

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/175499

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/175499
mailto:wrap@warwick.ac.uk

1

Joint Multi-objective Optimization for Radio Access
Network Slicing Using Multi-agent Deep

Reinforcement Learning
Guorong Zhou, Liqiang Zhao, Member, IEEE, Gan Zheng, Fellow, IEEE, Zhijie Xie, S.H. Song, Member, IEEE,

and Kwang-Cheng Chen, Fellow, IEEE

Abstract—Radio access network (RAN) slices provide multiple
customized services by virtual base stations (vBSs) and virtual
radio resources allocation. As a result, multiple performance
metrics need to be jointly considered. There have been some
works on multi-objective optimization for RAN slicing, but
only in the scalar form. In this paper, we consider non-scalar
multi-objective optimization for RAN slicing with three types of
slices, i.e., the high-bandwidth slice, the low-delay slice, and the
wide-coverage slice over the same underlying physical network.
We jointly optimize the throughput, the transmission delay,
and the coverage area by dynamic vBSs deployment, and sub-
channel and power allocation. An improved multi-agent deep
deterministic policy gradient (IMADDPG) algorithm, having the
characteristics of centralized training and distributed execution,
is proposed to solve the above non-deterministic polynomial-time
hard (NP-hard) problem. The rank voting method is introduced
in the testing process to obtain near-Pareto optimal solutions.
Simulation results verify that the proposed method can ensure
better performance than the equal resource allocation algorithm
and the multi-agent deep deterministic policy gradient (MAD-
DPG) algorithm. The proposed algorithm has the advantage
of approaching any point of the Pareto boundary, while the
traditional scalar method only subjectively approaches one of
the Pareto optimal solutions. Furthermore, our proposal strikes
a compelling tradeoff among three types of RAN slices due to
the non-dominance between Pareto optimal solutions.

Index Terms—Radio access network slicing, multi-objective
optimization, non-scalarization, multi-agent deep reinforcement
learning, rank voting method.

I. INTRODUCTION

As an important part of end-to-end network slicing [1], [2],
radio access network (RAN) slicing [3], [4] can dynamically
allocate virtual radio resources and deploy virtual base stations
(vBSs) in RAN to provide customized services to users. Differ-
ent from the mature core network (CN) slicing and transport
network (TN) slicing, many research challenges remain on
RAN slicing, particularly diverse service requirements in the
time-varying wireless channel environments.

Guorong Zhou, Liqiang Zhao (e-mail: guor zhou@163.com,
lqzhao@mail.xidian.edu.cn) are with the State Key Laboratory of Integrated
Service Networks at Xidian University, Xi’an 710071, China. Gan
Zheng (e-mail: g.zheng@lboro.ac.uk) is with the Wolfson School of
Mechanical, Electrical and Manufacturing Engineering, Loughborough
University, UK. Zhijie Xie, S.H. Song (e-mail: shiehshiehzhijie@gmail.com,
eeshsong@ust.hk) are with the Department of Electronic and Computer
Engineering, The Hong Kong University of Science and Technology, Hong
Kong. Kwang-Cheng Chen (e-mail: kwangcheng@usf.edu) is with the
Department of Electrical Engineering, University of South Florida, Tampa,
Florida, USA.

The current research on RAN slicing mainly focuses on
performance optimization. For example, for the multi-tenant
heterogeneous cloud RAN, Lee et al. [5] proposed a dynamic
network slicing scheme to achieve higher network through-
put. Xiang et al. [6] developed two reinforcement learning
based algorithms to solve the high-complexity system power
optimization problem under traditional and fog users’ specific
performance requirements. Tang et al. [7] investigated the
average delay optimization problem of network slicing in the
fog RAN. Overall, all these works focused on single-objective
optimization problem (SOOP). However, RAN slicing shall
provide various customized services, as it is insufficient to
optimize only one criterion in a multi-slicing network.

Specifically, through RAN slicing, the physical network is
divided into multiple virtual networks, which provide different
types of customized services according to specific require-
ments. Each of these customized slices has its concerned per-
formance metrics. For example, bandwidth-extensive slicing
hopes to provide users with high-throughput services, while
delay-sensitive slicing prefers to ensure ultra-low delay. It is
difficult to utilize a centralized controller to simultaneously
manage multiple customized slices [8]–[11], or to optimize a
multi-slicing network with only one performance metric [12],
[13]. To meet complex demands, it is indispensable to bring
multi-objective optimization problem (MOOP) formulation
into RAN slicing.

MOOP is a mathematical framework to jointly optimize
multiple objectives, which is fundamentally different from
SOOP. The global optimal solution of SOOP is uniquely
determined, while the solutions of MOOP are composed of
a number of Pareto optimal solutions [14]. These solutions
are not dominated by each other, specifically defined are as
follows [15]:

Definition 1 (Pareto optimal solutions). Assume the attain-
able objective set of F = {f (x) ,x ∈ χ} contains all the
combinations of M objectives f1 (x) , f2 (x) , · · · , fM (x) that
are simultaneously attainable under the available resources
region χ. Then f∗ (x) ∈ F is one of the Pareto optimal
solutions if there does not exist any f ′ (x) ∈ F\ {f∗ (x)} with
f ′
m (x) ≥ f∗

m (x) for ∀m=1, 2, · · · ,M .
Therefore, the non-dominance of Pareto optimal solutions

means that the improvement of a certain objective may cause
the degradation of other objectives, and it is impossible to
optimize multiple objectives at the same time.

There have been some studies on MOOP for RAN slicing,

guor_
矩形

2

but only in the scalar form. The scalar method transforms the
MOOP into a SOOP for a tractable solution, mainly including
the weighted sum method, the constraint method, the mini-max
method, etc. Its optimal solution only subjectively corresponds
to one of the Pareto optimal solutions. For example, Shi et al.
[16] analyzed the energy efficiency (EE) and delay in wireless
networks virtualization, but only EE was regarded as the
objective while the delay was treated as a constraint. Although
both the spectrum efficiency and the service level agreement
(SLA) satisfaction ratio were considered, Hua et al. [17] used
the weighted sum to project two metrics into a unified utility
function. Afolabi et al. [18] used the constraint method to
minimize the amount of computational resources under the
constraint of mean response time in the end-to-end mobile
network slice. Xu et al. [19] optimized the amount of allocated
resources with the delay constraints. Guan et al. [20] jointly
considered three typical slices by optimizing the infrastructure
resource efficiency. Although the traditional scalar method
has low computational complexity, it suffers some drawbacks.
Firstly, the objective functions are empirically designed and
not feasible to dynamically obtain the satisfactory solution
in practice. Secondly, the optimization result of each slice is
highly dependent on the self-defined weight, which results in
the poor generalization. Finally, the scalar method requiring
extensive prior knowledge cannot warrant convergence to the
non-convex region on Pareto boundary.

A better way to solve MOOP of RAN slicing is
the non-scalar method [21], [22]. However, the non-scalar
MOOP for multi-slicing network is always a nondeterministic
polynomial-time hard (NP-hard) problem due to the expan-
sion of optimization objectives. Traditional algorithms usually
generate high computational complexity, while the deep re-
inforcement learning (DRL) algorithms demonstrate superior
computing and learning ability in solving high-complexity
problems [23]–[25]. When using the DRL algorithm to solve
non-scalar MOOPs, each agent can only define one reward
function to learn one of the optimization objectives, so we
have to utilize the multi-agent DRL algorithm to manage
multiple RAN slices. Wherein, the multi-agent deep deter-
ministic policy gradient (MADDPG) algorithm can define
multiple agents for different kinds of RAN slices, which is
suitable for solving complex non-scalar MOOPs [24]–[26].
Nevertheless, the MADDPG algorithm is eventually confined
to converge to one solution and we cannot guarantee that it
is (near-)Pareto optimal. Therefore, we propose the improved
multi-agent deep deterministic policy gradient (IMADDPG)
algorithm by adding rank voting method in the testing pro-
cess. The algorithm not only retains the advantages of DRL
algorithm which can avoid local optimization and deal with
non-differentiable, discontinuous and non-convex problems,
but also can learn multiple solutions in parallel to approximate
various Pareto optimal solutions.

In this paper, we establish three kinds of RAN slices
simultaneously, i.e. the high-bandwidth slice, the low-delay
slice and the wide-coverage slice, upon the same underlying
physical network. Since the performance indicators of slices
are different from each other, a non-scalar MOOP is formulat-
ed to jointly optimize the throughput, the transmission delay

and the coverage area by dynamically deploying vBSs and
allocating suitable subchannels and power resources to users
on each slice. In order to solve the above NP-hard problem,
the IMADDPG algorithm is proposed. The simulation results
show that the IMADDPG algorithm can optimize three kinds
of RAN slices simultaneously and efficiently, ensure better
performance than benchmark algorithms and obtain near-
Pareto optimal solutions. The main contributions of this paper
are as follows:

• A dynamically adaptive model is built to jointly support
multiple categories of RAN slices upon the same un-
derlying physical network, and we consider to optimize
three typical types of slices in this paper. Then, we jointly
deploy proper vBSs and allocate suitable subchannels and
power resources to users on each RAN slice in order to
approach the Pareto optimum of three slices.

• We formulate a non-scalar MOOP to jointly optimize the
throughput, the transmission delay and the coverage area
on RAN slicing, whilst the exiting works have considered
the scalar MOOP. The non-scalar method successfully
avoids the difficulty of using the scalarization, where the
performance optimization result of each slice depends
heavily on its weight. And the non-scalar method has
a better generalization, as it does not need to design the
utility function in advance.

• To our best knowledge, this is new to solve the non-scalar
MOOP by a multi-agent DRL algorithm. We present the
IMADDPG model structure and propose the IMADDPG
algorithm, where the structure has the characteristics of
centralized training and distributed execution, and the al-
gorithm can obtain better optimization results. Compared
with the MADDPG algorithm, we introduce rank voting
method in the testing process of the IMADDPG algorithm
for obtaining near-Pareto optimal solutions.

• The proposed method strikes a compelling tradeoff a-
mong three very different types of RAN slices. Due to
the non-dominance between Pareto optimal solutions, the
improvement of the metric on one slice class will be
accompanied by the degradation of the metrics on the
other one or two slice classes. Therefore, the throughput,
the transmission delay and the coverage area cannot
be improved at the same time. It requires the mobile
network operator (MNO) to actually execute one of the
near-Pareto optimal solutions according to the priority of
slices. Our main contributions are also contrasted at a
glance boldly and explicitly to the relevant references in
Table 1.

The rest of the paper is organized as follows. In Section
II, the system model is proposed, and three different types of
RAN slices on the foundation of the same physical network
are described in detail. In Section III, we formulate the non-
scalar MOOP on RAN slicing. In Section IV, we solve the
proposed MOOP by presenting an IMADDPG model structure
and using the IMADDPG algorithm. In Section V, we discuss
simulation results. Finally, the paper is concluded in Section
VI.

guor_
矩形

3

Table 1: A comparative summary of contributions of the salient existing works.

Novelty [5] [6] [7] [11] [16] [17] [20] [27] [28] [29] Proposed
Jointly establishing at least three typical types of slices X X X X
Considering a dynamically adaptive multi-slicing network X X X X X X X X X
Considering vBSs’ deployment X X X X X X
Allocation of subchannel resource X X X X X X X X X X
Allocation of power resource X X X X X X X
Optimization of network throughput X X X
Optimization of transmission delay X X X X X X
Optimization of coverage area X X
Simultaneously optimizing at least three performance metrics X X X
Formulating a non-scalar MOOP X X
Solving the non-scalar MOOP by a multi-agent DRL algorithm X
Introducing ensemble strategy (e.g., rank voting method) X
Obtaining near-Pareto optimal solutions X
Tradeoff among different types of RAN slices X

II. SYSTEM MODEL

In this paper, we focus on analyzing three typical classes of
RAN slices [30] upon one physical network, as shown in Fig.
1. Firstly, without loss of generality, we consider that there are
M physical base stations (BSs) with K users distributed in a
physical RAN, where each BS can support multiple slices. Let
M={1, ...,M} and K={1, ...,K} denote the sets of BSs and
users, respectively. Suppose the available power of each BS
is PB , and the orthogonal frequency division multiple access
(OFDMA) method is adopted in our system, where the intra-
cell interference is not present. The system bandwidth of B Hz
is divided into N subchannels with the set of N={1, ..., N}
and each subchannel has a bandwidth of B/N Hz, so the
BS can provide uplink or downlink communication for users
associated with these subchannels.

Then, for virtualizing three typical communication scenarios
into the high-bandwidth slice, the low-delay slice and the
wide-coverage slice, which are referred to as class-s slices,
s∈{1, 2, 3}, respectively, MNO abstracts the communication
resources in the system into multiple shared virtual resources.
Besides, as seen in Fig. 1, a physical BS will be virtualized
into three vBSs, each of which is associated with a specific
service (i.e., class-s slice) [31]. Among different scenarios,
MNO determines the flexible deployment of vBSs and the real-
time amount of virtual spectrum and power resources allocated
to each vBS based on users’ diverse location information and
QoS requirements, in order to form customized RAN slices
with isolation guarantee. Note that since the locations of vBSs
served in class-s slices correspond to those of physical BSs
one by one, we can represent them with the same parameter
m,∀m ∈ M as physical ones. We consider a dynamically
adaptive multi-slicing network, and define the time slot as a
time interval [t, t+ 1), t ∈ {1, 2, ..., T}, where T is assumed
as the final time slot of our considered scenario and the slot
duration is δ s/slot.

We assume that Ks users would like to request class-s s-
lices, and the set of users is denoted as Ks={1, ...,Ks},Ks⊂
K. Therefore, each vBS needs to access multiple users of
class-s slices to provide multiple slices. The channel coeffi-
cient hn

k,s,m(t) of user k,∀k ∈Ks on subchannel n, ∀n ∈N
associated with vBS m, ∀m ∈M on class-s slices at slot t
is independent and identically distributed (i.i.d.) over time

vBS 1vBS 1
User 2User 2

vBS 2vBS 2

User 3User 3

vBS 3vBS 3
User K3User K3

vBS MvBS M
User 1User 1

···User 4User 4User 5User 5

vBS 1
User 2

vBS 2

User 3

vBS 3
User K3

vBS M
User 1

···User 4User 5

Wide-coverage slices

vBS 11
User 2

vBS 2

User 3serserUsUs

vBS 3
User K3

vBS MMM
User 1

···User 4

BS 2

S 3S 3
UU

User 5

Wide-coverage slices

Low-delay slices

vBS 1vBS 1
User 2

vBS 2 User 3

vBS 3 User K2

vBS M
User 1

···

vBS 1
User 2

vBS 2 User 3

vBS 3 User K2

vBS M
User 1

···

Low-delay slices

vBS 1
User 2

vBS 2 User 3

vBS 3 User K2

vBS M
User 1

···

High-bandwidth slices

vBS 1vBS 1
User 1User 1

vBS 2vBS 2
User 2User 2

vBS 4vBS 4

User 4User 4

vBS MvBS M
User 5User 5

vBS 3vBS 3
User 3User 3

User K1User K1

···

High-bandwidth slices

vBS 1S 1
User 1

vBS 2S 2S 2
User 2

vBS 4

User 4serserUUsUs

vBS MMMM
User 5

vBS 3S 3S 3
User 3

User K1

BS 4BBS 4BS 4

···

Virtualization

User 1User 1

User 2User 2

BS 1BS 1

BS 3BS 3

BS 4BS 4

BS 5BS 5

BS 6BS 6BS 2BS 2

User 3User 3

User 4User 4

User 5User 5

User 6User 6

User 8User 8

User 7User 7

Physical network

User 1

User 2

BS 1

BS 3

BS 4

BS 5

BS 6BS 2

User 3

User 4err

User 5

User 6

User 8

User 7

UUUsseUUUsseUU eereerUUUsseUUUsseUUU

S 33S 33S

UUsseerUUsseererUUsseUU

3333

UUsseeUssee

Physical network

Fig. 1: System model of RAN slicing.

and pnk,s,m(t) is the transmit power of user k associated
with vBS m and subchannel n on class-s slices at slot t,
while Ps(t) = {pnk,s,m(t)} is the set of transmit powers.
In addition, we define Xs(t) = {xn

k,s,m(t)} as the set of
subchannel allocation indicators and xn

k,s,m(t) is a binary
factor of user k associated with vBS m and subchannel n on
class-s slices at slot t. Ys(t) = {yk,s,m(t)} is defined as the
set of vBS association indicators, where yk,s,m(t) is a binary
factor of user k associated with vBS m on class-s slices at
slot t. Their specific expressions are as follows:

xn
k,s,m(t)=

{
1, if n is allocated to user k of slice s,

0, otherwise,
(1)

and

yk,s,m(t)=

{
1, if user k of slice s is associated with m,

0, otherwise.
(2)

We can get the inter-cell interference of user k associated
with vBS m and subchannel n on class-s slices at slot t as:

Ink,s,m(t)=
∑

j∈M\{m}

∑
i∈Ks\{k}

yi,s,j(t)x
n
i,s,j(t) p

n
i,s,j(t)

∣∣hn
i,s,j(t)

∣∣2,
(3)

where hn
i,s,j(t) is the channel propagation coefficient of the

interference user i,∀i ∈ Ks\{k} on subchannel n associated

4

with vBS j,∀j ∈M\{m} on class-s slices at slot t. pni,s,j(t)
is the interference power of user i associated with vBS j and
subchannel n on class-s slices at slot t. Also, xn

i,s,j(t) and
yi,s,j(t) are defined as the subchannel allocation indicators as
well as vBS association indicators of the interference users on
class-s slices, respectively.

Specifically, for class-1 slices, such as the video streaming
service, high-bandwidth data are transmitted through the wire-
less downlink. The data rate rnk,1,m(t) of user k on subchannel
n associated with vBS m on class-1 slices at slot t is given
by

rnk,1,m(t) =
B

N
log2

1 + pnk,1,m(t)
∣∣∣hn

k,1,m(t)
∣∣∣2

Ink,1,m (t) + (BN)N0

 , (4)

where N0 is the power spectral density (PSD) of the additive
white Gaussian noise (AWGN). Then the total downlink data
rate of user k on class-1 slices at slot t is formulated as

Rk,1 (t) =
∑
n∈N

∑
m∈M

yk,1,m(t)xn
k,1,m(t)rnk,1,m(t). (5)

Hence, throughput for the whole class-1 slices at slot t is
expressed as

Rsum
1 (t) =

∑
k∈K1

Rk,1 (t). (6)

Obviously, Rsum
1 (t) is the main performance metric that MNO

needs to optimize in order to satisfy users’ requirements across
the whole class-1 slices.

As for class-2 slices, such as virtual reality (VR)/augmented
reality (AR), its primary target is to reduce the transmission
delay to guarantee users’ quality of service (QoS). The vBSs
transmit low-delay tasks for users through downlink. The data
rate rnk,2,m(t) of user k on subchannel n associated with vBS
m on class-2 slices at slot t is given by

rnk,2,m(t) =
B

N
log2

1 + pnk,2,m(t)
∣∣∣hn

k,2,m(t)
∣∣∣2

Ink,2,m (t) + (BN)N0

 . (7)

Then the total downlink data rate of user k on class-2 slices
at slot t is formulated as

Rk,2 (t) =
∑
n∈N

∑
m∈M

yk,2,m(t)xn
k,2,m(t)rnk,2,m(t). (8)

Subsequently, we define A2(t)={A1,2(t),A2,2(t),...,Ak,2(t),
...} as the process of random data arrivals on class-2 slices
at slot t, where A2 (t) is assumed to be independent among
the users and i.i.d. across the slots, which follows a Poisson
arrival process with average rate λ (in bits/slot). Let Q2 (t)=
{Q1,2 (t) , Q2,2 (t) , ..., Qk,2 (t) , ...} be the current data queue
length on class-2 slices at slot t. Based on queuing theory, the
queue evolution of user k on class-2 slices at slot t can be
written as [32]:

Qk,2(t+1)=max{Qk,2(t)−Rk,2(t) δ+Ak,2(t),0},∀k. (9)

Due to the fact that the user’s average queuing delay is
proportional to the average queue length according to Little’s

Theorem [33], we can represent the delay of user k by the
queue length Qk,2 (t). We do not consider the access delay in
this paper due to its small proportion [34].

Therefore, the average delay of all users on class-2 slices
can be calculated as

Qave
2 (t) =

1

K2

∑
k∈K2

Qk,2 (t). (10)

In order to meet the low-delay requirements of all users on
class-2 slices, we aim to minimize Qave

2 (t).
Class-3 slices provide the basic access services with best

effort for a large area with a low user density, such as a
desert area with few people. Due to the time-varying channel
state and diverse transmit power, the basic access services are
also variable-rate. Consequently, the main performance metric
of class-3 slices is to provide the user coverage as wide as
possible. We focus on improving the signal to interference
plus noise power ratio (SINR) of all users to ensure the wide
coverage area. The SINR of user k on class-3 slices at slot t
is as follows:

SINRk,3(t)=
∑
m∈M

∑
n∈N

yk,3,m(t)x
n
k,3,m(t)p

n
k,3,m(t)

∣∣∣hn
k,2,m(t)

∣∣∣2
Ink,3,m (t) + (BN)N0

.

(11)
Therefore, we get the average SINR of class-3 slices below:

SINRave
3 (t) =

1

K3

∑
k∈K3

SINRk,3 (t). (12)

III. MULTI-OBJECTIVE PROBLEM FORMULATION

Although we have established an independent optimization
objective in the previous section, these slices are created based
on the same physical network. Explicitly, the vBSs and the
underlying bandwidth and power resources are shared by three
types of slices, so we should give a MOOP in the multi-slicing
network.

Firstly, we formulate the power consumption of each vBS
as:

Pm (t)=
∑

s∈{1,2,3}

∑
n∈N

∑
k∈Ks

yk,s,m(t)xn
k,s,m(t)pnk,s,m(t). (13)

As for the dynamically adaptive multi-slicing network,
instead of optimizing instantaneous objectives, it is more
effective to adopt the long-term optimization objectives to
estimate network performances [35]. Therefore, we can get the
MOOP to jointly optimize three different long-term objectives
of the throughput, the average delay and the average SINR for
three types of RAN slices, which is formulated in a non-scalar

5

form, as follows:

P∗ :

max
Xs,Ys,Ps

{
T∑
t=1

Rsum
1 (t),

T∑
t=1

[β−Qave
2 (t)],

T∑
t=1

SINRave
3 (t)

}
,

s.t. C1 :
∑
k∈Ks

xn
k,s,m (t) yk,s,m (t) ≤ 1, ∀n ∈ N,m ∈M,

C2 :
∑
n∈N

∑
m∈M

xn
k,s,m (t) yk,s,m (t) ≤ 1, ∀k ∈ Ks,

C3 :
∑
m∈M

yk,s,m (t) ≤ 1, ∀k ∈ Ks,

C4 : pnk,s,m (t) ≥ 0, ∀k ∈ Ks, n ∈ N,m ∈M,

C5 : xn
k,s,m(t),yk,s,m(t)∈{0, 1}, ∀k∈Ks, n∈N,m∈M,

C6 : Pm (t) ≤ PB, ∀m ∈M,

C7 :

(∑
k∈Ks

∑
m∈M

xn
k,s,m (t) yk,s,m (t)

)

·

 ∑
k∈Ks′

∑
m∈M

xn
k,s′,m (t) yk,s′,m (t)

=0,

if s ̸= s′, ∀n ∈ N, s, s′ ∈ {1, 2, 3} ,

C8 :
∑

s∈{1,2,3}

∑
n∈N

∑
k∈Ks

xn
k,s,m (t)≤N, ∀m ∈M,

(14)
where β is the initial threshold to guarantee the non-negativity
of optimization objective. C1 means that a subchannel could
only be allocated to at most one user in the same cell in the
same slot, C2 represents that we could assign at most one
subchannel to a user in the same slot, and C3 indicates that a
user could only be associated with one vBS in the same time
slot. C4 is the non-negative constraint of the transmit power.
C5 represents the value range of binary variables xn

k,s,m(t) and
yk,s,m(t). C6 represents that the actual power consumption of
each vBS should not exceed the total available power PB . C7
is to ensure the isolation of spectrum resources between slices,
that is, the subchannels used by class-s slices at slot t do not
overlap with each other. C8 guarantees that the sum of used
subchannels in each vBS at slot t is no more than the total
number of subchannels N .

However, since our proposed model considers inter-cell
interference and introduces binary variables {Xs,Ys}, (14)
is a non-convex problem. Moreover, (14) is established as a
non-scalar MOOP, which is an NP-hard problem. It is difficult
to use the traditional methods to approach Pareto optimal
solutions.

IV. PROBLEM TRANSFORMATION AND SOLUTION

In this section, based on the MADDPG algorithm [26],
we present the IMADDPG model structure and propose the
online off-policy IMADDPG algorithm to solve (14). Then,
we add the rank voting method in the testing process of the
IMADDPG algorithm to approach Pareto optimal solutions.

······

Wide-coverage slices

···

Wide-coverage slices
Low-delay slices

······

Low-delay slices

···

High-bandwidth slices

···

High-bandwidth slices

···

Virtualization

Physical networkPhysical network

···

Wide-coverage slices
Low-delay slices

···

High-bandwidth slices

···

Virtualization

Physical network

Environment

···

Wide-coverage slices
Low-delay slices

···

High-bandwidth slices

···

Virtualization

Physical network

Environment

O
p
tim

izer

O
n
lin

e n
etw

o
rk

T
arg

et n
etw

o
rk

Policy
gradient

Update

Soft
update

Actor 1

O
p
tim

izer

O
n
lin

e n
etw

o
rk

T
arg

et n
etw

o
rk

Loss
function

Update

Soft
update

Critic 1

Agent 1

O
p
tim

izer

O
n
lin

e n
etw

o
rk

T
arg

et n
etw

o
rk

Policy
gradient

Update

Soft
update

Actor 2

Agent 2

O
p
tim

izer

O
n
lin

e n
etw

o
rk

T
arg

et n
etw

o
rk

Loss
function

Update

Soft
update

Critic 2

O
p
tim

izer

O
n
lin

e n
etw

o
rk

T
arg

et n
etw

o
rk

Policy
gradient

Update

Soft
update

Actor 3

Agent 3

O
p
tim

izer

O
n
lin

e n
etw

o
rk

T
arg

et n
etw

o
rk

Loss
function

Update

Soft
update

Critic 3

Experience

memory 1

3

t
r2

t
r

1

t
r

Mini batch Mini batch Mini batch

Experience

memory 2
Experience

memory 3

t

1
o

t

2
o

t

3
o

t

1
a

t

2
a

t

3
a1

Q
q

2
Q
q

3
Q
q

t

1
a

t

2
a

t

3
a

t

s
o

Fig. 2: IMADDPG model structure.

A. The IMADDPG Model Structure

The IMADDPG model structure is shown in Fig. 2. We
assume that an agent’s tasks satisfy Markov attributes in the
IMADDPG model, where the agent is the main body of
DRL, equivalent to the player in a game, and each agent
can be given different reward functions for multi-objective
optimization. A Markov decision process (MDP) consists of
a four-tuple of

⟨
O,A,R,O

′
⟩

, where O,A,R and O
′

are
the set of state observation, action space, reward functions
and the next state observation, respectively. In the MDP, the
agent dynamically takes actions based on users’ requests and
channel conditions in units of time steps. That is, at one time
step, the agents observe the current state by online interacting
with environment and then select an action from the action
space based on some policies. By executing this action, a
reward could be received from the environment and the agents
transfer to the state of the next time step. However, we cannot
collect the global action information to directly know the
optimal MDP due to the huge continuous action space in the
IMADDPG model. Hence, the agents have to train deep neural
networks (DNNs) approximating policy functions and value
functions, in order to learn the optimal decision making.

Considering that the dynamic resource sharing among slices
upon the same physical network is similar to the multi-agent
cooperation scenario of the IMADDPG algorithm, we can
transform three classes of RAN slices in the system model
into three agents in the IMADDPG model, as shown in Fig. 2.

6

Then, the MDP’s four-tuples of
⟨
O,A,R,O

′
⟩

could be
corresponded to the elements in the system model.

State and the next state: The state observation is a vector
of channel states and users’ requests in the system model.
Hence, at the time step t (corresponded to the slot t in the
system model), the state observation of agent s is defined as
[17], [36]:

ot
s =

{
hs(t),h

in
s (t),As (t)

}
, (15)

where hs(t) is the set of the channel coefficient hn
k,s,m(t)

and hin
s (t) is the set of the channel coefficient hn

i,s,j(t) from
interference users, and As (t) is the set of the data arrival
process in agent s.

Obviously, the next state observation of agent s can be
denoted as:

ot+1
s =

{
hs(t+ 1),hin

s (t+ 1),As (t+ 1)
}
, (16)

where hs(t+ 1), hin
s (t+ 1) and As (t+ 1) are the set of the

channel coefficient, the channel coefficient from interference
users and the data arrival process in agent s at the next time
step.

Action: At the time step t, the MNO needs to deploy
suitable vBSs and allocates optimal subchannels and power
resources to users of agent s according to the state observation
ot
s. Hence, the action set is denoted as [17], [36]:

ats = {Xs,Ys,Ps} . (17)

Here, in order to facilitate mathematical analysis, we relax the
binary variables in Xs and Ys to continuous variables with
value range of [0,1], which also conforms to the condition of
continuous action space in IMADDPG algorithm. Note that the
selected actions have to satisfy the constraints of P∗, in which
those unsatisfied actions will be modified. Specifically, at the
time step t, agent s makes the resource decision to obtain ats,
and then checks whether the action set satisfies the constraints.
If some of actions Xs and Ys violate the resource constraints
C1-C3, C7 and C8, only one of them retains its original value,
while the other conflicting actions will be modified to 0 to meet
the constraints, which means that the corresponding users will
not be served. If some of actions Ps have the resource collision
of C4 and C6, they are replaced with a low value to satisfy
the constraints.

Reward: We define different reward functions for each
agent in the IMADDPG model because the main performance
metrics of three classes of RAN slices are different. According
to (14), the reward space of agent s can be expressed as follows
[35]:

rts =


Rsum

1 (t) , s = 1,[
1−Qave

2 (t)
]
, s = 2,

SINRave
3 (t) , s = 3,

(18)

where we normalize Rsum
1 (t), Qave

2 (t) and SINRave
3 (t) by

0-1 normalization, respectively, in order to improve the con-
vergence rate of the model.

Basic structure of model: The IMADDPG model employs
the actor-critic (AC) algorithm [26] as the basic structure of
each agent. Different from the traditional AC structure ap-
plied to deep deterministic policy gradient (DDPG) algorithm,

our IMADDPG model utilizes three parallel distributed AC
structures, thus has the characteristics of centralized training
and distributed execution, which is suitable for complex multi-
agent scenarios to solve (14). Specifically, the agent s contains
an actor which only needs local information for policy decision
and a critic which collects all agents’ global policies for action
value learning, as seen from Fig. 2. We use different DNNs as
the approximation of the policy function µθs

(
ot
s|θµs

)
(namely

actor s) and the action-value function Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
(namely critic s), respectively, and use the stochastic gradient
method to train θµs and θQs . Wherein, actor s’s input is the
current state ot

s and the output is the deterministic action ats,
while critic s’s inputs include the state ot

s, the action ats of the
current agent s and atS\s of the other two agents generated by
the actor, and the output is the estimated Q-value. That is, the
actor is responsible for selecting an action based on the current
local state observation, then the critic evaluates this action
according to all agents’ global information and gives a score,
and finally the actor modifies the probability of subsequent
action selection based on the critic’s score. In this way, the
learning process of IMADDPG algorithm is more stable and
can converge faster. Therefore, we can get the optimal reward
rts by continuously updating the actor and critic.

Update of actor: By considering (14) and (18), the objec-
tive function of agent s in the IMADDPG algorithm is defined
as the expectation of the long-term discounted cumulative
reward, namely:

Js (µ) = Eµ

[
r1s + γr2s + γ2r3s + · · ·+ γT−1rTs

]
, (19)

where γ is the discount factor. The objective of the actor s is to
find the optimal deterministic policy µ∗

θs
, which is equivalent

to the maximization of Js (µ).

µ∗
θs = argmax

µ
Js (µ) . (20)

In this way, the deterministic action ats of agent s at time step
t can be obtained through the optimal policy function µ∗

θs
:

ats = µ∗
θs

(
ot
s|θµs

)
. (21)

It has been proved that the gradient of Js (µ) with
respect to θµs is equivalent to the expected gradient of
Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
with respect to θµs in [37].

As for the action value function Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
of

agent s, based on MDP, it can be formally defined using
Bellman’s equation, as follows:

Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
= rts + γmax

a
Qθs

(
ot+1
s ,at+1

s ,at+1
S\s |θ

Qs

)
,

(22)

where rts is the current reward function. ot+1
s , at+1

s and at+1
S\s

are the next state of agent s, the next action of agent s and
the next action of the other two agents, respectively.

Subsequently, the update of Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
is as

follows:

Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
←Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
+αδt, (23)

7

where

δt=rts+γmax
a

Qθs

(
ot+1
s ,at+1

s ,at+1
S\s |θ

Qs

)
−Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
,

(24)

where rts + γmax
a

Qθs

(
ot+1
s ,at+1

s ,at+1
S\s |θ

Qs

)
is the target,

which represents the actual reward of prediction. δt is the error,
which is used to estimate the action value function. α is the
learning rate.

Therefore, we follow the chain rule to derive Js(µ), and get
the update method of the actor network, as shown below:

∇θµsJs = Eot
s,a

t
s∼Ds

[
∇θµsµθs

(
ot
s|θµs

)
·∇at

s
Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
|at

s=µθs (o
t
s|θµs)

]
,

(25)

where Ds is the experience memory of the agent s, given⟨
ot
s,o

t
S\s,a

t
s,a

t
S\s, r

t
s, r

t
S\s,o

t+1
s ,ot+1

S\s

⟩
. Similarly, ot

S\s, rtS\s

and ot+1
S\s are the current state observation, reward space and

the next state observation of the other two agents, respectively.
Using the gradient ascending algorithm, the parameter

θµs in (25) is updated and the action ats is optimized a-
long the direction of improving the action value function
Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
.

Update of critic: According to (23), we update the critic
by minimizing the loss function, which is defined as:

Ls=Eot
s,a

t
s,r

t
s,o

t+1
s ∼Ds[(

TargetQs −Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

))2]
,

(26)

and

TargetQs = rts+γQ′
θs

(
ot+1
s , µ′

θs

(
ot+1
s |θµ

′
s

)
|θQ

′
s

)
, (27)

where θµ
′
s and θQ

′
s in TargetQs represent the parameters of

the target actor and the target critic, respectively.
Therefore, the gradient of the critic network is expressed as

follows:
∇θQsLs=Eot

s,a
t
s,r

t
s,o

t+1
s ∼Ds

[(TargetQs−

Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

))
∇θQsQθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)]
.

(28)

We use the gradient descent method to update the parameter
θQs and then find the optimal value of Q∗

θs
.

Online network and target network: Furthermore, in
order to improve the stability of the learning process, the
IMADDPG algorithm creates two DNNs for each actor and
critic, respectively: online network and target network, as
shown below.

actor

{
online : µθs

(
ot
s|θµs

)
, update θµs ,

target : µ′
θs

(
ot
s|θµ

′
s

)
,update θµ

′
s ,

(29)

and

critic

 online : Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
, update θQs ,

target : Q′
θs

(
ot
s,a

t
s,a

t
S\s|θ

Q′
s

)
, update θQ

′
s .

(30)

That is, the IMADDPG algorithm uses a total of 12 DNNs
((1[online network] + 1[target network]) × 2[actor&critic] ×

3[agents]) in our paper, as shown in Fig. 2. The update rule is
that firstly agent s updates θµs and θQs of the online network
through the gradient ascent or gradient descent algorithm after
finishing a mini-batch data training, and then updates θµ

′
s and

θQ
′
s of the target network through the soft update method, as

follows: {
θQ

′
s ← τθQs + (1− τ) θQ

′
s ,

θµ
′
s ← τθµs + (1− τ) θµ

′
s ,

(31)

where the default value of τ is 0.001.
Optimizer (DNN configuration): As for the actor, we use

a DNN with 3 inputs and (3×K) outputs, because we define 3
states and (3×K) actions for each agent. And as for the critic,
we set up a DNN with (3+9×K) inputs and 1 output, because
we need to provide state and global action information for the
critic, and then the network generates Q-value of the current
agent. However, there is no known rule for determining the
number of hidden layers and neurons. It is proper to choose
these sizes in the trial-and-error manner [38]. Therefore, we
chose 2 hidden layers, each with 64 neurons for both the actor
and critic. We set the relu activation function for the hidden
layer and the sigmoid activation function for the output layer
because the outputs are all positive.

B. The IMADDPG Algorithm
Using the conventional MADDPG algorithm, we may only

eventually obtain one solution and we cannot guarantee that
this solution is (near-)Pareto optimal due to the randomness
of the exploration probability and the resources game between
multiple agents. Hence, the IMADDPG algorithm is proposed
by adding rank voting method in the testing process for obtain-
ing near-Pareto optimal solutions. The IMADDPG algorithm
could be divided into two main processes, i.e., the training and
testing processes.

The training process of IMADDPG algorithm: As shown
in Fig. 2, the IMADDPG algorithm abides by the rule of
MDP, and each agent includes an actor as well as a crit-
ic, in which the actor is responsible for the policy and
the critic is for the action value. Furthermore, each actor
or critic contains online and target networks, respectively.
Three agents make the interaction with the environment in
a parallel and asynchronous manner. Their four-tuples of⟨
ot
s,o

t
S\s,a

t
s,a

t
S\s, r

t
s, r

t
S\s,o

t+1
s ,ot+1

S\s

⟩
are generated and

then stored in the experience memory of Ds,s ∈ {1, 2, 3},
respectively. Next, we randomly sample Dmini mini-batches
from Ds to the critics and actors for online off-policy training.
The specific training process is summarized in Algorithm 1.

The testing process of IMADDPG algorithm: After com-
pleting the training process of IMADDPG algorithm, the DNN
parameters used to approximate actors and critics (i.e., θµs ,
θQs , θµ

′
s and θQ

′
s) will be stored, that is, the final trained data

are saved. In this way, in the subsequent testing process, as
long as the scale of the DRL model (e.g., the input and output
sizes of actors and critics) is consistent, the trained data can be
directly invoked to run Algorithm 2 to approach Pareto optimal
solutions, without running the training algorithm again.

Moreover, we add an ensemble strategy of rank voting
method [39] in the testing process. Specifically, we use the

8

Algorithm 1 The Training Process of IMADDPG Algorithm.

1: Initialization:
2: Randomly initialize the parameters θQs and θµs of the

critic Qθs

(
ot
s,a

t
s,a

t
S\s|θ

Qs

)
and actor µθs

(
ot
s|θµs

)
for

agent s.
3: Initialize the target network Q′

θs
and µ′

θs
, and set their

parameters as θQ
′
s ← θQs and θµ

′
s ← θµs .

4: Initialize the experience memory Ds.
5: Set the number of users Ks in the current training

process.
6: For episode = 1, ..., E do:
7: Initialize a random process Nt for action exploration.
8: Obtain the initial set of states o0

s .
9: For time step = 1, ..., T do:

10: As for agent s ∈ {1, 2, 3}, select action ats =
µθs

(
ot
s|θµs

)
+Nt based on current policy and exploration

in an asynchronous manner.
11: Perform actions ats and record rewards rts and new

states ot+1
s .

12: In the experience memory Ds, store four-tuples of⟨
ot
s,o

t
S\s,a

t
s,a

t
S\s, r

t
s, r

t
S\s,o

t+1
s ,ot+1

S\s

⟩
.

13: Randomly sample Dmini mini-batches of⟨
oj
s,o

j
S\s,a

j
s,a

j
S\s, r

j
s, r

j
S\s,o

j+1
s ,oj+1

S\s

⟩
from Ds.

14: Calculate TargetQs by (27).
15: Update the critic by minimizing loss function of (28).
16: Update the actor using the gradient policy algorithm

of (25).
17: Update parameters of the target network for each

agent by (31).
18: ot

s ← ot+1
s .

19: End for
20: End for
21: Store the final trained data θµs , θQs , θµ

′
s and θQ

′
s of

DNNs.

trained network model from Algorithm 1 and introduce the
new exploration probability N′

i for action selection in the
testing process. After that, we store the generated four-tuples⟨
oi
s,o

i
S\s,a

i
s,a

i
S\s, r

i
s, r

i
S\s,o

i+1
s ,oi+1

S\s

⟩
in the new experi-

ence memory D′
s, which is used for collecting potential Pareto

optimal solutions. Then, the four-tuples in D′
s are ranked in

the descending order according to the reward value of agent
s. A sequence number ξis is assigned to four-tuple i and agent
s, as follows:

ξis = desc
⟨
oi
s,o

i
S\s,a

i
s,a

i
S\s, r

i
s, r

i
S\s,o

i+1
s ,oi+1

S\s

⟩
, (32)

where desc ⟨·⟩ is the function enabling to rank its elements in
the descending order. Finally, we add the sequence numbers of
three agents for each four-tuple, and select the optimal four-
tuple with the smallest sum of sequence numbers, that is:

ξi = ξi1 + ξi2 + ξi3, (33)

and

⟨o∗
1,o

∗
2,o

∗
3,a

∗
1,a

∗
2,a

∗
3, r

∗
1 , r

∗
2 , r

∗
3⟩ = argmin

i
ξi. (34)

Algorithm 2 The Testing Process of IMADDPG Algorithm.

1: Initialization:
2: Complete the training process of Algorithm 1 or directly

invoke the final trained data of DNNs in Algorithm 1.
3: Initialize the experience memory D′

s.
4: Given a testing state o0

s .
5: REPEAT:
6: Initialize a random process N′

i for action exploration.
7: As for agent s, select action ais = µθs

(
oi
s|θµs

)
+ N′

i

based on current policy and exploration in an asyn-
chronous manner.

8: Perform actions ais and record rewards ris and new states
oi+1
s .

9: In the experience memory D′
s, store four-tuples of⟨

oi
s,o

i
S\s,a

i
s,a

i
S\s, r

i
s, r

i
S\s,o

i+1
s ,oi+1

S\s

⟩
.

10: oi
s ← oi+1

s .
11: STOP when D′

s is full.
12: Sort four-tuples in the experience memory D′

s in the
descending order according to the reward value, and assign
a sequence number to each four-tuple and each agent by
(32).

13: For each four-tuple, add the sequence numbers of three
agents together by (33) to get the sum of sequence
numbers.

14: By (34), the four-tuple with the smallest sum of sequence
numbers is a near-Pareto optimal solution.

When the space of D′
s is large enough, we prove that the op-

timal four-tuple of ⟨o∗
1,o

∗
2,o

∗
3,a

∗
1,a

∗
2,a

∗
3, r

∗
1 , r

∗
2 , r

∗
3⟩ is a near-

Pareto optimal solution in APPENDIX A. Furthermore, the
testing process is summarized in Algorithm 2. We can harvest
multiple near-Pareto optimal solutions so as to approximate
the Pareto boundary by iterating Algorithm 2 for many times.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulation results to verify
the theoretical analysis and compare the performance with
other benchmark algorithms. Suppose the fixed size of the
experience memory Ds in Algorithm 1 is 2000 four-tuples, and
we sample Dmini=32 mini-batches for training at each time
step. In algorithm 2, the capacity of the experience memory
D′

s is 5000 four-tuples. The contents of Ds and D′
s are stored

according to the first in first out (FIFO) principle. The total
available power of a physical BS is PB = 40W and the
available bandwidth in the system is B=10MHz. The other
parameters are given as follows: N=8, M=2, δ=10ms/slot,
β=0.2s, λ=(500×K2)kbps.

In order to reflect the advantages of our proposed schemes,
we give three benchmark algorithms and schemes for compar-
ison. Firstly, we compare the IMADDPG algorithm with the
MADDPG algorithm. Secondly, referring to [31], we take the
traditional scalar method of solving MOOP as the comparison
scheme. From the perspective of MNO, we convert the key
performance metrics of three slices into the utility through a
weighted sum method. Therefore, the network-wide utility can

9

be defined as:

U (t) = ω1R
sum
1 (t)− ω2Q

ave
2 (t) + ω3SINR

ave
3 (t) , (35)

where ω1, ω2 and ω3 are the unit price of throughput gain,
delay gain and SINR gain charged by MNO, respectively.
Significantly, the throughput, average delay and average SINR
of three slices are highly dependent on their weights of ω1,
ω2 and ω3, respectively, which are usually defined through
experience. In other words, optimizing utility may not satisfy
users’ QoS on each slice class. Therefore, we give three
different-weight utility schemes as three comparison schemes.
On the basis of the normalization of the throughput, average
delay and average SINR among three slices, we adjust their
weights ratio to 1:1:1, 2:1:2 and 1:2:1, namely utility(1:1:1),
utility(2:1:2) and utility(1:2:1) schemes, respectively, and we
use the DDPG algorithm to solve them. Finally, we give the
equal resource allocation algorithm among three slices [40]
to compare with our proposed dynamic resources allocation
algorithm. In this algorithm, no matter how the channel states
and the traffic load change, all subchannels and BSs’ power
are always evenly distributed to users of each slice class.

Fig. 3 shows the convergence performance of the IMAD-
DPG algorithm during the training process. Among them,
rewards 1, 2 and 3 represent the three reward functions defined
in (18). We use a total of 20,000 iterations of 20 episodes mul-
tiplying 1000 time steps. It can be seen that each of rewards
1, 2 and 3 converges to a relatively stable state after about
8000 training iterations, respectively. There are still some
small fluctuations mainly due to the addition of exploration
probability Nt when selecting actions in Algorithm 1 and
due to the resource game among the three slices, which are
eliminated in the testing process. In addition, the number of
users on each slice class also affects the value of rewards.
As the number of users increases, reward 1 increases while
reward 2 and 3 decrease, which corresponds to the increase
of throughput on class-1 slices and average delay on class-
2 slices as well as the decrease of average SINR on class-3
slices, respectively.

Fig. 4 characterizes the throughput versus the number of
users K1 of class-1 slices for the proposed scheme and other
comparison schemes. For guaranteeing the accuracy of all
the results, we perform 10 experiment trials for the same
hyperparameter configuration, and show the bootstrap mean
and 95% confidence bounds [41]. Note that in order to facili-
tate the result comparison, the values of performance metrics

shown in this section are time-averaged, i.e., 1
T

T∑
t=1

Rsum
1 (t),

1
T

T∑
t=1

Qave
2 (t) and 1

T

T∑
t=1

SINRave
3 (t). It can be seen that with

the increase of K1, the throughput of all schemes continue
to increase. When K1 exceeds 5, the throughput of our
scheme, utility(1:2:1) scheme, the MADDPG and the equal
resource allocation algorithm tend to be saturated, because it
exists the resource contention among three classes of slices
at this moment. Compared with the equal resource allocation
and the MADDPG algorithm, our IMADDPG algorithm has
better performance, as the IMADDPG algorithm dynamically
shares and releases resources, and circumvents the fluctuation

(a)

(b)

(c)

Fig. 3: Convergence performance of IMADDPG algorithm.

2 3 4 5 6

Number of users K
1
 in class-1 slices

8

10

12

14

16

18

20

22

24

26

28

T
h
ro

u
g
h
p
u
t

o
f

c
la

s
s
-1

 s
lic

e
s
 (

M
b
p
s
)

IMADDPG

MADDPG

Equal allocation

Utility(1:1:1)

Utility(2:1:2)

Utility(1:2:1)

Fig. 4: Throughput versus the number of users K1 of class-1
slices.

problem of the MADDPG algorithm, respectively. Among
the three utility schemes, the larger the weight assigned to
throughput, the higher the obtained throughput. Therefore, the
utility(2:1:2) scheme gets a better throughput performance.
Moreover, we can see that the variation of 95% confidence
intervals is relatively small, which has little impact on the
performance comparison between the proposed and the bench-
mark schemes.

Fig. 5 and Fig. 6 depict the average delay and average SINR
versus the number of users K2 of class-2 slices and users
K3 of class-3 slices for all schemes, respectively. Similarly,
compared with the MADDPG and the equal resource alloca-
tion algorithm, the proposed scheme has better performance.
Among the three utility schemes of Fig. 4, Fig. 5 and Fig. 6,
the utility(1:2:1) scheme has the lowest average delay, but the

10

2 3 4 5 6

Number of users K
2
 in class-2 slices

0

2

4

6

8

10

12

14
A

v
e
ra

g
e
 d

e
la

y
 o

f
c
la

s
s
-2

 s
lic

e
s
 (

m
s
)

IMADDPG

MADDPG

Equal allocation

Utility(1:1:1)

Utility(2:1:2)

Utility(1:2:1)

Fig. 5: Average delay versus the number of users K2 of class-2
slices.

2 3 4 5 6

Number of users K
3
 in class-3 slices

10

20

30

40

50

60

70

A
v
e
ra

g
e
 S

IN
R

 o
f

c
la

s
s
-3

 s
lic

e
s

IMADDPG

MADDPG

Equal allocation

Utility(1:1:1)

Utility(2:1:2)

Utility(1:2:1)

Fig. 6: Average SINR versus the number of users K3 of class-3
slices.

throughput and average SINR of this scheme are poor. On the
contrary, the SINR advantage of the utility(1:1:1) scheme and
the utility(2:1:2) scheme is more obvious, but in exchange, the
delay of both is high. Therefore, the metric of each slice class
in the utility scheme is highly dependent on its weight, which
is subjectively designed in advance. However, our scheme
is universal among different types of RAN slices without
designing the utility function and the weights in advance. It can
obtain the near-Pareto optimal solutions, and these solutions
are not dominated by each other. Meanwhile, it could be seen
by jointly considering Fig. 4, Fig. 5 and Fig. 6 that although
the IMADDPG scheme does not achieve the best result for
all slices, its overall performance achieves the best tradeoff
between the three classes of slices considered.

Fig. 7 describes the average delay versus the data arrival
rate λ of class-2 slices for all schemes when K2 = 5. With
the increase of λ, the average delay of each scheme continues
to increase. We can always obtain lower average delay by
the IMADDPG algorithm than that by the MADDPG and
equal resource allocation algorithm. Obviously, the delay of

0.5 1.5 2.5 3.5 4.5 5.5

Data arrive rate of class-2 slices (Mbps)

0

2

4

6

8

10

12

14

16

18

A
v
e
ra

g
e
 d

e
la

y
 o

f
c
la

s
s
-2

 s
lic

e
s
 (

m
s
)

IMADDPG

MADDPG

Equal allocation

Utility(1:1:1)

Utility(2:1:2)

Utility(1:2:1)

Fig. 7: Average delay versus the data arrival rate λ of class-2
slices.

our proposed scheme and the utility(1:2:1) scheme are stable
within 6 ms, even if the data arrival rate of class-2 slices
increases to more than 5 Mbps. At the same time, when the
traffic load is too high, the performance of the utility(2:1:2)
scheme is poor, even exceeding 10 ms.

Fig. 8(a) is the three-dimensional scatter diagram of near-
Pareto optimal solutions for the three-objective optimization
problem of (14), which is obtained by iterating Algorithm 2
for 1000 times when the number of users per slice class is 5,
and Fig. 8(b) is the schematic diagram of near-Pareto boundary
by using the interpolation method. Since all points on the
near-Pareto boundary are not dominated by each other, the
improvement of the metric on one slice will be accompanied
by the degradation of the metrics on the other one or two
slices. That is, throughput, average delay and average SINR
cannot be improved at the same time, indicating their tradeoff.
For example, when the average delay of class-2 slices is less
than 5ms, the average SINR of class-3 slices will also be
reduced to below 35, and the throughput of class-1 slices will
not exceed 30Mbps. On the near-Pareto boundary, the MNO
can actually execute one of the near-Pareto optimal solutions
according to the priority of slices, where each solution can
correspond to an explicit resource allocation scheme. For
instance, if the low-delay slice has a higher priority, the
MNO can select a near-Pareto optimal solution that has the
lowest delay with guaranteeing basic requirements of the high-
bandwidth slice and wide-coverage slice.

Without loss of generality, we also show schematic diagrams
of the near-Pareto boundary when the number of users per slice
is 3 and 6, respectively in Fig. 9. Similarly, we can observe
their mutual non-dominance. For example, in Fig. 9(a), when
the average SINR of class-3 slices exceeds 58.5, the through-
put of class-1 slices will not exceed 20Mbps, and the average
delay of class-2 slices will be greater than 2ms. In Fig. 9(b),
when the throughput of class-1 slices is greater than 28Mbps,
the average delay of class-2 slices will exceed 4ms, and the
average SINR of class-3 slices will be limited to 38. Overall,
our proposal characterizes a compelling tradeoff among three
types of RAN slices.

11

(a)

(b)

Fig. 8: (a) Near-Pareto optimal scatter diagram; (b) Near-
Pareto boundary (K1=K2=K3=5).

(a)

(b)

Fig. 9: (a) Near-Pareto boundary (K1 = K2 = K3 =3); (b)
Near-Pareto boundary (K1=K2=K3=6).

VI. CONCLUSION

In this paper, we proposed an effective multi-agent DRL
algorithm to jointly optimize three kinds of RAN slices with
different objectives. Specifically, the high-bandwidth slice, the
low-delay slice and the wide-coverage slice were supported
simultaneously under the same physical network. A non-scalar
MOOP was formulated by dynamically deploying proper vBSs
and allocating subchannels and power to users of each slice,
in order to jointly optimize the throughput, average delay and
average SINR. We presented an IMADDPG model structure
and proposed an online off-policy IMADDPG algorithm to
solve the above MOOP, where three parallel distributed AC
structures were employed for centralized training and dis-
tributed execution. By adding the rank voting in the testing
process, we aimed to obtain the near-Pareto optimal solutions.
Simulation results verified that we achieved the near-Pareto
optimum of three classes of slices, and the proposed method
outperformed available algorithms including the traditional
scalar method, the equal resource allocation algorithm and
MADDPG algorithm. Furthermore, the proposed method ap-
proximated multiple Pareto optimal solutions, while the tradi-
tional scalar method only subjectively approached one of the
Pareto optimal solutions. We also gave some guidance on how
to choose Pareto optimal solutions in practical application, e.g.,
MNO could execute one of them according to the priority of
slices. The non-dominance between Pareto optimal solutions
indicates the improvement of one slice always leads to the
degradation of other slices, characterizing the tradeoff between
different RAN slices.

APPENDIX A
PROOF OF NEAR-PARETO OPTIMAL SOLUTION

In the case of the infinite space of D′
s completely containing

all potential Pareto optimal solutions, we first use the proof by
contradiction to verify that ⟨o∗

1,o
∗
2,o

∗
3,a

∗
1,a

∗
2,a

∗
3, r

∗
1 , r

∗
2 , r

∗
3⟩ in

D′
s is one of the Pareto optimal solutions.
Specifically, we assume that the optimal four-tuple of

⟨o∗
1,o

∗
2,o

∗
3,a

∗
1,a

∗
2,a

∗
3, r

∗
1 , r

∗
2 , r

∗
3⟩ is not a Pareto optimal solu-

tion. According to Definition 1, there must be another solution
of ⟨o′

1,o
′
2,o

′
3,a

′
1,a

′
2,a

′
3, r

′
1, r

′
2, r

′
3⟩ with r′s ≥ r∗s , s = 1, 2, 3.

In this way, the sequence number ξ′s of r′s must be smaller
than the sequence number ξ∗s of r∗s , and then the sum of
three agents’ sequence numbers ξ′ must be smaller than the
sum of three agents’ sequence numbers ξ∗. However, we
have known ξ∗ is the smallest sum of sequence number-
s. That is, there is the contradiction between ξ∗ and ξ′,
which indicates that the assumption is not true. Therefore,
⟨o∗

1,o
∗
2,o

∗
3,a

∗
1,a

∗
2,a

∗
3, r

∗
1 , r

∗
2 , r

∗
3⟩ is a Pareto optimal solution

when the space of D′
s is infinite.

Nevertheless, it is obvious that we cannot give an infinite
experience memory of D′

s in actual situations. Therefore,
when the storage space is limited but large enough, the optimal
four-tuple of ⟨o∗

1,o
∗
2,o

∗
3,a

∗
1,a

∗
2,a

∗
3, r

∗
1 , r

∗
2 , r

∗
3⟩ in D′

s is the
near-Pareto optimal [21], [22].

12

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429-2453, thirdquarter 2018.

[2] B. Han, V. Sciancalepore, X. Costa-Prez, D. Feng and H. D. Schotten,
“Multiservice-Based Network Slicing Orchestration With Impatient Ten-
ants,” IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp.
5010-5024, July 2020.

[3] R. Ferrus, O. Sallent, J. Perez-Romero and R. Agusti, “On 5G Radio
Access Network Slicing: Radio Interface Protocol Features and Config-
uration,” IEEE Communications Magazine, vol. 56, no. 5, pp. 184-192,
May 2018.

[4] H. Xiang, S. Yan and M. Peng, “A Realization of Fog-RAN Slicing via
Deep Reinforcement Learning,” IEEE Transactions on Wireless Commu-
nications, vol. 19, no. 4, pp. 2515-2527, April 2020.

[5] Y. L. Lee, J. Loo, T. C. Chuah and L. C. Wang, “Dynamic Network
Slicing for Multitenant Heterogeneous Cloud Radio Access Networks,”
IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2146-
2161, April 2018.

[6] H. Xiang, M. Peng, Y. Sun and S. Yan,“Mode Selection and Resource
Allocation in Sliced Fog Radio Access Networks: A Reinforcement
Learning Approach,” IEEE Transactions on Vehicular Technology, vol.
69, no. 4, pp. 4271-4284, April 2020.

[7] L. Tang, X. Zhang, H. Xiang, Y. Sun and M. Peng, “Joint resource
allocation and caching placement for network slicing in fog radio access
networks,” 2017 IEEE 18th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), Sapporo, 2017, pp. 1-
6.

[8] C. Song et al., “Hierarchical edge cloud enabling network slicing for 5G
optical fronthaul,” Journal of Optical Communications and Networking,
vol. 11, no. 4, pp. B60-B70, April 2019.

[9] X. Shen et al., “AI-Assisted Network-Slicing Based Next-Generation
Wireless Networks,” IEEE Open Journal of Vehicular Technology, vol.
1, pp. 45-66, 2020.

[10] I. Kovacevic, A. S. Shafigh, S. Glisic, B. Lorenzo and E. Hos-
sain, “Multi-Domain Network Slicing With Latency Equalization,” IEEE
Transactions on Network and Service Management, vol. 17, no. 4, pp.
2182-2196, Dec. 2020.

[11] S. Dawaliby, A. Bradai and Y. Pousset, “Distributed Network Slicing
in Large Scale IoT Based on Coalitional Multi-Game Theory,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1567-1580, Dec. 2019.

[12] G. Wang, G. Feng, T. Q. S. Quek, S. Qin, R. Wen and W. Tan, “Recon-
figuration in Network Slicing-Optimizing the Profit and Performance,”
IEEE Transactions on Network and Service Management, vol. 16, no. 2,
pp. 591-605, June 2019.

[13] B. Han, V. Sciancalepore, X. Costa-Prez, D. Feng and H. D. Schotten,
“Multiservice-Based Network Slicing Orchestration With Impatient Ten-
ants,” IEEE Transactions on Wireless Communications, vol. 19, no. 7, pp.
5010-5024, July 2020.

[14] Z. L. Lyu, X. Q. Wang and Z. X. Yang, “Optimal dynamic dispatch of
pareto frontier for microgrid based on MOIBBO algorithm,” 2017 IEEE
Power & Energy Society General Meeting, Chicago, IL, 2017, pp. 1-5.

[15] E. Bjornson, E. Jorswieck, M. Debbah, et al., “Multi-Objective Signal
Processing Optimization: The Way to Balance Conflicting Metrics in 5G
Systems,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 14-23,
2014.

[16] Q. Shi, L. Zhao, Y. Zhang, G. Zheng, F. R. Yu and H. Chen, “Energy-
Efficiency Versus Delay Tradeoff in Wireless Networks Virtualization,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 837-841,
Jan. 2018.

[17] Y. Hua, R. Li, Z. Zhao, X. Chen and H. Zhang, “GAN-Powered
Deep Distributional Reinforcement Learning for Resource Management
in Network Slicing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 2, pp. 334-349, Feb. 2020.

[18] I. Afolabi, J. Prados-Garzon, M. Bagaa, T. Taleb and P. Ameigeiras,
“Dynamic Resource Provisioning of a Scalable E2E Network Slicing
Orchestration System,” IEEE Transactions on Mobile Computing, vol.
19, no. 11, pp. 2594-2608, 1 Nov. 2020.

[19] Q. Xu, J. Wang and K. Wu, “Learning-Based Dynamic Resource
Provisioning for Network Slicing with Ensured End-to-End Performance
Bound,” IEEE Transactions on Network Science and Engineering, vol. 7,
no. 1, pp. 28-41, 1 Jan.-March 2020.

[20] W. Guan, X. Wen, L. Wang, Z. Lu and Y. Shen, “A Service-Oriented
Deployment Policy of End-to-End Network Slicing Based on Complex
Network Theory,” IEEE Access, vol. 6, pp. 19691-19701, 2018.

[21] J. Cui, S. X. Ng, D. Liu, J. Zhang, A. Nallanathan and L. Hanzo,
“Multiobjective Optimization for Integrated Ground-Air-Space Networks:
Current Research and Future Challenges,” IEEE Vehicular Technology
Magazine, vol. 16, no. 3, pp. 88-98, Sept. 2021.

[22] J. Cui, H. Yetgin, D. Liu, J. Zhang, S. X. Ng and L. Hanzo, “Twin-
Component Near-Pareto Routing Optimization for AANETs in the North-
Atlantic Region Relying on Real Flight Statistics,” IEEE Open Journal
of Vehicular Technology, vol. 2, pp. 346-364, 2021.

[23] Z. Du, Y. Deng, W. Guo, A. Nallanathan and Q. Wu, “Green Deep
Reinforcement Learning for Radio Resource Management: Architecture,
Algorithm Compression, and Challenges,” IEEE Vehicular Technology
Magazine, vol. 16, no. 1, pp. 29-39, March 2021.

[24] J. Wang, C. Jiang, H. Zhang, Y. Ren, K. -C. Chen and L. Hanzo,
“Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless
Networks,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 1472-1514, thirdquarter 2020.

[25] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen and L. Hanzo, “A Survey
of Multi-Objective Optimization in Wireless Sensor Networks: Metrics,
Algorithms, and Open Problems,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 1, pp. 550-586, Firstquarter 2017.

[26] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments,” Advances in neural information processing systems, pp. 6379-
6390, 2017.

[27] X. Li, K. Jiao, F. Jiang, J. Wang and M. Pan, “A Service-Oriented
Spectrum-Aware RAN-Slicing Trading Scheme Under Spectrum Shar-
ing,” IEEE Internet of Things Journal, vol. 7, no. 11, pp. 11303-11317,
Nov. 2020.

[28] D. Wu, Z. Zhang, S. Wu, J. Yang and R. Wang, “Biologically In-
spired Resource Allocation for Network Slices in 5G-Enabled Internet of
Things,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9266-9279,
Dec. 2019.

[29] P. Yang, X. Xi, T. Q. S. Quek, J. Chen, X. Cao and D. Wu, “RAN Slicing
for Massive IoT and Bursty URLLC Service Multiplexing: Analysis and
Optimization,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 14258-
14275, 15 Sept.15, 2021.

[30] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94-100, May 2017.

[31] G. Zhou, L. Zhao, K. Liang, G. Zheng and L. Hanzo, “Utility Analysis
of Radio Access Network Slicing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 1, pp. 1163-1167, Jan. 2020.

[32] X. Chen, et al., “Multi-Tenant Cross-Slice Resource Orchestration: A
Deep Reinforcement Learning Approach,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 10, pp. 2377-2392, Oct. 2019.

[33] D. P. Bertsekas and R. G. Gallager, Data Networks (2nd edition).
Prentice Hall, 1992.

[34] W. Wang, V. K. N. Lau and M. Peng, “Delay-Aware Uplink Fronthaul
Allocation in Cloud Radio Access Networks,” IEEE Transactions on
Wireless Communications, vol. 16, no. 7, pp. 4275-4287, July 2017.

[35] Y. Cao, S. -Y. Lien, Y. -C. Liang, K. -C. Chen and X. Shen, “User
Access Control in Open Radio Access Networks: A Federated Deep
Reinforcement Learning Approach,” IEEE Transactions on Wireless Com-
munications, doi: 10.1109/TWC.2021.3123500.

[36] R. Li et al.,“Deep Reinforcement Learning for Resource Management
in Network Slicing,” IEEE Access, vol. 6, pp. 74429-74441, 2018.

[37] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game
of Go without human knowledge,” Nature, vol. 550, pp. 354-359, Ooc.
2017.

[38] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah and W.
Jiang, “Dynamic Reservation and Deep Reinforcement Learning Based
Autonomous Resource Slicing for Virtualized Radio Access Networks,”
IEEE Access, vol. 7, pp. 45758-45772, 2019.

[39] T. Brys, et al., “Multi-objectivization and Ensembles of Shapings in
Reinforcement Learning,” Neurocomputing, vol. 263, pp. 48-59, nov.
2017.

[40] Y. L. Lee, J. Loo, T. C. Chuah and L. Wang, “Dynamic Network Slicing
for Multitenant Heterogeneous Cloud Radio Access Networks,” IEEE
Transactions on Wireless Communications, vol. 17, no. 4, pp. 2146-2161,
April 2018.

[41] Peter Henderson, et al., “Deep reinforcement learning that matters.”
Proceedings of the AAAI conference on artificial intelligence, vol. 32.
no. 1, 2018.

