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ABSTRACT
Recent data from the James Webb Space Telescope suggest that there are realistic prospects for detecting the earliest generation
of stars at redshift ∼ 20. These metal-poor, gaseous Population III (Pop III) stars are likely in the mass range 10 − 103M�. We
develop a framework for calculating the abundances of Pop III stars as well as the distribution of the most massive Pop III stars
based on an application of extreme-value statistics. Our calculations use the star formation rate density from a recent simulation
to calibrate the star-formation efficiency from which the Pop III stellar abundances are derived. Our extreme-value modelling
suggests that the most massive Pop III stars at redshifts 10 < 𝑧 < 20 are likely to be & 103 − 104M�. Such extreme Pop III
stars were sufficiently numerous to be the seeds of supermassive black holes at high redshifts and possibly source detectable
gravitational waves. We conclude that the extreme-value formalism provides an effective way to constrain the stellar initial mass
function.
Key words: stars: formation – stars: Population III – cosmology: dark ages, reionization, first stars.

1 INTRODUCTION

The hypothetical first generation of stars, so-called Population III
(Pop III), have long been anticipated in the literature as mas-
sive, short-lived stars created in extremely metal-poor environments
(Schwarzschild&Spitzer 1953;Bond 1981;Cayrel 1986;Carr 1994).
Due to the lack of direct observational evidence, details of the phys-
ical properties of Pop III are not precisely known. Many studies
suggest that Pop III stars were formed within minihaloes of typical
mass ∼ 106M� between redshift 𝑧 ∼ 20− 30 and have a mass range
between 10 − 103M� (Haiman et al. 1996; Tegmark et al. 1997;
Abel et al. 2002; Bromm et al. 2002; Yoshida et al. 2003; O’Shea &
Norman 2007; Susa et al. 2014).
Interest in Pop III stars has grown recently due to current and

upcoming experiments that could potentially detect Pop III stars.
These include the James Webb Space Telescope (JWST; Gardner
et al. (2006)), Euclid (Laureĳs et al. 2011; Marchetti et al. 2017) and
the Roman Space Telescope (RST; Spergel et al. (2015)). Confirmed
observations of Pop III stars would solidify our understanding of
stellar formation and evolution. However, the photometric signals
fromPop III stars are expected to be very faint andwould be extremely
difficult to detect unless fortuitously enhanced by strong gravitational
lensing (Zackrisson et al. 2012; Vikaeus et al. 2022).
Pop III stars are believed to end their lives in one of three channels:

asymptotic giant branch stars, supernovae or black holes, depending
on their masses. If the supernova progenitors have mass in the range
∼ 140−260M� , theywill ultimately form pair-instability supernovae

★ E-mail:teeraparbc@nu.ac.th

(PISNe) that are unique to Pop III star evolution (Moriya et al. 2019).
If the Pop III progenitors are sufficiently massive, their collapse
will also emit highly energetic gamma-ray bursts and after-glow
components (Bromm & Loeb 2006; Kinugawa et al. 2019). Another
possibility is that massive Pop III stars evolve with accretion rates of
0.1 − 1M� yr−1 until gravitational instability triggers their collapse
to black holes (Latif et al. 2013; Inayoshi et al. 2014; Umeda et al.
2016; Becerra et al. 2018; Haemmerlé et al. 2018).
Given the potential of Pop III stars to give rise to early massive

black holes, Pop III stars may help us understand a longstanding
conundrum in astrophysics: the origin of quasars at very high redshift
𝑧 & 6 (Fan et al. 2001; Willott et al. 2010; Mortlock et al. 2011;
Matsuoka et al. 2019; Onoue et al. 2019; Das et al. 2021). Such
high-redshift quasars are associated with supermassive black holes
(SMBHs) with 𝑀 & 109M� (Volonteri 2010; Inayoshi et al. 2020),
which in turn could be seeded by Pop III stars with mass 𝑀 ∼
103 − 105M� that formed at redshift 𝑧 & 10. Such massive Pop III
stars (which we call extreme Pop III stars) are certainly rare since
most Pop III stars are expected to have mass 𝑀 <∼ 102M� and are
difficult to grow into SMBHs via accretion processes and mergers
(Haiman & Loeb 2001; Haiman 2004; Volonteri 2010).
However there are many uncertainties in the formation channels of

Pop III stars, and theymay cover awidemass range (Klessen&Glover
2023). In rare cases, the most massive objects form by direct collapse
and such extreme Pop III stars are subject to general relativistic
instabilities and can generate potentially detectable supernovae for
precursors in a mass range around 3 × 104M� (Nagele et al. 2022).
Hence in our ensuing discussion, rather than attack the uncertain
physics of Pop III star formation, we will use a novel statistical
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approach to study the rarity of the most massive Population III stellar
objects based on empirical constraints.
To summarise the importance of studying extreme Pop III stars:

(i) From an observational point of view, the first Pop III stars to be
directly detected are likely to be amongst the most massive ones. The
discovery of such objects will help us understand structure formation
in the early universe and physics of the reionization epoch.
(ii) Extreme Pop III stars can explain the origin of SMBHs at high

redshifts. If observed, follow-up observations will give us a better
understanding of the environment and the conditions for SMBH
formation.

In this work, wewill demonstrate a formalism to calculate themass
distribution of the most massive Pop III stars based on extreme-value
statistics. Our technique involves a novel calculation of star formation
rate density (hereafter SFRD) which we discuss below.
There is no precise, universally agreed definition of Pop III stars.

However, most literature defines Pop III stars based on criteria in
metallicity. For instance, Bond (1981) defines Pop III stars as having
[Fe/H] < −3 while Komiya et al. (2015) found that the metallicity
of Pop III stars could span a wide range between −8 . [Fe/H] . −2
depending on the merging history of the host halos. Other authors
use 𝑍 < 10−3 − 10−5𝑍� where 𝑍 is the metal fraction (Bromm
et al. 2001; Schneider et al. 2002; Jaacks et al. 2018). In our work,
we shall define a generation of Pop III stars as a class of collapsed
stellar objects with low metallicity forming when the host halo met
the conditions described in section 3.
The organization of this article is as follows; In section 2we give an

introduction to the stellar initial mass function (IMF) which is used
to calculate the abundance of Pop III stars. In section 3, we develop
a theoretical formalism to calculate the star formation rate density
(SFRD) of Pop III stars, matching our calculations to a simulation
result. In section 4, we give an introduction to extreme-value statistics
and, in particular, theGeneralised ExtremeValue approach.Ourmain
results are given in section 5 and further implications are discussed
in section 6.

2 THE STELLAR INITIAL MASS FUNCTION

The stellar initial mass function (hereafter IMF) is an important
tool in the modelling of stellar abundances. The IMF expresses the
number of stars (of a certain type at a fixed time) as a function of their
mass. The IMF was first empirically proposed by Salpeter (1955) in
the power-law form Φ(𝑀) ≡ d𝑁/ d log𝑀 ∝ 𝑀−Γ, where 𝑁 is
the number of stars with mass between log𝑀 and log𝑀 + d log𝑀 .
Γ is called the slope. The IMF Φ(𝑀) describes the stellar mass
distribution after their formation. In this work, we will study two
IMFs for Pop III stars. First, the log-normal IMF

d𝑁
dlog𝑀

∝ exp
(
−

(
log𝑀 − log𝑀char√

2𝜎

)2)
, (1)

where 𝑀char is the characteristic mass of Pop III stars, and 𝜎 is the
spread of themass around𝑀char. The log-normal IMFwas introduced
in the pioneering work of Miller & Scalo (1979) who found the
form to be a good fit to observation assuming simple models of star
birthrates. Our second IMF model is the Chabrier (2003) IMF

d𝑁
dlog𝑀

∝ 𝑀1−𝛼 exp

[
−

(
𝑀char

𝑀

)𝛽]
, (2)

with parameters𝛼, 𝛽 and𝑀char. This IMF has an interesting flexibility
in that it resembles the log-normal IMF for small 𝑀 and approaches

the power-law form 𝑀1−𝛼 for large 𝑀 (or when 𝛽 = 0). An IMF
comprising a log-normal body and a power-law tail is expected in
a broad class of star-formation scenarios (Basu & Jones 2004). We
note that the extreme-value framework that we will present is not
limited to these IMFs.
The normalisation of the IMF is usually left unspecified in previous

work on stellar population. Some authors treat Φ as a probability
distribution (so that

∫
d log𝑀 Φ = 1), and normalise the number

count 𝑁 instead. Alternatively, one can also normalise the IMF using
the total stellar mass, meaning that 𝑀 total

∗ =
∫ ∞
0 d log𝑀𝑀Φ(𝑀).

Both normalisation methods depend on the measurement of either
the stellar number counts or the total stellar mass for all possible
masses of Pop III stars. Since direct observational constraints of
Pop III stars are not yet feasible with current technologies, IMF
normalisation with these methods are unreliable at best.
In this work, we propose another method of normalising the IMF

using SFRD for which we have data from simulations (Gessey-Jones
et al. 2022) (hereafter GJ22) which applied the star formation model
from Magg et al. (2022). The normalised IMF is necessary for cal-
culating the distribution of the most massive Pop III stars using
extreme-value statistics. We discuss the normalisation method in the
next section.

3 POP III STAR FORMATION RATE DENSITY - A NEW
APPROACH

We shall develop a methodology to calculate the star formation rate
density of Pop III stars based on the modelling of dark matter haloes
(Press & Schechter 1974) and their cooling temperatures and time-
scales (Tegmark et al. 1997). In our methodology, we propose that
the total density of Pop III stars at redshift 𝑧 is given by

𝜌*, III (𝑧) = 𝑓*, III
Ωb

Ωm

∫ ∞

𝑀crit (𝑧)
d𝑀𝑀

d𝑛
d𝑀

(𝑀, 𝑧), (3)

where 𝑓*,III is the Pop III star formation efficiency parameter, d𝑛/d𝑀
is the halo mass function, and 𝑛(𝑀, 𝑧) is the number density of halo
mass 𝑀 at redshift 𝑧. Ωb and Ωm are respectively the baryonic and
total matter density parameters at the present epoch.

𝑀crit (𝑧) is the critical minimum cooling mass of the host halo,
given by (Blanchard et al. 1992; Tegmark et al. 1997):

𝑀crit (𝑧) = 1.0 × 106M�

(
𝑇crit

103 K

)3/2 (
1 + 𝑧

10

)−3/2
. (4)

Haloes with mass below 𝑀crit (𝑧) cannot efficiently dissipate their
kinetic energy and become self-gravitatingwithin aHubble time. Our
assumption is that once 𝑀 exceeds 𝑀crit, star formation will become
effective. The value 𝑇crit = 2, 200K (from considering molecular
hydrogen cooling at redshift 𝑧 ∼ 10) will be used (Hummel et al.
2012; Magg et al. 2022).
We further assume that 𝑓*, III is constant during the epoch where

the stellar formation is dominated by Pop III stars (the effect of
time-dependent 𝑓*, III will be discussed later in section 6). The red-
shift dependence of 𝜌*, III (𝑧) therefore only comes from 𝑀crit (𝑧) and
d𝑛/d𝑀 (𝑀, 𝑧).
The halo mass function, d𝑛/d𝑀 , is defined as the redshift-

dependent distribution of the number density of collapsed darkmatter
haloes per unit mass interval d𝑀 . It is convenient to express the mass
function as
d𝑛
d𝑀

=
𝜌c

𝑀

d ln𝜎−1

d𝑀
𝑓 (𝜎), (5)

where 𝜌c is the critical density and 𝜎(𝑀, 𝑧) is the variance of the

MNRAS 000, 1–7 (2023)
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This Work
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Figure 1. Comparison of the Pop III SFRD. We compare our Pop III SFRD
(solid) to the simulation by Gessey-Jones et al. (2022) (dashed) and find the
best-fitting Pop III star formation efficiency 𝑓*, III = 5.76× 10−4. The fiducial
cosmology is based on Planck 2018 Plik best-fitting parameters.

linear mass density field of mass 𝑀 at redshift 𝑧. The multiplicity
function 𝑓 (𝜎) (also known as themass fraction (Jenkins et al. 2001))
is defined as the fraction of mass in collapsed haloes per unit inter-
val in ln𝜎−1. The original Press-Schechter mass fraction, based on
spherical collapse, is

𝑓PS (𝜎) =
√︂
2
𝜋

𝛿c
𝜎
exp

[
−

𝛿2c
2𝜎2

]
. (6)

The Press-Schechter mass fraction tends to underpredict the number
of high-mass haloes and overpredict the number of low-mass haloes
in the present epoch. It is also notably inaccurate at high redshifts
(Lukić et al. 2007). Here, we will use the Sheth-Tormen mass func-
tion based on ellipsoidal collapse (Sheth & Tormen 1999). Its mass
fraction is

𝑓ST (𝜎) = 𝐴

√︂
2𝑎
𝜋

𝛿c

𝜎
exp

(
−𝑎𝛿2c
2𝜎2

) [
1 +

(
𝜎2

𝑎𝛿2c

) 𝑝]
, (7)

with 𝐴 = 0.3222, 𝑎 = 0.707, 𝛿c = 1.686, 𝑝 = 0.3. This model gives
a good fit to halo abundances in numerical simulations over a wide
range of masses and redshifts (Lukić et al. 2007). Other mass func-
tions have been discussed in the literature, including those by Jenkins
et al. (2001), Barkana & Loeb (2004), Warren et al. (2006), Reed
et al. (2007), Crocce et al. (2010) and Bhattacharya et al. (2011),
with small deviations from the Sheth-Tormen mass function.
We make a simple observation that taking the time derivative of

𝜌*,III (equation (3)) gives the SFRD:

¤𝜌*, III (𝑧) = 𝑓*, III
Ωb

Ωm

(∫ ∞

𝑀crit (𝑧)
d𝑀𝑀

d ¤𝑛
d𝑀

− ¤𝑀crit𝑀
d𝑛
d𝑀

)
, (8)

where a dot denotes time derivative. The first term on the right
involves the time derivative of the mass function in equation (5). The
second term depends on the time derivative of the critical mass in
equation (4).
Our fiducial cosmology is based on Planck 2018 Plik best-fitting

parameters (Planck Collaboration et al. 2020). We compare our cal-
culation with a semi-analytic simulation of GJ22 between 𝑧 = 12−40
as shown in Fig. 1.Weobtain the best-fitting value 𝑓*,III ' 5.76×10−4,
which will be important in the extreme-value modelling in the next
section.

6 8 10 12 14 16 18 20
z

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g 1

0(
*

[M
M

pc
3

yr
1 ] )

This Work
Madau & Dickinson 2014
Madau & Dickinson 2014 (extrapolate)
Liu & Bromm 2020
Donnan et al. 2023 (JWST)

Figure 2.Acomparison of SFRD fromvariousmodels (listed in Table. 1)with
observation from deep JWST (Donnan et al. 2023) (dashdotted). The model
of Pop I + II from Madau & Dickinson (2014) (dashed) and its extrapolation
with correction factor (dotted) are also shown for comparison (see description
in section 6.1).

It is useful to obtain a fitting function of the SFRD. A particular
template was suggested by Madau & Dickinson (2014) (hereafter
MD14):

¤𝜌∗ (𝑧)
M�yr−1Mpc−3

=
𝑎(1 + 𝑧)𝑏

1 + [(1 + 𝑧)/𝑐]𝑑
, (9)

where 𝑎, 𝑏, 𝑐 and 𝑑 are parameters in the fitting function. MD14
proposed this fitting function for Pop I and Pop II SFRD within
𝑧 ∼ 0 − 8. We have also calculated the parameters for the fitting
function and listed them in Table 1 for our best-fitting 𝑓*,III. The table
also compares the values of the fitting parameters and the redshift
range of validity from previous authors alongside ours. These models
are plotted in Fig. 2, alongside the observational data from Donnan
et al. (2023) (hereafter D23).
The data are from the James Webb Space Telescope and comprise

the SFRD from all stellar populations in four redshift bins with mean
redshifts 𝑧 = 8.0, 9.0, 10.5 and 13.25. Since the JWST data include
contributions from Pop I and Pop II stars, it is not surprising that
our estimate of the Pop III SFRD is below the data in the first three
bins where Pop I and Pop II contributions to the SFRD are dominant.
However, our Pop III SFRD agrees with the last bin at mean redshift
𝑧 = 13.25 where the SFRD contribution is dominated by Pop III
stars.
We can now use our SFRD calculation to normalise the IMF by

equating equation (8) to the total number of stellar mass per unit time
as determined by the stellar IMF Φ(𝑀)

¤𝜌*, III = 𝐴(𝑧)
∫ ∞

0
d log𝑀𝑀Φ(𝑀), (10)

where 𝐴(𝑧) is a redshift-dependent factor that normalises the first
moment of the IMF per unit volume per unit time.
Once 𝐴(𝑧) is obtained, the IMF is normalised, and we can write

down the number density of Pop III stars above mass 𝑀 at redshift 𝑧
(denoted 𝑛(> 𝑀, 𝑧)) as

𝑛(> 𝑀, 𝑧) = 𝐴(𝑧) d𝑡
d𝑧

∫ ∞

𝑀
d log𝑀 ′Φ(𝑀 ′). (11)

We will use this expression to calculate the mass of extreme Pop III
stars.

MNRAS 000, 1–7 (2023)
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Table 1. Fitting parameters for for the SFRD using the functional form (9). The values of the parameters 𝑎, 𝑏, 𝑐 and 𝑑 for SFRD are listed alongside the redshift
range and stellar types for which they are valid.

Reference Redshift range Type Fitting parameters

𝑎 𝑏 𝑐 𝑑

M� Mpc−3 yr−1

This work 6 – 20 Pop III 250.16 -4.744 14.74 -5.60
Madau & Dickinson (2014) 0 – 8 Pop I & II 0.015 2.7 2.9 5.6
Liu & Bromm (2020) 4 – 24 Pop III 765.7 -5.92 12.83 -8.55

4 EXTREME-VALUE STATISTICS

Our tool for quantifying the abundances of the most massive Pop
III stars is extreme-value statistics. In particular, we will appeal to
the generalised extreme-value (GEV) formalism - also known as
the block maxima method. The quantity of interest is the proba-
bility distribution of block maxima, where a block is a population
sample within a fixed volume. After dividing the data into 𝑁 non-
overlapping blocks, we collect the maximum value from each block.
Under generic assumptions, the large-𝑁 limit (after a certain scaling)
is one of three types: the Gumbel, Fréchet or Weibull distribution.
This result is the celebrated Fisher-Tippett-Gnedenko theorem (anal-
ogous to the Central Limit theorem), which plays a key role in many
real-world applications of extreme-value statistics. For an introduc-
tion to the GEV approach in extreme-value statistics, see de Haan &
Ferreira (2006); Gomes & Guillou (2015).
The GEV approach has previously been used to quantify the abun-

dances of the most massive galaxy clusters (Davis et al. 2011; Waiz-
mann et al. 2012; Chongchitnan & Silk 2012) and primordial black
holes (Kuhnel & Schwarz 2021). We believe this work is the first
time the GEV formalism has been applied to Pop III stars.
Starting with the number density 𝑛(> 𝑀, 𝑧) in equation (11), we

can calculate the number density of Pop III stars of mass exceeding
𝑀 in the entire redshift range 𝑧 ∈ [𝑧0, 𝑧1] as

𝑛(> 𝑀) =
∫ 𝑧1

𝑧0
d𝑧 𝑛(> 𝑀, 𝑧). (12)

Now consider the probability that a region of volume 𝑉 contains
Pop III stars of mass not exceeding 𝑀 . In other words, we are in-
terested in the probability that no Pop III stars of mass > 𝑀 are
found in the volume 𝑉 . In the large volume limit, this probability
can be described by the cumulative distribution function (cdf) of the
Poisson form (White 1979; Davis et al. 2011)

𝑃0 (𝑀) = exp (−𝑛(> 𝑀)𝑉) . (13)

By differentiating this cdf with respect to 𝑀 , we obtain the pdf of
the maximum mass Pop III stars within volume 𝑉 .
In the limit that the Fisher-Tippett-Gnedenko theorem applies, we

can equate the cdf (13) with the GEV distribution

𝐺 (𝑀) =
{
exp

(
−(1 + 𝛾𝑦)−1/𝛾

)
(𝛾 ≠ 0),

exp(−𝑒−𝑦) (𝛾 = 0),
(14)

where 𝑦 := (log10 𝑀 − 𝛼)/𝛽 is the scaled logarithmic mass. The
parameter 𝛾 determines which of the 3 extremal types the block
maxima converges to. TheGumbel, Fréchet andWeibull distributions
correspond to 𝛾 = 0, 𝛾 > 0 and 𝛾 < 0 respectively.
The parameter 𝛾 as well as the scaling constants 𝛼 and 𝛽 can be

determined as follows. By Taylor expanding the cdf 𝑃0 (𝑀) and the
GEV𝐺 (𝑀) around the peak𝑀peak of the pdf to cubic order, we equate

terms and find that 𝛼, 𝛽, 𝛾 are given in terms of the redshift-averaged
number density 𝑛(> 𝑀) as:

𝛾 = 𝑛(> 𝑀peak)𝑉 − 1 𝛽 =
(1 + 𝛾)1+𝛾

d𝑛
d𝑀

���
𝑀peak

𝑀peak𝑉 ln 10

𝛼 = log10 𝑀peak −
𝛽

𝛾

(
(1 + 𝛾)−𝛾 − 1

)
. (15)

These values allow us to characterise the extreme-value distribu-
tion of Pop III stars. In particular, 𝛼 corresponds roughly to the peak
mass log10 𝑀peak, and 𝛾 + 1 is the number count of stars with mass
above 𝑀peak. These GEV parameters are important in the modelling
of extreme objects because they allow us to venture into domains of
small probabilities which would have been numerically prohibitive
to calculate otherwise.

5 EXTREME POP III STARS

Two plots of the pdfs for the maximum-mass Pop III stars in the
redshift range 𝑧 ∈ [10, 20] obtained via extreme-value modelling are
shown in Fig. 3 and Fig. 4. In Fig. 3 we use the log-normal IMF (eq.
1) with parameters 𝑀char = 1M� and 𝜎 = 1, whilst Fig. 4 uses the
Chabrier model (eq. 2) with 𝛼 = 5, 𝛽 = 1 and 𝑀char = 1M� . In both
models, we assume full-sky observation ( 𝑓sky = 1). The four curves
in each plot correspond to varying values of 𝑓∗,III, with the value
5.76 × 10−4 being the best-fitting value obtained from the SFRD
methodology described in section 3. For these parameter choices,
the pdfs peak at around ∼ 103 − 104M� for the best-fit 𝑓*,III. The
possibility of such large values of extreme-mass Pop III stars has
been hypothesized previously (Haemmerlé et al. 2018).
Next, we found that the value of the GEV parameter 𝛾 (which

determines the extremal type) are typically small (|𝛾 | . 0.05) with
the possibility of both positive and negative values. Essentially the
pdfs are well described by the Gumbel distribution (𝛾 = 0). This is
similar to the conclusion in Davis et al. (2011) who studied the GEV
fit for massive clusters. This conclusion is also consistent with the
theoretical result that extremevalues from the log-normal distribution
follow the Gumbel distribution in the limit that the Fisher-Tippett
theorem holds. See Embrechts et al. (1997) for details.
In addition, we note that in both models increasing 𝑓*, III by an

order of magnitude shifts the pdfs towards higher extreme masses by
roughly a factor of 2. Overall the extreme-mass predictions are quite
robust against changes in 𝑓*, III.
However, the extreme-mass predictions are muchmore sensitive to

changes in some of the parameters of the IMF (and indeed, the form
of the IMF itself). We argue that the extreme-value formalism can be
used to constrain the model parameters by considering the prediction
of the extreme masses of Pop III stars. This is demonstrated in Fig. 5
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Figure 3. The probability density functions for the extreme-mass Pop III
stars for 10 < 𝑧 < 20, assuming the log-normal IMF (eq. 1) with 𝜎2 = 1
and 𝑀char = 1M� . The 4 curves correspond to 4 values of 𝑓*, III. The curve
corresponding to 𝑓*, III = 5.76 × 10−4 (solid red line) uses the best-fitting
star-formation efficiency obtained from fitting to the simulation of GJ22.
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Figure 4. Same as Fig. 3 but for the Chabrier IMF (eq. 2) with 𝛼 = 5, 𝛽 = 1
and 𝑀char = 1M�

.

and Fig. 6 in which we vary the IMF parameters and note the peak
of the extreme-value pdf.
In Fig. 5, we vary 𝑀char against 𝜎2 in the log-normal model. In

6, we vary 𝑀char against 𝛼 in the Chabrier model (fixing 𝛽 = 1 -
the extreme peaks are insensitive to changes in 𝛽). In both contour
plots, we use the best-fit value of 𝑓*, III = 5.76 × 10−4. We see that a
wide range of extreme Pop III masses & 103 − 104M� are possible.
Portions of such IMF parameter space can be effectively ruled out
with future observations of massive Pop III stars.
We observe that extreme masses of order ∼ 103 − 104M� arise

naturally out of the EVS formalism. Calculating the number density
𝑛(> 𝑀) reveals that Pop III stars of mass & 103M� can in fact
form in significant abundances in a wide range of parameter space.
For instance, in the log-normal model with 𝑀char = 1M� , taking
𝜎 & 0.7 yields 𝑛(> 103M�) exceeding 10−9Mpc−3. This translates
to a number count of 𝑁 & 103 objects in 10 < 𝑧 < 20. Such an
abundance of massive Pop III stars is ideal for seeding massive black
holes at high redshifts, in addition to black holes of primordial origin
(Chongchitnan et al. 2021).
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Figure 5. Heat map showing 𝑀peak, the peak of the extreme-value PDF (in
𝑧 ∈ [10, 20]) as a function of the log-normal IMF (eq. 1) with parameters
𝜎2 and 𝑀char, whilst fixing 𝑓*, III = 5.76 × 10−4.
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Figure 6. Heat map showing 𝑀peak, the peak of the extreme-value PDF (in
𝑧 ∈ [10, 20]) as a function of the Chabrier IMF (eq. 2) with parameters 𝛼
and 𝑀char, whilst fixing 𝛽 = 1 and 𝑓*, III = 5.76 × 10−4.

6 CONCLUSION AND DISCUSSION

6.1 Pop III SFRD

We have presented a novel methodology for calculating the Pop III
SFRD and star formation efficiency 𝑓*, III (equation (8)). We assumed
that 𝑓*, III is constant which is a plausible assumption since the metal-
licity of Pop III stars varies slowly. Jaacks et al. (2018) has shown
that the mean metallicity 𝑍 rises smoothly from 𝑧 ' 25 reaching
𝑍crit = 10−4𝑍� at 𝑧 ' 7 where 𝑍crit is the transition metallicity for
the Pop III to Pop II stars. Thus, we would expect 𝑓*, III to also in-
crease slowly with time. To implement this, we could add an extra
term involving ¤𝑓*, III in equation (8), where ¤𝑓*, III is small. Even with
a varying efficiency, we expect the effect on the SFRD to be small.
The assumptions made in our methodology are sufficient for a

good fit to be achieved in comparison with the simulation from GJ22
in Fig. 1 and observational data from deep JWST (D23) in Fig. 2.
We also gave a fitting function for our SFRD in equation (9), shown
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in Fig. 2 along with those of previous authors, including MD14 and
Liu & Bromm (2020). It is interesting to note that MD14 proposed
this fitting function for Pop I and Pop II stars, and therefore the
function has a limited validity range 𝑧 = 0−8. A direct extrapolation
of MD14 to higher redshifts overestimates the SFRD; however, as
anticipated by Shapley et al. (2023), the conversion factor between
H𝛼 luminosity and SFRD should be lower by a factor of ∼ 2.5. We
apply the correction factor of 2.5 toMD14 extrapolation and obtained
an improved consistency with the JWST data.
We provide our fitting function for the Pop III SFRD in Table 1.

It only matches our Pop III SFRD well within 𝑧 = 6 − 20, beyond
which the functional form fails to capture the rapid decrease in the
SFRD at higher redshifts. Nevertheless, our fitting function should
be useful for calculations involving the total SFRD.
In comparison, D23 has also provided a simple fitting function for

their data (in Fig. 2) with limited validity range as

log10 ¤𝜌* = (−0.231 ± 0.037) × 𝑧 − (0.43 ± 0.3), (16)

where ¤𝜌* is the SFRD in unit ofM�Mpc−3 yr−1. The validity range
of the fitting function in equation (16) is only from 𝑧 ∼ 7 − 13.
We recommend using the fitting function in equation (16) within its
validity range together with our fitting function at higher redshifts
for the total SFRD (See Table 1).

6.2 Extreme Pop III stars

We applied the SFRD methodology to the calculation of the proba-
bility distribution of the most massive Pop III stars expected in the
redshift range 10 to 20. Adoption of a functional form of the stellar
IMF allowed the IMF to be normalised, and the number density of
Pop III stars can then be calculated. The extreme-value pdf were
then derived as shown in Fig. 3 and 4. We demonstrated that for a
wide range of parameter values in the log-normal and Chabrier IMF,
extreme Pop III stars of mass ∼ 103 − 104M� arose naturally, and
even higher masses are achievable. We conclude that extreme-value
statistics can help effectively constrain the IMF of Pop III stars. In
addition, Extreme Pop III stars are a viable channel for producing
high-redshift quasars and massive black-holes whose gravitational-
wave signals may be detectable by LIGO1 or the next generation of
gravitational wave observatories such as the Einstein Telescope2 and
LISA3. In short, our predicted extreme Pop III stars are plausible can-
didates for seeding SMBH at high redshifts. They form 103−104M�
BH at early epochs, allow the required numbers of e-folds of growth
by Eddington-limited accretion, and are rare but still sufficiently nu-
merous to solve the seeding problem for high-redshift quasars.
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