.

We shall also need the definition of the point-to-point partition functions. In particular, for
a, b P N with a ă b and x, y P Z2, we define the point-to-point partition function from the
space-time point pa, xq to pb, yq by

Za,b,βN px, yq :“ Ea,x

„

e
řb´1

n“a`1 tβN ωn,Sn´λpβN q u 1tSb“yu

ȷ

, (3.1.3)

Note that with these definitions,

ZN,βN pxq “
ÿ

yPZ2

Z0,N,βN px, yq .

Given φ,ψ : R2 Ñ R such that φ has compact support and ψ is bounded, we can further define the
averaged partition functions by,

Za,b,βN pφ, yq :“
ÿ

xPZ2

φp x?
N

qZa,b,βN px, yq ,

Za,b,βN px, ψq :“
ÿ

yPZ2

Za,b,βN px, yqψp
y

?
N

q

and
Za,b,βN pφ,ψq :“

1

N

ÿ

x,y

φp x?
N

qZa,b,βN px, yqψp
y

?
N

q . (3.1.4)

For pa, xq, pb, yq P N ˆ Z2 with a ă b, the mean of each of the quantities above is computed
as

E
“

Za,b,βN pφ, yq
‰

“ qNa,bpφ, yq :“
ÿ

xPZ2

φp x?
N

q qa,bpx, yq ,

E
“

Za,b,βN px, ψq
‰

“ qNa,bpx, ψq :“
ÿ

yPZ2

qa,bpx, yqψp
y

?
N

q
(3.1.5)

and
E
“

Za,b,βN pφ,ψq
‰

“ qNa,bpφ,ψq :“
1

N

ÿ

x,yPZ2

φp x?
N

q qa,bpx, yqψp
y

?
N

q .

Next, we derive an expansion for the point-to-point partition function Za,b,βN px, yq as a multilinear
polynomial, which goes by the name of chaos expansion. This is the starting point of our analysis.
Recalling (3.1.3) we have

Za,b,βN px, yq “ Ea,x

„

ź

aănăb

ź

zPZ2

etβN ωn,z´λpβN q u1tSn“zu 1tSb“yu

ȷ

and by using the fact that for λ P R, eλ1tSn“zu “ 1 ` peλ ´ 1q1tSn“zu we obtain

Za,b,βN px, yq “ Ea,x

„

ź

aănăb

ź

zPZ2

`

1 ` ξn,z1tSn“zu

˘

1tSb“yu

ȷ

(3.1.6)
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where ξn,z :“ eβN ωn,z´λpβN q ´ 1 are i.i.d. random variables with

Erξs “ 0 , Erξ2s “ eλp2βN q´2λpβN q ´ 1 “: σ2
N,β̂

NÑ8
„ β2N , E

“

|ξ|k
‰

ď Ck σ
k
N,β̂

for k ě 3 ,

(3.1.7)
for some constants Ck P p0,8q, k ě 3. The asymptotic and the bound in (3.1.7) follow by Taylor
expansion. Expanding the product in (3.1.6) yields the following expansion of Za,b,βN px, yq as a
multilinear polynomial of the variables ξn,z ,

Za,b,βN px, yq “ qa,bpx, yq

`
ÿ

kě1

ÿ

aăn1ă¨¨¨ănkăb
z1,...,zkPZ2

qa,n1px, z1q ξn1,z1

" k
ź

j“2

qnj´1,nj pzj´1, zjq ξnj ,zj

*

qnk,bpzk, yq ,

(3.1.8)

which also leads to

Za,b,βN pφ,ψq :“ qNa,bpφ,ψq

`
1

N

ÿ

kě1

ÿ

aăn1ă¨¨¨ănkăb
z1,...,zkPZ2

qNa,n1
pφ, z1qξn1,z1

" k
ź

j“2

qnj´1,nj pzj´1, zjqξnj ,zj

*

qNnk,b
pzk, ψq

for the averaged point-to-point partition function. Using the notation

sZN,βN pφ,ψq :“ ZN,βN pφ,ψq ´ E
“

ZN,βN pφ,ψq
‰

for the centred averaged partition function we have that

sZN,βN pφ,ψq

“
1

N

ÿ

kě1

ÿ

z1,z2,...,zk
0ăn1ă¨¨¨ănkăN

qN0,n1
pφ, z1qξn1,z1

" k
ź

j“2

qnj´1,nj pzj´1, zjqξnj ,zj

*

qNnk,N
pzk, ψq.

(3.1.9)

For simplicity, we will use the notation ZN,βN pφq :“ ZN,βN pφ, 1q and sZN,βN pφq :“ sZN,βN pφ, 1q.

3.1.2. Renewal representation. We will also need certain renewal representations for the second
moment of the point-to-point partition functions. These were introduced in [CSZ19b] but only
mainly studied in the context of the critical directed polymer therein. Let pa, xq, pb, yq P N ˆ Z2

with a ă b. We define

UβNN
`

pa, xq, pb, yq
˘

:“ σ2
N,β̂

E
”

Za,b,βN px, yq2
ı

. (3.1.10)

By translation invariance

UβNN
`

pa, xq, pb, yq
˘

“ UβNN pb´ a, y ´ xq :“ σ2
N,β̂

E
”

Z0,b´a,βN py ´ xq2
ı

,

therefore it suffices to work with UβNN pn, xq. We furthermore define UβNN pn, xq :“ 1tx“0u if
n “ 0. Using (3.1.8) and (3.1.7) we derive the expansion

UβNN pn, xq “ σ2
N,β̂

q2npxq

`
ÿ

kě1

σ
2pk`1q

N,β̂

ÿ

0ăn1ă¨¨¨ănkăn
z1,z2,...,zkPZ2

q20,n1
p0, z1q

!

k
ź

j“2

q2nj´1,nj
pzj´1, zjq

)

q2nk,n
pzk, xq .

(3.1.11)
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Moreover, for 0 ď n ď N we define

UβNN pnq :“
ÿ

xPZ2

UβNN pn, xq . (3.1.12)

We will, now, recast UβNN pn, xq and UβNN pnq in a renewal theory framework. We define a family
of i.i.d. random vectors pt

pNq

i , x
pNq

i qiě1, such that

P
´

`

t
pNq

1 , x
pNq

1

˘

“ pn, xq

¯

“
q2npxq

RN
1tnďNu

and moreover we let τ pNq

k :“ t
pNq

1 ` ¨ ¨ ¨ ` t
pNq

k and SpNq

k :“ x
pNq

1 ` ¨ ¨ ¨ ` x
pNq

k if k ě 1. For k “ 0

we set pτ0, S0q :“ p0, 0q. Using this framework we see by (3.1.11) and (3.1.12) that

UβNN pn, xq “
ÿ

kě0

β̂2k P
`

τ
pNq

k “ n, S
pNq

k “ x
˘

and
UβNN pnq “

ÿ

kě0

β̂2k P
`

τ
pNq

k “ n
˘

.

Finally, we remark that
N
ÿ

n“0

UβNN pnq “ E
”

pZN`1,βN q2
ı

. (3.1.13)

3.1.3. Some useful results. We will make use of the following results on the limiting distribution
of ZN,βN and the fluctuations of sZN,βN pφq, which were established in [CSZ17b].

Theorem A. [CSZ17b] Fix β̂ P p0, 1q and let ϱ2
β̂
:“ log

`

1
1´β̂2

˘

. Then,

ZN,βN
pdq

ÝÝÝÝÑ
NÑ8

exp
`

ϱβ̂ X ´ 1
2 ϱ

2
β̂

˘

,

where X has a standard normal distribution N p0, 1q.

Theorem B. [CSZ17b] Fix β̂ P p0, 1q and φ P CcpR2q. Then,
a

logN sZN,βN pφq
pdq

ÝÝÝÝÑ
NÑ8

N
`

0, ϱ2φpβ̂q
˘

,

where sZN,βN pφq :“ sZN,βN pφ, 1q is defined in (3.1.4),

ϱ2φpβ̂q :“
π β̂2

1 ´ β̂2

ż 1

0
dt

ż

pR2q2
dx dy φpxqgtpx´ yqφpyq

and gtpxq :“ 1
2πt e

´|x|2{2t denotes the two-dimensional heat kernel.

3.2. Expansion of moments and integral inequalities
We shall hereafter use the notation

Mφ,ψ
N,h :“ E

”

sZN,βN pφ,ψqh
ı

,

for the hth centred moments of the averaged field (3.1.4).
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3.2.1. Chaos expansion of moments. By (3.1.9) we have

Mφ,ψ
N,h “

1

Nh

ˆ E

«

ˆ

ÿ

kě1

ÿ

z1,z2,...,zkPZ2

0ăn1ă¨¨¨ănkăN

qN0,n1
pφ, z1qξn1,z1

ˆ

" k
ź

j“2

qnj´1,nj pzj´1, zjqξnj ,zj

*

qNnk,N
pzk, ψq

˙h
ff

.

(3.2.1)

When h P N, the power h on the right hand side of (3.2.1) can be expanded as

ÿ

k1,...,khě1

ÿ

pn
prq

i ,z
prq

i qP NˆZ2,
1ďiďkr, 1ďrďh,

0ăn
prq

1 ă¨¨¨ăn
prq

kr
ăN

h
ź

r“1

qN
0,n

prq

1

pφ, z
prq

1 qξ
n

prq

1 ,z
prq

1

ˆ

" kr
ź

j“2

q
n

prq

j´1,n
prq

j

pz
prq

j´1, z
prq

j qξ
n

prq

j ,z
prq

j

*

qN
n

prq

k ,N
pz

prq

kr
, ψq .

(3.2.2)

Note that every term in that expansion contains a product of disorder variables of the form

h
ź

r“1

kr
ź

j“1

ξ
n

prq

j ,x
prq

j

.

Therefore, after taking the expectation with respect to the environment and taking into account that
the ξ variables have mean zero and are independent if they are indexed by different space time
points, see (3.1.7), we see that the non-zero terms of the expansion of (3.2.1) will be those such
that for every point pn

prq

j , x
prq

j q, 1 ď j ď kr, 1 ď r ď h there exists (at least one) 1 ď r1 ď h, 1 ď

j ď kr1 such that r ‰ r1 and pn
prq

j , x
prq

j q “ pn
pr1q

j1 , x
pr1q

j1 q, that is, every disorder variable ξ
n

prq

j ,x
prq

j

should appear at least twice in a product of disorder variables. Hence, a natural way to parametrise
the sum (3.2.1) is to sum over the space-time locations of these coincidence points along with all
the possible coincidence configurations. We will also use iteratively the Chapman-Kolmogorov
equation qt1,t2px, yq “

ř

zPZ2 qt1,spx, zq qs,t2pz, yq, t1 ă s ă t2, for the simple random walk, to
break down ’long range jumps’, appearing in (3.2.2) via their transition probabilities, into smaller
jumps, so that we can track the location of each random walk at each time t, see Figure 3.2.1. Let
us introduce the framework which will allow to formalise the above.

For h ě 3, let I $ t1, . . . , hu denote a partition I “ I1 \ I2 \ ¨ ¨ ¨ \ Im of t1, . . . , hu

into disjoint subsets I1, . . . , Im with cardinality |I| “ m. Given I $ t1, . . . , hu, we define the
equivalence relation I

„ such that for k, ℓ P t1, . . . , hu, we have k I
„ ℓ if k and ℓ belong to the

same component of the partition I . For x “ px1, . . . , xhq P pZ2qh and a partition I we will denote
x „ I if xk “ xℓ for all k I

„ ℓ. We shall also use the notation pZ2qhI :“ tx P pZ2qh : x „ Iu.
For p P p1,8q we define the I-restricted ℓp spaces ℓp

`

pZ2qhI

˘

via the norm

}f}ℓpppZ2qhI q :“
`

ÿ

xPpZ2qhI

|fpxq|p
˘1{p
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I1 I2 I3 I4 I5 . . .

y12“y13 y22“y23

y21

y33“y34

y32

y31

y24y14

y11 y41

y42

y43“y44

y51“y52“y53

y54

FIGURE 3.2.1. A diagrammatic representation of the expansion (3.2.10) for
E
“

p sZN,βN q4
‰

. The horizontal direction is the time direction, while the vertical
lines correspond to different time slices, tnu ˆ Z2, n P N. We use straight lines
to represent free evolution (3.2.5) and wiggly lines to represent replica evolution,
see (3.2.8). We use filled dots to represent space-time points where disorder ξ is
sampled.

for functions f : pZ2qhI Ñ R. In shorthand, we will often write ℓpI or just ℓp if there is no risk of
confusion. For an integral operator T : ℓq

`

pZ2qhJ

˘

Ñ ℓq
`

pZ2qhI

˘

, we define the pairing

xf,Tgy :“
ÿ

x PpZ2qhI ,y PpZ2qhJ

fpxqTpx,yqgpyq . (3.2.3)

The operator norm will be given by

∥T∥ℓqÑℓq :“ sup
∥g∥

ℓ
q
J

ď1
∥Tg∥ℓqI “ sup

∥f∥
ℓ
p
I

ď1, ∥g∥
ℓ
q
J

ď1
xf,Tgy (3.2.4)

for p, q P p1,8q conjugate exponents, i.e. 1
p ` 1

q “ 1.
For two partitions I, J $ t1, . . . , hu and x,y P pZ2qh with x „ I and y „ J we define the

free evolution subject to constraints I, J as

QI,Jn px,yq :“ 1tx„Iu

h
ź

i“1

qnpyi ´ xiq1ty„Ju , for n P N . (3.2.5)

QI,˚n and Q˚,J
n will denote the particular cases where I and J , respectively, are the partitions

consisting only of singletons, i.e. I “ t1u \ ¨ ¨ ¨ \ thu. Moreover, if I, J $ t1, . . . , hu, φ,ψ :

R2 Ñ R and n P N we define

Q˚,J
n pφbh,yq :“

h
ź

i“1

qNn pφ, yiq ¨ 1ty„Ju

QI,˚n px, ψbhq :“ 1tx„Iu ¨

h
ź

i“1

qNn pxi, ψq ,

(3.2.6)

see also (3.1.5). The mixed moment subject to a partition I “ I1 \ ¨ ¨ ¨ \ Im will be denoted by

ErξIs :“
ź

1ďjď|I|, |Ij |ě2

Erξ|Ij |s . (3.2.7)
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Using this formalism, we can then write

Mφ,ψ
N,h “

1

Nh

ÿ

kě1

ÿ

0:“n0ăn1ă¨¨¨ănkďN,
pI1,...,IkqPI,

mi:“|Ii|ăh, yiPpZ2qmi

Q˚,I1
n1

pφbh,y1qE
”

ξI1
ı

ˆ

k
ź

i“2

Q
Ii´1,Ii
ni´ni´1

pyi´1,yiqE
”

ξIi
ı

¨QIk,˚N´nk
pyk, ψ

bhq ,

where I is the set of all finite sequences of partitions of t1, . . . , hu, pI1, . . . , Ikq, which satisfy the
following condition: For every r P t1, . . . , hu there exists 1 ď i ď k such that the block of Ii that
contains r is non-trivial, i.e. it has cardinality equal or larger than 2. This restriction comes from
the fact that Mφ,ψ

N,h are centred moments and the fact that all terms in the expansion of (3.2.2) that
contain a standalone ξ variable, vanish after taking the expectation E, see also the discussion below
(3.2.2).

LetB “ Bp0, rq Ă R2 be a ball containing the support of ψ (allowing the possibility of r “ 8,
in case suppψ “ R2). We then have that

QIk,˚N´nk

`

yk, ψ
bh

˘

ď QIk,˚N´nk

`

yk, ∥ψ∥
h
8 1bh

B

˘

ď
c

N

ÿ

nk`1PtN`1,...,2Nu

QIk,˚nk`1´nk

`

yk, ∥ψ∥
h
8 1bh

B

˘

,

with the latter inequality following because the probability that a random walk starts inside the
ball Bp0,

?
Nrq Ă R2 at time N ´ nk and is still inside Bp0,

?
Nrq at time nk`1 ´ nk with

nk`1 P tN ` 1, . . . , 2Nu is uniformly bounded away from zero.
Thus,

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď
c ∥ψ∥h8
Nh`1

ÿ

kě1

ÿ

0:“n0ăn1ă¨¨¨ănk`1ď2N,
pI1,...,IkqPI,

mi:“|Ii|ăh, yiPpZ2qmi

Q˚,I1
n1

pφbh,y1qE
”

|ξ|I1
ı

ˆ

k
ź

i“2

Q
Ii´1,Ii
ni´ni´1

pyi´1,yiqE
”

|ξ|Ii
ı

¨QIk,˚nk`1´nk
pyk,1

bh
B q .

We also need to define the replica evolution. For I $ t1, . . . , hu of the form I “ tk, ℓu\
Ů

j‰k,ℓtju

UInpx,yq :“ 1tx,y„Iu ¨ UβNN pn, yk ´ xkq ¨
ź

i‰k,ℓ

qnpyi ´ xiq , (3.2.8)

where UβNN pn, yk ´ xkq is defined in (3.1.10). The replica evolution operator will be used to
contract consecutive appearances of the same partition I , with |I| “ h ´ 1 in the right-hand side
of (3.2.8). In particular, note that if I $ t1, . . . , hu, such that |I| “ h´ 1, then

UInpx,yq “
ÿ

kě0

Erξ2sk
ÿ

0:“n0ăn1ă¨¨¨ănk:“n

ÿ

yiPpZ2qhI ,1ďiďk´1
y0:“x,yk:“y

k
ź

i“1

QI;Ini´ni´1
pyi´1,yiq .

To be able to estimate the right-hand side of (3.2.8) we will upper bound it by enlarging the domain
of the temporal sum in the right-hand side of (3.2.8) from 1 ď n1 ă ¨ ¨ ¨ ă nk`1 ď 2N to
ni ´ ni´1 P t1, . . . , 2Nu for all 1 ď i ď k ` 1. This enlargement of the domain of summation
deconvolves the temporal sum in the right-hand side of (3.2.8).
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On this account, we introduce the discrete Laplace transforms of the operators Q and U,

QI,JN,λpy, zq :“
2N
ÿ

n“1

e´λ n
N QI,Jn py, zq, y, z P pZ2qh,

UIN,λpy, zq :“
2N
ÿ

n“0

e´λ n
N UInpy, zq, y, z P pZ2qh ,

for λ ě 0. In our case, it will be sufficient to work with λ “ 0.
Let us define

PI;J
N,β̂

“

$

&

%

QI;JN,0 , if |J | ă h´ 1

QI;JN,0 U
J
N,0 , if |J | “ h´ 1 .

Note that the appearance of the operator UJN,0 is necessarily preceded by a free evolution operator

QI;JN,0, with |J | “ h ´ 1, see also Figure 3.2.1. In view of (3.2.8) and the discussion above we can
now write

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď
c ∥ψ∥h8
Nh`1

ÿ

kě1

ÿ

pI1,...,IkqPI

A

φbh
N ,P˚,I1

N,β̂
PI1,I2
N,β̂

¨ ¨ ¨ PIk,˚
N,β̂

1bh?
N B

E

k
ź

i“1

E
”

|ξ|Ii
ı

,

where we recall the definition of the pairing x¨ , ¨y form (3.2.3) and note that the sum runs over
partitions I1, . . . , Ik such that Ij ‰ Ij`1 if |Ij | “ |Ij`1| “ h´ 1 for 1 ď j ď k ´ 1.

Because of the assumption of Theorem 3.0.4 on ψ being merely a bounded function we will
need to introduce weighted versions of the operators UIN,λ, QI;JN,λ and PI;J

N,β̂
. In particular, if w :

R2 Ñ R is such that logw is Lipschitz continuous with Lipschitz constant denoted by Cw ą 0,
wN pxq “ w

`

x?
N

˘

, we define for λ ě 0,

pQI;JN,λpx,yq :“
wbh
N pxq

wbh
N pyq

QI;JN,λpx,yq ,

pUIN,λpx,yq :“
wbh
N pxq

wbh
N pyq

UIN,λpx,yq ,

where we recall that wbh
N pxq “ wN px1q ¨ ¨ ¨wN pxhq, if x “ px1, . . . , xhq. We modify accordingly

the operator PI;J
N,β̂

into a new operator pPI;J
N,β̂

,

pPI;J
N,β̂

“

$

&

%

pQI;JN,0 , if |J | ă h´ 1

pQI;JN,0
pUJN,0 , if |J | “ h´ 1 .

(3.2.9)

Therefore, we can now write

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď
c ∥ψ∥h8
Nh`1

ÿ

kě1

ÿ

pI1,...,IkqPI

Aφbh
N

wbh
N

, pP˚,I1
N,β̂

pPI1,I2
N,β̂

¨ ¨ ¨ pPIk,˚
N,β̂

1bh?
N B

wbh
N

E

k
ź

i“1

E
”

|ξ|Ii
ı

ď
c ∥ψ∥h8
Nh`1

ÿ

kě1

ÿ

pI1,...,IkqPI

Aφbh
N

wbh
N

, pP˚,I1
N,β̂

pPI1,I2
N,β̂

¨ ¨ ¨ pPIk,˚
N,β̂

wbh
N

E

k
ź

i“1

E
”

|ξ|Ii
ı

(3.2.10)
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where we bounded the indicator function 1bh?
N B

by 1 to obtain the second inequality. Passing to
the operator norms (see (3.2.4)) we estimate

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď
c ∥ψ∥h8
Nh`1

ÿ

kě1

ÿ

pI1,...,IkqPI

∥∥∥∥∥pP˚,I1
N,β̂

φbh
N

wbh
N

∥∥∥∥∥
ℓp

k
ź

i“2

∥∥∥pPIi´1,Ii

N,β̂

∥∥∥
ℓqÑℓq

∥∥∥pPIk,˚
N,β̂

wbh
N

∥∥∥
ℓq

k
ź

i“1

E
”

|ξ|Ii
ı

.

(3.2.11)
This is the key expansion we will use for the Proof of Theorem 3.0.4.

3.2.2. Integral inequalities for the operators pQI;JN,0 and pUIN,0. At this point, we will prove some

intermediate results about the operators pQI;JN,0,
pUIN,0 that we will need along the way. In what

follows we shall use the letter C to denote constants that may depend only on h, β̂ and w but not
on p and q. We will also use the letter c to denote absolute constants, i.e. constants that do not
depend on h, β̂, w or p, q. Their value may change from line to line.

We start this subsection by stating a lemma from [CSZ21+] on the operator

QN,λpx,yq :“
2N
ÿ

n“1

e´
λn
N Qnpx,yq .

Lemma 3.2.1 ([CSZ21+]). Let N ě 1, h ě 2 and x,y P pZ2qh. Then, there exists a constant
C P p0,8q such that uniformly in N , x,y and λ ě 0,

QN,λpx,yq ď

$

’

’

’

&

’

’

’

%

C
`

1 ` |x ´ y|2
˘h´1

for all x,y P pZ2qh ,

C

Nh´1
exp

ˆ

´|x ´ y|2

C N

˙

if |x ´ y| ą
?
N .

We will use Lemma 3.2.1 to prove the following operator norm estimate.
The next proposition contains the central estimate. It is on the operator norm of operator pQI;JN,0,

as an operator from an ℓq Ñ ℓq, containing the explicit dependence on the parameters p, q.

Proposition 3.2.2. Let p, q P p1,8q such that 1
p ` 1

q “ 1. There exists a constant C “ Cph,wq P

p0,8q, independent of p and q, such that for all I, J $ t1, . . . , hu with 1 ď |I|, |J | ď h ´ 1 and
I ‰ J when |I| “ |J | “ h´ 1, ∥∥∥pQI;JN,0∥∥∥

ℓqÑℓq
ď C p q . (3.2.12)

Proof. Let I, J $ t1, . . . , hu with 1 ď |I|, |J | ď h ´ 1 and I ‰ J when |I| “ |J | “ h ´ 1 and
consider f P ℓp

`

pZ2qhI

˘

, g P ℓq
`

pZ2qhJ

˘

. In view of (3.2.4), in order to prove (3.2.12), we need to
prove that there exists a constant C P p0,8q such that

ÿ

xPpZ2qhI ,yPpZ2qhJ

fpxqQI;JN,0px,yq
wbh
N pxq

wbh
N pyq

gpyq ď C p q ∥f∥ℓp ∥g∥ℓq . (3.2.13)

Let
EN :“

!

px,yq P pZ2qhI ˆ pZ2qhJ : |x ´ y| ď C0

?
N
)

. (3.2.14)

for some C0 ą 0 to be determined. By the second inequality in Lemma 3.2.1 and the Lipschitz
condition on logw, we can choose C0 large enough so that for all px,yq P EcN we have

QI;JN,0px,yq
wbh
N pxq

wbh
N pyq

ď
C

Nh´1
exp

`

´
|x´y|
?
N

˘

.
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Therefore,

ÿ

px,yqPEc
N

fpxqQI;JN,0px,yq
wbh
N pxq

wbh
N pyq

gpyq ď
C

Nh´1

ÿ

px,yqPEc
N

fpxq exp
`

´
|x´y|
?
N

˘

gpyq

and by Hölder’s inequality,

1

Nh´1

ÿ

px,yqPEc
N

fpxq exp
`

´
|x´y|
?
N

˘

gpyq

ď
1

Nh´1

˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|fpxq|p exp
´

´
|x´y|
?
N

¯

¸
1
p
˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|gpyq|q exp
´

´
|x´y|
?
N

¯

¸
1
q

ďC N
|J |

p `
|I|

q ´ ph´ 1q ∥f∥ℓp ∥g∥ℓq

ďC ∥f∥ℓp ∥g∥ℓq ,
(3.2.15)

where the inequality in the last line of (3.2.15) follows by the assumption |I|, |J | ď h´ 1. Thus,

ÿ

px,yqPEc
N

fpxqQI;JN,0px,yq
wbh
N pxq

wbh
N pyq

gpyq ď C ∥f∥ℓp ∥g∥ℓq ,

for a constant C P p0,8q. On the other hand, recalling that logw is Lipschitz with Lipschitz
constant Cw and (3.2.14), we get that

ÿ

px,yqPEN

fpxqQI;JN,0px,yq
wbh
N pxq

wbh
N pyq

gpyq ď eCw C0
ÿ

px,yqPEN

fpxqQI;JN,0px,yqgpyq .

Therefore, using the first inequality of Lemma 3.2.1, the key step is to show that there exists a
constant C P p0,8q that may depend on h and w but not on p and q, such that

ÿ

xPpZ2qhI ,yPpZ2qhJ

fpxqgpyq
´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
ď C p q ∥f∥ℓp ∥g∥ℓq . (3.2.16)

By assumption there exist 1 ď k, ℓ ď h such that k I
„ ℓ and 1 ď m,n ď h such that m J

„ n. Since
we have assumed that I ‰ J when |I| “ |J | “ h ´ 1, we may assume without loss of generality
that m ‰ k, ℓ. Let a P

`

0,mintp´1, q´1u
˘

to be determined later. By multiplying and dividing by
1`|xm´xn|2a

1`|yk´yℓ|2a
and using Hölder’s inequality, the left-hand side of (3.2.16) is upper bounded by

˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|fpxq|p

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
¨

`

1 ` |xm ´ xn|2a
˘p

`

1 ` |yk ´ yℓ|2a
˘p

¸
1
p

ˆ

˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|gpyq|q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
¨

`

1 ` |yk ´ yℓ|
2a
˘q

`

1 ` |xm ´ xn|2a
˘q

¸
1
q

.

(3.2.17)

By symmetry, it is enough to bound one of the two factors in (3.2.17). By triangle inequality and
the fact that m J

„ n, which means that ym “ yn, we have

|xm ´ ym|2 ` |xn ´ yn|2 ě
|xm ´ xn|2 ` |xn ´ yn|2

4
.
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Therefore,
˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|fpxq|p

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
¨

`

1 ` |xm ´ xn|2a
˘p

`

1 ` |yk ´ yℓ|2a
˘p

¸
1
p

ď 4
h´1
p

˜

ÿ

xPpZ2qhI

|fpxq|p p1 ` |xm ´ xn|2aqp

ˆ
ÿ

yPpZ2qhJ

1
´

1 ` |xm ´ xn|2 `
ř

i‰m |xi ´ yi|2
¯h´1

`

1 ` |yk ´ yℓ|2a
˘p

¸
1
p

.

(3.2.18)

By using (3.2.39) of Lemma 3.2.5 and summing successively the yi variables for i ‰ k, ℓwe obtain
that

ÿ

yPpZ2qhJ

1
´

1 ` |xm ´ xn|2 `
ř

i‰m |xi ´ yi|2
¯h´1

p1 ` |yk ´ yℓ|2aqp

ď c|J |´2
ÿ

yk, yℓPZ2

1
´

1 ` |xm ´ xn|2 ` |yk ´ xk|2 ` |yℓ ´ xℓ|2
¯h`1´|J |

`

1 ` |yk ´ yℓ|2a
˘p
.

We make a change of variables w1 “ yk ´ yℓ and w2 “ yk ` yℓ ´ 2xk and observe that w
2
1`w2

2
2 “

|yk ´ xk|2 ` |yℓ ´ xℓ|
2, where we used that k I

„ ℓ thus xk “ xℓ. Therefore, we have

c|J |´2
ÿ

yk, yℓPZ2

1
´

1 ` |xm ´ xn|2 ` |yk ´ xk|2 ` |yℓ ´ xℓ|2
¯h`1´|J |

`

1 ` |yk ´ yℓ|2a
˘p

ď 2h`1´|J | c|J |´2
ÿ

w1, w2PZ2

1
´

1 ` |xm ´ xn|2 ` |w1|2 ` |w2|2
¯h`1´|J |

`

1 ` |w1|2a
˘p
.

By summing w2 and using (3.2.39) of Lemma 3.2.5 we have,

2h`1´|J | c|J |´2
ÿ

w1, w2PZ2

1
´

1 ` |xm ´ xn|2 ` |w1|2 ` |w2|2
¯h`1´|J |

`

1 ` |w1|2a
˘p

ď 2h`1´|J | c|J |´1
ÿ

w1PZ2

1
´

1 ` |xm ´ xn|2 ` |w1|2
¯h´|J |

`

1 ` |w1|2a
˘p

By (3.2.40) of Lemma 3.2.5 we have that

2h`1´|J | c|J |´1
ÿ

w1PZ2

1
´

1 ` |xm ´ xn|2 ` |w1|2
¯h´|J |

`

1 ` |w1|2a
˘p

ď 2h`1´|J | c|J | 1

app1 ´ apq

1
`

1 ` |xm ´ xn|2
˘ap`h´1´|J |

ď 2h`1´|J | c|J | 1

app1 ´ apq

1
`

1 ` |xm ´ xn|2
˘ap ,
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where in the last inequality we used that |J | ď h´1 by assumption. Therefore, the right-hand side
of (3.2.18) is bounded by

ˆ

4h´1 2h`1
´ c

2

¯|J | 1

app1 ´ apq

˙
1
p

¨

˜

ÿ

xPpZ2qhI

|fpxq|p
p1 ` |xm ´ xn|2aqp
`

1 ` |xm ´ xn|2
˘ap

¸
1
p

“

ˆ

23h´1
´ c

2

¯|J | 1

app1 ´ apq

˙
1
p

¨

˜

ÿ

xPpZ2qhI

|fpxq|p
p1 ` |xm ´ xn|2aqp
`

1 ` |xm ´ xn|2
˘ap

¸
1
p

.

(3.2.19)

Note furthermore, that
`

1 ` |xm ´ xn|2a
˘p

`

1 ` |xm ´ xn|2
˘ap ď

2pmax
␣

1, |xm ´ xn|
(2ap

`

1 ` |xm ´ xn|2
˘ap ď 2p ,

therefore,
˜

ÿ

xPpZ2qhI

|fpxq|p
p1 ` |xm ´ xn|2aqp
`

1 ` |xm ´ xn|2
˘ap

¸
1
p

ď 2

˜

ÿ

xPpZ2qhI

|fpxq|p

¸
1
p

“ 2 ∥f∥ℓp .

Hence, setting

CJp,h :“ 2 ¨

˜

23h´1
´ c

2

¯|J | 1

app1 ´ apq

¸
1
p

and recalling (3.2.18), (3.2.19) we get that
˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|fpxq|p

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
¨

`

1 ` |xm ´ xn|2a
˘p

`

1 ` |yk ´ yℓ|2a
˘p

¸
1
p

ď CJp,h ∥f∥ℓp . (3.2.20)

By symmetry we also obtain that
˜

ÿ

xPpZ2qhI ,yPpZ2qhJ

|gpyq|q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
¨

`

1 ` |yk ´ yℓ|
2a
˘q

`

1 ` |xm ´ xn|2a
˘q

¸
1
q

ď CIq,h ∥g∥ℓq , (3.2.21)

with

CIq,h :“ 2 ¨

˜

23h´1
´ c

2

¯|I| 1

aqp1 ´ aqq

¸
1
q

.

Consequently, recalling (3.2.16) and using (3.2.20), (3.2.21) we deduce that
ÿ

xPpZ2qhI ,yPpZ2qhJ

fpxqgpyq
´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
ď CJp,hC

I
q,h ∥f∥ℓp ∥g∥ℓq .

We optimise by choosing a “ pp qq´1 so as to obtain

CJp,h “ 2 ¨

˜

23h´1
´ c

2

¯|J |

p q

¸
1
p

and CIq,h “ 2 ¨

˜

23h´1
´ c

2

¯|I|

p q

¸
1
q

,

which implies that

CJp,hC
I
q,h “ 23h`1

´ c

2

¯

|J|

p
`

|I|

q
p q .
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Noting that
`

c
2

˘

|J|

p
`

|I|

q ď max
!

1,
`

c
2

˘h´1
)

, we deduce that there exists C “ Cph,wq P p0,8q

such that
ÿ

xPpZ2qhI ,yPpZ2qhJ

fpxqgpyq
´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
ď C p q ∥f∥ℓp ∥g∥ℓq ,

which together with (3.2.15) imply (3.2.13). □

The next proposition is the analogue of Proposition 3.2.2 for the boundary operators.

Proposition 3.2.3. Let p, q P p1,8q such that 1
p ` 1

q “ 1. There exists a constant C “ Cph,wq P

p0,8q, independent of p and q, such that for all I $ t1, . . . , hu with |I| ď h´ 1 and g P ℓqpZ2q,∥∥∥pQI;˚N,0 gbh
∥∥∥
ℓq

ď C pN
1
p ∥g∥hℓq .

Proof. Let I $ t1, . . . , hu with |I| ď h´ 1. In order to prove Proposition 3.2.3, we need to show
that

ÿ

xPpZ2qhI ,yPpZ2qh

fpxqQI;˚N,0px,yq
wbh
N pxq

wbh
N pyq

gbhpyq ď C pN
1
p ∥f∥ℓp ∥g∥

h
ℓq .

for any f P ℓp
`

pZ2q|I|
˘

. The proof of this Proposition is a modification of the proof of Proposition
3.2.2. Let

EN :“
!

px,yq P pZ2qhI ˆ pZ2qh : |x ´ y| ď C0

?
N
)

.

For px,yq P EcN , following (3.2.15) we have

ÿ

px,yqPEc
N

fpxq
wbh
N pxq

wbh
N pyq

QI;˚N,0px,yqgbhpyq ďC N
h
p `

|I|

q ´ ph´ 1q ∥f∥ℓp ∥g∥
h
ℓq

ďC N
1
p ∥f∥ℓp ∥g∥

h
ℓq ,

since |I| ď h´1. Therefore, in light of the first inequality of Lemma 3.2.1, it remains to show that

ÿ

px,yqPEN

fpxqgbhpyq
´

1 `
řh
i“1 |xi ´ yj |2

¯h´1
ď C pN

1
p ∥f∥ℓp ∥g∥

h
ℓq . (3.2.22)

We can assume without loss of generality that 1 I
„ 2, that is x1 “ x2. We multiply and divide by

the factor
´

log
´

1 `
C2

0N
1`|y1´y2|2

¯¯
1
q in (3.2.22) and apply Hölder’s inequality, namely

ÿ

px,yqPEN

fpxqgbhpyq
´

1 `
řh
i“1 |xi ´ yi|2

¯h´1

ď

˜

ÿ

px,yqPEN

|fpxq|p
´

log
´

1 `
C2

0N
1`|y1´y2|2

¯¯

p
q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1

¸
1
p

ˆ

˜

ÿ

px,yqPEN

|gbhpyq|q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
log

´

1 `
C2

0N

1`|y1´y2|2

¯

¸
1
q

.

(3.2.23)

By triangle inequality and using that x1 “ x2 we have that

|x1 ´ y1|2 ` |x2 ´ y2|2 ě
|y1 ´ y2|2 ` |x2 ´ y2|2

4
,
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therefore
˜

ÿ

px,yqPEN

|gbhpyq|q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
log

´

1 `
C2

0N

1`|y1´y2|2

¯

¸
1
q

ď 4
h´1
q

˜

ÿ

px,yqPEN

|gbhpyq|q

´

1 ` |y1 ´ y2|2 `
řh
i“2 |xi ´ yi|2

¯h´1
log

´

1 `
C2

0N

1`|y1´y2|2

¯

¸
1
q

.

(3.2.24)

We sum the xi variables for i ą 2 successively, so that by inequality (3.2.39) of Lemma 3.2.5,
ÿ

xPpZ2qhI : px,yqPEN

1
´

1 ` |y1 ´ y2|2 `
řh
i“2 |xi ´ yi|2

¯h´1
log

´

1 `
C2

0N

1`|y1´y2|2

¯

ď c|I|´1 1

log
´

1 `
C2

0N

1`|y1´y2|2

¯

ÿ

x2PZ2

|x2´y2|ďC0

?
N

1
`

1 ` |y1 ´ y2|2 ` |x2 ´ y2|2
˘h´|I|

.
(3.2.25)

We also note that since |I| ď h´ 1,
ÿ

x2PZ2

|x2´y2|ďC0

?
N

1
`

1 ` |y1 ´ y2|2 ` |x2 ´ y2|2
˘h´|I|

ď
ÿ

x2PZ2

|x2´y2|ďC0

?
N

1

1 ` |y1 ´ y2|2 ` |x2 ´ y2|2

ď c log

ˆ

1 `
C2
0N

1 ` |y1 ´ y2|2

˙

,

(3.2.26)

where the last inequality in (3.2.26) follows from inequality (3.2.48) of Lemma 3.2.6. Thus, taking
into account (3.2.25) and (3.2.26) we deduce that

ÿ

xPpZ2qhI : px,yqPEN

1
´

1 ` |y1 ´ y2|2 `
řh
i“2 |xi ´ yi|2

¯h´1
log

´

1 `
C2

0N

1`|y1´y2|2

¯

ď c|I| ď ch´1 ,

since |I| ď h´ 1. By (3.2.24) we obtain that
˜

ÿ

px,yqPEN

|gbhpyq|q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
log

´

1 `
C2

0N

1`|y1´y2|2

¯

¸
1
q

ď p4cq
h´1
q

˜

ÿ

yPpZ2qh

|gbhpyq|q

¸
1
q

“ p4cq
h´1
q ∥g∥hℓq .

(3.2.27)

On the other hand, for the first term in (3.2.23), using that x1 “ x2, by (3.2.39) of Lemma 3.2.5,
we have that

ÿ

yPpZ2qh

´

log
´

1 `
C2

0N
1`|y1´y2|2

¯¯

p
q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1
ď ch´2

ÿ

y1,y2PZ2

|y1´x1|,|y2´x1|ďC0

?
N

´

log
´

1 `
C2

0N
1`|y1´y2|2

¯¯

p
q

´

1 ` |x1 ´ y1|2 ` |x1 ´ y2|2
¯ .

(3.2.28)
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We make the change of variables w1 :“ y1 ´ y2 and w2 :“ y1 ` y2 ´ 2x1, so that |w1|, |w2| ď

2C0

?
N and |w1|2 ` |w2|2 “ 2|y1 ´ x1|2 ` 2|y2 ´ x1|2. Note that then,

ch´2
ÿ

y1,y2PZ2

|y1´x1|,|y2´x1|ďC0

?
N

´

log
´

1 `
C2

0N
1`|y1´y2|2

¯¯

p
q

´

1 ` |x1 ´ y1|2 ` |x1 ´ y2|2
¯

ď 2ch´2
ÿ

w1,w2PZ2

|w1|,|w2|ď2C0

?
N

´

log
´

1 `
C2

0N
1`|w1|2

¯¯

p
q

1 ` |w1|2 ` |w2|2
.

Next, we sum over w2 and use inequality (3.2.48) of Lemma 3.2.6 to obtain

2ch´2
ÿ

w1,w2PZ2

|w1|,|w2|ď2C0

?
N

´

log
´

1 `
C2

0N
1`|w1|2

¯¯

p
q

1 ` |w1|2 ` |w2|2
ď 2ch´1

ÿ

w1PZ2

|w1|ď2C0

?
N

´

log
´

1`
C2
0N

1 ` |w1|2

¯¯

p
q

`1
.

(3.2.29)
By (3.2.50) of Lemma 3.2.6 and noting that pq ` 1 “ p we have

ÿ

w1PZ2

|w1|ď2C0

?
N

´

log
´

1 `
C2
0N

1 ` |w1|2

¯¯p
ď cC2

0 N pp . (3.2.30)

Therefore, by (3.2.28), (3.2.29) and (3.2.30) we have that

˜

ÿ

px,yqPEN

|fpxq|p
´

log
´

1 `
C2

0N
1`|y1´y2|2

¯¯

p
q

´

1 `
řh
i“1 |xi ´ yi|2

¯h´1

¸
1
p

ď

´

2 chC2
0

¯
1
p
N

1
p p

˜

ÿ

xPpZ2qhI

|fpxq|p

¸
1
p

ď

´

2 chC2
0

¯
1
p
N

1
p p ∥f∥ℓp .

(3.2.31)

Taking into account (3.2.27), (3.2.31) and (3.2.23) we obtain that there exists C “ Cph,wq P

p0,8q such that

ÿ

px,yqPEN

fpxqgbhpyq
´

1 `
řh
i“1 |xi ´ yj |2

¯h´1
ď C pN

1
p ∥f∥ℓp ∥g∥

h
ℓq ,

which concludes the proof of (3.2.22) and thus, the proof of Proposition 3.2.3. □

Proposition 3.2.4. Let p, q P p1,8q such that 1
p` 1

q “ 1. There exists a constantC “ Cph, β̂, wq P

p0,8q, independent of p and q, such that for all I $ t1, . . . , hu with |I| “ h´ 1,∥∥∥pUIN,0∥∥∥
ℓqÑℓq

ď C .

Proof. Using (3.2.4) it suffices to prove that if f P ℓp
`

pZ2qhI

˘

, g P ℓq
`

pZ2qhI

˘

, then we have

ÿ

x,yPpZ2qhI

fpxqUIN,0px,yq
wbh
N pxq

wbh
N pyq

gpyq ď C ∥f∥ℓp ∥g∥ℓq .
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By the Lipschitz condition on logw we first have

ÿ

x,yPpZ2qhI

fpxqUIN,0px,yq
wbh
N pxq

wbh
N pyq

gpyq ď
ÿ

x,yPpZ2qhI

fpxqUIN,0px,yqe
Cw

|x´y|
?
N gpyq ,

which by Hölder’s inequality is bounded by
˜

ÿ

x,yPpZ2qhI

|fpxq|p UIN,0px,yqe
Cw

|x´y|
?
N

¸
1
p

¨

˜

ÿ

x,yPpZ2qhI

|gpyq|q UIN,0px,yqe
Cw

|x´y|
?
N

¸
1
q

.

Therefore, in order to conclude the proof of (3.2.4) it suffices to prove that there exists a constant
C such that uniformly in x P pZ2qhI ,

ÿ

yPpZ2qhI

UIN,0px,yqe
Cw

|x´y|
?
N ď C . (3.2.32)

Recall from (3.2.8) that if I is of the form I “ tk, ℓu \
Ů

j‰k,ℓtju then for x,y P pZ2qhI the
operator UIN,0px,yq is defined as

UIN,0px,yq “

2N
ÿ

n“0

UInpx,yq “ 1tx,y„Iu ¨

2N
ÿ

n“0

UβNN pn, yk ´ xkq ¨
ź

i‰k,ℓ

qnpyi ´ xiq .

Therefore, in view of (3.2.32), we shall prove that uniformly in 0 ď n ď 2N ,
ÿ

zPZ2

UβNN pn, zqe
Cw

|z|
?
N ď C UβNN pnq (3.2.33)

and
ÿ

zPZ2

qnpzqe
Cw

|z|
?
N ď C qnpzq . (3.2.34)

Inequality (3.2.34) follows easily by the local CLT, see [LL10] and Gaussian concentration. For
the sake of the presentation, we will prove (3.2.33) for 0 ď n ď N , that is,

ÿ

zPZ2

UβNN pn, zqe
Cw

|z|
?
N ď C UβNN pnq , @ 0 ď n ď N . (3.2.35)

Note that, by (3.1.13) we have,

N
ÿ

n“0

UβNN pnq ď E
”

pZβNN`1q2
ı

ď
C

1 ´ β̂2
. (3.2.36)

Moreover, following the renewal framework we introduced in Section 3.1, we have
ÿ

zPZ2

UβNN pn, zqe
Cw

|z|
?
N

“
ÿ

kě0

β̂
2k

E

„

e
Cw

|S
pNq

k
|

?
N ; τ

pNq

k “ n

ȷ

“
ÿ

kě0

β̂
2k ÿ

n1`¨¨¨`nk“n

E

„

e
Cw

|S
pNq

k
|

?
N

ˇ

ˇ

ˇ
t
pNq

i “ ni , 1 ď i ď k

ȷ k
ź

i“1

P
`

t
pNq

i “ ni
˘

.

(3.2.37)

Therefore, in order to establish (3.2.35) it suffices to prove that there exists C P p0,8q, such that
for all k ě 1,

E

„

e
Cw

|S
pNq

k
|

?
N

ˇ

ˇ

ˇ
t
pNq

i “ ni , 1 ď i ď k

ȷ

ď C . (3.2.38)
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We note that when we condition on the times
`

t
pNq

i

˘

1ďiďk
, the space increments

`

x
pNq

i

˘

1ďiďk
are

independent with distribution

P
`

x
pNq

1 “ x
ˇ

ˇ t
pNq

1 “ n1
˘

“
q2n1

pxq

q2n1p0q
1tn1ďNu .

Let λ ě 0 and pξiq1ďiďk independent random variables such that ξi
law
“ x

pNq

i

ˇ

ˇ t
pNq

i “ ni. We will
show that

E
”

eλ|
řk

i“1 ξi|
ı

ď 2e4cλ
2n ,

for some c ą 0. Therefore, taking λ “ Cw?
N

will lead to (3.2.38). To this end, for each 1 ď i ď k,
let ξi,1, ξi,2 P Z be the two components of ξi P Z2 .Then we can find c ą 0 such that

E
“

e˘λ ξi,j
‰

ď ecλ
2ni

for j “ 1, 2, since by the local CLT we have

Ppξi “ xq “
q2ni

pxq

q2nip0q
ď

´supxPZ2 qnipxq

q2nip0q

¯

qnipxq ď C 1qnipxq

and qnipxq “ 2pgni{2pxq ` op1qq, thus qni has Gaussian tail decay. By Cauchy-Schwarz we

E
”

eλ|
řk

i“1 ξi|
ı

ď E
”

e2λ|
řk

i“1 ξi,1|
ı

1
2
”

e2λ|
řk

i“1 ξi,2|
ı

1
2
.

Also, by the inequality e|x| ď ex ` e´x and independence, we obtain for j “ 1, 2

E
”

e2λ|
řk

i“1 ξi,j |
ı

1
2

ď

˜

k
ź

i“1

Ere2λξi,j s `

k
ź

i“1

Ere´2λξi,j s

¸
1
2

ď

´

2e4cλ
2n
¯

1
2
,

therefore,
E
”

eλ|
řk

i“1 ξi|
ı

ď 2e4cλ
2n .

Given the inequality above and choosing λ “ Cw?
N

we get that

E

„

e
Cw

|S
pNq

k
|

?
N

ˇ

ˇ

ˇ
t
pNq

i “ ni , 1 ď i ď k

ȷ

ď 2e4cC
2
w ,

since 1 ď n ď N . Therefore, recalling (3.2.36) and (3.2.37),we have

ÿ

zPZ2,
0ďnďN

UβNN pn, zqe
Cw

|z|
?
N ď 2e4cC

2
w

N
ÿ

n“0

UβNN pnq ď 2e4cC
2
w E

”

pZN`1,βN q2
ı

ď C ,

for a constant C “ Cph, β̂, wq P p0,8q. □

3.2.3. Some technical estimates. We state here the integral estimates we used for proving Propo-
sitions 3.2.2 and 3.2.3.

Lemma 3.2.5. Let λ ě 1, p ą 1, a ă 1
p . Then,

ÿ

yPZ2

1
`

λ` |y|2
˘r ď

c

λr´1
if r ě 2 , (3.2.39)

ÿ

yPZ2

1
`

λ` |y|2
˘r`

1 ` |y|2a
˘p ď

c

ap p1 ´ apqλr´1`ap
if r ě 1 , (3.2.40)

for a constant c P p0,8q, that does not depend on λ, p, a or r.
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Proof. We note that since y ÞÑ
1

`

λ` |y|2
˘r and y ÞÑ

1
`

λ` |y|2
˘r`

1 ` |y|2a
˘p are decreasing in

the radial direction we have that
ÿ

yPZ2

1
`

λ` |y|2
˘r ď

1

λr
`

ż

R2

1
`

λ` |y|2
˘r dy (3.2.41)

and
ÿ

yPZ2

1
`

λ` |y|2
˘r`

1 ` |y|2a
˘p ď

1

λr
`

ż

R2

1
`

λ` |y|2
˘r

|y|2ap
dy . (3.2.42)

In order to prove (3.2.39), we switch to polar coordinates in (3.2.41), so that
ż

R2

1
`

λ` |y|2
˘r dy “ 2π

ż 8

0

ϱ

pλ` ϱ2qr
dϱ “ π ¨

pλ` ϱ2q1´r

1 ´ r

ˇ

ˇ

ˇ

ˇ

ϱ“8

ϱ“0

“
π

r ´ 1

1

λr´1
. (3.2.43)

Therefore, by (3.2.41) and (3.2.43) we get that
ÿ

yPZ2

1
`

λ` |y|2
˘r ď

1

λr
`

π

r ´ 1

1

λr´1
“

1

λr´1

ˆ

1

λ
`

π

r ´ 1

˙

.

Thus, since r ě 2 and λ ě 1 we conclude (3.2.39) with c “ π ` 1.
For (3.2.40) we split the integral in (3.2.42) into two regions,

ż

R2

1
`

λ` |y|2
˘r

|y|2ap
dy “

ż

|y|ď
?
λ

1
`

λ` |y|2
˘r

|y|2ap
dy

looooooooooooooooomooooooooooooooooon

:“I1

`

ż

|y|ą
?
λ

1
`

λ` |y|2
˘r

|y|2ap
dy

looooooooooooooooomooooooooooooooooon

:“I2

.

First,

I1 ď
1

λr

ż

|y|ď
?
λ

1

|y|2ap
dy “

2π

λr

ż

?
λ

0

1

ϱ2ap´1
dϱ “

π

λr
λ1´ap

1 ´ ap
“

π

1 ´ ap

1

λr´1`ap
.

Similarly,

I2 ď

ż

|y|ą
?
λ

1

|y|2r`2ap
dy “ 2π

ż 8

?
λ

1

ϱ2r`2ap´1
dϱ “

π

r ´ 1 ` ap

´1

ϱ2r`2ap´2

ˇ

ˇ

ˇ

ˇ

ϱ“8

ϱ“
?
λ

“
π

r ´ 1 ` ap

1

λr´1`ap
.

Therefore,
ż

R2

1
`

λ` |y|2
˘r

|y|2ap
dy “ I1 ` I2 ď

π

1 ´ ap

1

λr´1`ap
`

π

r ´ 1 ` ap

1

λr´1`ap

“
π r

p1 ´ apqpr ´ 1 ` apq

1

λr´1`ap
.

(3.2.44)

By (3.2.42) and (3.2.44) we thus obtain
ÿ

yPZ2

1
`

λ` |y|2
˘r`

1 ` |y|2a
˘p ď

1

λr
`

ż

R2

1
`

λ` |y|2
˘r

|y|2ap
dy

ď
1

λr
`

π r

p1 ´ apqpr ´ 1 ` apq

1

λr´1`ap
.

(3.2.45)

Note that
π r

p1 ´ apqpr ´ 1 ` apq
ď

π

p1 ´ apqap
,
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since that inequality is equivalent to pr ´ 1qpap ´ 1q ď 0, which is valid since we have assumed
that a p ă 1 and r ě 2. Therefore,

1

λr
`

π r

p1 ´ apqpr ´ 1 ` apq

1

λr´1`ap
ď

1

λr
`

π

p1 ´ apqap

1

λr´1`ap

“
1

λr´1`ap

ˆ

1

λ1´ap
`

π

p1 ´ apqap

˙

ď
1

λr´1`ap

ˆ

1 `
π

p1 ´ apqap

˙

,

(3.2.46)

since λ ě 1 and 1 ´ ap ą 0, by assumption. Last, we have that

1 `
π

p1 ´ apqap
“
π ` app1 ´ apq

app1 ´ apq
ď

1 ` π

app1 ´ apq
. (3.2.47)

Hence, by (3.2.45), (3.2.46) and (3.2.47),
ÿ

yPZ2

1
`

λ` |y|2
˘r`

1 ` |y|2a
˘p ď

c

p1 ´ apq ap λr´1`ap
,

with c “ 1 ` π, thus concluding the proof of (3.2.40). □

Lemma 3.2.6. There exists a constant c P p0,8q such that uniformly in A, λ, p ě 1,
ÿ

yPZ2

|y|ď
?
A

1

λ` |y|2
ď c log

´

1 `
A

λ

¯

, (3.2.48)

ˆ
ż A

1

`

log
`

A
x

˘˘p
dx

˙
1
p

ď pA
1
p , (3.2.49)

and
ÿ

yPZ2

|y|ď2
?
A

´

log
´

1 `
A

1 ` |y|2

¯¯p
ď cA pp . (3.2.50)

Proof. For (3.2.48), using the same reasoning as in the proof of Lemma 3.2.5 we have
ÿ

yPZ2

|y|ď
?
A

1

λ` |y|2
ď

1

λ
`

ż

|y|ď
?
A

1

λ` |y|2
dy (3.2.51)

Switching to polar coordinates in (3.2.51) we have
ż

|y|ď
?
A

1

λ` |y|2
dy “ 2π

ż

?
A

0

ϱ

λ` ϱ2
dϱ “ π logpλ` ϱ2q

ˇ

ˇ

ˇ

ϱ“
?
A

ϱ“0
“ π log

´

1 `
A

λ

¯

. (3.2.52)

A simple computation shows that when λ ě 1, one has that 1
λ ď 2 log

´

1 ` 1
λ

¯

ď 2 log
´

1 ` A
λ

¯

,
the latter following since A ě 1, by assumption. Therefore, by (3.2.51) and (3.2.52) we have that

ÿ

yPZ2

|y|ď
?
A

1

λ` |y|2
ď

1

λ
`

ż

|y|ď
?
A

1

λ` |y|2
dy ď p2 ` πq log

´

1 `
A

λ

¯

,

which implies (3.2.48) with c “ 2 ` π.
Let us now prove (3.2.49) and (3.2.50). First, we prove (3.2.49). We have

1

A

ż A

1

`

log
`

A
x

˘˘p
dx

y“Ae´u

““

ż logA

0
e´u up du ď Γpp` 1q ď pp , (3.2.53)
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since Γpp` 1q ď pp for p ě 1. After raising both sides of (3.2.53) to the 1
p we get (3.2.49).

To prove (3.2.50) we first note that
ÿ

yPZ2

|y|ď2
?
A

´

log
´

1`
A

1 ` |y|2

¯¯p
ď plogp1`Aqqp`

ż

|y|ď2
?
A

´

log
´

1`
A

1 ` |y|2

¯¯p
dy . (3.2.54)

Using polar coordinates in (3.2.54) we compute
ż

|y|ď2
?
A

´

log
´

1 `
A

1 ` |y|2

¯¯p
dy “ 2π

ż 2
?
A

0
ϱ
´

log
´

1 `
A

1 ` ϱ2

¯¯p
dϱ

u“1`ϱ2
““ π

ż 1`4A

1

´

log
´

1 `
A

u

¯¯p
du .

Furthermore,

π

ż 1`4A

1

´

log
´

1 `
A

u

¯¯p
du ď π

ż 1`4A

1

´

log
´1 ` 5A

u

¯¯p
du

ď π

ż 1`5A

1

´

log
´1 ` 5A

u

¯¯p
du .

Note that by (3.2.49), we further have that

π

ż 1`5A

1

´

log
´1 ` 5A

u

¯¯p
du ď p1 ` 5Aqπ pp ď 6Aπ pp ,

since A ě 1. Combining this inequality with (3.2.54) we get that
ÿ

yPZ2

|y|ď2
?
A

´

log
´

1 `
A

1 ` |y|2

¯¯p
ď logp1 `Aqp ` 6Aπ pp . (3.2.55)

We are going to prove that for all A ě 1,

plogp1 `Aqqp ď
1

?
e´ 1

App ,

thus deducing inequality (3.2.50), via (3.2.55), with c “ 1?
e´1

`6π. To this end, consider kppxq :“
plogp1`xqqp

x for x ě 0 and p ě 1. We have that

k1
ppxq :“

plogp1 ` xqqp´1

x

´ p

1 ` x
´

logp1 ` xq

x

¯

,

therefore, kp is increasing in r0, xps and decreasing in rxp,8q, where xp ě 0 is the solution to the
equation k1

ppxpq “ 0, or equivalently

p “
p1 ` xpq logp1 ` xpq

xp
. (3.2.56)

By working with gpxq :“ p1`xq logp1`xq

x , one can see that equation (3.2.56) has a unique solution
xp ě 0 for every p ě 1, since g1pxq ą 0 for all x ą 0, limxÓ0 gpxq “ 1 and limxÑ8 gpxq “ 8.
We distinguish two cases:

Suppose first that xp ě 1. Then

logp1 ` xpq ď p ď 2 logp1 ` xpq , (3.2.57)
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by (3.2.56) and since xp ě 1. Therefore, in this case, for all x ě 1,

plogp1 ` xqqp

x
“ kppxq ď kppxpq “

plogp1 ` xpqqp

xp
ď
pp

xp
ď

pp

e
p
2 ´ 1

,

where the last two inequalities follow by the first and second inequality in (3.2.57), respectively.
Since, p ě 1 we have that e

p
2 ´ 1 ě

?
e ´ 1, thus we conclude that in the case where xp ě 1 we

have for all x ě 1,

kppxq “
plogp1 ` xqqp

x
ď

1
?
e´ 1

pp . (3.2.58)

Moving to the second case, i.e. 0 ď xp ă 1, we have that since kp is decreasing in r1,8q Ă

rxp,8q, we have that for all x ě 1,

kppxq “
plogp1 ` xqqp

x
ď kpp1q “ plogp2qqp ă 1 , (3.2.59)

since p ě 1 and log 2 ă 1. Therefore, by (3.2.58), (3.2.59) and since p ě 1, for all x ě 1 and
p ě 1 we have that

kppxq ď max
!

1,
1

?
e´ 1

)

pp “
1

?
e´ 1

pp . (3.2.60)

Recalling that kppxq “
plogp1`xqqp

x and applying (3.2.60) to (3.2.55) for x “ A ě 1 we get that
ÿ

yPZ2

|y|ď2
?
A

´

log
´

1`
A

1 ` |y|2

¯¯p
ď plogp1`Aqqp `6Aπ pp ď

1
?
e´ 1

App `6Aπ pp “ cA pp ,

with c “ 1?
e´1

` 6π, thus concluding the proof of (3.2.50). □

3.3. Proofs of Theorems 3.0.1, 3.0.3, 3.0.4 and 3.0.5.
Now we have all the ingredients to prove the main results. We begin with Theorem 3.0.4.

Proof of Theorem 3.0.4. We first prove (3.0.9). Recall from (3.2.11) that

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď
c ∥ψ∥h8
Nh`1

ÿ

kě1

ÿ

pI1,...,IkqPI

∥∥∥∥∥pQ˚;I1
N,0

φbh
N

wbh
N

∥∥∥∥∥
ℓp

k
ź

i“2

∥∥∥pPIi´1;Ii

N,β̂

∥∥∥
ℓqÑℓq

∥∥∥pQIk;˚N,0w
bh
N

∥∥∥
ℓq

k
ź

i“1

E
”

|ξ|Ii
ı

.

(3.3.1)

By Proposition 3.2.3, we have the following bounds on the boundary operator norms∥∥∥∥∥pQ˚;I1
N,0

φbh
N

wbh
N

∥∥∥∥∥
ℓp

ď C qN
1
q

∥∥∥∥φNwN
∥∥∥∥h
ℓp

and
∥∥∥pQIk;˚N,0w

bh
N

∥∥∥
ℓq

ď C pN
1
p ∥wN∥hℓq , (3.3.2)

for a constant C “ Cph,wq P p0,8q. By Propositions 3.2.2 and 3.2.4 we also have that for all
2 ď i ď k, there exists a constant C “ Cph, β̂, wq P p0,8q, such that∥∥∥pPIi´1;Ii

N,β̂

∥∥∥
ℓqÑℓq

ď C p q . (3.3.3)

By inserting the bounds (3.3.2) and (3.3.3) in (3.3.1) we obtain that

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď
∥ψ∥h8
Nh

∥∥∥∥φNwN
∥∥∥∥h
ℓp
∥wN∥hℓq

ÿ

kě1

pC p qqk
ÿ

pI1,...,IkqPI

k
ź

i“1

E
”

|ξ|Ii
ı

. (3.3.4)

We now distinguish two cases depending on the range of k.
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(Case 1). If k ą th2 u we use the bound

k
ź

i“1

E
“

|ξ|Ii
‰

ď
`

C
logN

˘k
,

which is a consequence of the fact that E
“

|ξ|Ii
‰

ď C σ2
N,β̂

“ Op1{ logNq, see (3.2.7) and (3.1.7).
Therefore, in this case

ÿ

kąth
2

u

pC p qqk
ÿ

pI1,...,IkqPI

k
ź

i“1

E
”

|ξ|Ii
ı

ď
ÿ

kąth
2

u

´

rC p q

logN

¯k
, (3.3.5)

for a constant rC “ rCph, β̂, wq P p0,8q, which also incorporates the fact that the number of
possible choices for a sequence of partitions pI1, . . . , Ikq is bounded by Ck where C “ Cphq is
some positive constant.
(Case 2). The second case is when 1 ď k ď th2 u, for which we claim that there exists a constant
C “ Cph, β̂q P p0,8q such that

k
ź

i“1

E
“

|ξ|Ii
‰

ď Ck plogNq´h
2 .

To see this fix 1 ď k ď th2 u and pI1, . . . , Ikq P I, and let Ii “
Ů

1ďjď|Ii|
Ii,j . By (3.2.7) and

(3.1.7), we have that
k
ź

i“1

E
“

|ξ|Ii
‰

ď Ck pσN,β̂q

ř

1ďiďk

ř

1ďjď|Ii|;|Ii,j |ě2 |Ii,j |
.

From the definition of I (see below (3.1.7)), we have that
ÿ

1ďiďk

ÿ

1ďjď|Ii|;|Ii,j |ě2

|Ii,j | ě h ,

since every r P t1, . . . , hu necessarily belongs to a non-trivial block of some partition Ii, 1 ď i ď

k. Therefore, as before we have that there exists a constant rC “ rCph, β̂, wq P p0,8q such that

ÿ

1ďkďth
2

u

pC p qqk
ÿ

pI1,...,IkqPI

k
ź

i“1

E
”

|ξ|Ii
ı

ď plogNq´h
2

ÿ

1ďkďth
2

u

p rC p qqk . (3.3.6)

Combining estimates (3.3.5) and (3.3.5) we deduce from (3.3.4) that

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď C
∥ψ∥h8
Nh

∥∥∥∥φNwN
∥∥∥∥h
ℓp
∥wN∥hℓq

˜

ÿ

kąth
2

u

´

rC p q

logN

¯k
` plogNq´h

2

ÿ

1ďkďth
2

u

p rC p qqk

¸

.

(3.3.7)

Let p, q ą 1, conjugate exponents, that satisfy the growth condition

rC p q

logN
ă

1

2
. (3.3.8)

In particular, p q ď a˚ logN with a˚ “ a˚ph, β̂, wq P p0, 1q defined as a˚ :“ p2 rCq´1. We then
have that

ÿ

kąth
2

u

´

rC p q

logN

¯k
ď 2

´

rC p q

logN

¯th
2

u`1
(3.3.9)
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by summing the tail of the geometric series, which is possible due to the growth condition (3.3.8)
imposed on p, q. On the other hand, we have that

plogNq´h
2

ÿ

1ďkďth
2

u

p rC p qqk ď plogNq´h
2 ¨

p rC p qqth
2

u`1 ´ rC p q

rC p q ´ 1

ď plogNq´h
2 ¨

p rC p qqth
2

u`1

rC p q ´ 1

ď 2plogNq´h
2 p rC p qqth

2
u , (3.3.10)

since rC p q ą 2 (pq ě 4 because 1
p ` 1

q “ 1 and we can choose rC ą 1). Combining estimates
(3.3.9) and (3.3.10) we obtain that
˜

ÿ

kąth
2

u

´

rC p q

logN

¯k
` plogNq´h

2

ÿ

1ďkďth
2

u

p rC p qqk

¸

ď 2
´

rC p q

logN

¯th
2

u`1
` 2plogNq´h

2 p rC p qqth
2

u

ď 4
´

rC p q

logN

¯
h
2
,

by using that
rC p q
logN ď 1

2 and th2 u ď h
2 ă th2 u ` 1. Inserting this bound to (3.3.7) we finally obtain

that
ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď

´ C p q

logN

¯
h
2 1

Nh

∥∥∥∥φNwN
∥∥∥∥h
ℓp
∥ψ∥h8 ∥wN∥hℓq , (3.3.11)

for a constant C “ Cph, β̂, wq ą rC, which establishes (3.0.9).
Let us now prove (3.0.10). By choosing φ :“ δpNq

0 :“ N 1tx“0u, ψ ” 1 and wpxq “ e´|x|, we
deduce from (3.0.9) that

ˇ

ˇ

ˇ
E
“

p sZN,βN qh
‰

ˇ

ˇ

ˇ
ď

´ C p q

logN

¯
h
2 ∥wN∥hℓq “

´ C p q

logN

¯
h
2

¨N
h
q ¨

1

N
h
q

∥wN∥hℓq . (3.3.12)

Since wpxq “ e´|x| is decreasing in the radial direction we have

1

N
h
q

∥wN∥hℓq ď

ˆ

1

N
`

1

N

ż

R2

e
´q |x|

?
N dx

˙
h
q

“

ˆ

1

N
`

ż

R2

e´q|x| dx

˙
h
q

“

ˆ

1

N
`

2π

q2

˙
h
q

ď ep2πhq{q3 .

(3.3.13)

We choose q “ qN :“ a logN with a “ aph, β̂, wq P p0, 1q small enough such that C p q
logN ă 1

2 (and
therefore (3.3.8) is satisfied). For this choice of q we have by (3.3.13) that

1

N
h
q

∥wN∥hℓq ď eO
`

plogNq´3
˘

ď C . (3.3.14)

Furthermore, again with q “ qN “ a logN and thus p “ pN “ 1 ` op1q, since 1
p ` 1

q “ 1, we get

´ C p q

logN

¯
h
2

¨N
h
q ď 2´h

2 exp
`

h
a

˘

ă 8 , (3.3.15)

since C p q
logN ă 1

2 . We note that the parameter a “ aph, β̂, wq on the right-hand side of (3.3.15)
depends non-trivially on h, and therefore the true order of the bound in (3.3.15) is not exponential
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in h. Finally, by (3.3.12), (3.3.14) and (3.3.15), we obtain that

sup
NPN

E
“

p sZN,βN qh
‰

ă 8 .

□

Proof of Theorem 3.0.1. By binomial expansion, for h P N we have that

E
“

pZβNN qh
‰

“

h
ÿ

k“0

ˆ

h

k

˙

E
“

p sZβNN qk
‰

ď

h
ÿ

k“0

ˆ

h

k

˙

ˇ

ˇ

ˇ
E
“

p sZβNN qk
‰

ˇ

ˇ

ˇ
.

Therefore, by estimate (3.0.10) of Theorem 3.0.4, for every h ě 3 we obtain that

sup
NPN

E
“

pZβNN qh
‰

ă 8.

Hence, for every h ě 0 the sequence
!

pZβNN qh
)

Ně1
is uniformly integrable and therefore, by

Theorem A for every h ě 0,

lim
NÑ8

E
“

pZβNN qh
‰

“ E
“

exp
`

ϱβ̂ hX ´ 1
2ϱ

2
β̂
h
˘‰

“ exp
´

hph´1q

2 ϱ2
β̂

¯

“

ˆ

1

1 ´ β̂2

˙

hph´1q

2

.

As can be seen in [CSZ20], section 3, (3.0.7) implies that for all h ą 0,

sup
NPN

E
“

pZβNN q´h
‰

ă 8,

which in combination with Theorem A implies the convergence of negative moments. □

Proof of Theorem 3.0.3. We note that if we choose the law of the environment ω to be Gaussian,
i.e. ω „ N p0, 1q, then for h P N

E
“

pZN,βN qh
‰

“ Ebh

„

exp
´

β2N
ÿ

1ďiăjďh

L
pi,jq

N

¯

ȷ

“ Ebh

„

exp
´ β̂2 π

logN

`

1 ` op1q
˘

ÿ

1ďiăjďh

L
pi,jq

N

¯

ȷ

.

Therefore, by Theorem 3.0.1 we have that

Ebh

„

exp
´ β̂2 π

logN

ÿ

1ďiăjďh

L
pi,jq

N

¯

ȷ

NÑ8
ÝÝÝÝÑ

ˆ

1

1 ´ β̂2

˙

hph´1q

2

, (3.3.16)

for all β̂ P r0, 1q. The right-hand side of (3.3.16) is equal to MY pβ̂2q, where MY ptq :“ EretY s

denotes the moment generating function of a random variable Y with law Γ
`hph´1q

2 , 1
˘

. By exer-

cise 9, chapter 4 in [K97], (3.3.16) implies the convergence of π
logN

ř

1ďiăjďh L
pi,jq

N in law, to a

Γ
`hph´1q

2 , 1
˘

distribution. □

Proof of Theorem 3.0.5. We are going to show that for all h P N with h ě 3 we have that

sup
NPN

plogNq
h
2 |Mφ,ψ

N,h | ă 8 . (3.3.17)

In that case we obtain uniform integrability of plogNq
h
2

`

sZN,βN pφ,ψq
˘h for all h P N and the

convergence of moments in Theorem 3.0.5 follows by Theorem B. But, (3.3.17) is an immediate
consequence of (3.0.9) of Theorem 3.0.4. Indeed, let us fix p, q P p1,8q such that 1

p ` 1
q “ 1. By
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(3.0.9) of Theorem 3.0.4 we have that

plogNq
h
2

ˇ

ˇMφ,ψ
N,h

ˇ

ˇ ď pC p qq
h
2

1

Nh

∥∥∥∥φNwN
∥∥∥∥h
ℓp
∥wN∥hℓq ∥ψN∥

h
8 . (3.3.18)

Furthermore, by Riemann approximation we have that

1

Nh

∥∥∥∥φNwN
∥∥∥∥h
ℓp
∥wN∥hℓq ∥ψN∥

h
8 “

1

N
h
p

∥∥∥∥φNwN
∥∥∥∥h
ℓp

1

N
h
q

∥wN∥hℓq ∥ψN∥
h
8 ď C

∥∥∥φ
w

∥∥∥h
ℓp
∥w∥hℓq ∥ψ∥

h
8 .

(3.3.19)

Therefore, by (3.3.18) and (3.3.19) we obtain that

sup
NPN

plogNq
h
2 |Mφ,ψ

N,h | ă 8 ,

which concludes the proof. □
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CHAPTER 4

A multivariate extension of the Erdös-Taylor theorem

Let Sp1q, . . . , Sphq be independent, simple, symmetric random walks on Z2 starting at the
origin. As in previous chapters, we will use Px and Ex to denote the probability and expectation
with respect to the law of the simple random walk when starting from x P Z2 and we will omit
the subscripts when the walk starts from 0. For 1 ď i ă j ď h we define the collision local time
between Spiq and Spjq up to time N by

L
pi,jq

N :“
N
ÿ

n“1

1
tS

piq
n “S

pjq
n u

.

Notice that given 1 ď i ă j ď h, Lpi,jq

N has the same law as the number of returns to zero,

before time 2N , for a single simple, symmetric random walk S on Z2, that is L
pi,jq

N
law
“ LN :“

řN
n“1 1tS2n“0u. This equality is a consequence of the independence of Spiq, Spjq and the symmetry

of the simple random walk. A first moment calculation shows that

RN :“ E
“

LN
‰

“

N
ÿ

n“1

PpS2n “ 0q
NÑ8

«
logN

π
, (4.0.1)

see Section 4.1 for more details. We recall from chapter 3, the classical result of Erdös and Tay-
lor, [ET60], which establishes that under normalisation (4.0.1), LN satisfies the following limit
theorem.

Theorem A ([ET60]). Let LN :“
řN
n“1 1tS2n“0u be the local time at zero, up to time 2N , of a

two-dimensional, simple, symmetric random walk pSnqně1 starting at 0. Then, as N Ñ 8,

π

logN
LN

pdq
ÝÝÑ Y ,

where Y has an exponential distribution with parameter 1.

Theorem A was recently generalised in [LZ21+], see Chapter 3. In particular,

Theorem B ([LZ21+]). Let h P N with h ě 2 and Sp1q, ..., Sphq be h independent two-dimensional,
simple random walks starting all at zero. Then, for all β P p0, 1q, it holds that the total collision
time

ř

1ďiăjďh L
pi,jq

N satisfies

Ebh

„

e
π β

logN

ř

1ďiăjďh L
pi,jq

N

ȷ

ÝÝÝÝÑ
NÑ8

ˆ

1

1 ´ β

˙

hph´1q

2

,

and, consequently,
π

logN

ÿ

1ďiăjďh

L
pi,jq

N

pdq
ÝÝÝÝÑ
NÑ8

Γ
`hph´1q

2 , 1
˘

,

where Γ
`hph´1q

2 , 1
˘

denotes a Gamma variable, with density Γphph´1q{2q´1x
hph´1q

2 ´1e´x; Γp¨q,
in the expression of the density, denotes the Gamma function.

Given the fact that a gamma distribution Γpk, 1q, with parameter k ě 1, arises as the distribu-
tion of the sum of k independent random variables each one distributed according to an exponen-
tial random variable with parameter one (denoted as Expp1q), Theorem B raises the question as to
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whether the joint distribution of the individual rescaled collision times
! π

logN
L

pi,jq

N

)

1ďiăjďh

converges to that of a family of independent Expp1q random variables. This is what we prove in
this chapter. In particular,

Theorem 4.0.1. Let h P N with h ě 2 and β :“ tβi,ju1ďiăjďh P R
hph´1q

2 with βi,j ă 1 for all
1 ď i ă j ď h. Then we have that

Ebh

„

e
π

logN

ř

1ďiăjďh βi,jL
pi,jq

N

ȷ

ÝÝÝÝÑ
NÑ8

ź

1ďiăjďh

1

1 ´ βi,j
(4.0.2)

and, consequently,
!

π
logN L

pi,jq

N

)

1ďiăjďh

pdq
ÝÝÝÝÑ
NÑ8

␣

Y pi,jq
(

1ďiăjďh
,

where
␣

Y pi,jq
(

1ďiăjďh
are independent and identically distributed random variables following an

Expp1q distribution.

We remark that the additional difficulty in proving theorem 4.0.1 stems form the fact that we
need an exact computation of the joint Laplace transform of the collision local times as opposed to
Theorem B which was derived through moment bounds and a distributional convergence result on
the directed polymer partition function, see Chapter 3 for more details.

The approach we follow towards proving asymptotic independence of the family
!

π
logN L

pi,jq

N

)

1ďiăjďh

starts with expanding the joint Laplace transform in the form of chaos series, which take the form
of Feynman-type diagrams. To control (and simplify) these diagrams, we start by inputing a re-
newal representation as well as a functional analytic framework. The renewal theoretic framework
was originally introduced in [CSZ19a] in the context of scaling limits of random polymers (we will
come back to the connection with polymers later on) and it captures the stream of collisions within
a single pair of walks. The functional analytic framework can be traced back to works on spec-
tral theory of delta-Bose gases [DFT94, DR04] and was also recently used in works on random
polymers [GQT21, CSZ21+, LZ21+]. The core of this framework is to establish operator norm
bounds for the total Green’s functions of a set of planar random walks conditioned on a subset of
them starting at the same location and on another subset of them ending up at the same location.
Roughly speaking, the significance of these operator estimates is to control the redistribution of
collisions when walks switch pairs. The operator framework (together with the renewal one) al-
lows to reduce the number of Feynman-type diagrams that need to be considered. For the reduced
Feynman diagrams one, then, needs to look into the logarithmic structure, which induces the sep-
aration of scales and leads to the fact that, asymptotically, the structure of the Feynman diagrams
becomes that of the product of Feynman diagrams corresponding to Laplace transforms of single
pairs of random walks.

The structure of this chapter is as follows: In Section 4.1 we set the framework of the chaos
expansion, its graphical representations in terms of Feynman-type diagrams, as well as the renewal
and functional analytic frameworks. In Section 4.2 we carry out the approximation steps, which
lead to our theorem. At the beginning of Section 4.2 we also provide an outline of the scheme.
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4.1. Chaos expansions and auxiliary results
In this section we will introduce the framework, within which we work, and which consists of

setting chaos expansions for the joint Laplace transform

Mβ
N,h :“ Ebh

„

e
ř

1ďiăjďh

πβi,j
logN

L
pi,jq

N

ȷ

, (4.1.1)

for a fixed collection of numbers β :“ tβi,ju1ďiăjďh P R
hph´1q

2 with βi,j P p0, 1q for all 1 ď i ă

j ď h. We denote by
β̄ :“ max

1ďiăjďh
βi,j ă 1 , (4.1.2)

and define
σi,jN :“ σi,jN pβi,jq :“ eβ

i,j
N ´ 1 with βi,jN :“

π βi,j
logN

. (4.1.3)

We will use the notation qnpxq :“ PpSn “ xq for the transition probability of the simple, symmet-
ric random walk. The expected collision local time between two independent simple, symmetric
random walks will be

RN :“ Eb2
”

N
ÿ

n“1

1
S

p1q
n “S

p2q
n

ı

“

N
ÿ

n“1

q2np0q (4.1.4)

and by Proposition 3.2 in [CSZ19a] we have that in the two-dimensional setting

RN “
logN

π
`
α

π
` op1q , (4.1.5)

as N Ñ 8, with α “ γ ` log 16 ´ π » 0.208 and γ » 0.577 is the Euler constant.

4.1.1. Chaos expansion for two-body collisions and renewal framework. We start with the
Laplace transform of the simple case of two-body collisions E

”

eβ
i,j
N L

pi,jq

N

ı

and deduce its chaos
expansion as follows:

E
”

eβ
i,j
N L

pi,jq

N

ı

“ E

„

e
βi,j
N

řN
n“1

ř

xPZ2 1
tS

piq
n “xu

1
tS

pjq
n “xu

ȷ

“ E

„

ź

1ďnďN
xPZ2

´

1 `

´

eβ
i,j
N ´ 1

¯

1
tS

piq
n “xu

1
tS

pjq
n “xu

¯

ȷ

“ 1 `
ÿ

kě1

pσi,jN qk
ÿ

1ďn1ă¨¨¨ănkďN
x1,...,xkPZ2

E

„ k
ź

a“1

1
tS

piq
na“xau

1
tS

pjq
na “xau

ȷ

“ 1 `
ÿ

kě1

pσi,jN qk
ÿ

1ďn1ă¨¨¨ănkďN,
x1,...,xkPZ2

k
ź

a“1

q2na´na´1
pxa ´ xa´1q

(4.1.6)

where in the last equality we used the Markov property, in the third we expanded the product and
in the second we used the simple fact that

e
βi,j
N 1

tS
piq
n “S

pjq
n “xu “ 1 `

´

e
βi,j
N 1

tS
piq
n “S

pjq
n “xu ´ 1

¯

“ 1 `

´

eβ
i,j
N ´ 1

¯

1
tS

piq
n “S

pjq
n “xu

“ 1 ` σi,jN 1
tS

piq
n “S

pjq
n “xu

,

with σi,jN defined in (4.1.3). We will express (4.1.6) in terms of the following quantity UβN pn, xq,

which plays an important role in our formulation. For β ą 0, σN :“ σN pβq :“ e
πβ

logN ´ 1 and
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pn, xq P N ˆ Z2, we define

UβN pn, xq :“ σN q
2
npxq

`
ÿ

kě1

σk`1
N

ÿ

0ăn1ă¨¨¨ănkăn
z1,z2,...,zkPZ2

q2n1
pz1q

!

k
ź

j“2

q2nj´nj´1
pzj ´ zj´1q

)

q2n´nk
px´ zkq.

(4.1.7)

and UβN pn, xq :“ 1tx“0u, if n “ 0. Moreover, for n P N we define

UβN pnq :“
ÿ

xPZ2

UβN pn, xq .

UβN pn, xq represents the Laplace transform of the two-body collisions, scaled by β, between a pair
of random walks that are constrained to end at the spacetime point pn, xq P t1, . . . , Nu ˆ Z2,
starting from p0, 0q. In particular, for any 1 ď i ă j ď h, we can write (4.1.6) as

E
”

eβ
i,j
N L

pi,jq

N

ı

“

N
ÿ

n“0

ÿ

xPZ2

U
βi,j
N pn, xq “

N
ÿ

n“0

U
βi,j
N pnq.

We will call UβN pn, xq a replica and for σN pβq “ e
πβ

logN ´ 1 we will graphically represent
σN pβqUβN pn, xq as

σN pβqUβN pb´ a, y ´ xq ”

pa, xq pb, yq

:“
ÿ

kě1

ÿ

n1ă¨¨¨ănk
x1,...,xk

pa, xq pn1, x1qpn2, x2q pnk, xkq pb, yq

¨ ¨ ¨

In the second line we have assigned weights qn1´npx1 ´ xq to the solid lines going from pn, xq to

pn1, x1q and we have assigned the weight σN pβq “ e
πβ

logN ´ 1 to every solid dot.
UβN pnq andUβN pn, xq admit a very useful probabilistic interpretation in terms of certain renewal

processes. More specifically, consider the family of i.i.d. random variables pT pNq

i , XpNq

i qiě1 with
law

P
´

`

T pNq

1 , XpNq

1

˘

“ pn, xq

¯

“
q2npxq

RN
1tnďNu .

and RN defined in (4.1.4). Define the random variables τ pNq

k :“ T pNq

1 ` ¨ ¨ ¨ ` T pNq

k , SpNq

k :“

XpNq

1 ` ¨ ¨ ¨ `XpNq

k , if k ě 1, and pτ0, S0q :“ p0, 0q, if k “ 0. It is not difficult to see that UβN pn, xq

and UβN pnq can, now, be written as

UβN pn, xq “
ÿ

kě0

pσNRN qk P
`

τ pNq

k “ n, SpNq

k “ x
˘

and UβN pnq “
ÿ

kě0

pσNRN qk P
`

τ pNq

k “ n
˘

(4.1.8)
This formalism was developed in [CSZ19a] and is very useful in obtaining sharp asymptotic es-

timates. In particular, it was shown in [CSZ19a] that the rescaled process
´

τ
pNq

ts logNu

N ,
S

pNq

ts logNu
?
N

¯

converges in distribution for N Ñ 8 with the law of the marginal limiting process for
τ

pNq

ts logNu

N

being the Dickman subordinator, which was defined in [CSZ19a] as a truncated, zero-stable Lévy
process.
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An estimate that follows easily from this framework, which is useful for our purposes here, is
the following: for β ă 1, it holds

lim sup
NÑ8

N
ÿ

n“0

UβN pnq “ lim sup
NÑ8

ÿ

kě0

pσNRN qk P
`

τ pNq

k ď N
˘

ď lim sup
NÑ8

ÿ

kě0

pσNRN qk

“ lim sup
NÑ8

1

1 ´ σNRN
“

1

1 ´ β
,

(4.1.9)

where we used the fact that

σNRN “
`

e
πβ

logN ´ 1
˘

¨

´ logN

π
`
α

π
` op1q

¯

ÝÝÝÝÑ
NÑ8

β ă 1. (4.1.10)

4.1.2. Chaos expansion for many-body collisions. We now move to the expansion of the Laplace
transform of the many-body collisions Mβ

N,h. The goal is to obtain an expansion in the form of
products of certain Markovian operators. The desired expression will be presented in (4.1.17).
This expansion will be instrumental in obtaining some important estimates in Section 4.1.3.

The first steps are similar as in the expansion for the two-body collisions, above. In particular,
we have

Ebh

„

e
ř

1ďiăjďh β
i,j
N L

pi,jq

N

ȷ

“E

„

ź

1ďiăjďh

ź

1ďnďN
xPZ2

´

1 ` σi,jN 1
tS

piq
n “xu

1
tS

pjq
n “xu

¯

ȷ

“1 `
ÿ

kě1

ÿ

pia,ja,na,xaqPAh, for a“1,...,k
distinct

E
”

k
ź

a“1

σia,jaN 1
tS

piaq
na “xau

1
tS

pjaq
na “xau

ı

(4.1.11)

where the last sum is over k distinct elements of the set

Ah :“
␣

pi, j, n, xq P N3 ˆ Z2 : 1 ď i ă j ď h
(

.

The graphical representation of expansion (4.1.11) is depicted in Figure 4.1.1. There, we have
marked with black dots the space-time points pn, xq where some of the walks collide and have
assigned to such each one the weight

ś

1ďiăjďh σ
i,j
N 1

tS
piq
n “S

pjq
n “xu

.
We now want to write the above expansion as a convolution of Markovian operators, following

the Markov property of the simple random walks. We can partition the time interval t0, 1, ..., Nu

according to the times when collisions take place; these are depicted in Figure 4.1.1 by vertical
lines. In between two successive timesm,n, the walks will move from their locations pxpiqqi“1,...,h

at time m to their new locations pypiqqi“1,...,h at time n (some of which might coincide) according
to their transition probabilities, giving a total weight to this transition of

śh
i“1 qn´mpypiq ´ xpiqq.

We, now, want to encode in this product the coincidences that may take place within the sets
pxpiqqi“1,...,h and pypiqqi“1,...,h. To this end, we consider partitions I of the set of indices t1, ..., hu,
which we denote by I $ t1, ..., hu. We also denote by |I| the number of parts of I . Given a
partition I $ t1, . . . , hu, we define an equivalence relation I

„ in t1, . . . , hu such that k I
„ ℓ if and

only if k and ℓ belong to the same part of partition I . Given a vector y “ py1, . . . , yhq P pZ2qh

and I $ t1, . . . , hu, we shall use the notation y „ I to mean that yk “ yℓ for all pairs k I
„ ℓ.
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¨ ¨ ¨ ¨ ¨ ¨

N

FIGURE 4.1.1. This is a graphical representation of expansion (4.1.11) corre-
sponding to the collisions of four random walks, each starting from the origin.
Each solid line will be marked with the label of the walk that it corresponds to
throughout the diagram. The solid dots, which mark a collision among a subset A
of the random walks, is given a weight

ś

i,jPA σ
i,j
N . Any solid line between points

pm,xq, pn, yq is assigned the weight of the simple random walk transition kernel
qm´npy ´ xq. The hollow dots are assigned weight 1 and they mark the places
where we simply apply the Chapman-Kolmogorov formula.

We use the symbol ˝ to denote the one-part partition*, that is, ˝ :“ t1, . . . , hu, and ˚ to denote the
partition consisting only of singletons, that is ˚ :“

Ůh
i“1tiu. Moreover, given I $ t1, . . . , hu such

that |I| “ h ´ 1 and I “ ti, ju \
Ů

k‰i,jtku, by slightly abusing notation, we may identify and
denote I by its non-trivial part ti, ju.

Given this formalism, we denote the total transition weight of the h walks, from points x “

pxp1q, ..., xphqq P pZ2qh, subject to constraints x „ I at time m, to points y “ pyp1q, ..., yphqq P

pZ2qh, subject to constraints y „ J at time n, by

QI,Jn´mpx,yq :“ 1tx„Iu

h
ź

i“1

qn´mpypiq ´ xpiqq1ty„Ju . (4.1.12)

We will call this operator the constrained evolution. Furthermore, for a partition I $ t1, . . . , hu

and β “ tβi,ju1ďiăjďh we define the mixed collision weight subject to I as

σN pIq :“ σN pI, tβi,ju1ďiăjďhq “
ź

1ďiăjďh,

i
I
„j

σi,jN , (4.1.13)

with σi,jN as defined in (4.1.3). We can then rewrite (4.1.11) in the form

1 `

8
ÿ

r“1

ÿ

˝:“I0,I1,...,Ir

r
ź

i“1

σN pIiq
ÿ

1ďn1ă¨¨¨ănrďN
0:“x0,x1,...,xrPpZ2qh

r
ź

i“1

Q
Ii´1;Ii
ni´ni´1

pxi´1,xiq . (4.1.14)

We want to make one more simplification in this representation, which, however, contains an
important structural feature. This is to group together consecutive constrained evolution operators
σN pIiqQ

Ii´1;Ii
ni´ni´1

pxi´1,xiq for which Ii´1 “ Ii. An example in Figure 4.1.1 is the sequence of
evolutions in the first three strips and another one is the group of evolutions in strips five and six.

*the notation ˝, with which we denote the one-part partition, here, should not be confused with the ˝ that appears
in the figures, where it just marks places where we apply the Chapman-Kolmogorov.
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N

FIGURE 4.1.2. This is the simplified version of Figure’s 4.1.1 graphical repre-
sentation of the expansion (4.1.14), where we have grouped together the blocks
of consecutive collisions between the same pair of random walks. These are now
represented by the wiggle lines (replicas) and we call the evolution in strips that
contain only one replica as replica evolution (although strip seven is the beginning
of another wiggle line, we have not represented it as such since we have not com-
pleted the picture beyond that point). The wiggle lines (replicas) between points
pn, xq, pm, yq, corresponding to collisions of a single pair of walks Spkq, Spℓq, are
assigned weight Uβk,ℓN pm ´ n, y ´ xq. A solid line between points pm,xq, pn, yq

is assigned the weight of the simple random walk transition kernel qm´npy ´ xq.

Such groupings can be captured by the following definition: For a partition I $ t1, . . . , hu of the
form I “ tk, ℓu \

Ů

j‰k,ℓtju and x “ pxp1q, . . . , xphqq, y “ pyp1q, . . . , yphqq P pZ2qh, we define
the replica evolution as

UInpx,yq :“ 1tx,y„Iu ¨ U
βk,ℓ
N pn, ypkq ´ xpkqq ¨

ź

i‰k,ℓ

qnpypiq ´ xpiqq , (4.1.15)

with UβN pn, ypkq ´xpkqq defined in (4.1.7). We name this replica evolution since in the time interval
r0, ns we see a stream of collisions between only two of the random walks. The simplified version
of expansion (4.1.14) (and Figure 4.1.1) is presented in Figure 4.1.2.

In order to re-express (4.1.14) with the reduction of the replica evolution (4.1.15), we need to
introduce one more formalism, which is

P I;Jn px,yq :“

$

’

’

&

’

’

%

ÿ

m1ě1,m2ě0: m1`m2“n ,
zPpZ2qh

QI;Jm1
px, zq ¨ UJm2

pz,yq , if |J | “ h´ 1 ,

QI;Jn px,yq , if |J | ă h´ 1 ,

(4.1.16)

where we recall that |J | is the number of parts of J and so |J | “ h´ 1 means that J has the form
tk, ℓu

Ů

\i‰k,ℓtiu, corresponding to a pairwise collision, while |J | ă h ´ 1 means that there are
multiple collisions (the latter would correspond to the end of the eighth strip in Figure 4.1.1). In
other words, the operator P I;Jn groups together the replica evolutions with its preceding constrained
evolution.
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We, finally, arrive to the desired expression for the Laplace transform of the many-body colli-
sions:

Mβ
N,h “ 1 `

8
ÿ

r“1

ÿ

˝:“I0,I1,...,Ir

r
ź

i“1

σN pIiq
ÿ

1ďn1ă¨¨¨ănrďN ,
0:“x0,x1,...,xrPpZ2qh

r
ź

i“1

P
Ii´1;Ii
ni´ni´1

pxi´1,xiq . (4.1.17)

4.1.3. Functional analytic framework and some auxiliary estimates. Let us start with some,
fairly easy, bounds on operators Q and U (with the estimate on the latter being an upgrade of
estimate (4.1.9)).

Lemma 4.1.1. Let the operators QI;Jn ,UJn be defined in (4.1.12) and (4.1.15), respectively. For all
partitions I ‰ J with |J | “ h´1, β̄ ă 1 defined in (4.1.2) and σN pIq defined in (4.1.13), we have
the bounds

ÿ

0ďnďN,yPpZ2qh

UJnpx,yq ď
1

1 ´ β̄ 1
and σN pJq ¨

˜

ÿ

1ďnďN,yPpZ2qh

QI;Jn px,yq

¸

ď β̄ 1 ,

(4.1.18)
for all large enough N and a β̄ 1 P pβ̄, 1q .

Proof. We start by proving the first bound in (4.1.18). By definition (4.1.15) we have that
ÿ

ně0,yPpZ2qh

UJnpx,yq :“
ÿ

ně0,yPpZ2qh

1tx,y„Ju ¨ U
βk,ℓ
N pn, ypkq ´ xpkqq ¨

ź

j‰k,ℓ

qnpypjq ´ xpjqq

“
ÿ

ně0

U
βk,ℓ
N pnq ,

by using that
ř

zPZ2 qnpzq “ 1 to sum all the kernels qnpypjq ´ xpjqq for j ‰ k, ℓ and
ÿ

zPZ2

UβN pn, zq “ UβN pnq .

Moreover, by definition (4.1.7) and (4.1.3), since βk,ℓ ď β̄, we have
ÿ

ně0

U
βk,ℓ
N pnq ď

ÿ

ně0

U β̄N pnq “
ÿ

kě0

pσN pβ̄qRN qk Ppτ pNq

k “ nq ,

and by (4.1.10) we have that for any β̄ 1 P pβ̄, 1q and all N large enough
ÿ

ně0

U
βk,ℓ
N pnq ď

ÿ

kě0

pβ̄ 1qk Ppτ pNq

k “ nq ď
ÿ

kě0

pβ̄ 1qk “
1

1 ´ β̄ 1
.

Therefore,
ÿ

ně0,yPpZ2qh

UJnpx,yq ď p1 ´ β̄ 1q´1 .

For the second bound in (4.1.18) we recall from (4.1.12) that when J “ tk, ℓu \
Ů

j‰k,ℓtju, then

QI;Jn px,yq :“

ˆ

1tx„Iu

ź

j‰k,ℓ

qnpypjq ´ xpjqq

˙

¨ qnpypkq ´ xpkqq ¨ qnpypkq ´ xpℓqq ,

since y „ J means that yk “ yℓ. Therefore, σN pJq “ σN pβi,jq ď σN pβ̄q. We, now, use that
ř

zPZ2 qnpzq “ 1 in order to sum the kernels qnpypjq ´ xpjqq, j ‰ k, ℓ, while we also have by
Cauchy-Schwarz that

σN pJq ¨

ˆ

ÿ

1ďnďN, ykPZ2

qnpypkq ´ xpkqq ¨ qnpypkq ´ xpℓqq

˙

ď σN pβ̄q ¨

´

N
ÿ

n“1

q2np0q

¯

ď β̄ 1 ,
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by (4.1.10), for all N large enough, thus establishing the second bound in (4.1.18). □

Next, in Proposition 4.1.2, we are going to recall some norm estimates from [LZ21+], pre-
sented also in detail in Chapter 3, on the Laplace transform of operators P I;Jn , defined (4.1.16).
For this, we need to set up the functional analytic framework. We start by defining pZ2qhI :“ ty P

pZ2qhI : y „ Iu and, for q P p1,8q, the ℓqppZ2qhI q space of functions f : pZ2qhI Ñ R which have
finite norm

∥f∥ℓqppZ2qhI q :“

˜

ÿ

yPppZ2qhI q

ˇ

ˇfpyq
ˇ

ˇ

q

¸
1
q

.

For q P p1,8q and for an integral operator T : ℓq
`

pZ2qhJ

˘

Ñ ℓq
`

pZ2qhI

˘

, one can define the pairing

xf,Tgy :“
ÿ

x PpZ2qhI ,y PpZ2qhJ

fpxqTpx,yqgpyq . (4.1.19)

The operator norm will be given by

∥T∥ℓqÑℓq :“ sup
∥g∥

ℓ
q
J

ď1
∥Tg∥ℓqI “ sup

∥f∥
ℓ
p
I

ď1, ∥g∥
ℓ
q
J

ď1
xf,Tgy , (4.1.20)

for p, q P p1,8q conjugate exponents, i.e. 1
p ` 1

q “ 1.
We introduce the weighted Laplace transforms of operators QI,J and UJ . In particular, let

wpxq be any continuous function in L8pR2q X L1pR2q such that logwpxq is Lipschitz (one can
think of wpxq “ e´|x|) and define wN pxq :“ wpx{

?
Nq. Also, for a function g : R2 Ñ R we

define the tensor product gbhpx1, ..., xhq “ gpx1q ¨ ¨ ¨ gpxhq, The weighted Laplace transforms are
now defined as

pQI;JN,λpx,yq :“

ˆ N
ÿ

ně1

e´λ n
NQI;Jn px,yq

˙

¨
wbh
N pxq

wbh
N pyq

,

pUJN,λpx,yq :“

ˆ N
ÿ

ně0

e´λ n
N UJnpx,yq

˙

¨
wbh
N pxq

wbh
N pyq

.

(4.1.21)

The passage to a Laplace transform will help to estimate convolutions involving QI;Jn px,yq and
UJnpx,yq and the introduction of the weight comes handy in improving integrability when these
operators are applied to functions which are not in ℓ1ppZ2qhq. We will see this in Lemma 4.1.3
below. We also define the Laplace transform operator of the combined evolution (4.1.16):

pPI;JN,λ “

$

&

%

pQI;JN,λ , if |J | ă h´ 1

pQI;JN,λ
pUJN,λ , if |J | “ h´ 1 .

(4.1.22)

For our purposes, it will be sufficient to take λ “ 0 and consider operators pQI;JN,0,
pUJN,0 and pPI;JN,0.

Using the above formalism we summarise in the next proposition some key estimates of
[LZ21+], which are refinements of estimates in [CSZ21+] (Section 6) and [DFT94] (Section 3).
These are also presented in detail in Chapter 3, Section 3.2.

Proposition 4.1.2. Consider the operators pQI;JN,0 and pPI;JN,0 defined in (4.1.21) and (4.1.22) with
λ “ 0 and a weight function w P L8pR2q X L1pR2q such that logwpxq is Lipschitz. Then there
exists a constant C “ Cph, β̄, wq P p0,8q (recall β̄ from (4.1.2)) such that for all p, q P p1,8q

with 1
p ` 1

q “ 1 and all partitions I, J $ t1, . . . , hu, such that I ‰ J and |I|, |J | ď h ´ 1, we
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have that ∥∥∥pPI;JN,0∥∥∥
ℓqÑℓq

ď C p q . (4.1.23)

Moreover, if g P ℓqpZ2q, ∥∥∥pQ˚;I
N,0 g

bh
∥∥∥
ℓp

ď C qN
1
q ∥g∥hℓp , (4.1.24)

for gbhpx1, ..., xhq :“ gpx1q ¨ ¨ ¨ gpxhq.

Let us now present the following lemma, which demonstrates how the above functional ana-
lytic framework will be used. This lemma will be useful in the first approximation, that we will
perform in the next Section, in showing that contributions from multiple, i.e. three or more, colli-
sions are negligible.

Lemma 4.1.3. Let Hr,N be the rth term in the expansion (4.1.17), that is,

Hr,N :“
ÿ

˝:“I0,I1,...,Ir

r
ź

i“1

σN pIiq
ÿ

1ďn1ă¨¨¨ănrďN,
0:“x0,x1,...,xrPpZ2qh

r
ź

i“1

P
Ii´1;Ii
ni´ni´1

pxi´1,xiq , (4.1.25)

and Hpmultiq
r,N be the corresponding term with the additional constraint that there is at least one

multiple collision (i.e. at some point, three or more walks meet), that is,

H
pmultiq
r,N :“

ÿ

˝:“I0,I1,...,Ir

˜

r
ź

i“1

σN pIiq

¸

1tD 1ďjďr : |Ij |ăh´1u

ˆ
ÿ

1ďn1ă¨¨¨ănrďN
0:“x0,x1,...,xrPpZ2qh

r
ź

i“1

P
Ii´1;Ii
ni´ni´1

pxi´1,xiq .

Then the following bounds hold:

Hr,N ď

´ C p q

logN

¯r
N

h`1
q and H

pmultiq
r,N ď

r

logN

´ C p q

logN

¯r
N

h`1
q . (4.1.26)

for any p, q P p1,8q with 1
p ` 1

q “ 1 and a constant C that depends on h and β̄ but is independent
of N, r, p, q.

Proof. We start by considering wpxq “ e´|x|, wN pxq :“ wp x?
N

q and

wbh
N px1, ..., xhq “

h
ź

i“1

wN pxiq

and by including in the expression (4.1.25) the term

1

wbh
N px0q

´

r
ź

i“1

wbh
N pxi´1q

wbh
N pxiq

¯

wbh
N pxrq “ 1,

thus rewriting Hr,N as

Hr,N “
ÿ

˝:“I0,I1,...,Ir

r
ź

i“1

σN pIiq

ˆ
ÿ

1ďn1ă¨¨¨ănrďN
0:“x0,x1,...,xrPpZ2qh

1

wbh
N px0q

r
ź

i“1

P
Ii´1;Ii
ni´ni´1

pxi´1,xiq
wbh
N pxi´1q

wbh
N pxiq

¨ wbh
N pxrq .
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We can extend the summation on x0 from x0 “ 0 to x0 P Z2 by introducing a delta function δbh
0

at zero. Then

Hr,N “
ÿ

˚:“I0,I1,...,Ir

r
ź

i“1

σN pIiq

ˆ
ÿ

1ďn1ă¨¨¨ănrďN
x0,x1,...,xrPpZ2qh

δbh
0 px0q

wbh
N px0q

r
ź

i“1

P
Ii´1;Ii
ni´ni´1

pxi´1,xiq
wbh
N pxi´1q

wbh
N pxiq

¨ wbh
N pxrq .

We can, now, bound the last expression by extending the temporal range of summations from
1 ď n1 ă ¨ ¨ ¨ ă nr ď N to ni ´ ni´1 P t1, . . . , Nu for all i “ 1, ..., r. Recalling the definition of
the Laplace transforms of the operators (4.1.21), (4.1.22), we, thus, obtain the upper bound

Hr,N ď
ÿ

˚:“I0,I1,...,Ir

r
ź

i“1

σN pIiq
ÿ

x0,x1,...,xrPpZ2qh

δbh
0 px0q

wbh
N px0q

r
ź

i“1

pP
Ii´1;Ii
N,0 pxi´1,xiq ¨ wbh

N pxrq ,

which we can write in the more compact and useful notation, using the brackets (4.1.19), as

Hr,N ď
ÿ

I1,...,Ir

A δbh
0

wbh
N

, pQ˚;I1
N,0

pPI1;I2N,0 ¨ ¨ ¨ pP
Ir´1;Ir
N,0 wbh

N

E

r
ź

i“1

σN pIiq.

We note, here, that in the right-hand side we set the I0 partition to be equal to I0 “ t1u\¨ ¨ ¨\thu.
The delta function δbh

0 px0q will force all points of x0 to coincide at zero, thus, forcing I0 to be
equal to the partition ˝ “ t1, ..., hu but, at the stage of operators, we do not yet need to enforce
this constraint. At this stage we can proceed with the estimate using the operator norms (4.1.20) as

Hr,N ď
ÿ

I1,...,Ir

∥∥∥∥∥pQ˚,I1
N,0

δbh
0

wbh
N

∥∥∥∥∥
ℓp

r
ź

i“2

∥∥∥pPIi´1;Ii
N,0

∥∥∥
ℓqÑℓq

∥∥∥wbh
N

∥∥∥
ℓq

¨

r
ź

i“1

σN pIiq, (4.1.27)

By (4.1.24) of Proposition 4.1.2 we have that∥∥∥∥∥pQ˚,I1
N,0

δbh
0

wbh
N

∥∥∥∥∥
ℓp

ď C qN
1
q

∥∥∥∥ δ0
wN

∥∥∥∥h
ℓp

“ C qN
1
q ,

and by (4.1.23) we have that for all 1 ď i ď r ´ 1,∥∥∥pPIi´1;Ii
N,0

∥∥∥
ℓqÑℓq

ď C p q .

Inserting these estimates in (4.1.27) we deduce that

Hr,N ď pC p qqrN
1
q

∥∥∥∥ δ0
wN

∥∥∥∥h
ℓp
∥wN∥hℓq

ÿ

I1,...,Ir

r
ź

i“1

σN pIiq

“ pC p qqrN
1
q ∥wN∥hℓq

ÿ

I1,...,Ir

r
ź

i“1

σN pIiq ,

(4.1.28)

for a constant C “ Cph, β̄q P p0,8q, not depending on p, q, r,N . We now notice that for any
partition I $ t1, ..., hu, it holds that σN pIq ď C{ logN (recall definitions (4.1.13) and (4.1.3))
and that, by Riemann summation, N´h{q ∥wN∥hℓq is bounded uniformly in N . Therefore, applying
these on (4.1.28) we arrive at the bound

Hr,N ď

´ C p q

logN

¯r
N

h`1
q
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which is the first claimed estimate in (4.1.26). For the second estimate in (4.1.26) we follow the
same steps until we arrive at the bound

H
pmultiq
r,N ď pC p qqrN

1
q ∥wN∥hℓq

ÿ

I1,...,Ir

r
ź

i“1

σN pIiq1tD 1ďjďr:|Ij |ăh´1u.

Then we notice that for a partition I $ t1, ..., hu with |I| ă h ´ 1 it will hold that σN pIq ď

CplogNq´2 (recall definitions (4.1.13) and (4.1.3)). This fact, together with the fact that there are
r possible choices among the partitions I1, ..., Ir that can be chosen so that |Ij | ă h ´ 1, leads to
the second bound in (4.1.26). □

4.2. Approximation steps and proof of the main theorem
In this section we prove Theorem 4.0.1 through a series of approximations on the chaos ex-

pansion (4.1.11), (4.1.17). The first step, in Section 4.2.1, is to establish that the series in the chaos
expansion (4.1.17) can be truncated up to a finite order and that the main contribution comes from
diagrams where, at any fixed time, we only have at most two walks colliding. The second step,
Section 4.2.2, is to show that the main contribution to the expansion and to diagrams like in Fig-
ure 4.2.1, comes when all jumps between marked dots (see Figure 4.2.1) happen within diffusive
scale. The third step, in Section 4.2.3, captures the important feature of scale separation. This is
intrinsic to the two-dimensionality and can be seen as the main feature that leads to the asymptotic
independence of the collision times. With reference to Figure 4.2.1, this says that the time between
two consecutive replicas, say a4 ´ b3 in Figure 4.2.1 must be much larger than the time between
the previous replicas, say b3 ´ b2. This would then lead to the next step in Section 4.2.4, see also
Figure 4.2.2, which is that we can rewire the links so that the solid lines connect only replicas be-
tween the same pairs of walks. The final step, which is performed in Section 4.2.5 is to reverse all
the above approximations within the rewired diagrams, to which we arrived in the previous step.
The summation, then, of all rewired diagrams leads, in the limit, to the right hand of (4.0.2), thus
completing the proof of the theorem.

4.2.1. Reduction to 2-body collisions and finite order chaoses. In this step, we use the func-
tional analytic framework and estimates of the previous section to show that for each r ě 1, Hr,N

decays exponentially in r, uniformly in N P N and that it is concentrated on configurations which
contain only two-body collisions between the h random walks.

Proposition 4.2.1. There exist constants a P p0, 1q and C̄ “ Cph, β̄, aq P p0,8q and such that for
all r ě 1,

sup
NPN

Hr,N ď C̄ ar , and H
pmultiq
r,N ď

C̄

logN
r ar . (4.2.1)

Proof. We use the estimates in (4.1.26) and make the choice q “ qN :“ a
C1

logN with a P p0, 1q

and a constant C1 such that Cpq
logN ă a (recall that 1

p ` 1
q “ 1). Moreover, this choice of q implies

that
N

h`1
q “ e

h`1
q

logN
“ e

C1 ph`1q

a .

Therefore, choosing C̄ “ e
C1 ph`1q

a implies the first estimate in (4.2.1).
The second estimate follows from the same procedure and the same choice of q “ qN :“

a
C1

logN in the second bound of (4.1.26). □
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Proposition 4.2.2. If Mβ
N,h is the joint Laplace transform of the collision local times

!

π
logN L

pi,jq

N

)

1ďiăjďh
,

as defined in (4.1.1) and Hr,N is the rth term in its chaos expansion (4.1.25), then for any ε ą 0

there exists K “ Kε such that
ˇ

ˇ

ˇ
Mβ
N,h ´

K
ÿ

r“0

Hr,N

ˇ

ˇ

ˇ
ď ε ,

uniformly for all N P N.

Proof. By Proposition, 4.2.1, Hr,N decay exponentially in r, uniformly in N P N and therefore

lim sup
KÑ8

´

sup
Ně1

ÿ

rąK

Hr,N

¯

“ 0 ,

which means that we can truncate the expansion of Mβ
N,h to a finite number of terms K depending

only on ε. □

By Proposition 4.2.1 we can focus on only two-body collisions, since higher order collisions
bear a negligible contribution as N Ñ 8. Let us introduce some notation to conveniently describe
the expansion of Hr,N , after the reduction to only two-body collisions, which we will use in the
sequel. Given r ě 1 we will denote by ai, bi P N Y t0u, ai ď bi, i “ 1, . . . , r the times where
replicas start and end respectively, see (4.1.15) and Figure 4.1.2, where replicas are represented by
wiggle lines. Thus, ai will be the time marking the beginning of the ith wiggle line and bi the time
marking its end. Note that, a1 “ 0. Moreover, we use the notation x⃗ “ px1,x2, . . . ,xrq P pZ2qhr

to denote the starting points of the r replicas and y⃗ “ py1, . . . ,yrq P pZ2qhr the corresponding
ending points. Again, notice that x1 “ 0. We then define the set

Cr,N :“
!

p⃗a, b⃗, x⃗, y⃗q

ˇ

ˇ

ˇ
0 :“ a1 ď b1 ă a2 ď ¨ ¨ ¨ ă ar ď br ď N, x⃗, y⃗ P pZ2qhr ,x1 “ 0

)

.

(4.2.2)
We also define a set of finite sequences of partitions

Ip2q “

8
ď

r“0

"

pI1, . . . , Irq : Ij ‰ Ij`1 and |Ij | “ h´ 1 ,@j P t1, . . . , ru

*

.

Using the notational conventions outlined above we can write Hr,N “ H
p2q

r,N `H
pmultiq
r,N with

H
p2q

r,N :“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PCr,N

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq.

(4.2.3)
In the next sections will focus onHp2q

r,N , which by Proposition 4.2.1 contains the main contributions.

4.2.2. Diffusive spatial truncation. In this step we show that we can introduce diffusive spatial
truncations in all the kernels appearing in (4.2.3) which originate from the diffusive behaviour of
the simple random walk in Z2. For a vector x “ pxp1q, . . . , xphqq P pZ2qh, we shall use the notation

∥x∥8 “ max
1ďjďh

|xpjq| ,
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where | ¨ | denotes the usual Euclidean norm on R2. For each r P N, define Hpdiffq

r,N to be the sum in
(4.2.3) where Cr,N is replaced by

C
pdiffq

r,N,R :“ Cr,N X

!

p⃗a, b⃗, x⃗, y⃗q : ∥yi ´ xi∥8 ď R
a

bi ´ ai

and
∥∥xi ´ yi´1

∥∥
8

ď R
a

ai ´ bi´1 for all 1 ď i ď r
)

(4.2.4)

and similarly we define

H
psuperdiffq

r,N,R

“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
psuperdiffq

r,N,R

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq,

(4.2.5)

where

C
psuperdiffq

r,N,R :“ Cr,N X

!

p⃗a, b⃗, x⃗, y⃗q : D 1 ď i ď r : ∥yi ´ xi∥8 ą R
a

bi ´ ai

or
∥∥xi ´ yi´1

∥∥
8

ą R
a

ai ´ bi´1

)

.

Note that then we have that
H

p2q

r,N “ H
pdiffq

r,N,R `H
psuperdiffq

r,N,R .

We have the following Proposition.

Proposition 4.2.3. For all r ě 1,

lim
RÑ8

sup
NPN

H
psuperdiffq

r,N,R “ 0 . (4.2.6)

Proof. We use the bounds established in Lemma 4.2.4, below, and (4.1.18) to show (4.2.6). We
can use a union bound for (4.2.5) to obtain that

H
psuperdiffq

r,N,R

“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
psuperdiffq

r,N,R

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq

ď

r
ÿ

j“1

ÿ

pI1,...,Irq P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
0:“x1,y1,...,xr,yrPpZ2qh

ˆ

1␣∥yj´xj∥
8

ąR
?
bj´aj

( ` 1␣∥xj´yj´1∥8
ąR

?
aj´bj´1

(

˙

ˆ UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq .

(4.2.7)

We split the sum on the last three lines of (4.2.7) according to the two indicator functions that
appear therein. By repeated successive application of the bounds from (4.1.18) for j ă i ď r and
then by using (4.2.10), which reads as

ÿ

yjPpZ2qh, ajďbjďN

U
Ij
bj´aj

pxj ,yjq1
␣

∥yj´xj∥
8

ąR
?
bj´aj

( ď e´κR ,
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we deduce that
ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
0:“x1,y1,...,xr,yrPpZ2qh

1␣∥yj´xj∥
8

ąR
?
bj´aj

(

ˆ UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq

ď e´κR

ˆ

β̄1

1 ´ β̄1

˙r´j

ˆ
ÿ

0:“a1ďb1ăa2ď¨¨¨ăbj´1ăajďN,

0:“x1,y1,...,xjPpZ2qh

UI1b1p0,y1q

j´1
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq

ˆQ
Ij´1;Ij
aj´bj´1

pyj´1,xjqσN pIjq .

(4.2.8)

We then continue the summation using the bounds from (4.1.18), to obtain that the right-hand side
of the inequality in (4.2.8) is bounded by

e´κR

ˆ

β̄1

1 ´ β̄1

˙r´j ˆ β̄1

1 ´ β̄1

˙j´1

“ e´κR

ˆ

β̄1

1 ´ β̄1

˙r´1

.

Similarly, for the sum involving the second indicator function in (4.2.7) we obtain by using (4.1.18)
and (4.2.9) of Lemma 4.2.4 that

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN ,
0:“x1,y1,...,xr,yrPpZ2qh

1␣∥xj´yj´1∥8
ąR

?
aj´bj´1

(UI1b1p0,y1q

ˆ

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq

ď e´κR2

ˆ

1

1 ´ β̄1

˙r

pβ̄1qr´1 .

Therefore, the right-hand side of the inequality in (4.2.7) is bounded by
r
ÿ

j“1

ÿ

pI1,...,Irq PIp2q

e´κR

˜

ˆ

β̄1

1 ´ β̄1

˙r´1

`

ˆ

1

1 ´ β̄1

˙r

pβ̄1qr´1

¸

ď e´κR

˜

2r ¨
pβ̄1qr´1

p1 ´ β̄1qr
¨

ˆ

h

2

˙r
¸

,

where the
`

h
2

˘r
factor comes from the fact that there are at most

`

h
2

˘r
choices for the sequence

pI1, . . . , Irq P Ip2q. Thus, recalling (4.2.7) we get that

sup
NPN

H
psuperdiffq

r,N,R ď e´κR

˜

2r ¨
pβ̄1qr´1

p1 ´ β̄1qr
¨

ˆ

h

2

˙r
¸

RÑ8
ÝÝÝÑ 0.

□

Lemma 4.2.4. Let I, J $ t1, ..., hu such that |I| “ |J | “ h ´ 1 and I ‰ J . For large enough
R P p0,8q and uniformly in x P pZ2qhI we have that for a constant κ “ κph, β̄q P p0,8q,

σN pJq ¨

˜

ÿ

1ďnďN,y PpZ2qh

QI;Jn px,yq ¨ 1␣
∥x´y∥8ąR

?
n
(

¸

ď e´κR2
(4.2.9)

101



and
ÿ

1ďnďN,y PpZ2qh

UJnpx,yq ¨ 1␣
∥x´y∥8ąR

?
n
( ď e´κR . (4.2.10)

Proof. We start with the proof of (4.2.9). Since |J | “ h´1, let us assume without loss of generality
that J “ tk, ℓu \

Ů

j‰k,ℓtju. In this case, QI;Jn px,yq contains h´ 2 random walk jumps with free
endpoints ypjq, j ‰ k, ℓ, that is

ź

j‰k,ℓ

qnpypjq ´ xpjqq .

Moreover, J imposes the constraint that ypkq “ ypℓq, which appears in QI;Jn px,yq through the
product of transition kernels

qnpypkq ´ xpkqq ¨ qnpypkq ´ xpℓqq ,

recall (4.1.12). The constraint ∥x ´ y∥8 ą R
?
n implies that there exists 1 ď j ď h such that

|xpjq ´ ypjq| ą R
?
n. We distinguish two cases:

(1) There exists j ‰ k, ℓ such that |xpjq ´ ypjq| ą R
?
n, or

(2) |xpjq ´ ypjq| ą R
?
n for j “ k or j “ ℓ.

In both cases, we can use
ř

zPZ2 qnpzq “ 1 to sum the kernels qnpypjq ´ xpjqq, j ‰ k, ℓ to
which we do not impose any super-diffusive constraints. By symmetry and translation invariance
we can upper bound the left-hand side of (4.2.9) by

σN pJq ¨

˜

ph´ 2q
ÿ

1ďnďN, zPZ2

qnpzq ¨ 1t|z|ąR
?
nu ¨

!

sup
u PZ2

ÿ

zPZ2

qnpzqqnpz ` uq

)

`2 sup
u PZ2

ÿ

1ďnďN, zPZ2

qnpzqqnpz ` uq ¨ 1t|z|ąR
?
nu

¸

.

(4.2.11)

Looking at the first summand in (4.2.11) we have by Cauchy-Schwarz that

sup
uPZ2

ÿ

zPZ2

qnpzq qnpz ` uq ď

´

ÿ

zPZ2

q2npzq

¯1{2
¨ sup
uPZ2

´

ÿ

zPZ2

q2npz ` uq

¯1{2
ď q2np0q , (4.2.12)

since
ř

zPZ2 q2npzq “ q2np0q. Let us recall the deviation estimate for the simple random walk,
which can be found in [LL10], that is

P
´

max
0ďkďn

|Sk| ą R
?
n
¯

ď e´cR2
, (4.2.13)

for a constant c P p0,8q and all R P p0,8q. By using bound (4.2.12) and subsequently (4.2.13)
on the first summand of (4.2.11) we get that

ÿ

1ďnďN, zPZ2

qnpzq ¨ 1t|z|ąR
?
nu ¨

!

sup
u PZ2

ÿ

zPZ2

qnpzqqnpz ` uq

)

ď
ÿ

1ďnďN, zPZ2

q2np0q ¨ qnpzq1t|z|ąR
?
nu

ď e´cR2
RN .
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We recall from (4.1.4) and (4.1.5) that RN “
řN
n“1 q2np0q

NÑ8
«

logN
π , therefore,

σN pJq ¨

˜

ph´ 2q
ÿ

1ďnďN, zPZ2

qnpzq ¨ 1t|z|ąR
?
nu ¨

!

sup
u PZ2

ÿ

zPZ2

qnpzqqnpz ` uq

)

¸

ď ph´ 2qσN pJqRN e
´cR2

ď ph´ 2q β̄1 e´cR2
,

(4.2.14)

for some β̄1 P pβ̄, 1q. The second summand in the parenthesis in (4.2.11) can be bounded via
Cauchy-Schwarz by

˜

ÿ

1ďnďN, zPZ2

q2npzq ¨ 1t|z|ąR
?
nu

¸
1
2

¨

˜

ÿ

1ďnďN, zPZ2

q2npz ` uq

¸
1
2

. (4.2.15)

For the first term in (4.2.15), using that supzPZ2 qnpzq ď C
n we get

ÿ

1ďnďN, zPZ2

q2npzq ¨ 1t|z|ąR
?
nu ď C

ÿ

1ďnďN, zPZ2

qnpzq

n
¨ 1t|z|ąR

?
nu ď C e´cR2

logN (4.2.16)

For the second term in (4.2.11), we have that for all u P Z2

ÿ

1ďnďN, zPZ2

q2npz ` uq “

N
ÿ

n“1

q2np0q
NÑ8

«
logN

π
.

Thus, by (4.2.15) together with (4.2.16) we conclude that for the second summand in (4.2.11) we
have

σN pJq ¨

˜

2 sup
u PZ2

ÿ

1ďnďN, zPZ2

qnpzqqnpz ` uq ¨ 1t|z|ąR
?
nu

¸

ď C e´ cR2

2 .

Therefore, recalling (4.2.14) we deduce that there exists a constant κph, β̄q P p0,8q such that

σN pJq ¨

˜

ÿ

1ďnďN,y PpZ2qh

QI;Jn px,yq ¨ 1␣
∥x´y∥8ąR

?
n
(

¸

ď e´κR2
.

We move to the proof of (4.2.10). Similar to the proof of (4.2.9), we can bound the left-hand side
of (4.2.10) by

ph´1q
ÿ

1ďnďN,w, zPZ2

U β̄N pn,wq ¨qnpzq1t|z|ąR
?
nu `

ÿ

1ďnďN,zPZ2

U β̄N pn, zq ¨1t|z|ąR
?
nu . (4.2.17)

For the first summand in (4.2.17), by (4.2.13) we have that
ÿ

zPZ2

qnpzq1t|z|ąR
?
nu ď e´cR2

,

and
ř

1ďnďN,wPZ2 U
β̄
N pn,wq ď 1

1´β̄1 , therefore

ph´ 1q
ÿ

1ďnďN,w, zPZ2

U β̄N pn,wq ¨ qnpzq1t|z|ąR
?
nu ď

h´ 1

1 ´ β̄1
e´cR2

. (4.2.18)
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For the second summand, we use the renewal representation of U β̄N p¨, ¨q introduced in (4.1.8). In
particular, we have that

ÿ

1ďnďN,zPZ2

U β̄N pn, zq ¨ 1t|z|ąR
?
nu “

ÿ

kě0

pσN pβ̄qRN qk
N
ÿ

n“0

P
´

ˇ

ˇSpNq

k

ˇ

ˇ ą R
?
n, τ pNq

k “ n
¯

.

(4.2.19)
Then, by conditioning on the times pT pNq

i q1ďiďk for which τ pNq

k “ T pNq

1 ` ¨ ¨ ¨ ` T pNq

k we have that

P
´

ˇ

ˇSpNq

k

ˇ

ˇ ąR
?
n, τ pNq

k “ n
¯

“
ÿ

n1`¨¨¨`nk“n

P
´

ˇ

ˇSpNq

k

ˇ

ˇ ą R
?
n
ˇ

ˇ

ˇ
Xk
i“1

␣

T pNq

i “ ni
(

¯

k
ź

i“1

P
`

T pNq

i “ ni
˘

.
(4.2.20)

Note that when we condition on Xk
i“1

␣

T
pNq

i “ ni
(

, SpNq

k is a sum of k independent random
variables pξiq1ďiďk taking values in Z2, with law

Ppξi “ xq “
q2ni

pxq

q2nip0q
.

The proof of Proposition 3.2.4 in Chapter 3 showed that there exists a constant C P p0,8q such
that for all λ ě 0

E
”

eλ|
řk

i“1 ξi|
ı

ď 2e4Cλ
2n . (4.2.21)

Therefore, by (4.2.21) with λ “ 1?
n

and Markov’s inequality we obtain that

P
´

ˇ

ˇSpNq

k

ˇ

ˇ ą R
?
n
ˇ

ˇ

ˇ
Xk
i“1 tT pNq

i “ niu
¯

ď 2e4C´R .

Thus, looking back at (4.2.20) we have that for all k ě 0,

P
´

ˇ

ˇSpNq

k

ˇ

ˇ ą R
?
n, τ pNq

k “ n
¯

ď 2e4C´R Ppτ pNq

k “ nq ,

therefore, plugging the last inequality into (4.2.19), we get that

ÿ

1ďnďN,zPZ2

U β̄N pn, zq ¨ 1t|z|ąR
?
nu ď 2e4C´R

N
ÿ

n“1

U β̄N pnq ď
2e4C´R

1 ´ β̄1
, (4.2.22)

therefore by (4.2.18) and (4.2.22) we have that there exists a constant κph, β̄q P p0,8q such that
ÿ

1ďnďN,y PpZ2qh

UJnpx,yq ¨ 1␣
∥x´y∥8ąR

?
n
( ď e´κR ,

for large enough R P p0,8q, thus concluding the proof of (4.2.10). □

4.2.3. Scale separation. In this step we show that given r P N, r ě 2, the main contribution to
H

pdiffq

r,N comes from configurations where ai`1 ´ bi ą Mpbi ´ bi´1q for all 1 ď i ď r and large M ,
as N Ñ 8. Recall from (4.2.4) that

H
pdiffq

r,N,R “
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pdiffq

r,N,R

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq .

Define the set

C
pmainq

r,N,R,M :“ C
pdiffq

r,N,RX

!

p⃗a, b⃗, x⃗, y⃗q : ai`1 ´ bi ą Mpbi´ bi´1q for all 1 ď i ď r´1
)

, (4.2.23)
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with the convention b0 :“ 0 and accordingly define

H
pmainq

r,N,R,M

:“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pmainq

r,N,R,M

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq .

(4.2.24)

We then have the following approximation proposition:

Proposition 4.2.5. For all fixed r P N, r ě 2 and M P p0,8q,

lim
NÑ8

sup
R Pp0,8q

ˇ

ˇ

ˇ
H

pdiffq

r,N,R ´H
pmainq

r,N,R,M

ˇ

ˇ

ˇ
“ 0 . (4.2.25)

Proof. Fix M ą 0. Let us begin by showing (4.2.25) for the simplest case which is r “ 2. We
have

H
pdiffq

2,N,R ´H
pmainq

2,N,R,M

ď
ÿ

pI1,I2qP Ip2q

ÿ

0ďb1ăa2ďN, a2´b1ďMb1,
y1,x2,y2PpZ2qh

UI1b1p0,y1qQI1;I2a2´b1
py1,x2qσN pI2qUI2b2´a2

px2,y2q.

We can bound σN pI2q by πβ̄ 1

logN , for some β̄ 1 P pβ̄, 1q and use (4.1.18) to bound the last replica, i.e.
the sum over pb2,y2q, thus getting

H
pdiffq

2,N,R ´H
pmainq

2,N,R,M

ď
πβ̄ 1p1 ´ β̄ 1q´1

logN

ÿ

pI1,I2qP Ip2q

ÿ

0ďb1ăa2ďN, a2´b1ďMb1 ,
y1,x2,y2PpZ2qh

UI1b1p0,y1qQI1;I2a2´b1
py1,x2q . (4.2.26)

Notice that at this stage we can sum out the spatial endpoints of the free kernels in (4.2.26) and
bound the coupling strength βk,ℓ of any replica UI1b1p0,y1q with I1 “ tk, ℓu \

Ů

j‰k,ℓtju by β̄ to
obtain

H
pdiffq

2,N,R ´H
pmainq

2,N,R,M

ď
πβ̄ 1p1 ´ β̄ 1q´1

logN

ÿ

pI1,I2qP Ip2q

ÿ

0ďb1ăa2ďN, a2´b1ďMb1 ,
y1,x2PZ2

U β̄N pb1, y1qqa2´b1px2 ´ y1q qa2px2q

ď
πβ̄ 1p1 ´ β̄ 1q´1

logN

ˆ

h

2

˙2
ÿ

0ďb1ăa2ďN, a2´b1ďMb1 ,
y1,x2PZ2

U β̄N pb1, y1qqa2´b1px2 ´ y1q qa2px2q .

(4.2.27)

For the last inequality we also have used that the number of possible partitions pI1, I2q P Ip2q is
bounded by

`

h
2

˘2
. For every fixed value of b1 in (4.2.27), we use Cauchy-Schwarz for the sum over
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pa2, x2q P p0, p1 `Mqb1s ˆ Z2 in (4.2.27) to obtain that
ÿ

b1ăa2ďp1`Mqb1, x2PZ2

qa2´b1px2 ´ y1q qa2px2q

ď

˜

ÿ

0ăa2ďp1`Mqb1, x2PZ2

q2a2´b1px2 ´ y1q

¸
1
2
˜

ÿ

b1ăa2ďp1`Mqb1, x2PZ2

q2a2px2q

¸
1
2

“

˜

ÿ

0ăa2ďp1`Mqb1

q2pa2´b1qp0q

¸
1
2
˜

ÿ

b1ăa2ďp1`Mqb1

q2a2p0q

¸
1
2

.

(4.2.28)

We can bound the leftmost parenthesis in the last line of (4.2.28) by R1{2
N “

´

řN
n“1 q2np0q

¯1{2
“

Op
?
logNq. For the other term we have

ÿ

b1ăa2ďp1`Mqb1

q2a2p0q ď c
ÿ

b1ăa2ďp1`Mqb1

1
a2

ď c logp1 `Mq . (4.2.29)

Therefore, using (4.2.28) and (4.2.29) along with
ř

0ďb1ďN, y1PZ2 U
β̄
N pb1, y1q ď p1 ´ β̄ 1q´1 in

(4.2.27) we obtain that

H
pdiffq

2,N,R ´H
pmainq

2,N,R,M ď Cπβ̄ 1p1 ´ β̄ 1q´2

d

logp1 `Mq

logN
NÑ8
ÝÝÝÝÑ 0 .

Let us show how this argument can be extended to work for general r P N. The key observation
is that for every fresh collision between two random walks, that is Ii`1 “ tk, ℓu \

Ů

j‰k,ℓtju,
happening at time 0 ă ai`1 ď N , we have Ii ‰ Ii`1, therefore one of the two colliding walks
with labels k, ℓ has to have travelled freely, for time at least ai`1 ´ bi´1 from its previous collision.
More precisely, every term in the expansion ofHpdiffq

r,N,R´H
pmainq

r,N,R,M contains for every 1 ď i ď r´1

a product of the form

qai`1´bipxi`1 ´ yiq ¨ qai`1´bi´1
pxi`1 ´ yi´1q ,

see Figure 4.2.1. Recall from (4.2.2) and (4.2.24) that we have the expansion

H
pdiffq

r,N,R ´H
pmainq

r,N,R,M

“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pdiffq

r,N,R∖C
pmainq

r,N,R,M

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq,

(4.2.30)

where by definition (4.2.23) we have that

C
pdiffq

r,N,R ∖ C
pmainq

r,N,R,M “ C
pdiffq

r,N,R X

r´1
ď

i“1

!

p⃗a, b⃗, x⃗, y⃗q : ai`1 ´ bi ď Mpbi ´ bi´1q

)

. (4.2.31)

The strategy we are going to follow is to start the summation of (4.2.30) from the end until we find
the index 1 ď i ď r ´ 1 for which the sum over ai`1 is restricted to

`

bi, bi ` Mpbi ´ bi´1q
‰

, in
agreement with (4.2.31), using (4.1.18) to bound the contribution of the sums over bj , aj`1 and the
corresponding spatial points for i ă j ď r ´ 1. Next, notice that we can bound the contribution
of the sum over ai`1 P

`

bi, bi ` Mpbi ´ bi´1q
‰

and xi`1 P Z2, using a change of variables, by a
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0 :“ a1 b1 a2 b2 a3 b3

t2, 3u t1, 2u t2, 3u

a4 b4

t3, 4u

FIGURE 4.2.1. A diagramatic representation of a configuration of collisions be-
tween 4 random walks in Hp2q

4,N with I1 “ t2, 3u, I2 “ t1, 2u, I3 “ t3, 4u and
I4 “ t2, 3u. Wiggly lines represent replica evolution, see (4.1.15).

factor of

C

logN

˜

sup
1ďtďN, uPZ2

ÿ

1ďnďMt, zPZ2

qnpzqqn`tpz ` uq

¸

ď C

d

logp1 `Mq

logN
,

using Cauchy-Schwarz as in (4.2.28) and (4.2.29). The remaining sums over bj , aj´1, 1 ď j ď i

can be bounded again via (4.1.18). Therefore, taking into account that by (4.2.31) there are r ´ 1

choices for the index i such that the sum over ai`1 is restricted to
`

bi, bi `Mpbi ´ bi´1q
‰

, we can

give an upper bound to Hpdiffq

r,N,R ´H
pmainq

r,N,R,M as follows:

H
pdiffq

r,N,R ´H
pmainq

r,N,R,M ď Cpr ´ 1q

ˆ

h

2

˙r
´ β̄ 1

1 ´ β̄ 1

¯r

d

logp1 `Mq

logN
NÑ8
ÝÝÝÝÑ 0 ,

where we also used that the number of distinct sequences pI1, . . . , Irq P Ip2q is bounded by
`

h
2

˘r
.

□

4.2.4. Rewiring. Recall the expansion of Hpmainq

r,N,R,M ,

H
pmainq

r,N,R,M

:“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pmainq

r,N,R,M

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq .

(4.2.32)

We also remind the reader that we may identify a partition I “ tk, ℓu \
Ů

j‰k,ℓtju with its
non-trivial part tk, ℓu. Moreover, if

`

ti1, j1u, ¨ ¨ ¨ , tir, jru
˘

P Ip2q we will use the notation

ppmq :“ max
␣

k ă m : tim, jmu “ tik, jku
(

,

with the convention that ppmq “ 0 if tik, jku ‰ tim, jmu for all 1 ď k ă m. Given this definition,
the time bppmq represents the last time walks im, jm collided before their new collision at time am.
Note that since we always have tik, jku ‰ tik`1, jk`1u by construction, ppmq ă m´ 1.
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Consider a sequence of partitions
`

ti1, j1u, . . . , tim, jmu
˘

P Ip2q and let m P t2, . . . , ru. The
goal of this step will be to show that we can make the replacement of kernels

qam´bm´1

´

xpimq
m ´ y

pimq

m´1

¯

¨ qam´bm´1

´

xpjmq
m ´ y

pjmq

m´1

¯

ÐÑ q2am´bppmq

´

xpimq
m ´ y

pimq

ppmq

¯

.

(4.2.33)
by inducing an error which is negligible when M Ñ 8. We iterate this procedure for all partitions
I1, . . . , Ir. We call the procedure described above rewiring, see Figures 4.2.1 and 4.2.2. The first
step towards the full rewiring is to show the following lemma which quantifies the error of a single
replacement (4.2.33).

Lemma 4.2.6. Let r ě 2 fixed and m P t2, . . . , ru with Im “ tim, jmu. Then, for every fixed
R P p0,8q and uniformly in p⃗a, b⃗, x⃗, y⃗q P C

pmainq

r,N,R,M and all sequences of partitions pI1, . . . , Irq P

Ip2q,

qam´bm´1

´

xpimq
m ´ y

pimq

m´1

¯

¨ qam´bm´1

´

xpjmq
m ´ y

pjmq

m´1

¯

“ q2am´bppmq

´

xpimq
m ´ y

pimq

ppmq

¯

¨ eoM p1q ,

(4.2.34)
where oM p1q denotes a quantity such that limMÑ8 oM p1q “ 0.

Proof. We will show that

qam´bm´1

´

xpimq
m ´ y

pimq

m´1

¯

“ qam´bppmq

´

xpimq
m ´ y

pimq

ppmq

¯

¨ eoM p1q (4.2.35)

and by symmetry we will get (4.2.34). To this end, we invoke the local limit theorem for simple
random walks, which we recall from [LL10]. In particular, by Theorem 2.3.11 [LL10], we have
that there exists ϱ ą 0 such that for all n ě 0 and x P Z2 with |x| ă ϱn,

qnpxq “ gn
2

pxq ¨ e
O

´

1
n

`
|x|4

n3

¯

¨ 2 ¨ 1␣
pn,xqPZ3

even

( , (4.2.36)

where gtpxq “ e´
|x|2

2t

2πt denotes the 2-dimensional heat kernel and

Z3
even :“ tpn, xq P Z ˆ Z2 : n` x1 ` x2 “ 0 pmod 2qu .

The last constraint in (4.2.36) is a consequence of the periodicity of the simple random walk. Let
us proceed with the proof of Lemma 4.2.6.

First, we derive some inequalities which are going to be useful for the approximations using
the local limit theorem. We claim that

am ´ bm´1 ą pM ´ 1q
`

bm´1 ´ bppmq

˘

. (4.2.37)

The proof of the latter is done by a finite recursion. In particular, notice that since the inequality
ak`1 ´ bk ą Mpbk ´ bk´1q holds for all 1 ď k ď r ´ 1, we have

am ´ bm´1 ą Mpbm´1 ´ bm´2q “ Mpbm´1 ´ am´1q `Mpam´1 ´ bm´2q . (4.2.38)

We can then write

Mpam´1 ´ bm´2q “ pM ´ 1qpam´1 ´ bm´2q ` pam´1 ´ bm´2q

ą pM ´ 1qpam´1 ´ bm´2q `Mpbm´2 ´ bm´3q
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and repeat the same steps for Mpbm´2 ´ bm´3q as we did in (4.2.38) for Mpbm´1 ´ bm´2q. After
telescoping we get the lower bound in (4.2.37). Moreover, by triangle inequality we have that
ˇ

ˇ

ˇ

ˇ

ˇxpimq
m ´y

pimq

ppmq

ˇ

ˇ´
ˇ

ˇxpimq
m ´y

pimq

m´1

ˇ

ˇ

ˇ

ˇ

ˇ
ď
ˇ

ˇy
pimq

m´1 ´x
pimq

m´1

ˇ

ˇ`
ˇ

ˇx
pimq

m´1 ´y
pimq

m´2

ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇx
pimq

ppmq`1 ´y
pimq

ppmq

ˇ

ˇ .

(4.2.39)
Note that by the diffusivity constraints of Cpmainq

r,N,R,M we have that
ˇ

ˇy
pimq

m´1 ´ x
pimq

m´1

ˇ

ˇ `
ˇ

ˇx
pimq

m´1 ´ y
pimq

m´2

ˇ

ˇ ` ¨ ¨ ¨ `
ˇ

ˇx
pimq

ppmq`1 ´ y
pimq

ppmq

ˇ

ˇ

ďR ¨

ˆ m´2
ÿ

k“ppmq

a

ak`1 ´ bk `

m´1
ÿ

k“ppmq`1

a

bk ´ ak

˙

.

(4.2.40)

By Cauchy-Schwarz on the right hand side of (4.2.40), (4.2.37) and the fact that m ď r, we
furthermore have that

´

m´2
ÿ

k“ppmq

a

ak`1 ´ bk `

m´1
ÿ

k“ppmq`1

a

bk ´ ak

¯

ď
?
2r ´ 1

ˆ m´2
ÿ

k“ppmq

pak`1 ´ bkq `

m´1
ÿ

k“ppmq`1

pbk ´ akq

˙1{2

“
?
2r ´ 1 ¨

b

bm´1 ´ bppmq

ď
?
2r ´ 1 ¨

c

am ´ bm´1

M ´ 1
.

Thus, taking into account (4.2.39) we conclude that
ˇ

ˇ

ˇ

ˇ

ˇxpimq
m ´ y

pimq

ppmq

ˇ

ˇ ´
ˇ

ˇxpimq
m ´ y

pimq

m´1

ˇ

ˇ

ˇ

ˇ

ˇ
ď R ¨

?
2r ´ 1 ¨

c

am ´ bm´1

M ´ 1
. (4.2.41)

Now, we are ready to show approximation (4.2.35). By (4.2.36) we have

qam´bm´1

`

x
pimq
m ´ y

pimq

m´1

˘

qam´bppmq

`

x
pimq
m ´ y

pimq

ppmq

˘

“ e
´

|x
pimq
m ´y

pimq
m´1|2

am´bm´1
`

|x
pimq
m ´y

pimq

ppmq
|2

am´bppmq ¨

ˆ

am ´ bppmq

am ´ bm´1

˙

¨ e
O

´

1
am´bm´1

`
|x

pimq
m ´y

pimq
m´1|4`|x

pimq
m ´y

pimq

ppmq
|4

pam´bm´1q3

¯

.

(4.2.42)

Let us look at each term on the right hand side of (4.2.42), separately. First, by (4.2.41) we have

e
´

ˇ

ˇx
pimq
m ´y

pimq
m´1

ˇ

ˇ

2

am´bm´1
`

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ

2

am´bppmq

ď e
1

am´bm´1

´

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ

2
´

ˇ

ˇx
pimq
m ´y

pimq

m´1

ˇ

ˇ

2
¯

“ e
1

am´bm´1

´

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ`

ˇ

ˇx
pimq
m ´y

pimq

m´1

ˇ

ˇ

¯

¨

´

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ´

ˇ

ˇx
pimq
m ´y

pimq

m´1

ˇ

ˇ

¯

.
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Using (4.2.41) we have

ˇ

ˇxpimq
m ´ y

pimq

ppmq

ˇ

ˇ `
ˇ

ˇxpimq
m ´ y

pimq

m´1

ˇ

ˇ ď 2
ˇ

ˇxpimq
m ´ y

pimq

m´1

ˇ

ˇ `R
?
2r ´ 1

c

am ´ bm´1

M ´ 1

ď 2R
a

am ´ bm´1 `R
?
2r ´ 1

c

am ´ bm´1

M ´ 1

“ R
a

am ´ bm´1

´

2 `

c

2r ´ 1

M ´ 1

¯

.

Therefore, by (4.2.41) we get

e
1

am´bm´1

´

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ`

ˇ

ˇx
pimq
m ´y

pimq

m´1

ˇ

ˇ

¯

¨

´

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ´

ˇ

ˇx
pimq
m ´y

pimq

m´1

ˇ

ˇ

¯

ď e
R2

´

2`

b

2r´1
M´1

¯

b

2r´1
M´1 .

Similarly, we can get a lower bound of

e
´

ˇ

ˇx
pimq
m ´y

pimq
m´1

ˇ

ˇ

2

am´bm´1
`

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ

2

am´bppmq ě e
´R2

`

1´ 1
M

˘

´

2`

b

2r´1
M´1

¯

b

2r´1
M´1 ,

since am ´ bppmq ă
`

1 ` 1
M´1

˘

pam ´ bm´1q by (4.2.37). The second term in (4.2.42) can be
handled by (4.2.37) as

1 ď

´am ´ bppmq

am ´ bm´1

¯

“

´

1 `
bm´1 ´ bppmq

am ´ bm´1

¯

ă 1 `
1

M ´ 1
MÑ8
ÝÝÝÝÑ 1 .

For the last term in (4.2.42) we have that
ˇ

ˇx
pimq
m ´ y

pimq

m´1

ˇ

ˇ

4
`
ˇ

ˇx
pimq
m ´ y

pimq

ppmq

ˇ

ˇ

4

pam ´ bm´1q3

ď

ˇ

ˇx
pimq
m ´ y

pimq

m´1

ˇ

ˇ

4

pam ´ bm´1q3
`

´

|x
pimq
m ´ y

pimq

m´1| `R ¨
?
2r ´ 1 ¨

b

pam´bm´1q

M´1

¯4

pam ´ bm´1q3

ď
9R4

pam ´ bm´1q
`

8R4p2r ´ 1q2

pam ´ bm´1q ¨ pM ´ 1q
,

where we used (4.2.41) along with the inequality px` yq4 ď 8px4 ` y4q for x, y P R. Therefore,

e

ˇ

ˇx
pimq
m ´y

pimq
m´1

ˇ

ˇ

4
`

ˇ

ˇx
pimq
m ´y

pimq

ppmq

ˇ

ˇ

4

pam´bm´1q3 ď e
9R4

pam´bm´1q
`

8R4p2r´1q2

pam´bm´1q¨pM´1q ď e
9R4

M
`

8R4p2r´1q2

M ¨pM´1q
MÑ8
ÝÝÝÝÑ 1 ,

where we used in the last inequality that am ´ bm´1 ą Mpbm´1 ´ bm´2q ě M by (4.2.23). □

4.2.5. Final step. Now that we have Lemma 4.2.6 at our disposal, we can prove the main approx-
imation result of this step. Recall from (4.2.32) that

H
pmainq

r,N,R,M

“
ÿ

pI1,...,Irq P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pmainq

r,N,R,M

UI1b1p0,y1q

r
ź

i“2

Q
Ii´1;Ii
ai´bi´1

pyi´1,xiqU
Ii
bi´ai

pxi,yiqσN pIiq .

Define Hprewq

r,N,R,M to be the resulting sum after rewiring has been applied to every term of

H
pmainq

r,N,R,M , that is, given a sequence of partitions pI1, . . . , Irq P Ip2q and p⃗a, b⃗, x⃗, y⃗q P C
pmainq

r,N,R,M ,
we apply the kernel replacement (4.2.33) to all partitions I1, . . . , Ir starting from Ir and moving
backward. We remind the reader that that we may denote a partition I “ ti, ju \

Ů

k‰i,jtku P Ip2q

by its non-trivial part ti, ju, see subsection 4.1.2.
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0 :“ a1 b1 a2 b2 a3 b3

t2, 3u t1, 2u t2, 3u

a4 b4

t3, 4u

FIGURE 4.2.2. Figure 4.2.1 after rewiring. We use blue lines to represent the new
kernels produced by rewiring. The dashed lines represent remaining free kernels
from the rewiring procedure as well as kernels coming from using the Chapman-
Kolmogorov formula for the simple random walk.

Proposition 4.2.7. Fix 0 ď r ď K. We have that

H
prewq

r,N,R,M “ eK¨oM p1q H
pmainq

r,N,R,M (4.2.43)

and

H
prewq

r,N,R,M

“
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pmainq

r,N,R,M

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, y
pikq

k ´ x
pikq

k

˘

ˆ
ź

1ďℓďh,
ℓ‰ik,jk

qbk´akpy
pℓq
k ´ x

pℓq
k q

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xpimq
m ´ y

pimq

ppmq

˘

¨
ź

1ďℓďh,
ℓ‰im,jm

qam´bm´1

`

xpℓq
m ´ y

pℓq
m´1

˘

.

(4.2.44)

Proof. Equation (4.2.43) is a consequence of Lemma 4.2.6 and the fact that r ď K, while expan-
sion (4.2.44) is a direct consequence of the rewiring procedure we described in the previous step,
see also Figures 4.2.1 and 4.2.2. □

Next, we derive upper and lower bounds for Hprewq

r,N,R,M . We begin with the upper bound.

Proposition 4.2.8. We have that

H
prewq

r,N,R,M ď
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
0:“x1,y1,...,xr,yrPZ2

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, yk ´ xk
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xm ´ yppmq

˘

.

111



Proof. Fix r ě 1 and from (4.2.44) recall that

H
prewq

r,N,R,M

“
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pmainq

r,N,R,M

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, y
pikq

k ´ x
pikq

k

˘

ˆ
ź

1ďℓďh,
ℓ‰ik,jk

qbk´akpy
pℓq
k ´ x

pℓq
k q

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xpimq
m ´ y

pimq

ppmq

˘

¨
ź

1ďℓďh,
ℓ‰im,jm

qam´bm´1

`

xpℓq
m ´ y

pℓq
m´1

˘

.

(4.2.45)

For the sake of obtaining an upper bound on Hprewq

r,N,R,M we can sum p⃗a, b⃗, x⃗, y⃗q in (4.2.45) over

Cr,N , see definition in (4.2.2), instead of Cpmainq

r,N,R,M . We start the summation of the right hand side
of (4.2.45) from the end. Using that for n P N,

ř

zPZ2 qnpzq “ 1 we deduce that
ÿ

y
pℓq
r PZ2:

1ďℓďh, ℓ‰ir,jr

ź

ℓ‰ir,jr

qbr´arpypℓq
r ´ xpℓq

r q “ 1 .

We leave the sum
ř

brPrar,Ns, y
pirq
r PZ2 UN

`

br ´ ar, y
pirq
r ´ x

pirq
r

˘

intact and move on to the time
interval rbr´1, ars. We use again that for n P N,

ř

zPZ2 qnpzq “ 1, to deduce that
ÿ

x
pℓq
r PZ2:

1ďℓďh, ℓ‰ir,jr

ź

ℓ‰ir,jr

qar´br´1pxpℓq
r ´ y

pℓq
r´1q “ 1 .

Again, we leave the sum
ř

arP pbr´1,brs, x
pirq
r PZ2 q

2
ar´bpprq

`

x
pirq
r ´ y

pirq

pprq

˘

intact. We can iterate this

procedure inductively since due to rewiring all the spatial variables ypℓq
r´1, ℓ ‰ ir´1, jr´1 are free,

that is, there are no outgoing laces starting off ypℓq
r´1, ℓ ‰ ir´1, jr´1 at time br´1. The summations

we have performed correspond to getting rid of the dashed lines in Figure 4.2.2. Iterating this
procedure inductively then implies the following upper bound for Hprewq

r,N,R,M .

H
prewq

r,N,R,M ď
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN ,
0:“x1,y1,...,xr,yrPZ2

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, yk ´ xk
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xm ´ yppmq

˘

.

□

In the next proposition we derive complementary lower bounds for Hprewq

r,N,R,M . Given 0 ď r ď

K and a sequence of partitions I⃗ “ pti1, j1u, . . . , tir, jruq P Ip2q we define the set Cprewq

r,N,R,M pI⃗ q to

be C
pmainq

r,N,R,M where for every 2 ď m ď r we replace the diffusivity constraint
∥∥xm ´ ym´1

∥∥
8

ď

R
a

am ´ bm´1 by the constraints

|xpℓq
m ´ y

pℓq
m´1| ď R

a

am ´ bm´1, ℓ P t1, . . . , hu ∖ tim, jmu and

|xpℓ1q
m ´ y

pℓ1q

ppmq
| ď R

c

1 ´
1

M

ˆ

1 ´

c

2K ´ 1

M ´ 1

˙

b

am ´ bppmq, ℓ
1 P tim, jmu .
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This replacement transforms the diffusivity constraints imposed on the jumps of two walks
tim, jmu from their respective positions at time bm´1 to time am, which is the time they (re)start
colliding, to a diffusivity constraint connecting their common position at time bppmq, which is
the last time they collided before time am, to their common position at time am when they start
colliding again.

We have the following Lemma.

Lemma 4.2.9. Let 0 ď r ď K and M ą 2K. For all I⃗ “
`

ti1, j1u, . . . , tir, jru
˘

P Ip2q we have
that

C
prewq

r,N,R,M pI⃗ q Ă C
pmainq

r,N,R,M .

Proof. Fix 0 ď r ď K, a sequence I⃗ “
`

ti1, j1u, . . . , tir, jru
˘

P Ip2q and p⃗a, b⃗, x⃗, y⃗q P

C
prewq

r,N,M,RpI⃗ q. Moreover, let 2 ď m ď r. By symmetry it suffices to prove that

1␣
|x

pimq
m ´y

pimq

ppmq
|ďR

b

1´ 1
M

´

1´

b

2r´1
M´1

¯

?
am´bppmq

( ď 1␣
|x

pimq
m ´y

pimq

m´1|ďR
?
am´bm´1

( .

Indeed, by the definition of Cprewq

r,N,M,RpI⃗ q and (4.2.41) we have that for p⃗a, b⃗, x⃗, y⃗q P C
prewq

r,N,M,RpI⃗ q,

ˇ

ˇ

ˇ
|xpimq
m ´ y

pimq

ppmq
| ´ |xpimq

m ´ y
pimq

m´1|

ˇ

ˇ

ˇ
ď R ¨

?
2r ´ 1 ¨

c

am ´ bm´1

M ´ 1
. (4.2.46)

Moreover by (4.2.37) we have that

am ´ bm´1 ą pM ´ 1qpbm´1 ´ bppmqq ñ am ´ bppmq ą Mpbm´1 ´ bppmqq .

Therefore,

am ´ bm´1 “ am ´ bppmq ´ pbm´1 ´ bppmqq ą am ´ bppmq ´
1

M
pam ´ bppmqq

“

´

1 ´
1

M

¯

pam ´ bppmqq .

(4.2.47)

Combining inequalities (4.2.46) and (4.2.47) we get the result.
□

Proposition 4.2.10. Let 0 ď r ď K. For M ą 2K we have that

H
prewq

r,N,R,M

ě p1 ´ e´cR2
q2Kh

ÿ

I⃗“

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
ai`1´biąMpbi´bi´1q, 1ďiďr´1,

0:“x1,y1,...,xr,yrPZ2

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, yk ´ xk
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xm ´ yppmq

˘

¨ 1␣
|yk´xk|ďR

?
bk´ak, |xm´yppmq|ďRCK,M

?
am´bppmq

(,

with CK,M :“
b

1 ´ 1
M

ˆ

1 ´

b

2K´1
M´1

˙

.
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Proof. Recall from (4.2.44) that

H
prewq

r,N,R,M

“
ÿ

I⃗“

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
pmainq

r,N,R,M

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, y
pikq

k ´ x
pikq

k

˘

¨
ź

ℓ‰ik,jk

qbk´akpy
pℓq
k ´ x

pℓq
k q

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xpimq
m ´ y

pimq

ppmq

˘

¨
ź

ℓ‰im,jm

qam´bm´1

`

xpℓq
m ´ y

pℓq
m´1

˘

.

By Lemma 4.2.9 we have that

H
prewq

r,N,R,M

ě
ÿ

I⃗“

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

pa⃗,⃗b,x⃗,y⃗q PC
prewq

r,N,R,M pI⃗ q

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, y
pikq

k ´ x
pikq

k

˘

¨
ź

ℓ‰ik,jk

qbk´akpy
pℓq
k ´ x

pℓq
k q

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xpimq
m ´ y

pimq

ppmq

˘

¨
ź

ℓ‰im,jm

qam´bm´1

`

xpℓq
m ´ y

pℓq
m´1

˘

.

(4.2.48)

The first step in getting a lower bound for Hprewq

r,N,R,M is to get rid of the dashed lines, see Figure
4.2.2. We follow the steps we took in the proof of Proposition 4.2.8 for the upper bound. In
particular, we start the summation of (4.2.48) beginning from the end. Using that for n P N and
R P p0,8q

ÿ

zPZ2: |z|ďR
?
n

qnpzq “ 1 ´
ÿ

zPZ2: |z|ąR
?
n

qnpzq ě 1 ´ e´cR2
, (4.2.49)

by (4.2.13), we get that
ÿ

y
pℓq
r PZ2:|y

pℓq
r ´x

pℓq
r |ďR

?
br´ar,

1ďℓďh, ℓ‰ir,jr

ź

ℓ‰ir,jr

qbr´arpypℓq
r ´ xpℓq

r q ě p1 ´ e´cR2
qh .

We leave the sum
ÿ

brPrar,Ns,

y
pirq
r PZ2: |y

pirq
r ´x

pirq
r |ďR

?
br´ar

UN
`

br ´ ar, y
pirq
r ´ xpirq

r

˘

as is and move on to the time interval rbr´1, ars. We use (4.2.49) to deduce that
ÿ

x
pℓq
r PZ2:|x

pℓq
r ´y

pℓq

r´1|ďR
?
ar´br´1,

1ďℓďh, ℓ‰ir,jr

ź

ℓ‰ir,jr

qar´br´1pxpℓq
r ´ y

pℓq
r´1q ě p1 ´ e´cR2

qh .

Again, we leave the sum
ř

arP pbr´1,brs, x
pirq
r PZ2 q

2
ar´bpprq

`

x
pirq
r ´y

pirq

pprq

˘

intact. We can continue this

procedure since due to rewiring all the spatial variables ypℓq
r´1, ℓ ‰ ir´1, jr´1 are free, i.e. there are

no outgoing laces starting off ypℓq
r´1, ℓ ‰ ir´1, jr´1 at time br´1, and there are no diffusivity con-

straints linking xpirq
r “ x

pjrq
r with ypirq

r´1, y
pjrq

r´1 by definition of Cprewq

r,N,R,M pI⃗q. Iterating this procedure

114



we obtain that

H
prewq

r,N,R,M

ě p1 ´ e´cR2
q2Kh

ÿ

I⃗“

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
ai`1´biąMpbi´bi´1q, 1ďiďr´1,

0:“x1,y1,...,xr,yrPZ2

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, yk ´ xk
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xm ´ yppmq

˘

¨ 1␣
|yk´xk|ďR

?
bk´ak, |xm´yppmq|ďRCK,M

?
am´bppmq

(,

with CK,M “

b

1 ´ 1
M

ˆ

1 ´

b

2K´1
M´1

˙

. □

Proposition 4.2.11. We have that

lim
KÑ8

lim
MÑ8

lim
RÑ8

lim
NÑ8

K
ÿ

r“0

H
prewq

r,N,R,M “
ź

1ďiăjďh

1

1 ´ βi,j
.

Proof. We are going to prove this Proposition via means of the lower and upper bounds established
in Propositions 4.2.8 and 4.2.10. By Proposition 4.2.8 we have that

H
prewq

r,N,R,M ď
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN ,
0:“x1,y1,...,xr,yrPZ2

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, yk ´ xk
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xm ´ yppmq

˘

.

(4.2.50)

Summing the spatial points on the right hand side of (4.2.50) we obtain that

H
prewq

r,N,R,M ď
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak
˘

r
ź

m“2

σim,jmN q2pam´bppmqqp0q .

(4.2.51)

Note that the right hand sides of (4.2.50) and (4.2.51) describe a system of
`

h
2

˘

pairs of random
walks which collide only between themselves. The times ai ď bi mark when a pair of random
walks starts and terminates colliding (temporarily) before the next pair starts colliding. The order
of these collision events is encoded in I⃗ “

`

ti1, j1u, . . . , tir, jru
˘

P Ip2q. Using (4.1.6) and (4.1.7)
one can deduce that

ÿ

rě0

H
prewq

r,N,R,M ď
ź

1ďiăjďh

E
”

e
πβi,j
logN

L
pi,jq

N

ı

“
`

1 ` oN p1q
˘

ź

1ďiăjďh

1

1 ´ βi,j
. (4.2.52)
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Next, by Proposition 4.2.10 we have that

H
prewq

r,N,R,M

ě p1 ´ e´cR2
q2Kh

ÿ

I⃗“

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
ai`1´biąMpbi´bi´1q, 1ďiďr´1,

0:“x1,y1,...,xr,yrPZ2

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak, yk ´ xk
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2am´bppmq

`

xm ´ yppmq

˘

¨ 1␣
|yk´xk|ďR

?
bk´ak, |xm´yppmq|ďRCK,M

?
am´bppmq

(,

(4.2.53)

Lifting the diffusivity conditions imposed on the right-hand side of (4.2.53) can be done using
arguments already present in Lemma 4.2.4. More specifically, we use that for 0 ď m ď N ,
w P Z2 and 1 ď i ă j ď h,

ÿ

nPrm,Ns,
zPZ2: |z´w|ďR

?
n´m

U
βi,j
N

`

n´m, z ´ w
˘

“
ÿ

nPrm,Ns

U
βi,j
N

`

n´m
˘

´
ÿ

nPrm,Ns,
zPZ2: |z´w|ąR

?
n´m

U
βi,j
N

`

n´m, z ´ w
˘

ě
ÿ

nPrm,Ns

U
βi,j
N

`

n´m
˘

´ e´κR
ÿ

nPrm,Ns

U
βi,j
N

`

n´m
˘

ě
`

1 ´ e´κR
˘

ÿ

nPrm,Ns

U
βi,j
N

`

n´m
˘

,

where in the first inequality we used (4.2.22) from Lemma 4.2.4 with a suitable constant κpβ̄q P

p0,8q. Similarly we have that
ÿ

nPrm,Ns,
zPZ2:|z´w|ďRCK,M

?
n´m

q2n´mpz ´ wq

“
ÿ

nPrm,Ns

q2pn´mqp0q ´
ÿ

nPrm,Ns,
zPZ2:|z´w|ąRCK,M

?
n´m

q2n´mpz ´ wq

ě
`

1 ´ e´κR2 C2
K,M

˘

ÿ

nPrm,Ns

q2pn´mqp0q

by tuning the constant κ if needed. Therefore, we finally obtain that

H
prewq

r,N,R,M ě p1 ´ e´cR2
q2Kh p1 ´ e´κRqK p1 ´ e´κR2 C2

K,M qK

ˆ
ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
ai`1´biąMpbi´bi´1q, 1ďiďr´1 .

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak
˘

r
ź

m“2

σim,jmN ¨ q2pam´bppmqqp0q .

(4.2.54)

The last restriction we need to lift is the restriction ai`1 ´ bi ą Mpbi ´ bi´1q, 1 ď i ď r ´ 1.
This can be done via the arguments used in Proposition 4.2.5, so we do not repeat it here, but
only note that there exists a constant rCK “ rCKpβ̄, hq P p0,8q such that for all 0 ď r ď K, the
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corresponding sum to the right-hand side of (4.2.54), but with its temporal range of summation be
such that there exists 1 ď i ď r ´ 1 : ai`1 ´ bi ď Mpbi ´ bi´1q, satisfies the bound

ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN,
D 1ďiďr´1: ai`1´biďMpbi´bi´1q

ˆ

r
ź

k“1

U
βik,jk
N

`

bk ´ ak
˘

r
ź

m“2

σim,jmN ¨ q2pam´bppmqqp0q

ď rCK ¨ εN,M ,

where εN,M is such that limNÑ8 εN,M “ 0 for any fixed M P p0,8q. Therefore, the resulting
resulting lower bound on Hprewq

r,N,R,M will be then

H
prewq

r,N,R,M ě p1 ´ e´cR2
q2Kh p1 ´ e´κRqK p1 ´ e´κR2 C2

K,M qK

ˆ

˜

ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN

r
ź

k“1

U
βik,jk
N

`

bk ´ ak
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2pam´bppmqqp0q ´ rCK ¨ εN,M

¸

.

(4.2.55)

Note that
ź

1ďiăjďh

E
”

e
πβi,j
logN

L
pi,jq

N

ı

“

K
ÿ

r“0

ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN

r
ź

k“1

U
βik,jk
N

`

bk ´ ak
˘

ˆ

r
ź

m“2

σim,jmN ¨ q2pam´bppmqqp0q `A
p1q

N `A
p2q

N,K ,

(4.2.56)

where Ap1q

N denotes the part of the chaos expansion of
ś

1ďiăjďh E
”

e
πβi,j
logN

L
pi,jq

N

ı

which contains

multiple collisions for at least some time 1 ď n ď N and Ap2q

N,K denotes the corresponding sum on
the right-hand side of (4.2.56) but from r “ K ` 1 to 8, that is

A
p2q

N,K “
ÿ

rąK

ÿ

`

ti1,j1u,...,tir,jru

˘

P Ip2q

ÿ

0:“a1ďb1ăa2ď¨¨¨ăarďbrďN

r
ź

k“1

U
βik,jk
N

`

bk ´ ak
˘

ˆ

r
ź

m“2

σim,jmN q2pam´bppmqqp0q .

Next, we will give bounds for Ap1q

N and Ap2q

N,K . Beginning with Ap2q

N,K , let ϱK :“
Y

K

2ph2q

]

. Since we

are summing over r ą K, there has to be a pair 1 ď i ă j ď h which has recorded more than ϱK
collisions. We recall from (4.1.8) that UβN p¨q admits the renewal representation

UβN pnq “
ÿ

kě0

pσN pβqRN qk P
`

τ pNq

k “ n
˘

.
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There are
`

h
2

˘

choices for the pair with more than ϱK collisions. We can also use the bound (4.1.9)

to bound the contribution of the rest
`

h
2

˘

´ 1 pairs in Ap2q

N,K . Therefore, we can then write

A
p2q

N,K ď

`

h
2

˘

p1 ´ β̄1qph2q

ÿ

kąϱK

pσN pβ̄qRN qk Ppτ pNq

k ď Nq ď

`

h
2

˘

p1 ´ β̄1qph2q

ÿ

kąϱK

pβ̄1qk
KÑ8
ÝÝÝÝÑ 0 ,

uniformly in N , where β̄1 P pβ̄, 1q.
Similarly, forAp1q

N , we can choose two pairs which collide at the same time in
`

h
2

˘

¨

´

`

h
2

˘

´1
¯

ď

`

h
2

˘2
ways and we can use bound (4.1.9) to bound the contribution in Ap1q

N of the rest
`

h
2

˘

´ 2 pairs.
Therefore, we obtain that

A
p1q

N ď

`

h
2

˘2

p1 ´ β̄1qph2q

ÿ

ně0, x,y PZ2

U β̄N pn, xqU β̄N pn, yq ď

`

h
2

˘2

p1 ´ β̄1qph2q

ÿ

ně0

`

U β̄N
˘2

pnq .

By Proposition 1.5 of [CSZ19a] we get the estimate

Ppτ pNq

k “ nq ď
C k q2np0q

RN
ď

C 1 k

nplogNq
,

where the second inequality follows by the local limit theorem. Therefore, by (4.1.8) and the
aforementioned estimate we get that

`

U β̄N
˘2

pnq “
ÿ

k,ℓě0

pσN pβ̄qRN qk`ℓ Ppτ pNq

k “ nqPpτ pNq

ℓ “ nq ď
pC 1q2

n2plogNq2

´

ÿ

kě0

k ¨ pβ̄1qk
¯2
.

for some β̄1 P pβ̄, 1q. Since β̄1 ă 1 we have that
ř

kě0 k ¨ pβ̄1qk ă 8, therefore we deduce that

there exists a constant C “ Cpβ̄1q such that
`

U β̄N
˘2

pnq ď C
n2 plogNq2

. Since
ř

ně1
1
n2 ă 8, there

exists a constant C “ Cpβ̄1q P p0,8q such that
ÿ

ně0

`

U β̄N
˘2

pnq ď
C

plogNq2
NÑ8
ÝÝÝÝÑ 0 ,

The two bounds above, in combination with (4.2.55) and (4.2.56), allow us to write:
K
ÿ

r“0

H
prewq

r,N,R,M ě p1 ´ e´cR2
q2Kh p1 ´ e´κRqK p1 ´ e´κR2 C2

K,M qK

ˆ

˜

ź

1ďiăjďh

E
”

e
πβi,j
logN

L
pi,jq

N

ı

´K ¨ rCK ¨ εN,M ´ oN p1q ´ oKp1q

¸

,

which together with upper bound (4.2.52) entail that

lim
KÑ8

lim
MÑ8

lim
RÑ8

lim
NÑ8

K
ÿ

r“0

H
prewq

r,N,R,M “
ź

1ďiăjďh

1

1 ´ βi,j
.

□

We are now ready to put all pieces together and prove the main result of the paper, Theorem
4.0.1.

Proof of Theorem 4.0.1. Let ε ą 0. There exists large K “ Kε P N such that uniformly in
N P N

ˇ

ˇ

ˇ
Mβ
N,h ´

K
ÿ

r“0

Hr,N

ˇ

ˇ

ˇ
ď ε , (4.2.57)
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by Proposition 4.2.2. We have

ˇ

ˇ

ˇ

K
ÿ

r“0

Hr,N ´

K
ÿ

r“0

H
prewq

r,N,R,M

ˇ

ˇ

ˇ
ď

ˆ K
ÿ

r“0

pH
psuperdiffq

r,N,R `H
pmultiq
r,N q

˙

`

ˇ

ˇ

ˇ

K
ÿ

r“0

pH
pdiffq

r,N,R ´H
pmainq

r,N,R,M q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

K
ÿ

r“0

pH
pmainq

r,N,R,M ´H
prewq

r,N,R,M q

ˇ

ˇ

ˇ
.

By Propositions 4.2.1, 4.2.3 we have that

lim
RÑ8

lim
NÑ8

ˆ K
ÿ

r“0

pH
psuperdiffq

r,N,R `H
pmultiq
r,N q

˙

ď lim
RÑ8

sup
NPN

K
ÿ

r“0

H
psuperdiffq

r,N,R ` lim
NÑ8

K
ÿ

r“0

H
pmultiq
r,N “ 0 .

Moreover, by Proposition 4.2.5 we have that

lim
RÑ8

lim
MÑ8

lim
NÑ8

ˇ

ˇ

ˇ

K
ÿ

r“0

H
pdiffq

r,N,R ´

K
ÿ

r“0

H
pmainq

r,N,R,M

ˇ

ˇ

ˇ
“ 0 .

Last, by Proposition 4.2.7 we have that

lim
RÑ8

lim
MÑ8

lim
NÑ8

ˇ

ˇ

ˇ

K
ÿ

r“0

H
pmainq

r,N,R,M ´

K
ÿ

r“0

H
prewq

r,N,R,M

ˇ

ˇ

ˇ
“ 0 ,

therefore

lim
RÑ8

lim
MÑ8

lim
NÑ8

ˇ

ˇ

ˇ

K
ÿ

r“0

Hr,N ´

K
ÿ

r“0

H
prewq

r,N,R,M

ˇ

ˇ

ˇ
“ 0 . (4.2.58)

By Proposition 4.2.11 we have that

lim
KÑ8

lim
RÑ8

lim
MÑ8

lim
NÑ8

K
ÿ

r“0

H
prewq

r,N,R,M “
ź

1ďiăjďh

1

1 ´ βi,j
, (4.2.59)

Therefore, by (4.2.57), (4.2.58) and (4.2.59) we obtain that

lim
NÑ8

Mβ
N,h “

ź

1ďiăjďh

1

1 ´ βi,j
.

□
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