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Abstract

Intelligent transportation systems have the potential to provide road users

with a range of useful applications, including vehicle preconditioning, traffic

flow management and intelligent parking recommendations. The majority of

these applications can benefit from knowledge of vehicle activities (common

situations that a vehicle encounters e.g. traffic), along with the upcoming

destinations that a vehicle will visit. We focus on the trajectories that vehicles

provide, and the data contained within them, in order to ascertain information

about the patterns in individuals’ mobility data.

Machine learning has been used in many different vehicle applications, and

we focus on using these techniques to predict the activity of a vehicle and

its future destinations. Clustering methods can be applied at the level of

trajectories or the individual instances within them, and we explore both of

these alternatives in this thesis. Additionally, we explore several classification

approaches to predict activities and destinations. In developing our methods,

we make use of a combination of both geospatial and temporal data along with

on-board vehicle sensor data.

This thesis presents novel methods for filtering stay points to identify points

of interest and applying destination prediction to vehicle trajectories. Existing

methods for stay point detection are not specific to vehicles, and therefore any

region of low mobility is potentially considered to be of interest. We propose

a novel method for filtering the extracted stay points to identify points of

interest, using vehicle data to predict vehicle activities. The predicted activities

are further used to represent trajectories as sequences of annotated locations,

to inform the detection of similarities between journeys. Finally, this thesis

presents a novel method for using additional properties of a trajectory to cluster

trajectories into groupings of similar trajectories with the aim of improving

the accuracy of destination prediction. We evaluate our proposed methods on

a set of vehicle datasets, varying in purpose and the data available.
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Chapter 1

Introduction

Human mobility is a vast area of research that is prevalent in society today

[30, 66, 83, 108, 144, 150]. Advances in technology have made location-aware

devices become commonplace [74], resulting in a wealth of data on individuals,

with companies yet to find suitable applications for all the available data [2].

Examples of the use of location data include social media platforms, such as

Facebook and Twitter, along with car insurance companies, and search engines,

where the data collected will tailor or enrich the service the user receives

[12, 112, 131]. This thesis will focus on human mobility within the vehicle

domain, meaning that we only consider human mobility patterns from vehicle

usage. In particular, we investigate private vehicles. We also consider data

collected from taxis to allow for direct comparison to existing work.

With the rapid development of intelligent vehicles in recent years [31],

the demand for location-aware applications will only increase as individuals

become more dependant on the smart functionality they are now accustomed

to from other services. This demand for intelligent vehicle functionality can

come in a range of applications, for example, real-time parking information

[28, 36, 176] and restaurant recommendations at the destination [46, 70, 89]

are useful functions that an individual might desire from their vehicle. These

applications all rely on human mobility patterns and utilising these to predict

user-based information including their important locations and frequent traject-

ories. Applications such as ride-sharing opportunities [26, 47] and predicting

the taxi demand in a given area [179] can harness the information contained

within human mobility patterns. We define a point of interest, in the context

of vehicle applications, as a point of low mobility (stay point) where the vehicle

has stopped for an intended purpose e.g. to park or pick-up a passenger.

Applications that can predict unknown values typically rely on machine

learning, where a pre-trained classifier can read input data and assign a label

based on previous data. Important considerations include assessing the cost in

terms of both computation time and storage, and finding a trade-off between

this cost and performance [153]. Machine learning has been used for vehicle

applications such as predicting future destinations [9, 23, 99, 149, 174, 175],

estimating traffic flow [40, 115, 116, 132], and fault detection [69, 87, 140, 146].
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Some of these applications utilise vehicle telemetry data, which is typically

obtained from the Controller Area Network (CAN) bus, or equivalent. The

CAN-bus adopts a message-based protocol, allowing each device to broadcast

messages at their own defined intervals [58], and ensuring that all signals are

received. This allows for high-frequency data capture, giving precise meas-

urements for the vehicle’s systems. Data loggers can record this information,

along with GPS, allowing for the collection of high quality vehicle trajectories.

The focus of this thesis is the destination prediction process. This process

encompasses several steps: data collection, feature curation, trajectory and stay

point extraction, automated filtering and automated prediction. The following

subsection details the contributions of this thesis, which advance and improve

the state-of-the-art techniques used in the destination prediction process.

1.1 Problem Statement & Contributions

This thesis aims to propose new data-driven approaches that harness the latent

information contained in vehicle trajectories, whether that be from vehicle

telemetry, spatial or temporal data. Specifically, the problem statement is: Can

we devise new techniques that either utilise the data in a different

way, or consider different data, within vehicle trajectories to improve

applications such as point of interest extraction and destination

prediction? In order to investigate our proposed problem, this thesis provides

the following contributions.

1. Removing false positive points of interest within vehicle tra-

jectories. Previous investigations into point of interest (PoI) extraction

did not consider points of interest specifically within vehicle trajector-

ies. Vehicle trajectories have different characteristics to other types of

trajectories, the most important of which is that stopping in a location

does not imply that this is the intent of the individual, as it may in

fact be a consequence of getting to their destination. An example of

this could be stopping at a toll both, which is necessary to get to the

destination, but in itself is unrelated to the purpose of the journey. The

consequence of this is that current state-of-the-art approaches generate

false PoIs [18, 126, 158]. We propose Activity-based Vehicle Point of

Interest Extraction (AVPE), an algorithm for extracting points of interest

within vehicle trajectories, that filters out false positives by classifying

the activity of the vehicle. We define vehicle activity to be common

situations or tasks in which the vehicle encounters, for example, waiting

in traffic or performing a manoeuvre.

2. Using sequences of activity-annotated stay points to predict
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destinations. Within a vehicle trajectory, there may be several activities

performed at stay points, such as dropping off a passenger or making

a turn-in-the-road. These activities can provide extra context about

the trajectory they are within, and information on activities may help

in predicting the destination of the vehicle. We propose a method to

annotate and group stay points within vehicle trajectories, to compare

sequences and predict destinations. As part of this method, we propose

using multiple activity groupings for training, since the effectiveness of

using activities to predict destinations may vary depending on the input

data.

3. Grouping vehicle trajectories by their additional properties.

Decomposing data into smaller groupings can result in the data within

each group being more similar to each other. This notion can be applied to

trajectory classification and, by extension, destination prediction. Further

grouping of trajectories could result in a lower prediction error for the

final destination. We propose Destination Prediction by Trajectory Sub-

clustering (DPTS), which performs multi-layered clustering on trajectory

data, which is an extension built on the work of Besse et al. [23].

Additionally, we propose two types of decision threshold to assess the

certainty of prediction, and enable a more general prediction to be made

if this threshold is not met.

4. Collection of two vehicle datasets for point of interest and

pattern of life experiments. To enable the study of vehicle trajectories

within this thesis, two datasets were collected, namely, the Warwick

Location Extraction Dataset (LED) and the Warwick Pattern of Life

Dataset (POLD). Both datasets contain samples from two different

vehicles, and consist of GPS data alongside all the signals available on

the vehicle. To create the LED, a specific data collection protocol was

devised, with scripted routes and actions for investigating PoI extraction.

The LED has been made publicly available for use in future research

on PoI extraction1. The POLD consists of segmented data for multiple

drivers over weekly or fortnightly periods. As with the LED, full vehicle

data alongside GPS was available in this dataset. This dataset is not

publicly available due to the sensitive nature of the participant’s routines

and locations, but has been used to support the evaluation in this thesis.

1.2 Structure

The thesis is structured in the following chapters.

1https://www.dcs.warwick.ac.uk/led
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Chapter 2 provides an overview into the related work surrounding vehicle

trajectory data, including existing clustering methods for PoI extraction and

approaches to destination prediction.

Chapter 3 presents the Warwick Location Extraction Dataset (LED) and

Pattern of Life Dataset (POLD), that have been collected as part of this work,

along with other trajectory datasets that we utilise for our experiments. This

chapter details the preparation and collection procedures used to create the

LED and POLD.

Chapter 4 presents Activity-based Vehicle Point of Interest Extraction

(AVPE), a wrapper method around existing PoI extraction methods, that

introduces the notion of vehicle activity classification, and uses the predicted

activity as a method to filter out false positives. AVPE uses signals for the

vehicle, such as the gear position and door status, within the proposed activity

classification, which provides further insight into the intent of the driver of the

vehicle. The performance of AVPE is compared to an existing state-of-the-art

method on the LED, in addition to evaluating the performance on unscripted

data from the POLD.

Chapter 5 investigates the use of activity annotations within vehicle

trajectories, to establish whether such annotations can assist with predicting

the destination of the vehicle. The proposed method includes the concept of

aggregating individual activities together into groups, to establish whether

different combinations of activity labels are beneficial for different individuals.

The impact of adding activity annotations and using these to aid destination

prediction is compared to existing methods that solely rely on the geospatial

data.

Chapter 6 introduces Destination Prediction by Trajectory Sub-clustering

(DPTS), an extension to an existing method, presented by Besse et al. [23], that

aims to reduce the prediction error by further grouping trajectories into smaller

clusters. DPTS includes a parameter matrix, in which further sub-clustering

can be easily performed, along with a decision threshold that evaluates the

sub-cluster classifier against that of the baseline, and can revert to the original

prediction if the performance is not adequate.

Chapter 7 concludes the work presented in this thesis and outlines future

research within this area.
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Chapter 2

Background & Related Work

Intelligent transportation systems present opportunities to enhance the way we

use our vehicles. Modern vehicles come with onboard systems and numerous

sensors providing a vast amount of data. With this data, opportunities arise to

further understand vehicle trajectories, utilising on-board data to enrich the

information surrounding a given trajectory.

In this chapter, we present the background and related work for this thesis.

The topic of intelligent transportation systems is introduced in Section 2.1,

before considering an overview of the research into human mobility in Section

2.2. After considering a general overview of intelligent transportation systems

and human mobility, destination prediction is explored in Section 2.3. Section

2.4 introduces the technologies used in data collection and how these form

trajectories. The related work surrounding point of interest extraction is

described in Section 2.5, and finally we discuss existing research on activity

recognition in Section 2.6.

2.1 Intelligent Transportation Systems

The subject of intelligent transportation systems (ITS) has been a key topic of

research in recent years. As new technologies emerge, products with intelligent

automation and prediction capabilities have increasingly become commonplace

in society. Artificial intelligence and machine learning techniques underlie the

development of these new technologies. A strong focus has been on home

automation tools, leaving other areas without significant development.

Destination prediction is an active area of research, especially when used

in conjunction with ITS, and is the focus of this thesis. Krumm and Horvitz

investigated real-time destination prediction for car journeys whilst on the

move [99]. They used Bayesian AI to predict the stopping point of a trajectory

in a kilometre square region, taking a subset of available road and trajectory

properties in order to build the learning model. Simmons et al. also developed

a similar system, using Markov Models with a graph representation of the road

system, which would predict the subsequent edge that a vehicle would take

[149].
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Knowing the destination in advance can assist with route planning, which

aims to provide the best possible route for either the driver or the system as

a whole. This links closely with traffic assessment and traffic flow efficiency,

since techniques for each can have mutual benefit when used together. This

area has seen multiple approaches for real-time re-routing. For example,

Wang et al. [170] investigate the use of localised vehicle-to-infrastructure (V2I)

communications to inform approaching vehicles of unexpected traffic conditions

along the route, while Adler and Blue model drivers as cooperative agents with

the goal of finding a solution that best accommodates the needs of all parties

[5].

The assessment of traffic conditions has been considered by many researchers.

Using vehicle-to-vehicle (V2V) communications, Ma et al. demonstrated that

lane-changes and speed profiles could help characterise incidents with relatively

high classification accuracy [116]. In 2011, Bauza and Gozalvez proposed

Cooperative Traffic Congestion Detection, a mechanism that attempts to

combine previous attempts into one with greater functionality. This approach

includes information on traffic density, helping to improve overall prediction

accuracy for scenarios with dense traffic conditions [21].

Whilst traffic assessment can provide advanced warning of problems in

traffic flow, it cannot solve the initial congestion, a serious issue that can have

consequences both economically and in terms of safety. Congestion is caused

by exceeding the capacity of the road and by disruption in traffic flows. By

using V2V communications, research has been carried out in multiple areas

including streamlining the flow at signalled junctions, allowing cooperative

merging on motorways, and improving driving efficiency when using multi-lane

roads. Butakov et al. model each driver individually, allowing for a trade-off

between fuel economy and journey time [35]. When considering the issue of

traffic flow disruption, recent research has focused on maintaining suitable

gaps to anticipate changes in condition, enabling early decisions and smooth

changes in velocity [84, 142].

Techniques such as platooning, where multiple vehicles travel close to one

another at a set speed, can be a method of improving traffic flows. Driving in

a platoon can also reduce fuel consumption compared to driving separately,

particularly for heavy-goods vehicles (HGVs). Due to this, platooning, most

notably in HGVs, has become an active area of research interest. In 2010,

Alam et al. carried out experiments on a Swedish highway, investigating the

effects of a 2-truck platoon on fuel consumption [7]. Larson et al. proposed a

framework to assist the formation of platoons [103], since this has been the

focus of little research.

The key motivation for our focus on destination prediction in this thesis is

that having knowledge of a vehicles destination could improve the effectiveness
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of specific intelligent transportation systems, even if the prediction is only

partially correct (i.e., only valid for the next few steps of the journey). Examples

of applications that could benefit from these predictions include route planning,

traffic assessment, traffic management and platooning, which we discuss in this

section.

2.1.1 Route Planning

Route planning can encompass many aspects of agent based systems and vehicle

communications. The goal is to advise the driver of a route which is going to

be most desirable, whether in terms of travel time, traffic disruption or type of

route.

Wang et al. considered re-routing vehicles at the point of approaching

unforeseen congestion in an urban environment [170]. It was proposed that

traffic lights could be altered, through fitting V2I communications hardware,

allowing interaction between the lights and vehicles. The aim of the protocol

proposed by Wang et al. was to provide a recommendation to mitigate the

congested area, and not change the entire route. The decision to only change

parts of the route was taken from an efficiency perspective as it is logical for

the control of the traffic lights to only be concerned with congestion in their

immediate vicinity due to the extra complexity and communication overheads

that might otherwise be involved.

Wang et al. also considered the balance between selfish and altruistic

solutions, enabling re-routing guidance to benefit the road system as a whole

whilst also providing useful recommendations to each individual driver. This

system view is shared in other research, with de Souza et al. highlighting the

importance of maximising the spatial utilisation of the network [51]. Whilst such

a recommendation system does not have control over the driver’s actions, Adler

and Blue reinforce that compromises must be made in order for a satisfactory

solution to be obtained [5]. In their simulations, Wang et al. reported that

overuse of selfish re-routing mechanisms had a significant negative impact on

the overall traffic conditions [170].

It is common for the road network to be modelled as a graph [51, 92].

For example de Souza et al. [51] generated weights for edges, representing

the current road classification, and used the k-nearest neighbours technique

to classify the roads, based on an estimate of road density and the average

speed. Upon detection of a congested road, an area of interest is declared

and re-routing commences, with load balancing used to ensure that additional

disruption is kept to a minimum. Following the approach that Wang et al.

proposed, the road-side units do not attempt to modify the route outside of

the affected area [170].
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Overall, Wang et al. found that their method yielded an average of a 38%

improvement in travel time [170] compared to de Souza et al. who achieved a

reduction in stopped time, albeit with an increase in overall journey distance

[51]. In the work of Kim et al., Markov policies were used to help with

vehicle routing [92]. Their investigations found that combining real-time and

historical data could greatly reduce overall vehicle usage during periods of high

congestion.

The issues surrounding route planning include finding a suitable trade-off

between selfish and altruistic approaches, whilst providing useful recommenda-

tions in a real-time manner. Including historical data has shown improvements

in reduced vehicle usage, however an increased amount of integration with this

data could be beneficial. Other solutions that include road-side units in an

urban environment have not considered this data and therefore further investig-

ation into its use is warranted. In addition, new methods for traffic assessment

may further increase the performance of the aforementioned systems, since

early and more reliable detection can be useful. An application such as route

planning could benefit from knowledge of vehicle’s destinations in advance, en-

abling timely notifications to the driver including when important information

regarding the destination is received or an alternate route is advised.

2.1.2 Traffic Assessment

Data from the continuous assessment of traffic conditions can support a range of

applications relating to route planning and the development of transportation

networks. Recently, research into effective traffic assessment mechanisms has

been undertaken, particularly on multi-lane roads such as motorways. In

2009, Ma et al. investigated the use of Artificial Neural Networks (ANNs) and

Support Vector Machines (SVMs) to assess traffic conditions in real time [116].

Their work highlighted existing research into V2V and V2I communication

and the methods that exist for automatically monitoring traffic conditions.

Unlike previous work, Ma et al. proposed using lane-changes and speed profiles

to characterise incidents. Overall, it was concluded that the SVM approach

worked with relatively high performance in a simulated environment, especially

when compared to the baseline California algorithm, a popular and easy-to-

implement incident detection algorithm [128].

CoTEC (COperative Traffic congestion detECtion) was proposed in 2011 by

Bauza and Gozalvez [21]. CoTEC is a traffic congestion detection mechanism

that attempts to use a combination of techniques to provide complete coverage,

including the ability to monitor conditions, obtain a consensus among V2V

enabled vehicles and limit the transmission of redundant information. In

2014, Yuan et al. investigated the use of beacons to determine the status of
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neighbouring vehicles [178], using a similar implementation to CoTEC.

The level of congestion can be calculated using traffic density and average

speed, in which some approaches achieve consensus [21], and others append

their own estimate to the transmission [178]. The traffic condition reports are

propagated back from the front of the queue, employing duplicate detection,

and only exchanging data in abnormal traffic conditions, therefore limiting the

communication overheads [21, 178]. The final reports could be used either to

alter the route guidance of approaching vehicles or to connect to infrastructure

to provide long-range detection.

Overall, CoTEC can accurately detect congestion and give indicators of the

intensity and length of congestion, allowing the potential for intelligent route

modification using this collected information. The performance measures when

compared against induction loops are generally of similar effectiveness, but

CoTEC outperforms the infrastructure-based system if the loop separations

are over 300m. However, it is worth noting that these results assume 100%

penetration, which is not representative of real world scenarios. Decreased

penetration results in underestimation thus resulting in significant degradation

in performance. The work of Yuan et al. is also promising, with shorter delay

times on multi-lane roads when simulated [178].

It is important to consider the trade-off between communication overhead

and detection accuracy, and more work could be done to ensure that accur-

acy does not suffer as a consequence of reducing communication overhead.

Additionally, using existing systems to boost the detection accuracy may be

beneficial. For example, incorporating data from induction loops with data

from vehicles may be effective. This would require the use of V2I communic-

ations linked with the induction loops, and the feasibility of this should be

investigated. More importantly, the effect of decreased vehicle penetration and

data loss on classification accuracy needs further investigation.

The research into traffic assessment and cooperative congestion detection

can provide useful information to surrounding vehicles, however further benefits

could be gained by providing this data to a wider range of vehicles. Vehicles

with destination prediction capability could receive the traffic assessment data

whilst in the earlier stages of their journey, resulting in vehicles having enough

time to change route and not add to the current congestion.

2.1.3 Traffic Flow Efficiency

Whilst a lot of research has gone into assessing traffic conditions, it is also of

equal importance to explore techniques that improve the flow of traffic. This

may have a positive impact on traffic condition assessment and could also link

between the assessment and route planning applications to improve individual
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journeys. Research in this area mainly focuses on driver recommendations,

giving these based on the output of predictive models.

Butakov et al. discussed a method for minimising the change in speed when

approaching signalled intersections, assuming that the location and timing of

traffic lights and traffic flow speed would be available ahead of time through V2I

communication [35]. At the same time, a traffic operations centre would provide

average traffic speed and density information through the same communication

link. Based on this, they create a model for vehicle energy, which uses the

forces applied to the vehicle at a given point to estimate the energy usage.

Asadi and Vahidi investigated a similar situation that used forces from the

road and engine to track velocity [13], much like in the work of Butakov et al.

[35]. Rule sets were used in order to calculate a target velocity that should

be matched so that the vehicle arrival coincided with the green phase of a

given light. Once again, this timing information was assumed to be available

ahead of time, and broadcast so that vehicles could receive this data. In

Butakov et al.’s approach, amber lights are modelled as red because under

normal circumstances it is not desirable to travel through a amber light [35].

The system also used real driving data, such as acceleration and deceleration

profiles, to add personalisation, calculating a trade-off between arrival time

and fuel economy, which was tuned to each individual driver.

Butakov et al. used Monte Carlo simulations, generating 1000 cases with

different parameters for both driver style and route characteristics (such as

traffic light patterns). An average of a 29% reduction in energy consumption was

found, with only 15 out of 1000 cases requiring more energy than without the

recommendation. Asadi and Vahidi simulated multiple scenarios for suburban

driving and multi-vehicle encounters [13]. They concluded that communicating

the traffic light state to vehicles aided fuel consumption, with experimental

results showing an average increase of 8.3 miles per gallon over 6 simulated

vehicles.

Another use-case in which traffic lights can be used is to control the entry

of vehicle onto a motorway. Scarinci et al. explored the problem of not being

able to find a suitable gap to merge when joining a motorway [142]. Previous

research has highlighted this issue as one of the key causes of breakdowns

in traffic flows, which can be dangerous to road users. Current systems use

inductive loops and traffic lights at the slip road but this does not involve any

cooperation between vehicles.

Scarinci et al. proposed a system called Cooperative Merging Assistance

(CoopMA) which aims to release platoons of vehicles into specifically created

gaps on the motorway [142]. This is achieved by reducing the speed of a vehicle

on the motorway through some method of vehicular communication. Gaps will

be created between cooperating vehicles at the front of the platoon and the
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last vehicle in the next platoon upstream. By calculating these trajectories it

is possible to determine the time and space in which the platoon vehicles will

need to compact. No intelligent vehicles are needed on the slip road, however

V2I communications need to occur between the motorway vehicles and the

infrastructure in order to get their position and to receive a request to slow

down and create a gap. Multiple simulations were carried out, showing a

positive effect on the reduction in congestion levels. However, techniques for

dealing with the lack of cooperating vehicles being available or inaccuracies in

estimations are not considered. An alternative approach to minimising speed

and creating a gap where slip roads merge, is to ensure early and planned lane

change manoeuvres, which could improve fuel efficiency and flow on multi-lane

roads [84].

These approaches focus on either recommendations to the driver or instruc-

tions to the vehicle a short period of time prior to the arrival of the vehicle.

Having prior knowledge of a vehicle’s destination could allow these traffic flow

applications to provide information to the vehicle further in advance, which

could improve efficiency, allowing the driver or vehicle more time to act.

2.1.4 Platooning

Another benefit for traffic flows may be platooning, where groups of vehicles

travel together at close distances. This can have a positive influence on fuel

economy. Larson et al. investigated the coordination of platoon formations

by developing a system of virtual controllers, normally located at junctions

[103]. They analysed the amount of fuel saved using a large-scale simulation of

part of the Autobahn network in Germany. The coordination process is only

started if the fuel savings are greater than the overheads to form the platoon.

The process does not necessarily alter route information, but instead slightly

reduces a vehicle’s speed in order to facilitate platoon formation. This can be

done in real-time using only location, speed and destination information.

With a few thousand participants, the simulated data achieved a reduc-

tion in fuel consumption of over 5%. However, the authors noted that fuel

consumption reduction generally increases with the number of participants.

Alam et al. also investigated fuel consumption reduction in platoons, focusing

on heavy goods vehicles (HGVs) [7]. They concluded that the amount of fuel

consumption reduction was dependant on both the time gap and the load of

the lead vehicle. The results showed that trucks of identical weight enabled the

highest amount of fuel reduction, in which the smallest time gap was used. The

time gap was a preset function as part of the user configurable adaptive cruise

control (ACC), that alters speed to maintain the desired separation to the

vehicle in front. The smallest gap gave a 7.7% reduction when platooning with
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identical trucks. These tests were simulated with the use of a modelling tool

called Dymola [32]. A further experiment was also carried out on a Swedish

highway using two identical trucks.

If platoon formation is recommended, a framework for maintaining the

control of the platoon is required. Qian et al. investigated a predictive frame-

work to manage the formation of the platoon [133]. Models for the road and

other objects must be considered since other vehicles, not in the convoy, will

be present. A virtual structure is proposed, maintaining a reference path,

upcoming obstacles, road curvature and speed limits. Amoozadeh et al. also

conducted research regarding platoon management protocols [10]. Their pro-

posed method supported three basic operations, allowing for merge, split and

lane change functionality. To achieve other, more complex, operations the

three basic operations are used in varying combinations. The authors con-

structed seventeen individual micro commands, which provide the underlining

functionality of the protocol.

Deeper analysis of the results found that larger platoon sizes and smaller

inter-platoon spacing have a positive affect on overall throughput. Additionally,

the simulations found that the most costly operation by a large margin was

the merge operation. Simulations demonstrated the value of their approach,

although perfect communication will not happen in real scenarios, and the

impact of this has not been quantified. Ozbilgin et al. investigated the trade-off

between cost and effectiveness of data shared within platoons [125].

Platooning at traffic lights is also an area of consideration, and Gunther et al.

developed a rule-based algorithm for this [68]. It takes a follow-leader principle

but also considers non-V2X vehicles. SUMO [96] and OMNeT++ [166] are used

to simulate this technique, considering the required penetration rate of vehicles

with communication capabilities in order to have a significant increase in traffic

efficiency. Other work shows increased throughput by displaying the time until

the next green phase of the upcoming traffic light to the driver [13, 35]. To

group approaching vehicles, V2X communication is used [142], however for this

to be possible all vehicles must have V2X communication capabilities. The role

of a vehicle is evaluated to identify its abilities and those of the surrounding

vehicles, which will directly impact on what the vehicle can achieve [68]. To

test their rule-based algorithm, Gunther et al. performed simulations of a

4-way traffic intersection, with different parameter configurations, changing the

penetration rate, distance and time gap to the preceding vehicle. They found

that the crossing time for platoon vehicles is substantially shorter than other

vehicles since no delay between the light change and accelerating is exhibited.

Platooning can provide efficiencies both in terms of traffic flow and fuel (or

energy in the case of electric vehicles). However, coordination of forming these

platoons is important to enable these efficiencies, and this is something that
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destination prediction could benefit. Knowledge of several vehicle’s destinations

in advance could enable forward planning in the formation of platoons, and

have the potential to give recommendations to candidate vehicles ahead of

time.

2.1.5 Summary

The literature surrounding intelligent transportation systems is vast and a

large amount of research has been undertaken. Agent-based solutions and

machine learning techniques are widespread across the domain, providing new

functionality that improves safety, driver comfort and convenience. Vehicular

communication systems hold the key to unlocking even greater potential for

development within everyday vehicle use.

The element of collaboration between vehicles provides additional informa-

tion, allowing for new functionality to be developed and existing systems to

be improved. However, with communicating vehicles, new concerns regarding

safety and security are raised. How such collaborative information is used and

to what extent it can affect an individual vehicle or fleet of vehicles needs to

be considered, including from a security perspective.

In much of the literature the communications channel is assumed to be

perfect, with no delay or loss of data. In future work, extra focus should be put

on how delayed information can affect the output or result of the application.

Similarly, sensor readings are also assumed to be of high precision, especially

in cooperative manoeuvres like platooning. Further exploration on how sensor

errors and inaccuracies influence system performance is required, and new

techniques may be required to compensate for these issues.

Due to the nature of the research, a large amount of simulation is conducted

in previous work, but little real-world data is used and limited real-world

experiments are carried out. Tests to establish the extent to which simulations

are representative and provide reliable results should be conducted, to establish

whether unexpected results would be observed when taken from simulation to

the real-world.

Overall, there is great potential in these applications surrounding intelligent

vehicles, all of which could benefit from advance knowledge of the intended

destination of each vehicle. For example, using destination prediction could

suggest an appropriate time for multiple vehicles to depart, to maximise the

time that trajectories overlap, planning a platoon to be formed in advance as

opposed to relying on ad-hoc encounters. This provides the motivation for this

thesis, focusing on destination prediction approaches, and methods that assist

this application. Specifically, the scope is focused solely on personal vehicles, in

which the trip purpose of the journey is left open. We considered data collected
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from taxis in Chapter 6, to allow for direct comparison to existing work. The

benefits of destination prediction is not limited to these applications, and can

also aid other intelligent applications such as intelligent energy management of

the vehicle and parking recommendations at the destination (or even automatic

pre-booking or reservations). Prior to looking at destination prediction in more

depth, it is important to understand human mobility, considering concepts

such as mobility motifs, as examining these patterns provides motivation for

destination prediction.

2.2 Human Mobility

Human mobility is a broadening field of research [30, 66, 144, 150], which gives

the general context for this thesis. Research into human mobility provides useful

analysis that can influence areas such as urban and transportation planning.

Studies have compared mobility patterns across cities, utilising smart-card data

for the cities transportation networks [182]. Understanding human mobility

patterns can have a profound impact on numerous applications including

destination prediction. Recent research has found that the distribution of trip

distance, the number of visited locations and the total travel distance for a

given time interval (commonly referred to as the radius of gyration) serve as

the key indicators for human mobility patterns [30, 66, 150]. Schneider et al.

found that trips of a shorter duration generally exhibit high regularity and

are commonly associated with tasks such as commuting to work or buying

groceries. Schneider et al. claim that the average person only visits a small

number of locations on a daily basis, and that 90% of the population visit

less than 7 distinct locations per day, according to the surveys in Chicago and

Paris analysed in their work [144].

González et al. also claim that the majority of people generally spend most

of their time in very few locations, and visit up to 50 additional locations with

their remaining time [66]. Human mobility motifs is a concept that has been

investigated by several authors [34, 39, 83, 144, 183]. For example, in a case

study of human mobility in Singapore, Jiang et al. discuss common activity

chains that also appear in Boston, Chicago and Paris travel surveys [82, 144].

These include a home-to-work based tour, which is a direct commute to and

from work, a home-to-work tour that includes a third destination, such as a

trip to shops (where work is the primary destination), and a home-to-work

based tour with a work-based sub-tour, such as a trip out for lunch [39, 83].

These activity patterns can be abstracted into daily motifs. By analysing

mobile phone data, Schneider et al. identified 17 daily motifs which account

for 90% of the recorded trips [144]. Similar frequencies of the most common

motifs have been reported by Büscher et al. [34], in their recent work which
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analysed data from the German Mobility Panel, showing that the ordering

(and frequency) of the most common motifs has remained consistent over the

past 20 years [34]. Other research has found that the detection of infrequent

motifs can act as an indicator of mass activities, such as sporting events or

music concerts [108].

Travel diaries, and the trends or behaviours learnt from analysing them

have been widely researched. From a six-week travel survey in Germany [152]

to a field trial in Stockholm [8], various datasets have been analysed. The

durations of such studies vary, however in general such studies have a minimum

duration of two weeks [8, 143, 152, 156]. Additionally, automatic estimation of

activity patterns have been researched, where Maeda et al. propose an approach

to detect changes in the number of individuals for a given activity type [117].

Schlich et al. claim that people’s travel behaviour is not completely constant

but equally is not irregular [143], and a German travel survey found that the

majority of people who took part have a consistent frequency of week-on-week

grocery trips [152], in which Saturday is the most common day for this [8].

From studies conducted in Belgium and Sweden, Sunday appears to stand out

from all other days of the week with reference to the type of trips undertaken

[136], with an emphasis on family and social trips [8]. Seasonality has an

impact on the properties of journeys, with public transport use for leisure

activities increasing in the summer, alongside an increasing distance travelled

for a given activity [156]. Alternative transportation methods to personal

vehicles are found to be used increasingly in areas that are well connected [95]

and by students attending university [48]. Interestingly, the research by Daisy

et al. showed that students surveyed at a Canadian university opt for personal

vehicles when travelling for sports, hobbies and other entertainment activities

[48]. These types of trips have been shown to have a higher frequency on a

Wednesday and Saturday in Allstrom et al.’s Stockholm field trial [8]. As might

be expected, there is an increased stability of people’s travel behaviours on

work days [143]. Existing research into destination prediction has shown that

temporal aspects, such as day-of-week or time-of-day can improve predictive

performance [99].

In the 2018 England National Travel Survey [57], it was found that 61% of

trips were taken by a personal vehicle, in which the most common purposes for

a trip were for leisure (30%), to go shopping (20%), or for commuting (15%).

Figure 2.1 illustrates these statistics, highlighting a imbalance between the

types of trip undertaken. However, this imbalance does not need addressing,

as these distinctions are important for destination prediction. A person in

England makes an average of 986 trips in a year, where 255 trips are for

leisure, 188 trips are for shopping and 144 for commuting accounts for 144

of an individual’s trips, regardless of the mode of travel. The majority of
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Figure 2.1: Distribution of trip purpose in a personal vehicle [57].

households (41%) have access to a single car or van, with 35% of households

having multiple vehicles. This implies that in some cases there are multiple

drivers for a single vehicle in a household.

2.3 Destination Prediction

Destination prediction has been the subject of much research, with recent

work using historical GPS trajectories in order to predict an individual’s next

location or final destination. Markov models are widely used for destination

prediction [16, 45, 73], with some methods considering multiple transport

modes [9, 15, 44, 64] while others focus on vehicle trajectories [149, 175]. Other

approaches include Bayesian inference [99, 110, 127, 187] to predict the intended

destination of an individual, Gaussian mixture models [23, 172], decision tree

learning [42, 44, 121], and support vector machines [170].

Many approaches to destination prediction focus on taxi data [23, 174],

or other vehicle-based applications [99], but others are more general, where

individual’s walk or take public transport [9]. In this thesis, we focus of

destination prediction of vehicles, in which we consider taxi data.

Research into predicting an individual’s next location is similar to destina-

tion prediction, but focuses on predicting the next intermediate location, in

contrast to the final destination. Ziebart et al. provide a good example of

next location prediction, where they predict individual turns along a trajectory
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[187].

Several destination prediction methods use a grid-based approach [99, 175,

187] or have a graph representation of the road network [88, 127, 149]. However,

this often requires external data to enable pre-processing, such as map matching

and prediction using information from external sources, such as GIS data

[88]. Clustering is frequently used as an initial step in destination prediction,

converting stay points (points of low mobility) into places [15, 23, 158, 159].

Throughout this thesis, we employ clustering techniques to gather stay points,

and to transform stay points into place. We also consider a grid-based approach

for destination prediction in Chapter 5.

There has been some research that attempts to address the data sparsity

problem. For example, Xue et al. propose a method called Sub-Trajectory

Synthesis (SubSyn), that decomposes trajectories into smaller segments and

connects these to adjoining segments, creating synthetic trajectories [175].

This greatly increases the number of possible trajectories that are modelled

from an input dataset, since it is rare to have an exhaustive set of input

trajectories available. The available data can also be increased by considering

multiple individuals, and how individuals complement each other, with similar

trajectories increasing the value of the training data [65].

Krumm et al. and Xue et al. both use a 1km grid-based approach [99, 175],

and Ziebart et al. evaluate their PROCAB algorithm on multiple grid sizes

[187]. A coarse grid improves the matching performance, but is detrimental

to destination prediction error, since the grid squares span a larger area. The

opposite is seen with a fine grid, therefore an appropriate grid size should

be selected to achieve an acceptable trade-off between trajectory matching

performance and destination prediction error. A poor choice of grid size may

cause separate destinations to be grouped together. The grid representation is

extended in work by Chen et al., in which grid cells are merged where adjacent

cells have similar routes [41, 42]. The WhereNext algorithm uses a similar

approach, where Monreale et al. propose T-Patterns, which are sequences of

regions [121].

Alternatives to grid-based approaches include map matching or generating

local graph representations of the road network [88, 127, 149]. Simmonds et al.

use a mapping database to provide a road graph, in which link-goal pairs can

be formed [149]. Their model can predict the next link, and subsequently infer

the final destination [149]. Karimi et al. construct a tree-based structure using

additional road-network data, alongside amenity information [88]. Similarly,

Patterson et al. also propose a graph-based representation, which is constructed

from a street map provided by the US Census Bureau [127].

Clustering techniques are used in many approaches as a means of extracting

locations, with k-means [15, 45], hierarchical [23], and density-based [159]
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clustering being used. Choi et al. adopt the k-means approach to cluster

trajectory segments [45], similar to Ashbrook and Starner who map significant

locations into clusters [15]. Ashbrook and Starner use a graph comparing

the number of clusters to the number of locations, locating the knee point

in order to select a suitable number of clusters [14, 15]. This has proven to

be a popular method, and similarities are seen in several related approaches

[9, 62, 99, 110, 127, 149]. Cho et al. extract intermediate instances by using a

more computationally expensive Gaussian-means approach [44]. Conversely,

Gambs et al., use a density-based approach to generate the corresponding

locations from their input data [64].

To predict destinations, we first have to separate the data into distinct trips,

in which the first instance of a trip is the start location, and the final instance

is the destination. Time thresholding is a widely used technique to achieve this

[9, 15, 99], where the threshold is a minimum duration between two consecutive

recorded instances (and instances are not recorded if an individual stays in the

same place). Chen et al. [42] use a threshold of 2 minutes, Krumm et al. [99]

and Alvarez et al. [9] use a threshold of 5 minutes, while Ashbrook and Starner

opt for a 10 minute threshold [15]. The threshold value used varies, implying

that it is non-trivial to find a suitable value.

Approaches to destination prediction also have varying input data, with

some only using spatial information from within trajectories [23], while others

use multiple external sources [88, 99]. For example, Krumm et al. use ground

cover data [99], vehicle speed is used by Fukano et al. [62], Karimi et al. use data

on local amenities [88], and others use temporal data [99, 149, 170]. Temporal

data, such as the day-of-week or the hour-of-day, can act as an indicator of

the next location, and have been shown to improve predictive performance

[149]. Our aim in this thesis is to reduce the dependency on external data

and, since temporal data is implicitly available within a trajectory record,

our methods will focus on the use of data that is naturally contained within

trajectory data. Additionally, in Chapter 5, we consider on-board vehicle data

in our experiments.

Besse et al. propose a destination prediction method (which we refer to

as BDP), which uses distribution-based models to match similar trajectories

[23]. The training trajectories are grouped using hierarchical agglomerative

clustering, with the distance between trajectories computed by the Symmetrized

Segment-Path-Distance (SSPD) [22]. The Segment-Path distance is the mean

of each of the points in one trajectory to the closest segment in the other

trajectory. SSPD is defined as the mean of the sum of both Segment-Path

distances between two trajectories. A detailed explanation of SSPD is given in

Section 6.2.1. Using the clustered trajectories, Besse et al. train 2D Gaussian

Mixture Models over each cluster, using the latitude and longitude to fit a
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distribution to a sample of training coordinates. Once these models are trained,

a likelihood can be assigned for each cluster in an unfolding trajectory, and its

destination is predicted using the centroid of the most likely cluster. Besse et

al. also propose using a weighted score, which uses auxiliary variables, such

as the hour-of-day, with each variable associated with a weighting function to

modify the GMM likelihood. Our proposed method in Chapter 6 avoids the

need for defining such weighting functions and is easily extensible in terms of

adding additional variables. Our method also results in smaller clusters that

naturally take the auxiliary variables into account, which can be beneficial

for interpreting predictions. Since our focus is on identifying suitable clusters

from which to make predictions, we evaluate our approach against BDP with

the unweighted simple score. BDP has several benefits over other methods

since it does not rely on external data [88, 99], it does not require a mapping

of the road network, which is computationally expensive to process [127, 149],

and it does not discretise the space into a grid representation [99, 175, 187].

Given the above benefits, we use BDP as part of our approach in Chapter 6

While Besse et al. propose the use of auxiliary variables, these variables do

not segregate the trajectories into more specific clusters, unlike our proposed

approach in Chapter 6. Gaps in the literature also exist where trajectories could

be clustered into more specific groupings, using criteria such as spatio-temporal

attributes. While not the main aim of Chapter 6, our proposed method is

extensible by design and allows multiple attributes to be used to narrow down

specific trajectory groupings.

2.4 Data Collection

In this thesis, we focus on collecting geospatial data from vehicles, in conjunction

with telemetry data from on-board sensors. This data allows us to characterise

a trajectory both in terms of the location of the vehicle, the human inputs

to the vehicle (such as opening a door, or pushing the accelerator), and the

vehicle’s resulting state (such as speed, fuel level etc.).

2.4.1 Trajectories

A trajectory is a sequence of data points. Typically, a geospatial trajectory

consists of instances that contain a latitude, longitude and timestamp. A

trajectory can have many forms, for example a trajectory can represent animal

movements [180], or the arm movements of an individual [122]. Depending on

its form, a trajectory may have different attributes, such as the sampling rate

of each instance.

In this thesis, we focus on vehicular trajectories. Vehicular trajectories
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always have a defined start and end point, i.e., when the vehicle is started and

stopped respectively. Additionally, these vehicular trajectories may contain

additional data from sensors on-board the vehicle, such as the steering wheel

angle, the vehicle speed, and the currently selected gear. Formally, we define a

trajectory of raw data, ti = [x1, ..., x|ti|], to be a vector of instances. We define

an instance xj at time j to be a tuple xj = 〈lat, long, V 〉 containing a latitude,

lat, longitude, long, and a vector of vehicle signal values, V .

2.4.2 Geospatial Data

There are a range of global navigation satellite systems (GNSS), through

which a receiver can determine its latitude and longitude. The four most

prevalent systems are BeiDou, Galileo, GLONASS and GPS, each of which

have a different set of benefits and drawbacks. The accuracy of these systems

is generally below 5 metres. Low-cost GNSS receivers are widely available and

can be found in a variety of devices, such as smart phones, fitness trackers and

digital cameras. Most new vehicles contain on-board navigation, and therefore

contain a GNSS receiver.

Given the high-availability of devices with these capabilities, geospatial po-

sition has become an important data source, enabling a series of location-aware

applications such as personalised advertising, asset tracking and destination

prediction. Research has been carried out to use a combination of these systems

in order to improve the precision [106]. In this thesis, we utilised a GNSS

receiver in the vehicles that were used to collect both the LED and POLD.

2.4.3 On-board Vehicle Sensors

Modern cars are fitted with a vast array of sensors that can provide a high-level

of detail about the vehicle. Typical sensors include the fuel level, vehicle

speed and steering wheel angle. Different sensors may also sample data at

different intervals, for example the steering wheel angle is typically updated

more frequently than the fuel level.

The Controller Area Network (CAN) protocol was commonly used in the

automotive industry, and is an illustration of the data buses that are typical.

It is a carrier-sense, multiple access protocol with collision detection [138]. The

CAN bus is a broadcast-message based protocol, where if multiple devices

transmit data at the same time, the highest priority device is given access to

the bus and the other devices back off. Messages are received by all devices on

the bus. The data rate of the CAN bus can reach 1 Mbit/s, where different

sensors will transmit messages at different rates. The CAN bus provides

communication between vehicle subsystems, allowing functionality such as

start/stop, and automatic release electronic parking brakes. Connecting a
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logging device to the CAN bus allows us to capture all these signals and record

them for later use, which is the process adopted in this thesis to collect the

LED and POLD.

There are two main alternatives to the CAN bus for vehicle networks,

namely FlexRay [118] and Automotive Ethernet [72]. FlexRay provides be-

nefits over CAN, including support for both synchronous and asynchronous

communication, a higher data rate, and clock synchronization [118]. Automot-

ive Ethernet can provide benefits over both CAN and FlexRay with a higher

communication bandwidth and increased compatibility with IoT and other

smart devices [72].

2.5 Stay Point Extraction

The process of stay point extraction typically starts with a GPS trajectory,

which is a temporally ordered sequence of instances, where each instance has

a timestamp, latitude and longitude. A stay point is typically defined as a

group of instances in a trajectory that exhibit little or no movement, implying

a period of low mobility in which an individual remains in the same location

[18, 126, 158]. Given this definition, Palma et al. [126], Bamis et al. [18] and

Thomason et al. [158] each assume that all stay points are meaningful, which

is not necessarily the case for vehicle data, where areas of low movement exist

that are not relevant to an individual, such as waiting in traffic. In Chapter

1, we define a PoI to be a stay point where the vehicle has stopped for an

intended purpose. This results in existing general purpose stay point extraction

algorithms generating multiple false PoIs when applied to vehicle data.

Stay point extraction is normally used as a preprocessing step prior to

another form of analysis or prediction. Many applications, such as destination

prediction, rely on robust set of PoIs to provide acceptable performance [38, 99,

149, 181]. Although hard to quantify, it is necessary that the set of extracted

PoIs are robust. Selecting too many PoIs needlessly increases the unnecessary

data, which can make prediction harder due to increased noise. Conversely,

missing PoIs may also have an adverse effect on prediction; if some PoIs that

contain the most information are missed, the accuracy may be reduced. Stay

point extraction can also be used to identify semantically relevant places for

individuals and to highlight public attractions. For example, Keles et al. use a

Bayesian approach that considers the duration of the stationary period, the

day of the week, and the arrival time to predict the category of a PoI [90].

Similarly, inferring the activity performed at a given PoI is investigated by

Furletti et al. [63], by linking PoIs to amenities using semantic data such as

a individuals’ maximum walking distance between a vehicle parking location

and their intended destination, and the opening hours of facilities located near
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the PoI. Furletti et al. assume that it is not always possible to park directly

at the intended location, and so rely on a user-provided maximum walking

distance as a threshold for the PoIs to consider. Semantically relevant places

such as a individual’s home or work can also be considered when developing

location-aware applications [38, 114].

2.5.1 Clustering Approaches

Extracting stay points is becoming increasingly important for location-aware

applications, and several techniques have been applied to this problem, the

most common being clustering. Multiple clustering algorithms exist that can

be applied to stay point extraction, typically using density-based approaches

[56]. Additionally, some clustering algorithms have been proposed specifically

for stay point extraction, namely CB-SMoT [126], STA [18] and GVE [158],

which represent the current state-of-the-art.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

is a widely used density-based clustering algorithm, that has the advantage

of not requiring the number of clusters to be specified in advance, which is

useful for stay point extraction since this is typically unknown [56]. Another

advantage of DBSCAN over other general purpose clustering algorithms, such

as k-means [75], is that it can cope with clusters of different shapes. DB-

SCAN uses two parameters, ε and minpts, that respectively determine the

absolute distance used to calculate the neighbourhood of an instance, and

the minimum number of instances that a cluster should contain. DJ-Cluster

extends DBSCAN by considering usefulness in addition to accuracy, where the

usefulness metric describes the proportion of extracted stay points that are

meaningful to the individual [184, 185]. This requires individuals to confirm

whether the discovered stay points are correct and to rate their importance

on a 5-point scale. In the standard formulation of DJ-Cluster, all stay points

that are rated 4 or above are considered meaningful. DJ-Cluster also reduces

the computational complexity, when compared to DBSCAN, by adopting a

density-joinable approach. DJ-Cluster joins any two clusters that have identical

instances in the neighbourhoods of both clusters, rather than performing an

outward neighbourhood search on each instance in the resulting neighbourhood.

D-Star extends DJ-Cluster, using a sliding window to create the neighbourhood,

allowing the algorithm to work online [123]. D-Star identifies duration-joinable

clusters instead of the density-joinable approach used in DJ-Cluster. This joins

clusters together based on their duration overlap, which can handle missing

instances within a stay point. ST DBSCAN also extends DBSCAN, considering

non-spatial, spatial and temporal aspects to generate clusters [27].

The Clustering-Based Stops and Moves of Trajectories (CB-SMoT) al-
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gorithm [126] calculates a distance threshold, ε, over each trajectory, in contrast

to DBSCAN which uses the same value for all trajectories. Using the mean

and standard deviation of the distances between consecutive instances allows a

normal distribution to be created, and ε is set to be equal to the inverse cumu-

lative probability of the distribution. Recalculating the distance threshold over

each trajectory is beneficial since it is difficult to provide a suitable threshold

without knowing the properties of every trajectory in advance. Additionally,

CB-SMoT allows areas of known stay points to be input, so that identified stops

can be categorised into both known and unknown stay points. Density-based

approaches are computationally expensive, making them less desirable for use

in resource constrained applications. However, since CB-SMoT was designed

for trajectory data, and recalculates a suitable distance threshold without the

need for advance knowledge of trajectories, it is included in this thesis for

comparison.

Techniques such as Spatio-Temporal Activities (STA) [18] and the Gradient-

based Visit Extractor (GVE) [158] use a buffer containing a number of previous

instances in the trajectory, which is used to consider the distance from the

current instance. Both STA and GVE iterate through the instances in the

trajectory, adding these instances into the current cluster. If the distance

exceeds a predefined threshold, then the candidate instance is considered to

be moving away from the location and consequently ends the current cluster.

STA uses a static distance threshold, in comparison to GVE which uses a

gradient-based threshold considering the current length of the buffer. Once the

distance exceeds the threshold, and the current cluster ends, both STA and

GVE assess whether the current cluster is retained or discarded. STA retains

the current cluster if the buffer is full, while GVE does not require the buffer

to be full and only discards a cluster in cases where there is no time difference

between the first and last instances in the cluster.

Several techniques use static time and distance thresholds, including the

work of Kang et al. [86] and Fu et al. [61]. However, these techniques have been

shown to exhibit poor performance when there is even a limited amount of

noise in the data [18]. STA and GVE overcome this by using averaging filters

to compare subsequent instances [167]. Chen et al. employ static thresholds on

taxi trajectory data, where GPS readings are sampled every 15 seconds [43].

Activity durations in more general vehicle data typically vary between a few

seconds (for a drop-off) to several minutes (for a drive-through service), and

so the approach adopted by Chen et al. is prone to missing entire activities.

Bhattacharya et al. use a bucketing technique with time and distance to infer

speed (and acceleration) [24]. They consider two different types of location, a

point-based stay point such as an office, where the individuals’ movement is

negligible, and an extended stay point, such as a market, where the individual
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will move slowly. More recently, Bhattacharya et al. considered a line segment-

based approach, that uses kernel density estimation as part of a two-phase

process [25]. However, these speed and direction-based algorithms are not

suited to extracting stay points from vehicle trajectories because they require a

list of nearby places (e.g. amenities and addresses), which may not be available.

2.5.2 Summary

Stay points can vary in duration and shape, and there is no single approach

or parameter configuration that is appropriate for all application domains.

Additionally, different domains do not consider all stay points to be PoIs

(e.g., when a vehicle is waiting in traffic). For example, a clustering algorithm

with parameters trained on walking trajectories may be able to identify when

a person travelling on foot is at a PoI, however it may not be effective at

detecting a PoI within vehicular trajectories, such as when a vehicle is at

a drive-through service. Moreover, existing clustering algorithms typically

generate large numbers of false PoIs for vehicle data in environments that

contain road infrastructure and traffic, and therefore such techniques do not

give an accurate representation of a individual’s PoIs [18, 126, 158].

In this thesis, we consider both stay points and PoIs, where a PoI is a stay

point that is considered meaningful to the journey. To extract stay points from

trajectories, we consider CB-SMoT, GVE and STA as representative algorithms,

which are used in Chapter 4. In Chapter 4, we consider the differences between

stay points and PoIs, and propose an approach to filter out false PoIs (e.g.,

waiting in traffic) from vehicular trajectories.

2.6 Activity Classification

Activity classification is the process of identifying the current activity being

performed by a certain entity. In the case of vehicle activities that we refer to

here, and in the remainder of this thesis, these are not activities in the context

of human mobility e.g. leisure. Instead, the activity of the vehicle relates to

common situations or tasks encountered, for example, waiting in traffic. The

type of activity classification is dependant on the application, such that vehicle

activity classification could relate to predicting the speed or movement of the

vehicle. However, in this thesis we consider the activity of a vehicle to be more

general, such as stopping in traffic, picking up a passenger or waiting at a

barrier.

In other application domains, activity classification has been used for many

tasks ranging from detecting daily household activities [97, 109, 111, 135, 177]

to specialised models predicting sports moves [17, 33]. Other types of activities
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include transportation mode and phone usage [101]. Many approaches have

used computer vision as the main medium for activity recognition [119, 145],

including classifying the actions of passengers in a vehicle [160, 161].

Hidden Markov Models (HMM) [20, 134] are commonly used, along with

alternative techniques such as Support Vector Machines (SVM), Bayesian

classifiers and neural networks [17, 67, 91, 104, 109, 186]. Techniques from

existing activity classification approaches, such as the use of acceleration data

[102] and sensor fusion [77], can be applied to vehicle activity classification.

A common challenge faced by activity classification is defining the exact

boundaries of a given activity [33]. The issue of data segmentation has been

widely researched, with the use of temporal windows as a potential solution

[19, 155, 165]. Research suggests that some opt for static windows, however

static windows present issues if different individuals’ take a varied amount

of time to perform the same activity. This may cause an activity to only be

partially captured, or the segment to be overly large, when in fact the activity

is shorter than anticipated. Dynamic windows have also been experimented

with [165], where extra data from sensors can alter the window length.

2.7 Summary

This chapter has provided a background introduction to intelligent transporta-

tion systems, highlighting the research into route planning, traffic assessment,

traffic flow efficiency and platooning. We have identified that destination

prediction could be used to enhance these intelligent vehicle applications, thus

motivating the work in this thesis.

We have introduced the concepts of trajectory data, and the technologies

traditionally used to collect the geospatial data. These form the basis upon

which we collect the LED and POLD datasets in Chapter 3. However, the key

novelty of our dataset it to enrich the feature set for the destination prediction

tasks by augmenting the geospatial data with on-board vehicle data. Stay

point extraction, and the difference between a stay point and PoI has been

discussed, along with common approaches used for this task. In Chapter 4,

we propose a PoI extraction approach for vehicle trajectories, which shows an

improvement over the state-of-the-art clustering algorithms (CB-SMoT, GVE

and STA, as discussed in Section 2.5.1), that reduces the impact of false PoIs

which are generated.

In Chapter 5 we study the effect of enhancing the features available for

destination prediction by augmenting stay point data with activity classification

data (which was discussed in Section 2.6). We discussed various approaches

to destination prediction, considering the machine learning techniques used in

previous research. In this thesis, we evaluate a range of approaches, including
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Hidden Markov Models, Gaussian Mixture Models (GMMs), and decision tree

classifiers, which we use in Chapters 5 and 6. In Chapter 6 we propose a

multi-layered clustering approach that improves the destination prediction

error over the initial phase of a trajectory.
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Chapter 3

Datasets

In this chapter, we detail the datasets used in our research, including two

that were collected during the course of the research, namely the Location

Extraction Dataset (LED) and Warwick Pattern of life Dataset (POLD). The

LED is used to evaluate our method in Chapter 4, and the POLD is used

in Chapter 5, and supplements the analysis in Chapters 4 and 6. We also

utilise two publicly available datasets, namely the Caltrain [130] and Porto

[1] datasets, for Chapter 6 where we consider trajectory classification and

destination prediction. The Caltrain and Porto datasets are used for Chapter

6, to evaluate our proposed method against the method proposed by Besse et

al., as these dataset are used in their initial evaluation.

The motivation behind the creation of the LED was that, to our knowledge,

no other datasets exist that include both a full set of ground truth labels and

a set of sensor data from on-board a vehicle for studying point of interest

extraction. It was paramount to have the vehicle sensor data available to

evaluate our proposed vehicle activity classification method. The LED consists

of a number of scripted journeys and scenarios that ensure multiple activities

are captured. Similarly, there are few available labelled pattern of life datasets,

mainly due to privacy concerns of the individuals supplying the data. Examples

exist such as the Nokia Mobile Data Challenge dataset [94], however this suffers

from a lack of on-board vehicle signals in addition to the start and end of

trajectories being truncated for privacy reasons. We collected the POLD

to ensure access to the participants for further investigation and to obtain

a full labelling, for use in our proposed destination prediction approaches.

Additionally, collecting vehicle sensor data for general pattern of life driving

allows us to evaluate the proposed vehicle activity classification on unscripted

data, where the participants would drive their normal journeys, as if it were

their personal vehicle.

3.1 Location Extraction Dataset (LED)

In order to evaluate the proposed point of interest extraction method, we

defined a data collection methodology and collected a scripted scenario dataset,
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namely, the Location Extraction Dataset (LED). The LED is provided for

others to utilise in further research on vehicle PoI extraction. This section

outlines the data collection procedure for the LED, along with the definitions

of the activities and their transitions. Additionally, the routes in the LED are

detailed and we present a summary of the dataset.

3.1.1 Data Collection

We used a set of predefined routes from which the LED was collected. The

data on these routes were collected in 2 different vehicles, with slight variations

in routes between the vehicles. The first vehicle, referred to as the SUV, was

a 2-door 4-seater convertible SUV, and the second, referred to as the estate,

was a 5-door 5-seater estate car. Data collection was performed with the

support of our industry partner, who dictated vehicle choice and availability.

Each route was repeated 8 times in the first vehicle and 5 times in the second

vehicle. The difference in number of repeats was due to data loss after the data

collection period had ended. To collect a representative sample, we scheduled

journey times that varied between peak daytime (07:00-10:00 and 16:00-19:00),

nighttime (23:00-05:00) and off-peak daytime. Additionally, routes include

sections of major and minor roads. Open air and multi-storey car parks were

used at shopping centres, railway stations, and a university campus, along

with roadside parking. Other road structures included in the routes are drive-

through services and barrier-controlled private roads. These routes ensure

that data from a diverse set of road types and traffic conditions were collected.

All journeys contained a driver and passenger, with some journeys having 2

passengers. The front passenger seat was always used, and the rear passenger

could sit in either outer seat.

A Vector GL2000 logger was used to record GPS data and signals from the

vehicle Controller Area Network (CAN) bus. GPS data was recorded at 1Hz,

while CAN signals were broadcast to the logger, and were generally recorded

at a higher rate. These were combined and subsampled to the rate of the GPS

signal. Every second, the last observed value for each of the CAN signals is

used. Values older than 3 seconds for CAN signals and 60 seconds for GPS

signals are discarded, and instances with missing values are removed from

the dataset. In order to label the ground truth we used dashcam footage to

manually identify which activity is being performed.

3.1.2 Activity Labelling & Transitions

We propose a method for applying activity labels and transitions to the collected

data. The approach of defining of activities is fundamental to exploring point

of interest extraction within vehicle trajectories, as we can distinguish the
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current state of the vehicle into clear, distinct groups. Similarly, well-defined

transitions between activities are required to ensure consistency. While we

propose a set of activities and transitions for this dataset, the effectiveness of

the specific definitions are dependant on the context and the definitions can

be tailored depending on the application.

We define the following activities for the LED, in which we decided these

from intuition and through discussion with our industry partner:

1. Barrier: an event in which the vehicle has to stop for the driver to

interact in order to proceed past a closed barrier (such as a toll booth or

parking barrier).

2. Drive-through: an event which includes multiple stops and instances

of slow movement, where the stops are for the driver to interact with a

service.

3. Driving: normal driving in free flowing traffic.

4. Drop-off : an event in which the vehicle stops to allow passengers to

exit the vehicle.

5. Manoeuvre: a period that involves slow movements with the possibility

of stationary periods, high direction change and reverse travel.

6. Parked: a stationary period in which the vehicle is not driving, and this

is the intent of the driver.

7. Pick-up: an event in which the vehicle stops to allow passengers to enter

the vehicle.

8. Traffic: where the vehicle has to move slowly or be stationary as a

consequence of external factors (such as roundabouts, traffic lights, con-

gestion or accidents).

To ensure reproducibility, and application of this methodology to other

datasets, an accurate and consistent ground-truth labelling must be applied

to the data. However, defining where the boundaries exist for each activity is

a non-trivial task, and requires identification of the exact instance in which

transitions occur [97, 139]. Quantitative bounds were created to formalise the

start and end instances for each activity (e.g., once the vehicle goes below

1km/h), alongside qualitative criteria (e.g., a drop-off activity must include a

passenger exiting the vehicle). We have defined a set of transitions to be applied

to the LED, which can be used by other researchers in future investigations into

PoI extraction. This set of transitions ensures that activities cannot overlap.

Examples of the transitions from the Driving activity to the other activities

are shown in Table 3.1. The full set of transitions are available in Appendix A.
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Table 3.1: Transition table from the Driving activity to the next activity.

Next
activity

Criteria

Barrier When the vehicle first reaches the barrier, without any vehicle
between itself and the barrier, and the vehicle speed first
falls below 1km/h.

Drive-
through

When the first booth (or order point) is reached and the
vehicle speed first falls below 1km/h.

Drop-off When the vehicle speed first falls below 1km/h and a door to
the vehicle is opened. Manual verification that a passenger
is exiting the vehicle is required (from dashcam or seatbelt
signals). The vehicle cannot be turned off for this activity
to be true.

Manoeuvre When the vehicle speed first falls below 1km/h or reverse
gear is selected. Manual verification that this is due to a
manoeuvre is required.

Parked When the vehicle speed first falls below 1km/h and the
vehicle stops. The gear does not have to be in park, but
manual verification that the stop is not due to a pick-up,
drop-off or traffic is required.

Pick-up When the vehicle speed first falls below 1km/h and a door to
the vehicle is opened. Manual verification that a passenger
is entering the vehicle is required (from dashcam or seatbelt
signals). The vehicle cannot be turned off for this activity
to be true.

Traffic When the vehicle speed first falls below 5km/h as a con-
sequence of encountering congestion or road infrastructure
that causes either 5km/h not to be reached within 10 seconds
or the vehicle speed to fall below 1km/h within 10 seconds.
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3.1.3 Route Breakdown

A detailed description of the routes is as follows, noting the variants (and their

respective reasons) for the estate (if unspecified, there is no variant for the

estate). Maps for each route (and their variants) are illustrated in Appendix

B.

Route 1: This route commences at the university campus, from an open-

air car park, with a single occupant in the front seat. The journey leaves the

university campus, heads towards and subsequently joins a dual-carriageway,

and exits at first subsequent slip-road. The route continues into the high

street of a nearby town, where the front passenger is dropped off. The vehicle

continues to a multi-storey car park, in which it parks, waits for a few minutes

and then exits. The passenger is subsequently picked up from the town in a

nearby residential street, before heading back to the university campus.

The estate variant heads towards an open-air car park (instead of the multi-

storey car park, due to the size of the vehicle), after the front passenger has

been dropped off, where the car is parked and waits for a few minutes (the same

actions as performed in the multi-storey car park). After the passenger is picked

up, the route varies by heading, and terminating at a local superstore, instead

of returning to the university campus to reduce the long periods of driving in

which there is little of no extra information, as this reduces the demand on

participants.

Route 2: The second route commences at the university campus, in a

multi-storey car-park. With a single front passenger on-board, the vehicle

leaves the university campus for a nearby local train station, in which the front

passenger is dropped off, before a turn-in-the-road is performed. The vehicle

leaves the area of the station for a nearby residential road where it parked, and

waits for a few minutes. After this, the vehicle performs a turn-in-the-road,

heads back to the station to pick-up the passenger before returning to the

university campus.

Route 3: This route is one of the shortest, commencing in a multi-storey

car-park at the university campus. A single front passenger is present and the

route leave the campus and heads towards a local residential area, where the

passenger is dropped off. The route continues, looping around a residential

area to return on the other side of the residential street, where the passenger

is picked up before returning to the multi-storey car park.

The estate variant skips the loop around the residential area and turns at

the first roundabout, heading straight back to the pick-up point. This is due

to a mistake in the data collection that was found after the collection period

finished.

Route 4: The fourth route is the only route that starts away from the
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university campus, in a nearby town. With a single front passenger aboard,

the route commences from on-street residential parking, and heads to a drive-

through service. After using the service, the route continues to a nearby train

station, to use the drop-off point, where the passenger is dropped off. Following

this, the route returns to the original residential on-street parking area.

Route 5: This route is the first that includes multiple passengers, one of

whom is in the front seat. The route begins on the university campus and takes

the dual carriageway to a nearby town, similar to Route 1. Upon entering

the town, the route follows the main road in to a residential area, where each

passenger is dropped off in a different location within the residential area,

before parking nearby in an on-street location. After waiting for a couple of

minutes, the route resumes with a turn-in-the-road and proceeds to pick-up

the two passengers from where each was initially dropped off. Following the

pick-ups, the journey concludes by heading into the town centre and parking

in a multi-storey car park.

The estate variant starts in a different open-air car park at the university

campus (as this car park has a barrier, and replaces the barrier activity we

later miss from avoiding the multi-storey), and after picking up both passengers

returns to the open-air car park at the university campus instead of the multi-

storey in the town centre (due to the size of the vehicle).

Route 6: The sixth route begins in on-street parking at the university

campus. With a single passenger, the journey starts by driving to a restaurant

on the outskirts of the campus, picking up a second passenger from an open-air

car park and performing a turn-in-the-road. The journey continues on a dual

carriageway into a commercial area, where a drive-through service is used.

The journey finishes by heading back to the parking at the university where it

commenced.

Route 7: This route starts at the university campus and proceeds into a

nearby city, in which two passengers are present. The first passenger is dropped

off at the city’s train station before proceeding to a hotel where the second

passenger is dropped off. The route continues to a small open-air car park,

where a turn-in-the-road is performed. The vehicle then returns to the hotel,

and subsequently the station, where each passenger is picked up. Finally, the

vehicle heads to the multi-storey car park of a large store in the city centre,

where it is parked, and the journey terminates.

The estate variant sees the second passenger dropped off at a shopping

centre on the outskirts of the city, before heading into the city to a church

car park, in which the turn-in-the-road is performed. These were both varied

due to vehicle size restrictions. Both passengers are then picked up from their

respective drop-off locations. The end of the route is identical, heading to the

multi-storey car park of a large store in the city centre.
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Table 3.2: Summary of route durations in the LED.

Route Max. Duration (s) Min. Duration (s) Avg. Duration (s)

1 2918 1498 2281
2 1139 647 839
3 772 409 573
4 1720 706 1077
5 2475 1521 1909
6 2211 1031 1451
7 2716 1621 1967
8 1744 1046 1348
9 506 291 378

Route 8: The route starts at on-street parking within the university

campus, with a single passenger. We exit the university campus and head

to a nearby shopping centre, where the passenger is dropped off. The jour-

ney continues, to a busy roundabout where we loop back and return to the

shopping centre to pick the passenger back up. Then, the route heads back

to the university, visiting a university accommodation block and dropping the

passenger off once again, before heading to an open-air car park and ending

the journey.

Route 9: This is the shortest route, starting at an open-air car park at

the university campus. The route starts with no passengers and proceeds to

do a loop of the main campus, picking up a passenger outside the campus

convenience store and further dropping them off outside the security building.

The route concludes by heading back to the original open-air car park.

3.1.4 Dataset Statistics

The LED contains 117 journeys and 153,699 instances, over a duration of 42

hours 41 minutes and 39 seconds.

The shortest route lasted around 6 minutes on average, whereas the longest

route took around 38 minutes. The distribution of the journey durations in

the LED is summarised in Table 3.2.

Not all routes contained every activity, and the frequency of activities

varied as can be seen in Figure 3.1, which shows the distribution of activities

within the dataset. There is a activity bias, which we chose not to address, as

in reality this will be present i.e. significantly more traffic instances that pick

up instances. The duration of a single activity is dependant on the type of

activity, as shown in Figure 3.2, with the majority of activities being around

20 seconds on average. Since there are differences in the activity durations, the

distribution of instances per activity type differs slightly from the frequency

distribution of activity types, as can be seen in Figure 3.3 (when compared to

Figure 3.1).
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Figure 3.1: Distribution of the activities in the dataset, with the driving activity

(1248 occurrences) omitted to aid readability.
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Figure 3.2: Average duration of activities.
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activity (74%) omitted to aid readability.
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Figure 3.4: Distribution of activities per route in the LED.
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Figures 3.4a–3.4i further decompose the distribution of activities by each

individual route. We can see that the longer routes, namely routes 1, 5, 6 and 7

have an increased proportion of driving, which is expected due to their length.

If we example the relationship between driving and traffic activities, we can

see that routes 1, 4, 6 and 7 have the smallest difference, owing to these routes

going through busier areas and therefore having an increased likelihood of

encountering traffic (as well as enforced road infrastructure, e.g., time-delayed

traffic lights). There are no routes that contain both barrier and drive-through

activities, and all routes contain manoeuvres. Finally, we can see that all

routes either have a pick-up or drop-off activity, but not necessarily both.

The dataset, and its corresponding activities are plotted in Figure 3.5. All

activities, apart from driving are marked by coloured points on the plot. GPS

jitter is present where the journey either started or ended in multi-storey car

parks. From this plot, it is clear to see the three common areas in which the

activities occur. Roads linking these areas do not contain any activities other

than encountering traffic (and general driving). We can see hotspots where

the majority of traffic activities occurred, mostly at junctions or roundabouts.

3.2 Warwick Pattern of life Dataset (POLD)

The Warwick Pattern of life dataset (POLD) is an unscripted driving dataset

consisting of multiple participants undertaking their general day-to-day jour-

neys. The POLD contains data from 5 participants, over 2 distinct vehicles, and

is complete with a labelling for both the source and destination of each journey,

along with the purpose of the journey. The vehicles used in this dataset are

the SUV and the estate, are described in Section 3.1 where we described the

LED. Each participant had sole use of the vehicle for between one and three

weeks, before having a period of time without the vehicle. Given the finite and

uncertain time in which the vehicle would be loaned to the project, pragmatic

allocation based on participant’s availability and constraints was required.

Vehicle signals and GPS data were collected for every journey in the data

collection period, and associated with their anonymised participant ID. We

removed journeys that contained corrupted or invalid data as a pre-processing

step, and combined and sub-sampled the GPS data with the vehicle signals to

a rate of 1Hz, using the same process as for the LED.

3.2.1 Dataset Statistics

The POLD contains 826 journeys over a distance of 20230 kilometres travelled.

The total travel duration of all journeys is a little over 407 hours. All journeys

were in the United Kingdom, and are contained within a 386.2km by 424.1km
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Figure 3.5: Plot of trajectories and activities within the LED.

39



Table 3.3: Individual Participant Statistics for POLD.

Dataset Number of
Journeys

Total Journey Duration Total
Distance
Travelled
(km)

Average
Journey
Distance
(km)

Maximum
Journey
Distance
(km)

uw1 102 52 hrs 3 mins 0 secs 2601.2 25.5 172.2
uw2 113 55 hrs 48 mins 33 secs 2907.4 25.7 227.6
uw4 80 30 hrs 50 mins 5 secs 1242.6 15.5 193.8
uw6 305 147 hrs 50 mins 47 secs 6702.8 22.0 308.1
uw9 226 120 hrs 38 mins 45 secs 6776.5 30.0 325.3
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Figure 3.6: Distribution of number of journeys by total distance.

grid.

All 5 participants in the POLD were male, university educated with a

Bachelor’s or higher, and either studied or worked at a university at the time

of collection1.

A breakdown of participant data is shown in Table 3.3. The highest

amount of journeys were undertaken by participant UW6, however participant

UW9 travelled the furthest over the data collection period, covering over

6776 kilometres. We note a large spread between participants in terms of the

duration, the distance travelled, and the number of journeys. UW6 and UW9

travelled considerably further, over a higher number of journeys than the other

participants. However, most journeys average around 20–30km in length.

Figure 3.6 details the normalised distribution in journey lengths over the

1This was due to difficulties in participant recruitment.
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Table 3.4: Number of unique endpoints and routes per participant.

Dataset Number of Unique Endpoints Number of Unique Route Combinations

uw1 31 55
uw2 26 48
uw4 23 49
uw6 85 163
uw9 79 162

Table 3.5: Number of common endpoints per participant.

uw1 uw2 uw4 uw6 uw9

uw1 31 2 1 3 3
uw2 26 2 5 4
uw4 23 6 5
uw6 85 6
uw9 79

participants. We have binned the data into 4 categories, very short (less than

5km), short (5–25km), medium (25–100km) and long (greater than 100km)

journeys. As expected, the proportion of long journeys is the smallest for all

participants. Participants UW2, UW4 and UW6 have the majority of their

journeys between 5–25km, compared to UW1 and UW9 who have the majority

of journeys being between 25–100kms.

If we consider the number of days with journey data, UW6 has the most,

with 114. The other participants range between 34–65 days. We define the

number of days as the amount of days where the participant has undertaken

at least one journey.

When evaluating the temporal aspects of the data, we can see different

trends between participants. UW1 and UW2 have a reduced number of journeys

on the weekend compared to the weekday, especially on Sunday, where UW2

has no journeys in the dataset. UW4 and UW6 see an increased amount of

journeys at the weekend, with Sundays and Saturdays having the majority of

journeys for UW4 and UW6 respectively. If we focus on the hour in the day

(see Figure 3.7b), we can see that 6am is when the most journeys commence for

UW1 and UW2. Participants UW4, UW6 and UW9 have the most frequency

hours of commencing a journey at 5pm, 4pm and 6pm respectively. No journey

commenced after 8pm for UW1 and only UW6 has commenced a journey

between midnight and 3am. No journeys in the dataset begin at 3am.

Table 3.4 summarises the number of unique endpoints for each participant,

where an endpoint can be either the start or end of the journey. UW1, UW2, and

UW4 have between 23–31 endpoints, while UW6 and UW9 have a considerably

higher amount of 85 and 79 respectively. This shows that UW6 and UW9
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Figure 3.7: Temporal distribution of journeys per participant in the POLD.
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have travelled to more locations than the other participants, which could be

a consequence of a less structured routine or the increase amount of data on

these participants. The number of common endpoints is shown in Table 3.5.

We can see that UW6 has 6 endpoints in common with both UW4 and UW9,

whereas in contrast UW1 and UW4 share the least similarity in locations, with

only one common endpoint in their datasets.

3.2.2 Ethical Considerations

Due to the nature of the personal information contained within the dataset,

ethical considerations had to be made. Prior to the start of collection, an

application was written to the Warwick Biomedical & Scientific Research Ethics

Committee (BSREC) outlining the specifics of the data collection task. The

application includes details of the manner in which the data collection would

take place, provided appropriate information sheets and consent forms for each

participant, in addition to addressing data privacy and the safeguards put in

place to protect the data. The data collection received full BSREC approval2.

3.2.3 Limitations

There is an insufficient amount of data on each participant to extensively model

their pattern of life. Due to only having a single project vehicle at a time,

participants had 1, 2 or 3 consecutive-week periods with the vehicle, with

gaps of several weeks in-between having the project vehicle. This can cause

trends journeys to be hidden or even lost entirely. Participant availability

and other factors also caused a disparity in the number of weeks collected

per participant, with some having considerably more than others. One of the

project vehicles was not suitable for the normal day-to-day use of most of the

participants (e.g., being unsuitable for fitting child seats), causing participants

to not use the project vehicle for some journeys. The dataset suffers from

a lack of participants. We collected data from other participants, but due

to a combination of a lack of journeys, and difficulties in obtaining a ground

truth for the journeys, they were omitted from the dataset. The dataset also

suffers from a limited sample in terms of gender and other demographic factors.

Additionally, the age range of the participants misses out the older bracket.

For future data collection of this type, we suggest the following recommend-

ations:

i multiple project vehicles should be available for data collection to occur in

parallel;

2BSREC Application Reference: REGO-2017-2036, approved 18 October 2017
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ii the suitability of the project vehicle should be considered, and ensure that

all participants can use it as their daily vehicle;

iii the length of consecutive weeks should be fixed for the entire collection

period, and be a minimum of 4 weeks;

iv participants should have specific criteria to log on each journey, that can

be entered via a mobile application or in-vehicle device;

v vehicle re-fuelling should be completed by the participants, to better model

their pattern of life3.

3.3 Caltrain Dataset

The Caltrain dataset is a taxi trajectory dataset consisting of journeys from

approximately 500 taxis, all within the San Francisco Bay Area [130]. We

take a subset of this dataset, which is a 6.327 × 6.827km grid, containing

all journeys commencing from the Caltrain Station in San Francisco, as pre-

processed by Besse et al. [23]. We refer to this subset as the Caltrain dataset

for the remainder of this thesis. In this dataset, 4,127 trajectories are present

over a period of 24 days, starting on the 17th May and ending on the 9th

June 2008. The dataset contains trajectories with a data point every minute,

resulting in a dataset of 44832 instances.

Figure 3.8 shows a plot of all of the trajectories within the dataset. From

this, the reader will find the roads in San Francisco form a grid-like structure,

with few roads containing bends. Additionally, the majority of journeys seem

to be to the north of the station, with a small dense area containing most of

the destinations. There are only a few journeys to the east of the station, as

there is only a small area east until you reach San Francisco Bay, a large body

of water.

On further examination of the dataset, the average journey is 3km in length

and 9 minutes 24 seconds in duration. Figure 3.9a illustrates a fairly even

distribution over the number of weekdays, with Sunday standing out with

noticeably fewer journeys than the others. On examining the hour of the day

(see Figure 3.9b), we see journeys peak at 6pm, with 8–10am and 5–8pm being

the busiest hours in general. As expected, 12am–7am has the fewest journeys,

with hardly any in between 1–5am. Figure 3.10 details the distribution in

length of journeys. The data shows that most journeys are between 2–3km in

length, and few are over 8km.

3Although this creates unreasonable financial complications.
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Destinations
Caltrain station

Figure 3.8: Plot of trajectories and destinations within the Caltrain dataset

[23].

3.4 Porto Dataset

The Porto dataset is a taxi trajectory dataset from 442 taxis running in the

city of Porto [1]. The data collection period consisted of a complete year (from

01/07/2013 to 01/07/2014). Besse et al. [23] generated a subset of this dataset,

and we refer to this subset as the Porto dataset in the remainder of this thesis.

The dataset contains 19,423 journeys that start from the Sao Bento station

within the city, and end within a 8.116 × 8.068km grid. The dataset contains

645096 instances, with a sampled rate of one data point every 15 seconds.

Unlike the Caltrain dataset, Figure 3.11 shows a contrasting structure to

the road network for the Porto dataset. Although there are a few straight

roads, most of the road network consists of multiple bends and a less consistent

approach to the space of nearby roads and junctions. In general, most journeys

occur north of station, with the majority of destinations situated nearby. With

a few exceptions, the destinations become sparse towards the outer boundaries

of the grid.

Despite the larger area, the Porto dataset has on average a smaller journey

length and duration of 2.4km and 8 minutes 3 seconds. Figures 3.12a and 3.12b

highlight the distribution in days and hours of the journeys, seeing similar

trends in time, with peak hours around 8–11am and 1–4pm, and a lull in

activity from 1–6am. Examining the distribution in the day of the week, we

find an increase in journeys on Sundays, with Fridays and Saturdays being the
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Figure 3.9: Temporal distribution of journeys in the Caltrain dataset.
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Figure 3.10: Distribution of journey length in the Caltrain dataset.

Destinations
Sao Bento station

Figure 3.11: Plot of trajectories and destinations within the Porto dataset [23].
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Figure 3.12: Temporal distribution of journeys in the Porto dataset.
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Figure 3.13: Distribution of journey length in the Porto dataset.

most popular among taxi journeys. Many of the journeys are between 1–3km

in length (see Figure 3.13), with a relatively small proportion over 6km.

3.5 Summary

In this chapter we discussed four vehicle trajectory datasets, detailing the

collection methodology for the two that were collected for this thesis. We

described the motivations behind collecting our datasets, and presented the

drawbacks of the POLD, with suggestions of improvements for future collection.

The main benefits of the LED and POLD that we collected are that a wealth

of on-board vehicle data exists, along with a ground truth of activities and

destinations for the LED and POLD respectively. We use the LED for our

investigation into point of interest extraction in Chapter 4, and subsequently

the POLD to evaluate the proposed method on normal driving data. Our

work on destination prediction in Chapter 5 uses the POLD. Chapter 6 uses

the POLD, Caltrain and Porto datasets to evaluate our proposed destination

prediction method. A key difference the Caltrain and Porto datasets exhibit

is the lack of on-board vehicle data. This presents a challenge in Chapter 6,

resulting in the evaluation focusing on the spatio-temporal properties of the

trajectories.
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Chapter 4

Activity-based Vehicle PoI Extraction

Knowledge of drivers’ mobility patterns is useful for enabling context-aware

intelligent vehicle functionality, as discussed in Chapter 2. Such patterns are

often described in terms of the points of interest (PoIs) visited by an individual.

However, existing stay point extraction methods are general purpose and

typically rely on detecting periods of low mobility, meaning that when they

are applied to vehicle data they often extract a large number of false PoIs

(for example, incorrectly extracting PoIs due to stopping in traffic), reducing

their usefulness. To reduce the number of false PoIs that are extracted, we

propose using features derived from vehicle signals, such as the selected gear

and status of doors, to classify candidate PoIs and filter out those that are

irrelevant. This chapter presents Activity-based Vehicle PoI Extraction (AVPE),

a wrapper method around existing stay point extraction methods, that utilises

a post-clustering classification stage to filter out false PoIs. We evaluate the

benefits of AVPE compared to three state-of-the-art general purpose stay point

extraction algorithms and demonstrate the effectiveness of AVPE when applied

to real-world driving data.

4.1 Introduction

Point of interest (PoI) extraction is useful for automatically discovering locations

that are relevant to an individual for a given application. For example, PoIs can

provide an understanding of a person’s daily routine, their frequently visited

locations, and the type of journeys they undertake. With this knowledge,

intelligent systems can be designed to customise a vehicle for a given trip, for

example altering the climate control or tailoring the media settings. Previous

work on stay point extraction typically uses periods of low movement to detect

PoIs, in applications such as detecting mobility patterns in a city [11, 71] or

animal migration patterns [49]. When applied to vehicle applications, where

low movement does not necessarily imply that a vehicle has stopped for a

specific purpose of interest, this can lead to the generation of false PoIs. For

vehicle applications, a PoI is considered to be a stay point where the vehicle has

stopped for an intended purpose, whether that be to park, drop-off a passenger,
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or to visit a drive-through service.

The aim of AVPE is to find representative locations within a user’s tra-

jectories, with a focus on ensuring that all the identified locations are correct,

rather than necessarily being complete. Thus, AVPE aims to remove noise in

the form of erroneous PoIs, even if this is at the cost of reducing the number

of correct PoIs. For applications such as customer segmentation [107] or cat-

egorising usage in a vehicle context [37], the presence of erroneous PoIs can

significantly skew the results. For such applications it is more important to

have an aggressive approach to noise reduction, rather than ensuring that the

complete set of true PoIs are extracted.

The scope of this work is to create a methodology for identifying repres-

entative locations in vehicular trajectories, using basic data available from

the vehicle data bus. By using basic on-board data, which is common across

vehicles, AVPE can be applied to different vehicles without requiring additional

sensors or external data, the latter of which may not be available in some

geographic regions.

In this chapter, we (i) present Activity-based Vehicle PoI Extraction

(AVPE), a wrapper around existing stay point extraction methods that uses a

post-clustering classification stage to filter out false PoIs from the extraction

process, (ii) evaluate AVPE against three state-of-the-art general purpose stay

point extraction algorithms, and (iii) demonstrate its effectiveness when applied

to real-world driving data. We analyse the performance of AVPE using the

CB-SMoT, STA and GVE clustering algorithms for vehicle trajectory data,

and evaluate the method on both scripted and unscripted real-world driving

data.

This chapter is organised as follows. Section 4.2 presents AVPE, our

proposed wrapper method for PoI extraction. In Section 4.3, we describe

our experimental methodology, the parameters and the vehicles used in our

evaluation, and detail the specifics of the datasets. Section 4.4 presents the

results of applying CB-SMoT, STA, GVE, and AVPE on vehicle data, and

provides a direct comparison between the effectiveness of each method. Finally,

Section 4.5 concludes the chapter.

4.2 Activity-based Vehicle PoI Extraction (AVPE)

In this chapter, we present Activity-based Vehicle PoI Extraction (AVPE),

a novel wrapper method which uses a classification stage to filter out false

PoIs that are extracted by existing clustering algorithms when applied to

vehicle data. In our context, PoIs are defined as stay points where the vehicle

has stopped for a specific task (such as picking up a passenger or using a

drive-through service), and should be distinguished from false PoIs (such as
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Figure 4.1: Overview of AVPE.

waiting in traffic or stopping at a barrier). AVPE is a wrapper around existing

clustering algorithms, which cluster periods of low mobility from historical

trajectory data, generating a set of candidate PoIs. In this chapter, we consider

CB-SMoT, STA and GVE as base clustering algorithms, that were introduced

in Section 2.5.1. These algorithms were selected as they were developed for

stay point extraction (and successfully used) by Bamis et al. [18], Palma et

al. [126] and Thomason et al. [157, 158]. Since vehicles frequently stop for

reasons that do not represent PoIs, these three clustering methods return a

large number of false PoIs when applied to vehicle trajectories. The AVPE

wrapper method aims to reduce the number of false PoIs, accepting that this

may be at the cost of missing some of the true PoIs. Thus, the overall aim

of AVPE is to ensure that any identified locations are correct and that there

is no noise, rather than aiming for completeness. Prior to applying AVPE,

trajectory data is preprocessed using CB-SMoT, STA or GVE and a time

threshold is used to merge distinct clusters that are close to each other in time

which helps prevent the presence of fragmented clusters (explained in Section

4.2.2). Using the resulting clusters, and features extracted from vehicle signals,

AVPE then classifies the activity of the vehicle into one of several predefined

activity types (as defined in Section 3.1.2), where some activity types (positive

activities) represent true PoIs and others (negative activities) represent the

common types of false PoI extracted by the clustering methods, which are

introduced below. AVPE is therefore able to determine whether a candidate

PoI is relevant or not. The approach of using predefined activities, and the

separation into positive and negative activities, corresponding to true and false

PoIs respectively, is fundamental to AVPE. Similarly, well-defined transitions

between activities are required to ensure consistency. While we use an example

set of activities and transitions in this chapter (see Chapter 3 for a description

of the activities and transition definitions), our focus is on the AVPE method,
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rather than on a particular set of activities. The vehicle signals can include

binary (e.g., engine on/off), categorical (e.g., indicator status) and numerical

(e.g., steering wheel angle) values. The signals from the vehicle are expanded

into features, comprising the minimum, maximum, range and average for each

of the vehicle signals computed for each cluster, in additional to the time above

average, standard deviation, and first derivative for all numerical signals, and

the delta for specific binary signals.

An overview of AVPE is given in Figure 4.1. AVPE uses a combination

of vehicle signals and GPS data, and, as defined in Section 2.4.1, an instance

xj at time j is a tuple xj = 〈lat, long, V 〉 containing a latitude, lat, longitude,

long, and a vector of vehicle signal values, V . AVPE is retrospective in that

it is used after journeys have been completed. While it is possible to adapt

AVPE to use a naive time-based clustering approach to classify vehicle activity

in real-time, this is not considered further in this thesis.

AVPE requires training on a labelled set of data before it can be used on

unseen trajectories. We assume that a set of activities, L, is defined, where the

positive activities, L+ ⊂ L, are activities that are of interest and correspond to

true PoIs, and negative activities, L− = L \ L+, correspond to false PoIs that

should be filtered out. Labelling is performed on each instance individually.

To label the training data, the vehicle signals and both the activities and

transition definitions are used to assign a activity for each instance. At the

start of training AVPE the training data, Ttrain, is input and the instances

within the trajectories are clustered using the spatio-temporal data, only

keeping periods of low mobility (which are referred to as stay points). Adjacent

clusters up to λ seconds apart are then merged together. These clusters are

then used to train a classifier, ψ. The training algorithm iteratively increases

the number of features selected by the feature selection algorithm and performs

cross validation to obtain the area under the curve (AUC) [29]. If the current

AUC is greater than any that has been previously seen, the record of the

best classifier and feature set combination is updated accordingly. The best

overall performing classifier and feature set identified are output by the training

algorithm. Algorithms 1 and 2 describe the pre-processing stage of AVPE

(including the post-clustering merging of clusters), and the vehicle signal feature

extraction respectively, with Table 4.1 defining the functions used within the

algorithms in this chapter. Algorithm 3 details the training process of AVPE,

while the deployment version of AVPE which is used to classify new trajectories

is described in Algorithm 4. The deployment algorithm takes five inputs: (i)

the set of trajectories from which to extract PoIs, (ii) a threshold for merging

clusters that are close together in time, (iii) a pre-trained classifier (created

using Algorithm 3), (iv) the feature set required by the pre-trained classifier,

and (v) the choice of clustering algorithm with pre-trained parameters.
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Table 4.1: Functions used when defining AVPE.

Notation Description

time(xj) A function that returns the time j of the instance xj
head(cim) A function that returns the first instance in cluster cim
last(cim) A function that returns the last instance in cluster cim
delete(cim) A function that deletes the cluster cim
split(C, k) A function that returns an array of training and valida-

tion clusters for a given number of folds, k
truth(cim) A function that returns the ground truth classification

label for cim
score(TP, FP, TN, FN) A function that returns the AUC
filter(ω, F ) A function that returns the feature values in F for the

features that are present in feature set ω

4.2.1 Base Clustering of Trajectories

AVPE begins with a pre-processing stage, as defined in Algorithm 1. This starts

by generating clusters (in which a cluster is a strictly ordered sub-sequence

of instances) of instances from each GPS trajectory, using only spatial and

temporal information. This is achieved by inputting the data into an existing

clustering algorithm, preferably an algorithm that discards outlier instances

since these will not be PoIs. Even though the clustering stage only uses

spatial and temporal data, the vehicle data exists within each instance, and

so is available for use in the later stages of AVPE. As discussed earlier in this

chapter, we consider CB-SMoT [126], STA [18] and GVE [158] as representative

clustering algorithms.

Clustering algorithms typically have parameters that can significantly alter

the output that is generated. To optimise the parameters for each clustering

algorithm, we perform simulated annealing [93] using the training set. To

compare the performance of a given parameter combination, we aim to maximise

the number of non-driving instances that are clustered, while minimising the

number of driving instances that are clustered. This performance is quantified

using the Sørensen-Dice coefficient (set overlap) metric [53, 151], defined as,

QS =
2|A ∩B|
|A|+ |B| , (4.1)

where QS is the quotient of similarity, A is the set of instances in a ground

truth cluster, and B is the set of instances in an extracted cluster. This metric

is limited by the equal weighting given to all instances, and may be viewed as

simplistic. Other metrics, such as that proposed by Ward et al. [171], define

specific error types, enabling each kind of error to be individually weighted.

We conducted an initial investigation [162], prior to proposing AVPE, which

used both set overlap and the Ward metric [171] to measure the performance

in our parameter search. This was performed on a subset of the LED, and we
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found that using set overlap results in clustering parameters being identified

that give a higher overall classification performance than those found when

using the Ward metric. Therefore, in the remainder of this thesis we use set

overlap as the metric from which parameters are determined.

Algorithm 1: preprocess(cluster(), T , λ) — Pre-processing stage of
AVPE.

inputs : T , the set of n trajectories, {t1, ..., tn}
λ, the merge threshold
cluster(), the chosen clustering algorithm, with pre-trained
parameters

output : C, a set of pre-processed clusters

1 C = cluster(T )
2 if λ > 0 then

// merge adjacent clusters up to λ seconds apart

3 for ti ∈ T do
4 for cim ∈ C do

// calculate time difference between current and

previous cluster

5 q = time(head(cim))
6 p = time(last(cim−1))
7 if (q − p) < λ then

// append all instances from start of previous

cluster to end of current cluster

8 cim−1 = cim−1 ⊕ sip+1,q−1 ⊕ cim
9 delete(cim)

10 end

11 end

12 end

13 end
14 return C

4.2.2 Post-cluster Merging

Due to the nature of the trajectories and the vehicle activities, multiple clusters

can be generated that are part of the same activity, for example drive-through

and traffic activities. Such activities can include short periods of movement,

causing a new cluster to be started. Fragmented clusters will cause a drop in

classification performance due to the aggregated vehicle signals used in AVPE

being calculated over periods of time which do not reflect the whole activity.

Figure 4.2 shows an example scenario, in which road traffic causes a vehicle

to stop 3 times, with short periods of slow movement between the stops (the

slight differences in latitude and longitude at each stop are due to GPS jitter).

The overall output should be a single traffic activity, however all three clustering

algorithms considered in this chapter have the potential to separate this traffic
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Figure 4.2: Example of a fragmented traffic activity, and how post-cluster

merging can mitigate this.

activity into 3 separate clusters, especially if the GPS coordinates contain

inaccuracies or noise.

To rectify this, we propose merging clusters that are within a defined

temporal threshold of each other as part of the pre-processing stage of AVPE.

We define a merge threshold, λ, to be the minimum number of seconds that

is needed to separate consecutive clusters. In Algorithm 1, we compare the

time of the first instance in cluster cim and the time of the last instance in

cluster cim−1. If the difference in time between these two instances is less than

λ then cim−1 and cim will be merged. Clusters are merged by concatenating

the sequence of instances in the previous cluster, the current cluster and any

instances that are temporally between them. This helps to reduce fragmented

clusters (as illustrated in Figure 4.2), aiding the classification stage.

4.2.3 Signal Aggregation and Classification

The training stage of AVPE, as detailed in Algorithm 3, takes a set of training

trajectories, Ttrain, and a merge threshold, λ, along with the chosen methods

for clustering, feature selection and classification, and the number of folds

to use for cross validation, k. The output of the training stage is a trained

classifier, ψ∗, and the feature set used in the classifier, ω∗.

The training algorithm first pre-processes the training trajectories (using

Algorithm 1), assigning instances to clusters and merging nearby clusters

together. With instances now assigned to clusters, the majority class (> 50%)

of the instances within each cluster determines the activity to be applied.
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Algorithm 2: features(cim) — Extracting features for a cluster.

input : cim, the kth cluster of trajectory ti
output :F , a set of features calculated over all vehicle signals in

cluster cim

// get start and end time of cluster

1 a = time(head(cim))
2 b = time(last(cim))

// calculate features using element-wise operations over

matrices

// calculate different features for real-valued, categoric

and binary types

3 F = F ∪max(V R
a,b) ∪min(V R

a,b) ∪mean(V R
a,b) ∪ range(V R

a,b)

4 F = F ∪ stdev(V R
a,b) ∪ firstderivative(V R

a,b) ∪ timeabvmean(V R
a,b)

5 F = F ∪max(V N
a,b) ∪min(V N

a,b) ∪mean(V N
a,b) ∪ range(V N

a,b)

6 F = F ∪max(V B
a,b) ∪min(V B

a,b) ∪mean(V B
a,b) ∪ range(V B

a,b)

// calculate element-wise delta operation over specific

binary signals

7 F = F ∪ delta(V B
a,b where V B ∈ deltaSignals)

8 return F

Should a majority class containing greater than 50% of the instances not exist,

then the cluster is discarded.

With pre-processing complete, the AVPE training algorithm uses an incre-

mental search to find the best performing feature set, starting from training

a classifier using a single feature, up to using all the available features. We

adopt k-fold cross validation in the training stage to help reduce the bias.

For each fold, we split the training data into a training and validation set,

by assigning journeys to k partitions, where a single partition is used as the

validation set (see line 3 in Algorithm 3). Features are then extracted for each

cluster, as shown in Algorithm 2. Time and location are present in the data

for each instance, but these signals are not used for the classification stage in

AVPE, since they have already been used for clustering. The features extracted

comprise the minimum, maximum, range, and average for each signal, along

with the time above average, standard deviation, and first derivative for each

numerical signal calculated over each cluster. Additionally, binary signals can

also include a delta feature which shows the relative change between the start

and end of each cluster. For each cluster that is input, each of the signal

vectors are concatenated to form a matrix, which is then input to element-wise

operations (such as max(), min(), and mean() in Algorithm 2) to calculate

the aggregated value over the rows in the matrix.

The calculated features for all clusters in the training set (in the current fold,
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Algorithm 3: Activity-based Vehicle PoI Extraction (AVPE) — Train-
ing stage.

inputs : Ttrain, a set of n training trajectories, {t1, ..., tn}
λ, the merge threshold
cluster(), the chosen clustering algorithm, with pre-trained
parameters
selection(), the chosen feature selection algorithm
classificationMethod(), the chosen classification method
k, the number of folds to use for cross validation

output :ψ∗, a trained classifier
ω∗, the feature set used in the classifier ψ∗

1 Ctrain, Cvalidation, ψ∗, ω∗, AUC = [ ]
2 C = preprocess(cluster(), Ttrain, λ)
// split training and validation data

3 Ctrain, Cvalidation = split(C, k)
4 for Fnum ∈ count(1, |F |) do
5 TP, FP, TN, FN = [ ]
6 for k′ ∈ count(1, k) do

// calculate features for each cluster

7 for cim ∈ Ctrain[k′] do
8 F = F ∪ features(cim)
9 end

// select features and train classifier

10 ω = selection(Fnum, F )
11 ψ = train(classificationMethod(), filter(ω, F ))
12 for cim ∈ Cvalidation[k′] do
13 φ = ψ(filter(ω, features(cim)))

// compare the prediction to ground truth

14 for l ∈ L do
15 if φ = l ∧ φ = truth(cim) then TP [l] += 1
16 if φ = l ∧ φ 6= truth(cim) then FP [l] += 1
17 if φ 6= l ∧ φ = truth(cim) then TN [l] += 1
18 if φ 6= l ∧ φ 6= truth(cim) then FN [l] += 1

19 end

20 end

21 end
// store the classifier, feature set and AUC

22 ψ∗[Fnum] = ψ
23 ω∗[Fnum] = ω
24 AUC[Fnum] = score(TP, FP, TN,FN)

25 end
// determine # features with the Kneedle algorithm

26 F ∗num = kneedle(AUC)
27 return ψ∗[F ∗num], ω∗[F ∗num]
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Ctrain[k′]) are input into the chosen feature selection algorithm (such as Minimal

Redundancy Maximal Relevance [129] or Principal Component Analysis [4]),

along with the number of features to select. This will return a feature set

to be used in the classification method. Feature selection is needed since by

generating multiple statistical properties for each signal (e.g., the minimum,

range, and average), there is potential for overlap between features, where

multiple features can provide similar and redundant information. Additionally,

we do not want to pre-judge which features perform best, and different datasets

for which AVPE might be applied may have different vehicle signals and

features available.

A classifier is then trained, using the chosen classification method and the

feature set output by the feature selection algorithm. Using this newly created

classifier, we iterate over each cluster in the validation set, using the chosen

feature set to predict one of the activities. The prediction is compared to the

ground truth for each activity, and the count of true positives or false positives

is incremented as appropriate. Once predictions have been made for all clusters

in the validation set, the AUC is calculated and stored. This is repeated until

all the features have been included in the feature set, and the resulting AUC

values are input into the Kneedle algorithm [141], to identify the knee point of

the curve. The knee point determines the feature set to use in AVPE, and the

training stage returns the corresponding classifier and feature set. Alternative

stopping criteria can be used for more robust feature selection, but since the

feature selection method itself is not the focus of this chapter, this simple

approach was used.

4.2.4 Deployment

The deployment stage of AVPE is detailed in Algorithm 4. Data is collected

from the vehicle in a batched manner, with AVPE being run on batches of

trajectories as they become available (i.e., there is a buffer in which trajectories

are stored, and once the buffer is full the trajectories are processed and the

buffer reset). The classifier resulting from the training stage (Algorithm 3)

and the feature set used in this classifier are input to the deployment stage,

along with the merge threshold, λ, and the chosen method for clustering, as

used in the training stage. The trajectories in the buffer, T , that are to be

processed are also input. The pre-processing stage is identical to that used

in the training stage of AVPE, generating clusters from the trajectories and

merging consecutive clusters that occur within the defined time threshold.

After the trajectories have been pre-processed and clusters have been created,

the deployment stage of AVPE iterates through each cluster, calculating the

feature values. These feature values are filtered according to the feature set
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Algorithm 4: Activity-based Vehicle PoI Extraction (AVPE) — De-
ployment stage.

inputs : T , a set of n trajectories in the buffer, {t1, ..., tn}
λ, the merge threshold
ψ, the pre-trained classifier
ω, the feature set used in the classifier ψ
cluster(), the chosen clustering algorithm, with pre-trained
parameters

output : C′, a set of clusters that are considered to be relevant
1 C = preprocess(cluster(), T , λ)
2 for cim ∈ C do

// calculate features for the cluster from the vehicle

signal values, features() is defined in Algorithm 2

// select feature values from the feature set and

obtain prediction from classifier

3 φ = ψ(filter(ω, features(cim)))
// if the prediction is in the set of positive

activities, add the cluster to our return set

4 if φ ∈ L+ then
5 C′ = C′ ∪ cim
6 end

7 end
// return a set of clusters that are considered to be

relevant

8 return C′

used by the classifier and input into the classifier. A prediction for the cluster

is given, and if this prediction is in the set of positive activities, L+, then the

cluster is added to the return set. This process is repeated for all clusters

obtained from the trajectories in the buffer, and the set of clusters that are

considered to be relevant is returned.

4.3 Experimental Methodology

In order to demonstrate and evaluate AVPE, we use a set of activities and

transitions (as defined in Chapter 3), and select a set of vehicle signals to

be used. In this section, we detail the implementation specifics of AVPE

as evaluated in this chapter, including the parameter values, data collection

methodology and attributes of the datasets used.

4.3.1 Activity Labelling

As described earlier in Section 4.2, the activity types and the transitions between

these types are fundamental to AVPE. The set of activities and transitions

defined in Chapter 3 are illustrative and are to enable our evaluation, however,
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Table 4.2: Vehicle signals used for activity classification.

Signal Type

Boot status (open/closed) Binary
Door status (open/closed) [driver, passenger, rear right,
rear left]

Binary

Combined seatbelt status Categorical
Engine (on/off) Binary
Gear position Categorical
Indicator status Categorical
Lock status Categorical
Roof position Categorical
Seatbelt status (buckled/unbuckled) [driver, passenger,
rear right, rear left]

Binary

Steering wheel angle Numerical
Stop-start status Categorical
Vehicle speed Numerical
Window position [driver, passenger, rear right, rear left] Categorical

they can be tailored depending on the application. For the PoI extraction

task, we use the 8 activities described in Section 3.1.2. Although introducing 8

activities increases complexity when compared to using binary classification

(i.e., simply identifying true and false PoIs), classifying PoIs according to a more

specific set of activities can be valuable in developing subsequent applications.

This more nuanced set of activities may also help in understanding the reason

why a given PoI was extracted, since a key motivation behind AVPE is that

it can be used as a preprocessing step for applications such as destination

prediction and categorising vehicle usage. Given this, we do not consider a

binary classification. The activities used in this chapter are separated into

positive and negative activities (as defined in Section 4.2). The positive

activities are Drive-through, Drop-off, Parked and Pick-up, whereas

the negative activities are Barrier, Driving, Manoeuvre and Traffic. We

classify manoeuvre and barrier as negative activities since, although they may

indicate leaving or arriving at a PoI, they will always be adjacent to a positive

activity. We define separate activities for drop-off and pick-up since this can

aid further applications that use the activities, such as destination prediction.

Chapter 3 provides full descriptions of the activities and Appendix A documents

all of the transition tables between each activity.

Table 4.2 shows the 22 vehicle signals that were used for activity classifica-

tion, which were selected using both intuition and domain expertise. In this

chapter, the signals from the vehicle are expanded, using common statistical

properties, into the features described in Section 4.2 (minimum, maximum,

range etc.) resulting in a total of 99 features. As discussed in Section 4.2.3, we
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Table 4.3: Simulated annealing parameter space.

Algorithm Parameter Increment Start Range

CB-SMoT Qarea 0.01 0 ≤ n ≤ 1.0
CB-SMoT tmin 1 0 ≤ t ≤ 10
GVE α 0.1 0 ≤ α ≤ 2.5
GVE β 3 1 ≤ β ≤ 50
GVE npoints 3 1 ≤ n ≤ 50
GVE tmax 20 10 ≤ t ≤ 1440
STA Nbuf 2 1 ≤ n ≤ 15
STA Dthresh 0.1 0 < t ≤ 10.0

Table 4.4: The highest performing parameters for each clustering algorithm.

Algorithm Parameters Used

CB-SMoT Qarea = 0.40, tmin = 20
GVE α = 0.14, β = 160.0, npoints = 75, tmax(m) = 170
STA Nbuf = 4, Dthresh = 1.43

use feature selection to reduce the number of features as there is potential for

overlap between features, and therefore redundant information. The seatbelt

status signals are the only binary signals for which a delta feature is generated.

These signals were selected using domain expertise and guidance from our

industry partner on common activities within a vehicle and how they relate

to the available vehicle signals. For example, knowledge of the seatbelt and

door status are key indicators of whether a passenger is entering or exiting

the vehicle, and therefore they are useful in identifying the current activity.

Similarly, the lock status can be used as an indicator of a change of occupancy

in the vehicle. Signals such as engine and stop-start status indicate whether

the vehicle is stopping for a period of time, helping to distinguish between

Manoeuvre and Parked activities for example. Gear position, vehicle speed,

and steering wheel angle can further provide insight into the vehicle’s current

activity. External data, such as traffic data from Application Programming

Interfaces (APIs) and additional inertial measurements units could aid pre-

dictive performance, however the aim of this chapter is to use sensors that are

already on the vehicle and are common across multiple vehicles, a motivation

guided by our industry partner. Additional sensors add cost to a vehicle, and

traffic data APIs rely on data connectivity which may not be available in some

regions, and therefore these are not considered in this chapter.
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4.3.2 Experimental Parameters

To optimise the parameters for each clustering algorithm, we perform simulated

annealing using the Sørensen-Dice coefficient on the training set, as described

in Section 4.2.1. A merge threshold of 0 seconds is used when optimising the

parameters, to assess the performance of the clustering algorithm. This means

that no clusters are merged together and the raw output of the clustering

algorithms can be evaluated. Each clustering algorithm is run multiple times,

with a single parameter being altered on each step. For each clustering

algorithm, simulated annealing is performed 1000 times, evaluating over 3000

parameters in each iteration. We used the parameter space shown in Table 4.3,

where the GVE and STA parameters correspond to those used by Thomason et

al. [157]. Table 4.4 details the best performing parameters for each clustering

algorithm, and these are the parameters used in this chapter.

To use the AVPE algorithm, we are required to instantiate the algorithm

with a number of parameters, including the set of activities (L), a value for

the merge threshold (λ), a classification algorithm, and a feature selection

algorithm. The activities used are defined in Section 3.1.2, and we investigate a

range of merge thresholds (λ), namely 0, 5, 10 and 20 seconds. We consider the

Random Forest and Support Vector Machine (SVM) classification algorithms,

since Random Forest classifiers have previously been used for transportation

mode recognition [105, 113, 148, 168], and SVMs have previously been shown

to be effective for activity prediction [80, 97, 137]. When training the classifiers,

we used a value of k = 10, for the k-fold cross validation. For simplicity, both

classifiers use the default parameters in the library implementation used1, since

tuning the classification is not the focus of this chapter and we found the default

values to have reasonable performance. We used Minimal Redundancy Maximal

Relevance (mRMR) for feature selection since it has been shown to provide a

compact subset of features that improves classification accuracy on both discrete

and continuous data [129]. Both the classifier and feature selection methods

can be replaced with alternatives if required (such as Bayesian Inference [60] or

Principle Component Analysis [4] respectively) since our approach is agnostic

with respect to the methods used.

4.3.3 Data Collection

In order to evaluate AVPE, we defined a data collection methodology and

collected two datasets, namely the LED and the POLD. The data collection

methodology, and the specifics of each route in the LED are detailed in Chapter

3.

The LED is used to train the classifier and evaluate the performance of

1Weka implementations of the Random Forest and SVM classifiers were used [173].
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Table 4.5: Summary of durations in the POLD per participant.

Participant
Duration (s)

Minimum Maximum Average Total

A 487 2948 1621 45387
B 189 6005 1162 55772

189 6005 1392 101159

Table 4.6: Summary of distances in the POLD per participant.

Participant
Distance (m)

Minimum Maximum Average Total

A 1424 35930 22562 631735
B 446 95626 12169 584102

446 95626 17366 1215837

AVPE. For our evaluation in this chapter, the dataset is separated into training

and testing sets over the journeys, with 65 journeys (5 routes) in the training

set and 52 journeys (4 routes) in the test set. Cross validation occurs within the

training set only (by separating it into training and validation sets), meaning

that all of the journeys in the test set are unseen, meeting the out-of-sample

principle.

The POLD comprises journeys and activities undertaken as though an

individual was using their own personal vehicle. For the evaluation in this

chapter, we take a subset of this dataset, specifically 4 weeks of data from 2

different participants (1 week for each participant and vehicle combination).

We refer to this subset as the POLD for the remainder of this chapter, and

describe the properties of this subset below (as they are different from the

complete dataset described in Chapter 3). The POLD contains 76 journeys

and 101,063 instances, totalling over 1,215 kilometres and around 28 hours

of driving. The shortest journey lasted just over 3 minutes, and the longest

journey took just over 100 minutes. The distribution of the journey durations

and distances in the POLD is summarised in Tables 4.5 and 4.6. All of the

journeys in the POLD are used for testing, since the classifier is trained on the

LED, to demonstrate that AVPE is applicable to unscripted driving data.

4.4 Results

In this section, we first discuss the results of the state-of-the-art clustering

algorithms, namely CB-SMoT [126], STA [18] and GVE [158] when applied to

the LED. Following this, we present the results of the activity classification

stage, evaluating the performance using accuracy and AUC. Finally, we analyse

the performance of AVPE as a whole, looking at the trade-off between the
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Table 4.7: Summary of the performance of the clustering algorithms.

Algorithm Merge
threshold, λ (s)

# Clusters # Missed PoIs # False PoIs

CB-SMoT 0 896 30 578
CB-SMoT 5 705 32 412
CB-SMoT 10 638 32 362
CB-SMoT 20 560 36 293

GVE 0 1089 28 795
GVE 5 857 28 578
GVE 10 716 28 441
GVE 20 599 31 327

STA 0 845 31 569
STA 5 794 31 520
STA 10 696 32 425
STA 20 590 32 319

removal of true positives and false positives (in which the goal is to remove

false positives). We define a percentage reduction metric to evaluate this.

4.4.1 Base Clustering of Trajectories

In this analysis, we use the parameters for each of the selected clustering

algorithms that produced the highest set overlap. GVE [158] produces the

highest number of instances, along with the most clusters. STA [18] gives

the fewest clusters, and CB-SMoT [126] returns the fewest instances. When

investigating these results further, we find some interesting properties, as

discussed below.

GVE missed 28 clusters (or activities), of which 2 were pick-up activities

and 26 parked. All of the missed clusters were less than 48 seconds in duration,

with the highest durations being the pick-up activities. The parked activities

that are not recorded are 2–13 seconds in duration, with the majority being

located in multi-story car parks with weak GPS signal, therefore showing false

readings with a wide range of movement between consecutive instances. The

other missed parked clusters all have a short duration and this is likely to be a

factor in the cause of these missed clusters. The missed pick-up activities are

20–48 seconds in duration and occur directly after long parked activities. The

slight increase in movement compared to that of the parked activities appears

to prevent these pick-ups from being captured.

Similarly to GVE, 31 clusters are missed by STA, 29 of which are parked

activities. The remaining missed clusters are 2 pick-up activities, which are the

same ones discussed above for GVE. The missed parked activities are between

2–14 seconds in duration and a similar combination of cluster length and GPS

inaccuracy causes them to be missed.

CB-SMoT misses 30 activities in total, of which 26 are parked clusters,
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Park Driv Traf Pick Drop Barr Mano DThr

0.52 0.00 0.17 0.05 0.00 0.00 0.26 0.00

0.09 0.68 0.00 0.05 0.00 0.00 0.14 0.05

0.01 0.01 0.95 0.01 0.00 0.00 0.01 0.01

0.14 0.00 0.08 0.78 0.00 0.00 0.00 0.00

0.00 0.00 0.21 0.26 0.53 0.00 0.00 0.00

0.00 0.06 0.06 0.00 0.00 0.33 0.17 0.39

0.14 0.03 0.02 0.02 0.00 0.00 0.79 0.00

0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.88

(a) CB-SMoT (λ = 0)

Park Driv Traf Pick Drop Barr Mano DThr

0.77 0.00 0.16 0.00 0.00 0.00 0.07 0.00

0.01 0.93 0.06 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.94 0.01 0.00 0.01 0.01 0.00

0.00 0.00 0.19 0.51 0.31 0.00 0.00 0.00

0.00 0.00 0.21 0.18 0.61 0.00 0.00 0.00

0.05 0.05 0.67 0.00 0.00 0.19 0.00 0.05

0.12 0.03 0.35 0.00 0.00 0.00 0.49 0.00

0.09 0.00 0.39 0.00 0.00 0.26 0.00 0.26

(b) GVE (λ = 0)

Park Driv Traf Pick Drop Barr Mano DThr

0.45 0.02 0.05 0.15 0.00 0.00 0.33 0.00

0.00 0.54 0.40 0.00 0.00 0.00 0.05 0.00

0.00 0.06 0.92 0.00 0.00 0.00 0.01 0.00

0.07 0.00 0.12 0.38 0.43 0.00 0.00 0.00

0.03 0.01 0.18 0.32 0.45 0.00 0.00 0.00

0.00 0.04 0.54 0.00 0.00 0.00 0.17 0.25

0.15 0.02 0.04 0.03 0.00 0.00 0.76 0.00

0.53 0.00 0.37 0.00 0.00 0.05 0.05 0.00

(c) STA (λ = 0)

Park Driv Traf Pick Drop Barr Mano DThr

0.59 0.00 0.12 0.07 0.00 0.00 0.22 0.00

0.15 0.70 0.10 0.00 0.00 0.00 0.00 0.05

0.00 0.01 0.94 0.04 0.00 0.00 0.02 0.00

0.06 0.03 0.03 0.83 0.03 0.00 0.03 0.00

0.00 0.00 0.05 0.65 0.30 0.00 0.00 0.00

0.00 0.06 0.35 0.00 0.00 0.29 0.24 0.06

0.16 0.02 0.00 0.05 0.00 0.00 0.77 0.00

0.17 0.00 0.42 0.00 0.00 0.00 0.08 0.33

(d) CB-SMoT (λ = 5)

Park Driv Traf Pick Drop Barr Mano DThr

0.64 0.02 0.11 0.00 0.00 0.00 0.23 0.00

0.00 0.89 0.09 0.00 0.00 0.00 0.02 0.00

0.01 0.04 0.93 0.00 0.00 0.00 0.01 0.00

0.00 0.02 0.34 0.29 0.33 0.00 0.02 0.00

0.03 0.00 0.41 0.18 0.38 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.14 0.05 0.21 0.00 0.00 0.00 0.58 0.03

0.00 0.00 0.29 0.00 0.00 0.21 0.43 0.07

(e) GVE (λ = 5)

Park Driv Traf Pick Drop Barr Mano DThr

0.53 0.04 0.05 0.07 0.00 0.00 0.31 0.00

0.00 0.77 0.15 0.00 0.00 0.00 0.05 0.02

0.00 0.02 0.96 0.01 0.00 0.00 0.00 0.00

0.02 0.00 0.10 0.55 0.32 0.00 0.02 0.00

0.03 0.00 0.16 0.41 0.39 0.00 0.01 0.00

0.00 0.00 0.65 0.00 0.00 0.17 0.00 0.17

0.03 0.05 0.00 0.03 0.00 0.00 0.86 0.02

0.38 0.00 0.12 0.00 0.00 0.12 0.31 0.06

(f) STA (λ = 5)

which varied in length between 4–15 seconds. Additionally, 2 drive-through

activities, lasting over 5 minutes, and 2 drop-offs were missed. Due to a

different distance threshold being calculated for each trajectory, CB-SMoT is

more sensitive to small movements. Similar trends to GVE and STA are also

evident, where poor GPS reception gives the impression of high movement.

Unlike the other clustering algorithms, CB-SMoT discards all clusters for two

complete journeys. This behaviour is not beneficial to PoI extraction, since

multiple true PoIs are lost. CB-SMoT separates the input data into individual

trajectories, where a distance threshold is calculated for each trajectory using

the inverse cumulative probability. The distribution is created using the mean

and standard deviation of the distances between consecutive instances. Both

discarded journeys included a long wait at a drive-through service in addition

to 2 drop-off activities. This caused the mean of the distances to be low,

whilst keeping a relatively high standard deviation. Using the best performing

parameters with this distribution caused a negative distance threshold to be

generated, which resulted in no activities being extracted for the two journeys.
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Park Driv Traf Pick Drop Barr Mano DThr

0.54 0.00 0.15 0.02 0.00 0.00 0.29 0.00

0.05 0.85 0.05 0.00 0.00 0.00 0.05 0.00

0.00 0.00 0.94 0.03 0.00 0.00 0.02 0.01

0.09 0.03 0.06 0.83 0.00 0.00 0.00 0.00

0.00 0.00 0.12 0.35 0.52 0.00 0.00 0.00

0.00 0.06 0.18 0.00 0.00 0.47 0.24 0.06

0.13 0.04 0.00 0.04 0.00 0.00 0.80 0.00

0.00 0.00 0.17 0.00 0.00 0.00 0.08 0.75

(g) CB-SMoT (λ = 10)

Park Driv Traf Pick Drop Barr Mano DThr

0.73 0.04 0.13 0.00 0.00 0.00 0.11 0.00

0.00 0.75 0.21 0.00 0.00 0.00 0.04 0.00

0.01 0.03 0.94 0.00 0.00 0.00 0.01 0.00

0.00 0.00 0.33 0.33 0.30 0.00 0.04 0.00

0.04 0.00 0.36 0.11 0.49 0.00 0.00 0.00

0.00 0.00 0.79 0.00 0.00 0.21 0.00 0.00

0.20 0.09 0.16 0.00 0.00 0.00 0.53 0.02

0.00 0.00 0.25 0.00 0.00 0.17 0.50 0.08

(h) GVE (λ = 10)

Park Driv Traf Pick Drop Barr Mano DThr

0.48 0.02 0.08 0.08 0.00 0.00 0.33 0.02

0.01 0.71 0.20 0.00 0.00 0.00 0.05 0.03

0.00 0.02 0.96 0.00 0.00 0.00 0.01 0.00

0.00 0.02 0.15 0.37 0.46 0.00 0.00 0.00

0.01 0.00 0.16 0.29 0.53 0.00 0.00 0.00

0.00 0.06 0.44 0.00 0.00 0.28 0.17 0.06

0.00 0.00 0.01 0.04 0.00 0.00 0.95 0.00

0.42 0.00 0.00 0.00 0.00 0.50 0.00 0.08

(i) STA (λ = 10)

Park Driv Traf Pick Drop Barr Mano DThr

0.51 0.03 0.15 0.03 0.00 0.00 0.28 0.00

0.05 0.60 0.10 0.00 0.00 0.00 0.20 0.05

0.00 0.00 0.95 0.04 0.00 0.00 0.01 0.00

0.00 0.03 0.03 0.94 0.00 0.00 0.00 0.00

0.00 0.00 0.08 0.65 0.27 0.00 0.00 0.00

0.00 0.06 0.25 0.00 0.00 0.38 0.25 0.06

0.10 0.08 0.00 0.04 0.00 0.00 0.78 0.00

0.00 0.00 0.33 0.00 0.00 0.08 0.33 0.25

(j) CB-SMoT (λ = 20)

Park Driv Traf Pick Drop Barr Mano DThr

0.67 0.02 0.04 0.00 0.00 0.00 0.26 0.00

0.01 0.84 0.08 0.00 0.00 0.00 0.07 0.00

0.00 0.04 0.93 0.01 0.00 0.00 0.00 0.00

0.03 0.00 0.19 0.41 0.38 0.00 0.00 0.00

0.00 0.00 0.33 0.17 0.50 0.00 0.00 0.00

0.00 0.09 0.27 0.00 0.00 0.36 0.18 0.09

0.09 0.07 0.02 0.00 0.00 0.00 0.81 0.00

0.00 0.08 0.08 0.00 0.00 0.58 0.08 0.17

(k) GVE (λ = 20)

Park Driv Traf Pick Drop Barr Mano DThr

0.69 0.02 0.05 0.00 0.00 0.00 0.21 0.02

0.00 0.45 0.42 0.02 0.00 0.00 0.05 0.07

0.01 0.02 0.94 0.01 0.00 0.00 0.01 0.00

0.00 0.00 0.24 0.37 0.39 0.00 0.00 0.00

0.04 0.02 0.40 0.19 0.35 0.00 0.00 0.00

0.00 0.00 0.72 0.00 0.00 0.00 0.17 0.11

0.11 0.02 0.00 0.00 0.00 0.00 0.86 0.02

0.58 0.08 0.00 0.00 0.00 0.00 0.33 0.00

(l) STA (λ = 20)

Figure 4.3: Confusion matrices for Random Forest classifiers trained on the

CB-SMoT, GVE and STA clusters with different merge thresholds.
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When increasing the merge threshold, the number of false PoIs greatly

decreases. This is due to combining fragmented clusters around true PoIs.

However, as the number of false PoIs decreases, intuitively, the number of

merged clusters also increases. Therefore, having a large merge threshold may

not be beneficial since this can distort the aggregated values in the cluster

and reduce the number of true PoI extractions. Table 4.7 summarises the

performance of each clustering algorithm with 0, 5, 10 and 20 second merge

thresholds. There is a slight increase in false PoIs as the merge threshold in

increased, since merging can combine multiple true PoIs resulting in a loss of

precision.

GVE is the favoured algorithm of the three considered, since the priority in

selecting a clustering algorithm is to minimise the number of false PoIs, since

we cannot recover them in the further stages of AVPE. The beneficial impact

of merging clusters is most evident for GVE when using a 5 second merge

threshold. Merging clusters within 5 seconds of each other reduces the number

of false PoIs by 27.3%, without any further increase in false PoIs.

Given that CB-SMoT discarded 2 entire journeys, it is unlikely to be the

best algorithm to use for the clustering stage, however for completeness we

consider all three clustering algorithms in our evaluation of AVPE.

4.4.2 Activity Classification & PoI Filtering

For our evaluation, we use the clustered scenario data from the best performing

parameters for each of the clustering algorithms discussed above. For classific-

ation we compare the use of Random Forest and SVM classifiers both using

mRMR feature selection, as detailed in Section 4.2. Minimising the number of

features used is important as this will (i) avoid overfitting to the training data,

(ii) increase the generality and simplicity of the classifier, and (iii) require less

data to be collected and processed on the vehicle. With these factors in mind,

it is important to consider the trade-off between the number of features and

performance benefits.

We used 10-fold cross validation on the training data to determine a suitable

number of features to select when applying classification to the test data, using

the Kneedle algorithm [141] as shown in Algorithm 3. The number of features

selected varied between 11–30 for the Random Forest, and 6–34 for the SVM

classifiers. The mean and standard deviation for the number of features was

15.8 and 6.0 for the Random Forest, and 16.0 and 7.5 for the SVM classifiers

respectively.

Using Random Forest and CB-SMoT, the number of features increased

as the merge threshold increased, while no such pattern exists for GVE and

STA which both required fewer features than CB-SMoT. In contrast, the SVM
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Park Driv Traf Pick Drop Barr Mano DThr

0.62 0.02 0.19 0.02 0.02 0.00 0.12 0.00

0.09 0.77 0.00 0.05 0.00 0.00 0.09 0.00

0.00 0.01 0.96 0.00 0.01 0.00 0.01 0.01

0.00 0.03 0.11 0.83 0.03 0.00 0.00 0.00

0.00 0.00 0.05 0.81 0.14 0.00 0.00 0.00

0.00 0.11 0.11 0.00 0.00 0.17 0.17 0.44

0.17 0.02 0.02 0.02 0.00 0.00 0.78 0.00

0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.88

(a) CB-SMoT (λ = 0)

Park Driv Traf Pick Drop Barr Mano DThr

0.71 0.04 0.04 0.03 0.00 0.00 0.17 0.00

0.01 0.96 0.01 0.00 0.00 0.00 0.01 0.00

0.01 0.07 0.90 0.01 0.00 0.00 0.01 0.00

0.02 0.00 0.14 0.29 0.56 0.00 0.00 0.00

0.04 0.00 0.16 0.18 0.61 0.00 0.00 0.00

0.05 0.10 0.52 0.00 0.00 0.00 0.00 0.33

0.12 0.05 0.02 0.02 0.00 0.00 0.78 0.00

0.13 0.09 0.09 0.00 0.00 0.43 0.00 0.26

(b) GVE (λ = 0)

Park Driv Traf Pick Drop Barr Mano DThr

0.65 0.00 0.00 0.13 0.00 0.00 0.22 0.00

0.03 0.67 0.24 0.00 0.00 0.00 0.05 0.01

0.01 0.04 0.94 0.00 0.00 0.00 0.00 0.00

0.03 0.02 0.15 0.33 0.47 0.00 0.00 0.00

0.00 0.00 0.18 0.32 0.49 0.00 0.00 0.00

0.33 0.04 0.42 0.00 0.00 0.00 0.00 0.21

0.06 0.01 0.01 0.03 0.00 0.01 0.88 0.00

0.16 0.05 0.00 0.00 0.00 0.79 0.00 0.00

(c) STA (λ = 0)

Park Driv Traf Pick Drop Barr Mano DThr

0.66 0.02 0.07 0.05 0.00 0.00 0.20 0.00

0.05 0.85 0.00 0.00 0.00 0.00 0.05 0.05

0.00 0.01 0.93 0.04 0.00 0.01 0.02 0.00

0.06 0.03 0.09 0.83 0.00 0.00 0.00 0.00

0.00 0.00 0.12 0.22 0.65 0.00 0.00 0.00

0.06 0.06 0.18 0.00 0.00 0.47 0.00 0.24

0.25 0.04 0.00 0.00 0.04 0.00 0.68 0.00

0.17 0.00 0.33 0.00 0.00 0.00 0.08 0.42

(d) CB-SMoT (λ = 5)

Park Driv Traf Pick Drop Barr Mano DThr

0.86 0.08 0.02 0.00 0.00 0.00 0.05 0.00

0.02 0.92 0.03 0.00 0.00 0.00 0.02 0.01

0.00 0.04 0.95 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.03 0.74 0.21 0.00 0.00 0.00

0.03 0.03 0.18 0.08 0.68 0.00 0.00 0.00

0.00 0.00 0.53 0.00 0.00 0.32 0.00 0.16

0.12 0.04 0.01 0.00 0.00 0.00 0.83 0.00

0.07 0.07 0.00 0.00 0.00 0.50 0.00 0.36

(e) GVE (λ = 5)

Park Driv Traf Pick Drop Barr Mano DThr

0.69 0.05 0.02 0.04 0.00 0.00 0.20 0.00

0.02 0.89 0.02 0.00 0.00 0.00 0.04 0.02

0.00 0.03 0.96 0.01 0.00 0.00 0.00 0.00

0.05 0.03 0.13 0.42 0.37 0.00 0.00 0.00

0.03 0.00 0.14 0.39 0.44 0.00 0.00 0.00

0.13 0.04 0.39 0.00 0.00 0.17 0.00 0.26

0.07 0.02 0.00 0.02 0.00 0.00 0.87 0.01

0.25 0.00 0.00 0.00 0.00 0.31 0.00 0.44

(f) STA (λ = 5)

Park Driv Traf Pick Drop Barr Mano DThr

0.66 0.02 0.10 0.02 0.00 0.00 0.20 0.00

0.05 0.90 0.05 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.94 0.03 0.00 0.00 0.02 0.00

0.03 0.03 0.17 0.77 0.00 0.00 0.00 0.00

0.02 0.00 0.12 0.08 0.75 0.00 0.02 0.00

0.06 0.06 0.18 0.00 0.00 0.41 0.24 0.06

0.33 0.02 0.00 0.02 0.00 0.00 0.64 0.00

0.17 0.00 0.08 0.00 0.00 0.00 0.08 0.67

(g) CB-SMoT (λ = 10)

Park Driv Traf Pick Drop Barr Mano DThr

0.87 0.05 0.00 0.00 0.00 0.00 0.07 0.00

0.01 0.86 0.06 0.00 0.00 0.00 0.06 0.02

0.00 0.03 0.96 0.00 0.00 0.00 0.00 0.00

0.00 0.09 0.11 0.61 0.20 0.00 0.00 0.00

0.05 0.04 0.24 0.13 0.55 0.00 0.00 0.00

0.00 0.00 0.36 0.00 0.00 0.36 0.00 0.29

0.18 0.05 0.02 0.00 0.00 0.00 0.75 0.00

0.08 0.08 0.00 0.00 0.00 0.50 0.00 0.33

(h) GVE (λ = 10)
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Park Driv Traf Pick Drop Barr Mano DThr

0.63 0.06 0.00 0.10 0.00 0.00 0.21 0.00

0.04 0.87 0.05 0.00 0.00 0.00 0.00 0.04

0.01 0.01 0.96 0.00 0.00 0.00 0.00 0.00

0.04 0.00 0.19 0.26 0.52 0.00 0.00 0.00

0.00 0.00 0.22 0.19 0.59 0.00 0.00 0.00

0.06 0.11 0.39 0.00 0.00 0.28 0.00 0.17

0.04 0.04 0.00 0.04 0.00 0.00 0.89 0.00

0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.25

(i) STA (λ = 10)

Park Driv Traf Pick Drop Barr Mano DThr

0.56 0.03 0.13 0.03 0.00 0.00 0.26 0.00

0.05 0.85 0.00 0.00 0.00 0.05 0.05 0.00

0.00 0.01 0.96 0.03 0.00 0.00 0.01 0.00

0.00 0.06 0.15 0.79 0.00 0.00 0.00 0.00

0.00 0.00 0.14 0.84 0.03 0.00 0.00 0.00

0.00 0.06 0.19 0.00 0.00 0.44 0.25 0.06

0.14 0.02 0.10 0.04 0.00 0.00 0.71 0.00

0.00 0.00 0.33 0.00 0.00 0.00 0.25 0.42

(j) CB-SMoT (λ = 20)

Park Driv Traf Pick Drop Barr Mano DThr

0.80 0.09 0.00 0.00 0.00 0.00 0.11 0.00

0.02 0.89 0.05 0.00 0.00 0.00 0.01 0.03

0.01 0.04 0.93 0.00 0.00 0.00 0.00 0.00

0.00 0.08 0.08 0.32 0.49 0.03 0.00 0.00

0.00 0.12 0.19 0.14 0.55 0.00 0.00 0.00

0.00 0.09 0.00 0.00 0.00 0.55 0.09 0.27

0.12 0.02 0.00 0.00 0.00 0.00 0.86 0.00

0.00 0.17 0.00 0.00 0.00 0.83 0.00 0.00

(k) GVE (λ = 20)

Park Driv Traf Pick Drop Barr Mano DThr

0.67 0.00 0.05 0.10 0.00 0.00 0.19 0.00

0.05 0.57 0.28 0.05 0.00 0.00 0.02 0.03

0.04 0.01 0.91 0.02 0.00 0.00 0.01 0.00

0.20 0.00 0.00 0.41 0.39 0.00 0.00 0.00

0.19 0.02 0.02 0.42 0.35 0.00 0.00 0.00

0.00 0.06 0.06 0.00 0.00 0.67 0.00 0.22

0.05 0.00 0.07 0.05 0.00 0.00 0.79 0.04

0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.58

(l) STA (λ = 20)

Figure 4.4: Confusion matrices for SVM classifiers trained on the CB-SMoT,

GVE and STA clusters with different merge thresholds.
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classifier used the most features with CB-SMoT at λ = 5 and λ = 10. Similarly,

a higher number of features are used for both GVE and STA when using 5 and

10 second merge thresholds.

Once classifiers are trained with the selected number of features, we apply

them to the test set. Table 4.8 details the accuracy and AUC achieved for

each combination on the test set. We consider AUC as our main performance

metric since, unlike accuracy, AUC is not biased towards class imbalance. The

classification performance is of high importance when considering downstream

applications such as destination prediction. Misclassification can result in PoIs

being missed, in addition to false PoIs being used. Overall, both cases should

be considered, however it is more important to remove false PoIs and therefore

reduce the noise in the data.

The confusion matrices in Figures 4.3 and 4.4 show a breakdown of the

per-activity accuracy for the Random Forest and SVM classifiers respectively.

It can be seen that STA does not cope well with drop-off and pick-up activities,

with a high misclassification rate between them. However, this is due to

STA generally using fewer features, and therefore the informative seatbelt

features are not present. When using the SVM classifier, we can see that the

drop-off and pick-up accuracy is much higher when combined with CB-SMoT

or GVE clustering, when using λ values of 5 and 10. Additionally, a high

misclassification rate between barrier and drive-through activities can be seen,

however this is not unexpected given the similarity of these activities.

From the confusion matrices, it is also apparent that the Random Forest

classifier incorrectly predicts the traffic activity at a much higher frequency

than the SVM classifier. Although the AUC values when using the Random

Forest classifier are generally higher than when using the SVM classifier, the

confusion matrices show that the SVM classifier appears to be better over all

activities.

Table 4.8 shows that the predictions using GVE clustering give the highest

accuracy and AUC with both classifiers. Using the Random Forest classifier,

GVE with no merging gives the highest AUC, whereas when using the SVM

classifier, GVE with a 5 second merge achieves the highest AUC. We therefore

take GVE with λ = 0 and GVE with λ = 5 as the highest performing

combinations for the Random Forest and SVM classifiers respectively.

Table 4.9 lists the features that appear in the top 10, and their respective

frequencies as selected by mRMR, over all base clustering methods and merge

thresholds. The most prominent signals that appear are the vehicle speed,

current selected gear, and the passenger door status. For the vehicle speed

signal, the average feature is always in the top 10, with other combinations

using the maximum, minimum, standard deviation and time above average

features. The feature for the average of the currently selected gear is always
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Figure 4.5: Reduction in PoIs when using AVPE compared to the base clustering

methods.
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Table 4.8: Classification results, where ∗ denotes the highest performing

parameter combination, in terms of AUC, for each clustering algorithm and

classifier combination.

Classifier Algorithm Merge # Features Accuracy AUC
threshold λ (s)

Random Forest∗ CB-SMoT 0 14 0.775 0.969
Random Forest CB-SMoT 5 15 0.718 0.955
Random Forest CB-SMoT 10 22 0.776 0.964
Random Forest CB-SMoT 20 30 0.717 0.956

Random Forest∗ GVE 0 23 0.810 0.978
Random Forest GVE 5 11 0.739 0.964
Random Forest GVE 10 12 0.737 0.957
Random Forest GVE 20 16 0.779 0.972

Random Forest STA 0 11 0.687 0.950
Random Forest∗ STA 5 13 0.766 0.971
Random Forest STA 10 12 0.765 0.961
Random Forest STA 20 11 0.698 0.940

SVM CB-SMoT 0 8 0.746 0.931
SVM CB-SMoT 5 22 0.770 0.933
SVM∗ CB-SMoT 10 34 0.780 0.933
SVM CB-SMoT 20 16 0.695 0.925

SVM GVE 0 12 0.812 0.949
SVM∗ GVE 5 21 0.864 0.959
SVM GVE 10 20 0.828 0.947
SVM GVE 20 16 0.803 0.952

SVM STA 0 11 0.740 0.930
SVM∗ STA 5 13 0.792 0.949
SVM STA 10 13 0.789 0.943
SVM STA 20 6 0.728 0.918
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Table 4.9: Frequency of features within the top 10 selected by mRMR for all

12 base clustering and merge threshold combinations.

Signal Feature Frequency

Gear position Average 12
Vehicle speed Average 12
Passenger door status Average 12
Combined seatbelt status Average 10
Steering Wheel Angle Standard deviation 9
Stop-start status Minimum 7
Driver window position Average 7
Lock status Average 7
Steering Wheel Angle Range 5
Steering Wheel Angle Time above average 4
Passenger door status Minimum 4
Passenger door status Range 4
Lock status Minimum 4
Vehicle speed Time above average 3
Engine (on/off) Range 3
Driver window position Range 3
Indicator status Average 2
Steering Wheel Angle Maximum 2
Vehicle speed Maximum 2
Vehicle speed Minimum 2
Driver window position Maximum 2
Vehicle speed Standard deviation 1
Engine (on/off) Minimum 1
Stop-start status Range 1
Passenger seatbelt status Delta 1
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present in the top 10 across all combinations, with no other features derived

from this signal appearing. The same applies to the passenger door status, with

all combinations including the average feature within the top 10, in addition

to some combinations using the minimum and range features. Features for

the steering wheel angle signal are seen in the top 10 in all but the GVE and

λ = 0 combination. The majority of combinations use the standard deviation

feature of the steering wheel angle, however some combinations also use the

maximum, range and time above average features. The average of combined

seatbelt count signal is used in all combinations except for CB-SMoT with

λ = 5 or λ = 10. Other signals with features within the top 10 are the indicator

status, the engine running status, the stop start status, the passenger seatbelt

status, the driver window position and the central locking status.

Figure 4.5 shows the improvement that AVPE gives over the three existing

state-of-the-art algorithms alone. We define the percentage reduction as,

reductionα = 100− #P ∗α
#Pα

,

where #P ∗α is the number of PoIs output by AVPE, #Pα is the number of PoIs

output by the base clustering method, and α is the type of PoI to count (i.e.,

false or missed). The removal of false PoIs comes at the cost of increasing the

number of missed true PoIs. While it is important to consider the reduction

in true PoIs, the overall aim of AVPE is to provide a correct set of identified

locations, rather than a complete set, and therefore a reduction in true PoIs is

acceptable.

When using the Random Forest classifier (see Figure 4.5a), with GVE and

λ = 0, we see that 99.0% of false PoIs are removed, while losing 37.8% of true

PoIs compared to the base algorithm. Using STA and λ = 5 removes 98.2%

of false PoIs at a cost of losing 40.4% of true PoIs. Finally, using CB-SMoT

with λ = 0 removes 94.3% of false PoIs, being the lowest reduction of the three

clustering methods, with 35.5% of true PoIs being lost.

Figure 4.5b shows the same metrics for the SVM classifier. We see similar-

ities to using the Random Forest classifier, with GVE removing the most false

PoIs, followed by STA and CB-SMoT. In general, the amount of false PoIs

removed is lower, along with a reduced loss of true PoIs, apart from in the case

of CB-SMoT. Overall, the reduction of false PoIs is achieved to a reasonably

high extent when using both Random Forest and SVM classifiers.

4.4.3 Applying AVPE to Pattern of Life Data

In this section, we apply AVPE to the POLD and compare the performance of

AVPE on the two different vehicles used. The classifier was trained using the

LED, with a SVM as the classification method (since in general it outperformed
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Random Forest on the LED) and mRMR feature selection, as detailed in Section

4.2. The input clusters were generated using GVE with λ = 5, and both vehicles

are used in the training and testing sets.

Participant A had 37 ground truth PoIs that were obtained in the SUV. Of

these, 24 were correctly extracted by AVPE, along with 7 false PoIs and there

were 13 missed PoIs. The missing PoIs were all parked activities, while the

false PoIs were barrier, manoeuvre and traffic activities. When using the estate

car, Participant A had 27 ground truth PoIs, with AVPE resulting in 3 false

PoIs and 11 missed PoIs. The false PoIs were comprised of slow manoeuvre

and traffic activities. Once again, all missed PoIs were parked activities, of

which 3 were due to missing data as a result of poor GPS signal.

Based on the the SUV data for Participant B, 61 ground truth PoIs were

identified. Using AVPE, there were 40 correct PoIs extracted. There was only

a single false PoI, but 21 PoIs were missed in the process, 19 of which were

parked activities along with a single drop-off and a single pick-up activity. In

the case of the estate car, 50 ground truth PoIs were identified for Participant B.

After applying AVPE, 38 correct PoIs were extracted, along with 5 false PoIs.

There were 2 false PoIs at a barrier, in which the stop-start queuing nature has

similar qualities to a drive-through, 2 when performing slow manoeuvres and

another in traffic. Therefore, 12 PoIs were missed, 11 of which were parked

activities with a single drop-off activity.

The results are summarised in Figure 4.6a, which shows that AVPE with

a SVM classifier and GVE (λ = 5) provides reasonable accuracy on pattern

of life data. The number of false PoI extractions is very low, indicating that

the classifier removes false PoIs with high accuracy. However, the number of

missing PoIs is larger than expected, especially since the majority are parked

activities. Overall, it is clear that AVPE continues to provide a significant

reduction in false PoIs, which is the aim of the method. Figure 4.6b illustrates

this, with over 94.9% of false PoIs removed in the POLD. This does come at a

cost however, with 22.4%–40.7% of PoIs missed from the output. These results

are comparable to the performance seen in the LED (see Figure 4.5), showing

the applicability of the method to unscripted driving.

To gain a deeper understanding of the decrease in performance, we consider

the detail behind each missed activity. The most common error, accounting

for most of the missed PoIs, is the cluster size being too large. In multiple

instances, a manoeuvre precedes the parked activity, and a single cluster covers

the majority of both. Due to the presence of features indicating a manoeuvre,

such as the use of reverse gear and large steering movement, these clusters are

classified as a manoeuvre activity. The length of the manoeuvre activity in the

cluster is generally longer than the duration of the parked activity, hence the

features (such as averages) are biased towards the qualities of a manoeuvre.
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Other variations include slow driving, drop-off and traffic activities which are

similar in nature, with 46 out of 57 (80.7%) missed PoIs being due to this type

of error. A lack of GPS signal affected 8 (14.0%) of the missed PoIs. Due to

the lack of any available GPS coordinates, data with missing instances are

discarded before clustering. The final 3 errors (5.3%) are due to the GVE

clustering algorithm not identifying the PoI as an area of low spatial movement

and subsequently not generating a cluster. These could also be a result of GPS

inaccuracies, giving the impression of greater movement.

4.4.4 Discussion

The misclassification that exists between drop-off and pick-up activities is

partly caused by the cluster starting too late or ending too early, resulting in

informative signals, such as the change in seatbelt status, being lost. Some

investigation into extending the clusters for a given duration prior to the first

instance was conducted, however this was found to decrease the classification

performance. It is possible that extending the cluster for all vehicle signals

increases the difficulty in predicting the correct activity, since, for example, the

average speed of the vehicle will increase dramatically if the cluster is extended

prior to stopping. Additionally, the feature selection method could be failing

to select informative features when these are calculated over extended clusters,

since the vehicle signals now contain values from prior to the activity of focus.

Further investigation of cluster expansion, using a lookback and lookahead

may help address this issue.

4.5 Summary

In this chapter, we show that AVPE, our proposed wrapper method that uses

a classification stage based on vehicle data to filter out false PoIs, improves

performance over the existing state-of-the-art clustering algorithms when ex-

tracting PoIs from vehicle data. We compared the performance of three base

clustering algorithms, namely CB-SMoT, STA and GVE, and discussed the

high amount of false PoIs output. We found that GVE with a 0 second merge

threshold and a 5 second merge threshold gave the best performance in AVPE

when using a Random Forest and SVM classifier respectively.

In our scenario data, we observed that 94.3%–99.0% of false PoIs can be

removed at a cost of 35.5%–40.4% of true PoIs being lost using a Random

Forest classifier, using each of the three clustering algorithms. Similarly, when

using an SVM classifier with each of the three clustering algorithms, 93.6%–

98.8% of false PoIs can be removed while losing 34.5%–36.6% true PoIs. These

figures show a clear trade-off between reduction in false PoIs against loss of
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true PoIs. How to determine a suitable trade-off between these, whilst also

dependant on the application, is outside of the scope of the thesis and is left

as an open question. When applied on the POLD, AVPE saw comparable

performance to that on the LED, with over 94.9% of false PoIs being removed.

This shows that AVPE, which aims to ensure that any extracted PoIs are

correct rather than aiming for completeness, gives a significant improvement

over the current state-of-the-art clustering algorithms when used alone. This

improvement can assist the development of applications such as destination

prediction [41, 54, 79, 120] and identifying ride sharing opportunities [26, 55],

that benefit from accurate PoI data.

This chapter proposed classifying the activity of each stay point using

on-board sensor data, which has been used to filter activities that are not of

interest (i.e., false PoIs). However, it is also important to consider all of the

activities and how they make up each trajectory. Therefore, in Chapter 5 we

adapt this approach, which considers a trajectory as a sequence of locations,

where each location has an activity associated with it, and then evaluate how

effective this can be at predicting future destinations.
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Chapter 5

Extracting Activity-annotated Location

Sequences from Trajectories for use in

Destination Prediction

In the previous chapter, we proposed Activity-based Vehicle PoI Extraction

(AVPE), an algorithm that improves current methods for stay point extraction

by predicting the activity of a vehicle using data from on-board sensors. This

approach is used to filter out stay points that are not PoIs, such as traffic,

for use in applications such as destination prediction. In this chapter, we

consider the case where these stay points are not filtered out, and instead use

the activity of each stay point to help infer the final destination of the vehicle.

5.1 Introduction

Destination prediction is concerned with predicting the intended destination

of a journey undertaken by an individual. Several applications can benefit

from obtaining accurate predictions for a given journey, such as cooperative

traffic management [6], intelligent parking recommendations [52, 78] and vehicle

customisation [85, 100].

Location data is a fundamental input into existing destination prediction

methods, since transforming raw GPS data into sequences of locations and

building models on these sequences has been shown to be able to correctly

predict destinations with reasonable success [3, 76, 98, 169]. Some existing

methods combine location data with other data sources, such as temporal data

and weather data [154]. Our proposed method, AVPE, which is presented in

Chapter 4, has shown that vehicle data can be used to predict the activity of a

vehicle and subsequently annotate stay points on a vehicular trajectory with

activities. Using this approach, a sequence of locations can be transformed

into an activity-annotated location sequence, and in this chapter we investigate

whether such activity annotations can improve the performance of destination

prediction. In this chapter, our approach is benchmarked against the perform-

ance of a unannotated sequence of locations, generated by the GVE algorithm
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tiple different locations.
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(b) Example of all stay points having a

single location.

Figure 5.1: Example of stay points and locations.

[158]. Specifically, in this chapter, we (i) propose annotating locations in vehicle

trajectories with activity labels for use in destination prediction models, (ii)

evaluate the impact of introducing activity labels on predictive performance,

and (iii) compare the performance of using different grouping methods for stay

points, namely DBSCAN clustering and a grid-based approach.

This chapter is organised as follows. Section 5.2 presents our proposed

algorithm, and in Section 5.3 we outline our experimental methodology. Section

5.4 presents the results of applying our algorithm to predict the destinations of

vehicle trajectories in our dataset. Finally, Section 5.5 concludes the chapter.

5.2 Methodology

A trajectory, as defined in Section 2.4.1, is a vector of instances, in which an

instance, xj , at time j is a tuple xj = 〈lat, long, V 〉. We define a stay point to

be a period of low mobility within a trajectory. A stay point is a strictly ordered

subsequence of instances, [x1, x2, ..., xn]. A stay point can contain an activity

annotation, that describes what the vehicle is doing during the duration of

the stay point. Our methodology begins by running each trajectory through

an algorithm to extract the stay points, followed by an activity annotation

algorithm, such as AVPE (see Chapter 4), which will predict the activity

performed at each stay point, to obtain a vector of annotated stay points for

each trajectory.

We define a location to be a defined geographic area, within which multiple

stay points can fall. A location can contain additional data such as the duration

of time elapsed at the location and the activity performed at the location.

To transform stay points into locations, we define a function that takes a
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Sequence of locations

Annotated sequence of locations

x0
<latexit sha1_base64="7r51SXcHuf4coHy9AeIzKkYiWDQ=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMyKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67bzRfcojsFWibenBTKR7Vv9l75qHbzn51eRBJBpSEca9323Nj4KVaGEU7HuU6iaYzJEPdp21KJBdV+Oj11jE6t0kNhpGxJg6bq74kUC61HIrCdApuBXvQm4n9eOzHhpZ8yGSeGSjJbFCYcmQhN/kY9pigxfGQJJorZWxEZYIWJsenkbAje4svLpFEqeufFUs2mUYEZsnAMJ3AGHlxAGa6hCnUg0IcHeIJnhzuPzovzOmvNOPOZQ/gD5+0H6hORQA==</latexit>

x1
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Figure 5.2: Example of a sequence of locations where xi is a location, ai is an

annotated activity, and x0 and x4 are the source and destination respectively.

grouping method and a set of vectors of stay points, S, and outputs a set of

vectors of locations. Figures 5.1a and 5.1b show the same set of stay points

and how they can be associated with different locations. Figure 5.1a shows

an example of stay points that belong to different locations, and Figure 5.1b

shows how those same stay points could instead belong to a single location.

The manner in which stay points are grouped into locations depends on the

grouping method used, an example of which could be a density-based clustering

algorithm such as DBSCAN or an arbitrary mapping such as the OS National

Grid reference system (which we refer to as OS Grid). The grouping method

used is not defined in the algorithms proposed in this chapter, though can be

chosen depending on the application and input data.

In this chapter, we propose the use of activity annotations within a sequence

of locations, where each location is annotated with the vehicle’s activity, that

can provide additional information for that location in the sequence. Figure 5.2

illustrates a sequence of 5 locations, from a source location, x0, to a destination

location, x4, that is traversed by a vehicle, both with and without activity data.

A partial sequence of locations represents a journey that is in progress, and

therefore the sequence will be missing the destination location and potentially

multiple intermediate locations.

We will refer to a location that contains an activity and duration as an

enriched location. Our method takes a sequence of enriched locations. These

enriched locations will be used by our method to train a classifier, with the

destination as the class label. Our method assumes that all trajectories have a

stay point (i.e., a period of low mobility) at the start and end, so that locations

for both the source and destination are present.

5.2.1 Pre-processing

In our proposed method, we begin with a pre-processing stage, as defined in

Algorithm 5. This begins by taking each trajectory, and applying a function,
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Table 5.1: Functions used in this chapter.

Notation Description

lookup(s) A function that returns the associated value
for stay point s from the given mapping

getStayPointDuration(s) A function that returns the duration of time
elapsed for the stay point input

combineAdjacentDuplicates(Υt) A function that returns a condensed sequence
of enriched locations, with any consecutive du-
plicate location, activity values are combined,
summing the duration together

remapActivities(Υ,m) A function that returns a set of enriched loca-
tions, with the activities modified according to
the mapping m

getCrossFolds(T , k) A function that returns an array of training
and validation trajectories for a given number
of folds, k

initialNPercentOfTragectory(·) A function that results the initial n-percent of
the enriched locations, Υt

haversine(destination(t), φ) A function that returns the Haversine distance
(defined in Equation 5.1) between the predicted
destination, φ, and the actual destination

destination(t) A function that returns the labelled destination
of trajectory t

areaUnderCurve(avgDistError) A function that returns the area under the
curve given a set of values

that returns a vector of stay points, Si. We define cluster() to be a function

that takes a single trajectory, ti, and returns a vector of stay points. CB-

SMoT [126], GVE [158] and STA [18] are three representative algorithms that

could be used for the function. We define S to be a set of vectors of stay

points. Formally, S is constructed by applying a stay point extraction function,

cluster(), to every trajectory of raw data ti in the set of raw trajectories

T , i.e., S = {Si|Si = cluster(ti)∀ti ∈ T }. In the evaluation later in this

chapter, we use the Gradient-based Visit Extractor (GVE) algorithm [158] as

a representative algorithm that would perform this, since our previous work in

Chapter 4 found this algorithm to be effective.

Once the trajectories are transformed from sequences of instances to

sequences of stay points, our method applies a function to the set vector

of stay points, that transforms the stay points into locations. Formally,

groupLocations() takes a set of vectors of stay points, S, and outputs a

lookup table that will map each stay point, s, to a location, depending on the

pre-determined location grouping algorithm used. Examples of the grouping

algorithm can be a clustering algorithm such as DBSCAN [56], or a grid-based

approach such as OS Grid [124]. This lookup table is stored since it is later

used for pre-processing when predicting an unfolding trajectory.

Our method will then iterate through the vector of stay points for each

trajectory, and will use the location lookup table to obtain the location that
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Algorithm 5: preprocess(·) — Pre-processing stage.

inputs : T = {t1, ..., tn}, the set of n trajectories,
cluster(), the chosen stay point clustering algorithm, with
pre-trained parameters
annotate(), the chosen activity annotation algorithm, with
pre-trained parameters
groupLocations(), the chosen location grouping algorithm,
with pre-trained parameters

output : Υ, a set of enriched locations

1 for ti ∈ T do
2 Si = cluster(ti)
3 S = S ∪ Si
4 end

// group stay points to locations, store in lookup table

5 locationMap = groupLocations(S)

6 for ti ∈ T do
7 for Si ∈ S do

// sequence of enriched locations

// (location, activity, duration)

8 Υt =
[(locationMap.lookup(s), annotate(s), getStayPointDuration(s)) |
for each s ∈ Si]

// combine consecutive duplicates using duration

9 Υt = combineAdjacentDuplicates(Υt)

10 end

11 end
12 return Υ

corresponds to each stay point. Additionally, as we iterate through each

stay point, we pass the current stay point into functions that will return the

activity predicted for the stay point and its elapsed duration. We use the

AVPE algorithm as our chosen activity annotation algorithm. This uses vehicle

signals within the trajectory to predict the activity at each stay point.

With this data, each stay point is now represented as a enriched location,

which consists of the location, activity and duration associated with the stay

point. This is repeated for all stay points within a trajectory, and therefore

a trajectory is now represented as a sequence of enriched locations. Within

this sequence, the values of location and activity within each enriched location

are examined. If any consecutive duplicates (where a duplicate is defined as

both the location and activity being identical for different enriched locations)

are present, the combineAdjacentDuplicates() function will combine these

enriched locations into a single enriched location, where the duration is the

sum of all durations for the individual enriched locations. An example of the
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operation of this function is illustrated in Figure 5.3.

The pre-processing of a set of trajectories is now complete, with each

trajectory now transformed into a sequence of enriched locations, consisting of

location, activity and duration.

5.2.2 Training

The training stage, detailed in Algorithm 6, takes a set of training trajectories,

Ttrain, a stay point clustering algorithm, cluster(), an activity annotation

algorithm, annotate(), an algorithm for grouping locations, groupLocations(),

a classification method, classificationMethod(), and a set of activity mappings,

A.

The activity mappings provide a map from the original activity to a newly

created activity. For example, if you have drop-off and pick-up activities,

you may wish to combine these into a single activity, therefore the individual

drop-off and pick-up activities would both be mapped to this composite activity.

Thus, while our method takes all possible activities given by the annotation

algorithm, this approach gives the opportunity to re-map these to examine

different combinations and select the best performing one for the input data

used. For each mapping provided to the training algorithm from the set of

activity mappings, A, the activities are remapped using current mapping. An

example of three activity mappings (a1, a2, and a3) are shown in Figure 5.4.

The training algorithm begins by using Algorithm 5 to pre-process the

trajectories, outputting the enriched locations as detailed in Section 5.2.1. The

training trajectories are then split using stratified k-fold cross validation, and

a classifier, ψ, is trained on the completed sequences of enriched locations

consisting of location, activity and duration (i.e. using the trajectories at

100% completion), using the chosen classification method. A single classifier is
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[l0, a0, d0], [l0, a0, d1], [l0, a1, d2], [l1, a2, d3], [l1, a2, d4]
Before

(5 data points)

After
(3 data points)

Figure 5.3: Example of combining consecutive duplicates, where li is the

location, ai is the annotated activity and di is the duration of the stay point.
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BARRIER ->   BARRIER
DRIVETHROUGH ->   DRIVETHROUGH
DRIVING ->   {DRIVING, PARKED}
DROPOFF ->   {DROPOFF, PICKUP}
MANOEUVRE ->   MANOEUVRE
PARKED ->   {DRIVING, PARKED}
PICKUP ->   {DROPOFF, PICKUP}
TRAFFIC ->   TRAFFIC

BARRIER ->   BARRIER
DRIVETHROUGH ->   DRIVETHROUGH
DRIVING ->   {DRIVING, PARKED, TRAFFIC}
DROPOFF ->   {DROPOFF, MANOEUVRE, PICKUP}
MANOEUVRE ->   {DROPOFF, MANOEUVRE, PICKUP}
PARKED ->   {DRIVING, PARKED, TRAFFIC}
PICKUP ->   {DROPOFF, MANOEUVRE, PICKUP}
TRAFFIC ->   {DRIVING, PARKED, TRAFFIC}

BARRIER ->   BARRIER
DRIVETHROUGH ->   DRIVETHROUGH
DRIVING ->   DRIVING
DROPOFF ->   DROPOFF
MANOEUVRE ->   MANOEUVRE
PARKED ->   PARKED
PICKUP ->   PICKUP
TRAFFIC ->   TRAFFIC

Example mapping (a)

Example mapping (b)

Example mapping (c)

Figure 5.4: Example of different activity mappings within the set of activity

mappings.
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Algorithm 6: train(·) — Training a destination prediction model
with annotated vehicle trajectories.

inputs : Ttrain = {t1, ..., tn}, the set of n training trajectories
cluster(), the chosen stay point clustering algorithm
annotate(), the chosen activity annotation algorithm
groupLocations(), the chosen location grouping algorithm
classificationMethod, the chosen classification method
A = {a1, . . . , ar}, a set of activity mappings
k, the number of folds to use
inc, the incremental granularity for the percentage of the trajectory

output :ψ∗, a trained classifier
ω∗, the activity mapping used in the classifier ψ∗

1 ψ∗, ω∗ = null
2 AUC = −∞
// pre-process the training trajectories

3 Υ = preprocess(Ttrain, cluster(), annotate(), groupLocations())
4 for a ∈ A do
5 Υ∗ = remapActivities(Υ, a)
6 for (Train, Test) ∈ getCrossFolds(T , k) do
7 ψ = trainClassifer(classificationMethod, {Υt | t ∈ Train})
8 for t ∈ Test do
9 for percComp ∈ range(0, 100, inc) do

// predict destination from partial sequence of locations

10 φ = predict(initialNPercentOfTragectory(Υt, N = percComp), ψ)

// calculate distance from predicted destination

11 distError[t][percComp] = haversine(destination(t), φ)

12 end

13 end

14 end
15 for percComp ∈ range(0, 100, inc) do
16 avgDistError[percComp] = avgt∈T (distError[t][percComp])
17 end
18 if areaUnderCurve(avgDistError) > AUC then
19 ψ∗ = trainClassifer(classificationMethod, {Υt | t ∈ T })
20 ω∗ = a
21 AUC = areaUnderCurve(avgDistError)

22 end

23 end
24 return ψ∗, ω∗

output, as our method proposed uses multi-class classification, in which each

destination is a class label. For each processed trajectory in the validation set,

and in increments of inc%, the trajectory is trimmed (to only contain the first

percComp% of the journey) and input into the trained classifier to predict

the destination, φ. The distance error is calculated as the Haversine distance

between the prediction φ and the actual destination, destination(υ). The

Haversine distance is the spherical distance between two latitude, longitude

coordinates on the surface of a sphere [81], defined as,

d = 2r arcsin

(√
sin2

(
ψ2 − ψ1

2

)
+ cosψ1 · cosψ2 · sin2

(
λ2 − λ1

2

))
, (5.1)

where r is the radius of the sphere, ψ1, ψ2 are the latitude of point 1 and point

2, and λ1, λ2 are the longitude of point 1 and point 2. The area under the
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curve (AUC) is calculated using values for distance error, and should this be

the lowest AUC seen thus far in training, the classifier and respective activity

mapping are stored. This is repeated for every mapping in the set of activity

mappings, A, and the classifier, ψ∗ and activity mapping, ω∗ with the lowest

AUC are returned by the training algorithm.

5.2.3 Prediction

The prediction stage is detailed in Algorithm 7, and takes an unfolding tra-

jectory, t, a stay point clustering algorithm, cluster(), an activity annotation

algorithm, annotate(), an algorithm for grouping locations, groupLocations(),

the pre-trained classifier, ψ, and the activity mapping, ω, used in the classifier.

The pre-processing stage is almost identical to the training stage, with the

exception of the algorithm for grouping locations, groupLocations(). This

algorithm needs to match the locations to those defined in the training set. For

algorithms such as OS Grid [124], this is trivial, since the mapping is uniform,

and we can discard previously unseen locations. However, when DBSCAN [56]

is used, a more complex approach is required, such as finding the nearest

location to each stay point. Given that our method is agnostic to the location

grouping algorithm, our method will allow for both of the above, finding the

nearest location to each stay point, or, in the case of a reference system such

as OS Grid mapping, either matching or discarding the locations. Once the

unfolding trajectory has been processed, the activities are remapped using

the specified activity mapping, ω, and the pre-trained classifier, ψ, is used to

output a predicted destination, φ.

5.3 Experimental Methodology

To demonstrate and evaluate our method, we have selected a set of activity

labels, grouping methods and classifiers to be used. In this section, we discuss

the experimental parameters and grouping methods used in our implementation

of the algorithms proposed in this chapter. We discuss the pre-processing carried

out on the POLD for our evaluation, and its resulting properties.

5.3.1 Experimental Parameters

In this chapter, we use a 70-30 split for the training and test data, since given

the small size of our dataset, we opt for a larger proportion to be used for

training. Within the training data, to evaluate the model, we use k = 5 for

the stratified k-folds.

The stay point extraction method used is the Gradient-based Visit Extractor

(GVE) [158] along with AVPE, as defined in the previous chapter, for the
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Algorithm 7: predict(·) — Predicting the destination of a unseen
trajectory.

inputs : t, an unfolding trajectory
cluster(), the chosen stay point clustering algorithm, with
pre-trained parameters
annotate(), the chosen activity annotation algorithm, with
pre-trained parameters
ψ, the pre-trained classifier
ω, the activity mapping used in the classifier ψ

output :φ, the predicted destination of trajectory t

// pre-process the trajectory

// here closestLocation() returns the closest location from

the set of locations found in the training phase

1 Υ = preprocess(t, cluster(), annotate(), closestLocation())

// convert the activities using the mapping

2 Υ∗ = remapActivities(Υ, ω)

// predict destination from partial sequence of locations

3 φ = predict(Υ∗t , ψ)
4 return φ

activity annotation algorithm. When investigating the location grouping

algorithm, we consider both DBSCAN [56] and OS Grid [124].

Our method is agnostic to the activities used, however we use the activities

defined in Chapter 3 for our evaluation. These activities are barrier, drive

through, driving, drop-off, manoeuvre, parked, pick-up and traffic.

Each classifier is trained using the locations observed over the complete

trajectory (i.e., when at 100% trajectory completion). We evaluate the per-

formance of the classifier by examining the distance error, for which we use the

Haversine distance [81] between the predicted and actual destination location,

as defined in Equation 5.1. The distance error is calculated at 5% increments

of trajectory completion, and is averaged over all trajectories in the validation

set.

In this chapter, we compare a decision tree model (using a bag-of-words

approach, where each distinct enriched location is a word) with that of a Hidden

Markov Model (HMM) [134], both with and without activity annotations

included in the enriched locations. We have chosen these approaches as both

decision tree learning [42, 44, 121] and HMMs [16, 45, 73] have been previously

used for destination prediction. However, our method is agnostic to the

classification method used.

Our method takes in an activity mapping as input, which enables the

activity labels to be aggregated into groups. For example, activities such as

drop-off and pick-up can be combined into a single composite activity. We
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Mapping Composite Activities

A.1 None
B.1 {Driving, Traffic}
B.2 {Driving, Manoeuvre, Traffic}
C.1 {Drop-off, Pick-up}
C.2 {Drop-off, Parked, Pick-up}
D.1 {Driving, Manoeuvre, Traffic}

{Drop-off, Parked, Pick-up}
E.1 {Barrier, Driving, Manoeuvre, Traffic}

{Drive through, Drop-off, Parked, Pick-up}

Table 5.2: Activity mappings considered in our evaluation.

explore both multi-class and binary annotations within the enriched locations.

In our evaluation, we consider 7 activity mappings, as shown in Table 5.2.

The table details the activities that are combined into composite activities.

For example, the B.2 mapping combines the driving, manoeuvre and traffic

activities into a single composite activity, and the E.1 mapping combines

2 groups of 4 activities into 2 composite activities. The A.1 mapping does

not create any composite activities, and is equivalent to using the original 8

activities individually.

5.3.2 Dataset

For our evaluation, we use the POLD, as introduced in Chapter 3, that contains

5 participants. Prior to our evaluation, we pre-process the trajectories in the

dataset. We assume that the set of trajectories input into the training and

prediction algorithms contain no trajectories in which the destination is only

visited once. Any of these trajectories that are found in the dataset are removed,

and therefore is a subset of the POLD (for brevity, we refer to this subset as

the POLD).

Illustrated in Figure 5.5a, each participant made between 68–235 journeys

during the period of data collection, after pre-processing. Journey lengths

varied from under a kilometre to over 300 kilometres, but on average were

in the range of 20–30 kilometres, with the exception of one participant. The

average journey lengths for each participant are shown in Figure 5.5b.

5.3.3 Missing Stay Points

In our dataset, some trajectories were missing a stay point at the start of the

journey. This is due to a delay in getting a GPS location from the power on

state, and the vehicle already moving from the start location before a GPS fix

can be obtained. To resolve this issue, we added a stay point to trajectories
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where this was missing. This synthetic stay point was one second in duration,

and its latitude and longitude were approximated from both the experiment

logbook and manual inspection of the previous location of the vehicle. In a

real-world situation, the source can be inferred from the destination of the

previous journey, which mitigates this issue in practice.

5.3.4 Grouping Method

Nearby stay points are grouped together into a location using either DB-

SCAN [56], or the OS grid mapping [124]. As stay points consist of multiple

instances, where each instance can be a different set of coordinates, we represent

the coordinates of a stay point as the mean of the longitude and latitude of

all instances. DBSCAN is a density-based clustering algorithm [56] that uses

two parameters to determine the neighbourhood of an instance, and the min-

imum number of instances required to form a cluster. Unlike other clustering

algorithms DBSCAN does not require the number of clusters to be specified

in advance and is therefore suited to the application of grouping stay points

into locations. For DBSCAN, we provide an epsilon value, ε, which defines

the distance threshold in metres. Altering this value will affect the number

of locations determined from stay points. For example, a higher value of ε

may combine points from multiple sides of a roundabout into a single location.

The DBSCAN algorithm uses a threshold (epsilon) to specify how close points

should be to each other to be considered part of the same cluster. While

the Euclidean distance is often used with DBSCAN, since we are considering

geospatial data, we use the Haversine distance between points, as defined in

Equation 5.1.

As an alternative to DBSCAN clustering, we consider the use of OS Grid

mapping to group the stay points into locations. OS Grid is a grid reference

system used in Great Britain [124]. Using 2 grid-letters, the country is divided

into 25 100km by 100km grid squares, with further pairs of digits used to vary

the resolution of the grid square. In our approach, the coordinates of each

stay point are converted into a grid reference, to determine its respective grid

square.

Both approaches present their own challenges. Using the OS Grid mapping

approach provides a consistent location area, however stay points whose co-

ordinates reside on the boundary of multiple grid squares could be assigned a

different grid square given even the smallest of changes in coordinates. The

grid boundaries are arbitrary and therefore the locations are not tailored to

the input data, unlike in DBSCAN.

Using DBSCAN provides flexibility in the shape and size of the location,

however DBSCAN requires a specified distance threshold which is not easy
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to estimate for large sets of trajectory data. This is a similar problem faced

when using OS Grid mapping, as determining the grid size to use is not

obvious. There is a trade-off between the threshold or grid size used, which

could also cause a suboptimal grouping of locations. Choosing a grid size

which is too large for OS Grid mapping or a threshold that is too small for

DBSCAN may group too many locations together, and reduce the precision

of the system, but may improve the overall classification performance (for

example, any misclassifications between two nearby locations would be avoided

as they are now considered a single location, however this will artificially

inflate the performance in the case that the two locations are really different).

Choosing a suitable threshold or grid size is a non-trivial task, and for the

purpose of this evaluation we use 100 metre grid squares, and a threshold of

100 metres (the choice of 100 metres was due to this being the nearest OS Grid

reference size to a car park).

5.4 Results

As described in Section 5.3, we consider DBSCAN and OS Grid mapping as

methods for obtaining the locations from visits output by AVPE. In addition to

the method used to gather locations, our results compare the performance of a

simple decision tree classifier to a more sophisticated HMM. The performance

of unannotated and annotated vehicle trajectories are compared, highlighting

the benefits and drawbacks of the activity annotations. In the ideal case,

the plots in this section would illustrate a steady downward trend, where the

prediction was perfect at 100% completion. Normalised distance error is used

for all the results, to allow for a consistent comparison between both journeys

and participants. The normalised distance error for a trajectory is calculated

as the distance from the predicted to the actual destination locations, divided

by the total distance travelled in the trajectory. This will ensure that the same

distance error is more significant on shorter trajectories.

The first set of results is the validation set from the training phase, where

we examine the distance error to select the activity mapping that provides the

best performance. In this section, we refer to the mappings as defined in Table

5.2.

5.4.1 OS Grid mapping

First, we consider the performance for the OS Grid mapping method. It can

be seen from Figures 5.6 and 5.7 that the models produced from the decision

tree classifier fluctuate in performance less so than those using the HMM,

having mostly a downward trend as the journey unfolds. The distance errors
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Figure 5.6: Distance error when using 100m OS Grid squares and a decision

tree classifier, for all participants.
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Figure 5.7: Distance error when using 100m OS Grid squares and a HMM

classifier, for all participants.
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Participant Classifier Mapping(s) Average Dist. Error

uw1
Decision tree B.1 0.541
HMM E.1 0.660

uw2
Decision tree A.1, C.1 4.596
HMM C.2 7.818

uw4
Decision tree B.1 2.007
HMM A.1, C.1 3.111

uw6
Decision tree E.1 5.251
HMM C.1 5.122

uw9
Decision tree C.2 1.776
HMM E.1 4.129

Table 5.3: Best performing mappings when using OS Grid mapping on the

validation set (refer to Table 5.2 for the mappings).

produced from the HMMs vary as the journey unfolds, where it seems that

in some cases more data results in a worse prediction from the model. When

we examine the different participants, we notice no obvious pattern between

them, where some show that using the full set of annotations give improved

performance (such as Figure 5.6a) and in other cases binary annotation gives

better performance (such as Figure 5.7a). These results demonstrate that

the choice of classification model used can greatly affect the performance, for

example in the case of uw2 (see Figures 5.6b and 5.7b). Using the decision tree

classifier produces a smaller distance error for all participants, compared to

the HMM.

If we consider the different activity mappings, we observe that the ranking

of each mapping changes frequently when using the HMM, and is generally

more consistent for the decision tree classifier, with most of the changes in the

final 10% of the trajectory.

To examine the mappings that perform the best, we consider the average

distance error, as shown in Table 5.3. For all participants, a mapping with

activity labelling outperforms the original that does not have activity labelling.

Out of the 7 mappings with activities, we can see a mixture that provide the

best performance, with the E.1 and C.1 mappings being the most common.

Conversely, the B.2 and D.1 mappings are never the best performing.

5.4.2 DBSCAN

When considering the performance with DBSCAN used as the grouping method,

we see that the general trends exhibited have the same properties as those

observed when using OS Grid mapping, however there are some notable
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Figure 5.8: Distance error when using DBSCAN with a threshold of 100m and

a decision tree classifier, for all participants.
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Figure 5.9: Distance error when using DBSCAN with a threshold of 100m and

a HMM classifier, for all participants.
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Participant Classifier Mapping(s) Average Dist. Error

uw1
Decision tree A.1, C.1 0.566
HMM E.1 0.653

uw2
Decision tree C.2 5.736
HMM Unannotated 6.687

uw4
Decision tree Unannotated 1.788
HMM A.1, C.1 3.282

uw6
Decision tree A.1 5.262
HMM Unannotated 5.780

uw9
Decision tree A.1, C.1 1.802
HMM Unannotated 3.976

Table 5.4: Best performing mappings when using DBSCAN on the validation

set (refer to Table 5.2 for the mappings).

differences.

For example, when using a decision tree classifier and DBSCAN as the

grouping method, we observe degraded performance for participant uw2 (see

Figure 5.8b) compared to when using OS Grid mapping (see Figure 5.6b).

However, there is a larger difference in performance between different activity

mappings, with the C.2 mapping providing the best performance, by at least

0.239 over any other mapping.

Conversely, when using a decision tree classifier for participant uw4, the DB-

SCAN grouping method (see Figure 5.8c) gives better performance. However,

the unannotated variant outperforms all other mappings, with the performance

only matched in the initial 5% of the trajectory.

Table 5.4 details the best performing mappings when using DBSCAN

grouping on the validation set. Unlike OS Grid mapping, these results show

that the unannotated variant sometimes outperform the annotated sequences

for a given participant/classifier combination. Similar to when using OS Grid

mapping, B.2 and D.2 mappings are never the best performing, along with

the B.1 mapping. We observe that the A.1 and C.1 mappings are the most

common, underneath the unannotated variant.

5.4.3 Applying the models to unseen data

After comparing the performance of the mappings on the validation set, we

now apply the best performing mappings to our unseen test data, along with

the unannotated variant for comparison. In the instances where there were

multiple best performing mappings, we will apply all of them to the test set,

and where the unannotated variant was best, it will be compared to the best
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Participant Grouping Method Classifier Mappings

uw1 OS Grid mapping Decision tree B.1
uw2 OS Grid mapping Decision tree A.1, C.1
uw4 DBSCAN Decision tree B.2*
uw6 OS Grid mapping HMM C.1
uw9 OS Grid mapping Decision tree C.2

Table 5.5: Best performing mappings (refer to Table 5.2 for the mappings) on

the validation set, where * denotes that the unannotated variant was the best.

annotated mapping. Given the above, we will now compare the performance

on the test set for each participant, using the highest performing combinations

shown in Table 5.5.

As shown in Figure 5.10, when applied to the test set, the unannotated

sequence of locations results in a smaller normalised distance error for 4 out

of the 5 participants. There are a few exceptions to this, specifically the final

part of the trajectories for participant uw1, the entire length of trajectories

for uw2, and the start of the trajectories for uw4 and uw9. In the case of uw6,

no activity mapping outperforms the unannotated variant at any point. For

participant uw2, there were 2 identical best performing combinations from the

validation stage, and this is mirrored when applied to the test set, where the

A.1 and C.1 mappings give the same distance error.

In terms of the difference between the distance error for unannotated and

annotated sequences, we see a wide variation, depending on the participant.

For participant uw1 (see Figure 5.10a), the difference is small, with the dis-

tance error for the unannotated sequence being on average 0.03 smaller. For

participants uw4 and uw9 (Figures 5.10c and 5.10e respectively), the difference

is on average under 1.0. However, for participant uw6 (Figure 5.10d), we see

a huge difference of over 31 at the beginning of the journey, that gradually

decreases to the just over 3. Finally, for participant uw2 (Figure 5.10b), in

which the annotated sequence outperforms the unannotated sequence, we see

a difference in the average distance error that starts at 2.29 and gradually

increases throughout to 7.24.

5.4.4 Discussion

These results show that despite an activity mapping outperforming the unan-

notated variant on that validation sets (for participants uw1, uw6, and uw9),

the performance is not reflected when the models are applied on the unseen

test data. This indicates that the models built on the training data do not

transfer well to unseen trajectories for the same participant. There could be

a number of reasons for this, the most likely being that there are a lack of
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Figure 5.10: Distance error when applying the highest performing combinations

to the test set, for all participants.
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common locations between trajectories, given the small size of our dataset.

There is a large difference between the performance of participants uw2 and

uw6, in which participant uw6 has a significantly higher number of unique

destinations than uw2.

The data for each participant exhibits different properties, where the

purpose of each journey, and the commonality of the type of journey were

varied. The journeys from participant uw1 were more consistent, with a low

number of unique destinations, and several trips to the majority of those

destinations. In contrast, participants uw6 and uw9 presented with a much

higher number of unique destinations but the frequency of some destinations

was low, with a significant number of destinations only having a few occurrences

in the data. In several participants, the most common journey was between

their home and work locations, however it was not uncommon for this to be

split by an intermediate location, such as going to a shop or a petrol station.

The type of activities varied per participant, with some (such as participant

uw1) not performing any of a specific activity e.g. a drive through. Further

statistics are summarised in Section 3.2

When we consider the best performing activity mappings used on the test

data, we observe that each participant has a different activity mapping to

another (with the exception of participant uw2). This indicated that different

participants benefit from training a model on different activity mappings.

Given this observation, the activity mapping used in each classifier should be

individualised to the participant.

Finally, our evaluation demonstrated that the best performance obtained

for each participant was on a variety of different classifier and grouping method

combinations. However, the most common combination was using a decision

tree classifier with OS Grid mapping, making it difficult to have a one-size-fits-

all approach.

5.5 Summary

In this chapter, we have proposed a methodology for representing a journey

as a sequence of activity-annotated locations, and investigated the impact of

several different activity mappings. We compared the performance using two

location grouping methods, namely DBSCAN [56] and OS Grid mapping [124],

in addition to two classification algorithms, namely a decision tree classifier

and a HMM [134]. We found that when using the decision tree classifier

the distance error from the ground truth throughout the unfolding trajectory

was significantly more stable than when using a HMM, which exhibited large

fluctuations in performance where the distance error would repeatedly decrease

and increase.
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For the pattern of life data that we collected, we observed mixed results.

For one participant, we saw a significant improvement over the performance

of the unannotated sequences. However, for the remaining participants, the

unannotated sequences outperformed the annotated ones, in which most were

near equal in performance, with a single participant being greatly disadvantaged

by the addition of annotations. From our investigation, we can see that there is

a great discrepancy between participants and their data, where the distribution

of activities can have an impact on performance.
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Chapter 6

Destination Prediction by Trajectory

Sub-clustering

In Chapters 4 and 5, we focused on periods of low mobility within a trajectory,

specifically to predict the activities within a trajectory and the final destination

of a trajectory. In this chapter, we consider the trajectory as a whole, in

contrast to the individual periods of low mobility, comparing the similarity of

an unfolding trajectory to previous trajectories. Our overall aim of the proposed

method in this chapter is to predict the final destination of a vehicle trajectory.

Existing destination prediction approaches make use of the spatial information

contained within trajectories, but this can be insufficient to achieve an accurate

prediction at the start of an unfolding trajectory, since several destinations may

share a common starting portion. To reduce the prediction error in the early

stages of a given journey, we propose the Destination Prediction by Trajectory

Sub-clustering method (DPTS) for iteratively clustering similar trajectories

into groups using additional information contained within trajectories, such as

temporal data. We show in our evaluation that DPTS is able to reduce the

mean distance error in the first 40-60% of journeys. The implication of reducing

the distance error early in a journey is that location-aware applications could

provide more accurate functionality earlier in a journey.

6.1 Introduction

Intelligent transportation systems can assist drivers in making their daily

journeys, by performing tasks such as assessing the current traffic levels [21, 178]

and minimising congestion [13, 35, 142], both of which could benefit from an

accurate prediction of the destination in advance. Besse et al. proposed a

method for destination prediction [23], which we refer to as BDP (denoting Besse

et al.’s Destination Prediction method). Their method uses trajectory similarity

classification, a technique that tries to predict which group of trajectories an

unfolding trajectory is most likely to match. To calculate the trajectory

groupings, Besse et al. use hierarchical agglomerative clustering with the

Symmetrized Segment-Path-Distance (SSPD), an instance-based trajectory
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distance metric [22]. Their method uses either a simple unweighted score based

on the GMM likelihood, or a weighted score that uses auxiliary variables (such

as the hour-of-day and the day-of-week) and weighting functions to modify the

score of each cluster. In this chapter, we opt for using the unweighted BDP

method as a baseline, so that the GMM likelihood score can be used directly

without needing to define a weighting function for each auxiliary variable.

The unweighted BDP method suffers from poor performance at the start of

a journey, where limited spatial information is available. When only a small

proportion of a journey has been completed, there is only spatial information

for the completed section, and since multiple journeys may originate at a

single location and share an initial route, this makes it difficult to distinguish

the destination early on. Other destination prediction methods exist in the

literature, but either use external information from outside the vehicle, such as

ground cover data or road type information, to improve predictive performance

[99, 187], require knowledge of the identity of the driver [15, 149], or use a

complex representation of the road network [15, 127, 149]. In this chapter,

we assume that such information is not available and that the identity of the

driver is unknown.

In this chapter, we (i) propose the Destination Prediction by Trajectory

Sub-clustering (DPTS) method, which extends BDP [23], by using additional

data and an iterative sub-clustering approach to combine trajectory clusters

into more specific groupings, and (ii) we evaluate DPTS against the baseline

performance of BDP (with the unweighted score). A key difference of DPTS

from BDP is the use of iterative sub-clustering that can take multiple metrics

and their respective parameters, performing iterations of clustering. In contrast,

BDP uses a single iteration of clustering with the SSPD metric alone. DPTS

can be easily extended by adding additional metrics and iterations to the

clustering process, and by varying the order of iterations. This chapter is

organised as follows. Section 6.2 presents the DPTS method, and Section 6.3

introduces our experimental methodology and the datasets used for evaluation.

Section 6.4 presents the results of applying DPTS to vehicle trajectories, and

compares the performance to that achieved by the baseline unweighted BDP.

Finally, Section 6.5 concludes the chapter.

6.2 Destination Prediction by Trajectory Sub-Clustering (DPTS)

The motivation behind Destination Prediction by Trajectory Sub-clustering

(DPTS) is to reduce the distance error in destination prediction using vehicle

data, specifically when making predictions in the early stages of a journey.

We define the distance error as the Haversine (or spherical) distance [81]

between the actual and predicted destination. Reducing the distance error
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improves confidence in the correctness of the predicted destination, which

can in turn improve location-aware applications, such as recommendations for

which routes to avoid [35, 142], locations of electric vehicle charging points

[50, 59], and so on. Defined in Section 2.4.1, a trajectory, t, is as a strictly

ordered sequence of instances [x1, ..., x|t|], in which an instance xj at time j

is a tuple xj = 〈lat, long, Vj〉 containing a latitude, lat, longitude, long, and

a vector of vehicle signal values, Vj . We hypothesize that the distance error

in prediction can be reduced by using the additional data that is contained

within the trajectories, such as temporal data or vehicle sensor data, including

the vehicle speed and status of doors. Using this additional data, we can

group trajectories into more specific clusters than those of BDP, enabling us

to (i) lower the average distance between the trajectories within a cluster (and

since destination prediction uses cluster centroids, a lower average distance

has the potential to reduce the average error), and (ii) improve the prediction

of which cluster an unfolding trajectory belongs to. In this chapter, we focus

on using temporal data from within the trajectories. However, our method

is data agnostic, and can be used with different input data depending on the

application and the data available. For example, the number of passengers in

a vehicle (obtained from seatbelt status data) could be used as an input to

help separate and predict trajectory clusters. We evaluate DPTS using the

temporal properties of trajectories to group the clusters, in addition to the

spatial information, using data that is implicitly available in the time signal

associated with each instance in a trajectory. The evaluation in this chapter

assumes that the raw time signal in a trajectory can be translated into a

suitable format, e.g., from a unix timestamp to a date and time.

6.2.1 Overview & Definitions

DPTS begins by performing an initial clustering of the trajectories, akin to

that in BDP. The trajectories are clustered using hierarchical agglomerative

clustering, using pairwise dissimilarity matrices. For spatial dissimilarity, we

adopt the approach taken by BDP, which uses the Symmetrized Segment-Path

Distance (SSPD) to generate the dissimilarity matrices [22]. SSPD uses the

Segment-Path distance, which is calculated as the mean of the distances from

each of the points in trajectory t1 to the closest segment in trajectory t2 [22].

SSPD is calculated as the mean of the sum of the Segment-Path distance from

t1 to t2 and the Segment-Path distance from t2 to t1. Figure 6.1 illustrates

an example of the Segment-Path distances between two trajectories t1 and t2.

Formally, the SSPD for trajectories t1 and t2 in Figure 6.1 is defined as,

1

2

(∑n
i=1 distAi
n

+

∑m
i=1 distBi
m

)
,
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Table 6.1: Functions used when defining DPTS.

Function Description

generateDissimilarityMatrix(T , d) Computes a pairwise dissimilarity matrix for
all trajectories, T , according to the distances
calculated by the distance function, d

hierarchical(T , D, α) Performs hierarchical agglomerative clustering
on trajectories, T , using the dissimilarity mat-
rix, D, according to the clustering criteria, α

getTrajectoriesFromCluster(cj) Returns the set of trajectories within cluster
cj

likelihood(xi, χj) Calculates the log-likelihood for instance, xi,
to fit the GMM, χj

softmax(likelihood) Performs the softmax function on the log-
likelihood, likelihood

clusterCentroid(cluster) Returns the centroid of the cluster, cluster
BIC(χj) Obtains the Bayesian Information Criterion for

GMM, χj

trainGMM(comp, instances) Trains a GMM using comp components with
the given instances

extractInstances(cj , features) Extracts all instances, containing the selected
features from cluster cj

chooseRandom(instances, n) Selects n random instances from instances
getDistanceFunction(mi) Returns the distance function for the non-null

entry in row mi of the matrix of clustering
parameters, M

getClusteringParameter(mi) Returns the clustering parameter for the non-
null entry in row mi of the matrix of clustering
parameters, M

isEmpty(mi) Returns true if there are only null entries in
row mi of the matrix of clustering parameters,
M

encodeDay(t) Returns the encoded day-of-week, [0..6], on
which the trajectory t started, s.t. 0 is a
Monday and 6 is a Sunday

encodeHour(t) Returns the encoded hour-of-day, [0..23], on
which the trajectory t started, s.t. 0 is 12am
and 23 is 11pm
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Figure 6.1: Example of the segment-path distances between two trajectories,

t1 and t2 [22].

where n is the number of points in t1, distAi is the minimum distance for point

i in t1 to t1, m is the number of points in t2, distBi is the minimum distance

for point i in t2 to t1.

For temporal similarity, we focus on two properties, the day-of-week and the

hour-of-day. These temporal properties are only considered for the first instance

in a trajectory, unlike the spatial similarity which considers each instance within

a trajectory. This is done to minimise the required computation, since the start

instance is a key temporal indicator. We define two functions, encodeDay(t)

and encodeHour(t), which when given an input trajectory, t, convert the time

of the first instance into encoded values for the day-of-week and hour-of-day

respectively. Since our approach uses hierarchical agglomerative clustering,

dissimilarity matrices are required for both the day-of-week and hour-of-day. To

create these dissimilarity matrices, we use the definitions of how the differences

in the day-of-week and hour-of-day are calculated.

Definition 6.1. The difference in day-of-week between trajectories t1 and t2

is defined as:

diffday(t1, t2) = min(abs(encodeDay(t1)− encodeDay(t2)),

7− abs(encodeDay(t1)− encodeDay(t2)))
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(b) Overview of the DPTS methodology for generating sub-clusters.

Figure 6.2: Overview of the BDP algorithm and the DPTS methodology.

Definition 6.2. The difference in hour-of-day between trajectories t1 and t2

is defined as

diffhour(t1, t2) = min(abs(encodeHour(t1)− encodeHour(t2)),
24− abs(encodeHour(t1)− encodeHour(t2)))

Figure 6.2 gives a high-level overview of the proposed DPTS methodology,

showing how clusters are generated, and highlighting the differences between

DPTS and BDP (using the unweighted score). In particular, BDP clusters

the input trajectories on spatial distance using SSPD, whereas in DPTS there

is an iterative process, in which clustering occurs according to the rows of a

parameter matrix, M . DPTS is iterative as opposed to clustering in multiple

dimensions simultaneously since with an iterative process, an implicit hierarchy

is formed, where the user can determine attributes with a higher importance

and perform clustering on these first.

Definition 6.3. A DPTS parameter matrix, M , is a sparse matrix in which

each row corresponds to a single clustering iteration, each column corresponds
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to a clustering attribute, and each entry to the parameter used.

M =



attribute1 attribute2 ... attributej

iteration1 m1,2 . . .

iteration2 m2,1 . . .
...

...
...

. . .
...

iterationi−1 . . . mi−1,j

iterationi . . .


We define a DPTS parameter matrix, M , as a sparse matrix in which the

column headings correspond to the available attributes on which to cluster,

and the rows implicitly indicate which attribute is used for clustering in a given

iteration and the parameter value to be used (see Definition 6.3). An attribute

is comprised of two parts, namely the signal that is used, such as SSPD, and

the measure to be used, such as the maximum cluster criterion. Each row

corresponds to a single iteration of the hierarchical clustering process (ordered

1 . . . i), such that a row contains at most a single non-null entry, mi,j , denoting

the parameter value, m, to be used in iteration i of the hierarchical clustering

using the attribute corresponding to column j. The number of columns cor-

respond to the number of clustering attributes considered, and the number of

rows corresponds to the number of iterations, plus one null row. The final row

only contains null entries, which is interpreted as being the termination criteria

for clustering. We define two functions to access entries in a parameter matrix,

namely, getDistanceFunction(mi) and getClusteringParameter(mi). Both

functions take as input a single row of the matrix, mi, and identify a non-null

column, such that getDistanceFunction(mi) returns the distance function

corresponding to this non-null column and getClusteringParameter(mi) re-

turns the entry in the column. Both of these functions are undefined for a row

containing only null entries.

In our evaluation, discussed later in Section 6.4, we consider three different

signals for clustering, namely SSPD, the difference in day-of-week and the

difference in hour-of-day. We use the maximum cluster criterion as the measure

for the SSPD signal (adopted from BDP [23]), and the distance criterion as

the measure for the difference in day-of-week and the difference in hour-of-day.

These attributes are denoted msspd, ddow and dhod respectively. In this

chapter, our evaluation uses each attribute a maximum of once, meaning that

a maximum of 3 clustering iterations are performed. An example parameter

matrix is shown in Example 6.1, which will cause DPTS to perform 3 iterations

of clustering. The first iteration will use SSPD with a clustering parameter

of 25, followed by the hour-of-day with a parameter value of 6 and the final

iteration will use the day-of-week, with a parameter value of 2. An illustration
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of representing the clustering performed in BDP using a DPTS parameter

matrix is shown in Example 6.2. Since BDP only uses SSPD for clustering

with a single clustering iteration, the parameter matrix, MBDP , only has a

single non-null entry in the top-left cell.

Example 6.1. An example parameter matrix, MDPTS, for DPTS.

MDPTS =



msspd ddow dhod

1 25

2 6

3 2

4


Example 6.2. A representation of example BDP algorithm parameters in the

form of a DPTS parameter matrix, MBDP .

MBDP =

[ msspd ddow dhod

1 25

2

]

6.2.2 The training stage of DPTS

Algorithm 8 details the approach used to generate the clusters. Given a set

of input trajectories, T , and a parameter matrix, M , the algorithm starts

by selecting the distance function, d, and hierarchical clustering parameter,

α, from the first row, m1, in M . The distance function, d, is then used to

compute a dissimilarity matrix, D, over the trajectories, T . Hierarchical

agglomerative clustering is then performed using the dissimilarity matrix, D,

and the clustering parameter, α, to generate a set of clusters. For example,

using the parameter matrix from Example 6.1, the initial dissimilarity matrix

would be computed using the SSPD distance function, and the subsequent

hierarchical agglomerative clustering would generate up to 25 clusters. For each

further iteration of clustering, represented by the rows, mi, in M , dissimilarity

matrices are computed over the trajectories, Tcj , in each cluster, cj , in the

current set of clusters, i.e., cj ∈ C. These dissimilarity matrices are used to

generate a further set of clusters, Cmi . Each new set of clusters, Cmi , generated

over the current clusters, is appended to C′, for use in the following iteration.

This process is repeated for each of the clustering iterations specified in the

parameter matrix, M , updating the current set of clusters C at the end of

each iteration with the newly calculated clusters C′. Once the current row of

the parameter matrix contains only null entries, the algorithm terminates and

returns the clusters resulting from the final iteration of clustering.

A set of Gaussian Mixture Models (GMMs), X, are trained on the resulting
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Algorithm 8: performCluster(T ,M)

inputs : T , a set of n trajectories, {t1, ..., tn}
M , a i× j parameter matrix

outputs : C, the set of clusters extracted from all trajectories in T
1 C = ∅
// for each row mi in M

2 for mi ∈M do
3 if isEmpty(mi) then
4 break
5 end
6 d = getDistanceFunction(mi)
7 α = getClusteringParameter(mi)
8 if C == ∅ then
9 D = generateDissimilarityMatrix(T , d)

10 C = hierarchical(T , D, α)

11 else
12 C′ = ∅
13 for cj ∈ C do

// for each initial cluster, generate a set of

sub-clusters

14 Tcj = getTrajectoriesFromCluster(cj)
15 D = generateDissimilarityMatrix(Tcj , d)
16 Cmi = hierarchical(Tcj , D, α)

// add each sub-cluster to the final output

17 C′ = C′ ∪ Cmi

18 end
19 C = C′
20 end

21 end
// return the set of clusters

22 return C

clusters, as specified in Algorithm 9. In DPTS, a feature vector is used to define

the features for training the GMMs. In this chapter, we consider the latitude,

longitude, encoded day-of-week and encoded hour-of-day. In BDP, the latitude

and longitude of an instance are the only features used in the GMM. When

using a weighted score, Besse et al. use additional variables, such as encoded

day-of-week and encoded hour-of-day, and weighting functions to modify the

likelihood score, but these variables are not used to sub-divide clusters of

trajectories. Our approach can also be extended to include additional data,

for example the vehicle signals that are included in each instance, xi. For

each cluster, cj , all instances from the trajectories within cj are extracted,

containing the features in the provided feature vector. A sample of these

instances is selected uniformly at random and without replacement according

to the parameter, µ, which controls the maximum number of instances to select.
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Algorithm 9: trainClassifiers(C, κ, µ, features)
inputs : C, a set of clusters containing trajectories

κ, the maximum number of components to use for each
GMM
µ, the maximum number of instances to select
features, the features to train the GMM with

outputs :X, a set containing the trained GMMs for each cluster in C
1 for j ∈ [1, |C|] do
2 ν, χ∗j =∞, null

// get all features vectors for all trajectories within

cluster

// e.g., the vector for sspd is lat,long

3 instances = extractInstances(cj , features)
// pick random sample of µ instances from trajectories

4 instances = chooseRandom(instances, µ)
// for number of components in 1 to κ

5 for comp ∈ [1,min(κ, |instances|)] do
6 χj = trainGMM(comp, instances)

// use Bayesian Information Criterion, ν, to select

model

7 if BIC(χj) < ν then
// update best gmm, χ∗j for cluster cj if better

8 χ∗j = χj
9 ν = BIC(χj)

10 end

11 end
12 X = X ∪ χ∗j
13 end

// return trained GMMs

14 return X

If the number of instances in cj is less than µ, then all instances are selected.

GMMs are built starting with a single component, up to the minimum of either

the κ parameter or the number of instances, in increments of 1. Each GMM

with an increased number of components, χj , trained on the selected instances

of cj is evaluated using the Bayesian Information Criterion (BIC) [147], and if

it has a lower BIC than the best BIC observed so far, then the best GMM, χ∗j ,

and its BIC, ν, are updated with the current values. This is repeated for every

cluster, cj , in the set of clusters output from the clustering stage, C, and the

trained GMMs are returned in a set, X.

The overall training stage of DPTS is detailed in Algorithm 10, in which

the GMMs are trained. This method takes six parameters: (i) a set of training

trajectories, T , (ii) a parameter matrix, MDPTS , (iii) a parameter matrix for

BDP, MBDP , (iv) the maximum number of components to consider for each
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Algorithm 10: Training stage of DPTS.

inputs : T , a set of n trajectories, {t1, ..., tn}
MDPTS , a i× j parameter matrix for DPTS
MBDP , a i× j parameter matrix representing BDP
κ, the maximum number of components to use for each
GMM
µ, the maximum number of instances to select
features, the features to train the GMM with

outputs :XBDP , a set containing the trained GMMs for each cluster
in CBDP
XDPTS , a set containing the trained GMMs for each cluster
in CDPTS

1 CBDP = performCluster(T ,MBDP )
2 XBDP = trainClassifiers(CBDP , κ, µ, 〈lat, long〉)
3 CDPTS = performCluster(T ,MDPTS)
4 XDPTS = trainClassifiers(CDPTS , κ, µ, features)
// return matrices of trained GMMs

5 return XBDP , XDPTS

GMM, κ, (v) the maximum number of instances to select when training a

GMM, µ, and, (vi) the set of features to use to train the GMMs. The training

stage returns two sets of GMMs, XBDP and XDPTS , containing the trained

GMMs for each cluster in CBDP and CDPTS respectively.

The training stage first clusters all trajectories in T , using the parameters

defined in MBDP , and trains a set of GMMs, XBDP , for each cluster in CBDP
using only the latitude and longitude, 〈lat, long〉, in the feature vector (see

Algorithm 9). This is equivalent to performing BDP (with the unweighted

score) on the input trajectories. We perform this step to allow DPTS to revert

to the prediction made by BDP should its expected performance be better.

DPTS then generates a set of clusters, CDPTS , for all trajectories in T using

the parameter matrix, MDPTS , (see Algorithm 8). The GMMs in XDPTS are

trained with Algorithm 9, using the feature vector input to the algorithm, such

as 〈lat, long, day, hour〉. Once the GMMs have been trained, the training stage

of DPTS is complete, which returns two sets of GMMs, namely XBDP trained

using the parameters in MBDP , and XDPTS using the parameters in MDPTS .

6.2.3 Trajectory Prediction

Algorithm 11 defines the process of predicting the cluster in which an unfolding

trajectory belongs. The log-likelihood for each GMM in X is calculated for

each instance, xi, within the trajectory, t, and is used to score the GMMs.

This algorithm can be run with X = XBDP and X = XDPTS , to obtain the

respective predictions. The log-likelihood is then translated into a probability
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Figure 6.3: Overview of DPTS methodology for using GMMs on trajectory

sub-clusterings for destination prediction.

using the softmax function. The prediction algorithm iterates through each

instance, xi, in the trajectory, maintaining a sum of the likelihood and prob-

ability over all instances. DPTS predicts the cluster for the final instance in

the trajectory, where the probability is averaged. As the algorithm iterates

through each GMM, χj ∈ X, the total likelihood is compared to the best seen

so far, updating the predicted cluster and its respective probability if it exceeds

the previous best. Since the GMMs are not trained on whole trajectories,

but rather random instances selected from clusters of trajectories (as detailed

earlier in the section), our proposed method can provide reasonable predictions

on an unfolding trajectory. The method returns the predicted cluster and its

probability.

In DPTS, we introduce the notion of a decision threshold, which is the

value to be exceeded by the probability of the DPTS prediction in order to

use the DPTS prediction. Failing to exceed the decision threshold will cause

DPTS to revert to the prediction made by BDP. In DPTS, we consider two

modes of decision threshold, namely a static and dynamic mode, controlled

by a boolean flag, θdynamic. The static mode, θdynamic = False, is where the

prediction probability of DPTS, PDPTS , is compared to a fixed predefined

decision threshold, θ. In the dynamic mode, θdynamic = True, the DPTS

prediction probability, PDPTS , is compared to the prediction probability of

BDP, PBPD, multiplied by the decision threshold parameter value, θ. The

decision threshold parameter value, θ, is therefore used to scale PBPD to

increase or decrease the likelihood of the exceeding the decision threshold.

Such scaling is needed since the BDP prediction probability, PBPD, may be
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Algorithm 11: predict(t,X), prediction stage of DPTS.

inputs : t, a unfolding trajectory to predict
X, a set containing the trained GMMs for each cluster in C

output : predictedCluster, bestProb, the predicted cluster for the last
instance in t, along with the probability for the prediction

1 predictedCluster = null
2 bestLikelihood, bestProb = −∞,−∞
3 for j ∈ [1, |C|] do
4 totalLikelihood = 0
5 totalProbability = 0
6 for xi ∈ t do

// calculate likelihood for instance xi in GMM χj
7 likelihood = likelihood(xi, χj)

// convert likelihood into probability using softmax

function

8 prob = softmax(likelihood)
// increment total likelihood and probability

9 totalLikelihood = totalLikelihood+ likelihood
10 totalProbability = totalProbability + likelihood

11 end
// calculate average probability

12 averageProbability = totalProbability/|t|
// only predict for the latest instance in the

unfolding trajectory

13 if totalLikelihood > bestLikelihood then
14 predictedCluster = j
15 bestLikelihood = totalLikelihood
16 bestProb = averageProbability

17 end

18 end
19 return predictedCluster, bestProb

consistently higher than that of DPTS, PDPTS , since the BDP clusters are

less specific. Algorithm 12 defines the method to check whether the decision

threshold is exceeded or not. The algorithm returns true if the DPTS prediction

has exceeded the decision threshold, and therefore will be used for prediction.

The deployment stage of DPTS is illustrated in Figure 6.3 and detailed in

Algorithm 13. This method takes five parameters: (i) the unfolding trajectory

to predict, t, (ii) a set of trained GMMs using BDP, XBDP , (iii) a set of trained

GMMs using DPTS, XDPTS , (iv) a boolean flag that indicates whether to use

the dynamic or static mode for the decision threshold, θdynamic, and (v) the

value to use within the decision threshold calculation, θ. The algorithm begins

with a given an input trajectory, t, for which cluster predictions and their

corresponding probabilities, for both BDP and DPTS, are computed. Based on

these probabilities, the decision threshold, θ, is evaluated, and if it is exceeded

116



Algorithm 12: exceedThreshold(PDPTS , PBDP , θdynamic, θ), de-
cision threshold check in DPTS.

inputs :PDPTS , average probability of the best GMM for the DPTS
clusters, CDPTS
PBDP , average probability of the best GMM for the BDP
clusters, CBDP
θdynamic, a boolean flag indicating whether to use dynamic or
static mode
θ, the parameter value to use in the decision threshold

output : thresholdExceeded, whether the decision threshold to use
XDPTS was exceeded

1 if θdynamic then
2 return PDPTS > (θ ∗ PBDP )
3 else
4 return PDPTS > θ
5 end

then the DPTS prediction is used, otherwise the algorithm reverts to using

the prediction made by BDP. The predicted destination itself is obtained by

taking the cluster centroid of the predicted cluster.

6.3 Experimental Methodology

In this chapter, we use three separate datasets to evaluate DPTS, two of

which are those used by Besse et al. to evaluate BDP [23], on which DPTS is

based. The first of these, the Caltrain dataset, contains 4,127 taxi trajectories

originating from Caltrain Station, San Francisco [130]. The second, the Porto

dataset, contains 19,423 taxi trajectories commencing from Sao Bento station,

located in the centre of Porto [1]. The third dataset, is a subset of our

POLD (as introduced in Chapter 3, which consists of trajectories for a single

participant collected over a number of non-consecutive weeks. We refer to this

subset as the POLD for the remainder of this chapter. Unlike the Caltrain

and Porto datasets, the POLD does not have a single starting location for

all trajectories, and so allows us to evaluate the performance of DPTS when

trajectories do not have a common starting location. Since there will be much

more spatial dissimilarity between trajectories at the start of a journey, this

has the potential to increase the difficulty of generating meaningful clusters.

Detailed descriptions and statistics for these datasets are presented in Chapter

3.

For all stages of the evaluation, unless explicitly stated, we explore in detail

the effect of the parameters on the Caltrain dataset, and state the best results

for the Porto dataset. Due to the different nature of the POLD, we evaluate

DPTS on the POLD separately in Section 6.4.5. Unless explicitly stated, our
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Algorithm 13: Deployment stage of DPTS.

inputs : t, a unfolding trajectory to predict
XBDP , a set containing the trained GMMs for each cluster in
CBDP
XDPTS , a set containing the trained GMMs for each cluster
in CDPTS
θdynamic, a boolean flag indicating whether to use dynamic or
static mode
θ, the parameter value to use in the decision threshold

output : predictedDestination, the predicted destination for
trajectory, t

1 predictionBDP , PBDP = predict(t,XBDP )
2 predictionDPTS , PDPTS = predict(t,XDPTS)
3 if exceedThreshold(PBDP , PDPTS , θdynamic, θ) then
4 predictedDestination = clusterCentroid(predictionDPTS)
5 else
6 predictedDestination = clusterCentroid(predictionBDP )
7 end
8 return predictedDestination

Table 6.2: Set of parameters, α, used for our initial evaluation.

Experiment # Order of Clustering Parameters (α)
Considered

1–4 SSPD → Day-of-week 25 → [0,3]
5–13 SSPD → Hour-of-day 25 → [0,8]
14–17 Day-of-week → SSPD [0,3] → 25
18–53 Day-of-week → Hour-of-day [0,3] → [0,8]
54–62 Hour-of-day → SSPD [0,8] → 25
63–98 Hour-of-day → Day-of-week [0,8] → [0,3]

comparison against the baseline BDP method uses the unweighted score, rather

than relying on auxiliary variables and weighting functions to modify the score

since, as noted in Chapter 2, our focus is on identifying suitable clusters from

which to make predictions. We comment on the effectiveness of our method on

these datasets, noting the differences. In this chapter, we use a value of 10000

for µ and 20 for κ, since these parameters are not the focus of our investigation

and these values were used in the original evaluation of BDP, allowing for a

direct comparison [23].

The first stage of our evaluation of DPTS investigates the order of clustering

and the parameters for the day-of-week and hour-of-day clustering, to find the

best performing values for each. We perform all combinations of clustering with

SSPD, day-of-week and hour-of-day using two iterations. Within this parameter

search, we use a decision threshold of 0 in the static mode, meaning that the
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DPTS prediction will always be used. Table 6.2 shows the set of parameters

used in this evaluation. For the SSPD clustering, we use the parameter values

from the work of Besse et al., which are 25 and 45 for the Caltrain and Porto

datasets respectively. We train the GMMs with 4 different feature vectors,

namely 〈lat, long〉, 〈lat, long, day〉, 〈lat, long, hour〉, and 〈lat, long, day, hour〉,
resulting in 392 sets of results for each dataset. Evaluating the mean distance

error for each parameter combination against the baseline performance of

BDP, we discard those that are significantly outperformed by the baseline from

further evaluation.

After the parameter search has been completed, the next stage evaluates

the effect of our proposed decision thresholds on performance. We analyse

the decision threshold in both static and dynamic modes, and compare these

results to both the baseline performance of BDP and the performance of DPTS

where the decision threshold is set to 0. For the static and dynamic modes of

the decision threshold, we explore the parameter value, θ in the range [0,1], in

increments of 0.05 and 0.1 respectively.

The third stage of our evaluation explores the impact of the clustering para-

meter for SSPD. In our initial analysis, we use the best performing parameter

for each dataset, as reported by Besse et al. [23], and so we also investigate a

range of values for the SSPD clustering parameter, in increments of 5. Our

stopping criteria is where the supplied parameter value causes an error due

to the number of clusters being too large, and therefore not giving significant

data to properly train the GMMs.

In the next stage of our evaluation, we add a third iteration of clustering

to DPTS, considering SSPD, day-of-week and hour-of-day simultaneously. The

ordering of clustering iterations is evaluated, and the performance of three

iterations is compared to that of using two iterations, using the mean distance

error.

For the final stage of our evaluation we consider destination clustering,

specifically on the POLD, which looks at the spatial dissimilarity between

destinations. The evaluation of the POLD is notable since, unlike the previous

datasets, the POLD does not contain a single starting location for all journeys.

To explore this aspect, we propose adding a fourth clustering approach which

groups trajectories based on the trajectory destinations, using the Haversine

distance between each destination to generate the dissimilarity matrix, D. The

main motivation for this is to reduce the number of clusters generated, since

multiple starting locations will increase the overall spatial dissimilarity between

trajectories.
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6.4 Results

In this section, we discuss the results of applying DPTS to the Caltrain [130]

and Porto [1] datasets, in addition to the POLD. We evaluate the effect of

the clustering parameters, and analyse the impact of introducing a decision

threshold, using the evaluation approach outlined in the previous section.

Unless stated, the results presented in this section are based on the Caltrain

dataset [130]. Due to its distinct nature, the POLD is evaluated separately in

Section 6.4.5. Note that for simplicity figures that have trajectory completion

on the x-axis have an origin of 0%, however the data points start from the first

instance of the trajectory.

6.4.1 Clustering Parameter Search

This section evaluates our novel iterative clustering approach, and the impact of

altering the parameters within the parameter matrix, MDPTS . In this analysis,

we discuss in detail the effect of altering the parameters on the Caltrain dataset,

and simply report the best performing parameters on the Porto dataset.

We first give an overview the classification performance for each of the 6

parameter combinations outlined in Table 6.2. Note that there is a strong

correlation between the features used in the GMM and the clustering criteria.

For example, if the hour-of-day is used to cluster the trajectories but is not

present in the feature vector provided to the GMM, then the performance is

severely degraded. The exception to this is that the 〈lat, long〉 features are

always needed in the feature vector to achieve a reasonable performance, even if

SSPD was not included in the clustering stage. The classification performance

for the top performing parameters for each combination are shown in Figures

6.4 and 6.5, in addition to the baseline performance.

Clustering with SSPD followed by the day-of-week achieves a peak perform-

ance of 85.90% at 95% trajectory completion. This was obtained by setting

clustering parameter for the day-of-week to α = 2, and 〈lat, long, day〉 as our

feature vector. If the day-of-week is omitted from the feature vector, then the

performance falls to a maximum of 14.73%. Interestingly, if the hour-of-day is

also included, i.e., 〈lat, long, day, hour〉, the performance sees a notable drop,

with a maximum of 42.52% at 85% trajectory completion. These results are

shown in Figure 6.4a.

Conversely, if we cluster using the day-of-week followed by SSPD (see

Figure 6.4b), then the clustering parameter, α, does not make any difference

to the performance. Slightly decreased performance is observed in the first

10% of trajectory completion, but after this the performance exceeds that of

having SSPD followed by the day-of-week. The peak performance is 89.02%,
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Figure 6.4: Classification performance when using day-of-week for DPTS on

the Caltrain dataset.
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Figure 6.5: Classification performance when using hour-of-day for DPTS on

the Caltrain dataset.
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Table 6.3: Performance comparison between each two-iteration clustering

combination.

Clustering Order Accuracy (%) Avg. Cluster
Distance (m)

SSPD, α = 25→ Day, α = 2 85.85 544
Day, α = 0→ SSPD, α = 25 88.85 511
Hour, α = 8→ SSPD, α = 25 79.06 405
SSPD, α = 25→ Hour, α = 1 75.41 448
Day, α = 0→ Hour, α = 6 99.18 1439*
Hour, α = 8→ Day, α = 2 99.03 1424*

achieved at 90% trajectory completion. Similar to SSPD followed by the

day-of-week, omitting day-of-week from the feature vector causes a noticeable

drop in performance, as does the addition of the hour-of-day.

When clustering by the hour-of-day followed by SSPD, we observe a peak

performance of 79.21% at 85% trajectory completion, as illustrated in Figure

6.5b. There is a noticeable degradation in performance when not using the

hour-of-day in the feature vector, as seen in the previous results. If we

reverse the order of clustering to have SSPD followed by hour-of-day, a peak

performance of 75.58% is achieved at 90% trajectory completion (see Figure

6.5a). From these results, we can see that higher performance is achieved when

the temporal component (day-of-week or hour-of-day) is clustered prior to the

spatial component, SSPD.

If we consider both temporal components, the day-of-week and the hour-

of-day, the classification performance is misleading. The day-of-week and the

hour-of-day are taken from the start of the trajectory, and therefore their

respective values are constant throughout. These combinations are unsuitable

due to the little information they provide.

We take the best performing parameters from each of the 6 clustering

combinations, using the classification percentage at 100% trajectory completion.

The parameters, and the feature vector used for each of the top combinations is

shown in Table 6.3. The temporal-only combinations are included for reference,

but show a misleading classification accuracy as noted above. Figure 6.6

illustrates each of the top combinations from Table 6.3 against the baseline

performance, BDP. Most of the performance gain can be seen in the initial

40% of the unfolding trajectories, after which BDP starts to outperform the

DPTS combinations. Due to the misleading performance, the temporal-only

combinations are omitted from Figure 6.6.

If we consider the predicted clusters and calculate the distance error from

the prediction to the ground truth, we obtain the results shown in Figure 6.7.

The first point to note is the two straight lines, which show the prediction error
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Figure 6.6: Comparison of the BDP performance against each of the top DPTS

combinations on the Caltrain dataset.

of both temporal-only combinations. This is expected, since the temporal values

provided to the GMM do not change as the trajectory progresses, but it may

not be immediately apparent as to why such high classification performance

translates to a large prediction error. If we refer back to Table 6.3, we note the

large average cluster distances for the temporal combinations. This explains the

high distance error, because even though the classification performance is good,

the clusters are noticeably larger, and therefore the centroid that is used for

prediction is on average further from the actual destination. When clustering

with SSPD and then the day-of-week, we see no improvement over the baseline.

The other combinations, day-of-week to SSPD, hour-of-day to SSPD and SSPD

to hour-of-day, all show reductions in distance error over the baseline from

20% to 60% of trajectory completion. After 70% of trajectory competition, the

baseline performance is unbeaten. Given that we saw no improvement when

clustering from SSPD to day-of-week, and that the temporal combinations

have such large cluster distances, we omit these combinations from further

evaluation.

When applying DPTS to the Porto dataset, the hour-of-day (α = 0) →
SSPD (α = 45) combination, gives the highest performance. Even though
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Figure 6.7: Comparison of the prediction error from BDP against each of the

top parameter combinations for DPTS on the Caltrain dataset.

there is a slight improvement in the middle of the trajectories, the overall

performance is lower than that of BDP, due to degraded performance at the

start and end of the trajectories. This follows the trend seen with the Caltrain

dataset. Overall, DPTS is outperformed by BDP on the Porto dataset, by an

average of 7 metres.

6.4.2 Evaluation of the Decision Threshold

Considering the results discussed in Section 6.4.1, we see that the baseline

performance exceeds that of DPTS in the final portion of the journey. To

address this, we propose using a decision threshold, that combines our novel

method, DPTS, and the existing method, BDP, within a single wrapper. The

decision threshold selects a prediction to use at different stages of the unfolding

trajectories, according to the prediction probability of DPTS, PDPTS , and

BDP, PBDP . As described in Section 6.2, we consider two modes for the

decision threshold, namely a static mode (θdynamic = False) and a dynamic
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mode (θdynamic = True).

First we evaluate the effect of a decision threshold in the static mode, by

considering values in the range [0,1] with increments of 0.05. The effect of

the decision threshold, θ, on SSPD → hour-of-day is shown in Figure 6.8a. A

decision threshold of 0 in the static mode is essentially removing consideration

of BDP, since all probabilities greater than 0 will pass, and therefore the result

will be identical to our original results. Conversely, a decision threshold of 1

will always revert to the baseline results of BDP. We can see that setting a

threshold of 0.05 improves the performance past 50% trajectory completion,

with no apparent loss of performance below 50% completion. If we increase

the decision threshold to 0.1, we notice a loss of performance (compared to a

decision threshold of 0) from 15–50% of trajectory completion, after which, the

performance improves. Further increasing the decision threshold to 0.15 leads

to a more significant degradation in performance from 10–65% of trajectory

completion, after which a small improvement is made for the remainder of

the journey. At this decision threshold, we also see a slight improvement

in performance in the first 5% of trajectory completion compared to our

original results. Any further increase in the decision threshold has the effect

of improving the first part of the journey (0–15% of trajectory completion),

degrading the middle of the journey (15–65% of trajectory completion) and

improving the final part of the journey (65–100% of trajectory completion).

Overall, in static mode, a decision threshold of 0.05 gives the best trade-off,

resulting in the highest average performance for SSPD → hour-of-day.

Figure 6.8b illustrates the effect of the decision threshold in static mode on

day-of-week → SSPD. We observe a similar trend to SSPD → hour-of-day, but

note that the original result (with a decision threshold of 0) performs nearer to

the baseline result in the final stage of the trajectories (65–100% of trajectory

completion). Therefore, it seems that adding a decision threshold will have a

smaller positive impact on this combination. Decision thresholds of 0.05 and

0.1 provide a good trade-off between performance in the middle and final parts

of the journey. We note that a decision threshold of 0.15 gives a greater loss

of performance in the middle of the journey, similar to that reported in the

analysis of SSPD → hour-of-day. In the static mode, a decision threshold of

0.05 also gives the best trade-off for day-of-week → SSPD performance.

The combination of hour-of-day → SSPD, as shown in Figure 6.8c, appears

to give the best results of the three alternatives. Most notably, the early

part of the journey (0–10% of trajectory completion), is nearer the baseline

performance than the other two combinations. As with the other results, we

see that a decision threshold of 0.05 gives the optimum performance trade-off,

with more apparent losses seen for decision threshold values of 0.15 and above.

All three sets of results appear to provide the best overall performance when a
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Figure 6.8: Comparison of destination prediction performance for given decision

threshold values in static mode.
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decision threshold of 0.05 is used, with a more significant loss of performance

with a decision threshold of 0.15.

We will now consider the decision threshold in dynamic mode (θdynamic =

True), to investigate whether this outperforms the static mode (θdynamic =

False). Figure 6.9 shows the performance when a decision threshold is used

in dynamic mode. The decision threshold in dynamic mode (θdynamic =

True), as explained in Section 6.2, is where the probability of the DPTS

prediction, PDPTS , is compared directly to the probability of the baseline BDP

prediction, PBDP . The decision threshold parameter value, θ, is used to scale

the probability of the BDP prediction, PBPD. For our evaluation we explored

parameter values in the range [0,1] in increments of 0.1.

Overall, we found that a decision threshold value of 0.7 for SSPD → hour-

of-day and 0.4 for day-of-week→ SSPD and hour-of-day→ SSPD gave the best

prediction performance. On average, using the decision threshold in dynamic

mode causes a slight improvement in performance compared to the static mode.

This gain, however, is minimal in terms of metres, and appears to be of little

effect, but could be influenced by properties of the input dataset.

When evaluating the decision threshold on the Porto dataset, a slight

improvement over the performance of BDP is seen. A decision threshold in the

dynamic mode with a parameter value of θ = 0.9, was used on the hour-of-day

(α = 0) → SSPD (α = 45) combination, giving an average distance error of 10

metres lower than BDP. Figure 6.10 illustrates the performance comparison

between BDP, DPTS (θ = 0) and DPTS (θ = 0.9).

The use of a decision threshold, where our method reverts back to the

original prediction made by BDP, does not improve the distance error across

the whole trajectory, but instead provides higher performance towards the end

of a journey for the trade-off of reduced performance in the mid-journey. The

trade-off between mid to end of journey performance can be evaluated based

on the application.

6.4.3 Altering the SSPD parameter values

We investigated changing the clustering parameter, α, on the highest performing

combinations. In the results discussed above, this was fixed at the values used

by Besse et al. in their investigation [23]. Intuitively, lowering the parameter

value in BDP, should increase the trajectory classification but also increase

the destination prediction error, since the destinations in these larger clusters

will be more spread out. However, since DPTS performs iterative clustering,

there may be benefits to lowering the α value for SSPD.

Figure 6.11 illustrates the comparison between BDP, DPTS (hour-of-day,

α = 8 → SSPD, α = 25), DPTS (SSPD, α = 10 → hour-of-day, α = 6) with
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Figure 6.9: Comparison of destination prediction performance for given decision

threshold values in dynamic mode.
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Figure 6.10: Comparison of the prediction error for the Porto dataset.

θ = 0.0, and DPTS (SSPD, α = 10 → hour-of-day, α = 6) with θ = 1.0. It is

immediately apparent that the reducing α provides a significant reduction in

destination error in the first portion of the journey. After 60% of the trajectory

is complete the performance degrades below the performance of BDP. When

introducing a decision threshold greater than 0, the performance gains are

comparable at the start of the journey, and the performance degradation is

slightly reduced past 65% trajectory completion. Overall, the variant with

α = 10 and a decision threshold of θ = 1.0 provides the best performance on

average over the entire duration of the journey, with significant gains in the

first 30–40% of the trajectory.

If we compare DPTS (SSPD, α = 10 → hour-of-day, α = 6) with θ = 1.0

with the weighted version of BDP, we observe similar performance at the start

of the journey. As the trajectory unfolds, there is a larger performance gap

between DPTS and the weighted version of BDP, with BDP seeing a maximum

of 366 metres lower prediction error at some points.

When applied to the Porto dataset, no gains in performance were observed,

and the original clustering parameter for SSPD, α = 45, produced the highest

performance.

6.4.4 Adding a third clustering iteration

We now evaluate the performance of DPTS using three iterations of clustering,

and compare the performance with using two iterations. The motivation behind

including an additional iteration is that we can further group the clusters

(whilst trying to maintain a high accuracy for the trajectory classification).

The drawback of adding a third iteration is that it can generate large numbers

of clusters, each containing only a few trajectories. If the number of clusters
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Figure 6.11: Comparison of the prediction error for the Caltrain dataset, when

altering the clustering parameter value, α, for SSPD.

increases too much, a situation where some clusters only contain a single

trajectory may occur, and therefore the cluster has no training data and is not

useful for prediction.

When using three iterations of clustering, we find the best combination

to be SSPD → hour-of-day → day-of-week. However, Figure 6.12 shows that

the performance of this combination is not as high as that of two iterations

with a reduced α for SSPD (as discussed above). When we add a decision

threshold in dynamic mode, the performance is degraded in the initial 40% of

the trajectories, but sees improved performance from 60% completion onwards,

nearer to that of the BDP. Taking into consideration the average distance error

throughout the trajectory, the extra computation required for the additional

layer, and the increased number of GMMs required, we take the previous

combination with two clustering iterations to be the better variant.

6.4.5 Evaluating DPTS on the POLD

Applying DPTS to the POLD provides an insight into a more general application

of the algorithm, since unlike the other datasets, the POLD contains trajectories

with multiple starting locations. When applying BDP to the POLD, we notice

an increase in distance error at around 50–80% trajectory completion. This

is because, unlike the taxi datasets, we do not have a single starting location,

and therefore we can not assume a fixed direction of travel away from the

source. To address this issue, we add another iteration of clustering, in which

we generate a dissimilarity matrix of trajectories based on the destination
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Figure 6.12: Comparison of the prediction error for the Caltrain dataset

between two and three iterations of clustering in DPTS and BDP.

location to be used as input to the hierarchical agglomerative clustering. For

our evaluation we use 2500 metres as the clustering parameter, α, for this

iteration of clustering. Further exploration of this value is outside the scope of

this chapter, and could be investigated in future work.

Figure 6.13 shows the results of applying DPTS to the POLD, with a

comparison to the performance of BDP. When we apply DPTS, using four

iterations of clustering (hour-of-day, α = 0→ day-of-week, α = 0→ destination,

α = 2500 → SSPD, α = 30), we see a significant improvement over BDP. This

combination outperforms BDP over the entire trajectory, with an average

reduction in error of over 1.2km. A small decrease in error can be seen as the

trajectory unfolds, unlike the sudden rise in error as seen with BDP.

6.5 Summary

In this chapter, we propose DPTS, an extension to the existing BDP method.

DPTS uses an iterative clustering stage and a decision threshold to improve the

destination prediction performance on vehicle trajectories. DPTS harnesses

the additional properties of the trajectories, attempting to further group them

into more meaningful clusters, rather than using these temporal properties

in combination with weighting functions to modify the likelihood. For our

evaluation, we use the temporal properties of day-of-week and hour-of-day.

When applying DPTS to the Caltrain dataset, we see an improvement

in overall performance, where our decision threshold allows the prediction

to revert back to that of BDP towards the end of the trajectories, as the
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performance of BDP improves. If two iterations of clustering are used, with

smaller parameter values for SSPD, we see a reduction in error for the first half

of the journey compared to BDP, however this is at a cost of lower performance

in the final 40% of trajectories. We see severely reduced effectiveness from

DPTS when used on the Porto dataset, barely matching the performance of

BDP. The Caltrain and Porto datasets have different characteristics, such as

the size of the area, the number of journeys, and the frequency of sampling.

The difference in performance could imply that the capability of our method

is impacted by these different characteristics. However, when applied to the

POLD, which has multiple starting locations, we see promising results. BDP

struggles to accurately predict destinations, with an increase in error in the

middle of the trajectories. When applying DPTS with multiple clustering

iterations, we see notable gains in prediction performance over BDP, that are

consistent throughout the unfolding trajectories. This implies that selecting the

best approach in practice is highly dependant on the application setting and

the nature of the data available. In practise, we recommend adding clustering

iterations for attributes that help differentiate clusters when using DPTS for

applications. We also recommend the consideration of both static and dynamic

thresholds, adjusting parameter values to maximise performance and balance

the trade-off between performance in the early stages of a journey against that

in the latter stages.

Reducing the prediction error can provide benefits to location-aware ap-

plications, such as on-route traffic updates, intelligent parking suggestions and

amenity recommendations at the destination. Without an accurate location,
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these applications will suffer from reduced effectiveness and ultimately poor

user trust. Having a more accurate prediction earlier in the trajectory can

enable these applications to provide their location-based functionality in a

more timely manner.
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Chapter 7

Conclusions and Future Work

In this thesis, we have explored human mobility patterns from vehicle usage,

considering location-aware applications that can benefit from knowledge of a

vehicle’s trajectory. We have proposed two novel methods namely, Activity-

based PoI Extraction (AVPE) and Destination Prediction by Trajectory Sub-

Clustering (DPTS), which tackle point of interest (PoI) extraction and des-

tination prediction respectively. With AVPE and DPTS, we have achieved

improvements over current state-of-the-art approaches by increasing accuracy,

enabling more accurate location data to be provided to future applications.

Additionally, we proposed a method that utilised the activities predicted by

AVPE, and constructed sequences of activity annotated locations that are used

for destination prediction.

We have made contributions to data mining on trajectory data, exploring

new avenues to tackle existing problems, building on state-of-the-art approaches,

and ensuring that it is applicable to vehicle trajectory data. To support the

research into both PoI extraction and destination prediction, we have collected

two datasets containing vehicle sensor data alongside GPS data, which are

used in our investigations. These datasets, namely the Location Extraction

Dataset (LED) and the Pattern of Life Dataset (POLD), contain a full ground

truth labelling for activities and destinations respectively. The LED has been

made available for other researchers to use in future research1.

7.1 Contributions

This section summarises each contribution in this thesis, discussing the overall

findings and limitations.

1. Using on-board vehicle data to classify the activity of a vehicle

with the aim of improving point of interest detection within

vehicle trajectories

In Chapter 4 we proposed Activity-based Vehicle PoI Extraction (AVPE)

which uses activity classification to filter out false PoIs. Using existing

1For privacy reasons we are not able to publish the POLD.
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state-of-the-art clustering algorithms, we showed that a high amount of

false PoIs are extracted from vehicle data, and that AVPE was able to

remove most of these (up to 99.0% in some cases) when applied to the

LED. When we applied AVPE on the POLD, we observed performance

comparable to that shown when using the LED. A limitation of AVPE is

that it requires on-board vehicle signals to be available, and that PoIs can

only be extracted retrospectively, after the journeys have been completed.

Similarly, there is a high misclassification rate between drop-off and

pick-up activities, which despite both being classified as a PoI for the

task of filtering out false PoIs, may benefit from higher accuracy if used

in other applications. Finally, AVPE suffers from a high rate of true PoIs

being discarded. AVPE aims for correctness over completeness, however

it is desirable to lower the number of true PoIs that are lost.

2. Applying destination prediction with activity annotations on

stay points in vehicle trajectories

In Chapter 5 we investigated the use of activity annotations locations

in predicting the next destination. As a baseline for comparison, we

compared sequences of locations without activity annotations to annot-

ated sequences. Overall, we observed poor performance when using

the annotated sequences of locations, in which the annotated sequences

only outperformed the unannotated sequences of locations on a single

participant’s journeys. The evaluation of this method suffers from a

small amount of data available which limits our findings. Additionally,

our method produces a significantly large distance error between the

predicted location and the ground truth. Our hypothesis that the chosen

activity labels would provide meaningful insights was wrong, since the

frequency of activity labels other than traffic or parked was relatively

low. Consequently, there may not be enough variation in activities on a

typical trajectory for this approach to work.

3. Improving destination prediction by sub-clustering on different

properties of vehicle trajectories

Destination Prediction by Trajectory Sub-Clustering (DPTS) was pro-

posed in Chapter 6, as an extension to Besse et al.’s Destination Prediction

method (BDP). DPTS aims to reduce the distance error between the

actual and predicted destinations, particularly at the beginning of the

journey. Additionally, we introduce a decision threshold to be able to

alternate between the predictions provided by DPTS and BDP through-

out an unfolding trajectory, depending on the estimated performance.

In our evaluation, we applied DPTS to three different datasets. The
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first dataset, the Caltrain dataset saw DPTS give a significant reduction

in distance error compared to BDP over the first half of the journey

when two iterations of clustering are used. However, when applied to the

Porto dataset we observed minimal improvement using DPTS compared

to BDP. Finally, when applied to the POLD, which, unlike the other

datasets, does not have a single starting location, DPTS yielded a not-

able reduction in distance error compared to BDP, throughout the entire

journey. The main limitation of DPTS is that a single set of parameter

values is not suitable across all datasets, especially with respect to the

decision threshold. DPTS requires re-training and parameter values to

be determined to suit the input data for a given application.

4. Collecting two datasets containing vehicle trajectories with

on-board vehicle data for point of interest and pattern of life

experiments

In Chapter 3 we introduced two vehicle trajectory datasets, namely the

Location Extraction Dataset (LED) and the Pattern of Life Dataset

(POLD). The LED was created with multiple scripted scenarios, each

containing a range of activities. Its purpose was to investigate PoI

extraction, providing 22 vehicle signals, alongside GPS coordinates and

a timestamp. The LED has been made publicly available, with the aim

that it can be used for future research into vehicle PoI extraction. The

POLD provides data for 5 drivers over selected periods, and serves as

a basis for evaluation of PoI extraction in Chapter 4 and destination

prediction in Chapters 5 and 6. There are no existing public datasets

of this type due to the lack of access to vehicle signals and for privacy

concerns. The limitations of the POLD are that the dataset has only a

small number of participants, who represent a limited sample in terms of

demographics, and there are a limited set of trajectories per participant.

7.2 Future Work

In this section, we present possibilities for future work in each of our proposed

methods.

1. AVPE could be extended to make use of external data, such as data on

nearby amenities, to provide the classifier more context on the current

surroundings of a vehicle. For example, if a vehicle is consistently near

a drive-through service for the duration of a PoI, this could be used to

inform the prediction of the current activity.

2. Our method of using sequences of activity annotated locations could be
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investigated on a larger dataset, to establish whether the small amount

of data in our evaluation is an issue, in addition to considering an

approach that uses both annotated and unannotated sequences in parallel.

Additionally, the impact of the chosen grid size and threshold on the

performance could be further evaluated. The chosen activity labels could

also be reviewed, as the majority of activities within our trajectories were

of the traffic type.

3. With respect to DPTS, future work could consider the decision threshold

and investigate whether the parameter values can be removed, in order

to make DPTS more generic across datasets. Additionally, further in-

formation from the time signal can be extracted to analyse the effect of

seasonality and trends in user mobility, to see if these can aid perform-

ance. Different signals could be investigated, to see if other data can

provide meaningful information for prediction, to use in another iteration

of clustering.

7.3 Final Remarks

In this thesis, we have studied both PoI extraction and destination prediction

from trajectories. Specifically, we have focused on the vehicular domain, and

how data from on-board a vehicle can be utilised. In Chapter 4 we proposed our

method for classifying the activity of a vehicle during periods of low mobility

and using that classification to filter out false PoIs. In Chapter 5 we used this

proposed activity classification method and applied it to the task of destination

prediction. Finally, in Chapter 6, we showed that by using additional properties

of a vehicle trajectory, we could cluster these trajectories into smaller groupings

to reduce the error when performing destination prediction. We created two new

vehicular datasets to help evaluate our work on PoI extraction and destination

prediction, in addition to evaluating DPTS on two existing taxi datasets.

We have shown that using on-board vehicle data can accurately predict the

activity of the vehicle, providing extra context for applications such as destin-

ation prediction. Although the performance of using annotated activities to

prediction destinations was poor, clustering trajectories on different properties

of a trajectory yielded promising results, and gives a method to discover other

useful attributes contained within trajectories.
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Appendix A

Activity Labelling Transitions

In this section, we present the transition tables from a specific activity to the

following activity. The defined transitions are composed of both qualitative

and quantitative that formalise the start and end instances for each activity, as

introduced in Chapter 3. Where activities are missing from the next activity

column, this implies that there is no defined transition e.g., in Table A.2 there

is no transition from a drive through to a parked activity, as this would not

occur.

Table A.1: Transition table from the Barrier activity to the next activity.

Next
activity

Criteria

Driving When any part of the vehicle has past the barrier and the
vehicle speed first increases to greater than 5km/h.

Traffic When any part of the vehicle has past the barrier, imme-
diately encountering congestion or road infrastructure that
causes 5km/h not to be reached within 5 seconds.

Table A.2: Transition table from the Drive Through activity to the next

activity.

Next
activity

Criteria

Driving When the car first moves away from the final booth (or
collection point) and the vehicle speed first increases to
greater than 5km/h.

Traffic When the car first moves away from the final booth (or
collection point), immediately encountering congestion or
road infrastructure that causes 5km/h not to be reached
within 5 seconds.
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Table A.3: Transition table from the Driving activity to the next activity.

Next
activity

Criteria

Barrier When the vehicle first reaches the barrier, without any vehicle
between itself and the barrier, and the vehicle speed first
falls below 1km/h.

Drive-
through

When the first booth (or order point) is reached and the
vehicle speed first falls below 1km/h.

Drop-off When the vehicle speed first falls below 1km/h and a door to
the vehicle is opened. Manual verification that a passenger
is exiting the vehicle is required (from dashcam or seatbelt
signals). The vehicle cannot be turned off for this activity
to be true.

Manoeuvre When the vehicle speed first falls below 1km/h or reverse
gear is selected. Manual verification that this is due to a
manoeuvre is required.

Parked When the vehicle speed first falls below 1km/h and the
vehicle stops. The gear does not have to be in park, but
manual verification that the stop is not due to a pick-up,
drop-off or traffic is required.

Pick-up When the vehicle speed first falls below 1km/h and a door to
the vehicle is opened. Manual verification that a passenger
is entering the vehicle is required (from dashcam or seatbelt
signals). The vehicle cannot be turned off for this activity
to be true.

Traffic When the vehicle speed first falls below 5km/h as a con-
sequence of encountering congestion or road infrastructure
that causes either 5km/h not to be reached within 10 seconds
or the vehicle speed to fall below 1km/h within 10 seconds.
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Table A.4: Transition table from the Drop-off activity to the next activity.

Next
activity

Criteria

Driving When the vehicle speed first increases to greater than 5km/h,
after the vehicle doors have been closed.

Manoeuvre When the car first moves away from the drop-off location
(after which no doors are subsequently opened) or reverse gear
is selected, whichever occurs first after manual inspection of
a manoeuvre has confirmed the activity.

Traffic When the car first moves away from the drop-off location
(after which no doors are subsequently opened), immediately
encountering congestion or road infrastructure that causes
5km/h not to be reached within 5 seconds.

Table A.5: Transition table from the Manoeuvre activity to the next activity.

Next
activity

Criteria

Barrier When the vehicle first reaches the barrier, without any vehicle
between itself and the barrier and the vehicle speed first falls
below 1km/h (without a further increase in speed).

Driving When the vehicle speed first increases to greater than 5km/h
after manual verification that the manoeuvre is finished.

Drop-off When the vehicle speed first falls below 1km/h (without a
further increase in speed) preceding a door to the vehicle
being opened. Manual verification that a passenger is exiting
the vehicle is required (from dash cam or seatbelt signals).
The vehicle cannot be turned off for this activity to be true.

Parked When either the vehicle speed first falls below 1km/h and
subsequently stops or (if the vehicle is in reverse gear and
below 1km/h) the first point when not in reverse. The gear
does not have to be in park, but manual verification that the
stop is not due to a pick-up, drop-off or traffic is required. If
you are in parked this transition is true (this supersedes all
other transitions if true).

Pick-up When the vehicle speed first falls below 1km/h (without a
further increase in speed) preceding a door to the vehicle
being opened. Manual verification that a passenger is exiting
the vehicle is required (from dash cam or seatbelt signals).
The vehicle cannot be turned off for this activity to be true.

Traffic When the vehicle speed first increases to greater than 1km/h,
after manual verification that the manoeuvre has finished,
immediately encountering congestion or road infrastructure
that causes 5km/h not to be reached within 5 seconds.
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Table A.6: Transition table from the Parked activity to the next activity.

Next
activity

Criteria

Driving When the vehicle speed first increases to greater than 1km/h.

Manoeuvre When the vehicle speed first increases greater than 1km/h or
reverse gear is selected, whichever occurs first after manual
inspection of a manoeuvre has confirmed the activity. This
must include a stop (or use reverse).

Traffic When the vehicle speed first increases to greater than 1km/h,
immediately encountering congestion or road infrastructure
that causes 5km/h not to be reached within 5 seconds.

Table A.7: Transition table from the Pick-up activity to the next activity.

Next
activity

Criteria

Driving When the vehicle speed first increases to greater than 5km/h,
after the vehicle doors have been closed.

Manoeuvre When the car first moves away from the pick-up location
(after which no doors are subsequently opened) or reverse gear
is selected, whichever occurs first after manual inspection of
a manoeuvre has confirmed the activity.

Traffic When the car first moves away from the pick-up location
(after which no doors are subsequently opened), immediately
encountering congestion or road infrastructure that causes
5km/h not to be reached within 5 seconds.
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Table A.8: Transition table from the Traffic activity to the next activity.

Next
activity

Criteria

Barrier When the vehicle first reaches the barrier, without any vehicle
between itself and the barrier, where the vehicle speed first
falls below 1km/h.

Drive-
through

When the first booth (or order point) is reached and the
vehicle speed first falls below 1km/h resulting in a stop.

Driving When the vehicle speed first increases to greater than
15km/h. If the road infrastructure prevents 15km/h from
being reached in normal driving (within 10 seconds of normal
driving), transition when the vehicle speed first increases to
greater than 10km/h.

Drop-off When the vehicle speed first falls below 1km/h (without a
further increase in speed) preceding a door to the vehicle
being opened. Manual verification that a passenger is exiting
the vehicle is required (from dash cam or seatbelt signals).
The vehicle cannot be turned off for this activity to be true.

Manoeuvre When reverse gear is selected or the steering angle exceeds a
difference 10 degrees from the previous reading, whichever
occurs first after manual inspection of a manoeuvre has
confirmed the activity.

Parked When the vehicle speed first falls below 1km/h and the
vehicle stops. The gear does not have to be in park, but
manual verification that the stop is not due to a pick-up,
drop-off or traffic is required.

Pick-up When the vehicle speed first falls below 1km/h (without a
further increase in speed) preceding a door to the vehicle be-
ing opened. Manual verification that a passenger is entering
the vehicle is required (from dash cam or seatbelt signals).
The vehicle cannot be turned off for this activity to be true.
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Appendix B

Location Extraction Dataset Route Maps

In this section, we present the maps for each route that was part of the

Location Extraction Dataset (LED). Descriptions of these routes, along with

the distribution of activities are detailed in Chapter 3.
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Figure B.1: Route 1.
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Figure B.2: Route 1 (Estate variant).
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Figure B.3: Route 2.
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Figure B.4: Route 3.
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Figure B.5: Route 3 (Estate variant).
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Figure B.6: Route 4.
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Figure B.7: Route 5.
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Figure B.8: Route 5 (Estate variant).
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Figure B.9: Route 6.
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Figure B.10: Route 7.

154



Figure B.11: Route 7 (Estate variant).

155



Figure B.12: Route 8.
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Figure B.13: Route 9.
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[145] Christian Schüldt, Ivan Laptev, and Barbara Caputo. Recognizing human

actions: a local svm approach. In Proc. of the International Conference

on Pattern Recognition, pages 32–36, 2004.

[146] Matthew L. Schwall and Joseph C. Gerdes. A probabilistic approach to

residual processing for vehicle fault detection. In Proc. of the American

Control Conference, pages 2552–2557, 2002.

[147] Gideon Schwarz. Estimating the dimension of a model. Annals of

Statistics, 6(2):461–464, March 1978.

[148] Muhammad Awais Shafique and Eiji Hato. Classification of travel data

with multiple sensor information using random forest. Transportation

Research Procedia, 22(1):144–153, January 2017.

[149] Reid Simmons, Brett Browning, Yilu Zhang, and Varsha Sadekar. Learn-

ing to predict driver route and destination intent. In Proc. of the IEEE

Intelligent Transportation Systems Conference, pages 127–132, 2006.

[150] Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási.
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