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TurboMGNN: Improving Concurrent GNN Training
Tasks on GPU With Fine-Grained Kernel Fusion

Wenchao Wu ¥, Xuanhua Shi

Abstract— Graph Neural Networks (GNN) have evolved as pow-
erful models for graph representation learning. Many works have
been proposed to support GNN training efficiently on GPU. How-
ever, these works only focus on a single GNN training task such as
operator optimization, task scheduling, and programming model.
Concurrent GNN training, which is needed in the applications such
as neural network structure search, has not been explored yet. This
work aims to improve the training efficiency of the concurrent GNN
training tasks on GPU by developing fine-grained methods to fuse
the kernels from different tasks. Specifically, we propose a fine-
grained Sparse Matrix Multiplication (SpMM) based kernel fusion
method to eliminate redundant accesses to graph data. In order
to increase the fusion opportunity and reduce the synchronization
cost, we further propose a novel technique to enable the fusion of
the kernels in forward and backward propagation. Finally, in order
to reduce the resource contention caused by the increased number
of concurrent, heterogeneous GNN training tasks, we propose an
adaptive strategy to group the tasks and match their operators
according to resource contention. We have conducted extensive
experiments, including kernel- and model-level benchmarks. The
results show that the proposed methods can achieve up to 2.6X
performance speedup.

Index Terms—GNN training, concurrent multi-tasks, GPU,
kernel fusion.

I. INTRODUCTION

S AN efficient representation learning tool, Graph Neural

Networks (GNN) learn the structure and properties of
graphs and provide high-dimensional feature representation for
downstream tasks such as node classification and link prediction,
which is widely used in many applications such as recommenda-
tion systems [1], social networks [2], and knowledge graphs [3].
Since training GNNs is a very time- and resource-consuming
task [4], [5], general-purpose graphics processing units (GPUs)
are often used to accelerate the GNN training and many general
GNN learning frameworks have been developed [6], [7], [8].
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Concurrent GNN Training (CGT), as a new scenario for GNN
training, is becoming more and more common and critical. On
the one hand, data science researchers may need to explore
multiple models simultaneously to fit the targeted graphs, which
is called Network Architecture Search (NAS). These models
usually have the same network structure with different hyper-
parameters or even have different types of networks. On the other
hand, the GPU is equipped with more computation resources
such as thousands of cores (e.g., 6912 FP32 cores in A100)
and memory with large capacity and high bandwidth (e.g., up
to 80 GB HBM2 memory in A100). This provides the vast
capacity to run multiple GNN training tasks concurrently on
a GPU, especially in the multi-tenant virtualized cloud. As
a consequence, the need is increasing for a system that can
efficiently support CGTs.

However, previous GNN training systems [6], [7], [8] only
focus on improving the running of a single training task such
as operators optimization [9], [10], [11], task scheduling [12],
[13], programming model [14], [15], and communication reduc-
tion [16], [17]. In a concurrent training setting, it is likely that
different GNN tasks need to visit the same graph multiple times
and exhibit a similar computation pattern. Our studies show
that ignoring these underlying relations between the concurrent
tasks may result in redundant data accesses and severe resource
contention, and ultimately hurts the end-to-end performance of
a training task.

The works from other fields such as graph computation have
attempted to improve the efficiency of concurrent graph tasks.
Seraph [18] proposed graph-level sharing for different tasks to
share common graph data in one process or multiple processes.
GraphM [19] proposed partition-level sharing which reorganizes
the scheduling of the graph partitions into higher-level memory
and executes the corresponding concurrent tasks to maximize
data locality and cache efficiency. However, these methods
cannot be directly applied to Concurrent Graph Training. On the
one hand, all the graph vertexes and edges should be accessed
when each task is run. However, since different tasks are run
in separate kernels in GPU, it is difficult to maintain good data
locality by scheduling common thread blocks or to coordinate
task scheduling in a unified way due to the limitations of the
CUDA programming model. On the other hand, even using
these methods, each task still needs to load the graph structure
data repetitively, incurring a large number of redundant data
accesses. Moreover, a CGT task is more complicated than an
ordinary graph processing task because the GNN training model
in a CGT task is formed by stacking multiple layers and there
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are dependencies between forward and backward propagation
stages. Unlike an ordinary graph processing task, a CGT task
cannot be expressed as simple vertex functions [20], [21] to
coordinate the task scheduling in an efficient way.

To overcome these limitations, we propose a novel fine-
grained kernel fusion method, which can completely eliminate
the redundant loading of graph data and improve GPU resource
utilization when running CGT tasks. First, we find that although
a GNN model is very complex and different models may have
different aggregation and updating methods, they all have a com-
mon operator, Sparse Matrix Multiplication (SpMM), which
is the most time-consuming operator in a GNN computation
graph. Moreover, different SpMMs share the same pattern when
accessing vertexes and edges. In this paper, a fine-grained kernel
fusion method is proposed to fuse the SpMMs from different
tasks to a single kernel. By doing so, vertex- and edge-level
sharing is enabled and redundant graph data accesses by GNN
tasks are eliminated.

Second, when the concurrently running GNN tasks have dif-
ferent numbers of model layers, it becomes difficult to efficiently
fuse the operators from different tasks. Simply aligning the
layers in different tasks may delay the execution of the task
with fewer layers. In order to address this issue, we propose a
novel pull-and-push-based method to enable the fusion of the
operators from different propagation stages (i.e., the forward
and the backward stages). With this method, there will be more
fusion opportunities and the kernel synchronization overhead
can be reduced.

Third, as the number of concurrent GNN tasks increases,
the kernel that contains the fused operators will demand more
resources (such as the registers), which will limit the degree of
concurrency in GPU. Moreover, the GNN tasks to be fused may
have different model topologies. Simply fusing them may in-
troduce unnecessary dependencies between operators. To solve
this problem, we propose a strategy to adaptively group the tasks
and match their operators according to resource contention. This
strategy can effectively reduce the average turnaround time of
the tasks.

In summary, there are the following contributions in this
paper.

1) We propose a fine-grained SpMM-based kernel fusion
method that can completely eliminate redundant graph
data accesses and improve kernel efficiency for concurrent
GNN training jobs.

2) We propose a novel pull-and-push-based method to fuse
the operators in different forward and backward stages,
aiming to create more fusion opportunities and reduce
the kernel synchronization cost when the concurrent GNN
tasks have different numbers of model layers.

3) We propose an adaptive task grouping and operator match-
ing strategy to fuse the operators from different heteroge-
neous network models, which further improves resource
utilization while reducing resource contention.

4) We implement the fine-grained SpMM-based kernel fu-
sion method on top of DGL and develop an efficient
concurrent GNN training framework called TurboMGNN.
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We conducted extensive experiments. The results show that
TurboMGNN can improve the end-to-end training performance
by up to 2.6x.

The rest of this paper is organized as follows. The back-
ground information is presented in Section II. The detail of
TurboMGNN and the kernel fusion methods are presented in
Section III. The system design and implementation are described
in Section I'V. The experiments with TurboMGNN are presented
and the results are analyzed in Section V. Related work is
presented in Section VI. Finally, the conclusions and future work
are presented in Section VIIL.

1I. BACKGROUND

Given a graph G = (V, E), each v € V represents a vertex
in the graph with a feature vector f,. Each edge represents
a relationship between connected vertices. In order to obtain
high-dimensional feature representations for vertices and edges,
a GNN model iteratively aggregates the information from the
neighbors of a center vertex and updates the feature vectors of
the center vertex. There are two main computations for a model
layer: message aggregation and feature transformation, which
are formulated in (1), where h¥ represents the feature of the
vertex v at the kyp, layer. Different GNN models may use different
aggregation and transformation methods, as well as different
combinations of these computations to extract the features with
different scales. GNN models usually stack multiple layers (2-3
layers) to improve the model accuracy.

Usually, the aggregation can be expressed as Sparse Matrix
Multiplication (SpMM), whose execution can be accelerated
by the existing CUDA libraries such as [22], [23] and the
optimization methods such as [9], [10], [11]. In contrast, the
transformation computation can be expressed as the dense ma-
trix multiplication. The GNN training can be classified into
full-graph and sampling-based training. The former trains the
whole graph at each iteration while the latter trains the whole
training sets in mini-batches with each iteration sampling a
sub-graph from the original graph for processing. The methods
proposed in this paper mainly focus on the full-graph based
training.

o) = AGGREGATE ™ ({n{"V | ue N(v)})
A = UPDATE ® (n{0), afl)) . 1)

A. Scenarios of Concurrent GNN Training

As an efficient representation learning tool, the GNN model
learns the structure and properties of graphs and provides high-
dimensional feature representation for downstream tasks such as
node classification, and link prediction. However, determining
a model suitable for specific graph data is an exploratory and
iterative process, which requires testing different network mod-
els and hyper-parameters. During this process, multiple models
are trained simultaneously on the same graph. Models with poor
performance will be gradually discarded and the best performer
will eventually win. Another scenario in which multiple GNN
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training models are run concurrently is that although these
training models target different applications they refer to the
same graph. Each model may consist of different node and
edge properties features that are more relevant to the targeting
task. These models need to visit the same graph data. If the
scheduling of these tasks cannot be coordinated well, redundant
dataloading and resource competition will lead to resource waste
and performance degradation, eventually increasing the time of
model development and the cost of hardware investment.

B. GPU

With a large number of processing cores and high-speed
memory, GPU has become a popular accelerator for many
computation-intensive tasks such as deep learning [24], [25],
[26] and even memory-intensive tasks such as graph process-
ing [27], [28], [29], [30], [31]. For example, the NVIDIA
A100 GPU with the latest generation of Ampere architecture
has 6912 FP32 cores. Moreover, the GPU memory capacity
is also increasing rapidly. NVIDIA A100 GPU can have up
to 80 GB of memory with a bandwidth of 1,134 GB/s. These
abundant hardware resources together with the parallelization
support provided by CUDA (e.g., multiple streams and hyper-Q
technology) enable GPUs to run multiple tasks simultaneously
and improve resource utilization, which is especially important
in data centers. How to coordinate and schedule these parallel
tasks efficiently has become a major challenge for GPU resource
management.

III. METHODOLOGY

In this section, we first explain our motivation for this work
and then propose our methods for optimizing the execution of
concurrent GNN training jobs, which include the fine-grained
kernel fusion method to eliminate redundant graph structure
access, a pull-and-push-based kernel fusion technique to fuse
the kernels from different forward and backward stages, and
an adaptive task grouping and operator matching strategy for a
batch of the GNN training tasks with the heterogeneous model
networks.

A. Motivation and Challenges

When multiple GNN training tasks are run concurrently on
a GPU, these tasks usually have common access to the graph
data and manifest similar computation patterns. Coordinating
the scheduling and execution of these tasks can improve perfor-
mance, such as reducing the storage space of the underlying
graph data [18] and increasing data locality [19]. However,
different from traditional graph processing tasks, it poses chal-
lenges to coordinate concurrently running GNN tasks.

First, unlike ordinary concurrent graph processing tasks, all
the graph vertexes and edges should be accessed when each GNN
task is processed. This feature leaves limited optimization space
for improving data locality by scheduling common blocks.!
This is because each task is now in an individual GPU kernel.

'Tt means scheduling those thread blocks which all need to access the same
loaded graph partition to increase data reuse and cache hit rate.
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Given the limitation of the current CUDA programming model,
different kernels are isolated from each other and can only
communicate through global memory. Therefore it is hard for
users to control the schedule of thread blocks from different
kernels and uniformly coordinate them to improve high-level
cache hit rate and achieve data reuse. Moreover, even with
the existing optimization methods for storage scheduling [19],
each task still needs to access the graph data (edge and vertex
data) repeatedly, which incurs redundant memory accesses. It
poses big challenges to coordinate the running of different GNN
training tasks and reduce redundant data accesses.

Second, we argue that although computation fusion is an
efficient way to reduce redundant computations and memory ac-
cesses, it cannot be directly applied to concurrent GNN training
since a GNN task has a complicated DAG due to its multi-layer
structure. Also, each layer in a GNN is composed of various
types of operators, including graph propagation operators, DNN
operators, etc. These operators are often interleaved to form a
complicated model. They cannot be expressed with a simple
vertex-centric function like PageRank, BES, or SSSP in ordinary
graph processing tasks. Therefore, although computation fusion
is a promising approach, it is very difficult to fuse the concurrent
GNN tasks at the task level and it is challenging to design a
fine-grained computation fusion method that is both generic
and efficient for supporting the GNN tasks with heterogeneous
operators. Moreover, just like a DNN model, a GNN training
task needs the backward stages to compute the gradients. It is
common that different tasks may have different layer sizes. As
a training iteration progresses, the layers from the forward and
backward stages may mingle with each other. It is also a very
challenging task to efficiently fuse the forward and backward
computation stages from multiple tasks.

Last, the concurrent GNN tasks may have heterogeneous
training models. It is another challenge to fuse these heteroge-
neous tasks while avoiding the synchronization cost and resource
competition.

Based on the above challenges, we propose an efficient ker-
nel fusion technique to combine the core computations from
different tasks into a single GPU kernel, which addresses the
first challenge. Unlike the previous graph- and partition-level
sharing, this method adopts vertex- and edge-level sharing
among the GPU kernels, which can completely eliminate the
problem of repetitive graph data loading and reduce the kernel
launching cost. For the second challenge, we propose a fine-
grained SpMM-based kernel fusion method, which not only
is generic for handling different GNN tasks but also greatly
improves the efficiency of kernel executions. As for the third
challenge, a hybrid pull-and-push-based kernel fusion method
is proposed to combine the operations in the forward and the
backward propagation, which maximizes the kernel fusion op-
portunity and reduces the kernel waiting/synchronization cost
for the task with different numbers of layers. To address the
fourth challenge, we propose an adaptive, resource-contention-
aware grouping and operator-matching technique for hetero-
geneous GNN training models. This technique not only fur-
ther improves fusion efficiency but also mitigates resource
contention.
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B. The Fine-Grained Kernel Fusion

As discussed in the previous section, the existing concurrent
GNN training tasks on a GNN processing systems such as
DGL [6] use separate processes and kernels for each training
task without any coordination among them. This solo execu-
tion 1) incurs redundant accesses to the graph structure data
although many operators require the same graph traversal, and
ii) brings uncertain resource contention. These may compromise
the overall performance. The question arises whether one can
develop a task coordination strategy to fully exploit the common
computations among concurrent tasks and eliminate redundant
data accesses.

This paper aims to develop such a technique. First, although
a GNN model is more complicated than a traditional graph
processing task in the sense that it contains both graph message
aggregation and DNN computations, we find that the most time-
consuming operators in different training networks are usually
the Sparse Matrix Multiplication (SpMM). SpMM takes 31%-
86% of the overall time in different training models such as GCN,
GIN, and GAT when being trained on commonly used datasets
such as Pubmed, ogbn-arxiv, Reddit, and ogbn-products. Also,
as the core function for message pass in GNN, the SpMM is com-
monly used in both forward and backward propagation. Second,
although different SpMM operators have different aggregation
methods (e.g., average, sum, and max-pooling) and different
feature inputs, they share the common computation pattern and
graph accessing path. Specifically, all the SpMM kernels will
aggregate the features from the incoming edges of a center vertex
and update its feature vector. Third, the vertexes assignment
policy is usually the same for different SpMM kernels on the
same graph.

Based on the above observations, we propose an efficient
and generic SpMM-based kernel fusion method to fuse the
workload of the SpMM kernels from different GNN tasks into
a single kernel. Unlike the graph- and partition-level sharing
methods in the literature, the fine-grained SpMM-based kernel
fusion exploits vertex- and edges-level sharing among multiple
SpMM kernels, which completely eliminates redundant graph
data accesses. We use the following example to illustrate the
principles of the proposed method.

Assume there are two GNN training tasks and each has an
SpMM kernel in its forward propagation. Algorithm 1 outlines
the main steps to fuse these two SpMM kernels. The algorithm
efficiently integrates the traversal loops over vertexes, feature
dimensions, and edges in different SpMM kernels, and reuses
the data of the accessed vertexes and edges to produce multiple
SpMM results. Specifically, the outermost loop (the loop over
vertices) traverses the center vertexes allocated to each warp
(line 4). The second level loop (the loop over each feature
dimension) traverses the feature dimensions assigned to each
thread as each thread in a warp may compute multiple feature
dimensions (line 6). It should be noted that different SpMM
tasks may have different feature dimensions and therefore the
algorithm uses the max feature dimension among the SpMM
kernels. The innermost loop (the loop over edges, i.e., line 9)
traverses the neighboring edges of a center vertex. The reason
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Algorithm 1: A Simple Example of Fusing Two Froward
SpMM Kernels
Input: rowptr: row point for CSR, colindex: column

index for CSR, u1(2): input feature for task1(2),
01(2): output feature for task1(2),
in(out) featureLenl:the size of feature dimension
for ul(ol), in(out) feature Len2:the size of
feature dimension for u2(02), out FeatureLen: the
aligned feature dimension for ol and 02,
numberV :the number of vertexes.

1: vertex<— blockldx.y*blockDim.y+threadldx.y

2: stridev <— blockDim.y * gridDim.y

3: strided <« blockDim.x * gridDim.x

4: while vertex < numberV do

5: featureindex<— = blockIdx.x * blockDim.x +

threadldx.x;

6: while featureIndex <outFeatureLen do

7 localAccum1<-0

8: localAccum2+<0

9: for i =rowptr[vertex]; i < rowptr[vertex+1]; i++ do

10: cid = colindex([i]

11: uoffl = ul + cid * infeatureLenl

12: uoff2 = u2 + cid * infeatureLen2

13: localAccum1+Aggl(uoffl + featurelndex)

14: localAccum2+—Aggl(uoff2 + featurelndex)

15: end for

16: ol[vertex * outFeatureLenl + featureIndex] +=
localAccuml;

17: o2[vertex * outFeatureLen2 + featurelndex] +=
localAccum?2;

18: featureIndex+= strided

19: end while
20: vertex += stridev;
21: end while

why the algorithm can combine these three loops in different
SpMM kernels is that a specific center node needs to traverse
all its incoming edges to update its feature vector and the vertex
assignment for each SpMM kernel is the same for all SpMM
tasks. In this way, each vertex and edge will be accessed only
once and reused by different SpMM tasks to achieve the vertex-
and edge-level sharing.

Last, each SpMM task will perform its own aggregation
operations. An SpMM kernel will aggregate its feature tensor
(e.g., ul and u2 for these two SpMM kernels in Algorithm 1)
(lines 10-14). After the edge traversal loop, an SpMM kernel will
finally write its aggregation result tensor into the global memory
(e.g., ol and 02 in lines 16-17 in Algorithm 1).

C. Forward and Backward Kernel Fusion Mechanism

The fine-grained (vertex- and edge-level) SpMM-based kernel
fusion can bring several performance benefits. First, kernel
fusion can reduce the overhead of kernel launch. Second, it
greatly improves the efficiency of kernel execution as the vertex
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Algorithm 2: The Hybrid Pull-and-Push-Based Kernel Fu-
sion Method for SpMM

Input: rowptr: row point for CSR, colindex: column
index for CSR, u1: input feature for task1, u2: input
gradient for task2, ol: output feature for taskl, 02:
output gradient for task2, in(out) featureLenl:the
size of feature dimension for ul(ol),
in(out) featureLen2:the size of feature dimension
for u2(02), out FeatureLen: the aligned feature
dimension for ol and 02, numberV :the number of
vertexes,

1: vertex <— blockldx.y* blockDim.y+threadldx.y
2: stridev <— blockDim.y * gridDim.y
3: strided < blockDim.x * gridDim.x
4: while vertex < numberV do
5: featureindex<— = blockIdx.x * blockDim.x +
threadldx.x;
6: while featureIndex < outFeatureLen do
7 localAccum1+0
8: gradient«— u2[vertex * inFeatureLen2 +
featurelndex];
9: for i =rowptr[vertex]; i < rowptr[vertex+1]; i++ do
10: cid = colindex[i]
11: uoffl = ul + cid * infeatureLenl
12: uoff2 = 02 + cid * outfeatureLen2
13: localAccum1<+—Aggl(uoffl + featurelndex)
14: atomicAdd(uoff2 + featurelndex, gradient)
15: end for
16: ol[vertex * outFeatureLenl + featurelndex] +=
localAccuml;
17: featureIndex+= strided

18: end while
19:  vertex += stridev;
20: end while

and edge-level kernel fusion can completely eliminate redundant
graph data loading compared to the graph-level or partition-
level sharing. When multiple GNN tasks have the same type
of networks with the same number of layers, our method can
efficiently fuse the SpMM operators from the same layers in
different networks, as shown in Fig. 1(a). However, when the
networks in different tasks have a different number of layers
(illustrated in Fig. 1(b)), the fusion becomes more complicated,
which may have an adverse effect on the overall performance
without careful consideration. Since the backward computation
can also be expressed as performing the SpMM on the transposed
graph (by reversing the direction of all the edges), the existing
GNN systems such as DGL convert the graph format from
CSR to CSC? before the backward stage, and use SpMM for
gradient propagation on the CSC graph. As the consequence,
there are different numbers of SpMM operations in the forward
and backward stages for different training tasks.

2CSR and CSC are two types of spare sparse matrix representation formats,
which are row-major and column-major, respectively.
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(c) The Forward and backward kernel fusion

Fig. 1. (a). Kernel fusion for the tasks with isomorphic models and the same
number of model layers. (b). Stage-aligned kernel fusion for tasks with the
isomorphic model but different layer sizes. (c). The hybrid forward&backward
kernel fusion for the tasks with the isomorphic model but different layer sizes.
The two models are GCN with three and four layers respectively. Li and Bi
stand for the forward and backward computation of layer i. The color stands
for different stages (forward and backward). (a) Fine-grained kernel fusion
(b) Kernel fusion with stage aligment (c) The Forward and backward kernel
fusion.

When fusing the tasks with different numbers of network
layers, one simple extension to the fusion method proposed
in the previous subsection is to align the stages (forward or
backward stages) of different concurrent tasks and only fuse
the SpMM operations within a stage, which is illustrated in
Fig. 1(b). This extension is reasonable because it is difficult to
fuse individual SpMM kernels from different stages. Even if it
canbe done, it brings little benefit because different stages access
different graphs (the graph and its reversed graph respectively)
and consequently cannot share the common computation paths.

However, this simple extension limits the opportunity for
kernel fusion to the same stage. Furthermore, it incurs high costs
of cross-stage synchronization. This is because a fused kernel
has to complete all operations in one stage (e.g., the forward
stage) before the next fused kernel can start on the next stage
(e.g., the backward stage). This will delay the progress of the
GNN tasks with shallow networks (i.e., a smaller number of
network layers). As shown in Fig. 1(b), The network of task 2
has three layers in the forward stage while that of task 1 has four
layers. Although the forward stage of task 2 has been completed
after the fused L3 has been completed in this iteration, it has to
wait for L4 in task 1 to complete before it can progress to the
backward stage. Such delay will be accumulated as the training
proceeds through iterations and will have a significant impact
on the overall performance of task 2.

To address the issue discussed above, we propose a hybrid
Pull-and-Push-based kernel fusion method, which can unify
and fuse the SpMM computations in the forward and backward
stages. Our method is based on the following observation. Essen-
tially, the forward SpMM aggregates the features of the incoming
neighboring vertexes on the original graph, while the backward
SpMM for gradient propagation aggregates the gradient of the
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Fig.2. The forward and backward kernel computation and fusion. The oval is
the node and the number stands for node ID.

incoming neighboring vertexes on the transposed graph, which
is illustrated in Fig. 2. We can unify the two stages on the same
graph and traverse the vertices and edges once to produce the
results for both forward and backward stages.

Specifically, the SpMM in the forward stage pulls the features
from incoming edges as usual, while the SpMM in the backward
stage pushes the gradients to incoming edges, both pull and push
operations are performed on the same origin graph. With this
method, we can unify the SpMM computations in two stages
and fuse them into one kernel. Fig. 2 illustrates the fusion of
the operations from the forward and the backward stages. The
pseudo-code of the pull-and-push-based kernel fusion method
is illustrated in Algorithm 2. The three loops (lines 4-9) are the
same as in Algorithm 1, in which the two GNN tasks share
the data of vertexes and edges when performing the SpMM
operations and once again the redundant graph data loading is
completely eliminated. Different from Algorithm 1, the forward
SpMM Algorithm 2 aggregates (like pulling) the result from
the incoming edges into a local register variable (line 13) and
writes the result back after the edge traversal loop (line 16) is
completed, while for the backward SpMM, it first reads the
gradient from the center vertex before the edge traversal loop
(line 8) and directly adds (like pushing) the gradient back to
the corresponding gradient tensor of the incoming neighboring
vertices (line 14) in the edge traversal loop. Since different ver-
texes may have the same incoming neighbors, different threads
may write the gradients to the same memory address when
performing their backward SpMM operations, which causes the
data race. The atomic-add instruction from CUDA is used to
address this problem.

The benefits of hybrid pull-and-push-based kernel fusion
come from two aspects. First, this new fusion method allows
cross-stage kernel fusion and therefore provides more kernel
fusion opportunities. Second, as illustrated in Fig. 1(c), this
hybrid fusion method allows the task with a shallow model
to move to the next stage of computations earlier, removing
the synchronization cost caused by the stage-alignment-based
fusion method. With this method, resource utilization can be
improved and the overall turnaround time can be reduced.

D. Operator Matching and Task Grouping

1) Operator Matching: The method proposed in the previous
section can be easily applied to concurrent training tasks with
homogeneous network models. However, when the tasks have
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Fig. 3. Operators matching on fine-grained task DAG on two models (GCN
and GAT). Circles represent the different operators (kernels).

heterogeneous training models, the operators cannot really be
aligned according to the model layers. In order to fuse the tasks
with heterogeneous models, we further propose the technique
to match the operators from different models before performing
kernel fusion. In this technique, we identify the same operators
from different concurrent tasks and fuse them into one bigger
operator. In particular, we decompose each training model into
fine-grained operators (such as SpMM) and construct the Di-
rected Acyclic Graph (DAG) for the fine-grained operators. Note
that the operators in the backward stage should be included in
the DAG. In a DAG, each vertex is a fine-grained operator such
as matrix multiplication or SpMM, while an edge represents the
dependency between the operators.

After constructing the DAG, we perform operator matching,
i.e., find the same type of vertices (e.g., the same operators)
from different tasks according to the topological order of their
DAGs. These matched vertexes will be fused into a bigger vertex
and their dependency is also merged. The operator matching is
performed in rounds. In each round, any vertex with topological
partial order dependency to an already matched vertex cannot
participate in the following matching process. This matching
process will last multiple rounds. All the matched operators
in a single round will be fused into one kernel with the cor-
responding different feature tensors as inputs. An extra global
map table records the fused kernel, the starting position of the
feature/gradient tensor of each task, and their local calculation
index in the fused kernel. Any data dependency of the original
operator from the individual task DAG will be added to the
fused operator DAG to ensure correctness. A simple example of
operators matching for a GCN and a GAT task is illustrated in
Fig. 3. After this process, a new task DAG is constructed and
passed to the runtime system.

A runtime system is developed to schedule the fused DAG
according to the topological order. The graph path analysis is
performed. The kernels without inter-dependency and whose
predecessor kernels have been completed will be sent to different
streams for parallel execution.

2) Task Grouping: When a relatively large number of tasks
(subject to memory constraints) with heterogeneous models are
running concurrently, simply performing operator matching and
DAG merging as above may result in the following problems.

On the one hand, the fused kernel may be very big. A ker-
nel that fuses too many operators will incur severe resource
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contention such as contention of registers files. In lines 7-8 in
Algorithm 1, the data are written to the registers. One data
item consumes one register. Algorithm 1 fuses two operators
and therefore two registers are consumed by the kernel. With
too many kernels to fuse, a larger number of registers are
needed which will incur registers contention and impair the
performance [42].

On the other hand, when multiple DAGs are merged, the
dependencies in the original DAGs need to be merged too, which
may create dependencies that do not exist in the original DAGs.
For example, in Fig. 3, there is no dependency between the sdmm
operator in the DAG for GAT and the src_mm operator in the
DAG for GCN. However, the dependency is introduced between
these two operators after the SpMMs (in the dashed rounded
rectangle) in these two DAGs are fused and the two DAGs
are merged. When too many heterogeneous DAGs are merged,
many unnecessary dependencies may be introduced between the
operators, which reduces the degree of concurrency.

Based on the above analysis, we propose a task grouping
method to handle the heterogeneous models and limit the size of
the fused kernel. We group the tasks according to the similarity
of their models (the method of measuring the model similarity
is introduced in the next section). The operator matching and
DAG merging are only performed within each task group. Since
the tasks in each group have similar DAGs, it will not introduce
many unnecessary dependencies when the DAGs are merged
(like the case where the homogeneous models are fused). A
Runtime Execution module is developed (whose implemen-
tation is to be presented in the next section) to execute the
task groups adaptively according to the resource contention.
When the resource contention is low, more task groups will
be executed in parallel in different streams, more details of
which will be presented in the implementation section. This task
grouping method can not only handle the concurrent execution of
heterogeneous networks but also mitigate resource contention.

IV. SYSTEM DESIGN AND IMPLEMENTATION

Based on the fine-grained kernel fusion technique, we develop
a very efficient framework called TurboMGNN for concurrent
GNN training. In this section, we present the architecture of
TurboMGNN, including its main modules and implementation
details.

A. System Overview

As shown in Fig. 4, there are four core modules in TurboGNN:
offline analysis module, online DAG analysis module, runtime
execution module, and global storage module.

Offline Analysis Module. This module analyzes the commonly
used operators (e.g., SpMM), and generates the kernel fusion
templates for different types and different numbers of SpMM
operators. In particular, this module first analyzes which opera-
tors are commonly used low-level operators in the GNN training,
which include SpMM, Dense Matrix Multiplication, SDDMM,
EgdeSoftMax, Rele, and so on. The kernel fusion within a single
task is optimized in a similar way as in TVM [32]. For example,
the matrix multiplication operation is fused with the following
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Algorithm 3. Fused Kernel Template
Input: Vtask : vertex task. F'taskset: Forward task in the
fused kernel. Btaskset: Backward task in the
fused kernel.
for vertex € Vtask do
. for task € Btaskset do

1:

2

3 Get the gradient of vertex

4: end for

5: for (task € Ftaskset) do

6: Initialize the accumulated result variable of vertex
7: end for

8: for (task € Ftaskset U Btaskset) do

9: Perform feature accumulation for F'taskset.
10: Perform gradient accumulation for Btaskset.
11: end for

12: end for

Relu activation function. After this process, according to the
computation semantics and the underlying code implementation,
it is checked whether these operators access the common data
(such as the graph structure data) and share a similar task
execution pattern (such as vertex aggregation pattern) despite
the operators may have different input and output tensors. The
operators that satisfy the above conditions will be abstracted
and their computation loops will be fused into the kernel fusion
template.

In addition to the traversal loops in the original kernel, the
template of the fused kernel adds a new loop, the task loop, to
fuse the computation of different tasks. The new task loop is
placed in the most inner level so that the outer loops are shared
to enable vertex and edge-level sharing, and eliminate redundant
data accesses and computations. We generate the template for
fusing the tasks in the forward propagation stage, the template
for fusing the tasks in the backward stage, and also the template
for fusing hybrid pull&push tasks as discussed in Section III. The
pseudo-code of the fused kernel template is shown in Algorithm
3. Because this process is offline and one time, the overhead can
be neglected. The templates can be used repeatedly at runtime.
Currently, this offline analysis is conducted manually. In the
future, we plan to extend it to automatic analysis.

Online Task Graph Analysis Module. This module is respon-
sible for decomposing the training tasks and constructing the
DAG of fine-grained operators online. The model definition
and hyper-parameter of each task are provided by users in
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their model files. The core computation APIs in the models
are then analyzed layer by layer for each task. Specifically, for
each computation API such as apply_edges(), update_all(), and
edge_softmax in each layer, we replace them with basic tensor
operators such as Dense Matrix Multiplications or Sparse Matrix
Multiplications (SpMM), and use tensor operators as nodes and
data dependencies as edges to construct a fine-grained DAG.
Then, TurboMGNN performs task grouping according to the
graph similarity. After grouping, the DAG for a single iteration
for a task in a group is simply duplicated by 500 (assuming
the fusion period is 500; the fusion period is the number of
iterations for which the tasks are fused, which is defined in
the last paragraph of Section IV-A) times since the DAG for
different iterations is the exactly same. After DAG duplication,
all the nodes in the final layer of a DAG are connected to the
first node of the next DAG. Then, TurboMGNN performs kernel
matching, kernel fusion, and template replacement as discussed
in Section III-D. At runtime, TurboMGNN adaptively schedules
the task groups according to the resource contention and outputs
the performance of each task when a fusion period completes.

The decomposition process is recursive since some operators
provided by DGL can be further decomposed into more fine-
grained operators. For example, the EdgeSoftMax is an operator
provided by DGL for programmers to write attention modules
such as GAT. It can be further decomposed into SpMM and
SDDMM operators. Some operators can be directly mapped to
low-level operators, for example, u_add_e_sum can be mapped
into SpMM with the vertex and edge tensors as the input. The
example of the fine-grained DAG graph is illustrated in Fig. 3.
After this process, the fine-grained DAG for each task is fed into
the runtime module (to be introduced next) for performing online
task grouping, operator matching, kernel fusion, and inter-group
and inner-group scheduling.

Runtime Execution Module. This module performs task
grouping, operator matching, kernel fusion, and group schedul-
ing. Based on the task similarity, the number of GNN training
tasks, and the hardware resource limitation, similar tasks are
put into the same group. The task similarity is determined
by the graph similarity. We use the model type and the DAG
structure of a GNN task as the features. These features are fed
into a graph-to-sequence network (such as [33]) to get a graph
representation vector. The dot product of the two tasks’ vectors
is used to measure the similarity of their DAG graphs.

The tasks placed in the same group share a similar DAG
graph. Especially, the number of candidate operators to be fused
is similar. We then try to match the operators (i.e., the same
operators) from the DAGs of all tasks in the group. The matched
operators are fused by using the templates generated in the
offline analysis module.

After task grouping, there exist multiple task groups. The
runtime execution module monitors the usage and contention
of GPU resources. If resource utilization and contention are
low, the module will schedule more groups to run in parallel.
Otherwise, it schedules a new group in the scheduling queue
to run only when a group completes its execution. We obtain
the resource utilization of GPU through the NVIDIA GPU
performance monitoring library such as NVIDIA Management
Library (NVML) and Nsight Compute (NCU), which collect the
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resource performance metrics including overall GPU utilization,
sm_cycles_active.avg.pct_of_peak_sustained_elapsed,
sm_warps_active.avg.pct_of_peak_sustained_elapsed etc,
which can be used to infer GPU utilization and resource
contention.

The tasks in the same group are scheduled as follows. The op-
erations in a group DAG are scheduled in their topological order.
The kernels without dependency are scheduled to run in parallel
in different streams. When there exists the data dependency
between two kernels (i.e., there is an edge between them in the
group DAG) in different streams, we invoke cuda Event Record
(i.e., record a CUDA event) in the source stream and wait for
this event to be completed before the kernel in the target steam
is launched with cudaStreamW ait Event. Since typically a
GNN model is shallow and the number of layers is small (e.g.,
usually no more than 4), the generated DAG is not big (usually
consisting of dozens to hundreds of vertices). Therefore, the
overhead incurred by the above analysis process is low (less
than 0.5% of the overall time in our experiments).

Global Storage Module. This module stores the graph’s origi-
nal features, intermediate execution results, and gradient tensors.
It also records the mapping relation between the operators and
the positions of the tensors required by the operators as well as
the mapping between the original kernel and the fused kernel.
The mapping relations are recorded in a hash table. This infor-
mation will be passed to the runtime execution module so that
the kernels (fused and unfused) can read and write the features
or gradient tensors correctly. Due to the stacked structure of
the GNN model, a huge amount of intermediate results have
to be saved for the backward gradient computation. Different
tensors have different life cycles and reuse distances. The global
storage module provides the opportunity for potential memory
optimization such as CPU-GPU data migration, data reuse, and
balance between data reuse and re-computation, which will be
our future research work.

Other Implementation Details. We have designed our Tur-
boMGNN to make the best possible effort to fuse kernels from
different concurrent training tasks and iterations. However, it
is possible for concurrent tasks to require different numbers of
iterations to converge. When the numbers of iterations for the
models are known in advance or can be predicted, we fuse the
models with the least number of iterations among them. Once
the model with the least number of iterations has converged, we
apply the same fusion strategy to fuse the remaining iterations for
the remaining models. If the number of iterations is unknown,
we fuse the models for a fixed number of iterations, such as
500 iterations, which is called a fusion period, and observe the
model convergence. TurboMGNN does not need to synchronize
for each iteration, but synchronize once every fusion period
(e.g., 500 iterations). As a result, the synchronization overhead
is small.

B. Discussion

TurboMGNN takes advantage of the commonality among
concurrent tasks and uses an inter-tasks operator fusion
mechanism to eliminate redundant memory access overhead
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and improve instruction parallelism. Even though in this pa-
per, we discuss SpMM-based kernel fusion methods, the pro-
posed method can be applied to SDDMM too since in essence,
the calculation process of SDDMM is very similar to that
of SpMM. They both get assigned centric vertices and visit
the neighbor’s edge for each vertex but SpMM aggregates the
neighbor’s feature vectors while SDDMM performs the vector
computation for the two vertices’ features. Moreover, the vertex
assignment for each warp is the same for different SDDMM
on the same training graph. Therefore, we can merge three
loops (vertex, feature, neighbor) to fuse the computation and
edges visiting from different SDDMM kernels just like we do
for SpMM.

V. EVALUATION

The concurrent GNN training system called TurboMGNN is
presented in previous sections. As there are no previous works on
concurrent GNN training to the best of our knowledge, we build
a system based on DGL (V0.8.1), which provides the baseline
performance that TurboMGNN is compared against. DGL is
an efficient GNN system with an easy-to-use interface, rich
models, and various optimized low-level graph operators. We
first conduct the micro-benchmarking experiments to evaluate
the efficiency of the proposed kernel fusion technique and then
conduct the experiments to compare the end-to-end performance
of TurboMGNN and the DGL-based baseline system.

A. Experiment Setup

Cluster Configuration. The experiments are evaluated on a
platform with two eight-core Xeon-2670 2.60 GHz CPUs and
256 GB of memory. The operating system is Ubuntu 16.04. The
CUDA versionis 10.1 and the CuDNN versionis 7.4.2. The GCC
version is 6.5.0. Most experiments were performed on a V100
with 32 GB of memory. Due to the out-of-memory problem,
Fig. 9 is tested on an A100 with 80 GB of memory.

Workload Configuration. Our experiments use four com-
monly used datasets. (1) Reddit [34]. The Reddit dataset is
a post-to-post graph with 232,965 vertices and 114,615,892
edges. The feature dimension is 602. In this graph, each vertex
represents a post, while an edge indicates that the nodes at both
ends have been commented on by the same user. (2) Ogbn-
product [35]. Ogbn-products is an Amazon product syndication
purchase graph where vertices represent the products and an
edge represents that the two connected products are purchased
together. It has 2,449,029 vertices and 61,859,140 edges with
a feature dimension of 100. (3) Ogbn-arxiv [36]. Ogbn-arxiv is
a paper citation graph. It has 169,343 vertices and 1,166,243
edges. The feature dimension is 128. (4) Pubmed [37]. Pubmed
is a citation network dataset with 19,717 vertices and 88,651
edges with a feature dimension of 500.

We test our system with three representative GNN models.
(1) GCN [38]. GCN is the cornerstone of many GNN models
and has achieved good performance on many tasks such as node
classification. (2) GIN [39]. It is one of the most expressive
GNN modes and can be as effective as the Weisfeiler-Lehman
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graph isomorphism test. (3) GAT [40]. GAT introduces the self-
attention mechanism into GNN. It assigns different weights to
different neighborhood vertexes or edges when aggregating the
features.

B. Micro-Benchmark Evaluation

To evaluate the validity of kernel fusion, we first perform a
micro-benchmark evaluation at the kernel level. The test kernel
is an SpMM kernel, which, discussed in previous sections, dom-
inates the full-graph-based GNN training time and is common to
many different GNN models. The SpMM configurations (e.g.,
aggregation function, hidden layer dimension, activation func-
tion) are extracted from the commonly used GNN model. All the
results are averaged over 500 iterations. We conduct experiments
to compare the overall execution time of multiple kernels and
that of the fused kernel. For a fair comparison, the multiple
kernels are run by a single process to enable graph-level sharing.
One way to run these multiple kernels is to place them in one
stream and execute these kernels sequentially, which is called
baselinel in this section. Another way is to assign different
kernels to run in different streams for concurrent execution,
which is called baseline2. The fused kernel is executed in one
stream, called fused kernel.

We also place different SpMM kernels in different processes
and exploit the CUDA Multi-Process Service (MPS) [41] to
set the best-performing MPS configuration which separates
resources for each process. We call it baseline-mps. We per-
form the evaluation with different datasets (e.g., Reddit, ogbn-
products, ogbn-arxiv, Pubmed), different numbers of kernels to
be fused (marked as #F on the x-axis of Fig. 5), different numbers
of the forward and backward kernel (marked as #F#B on the
x-axis of Fig. 6).

The experimental results with different SpMM forward ker-
nels are present in Fig. 5. It can be seen that our method outper-
forms baseline-mps, baselinel, and baseline2 in all the cases.
baseline-mps performs worse than baselinel for its multiple-
process overheads. Moreover, multi-process methods do not
share underlying graph storages, which will limit the number of
concurrent tasks (kernels) and may incur out-of-memory (OOM)
problems. Baseline2 usually outperforms baselinel slightly, be-
cause baseline2 uses multiple streams for concurrent execution,
which helps improve GPU resource utilization. However, this
performance advantage is very limited when the graph is large
and dense (e.g., on Reddit the performance advantage is less
than 3%). The reason is that when the graph is large and dense,
the workload for each kernel is heavy and consequently the
GPU is overloaded when running only a kernel. There is little
room for improving utilization when multiple kernels are run
concurrently. Too heavy workloads may even lead to intense
resource contention. The results suggest that it is difficult to
improve performance by only leveraging kernel parallelism. Our
method achieves a steady performance boost (up to 1.63X). This
is because kernel fusion not only eliminates redundant memory
accesses but also improves the parallelism of the instructions in
the fused kernel.
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(d) Dataset=pubmed.

We find that when the number of kernels to fuse increases,
the speedup (compared with baseline2) increases first and then
decreases. For example, our kernel fusion technique achieves
1.46X, 1.50X, 1.63X, 1.47X, and 1.38x on ogbn-arxiv when the
kernel number is 2, 3, 4, 6, and 8 respectively. These results
are expected since when there are more kernels to fuse, more
redundant graph memory accesses are eliminated, which results
in better performance. When the number of kernels to be fused
continues to increase, however, the fused kernel becomes too big,
which needs too many on-chip resources (e.g., register files for
local aggregation results for each task). These on-chip resources
are limited on GPU (e.g, there are only 20,480 KB register files in
NVIDIA V100), the excessive demand for these resources will
decrease the concurrency of thread blocks, and cause register
spills [42]. As the consequence, the decrease in the concurrency
of thread blocks will eventually outweigh the benefits brought by
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reduced memory accesses and increased parallelism of instruc-
tions. These results also support our motivation for developing
the task grouping strategy in Section III. Namely, task grouping
can mitigate the negative impact of too many concurrent tasks.

Fig. 6 presents the results for different numbers of forward
and backward SpMM kernels. It can be seen from the figure
that the forward and backward kernel fusion is efficient. For
example, when there are three forward SpMMs and three back-
ward SpMMs on the ogbn-arxiv dataset, our method can gain
a 1.50X speedup, which is comparable to the speedup achieved
with the kernel that fused six forward SpMM kernels. Although
the hybrid pull-and-push-based kernel fusion may introduce the
extra overhead of atomic operations, it completely eliminates
the memory accesses in the reverse graphs. Moreover, since
the fused kernel has more computation instructions to run by
each thread, there are more chances for the warp scheduling
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unit to hide the cost of atomic operators by scheduling other
computation instructions.

The fused kernel achieves different speedups for different
graphs. For example, with four forward SpMM kernels, our
method achieves 1.6X for ogbn-arxiv but a lower speedup of
1.3X for Reddit. This is because the Reddit graph is denser
(e.g., the average degree of ogbn-arxiv and Reddit is 7 and
492, respectively). A task in the fused kernel on Reddit has
to visit a lot of edges and run many computation instructions,
which limits the benefit that can be brought by the concurrent
executions of the instructions in the fused kernel. Consequently,
the performance boost is not as much as that on more sparse
graphs.

C. Macro-Benchmarking Evaluation

We further integrate the proposed kernel fusion methods
into DGL and develop an efficient concurrent GNN training
system, TurboMGNN. We conducted experiments to compare
the end-to-end performance between TurboMGNN and DGL
when running multiple GNN training tasks on the same graph.
We also compared with other task co-location mechanisms
available on GPU such as CUDA MPS and NVIDIA MIG
(Multi-Instance GPU, introduced since A100) [43]. We choose
the best-performing MPS and MIG configuration through model
computation complexity estimate and multiple running. We use
different numbers of training tasks and different model combi-
nations (GCN, GIN, and GAT) with different numbers of model
layers.

The results for homogeneous networks are presented in
Fig. 7. The MPS method has an average 1.22x performance

speedup compared with default DGL with no resource isolation.
TurboMGNN achieves much better performance compared with
DGL (an average of 1.74X and up to 2.6X) because it can fuse
kernel from different tasks which not only eliminates redundant
memory access but also improves kernel execution efficiency.
For example, for four GCN tasks, four GIN tasks, and four GAT
tasks on the ogbn-arxiv dataset, TurboMGNN achieves the 1.5X,
2.3X, and 2.6X speedup, respectively. The speedup for GAT is
higher since the SpMM operator accounts for more run-time
(about 86%) in GAT.

Fig. 8 shows the speedup for tasks with the same type of
network and different layer sizes. For example, for 4 GCN
tasks with two L2, one L3, and one L4 on the Pubmed dataset,
TurboMGNN achieves a 1.9X speedup in terms of the aver-
age end-to-end run-time. The kernel fusion method with the
stage alignment strategy (not shown here due to the space
limitation) only achieves the 1.30X speedup. It suggests that
simply performing stage alignment cannot make full use of
the resources due to the high synchronization cost. These re-
sults verify the efficiency of hybrid pull-and-push-based for-
ward and backward kernel fusion on tasks with homogeneous
networks.

To investigate how much the operator matching and adaptive
task grouping strategies contribute to the decrease in the end-
to-end run-time on the tasks with heterogeneous networks, we
adopt different combinations of optimization techniques when
running these tasks and compare their performance with that of
DGL (i.e., baselinel). We also compared with MPS and MIG
methods to isolate resources for different tasks. The results are
presented in Fig. 9. The results show that both MPS and MIG
have limited performance improvement (an average speedup is
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1.08 and 1.12 respectively for heterogeneous training tasks in
Fig. 9), especially when the number of tasks is large. This is
because even though they can isolate resource contention, they
cannot eliminate redundant memory accesses among tasks and
cause resource shortages for each task when many tasks are
concurrently running. MIG’s performance is better than MPS
for its better hardware isolation mechanism.

TurboMGNN achieves an average of 1.64X and up to 2.1X
speedup due to its inter-task kernel fusion, task grouping,
and adaptive scheduling mechanism for heterogeneous training
tasks, which not only eliminates redundant memory accesses
and improves the efficiency of kernel executions, but also avoids
resource contention.

As can be seen from Fig. 9, when only adopting operator
matching to run 10 tasks on the ogbn-arxiv dataset (4 GCN tasks,
4 GIN tasks, and 2 GAT tasks), TurboMGNN only achieves the
1.3X speedup, which is less than the speedup when running only
4 GCN tasks. This is because, with more heterogeneous tasks,
a fused kernel may spread across more graphs. It cannot start
execution until all the dependencies within the fused kernel are
satisfied, which leads to higher synchronization costs and lower
resource utilization. Moreover, fusing too many kernels may
cause resource contention such as the contention for registers in
the fused kernel, which will eventually reduce the concurrency
of thread blocks and affect the end-to-end performance [42].

After adding the adaptive task grouping strategy, the speedup
increases to 1.7X. This is because, with adaptive task group-
ing, the tasks in each group are similar in terms of network
structure, which is more friendly for kernel fusion and reduces
the synchronization cost. Also, after adopting the task grouping
strategy, the number of tasks in a group decreases, which can
mitigate the register contention. With the resource-usage-aware
scheduling strategy, the runtime execution module can schedule
the task groups adaptively according to the utilization of GPU
resources, which maximizes resource efficiency.

VI. RELATED WORK

GNN Operators Optimization. In full graph-based GNN train-
ing, Sparse Matrix Multiplication (SpMM) and Sampled Dense-
Dense Matrix Multiplication (SDDMM) [10], [11] dominate
the execution time. Some work has been proposed to optimize
the executions of these two kernels. Hong et al. [10] propose
row and column tiling to improve GPU cache efficiency. [11]
further proposes row-based sorting to promote data locality.
GE-SpMM [9] proposes the shared memory-based caching to

reduce the global memory transactions and also warp merging
to improve the instruction parallelism in a single SpMM ker-
nel. Huang et al. [12] propose locality-aware task scheduling,
neighbor grouping, and data visible range adapter to improve
the efficiency of a single GNN inference task. GNNAdvisor [13]
proposes several methods to optimize the GNN training ker-
nels including neighbor grouping and dimension scheduling.
In order to support GNN training on big graphs, distributed
training methods are proposed. DGCL [16] provides a vertex-
grained-based optimal link selection algorithm and balanced
communication scheduling policy. FlexGraph [15] proposes a
compact data structure to support different neighborhood and
hierarchical aggregation schemes. However, these optimizations
all target the setting of a single GNN task and ignore the
correlation among multiple concurrent tasks, which may incur
redundant memory accesses and computations. The research on
improving the performance of a single kernel is orthogonal to
our inter-tasks multi-kernel fusion methods since the underlying
training graph is static and fixed and core computation will not
change. After adopting the above optimization on a single kernel,
our cross-task kernel fusion method can still be applied to them
since they use the same optimization for all the kernels.

Compiler Optimization and Kernel Confusion. The DNN
compiler automatically optimizes the performance of operators
for various hardware accelerators. Halide [44] proposes the
domain-specific language and compiler for image processing.
TVM [32] is a DNN compiler that utilizes graph-level and
operator-level optimization to generate device-efficient codes
and a learning-based cost model to guide the search in the
optimization space. FlexTensor [45] proposes a scheduling ex-
ploration and optimization framework for heterogeneous hard-
ware accelerators without human interference. RAMMER [46]
proposes anovel abstract for DNN graph operators and hardware
accelerators and utilizes intra- and inter-operator parallelism to
generate the optimal execution plans at the compilation time.
Seastar [14] proposes a vertex-centric programming model and
applies the automatic kernel fusion for GNN training. All of the
above works focus on operator optimization and kernel fusion
for a single task, which complements our work.

Concurrent Graph Computation. Concurrent graph computa-
tions are needed in many realistic scenarios. Several works in
the literature target this issue. Quegel [47] and MultiLyra [48]
optimize batch tasks from homogeneous queries. Seraph [18]
proposes a decoupled data model to share the graph structure
data and a copy-on-write semantic to handle concurrent graph
modifications. GraphM [19] develops an efficient storage system
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for concurrent graph tasks and reorganizes the scheduling order
of edge partitions to maximize the data locality. However, these
CPU-based methods cannot be directly applied to concurrent
GNN tasks on GPU because each GNN task needs to travel the
entire graph, leaving limited optimization space for the partition
scheduling to exploit the locality, as each task is run in a separate
kernel and it is hard to coordinate their memory accesses. More-
over, with those graphs or partition-level sharing, each GNN
task with these methods still needs to visit the same edges and
vertex data repeatedly, incurring redundant data accesses. Last,
concurrent GNN tasks have a more complicated DAG, which has
multiple layers-stacked structures, and backward computation.
This makes kernel fusion much more difficult to become an
effective optimization method, compared with the traditional
graph computation tasks (which can be expressed as simple
vertex functions). Our work aims to solve these problems.

VII. CONCLUSION

In this paper, we develop an efficient concurrent GNN train-
ing framework on GPUs called TurboMGNN and propose a
fine-grained kernel fusion strategy to effectively improve per-
formance. This fine-grained kernel fusion strategy includes 1)
an SpMM-based kernel fusion method to eliminate redundant
memory accesses and improve the instruction parallelism; 2)
a hybrid pull-and-push-based forward and backward fusion
method to create more kernel fusion opportunities and reduce
synchronization cost; 3) a task grouping and operator matching
strategy to fuse kernels for a relatively large number of train-
ing tasks with heterogeneous training networks. In this paper,
we create the kernel fusion templates offline for the different
numbers of kernels and call these templates online when kernel
fusion is needed. In the future, we plan to develop the automatic
code conversion technique to automatically fuse kernels without
the need of creating the templates offline.
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