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Abstract

We consider a multi-dimensional diffusion whose coordinates behave as one-dimensional Brownian
otions, evolving independently when apart, but with a sticky interaction when they coincide. We derive

he Kolmogorov backwards equation and show that for a specific choice of interaction it can be solved
xactly with the Bethe ansatz. The diffusion in Rn can be viewed as the n-point motions of a stochastic

flow of kernels. We use our formulae to study the flow of kernels and show that atoms in the flow are
asymptotically exponentially distributed in size at large times.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper we study an Rn-valued diffusion whose coordinates evolve as independent one-
dimensional Brownian motions when they are distinct and have an attractive, so called sticky
interaction when they are equal. The diffusion can be interpreted as the evolving positions of n

articles on the real line, which interact when they meet. In particular, the difference between
wo coordinates is described by a one-dimensional sticky Brownian motion, which has been
tudied as the weak solution to an SDE in [4,6]. Sticky Brownian motion with parameter θ > 0
s a one-dimensional diffusion in natural scale and with speed measure m(dx) = 2dx+

2
θ
δ0(dx),

ee [14] for a review of scale functions and speed measures. The Rn-valued diffusion can visit
he diagonal {x ∈ Rn

| x1 = · · · = xn} for a set of times with positive Lebesgue measure,
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quite unlike a standard Brownian motion in Rn . The interaction between coordinates at such
times is not determined solely by specifying the parameter θ describing the stickiness between
pairs of particles. It was shown in [9] that the possible interactions can be specified by a finite
measure on [0, 1] called the characteristic, or splitting, measure. The characteristic measure
determines, via its moments, the rate and direction at which the diffusion leaves the diagonal,
with the directions corresponding to the sizes of two clusters which are formed as the cluster of
n particles breaks up. As n varies, these multidimensional diffusions are consistent, in that for
any k < n, any k coordinates of the sticky Brownian motions in Rn with characteristic measure
ν, are sticky Brownian motions in Rk with the same characteristic measure, ν. An example of
such diffusions was originally investigated by Le Jan and Raimond [12] using Dirichlet forms
(on the torus rather than Euclidean space), and then the more general case was studied by
Howitt and Warren [9] via a martingale problem which we describe later.

The consistency property means that we can also consider such systems of sticky Brownian
motions to be the n-point motions of a stochastic flow of kernels. A flow of kernels
(Ks,t (x, dy))s≤t is essentially a random family of transition probability measures for a Markov
process. Le Jan and Raimond introduced flows of kernels in [11] as a generalisation of flows
of maps to study stationary evolutions of turbulent fluids. The n-point motions can then be
thought of as describing the behaviour of n particles thrown into the fluid. Stochastic flows of
kernels whose n-point motions are described by sticky Brownian motions are called Howitt–
Warren flows in [16], where their properties are studied in detail. Gawedzki and Horvai, [7],
discovered that for two particles, sticky behaviour arises in certain limits of the Kraichnan
model for turbulent advection. For the same model, Warren then proved the convergence of n
particles towards sticky Brownian motions with an explicit characteristic measure [19]. Sun,
Swart and Schertzer studied general Howitt–Warren flows in [16], where they constructed the
flows directly as flows of mass in the Brownian web by marking special separation points and
attaching extra random variables to them that tells the mass following a path in the web how to
split. The law of these additional random variables is described by the characteristic measure,
as we alluded to earlier. Amongst other results, they showed that the Howitt–Warren flows are
almost surely purely atomic at deterministic times.

The Howitt–Warren flow can be thought of as the continuum analogue to the random
transition probabilities of the random walk in a random environment (RWRE) with a space–
time i.i.d. environment. Consistent with this, sticky Brownian motions arise as scaling limits
of the n-point motions of random walks in space–time i.i.d. random environments. This was
first proved by Le Jan and Lemaire, [10], when the RWRE takes values on the circle and
the environment is Beta distributed. Howitt and Warren proved the result for RWREs on
Z for general environments, [9], before a simplified proof was given by Sun, Swart and
Schertzer, [16]. A special case of the RWRE, where the environment is Beta distributed, was
shown by Barraquand and Corwin, [2], to be exactly solvable; in particular, they found exact
solutions for the point to half line probabilities. This was shown using the Bethe ansatz and a
non-commutative binomial formula from [13]. These exact solutions were then used to establish
that there are GUE Tracy–Widom fluctuations in the large deviations of the random walk in
a beta random environment. In another work, Balázs, Rassoul-Agha and Seppeläläinen, [1],
showed that when the Beta RWRE is conditioned to escape at an atypical velocity it obeys the
wandering exponent 2

3 that is characteristic of models in the KPZ universality class.
In this paper, we will derive the Kolmogorov backwards equation for the sticky Brownian

motions with ordered coordinates from the martingale problem characterisation. In the case
that the characteristic measure is uniform, we apply the Bethe ansatz to find an exact formula
2
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for the transition density of this process. The choice of uniform characteristic measure seems
to be essential, only in this case is the diffusion exactly solvable by the Bethe ansatz. Further,
this seems to be the only case the diffusion is reversible, at least with respect to a measure
we can write down explicitly; we comment further on this in Remark 3.11. Note that we are
finding the transition density for the process with ordered coordinates. It is clearly possible to
retrieve the transition density of the two particle version of the original process; however, it is
much more difficult for an arbitrary number of particles; indeed, it is not clear that an explicit
formula will exist for the unordered process, and we do not pursue one here. Our method is
similar to that used by Tracy and Widom for the delta Bose gas [18]; however, the importance
of interactions between more than two particles adds significant complexity.

Another approach is to take limits of the exactly solvable model for the RWRE. It is a
traightforward application of the scaling limit result from [16], see Section 5.1, to show
he scaling limit of random walks in a Beta random environment corresponds to the sticky
rownian motions with a uniform characteristic measure. Barraquand and Rychnovsky [3],
orking independently of us, derived exact solutions for the point to half-line probabilities of

ticky Brownian motions with uniform characteristic measure by taking limits of the exact
ormulae for the Beta RWRE. An asymptotic analysis then led to the discovery of GUE
racy–Widom fluctuations in the large deviations of sticky Brownian motions as well.

Before we introduce our main result, we must define some terms. We use the notations
n

:= {x ∈ Rn
| x1 > x2 > · · · > xn} and Wn := {x ∈ Rn

| x1 ≥ · · · ≥ xn} for the principal
Weyl chamber, the images of this set under a permutation are called simply Weyl chambers;
however, we may sometimes refer to the principal Weyl chamber as just the Weyl chamber.
By C2

0 (Wn) we mean the set of functions f : Wn → R that have a C2 extension to some
pen set containing Wn such that f and all of its first and second partial derivatives vanish
t infinity. Let Πn denote the collection of ordered partitions, (π1, . . . , πk), of {1, . . . , n} such
hat if a ∈ π j , b ∈ πk and j < k then a < b. That is the elements of the partition each consist
f intervals intersected with Z and are indexed according to the size of their elements.

We want to define what will be the invariant measure for the ordered sticky Brownian
otions. Because the coordinates of the process spend a positive amount of time being equal,

ue to the sticky interactions, this measure takes the form of a linear combination of the
ebesgue measure and lower dimensional copies of the Lebesgue measure on subspaces where
ome combination of the coordinates are equal. Below we define these measures precisely,
efore we define the invariant measure itself.

To each partition π ∈ Πn we associate a subset of Wn defined by

Wn
π := {x ∈ Wn| xα = xβ if and only if there is a πi ∈ π such that α, β ∈ πi }.

In other words, the set of all points in Wn whose coordinates are equal if and only if their
indices are in the same element of π . Notice, for π = {{1}, . . . , {n}} we have Wn

π = Wn;
in addition, Wn = ∪π∈ΠnWn

π , and the sets Wn
π are disjoint. It is clear that there is a natural

ontinuous bijection I π
: Wn

π → W|π |, given by I π (x) = (x p1 , . . . , x p|π |
) for some choice

f pi ∈ πi . We can now define a Borel measure on Wn
π as the pushforward of the Lebesgue

easure λ on W|π |, λπ
:= I π

∗
λ. This extends to a Borel measure on Wn via the formula

λπ (A) := λπ (A ∩ Wn
π ).

Definition 1.1. For θ > 0 the Borel measure m(n)
θ on Wn is defined as

m(n)
θ :=

∑
θ |π |−n

(∏ 1
|πι|

)
λπ .
π∈Πn πι∈π

3
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Suppose θ > 0 and that, under Px , X = (X (t))t≥0 is a solution to the Howitt–Warren
artingale problem (we will define this in Section 2) in Rn with characteristic measure

θ
21[0,1]dx , zero drift and initial condition x ∈ Wn . We choose to consider only the case of
ero drift for convenience, and the main result can be generalised to non-zero drifts without
ifficulty. Define Y = (Y (t))t≥0 as the process obtained by ordering the coordinates of X ,
.e. for each t ≥ 0 Y (t) = (Y 1(t), . . . , Y n(t)) = (Xσ (1)(t), . . . , Xσ (n)(t)) for some permutation
∈ Sn such that Y 1(t) ≥ · · · ≥ Y n(t), where for each n ∈ N, Sn denotes the set of permutations

n {1, . . . , n}. Note that Y is a diffusion taking values in Wn . We now state our main result:
an explicit formula for the transition density of the process Y in terms of the Bethe ansatz.

Theorem 1.2. For every bounded Lipschitz continuous function f : Wn → R, x ∈ Wn and
t > 0

Ex [ f (Yt )] =

∫
ut (x, y) f (y)m(n)

θ (dy),

here ut : Wn × Wn → R is defined for each t > 0 by

ut (x, y) :=
1

(2π )n

∫
Rn

e−
1
2 t |k|

2 ∑
σ∈Sn

eikσ ·(x−yσ )
∏
α<β:

σ (β)<σ (α)

iθ (kσ (α)−kσ (β))+kσ (β)kσ (α)
iθ (kσ (α)−kσ (β))−kσ (β)kσ (α)

dk,

here, as before, Sn denotes the group of permutations on {1, . . . , n}, kσ = (kσ (1), . . . , kσ (n))
nd i =

√
−1.

Furthermore, we prove that m(n)
θ , (Definition 1.1), is in fact a stationary measure of the

ordered sticky Brownian motions, and that the process is reversible with respect to m(n)
θ .

emark 1.3. Note that the function ut is well defined (the integral always converges), because
or every t > 0, x, y, k ∈ Rn , and every permutation σ ∈ Sn⏐⏐⏐⏐⏐⏐⏐eikσ ·(x−yσ )

∏
α<β:

σ (β)<σ (α)

iθ (kσ (α)−kσ (β))+kσ (β)kσ (α)
iθ (kσ (α)−kσ (β))−kσ (β)kσ (α)

⏐⏐⏐⏐⏐⏐⏐ = 1.

lso note that substituting −k for k in the integral defining ut (x, y) proves that ut (x, y) =

t (x, y), and thus, ut (x, y) is always real valued. The integrand appearing in the formula
or ut (x, y) is not defined where there are distinct α, β such that kα = kβ = 0 (where the
enominator vanishes), but such points have measure zero. It is easily seen that we can pass
erivatives under the integral, and thus we have ut (·, y) ∈ C2

0 (Rn) for all t > 0 and y ∈ Rn . In
articular, ut (·, y) ∈ C2

0 (Wn) for all t > 0 and y ∈ Wn , when restricted to x ∈ Wn .

emark 1.4. Another representation for ut (x, y) is in terms of eigenfunctions of the generator
f the ordered sticky Brownian motions. For each k ∈ Rn we have an eigenfunction given by

Ek(x) :=

∑
σ∈Sn

eikσ ·x
∏
α<β:

σ (β)<σ (α)

iθ (kσ (α)−kσ (β))+kσ (β)kσ (α)
iθ (kσ (α)−kσ (β))−kσ (β)kσ (α)

.

he eigenfunctions give the following representation for ut (x, y).

ut (x, y) =
1

∫
e−

1
2 t |k|

2
Ek(x)Ek(y)dk.
(2π )n Wn

4
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The proof that the above expression for ut (x, y) agrees with the one previously given is
traightforward; we will provide a short sketch here, but leave the details to the reader. To
egin the proof, we note that the factors that appear in the product defining Ek(x) have modulus
ne, and therefore, their conjugate is also their inverse. This fact leads to cancellation between
roducts, when we multiply Ek(x) and Ek(y), which gives the following equalities.

Ek(x)Ek(y) =

∑
σ,σ̃∈Sn

ei(kσ ·x−kσ̃ ·y)
∏
α<β:

σ̃−1◦σ (β)<σ̃−1◦σ (α)

iθ (kσ (α)−kσ (β))+kσ (β)kσ (α)
iθ (kσ (α)−kσ (β))−kσ (β)kσ (α)

=

∑
σ,σ̃∈Sn

ei(kσ̃◦σ ·x−kσ̃ ·y)
∏
α<β:

σ (β)<σ (α)

iθ(kσ̃◦σ (α)−kσ̃◦σ (β))+kσ̃◦σ (β)kσ̃◦σ (α)
iθ(kσ̃◦σ (α)−kσ̃◦σ (β))−kσ̃◦σ (β)kσ̃◦σ (α)

.

If we apply the above formula to our above expression for ut (x, y), then we can recover the
original expression for ut (x, y) from Theorem 1.2 by noticing that σ̃ is simply permuting the
oordinates of the integration variable, k. Thus, when we sum over every σ̃ ∈ Sn , the integral
ver Wn simply becomes an integral over Rn , resulting in the expression from Theorem 1.2.

Since we know the expression from Theorem 1.2 is real valued, we also know that the
above expression for ut (x, y) is real. Notice that in the above expression, it is clear that
ut (x, y) = ut (y, x). But, since ut (x, y) is real, this tells us that ut (x, y) = ut (y, x). We will

rovide a full proof of this fact in Lemma 4.10.

The Howitt–Warren flows are almost surely purely atomic; we will show in Proposition 5.4
hat the size of an atom, when conditioned to be at a fixed location x , is a random variable
hose moments can be written in terms of the transition densities of the ordered sticky
rownian motions, the process Y above. Using this identity, we show that the rescaled sizes of

he atoms are asymptotically exponentially distributed, as t → ∞, with parameter determined
y θ . This result is similar to that found for the point to point probabilities of the Beta random

walk in a random environment studied by Thiery and Le Doussal [17] where the asymptotic
distribution is a Gamma distribution. In the same paper, the authors found that in the large
deviation regime, these point to point probabilities have Tracy–Widom GUE fluctuations, just
as for the point to half-line probabilities. Thus, it seems reasonable to conjecture the same
fluctuations appear in the size of atoms of the Howitt–Warren flows, but we do not pursue the
necessary asymptotic analysis here.

The outline of the paper is as follows: In Section 2 we define the diffusion via a martingale
roblem. In Section 3, we derive the Kolmogorov backwards equation for the ordered n-point
otions, and show that the generator of the process is symmetric with respect to the measure
(n)
θ when restricted to a certain class of C2 functions. In Section 4, we show that the backwards

quation is solvable by the Bethe ansatz, and as a consequence, we show that the ordered n
oint motions are reversible with respect to m(n)

θ . Finally, in Section 5, we introduce stochastic
ows of kernels and apply the exact formula to study the fluctuations of the sizes of atoms in

he Howitt–Warren flow.

. A consistent family of sticky Brownian motions

We introduce the Howitt–Warren martingale problem in Rn with drift β ∈ R and character-
istic measure ν (a finite measure on [0, 1]), as formulated in [9]. Solutions are processes in Rn

representing the positions of n particles each moving as one dimensional Brownian motions
with drift β. When two or more particles meet, they undergo sticky interactions determined by

n
ν. The solutions are consistent, in the sense that if X is the solution to martingale problem in R
5
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with characteristic measure ν and drift β, then for any choice of distinct i1, . . . , ik ∈ {1, . . . , n}

ith k < n, (X i j )k
j=1 is a solution to the martingale problem in Rk with characteristic measure

and drift β.
To each point x ∈ Rn we associate a partition of the set {1, . . . , n}, π (x), where i, j ∈

1, . . . , n} are in the same component of π (x) if and only if xi = x j . Next, for each pair of
isjoint subsets I, J ⊂ {1, . . . , n}, we define the vectors vI,J ∈ Rn as

(vI,J )i =

⎧⎪⎨⎪⎩
1, if i ∈ I ;
−1, if i ∈ J ;

0, otherwise.

ote that I and J are allowed to be empty. Then, we define the set of vectors V(x) as

V(x) := {vI,J : I ∪ J ∈ π (x), I ∩ J = ∅.}.

V(x) keeps track of the directions in which the process can infinitesimally move from the
oint x ∈ Rn , and will be used to describe the interactions between particles. Now we define
he parameters (θ (k, l))k,l∈N0 , which can be thought of as representing the rate, in a certain
xcursion theoretic sense, that a cluster of k + l particles break into two clusters of k and l
articles. For k, l ≥ 1, set

θ (k, l) :=

∫ 1

0
xk−1(1 − x)l−1ν(dx). (1)

or k, l ≥ 0, first set θ (1, 0) − θ (0, 1) = β and θ (0, 0) = 0, imposing the consistency property,
θ (k, l) = θ (k + 1, l) + θ (k, l + 1) for all k, l ≥ 0, gives definition to θ (k, l) for all k, l ≥ 0.

efinition 2.1. Let Dn be the collection of functions f : Rn
→ R which are continuous

nd are such that for all Weyl chambers A ⊂ Rn the restriction of f to A is linear, so that
f A ⊂ R is a Weyl chamber, x, y ∈ A and a, b ∈ R are such that ax + by ∈ A, then
f (ax + by) = a f (x) + b f (y).

For functions f ∈ Dn , we define the operator Aθ
n by

Aθ
n f (x) :=

∑
vI,J ∈V(x)

θ (|I |, |J |)∇vI,J f (x),

here ∇vI,J denotes the one sided derivative in direction vI,J . Since we assumed f to be linear
hen restricted to Weyl chambers, the directional derivatives are constant on the interior of each
eyl chamber. Going further, the linearity condition ensures, together with continuity, ensures

he value of Aθ
n f (x) is constant on any connected set on which π (x) is constant.

efinition 2.2. Let (X (t))t≥0 =
((

X1(t), . . . , Xn(t)
))

t≥0 ⊂ Rn be a continuous square-
ntegrable semi-martingale with initial condition X (0) = x ∈ Rn , defined on a filtered proba-
ility space (Ω ,F , (Ft )t≥0,P). Then (X (t))t≥0 is a solution to the Howitt–Warren martingale
roblem with drift β and characteristic measure ν if for any i, j ∈ {1, . . . , n}:

⟨X i , X j
⟩(t) =

∫ t

0
1{X i (s)=X j (s)}ds,

nd the following process is a martingale with respect to the filtration generated by X , for
very function F ∈ Dn ,

F(X (t)) −

∫ t

Aθ
n F(X (s))ds.
0

6
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Note that the first condition implies that ⟨X i , X i
⟩(t) = t , and it follows from the second

ondition and the definition of Aθ
n that X i (t) −βt is a martingale for each i . Hence each coor-

inate must be a Brownian motion with drift β. The well posedness of this martingale problem
nd that the solutions do indeed form a consistent family of Feller processes is shown in [9].

. The backwards equation

.1. The generator of ordered sticky Brownian motions

Define the functions F (i)
: Rn

→ R by F (i)(x) = x j where x j is the i th largest coordinate
f x , and F : Rn

→ Wn by F(x) := (F (1)(x), . . . , F (n)(x)). Note that these functions are in
Dn . Further, suppose X = (X (t))t≥0 is a solution to the Howitt–Warren martingale problem in

n with characteristic measure ν, drift β = 0 and initial condition x ∈ Wn . Define the process
Y = (Y (t))t≥0 by Y (t) := F(X (t)). Note that we defined Y from x started inside the Weyl
chamber, so that Y (0) = x . The process, Y , lies entirely in the Weyl chamber Wn , which will
allow us to apply the Bethe ansatz in the same way as Tracy and Widom in [18]. This section
aims to identify the Kolmogorov backwards equation for Y and from it the invariant measure
for Y .

Remark 3.1. Before talking about its Kolmogorov backward equation, we need to know Y is
a Markov process. For this, we refer to Dynkin’s criterion [15]. In particular, we only need to
show that Ex [ f ◦ F(X (t))] = EF(x)[ f (Y (t))] for every x ∈ Rn and every bounded measurable
function f : Wn → R. The equality holds by definition for x ∈ Wn; for x ∈ Rn

\Wn , we need
to show that for any permutation σ ∈ Sn σ (X (t)) := (Xσ (1)(t), . . . , Xσ (n)(t)) remains a solution
o the same Howitt–Warren martingale problem, but with initial condition σ (x). It is clear σ (X )
emains a continuous square-integrable semi-martingale and has initial condition σ (x). Further,
t is immediate that σ (X ) has the correct quadratic variations. Finally, because the function σ

s continuous, linear, and maps Weyl chambers to Weyl chambers, i.e. {F ◦σ : F ∈ Dn} = Dn ,
he martingale problem is still satisfied by σ (X ). For each x ∈ Rn , there exists a permutation

∈ Sn such that σ (x) ∈ Wn , and by definition, σ (x) = F(x). By uniqueness of solutions
o the martingale problem, we have Ex [ f ◦ F(X (t))] = Ex [ f ◦ F ◦ σ−1

◦ σ (X (t))] =

σ (x)[ f ◦F◦σ−1(X (t))] but clearly F◦σ−1
= F . Hence, Ex [ f ◦F(X (t))] = Eσ (x)[ f ◦F(X (t))] =

F(x)[ f (Y (t))] as required; thus, Y = F(X ) is a Markov process.

We proceed by defining a subset of C2 functions that is in the domain of the generator of
Y ; then, we will show that the action of the generator on this set is given by the Laplacian.
n Proposition 4.2, we will show that the Bethe ansatz given in Theorem 1.2 is in this set of
unctions; this will be a major step in showing that it does give us the transition probabilities
f Y .

efinition 3.2. Let Dθ denote the set of functions f ∈ C2
0 (Wn) such that for any a, b ∈

{1, . . . , n} with a < b, xa = xb implies

1
2

∑
a≤i, j≤b:

i ̸= j

∂2 f
∂xi∂x j

(x)

=

b∑
i=a

∂ f
∂xi

(x)
b−a+1∑

k=0

(
b − a + 1

k

)
θ (k, b − a + 1 − k) sign(k − i + a − 1), (2)

where sign(0) is taken to be 1 here.
7
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In order to show that the action of the generator of Y on the set Dθ we first need to compute
he quadratic covariation processes for Y . It turns out that the quadratic covariations for Y take

the same form as those of X , which are prescribed by the martingale problem in Definition 2.2.

Lemma 3.3. For each t > 0 the following equality holds almost surely.

⟨Y i , Y j
⟩(t) =

∫ t

0
1{Y i (s)=Y j (s)}ds.

Proof. We will calculate the quadratic covariations for Y by referring to [8, Proposition 8],
which provides a stochastic integral representation for the local martingale part of the semi-
martingale given by applying a convex function to a local martingale. To apply this proposition,
we will first decompose the function F into a composition of convex and concave functions.
Denoting Pi = {A ⊂ {1, . . . , n}| |A| = n − i + 1}, we can define f A : Rn

→ R as f A(x) =

maxa∈A xa and gi : RPi → R as g((yA)A∈Pi ) = minA∈Pi yA. Then F (i)(x) = gi
(
( f A(x))A∈Pi

)
,

where f A is a convex function and gi is a concave function. Now we can apply [8, Proposition
8] to write the local martingale part of F (i)(X ) in terms of a linear combination of stochastic
integrals with respect to the X i . In particular, we can write

f A(X (t)) = f A(x) +

∑
a∈A

∫ t

0
1B A

a
(X (s))d Xa(s) + Ct ,

where Ct has finite variation, and B A
a = {x : mink∈A{k : max j∈A x j = xk} = a}. Notice that

for a fixed x and A there is only one a such that 1B A
a

(x) is non zero.
Now we put an ordering on the set Pi . The specific ordering does not matter; we just need

to be able to minimise over the indices of elements in RPi . Suppose A, B ∈ Pi are distinct,
efine (a j )n−i+1

j=1 and (b j )n−i+1
j=1 as the elements of A and B respectively in increasing order. We

ay A < B if for l := min{k ∈ N : bk ̸= ak, 1 ≤ k ≤ n − i + 1} we have al < bl ; if instead
l < al , then B < A. This ordering is a total ordering for Pi . Suppose Z is a semi-martingale
aking values in RPi with decomposition Z t = Z0+Mt +Kt , where M is a local martingale and
K a process with finite variation. Then, using that for y ∈ RPi −gi (−y) = − maxA∈Pi (−yA)

e have

−gi (−Z t ) = −gi (−Z0) +

∑
A∈Pi

∫ t

0
1BA (Zs)d Z A

s + Dt ,

here D has finite variation and BA := {z ∈ RPi : min{B ∈ Pi : infC∈Pi zC = zB} = A}

ith the minimum understood in terms of the ordering we just defined on Pi . That is, BA is
he subset of z ∈ RPi such that z A ≤ zB for any B ∈ Pi , and for any B < A (according to the
rdering defined in the previous paragraph) zB > z A. Notice that for a fixed z there is only one

A such that 1BA (z) is non zero. The local martingale part of Y i
= gi (( f A(X ))A∈Pi ) is given by∑

A∈Pi

∑
a∈A

∫ t

0
1B A

a
(X (s))1BA (( fC (X (s)))C∈Pi )d Xa(s).

herefore, we can find the quadratic covariation processes.

⟨Y i , Y j
⟩(t)

=

∑
A∈Pi ,

∑
a∈A,

∫ t

0
1B A

a
(X (s))1BA (( fC (X (s)))C∈Pi )1B B

b
(X (s))1BB (( fC (X (s)))C∈Pi )1{Xa (s)=Xb(s)}ds.
B∈Pj b∈B

8
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Recall fC (x) = maxc∈C xc, so that 1BA (( fC (x))C∈Pi ) is non-zero precisely when A is the subset
f {1, . . . , n} with indices corresponding to the first i − 1 largest coordinates of X (s) removed,
all this set Ai (X (s)). Then, 1

B
Ai (X (s))
a

(X (s)) is non zero if and only if a is the smallest element
f {1, . . . , n} such that Xa(s) is equal to the i th largest coordinate of X (s), i.e. Y i (s). Hence,
e have the desired equality

⟨Y i , Y j
⟩(t) =

∫ t

0
1{Y i (s)=Y j (s)}ds. □

With the above lemma, we can determine the action of the generator of Y on the set Dθ .

roposition 3.4. Suppose f ∈ Dθ then, denoting the generator of the process Y by Gθ (in
he sense of [14]), we have

Gθ f =
1
2
∆ f.

As a consequence of this proposition, we can derive the backwards equation for the process.

Proposition 3.5. Suppose g ∈ C2(R>0 × Wn), and g(t, ·) ∈ Dθ for all t > 0. Further,
suppose that g satisfies the PDE

∂g
∂t

=
1
2
∆g, for all t > 0, x ∈ Wn, (3)

ith the initial condition g(0, x) = f (x) for some function f ∈ Cb(Wn). To be precise, we
equire that g(t, ·) → f uniformly as t → 0. Then for each t > 0 (g(t − s, Y (s)))s∈[0,t] is a
ontinuous local martingale.

roof of Proposition 3.4. Since X solves the martingale problem (Definition 2.2), and
F (i)

∈ Dn , Y is a semi-martingale. For f ∈ C2
0 (Wn), Itô’s formula gives

Ex [ f (Y (t))] =

f (x) +

n∑
i=1

Ex

[∫ t

0

∂ f
∂xi

(Y (s))dY i (s)
]

+
1
2

n∑
i, j=1

Ex

[∫ t

0

∂2 f
∂xi∂x j

(Y (s))d⟨Y i , Y j
⟩(s)

]
.

rom Lemma 3.3, we know that

d⟨Y i , Y j
⟩(s) = 1{Y i (s)=Y j (s)}ds.

nother consequence of the martingale problem is that for each i ,

Y i (t) −

∫ t

0
Aθ

n F (i)(X (s))ds

s a martingale. Recall f ∈ C2
0 (Wn), thus ∂ f

∂xi
is bounded on Wn so that the stochastic

ntegral with respect to the martingale part of Y is a true martingale. Thus, we can rewrite
he expectation as

Ex [ f (Y (t))] = f (x) +

n∑
i=1

Ex

[∫ t

0

∂ f
∂xi

(Y (s))Aθ
n F (i)(X (s))ds

]

+
1
2

n∑
Ex

[∫ t

0

∂2 f
∂xi∂x j

(Y (s))1{Y i (s)=Y j (s)}ds
]
. (4)
i, j=1

9
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By evaluating Aθ
n F (i), and then differentiating Eq. (4) in time, we can determine the generator

of Y .
Let x ∈ Rn and denote y = F(x) ∈ Wn . We have

Aθ
n F (i)(x) =

∑
v∈V(x)

θ (v)∇v F (i)(x), (5)

here ∇v is the directional derivative in direction v. Recall v ∈ V(x) is defined by the disjoint
subsets I, J ⊂ {1, . . . , n} such that I ∪ J ∈ π (x), with vi = 1 if i ∈ I , −1 if i ∈ J , and
0 otherwise. For each element, B, of the partition π (x) there is a corresponding element, C ,
of the partition π (y) such that for each i ∈ B there is a ji ∈ C with xi = y ji , and the ji
an be chosen so that the mapping i ↦→ i j is injective. Letting C denote the element of π (y)
orresponding to I ∪ J ∈ π (x), it is clear that if i /∈ C then ∇v F (i)(x) = 0, and for i ∈ C the
erivative is either 1 or −1 depending only on the sizes of I and J . Since y ∈ Wn there is an
∈ {1, . . . , n} and m > 0 such that C = {a, . . . , a + m − 1}. Hence, line (5) is equal to

m∑
k=0

(
m
k

)
θ (k, m − k) sign(k − i + a − 1),

where sign(0) is taken to be 1 here. In particular, this means that when yi is distinct from all
other coordinates, the above equals θ (1, 0) − θ (0, 1) = β = 0.

n∑
i=1

∂ f
∂yi

(y)Aθ
n F (i)(x)

=

∑
C∈π (y)

∑
i∈C

∂ f
∂yi

(y)
|C |∑
k=0

(
|C |

k

)
θ (k, |C | − k) sign(k − i + inf C − 1), (6)

where each of the partial derivatives are evaluated at y. Putting (6) into (4) we can compute
the limit.

lim
t→0

1
t

(Ex [ f (Y (t))] − f (x))

= lim
t→0

1
2t

∫ t

0
Ex [∆ f (Y (s))]ds

+
1
t

(∫ t

0
Ex

[ ∑
C∈π (y)

∑
i∈C

∂ f
∂yi

(y)
|C |∑
k=0

(
|C |

k

)
θ (k, |C | − k) sign(k − i + inf C − 1)

]

+
1
2

∑
i ̸= j

Ex

[
∂2 f

∂yi∂y j
(Y (s))1{Y i (s)=Y j (s)}

]
ds
)

.

In particular, if we have f ∈ Dθ , then the term in the bracket cancels to 0 leaving only first
term after the equality, whose limit we now calculate. Recall that F : Rn

→ Wn is continuous
nd Y (t) = F(X (t)); since ∆ f ∈ C0(Wn), we also have ∆ f ◦ F ∈ C0(Rn) (since F(x) → ∞

s |x | → ∞). Thus, the Feller property of X implies that 1
2t

∫ t
0 Ex [∆ f (Y (s))]ds converges

niformly to 1
2∆ f (y) as t → 0. Hence, for f ∈ Dθ ,

lim
t→0

1
t

(Ex [ f (Y (t))] − f (x)) =
1
2
∆ f (y), with respect to the uniform norm.

herefore, we have proved that if f ∈ Dθ , then it is in the domain of the generator of Y and
f =

1∆ f . □
θ 2

10
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We now apply Proposition 3.4 to prove Proposition 3.5.

roof of Proposition 3.5. Applying Proposition 3.4, we see that for any function g satisfying
he assumptions of the proposition, there is an adapted process (M(u))u∈[0,t] that is a continuous
ocal martingale on [0, s] for each s < t such that

g(t − s, Y (s)) = −

∫ s

0

∂g
∂t

(t − u, Y (u))du +

∫ s

0
∆g(t − u, Y (u))du + M(s),

= M(s).

ow we just need to show that M(s) is a local martingale on [0, t]. Since g(t, ·) → f uniformly
s t → 0, we have

|M(s)| = |g(t − s, Y (s))| ≤ ∥g(t − s, ·) − f ∥∞  
→0 as s→t

+∥ f ∥∞.

hus, there is an ε > 0 such that M(s) is bounded on [t − ε, t]. Therefore, M(s) − M(t − ε)
s a martingale on [t − ε, t], and it follows that M(s) is a local martingale on [0, t]. Clearly,
M(0) = g(t, x) and M(t) = f (Y (t)) since

|M(s) − f (Y (t))| = |g(t − s, Y (s)) − f (Y (t))|
≤ ∥g(t − s, ·) − f ∥∞ + | f (Y (s)) − f (Y (t))|.

he first term vanishes as s → t due to the uniform convergence of g to f , and the second
lmost surely due to the continuity of f and Y . □

Hence, we can find the transition probabilities of Y by looking for the Green’s function for
3), providing solutions are sufficiently regular to make g(t − s, Y (s)) a true martingale. In
eneral, it is not clear that (3) should have solutions in Dθ ; it is not even clear whether Dθ is
on-trivial. In the rest of the paper, we focus on the case of a uniform characteristic measure:
=

1
2θ1[0,1]dx . Since we know ν, we can calculate the constants θ (k, l). By definition we

ave

θ (k, l) =
θ

2

∫ 1

0
xk−1(1 − x)l−1dx,

=
θ

2
(l − 1)!(k − 1)!

(k + l − 1)!
. (7)

n this case, we also have θ (k, 0) = θ (0, k) for all k ∈ N. Hence, for the characteristic measure
=

1
2θ1[0,1]dx , (2) can be rewritten as

1
2

∑
a≤i, j≤b:

i ̸= j

∂2 f
∂xi∂x j

(x) = −
θ

2

b∑
i=a

∂ f
∂xi

(x)c(a, b, i), whenever xa = xb, (8)

here the coefficients are defined

c(a, b, i) :=

b−a∑
k=1

b − a + 1
k(b − a + 1 − k)

sign(k − i + a − 1). (9)

n the following section, this particular form of the constants θ (k, l) will allow us to replace the
onditions in line (8) with a simplified set of conditions, where each condition will only involve
single second derivative, rather than a sum. This replacement will simplify the combinatorics
e need to do to show that the Bethe ansatz, given in Theorem 1.2, satisfies the conditions.
11
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Remark 3.6. If we try to derive the Kolmogorov backwards equation for the original process
X , we run into problems: the action of the generator of X within the set of C2

0 functions does
ot determine the process. We can see this by considering a pair of sticky Brownian motions
ith parameter θ > 0 X1, X2. We have by Itô’s formula for all f ∈ C2

0 (R2)

Ex [ f (X1(t), X2(t))] = f (x1, x2) +
1
2

∫ t

0
Ex [∆ f (X1(s), X2(s))]ds

+

∫ t

0
Ex [1{X1(s)=X2(s)}

∂2 f
∂x1∂x2

(X1(s), X2(s))]ds,

o that f is in the domain of the generator if ∂2 f
∂x1∂x2

(x1, x2) = 0 whenever x1 = x2. But, there
s no dependence on the parameter θ in either the condition for f to be in the domain, or
n the action of the generator on this subset of C2

0 functions that are in the domain; thus, the
enerator restricted to this set cannot determine the law of the sticky Brownian motions.

.2. Rearranging the boundary conditions

Henceforth, we consider the case where the characteristic measure is uniform, i.e. ν(dx) =
θ
21[0,1]dx . Let us first note that if we set |C | = 2 in (8), we see f ∈ Dθ satisfies

∂2 f
∂xa∂xa+1

= θ

(
∂ f

∂xa+1
−

∂ f
∂xa

)
, whenever xa = xa+1.

n the next lemma, will show that we can replace the full boundary conditions with equivalent
nes of the above form.

emma 3.7.

Dθ =

{
f ∈ C2

0 (Wn)| for 1 ≤ a < b ≤ n,

if xa = xb then
θ

b − a

(
∂ f
∂xb

−
∂ f
∂xa

)
=

∂2 f
∂xa∂xb

}
.

Remark 3.8. Essentially we are solving for the second derivatives of functions in Dθ , given
their first derivatives. Whilst this should be possible for any characteristic measure, our method
relies on the special form of the parameters θ (k, l) in the case of the uniform characteristic
measure.

Proof. Note that because we are in the Weyl chamber, xa = xb implies xa = xa+1 = · · · = xb.
Thus, if xa = xb then we also have xa = · · · = xb. Using an inductive argument, we prove
that the original conditions, (8), are equivalent to the new conditions. To begin, we prove that
the new condition for xa = xb is implied by the old conditions, when we also assume the new
conditions for xc = xd are satisfied for all a ≤ c < d ≤ b such that d − c < b − a.

Hence, we assume that the boundary conditions (8) for xc = xd are satisfied for all
≤ c < d ≤ b and that for all a ≤ c < d ≤ b with d − c < b − a

∂2 f
(x) =

θ
(

∂ f
(x) −

∂ f
(x)
)

, if xc = · · · = xd . (10)

∂xc∂xd d − c ∂xd ∂xc

12
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Without loss of generality, we can relabel (xa, . . . , xb) as (x1, . . . , xm) for m = b−a +1. Then
for u ∈ Dθ , we can rewrite the sum over mixed derivatives.

1
2

∑
i ̸= j

∂2 f
∂xi∂x j

=
1
2

∑
i ̸= j

i, j ̸=m

∂2 f
∂xi∂x j

+

m−1∑
k=2

∂2 f
∂xk∂xm

+
∂2 f

∂x1∂xm
.

Using Eqs. (8) and (10), when x1 = · · · = xm we have the equality

∂2 f
∂x1∂xm

= −
θ

2

m∑
j=1

∂ f
∂y j

(y)
m−1∑
k=1

m
k(m − k)

sign(k − j) −

∑
i< j

θ

j − i

(
∂ f
∂x j

−
∂ f
∂xi

)
+

θ

m − 1

(
∂ f
∂xm

−
∂ f
∂x1

)
. (11)

e have the following equalities

∑
i< j

θ

j − i

(
∂ f
∂x j

−
∂ f
∂xi

)
=

m∑
j=2

j−1∑
i=1

θ

j − i
∂ f
∂x j

−

m−1∑
j=2

j−1∑
i=1

θ

j − i
∂ f
∂xi

=

m∑
j=2

j−1∑
i=1

θ

j − i
∂ f
∂x j

+

m−1∑
j=1

m∑
i= j+1

θ

j − i
∂ f
∂x j

=θ

m∑
j=1

∂ f
∂x j

∑
i ̸= j

1
j − i

.

Therefore, the proof is finished if for each j ∈ {1, . . . , n},

1
2

m−1∑
k=1

m
k(m − k)

sign(k − j) +

∑
i ̸= j

1
j − i

= 0.

oting that we have m
k(m−k) =

1
k +

1
m−k , we get

1
2

m−1∑
k=1

m
k(m − k)

sign(k − j) =
1
2

m− j∑
k= j

m
k(m − k)

=
1
2

m− j∑
k= j

(
1
k

+
1

m − k

)

=

m− j∑
k= j

1
k
. (12)

n addition,∑
i ̸= j

1
j − i

=

j−1∑
i=1

1
j − i

−

m∑
i= j+1

1
i − j

=

j−1∑
k=1

1
k

−

m− j∑
k=1

1
k

= −

m− j∑
k= j

1
k
,

13
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with the convention that when a < b the sum changes sign
∑a

k=b ck = −
∑b

k=a ck . Putting this
into line (11), we see

∂2 f
∂x1∂xm

=
θ

m − 1

(
∂ f
∂xm

−
∂ f
∂x1

)
.

s noted previously, for m = 2 both conditions are equivalent; thus, by induction the old
onditions imply the new conditions. Finally it is easy to see that, assuming the new conditions
old on xc = xd for all a ≤ c < d ≤ b and the old conditions hold on xc = xd for all
≤ c < d ≤ b such that d − c < b − a, we can follow the above argument in reverse to prove

the new conditions imply the old ones. Hence, the equivalence of the two sets of conditions is
proved. □

As a consequence we can reframe Proposition 3.5 in terms of the new conditions.

Proposition 3.9. Suppose that g ∈ C2
0 (R>0 × Wn) satisfying the PDE{

∂g
∂t =

1
2∆g, for x ∈ Wn;

∂2u
∂xa∂xb

=
θ

b−a

(
∂g
∂xb

−
∂g
∂xa

)
, if b > a and xa = xb,

with initial condition g(t, ·) → f uniformly as t → 0, where f ∈ Cb(Wn). Then, we have
g(t, x) = Ex [ f (Y (t))].

This rearrangement will simplify the combinatorics required to show that we can solve the
PDE with the Bethe ansatz.

3.3. Invariant measure

In this section, we prove an integration by parts formula for the generator of the ordered
n-point motion of the Howitt–Warren flow with uniform characteristic measure. First, we
introduce some useful notation.

Recall that for π ∈ Πn , Wn
π consists of all x ∈ Wn such that if i and j are in the same

lement of π , then xi = x j , and otherwise, xi ̸= x j . Thus, by replacing the multiple indices
n each block of π with a single index, as the corresponding xi are all equal, we can map

n
π into W|π |, providing a natural bijection between W|π | and Wn

π which we will denote
I π

: Wn
π → W|π |. To be precise, let πi = min{a ∈ πi } and set I π (x)i = xπi . For a function

: Wn → R, denote by uπ : W|π |
→ R the function defined by uπ (x) := u ◦ (I π )−1(x) for all

x ∈ W|π |. For u, v ∈ C1(Wn) such that the below integrals converge, we define

(u, v)θ :=

∑
π∈Πn

θ |π |−n

(∏
πι∈π

1
|πι|

)∫
W|π |

∇uπ · ∇vπdx . (13)

ow we can state the integration by parts formula for the measure m(n)
θ from Definition 1.1.

roposition 3.10. Suppose u ∈ Dθ and v ∈ C1
b (Wn), such that there exists a, c > 0 such that

∇u(x)| ≤ ae−c|x |. We have∫
Wn

∆u(x)v(x)m(n)
θ (dx) = − (u, v)θ , (14)

whenever the above integrals are finite.
14
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Proof. Since u ∈ Dθ we can relate ∆uπ and (∆u)π . Clearly, we have

∆uπ =

∑
πι∈π

∑
j,k∈πι

(
∂2u

∂x j∂xk

)
π

.

ence,

∆uπ − (∆u)π =

∑
πι∈π

∑
j,k∈πι

j ̸=k

(
∂2u

∂x j∂xk

)
π

.

he second sum on the right-hand side of the above expression is empty whenever |πι| = 1, so
e can exclude those terms from the first sum. Using Eqs. (8), (9) and the notations πι := inf πι,

πι := sup πι = |πι| + πι − 1, the previous expression is equal to

−θ
∑
πι∈π :

|πι|>1

∑
j∈πι

(
∂u
∂x j

)
π

c(πι, πι, j).

efinition 1.1 allows us to rewrite the left hand side of Eq. (14) as∑
π∈Πn

θ |π |−n

(∏
πι∈π

1
|πι|

)∫
Wn

π

∆u(x)v(x)λπ (dx). (15)

y the definition of λπ , given above Definition 1.1, we can rewrite the integral in the summand
above in terms of a Lebesgue integral over a lower dimensional space; the result is the
equality:∑

π∈Πn

θ |π |−n

(∏
πι∈π

1
|πι|

)∫
W|π |

(∆u)π (x)vπ (x)dx

=

∑
π∈Πn

θ |π |−n

(∏
πι∈π

1
|πι|

)∫
W|π |

(
∆uπ (x) + θ

∑
πι∈π :

|πι|>1

∑
j∈πι

(
∂u
∂x j

)
π

c(πι, πι, j)
)

vπ (x)dx .

(16)

ince the Weyl chamber has a piecewise smooth boundary, we can apply Green’s identity to
he first term in each integral. Applying the identity on W|π | ∩ {x ∈ Wn : |x | < R} and then
aking R → ∞, the exponential bound on |∇u| together with the boundedness of v ensures
he only boundary term to survive in the limit will be the integral over ∂W|π |.

The smooth part of the boundary of the Weyl chamber W|π | can be written in terms of the
isjoint union of W|π |

π̃
over the set Mπ := {π̃ ∈ Π|π | : |π̃ | = |π | − 1}. Note that if |π | = 1

his union is empty, and the boundary integral vanishes. Each π̃ in Mπ consists of |π | − 2
ingletons and one set {l, l + 1} for some l ∈ {1, . . . , |π |}. Further, the outward unit normal on

|π |

π̃
is given by

n(x)r =

⎧⎪⎨⎪⎩
−

1
√

2
, if r = l;

1
√

2
, if r = l + 1;

0, otherwise.
15
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Finally, the boundary measure is given by
∑

π̃∈Mπ

√
2λπ̃ , so that the integral in (16) equals(∑

π̃∈Mπ

∫
W|π |

π̃

(
∂uπ

∂yl+1
−

∂uπ

∂yl

)
vπdλπ̃

−

∫
W|π |

∇uπ (x) · ∇vπ (x)dx

+ θ
∑
πι∈π :

|πι|>1

∑
j∈πι

∫
W|π |

(
∂u
∂x j

)
π

c(πι, πι, j)vπ (x)dx
)

,

here l depends on π̃ and is defined as above. We have written the partial derivatives of uπ

ith respect to y ∈ W|π | to emphasise the fact that uπ is a function on W|π | rather than Wn .
Hence, to complete the proof it is enough to show that the first and third terms cancel when
we put this expression back into (16). Rewriting the integrals with respect to the Lebesgue
measure, the first term is equal to∑

π̃∈Mπ

∫
W|π̃ |

(
∂uπ

∂yl+1
−

∂uπ

∂yl

)
π̃

(vπ )π̃dx,

which is equal to∑
π̃∈Mπ

∫
W|π̃ |

⎛⎝⎛⎝ ∑
j∈πl+1

∂u
∂x j

⎞⎠
π

−

⎛⎝∑
j∈πl

∂u
∂x j

⎞⎠
π

⎞⎠
π̃

(x) (vπ )π̃ (x)dx .

umming this over π ∈ Πn with the appropriate coefficients, we see that (15) is equal to∑
π∈Πn

∑
π̃∈Mπ

θ |π |−n

(∏
πι∈π

1
|πι|

)∫
W|π |−1

∑
j∈πl+1∪πl

((
∂u
∂x j

)
π

)
π̃

(x) sign( j−πl+1) (vπ )π̃ (x)dx .

otice that for each π ∈ Πn and π̃ ∈ Mπ we can rewrite the summand in terms of a new
artition, π̂ , formed from π by merging two adjacent blocks to form the πl+1 ∪ πl block.
urther, because the partitions are in Πn , there are exactly |πl+1 ∪ πl | − 1 partitions that yield

ˆ by merging two blocks to form πl+1 ∪ πl . Rewriting the sum in terms of π̂ we get

∑
π̂∈Πn

θ |π̂ |+1−n

⎛⎝∏
π̂ι∈π̂

1
|π̂ι|

⎞⎠ ∑
π̂ι∈π̂ :

|π̂ι |>1

∫
W|π̂ |

|π̂ι|−1∑
k=1

|π̂ι|

k(|π̂ι|−k)

∑
j∈π̂ι

(
∂u
∂x j

)
π̂

(x) sign( j−π̂ι−k) vπ̂ (x)dx .

ere, the sum over j is over the partitions whose blocks have been merged to get π̂ , with k
orresponding to the size of the lower block. The extra factor |π̂ι|

k(|π̂ι|−k) is simply a correction
o the product to write it in terms of π̂ rather than the π partition whose blocks we merged.

Recalling that sign(0) = 1 here, Eq. (9) yields that the above is precisely equal to

−

∑
π∈Πn

θ |π |+1−n

(∏
πι∈π

1
|πι|

) ∑
πι∈π :

|πι|>1

∑
j∈πι

∫
W|π |

(
∂u
∂x j

)
π

(x)c(πι, πι, j)vπ (x)dx .

ence, (16) is equal to

−

∑
π∈Πn

θ |π |−n
∏
πι∈π

1
|πι|

∫
W|π |

∇uπ (x) · ∇vπ (x)dx

= − (u, v)θ . □

Thus, if we denote by L2(m(n)
θ ) the L2 space on Wn with respect to the measure m(n)

θ and the
standard L2 inner product, then the generator is symmetric on D ∩ L2(m(n)). This symmetry
θ θ

16
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suggests the process is reversible with respect to this measure, but because our calculations are
only done for u ∈ Dθ , and we do not know how rich the set Dθ is, this is not enough for a
proof.

Remark 3.11. We can also ask whether the same calculations can be done for choices of the
characteristic measure other than uniform. A different choice of characteristic measure leads
to a different invariant measure, and it turns out that if we suppose that this invariant measure
takes the form

∑
π∈Πn

cπλπ (with the coefficients cπ determined by the characteristic measure),
as we would expect, then the only characteristic measure for which the above integration by
parts argument works is the uniform measure. This suggests that the process is only reversible
for a uniform characteristic measure.

If we take v = 1, the right-hand side of (14) vanishes, giving us the following helpful
corollary.

Corollary 3.12. For u ∈ Dθ such that there are a, c > 0 with |∇u(x)| ≤ ae−c|x | we have

1
2

∫
∆u(x)m(n)

θ (dx) = 0.

. Bethe ansatz for sticky Brownian motions

In this section, we will introduce the Bethe ansatz and show that it solves the backwards
quation with a delta initial condition, and thus, is the transition density for the process (with
espect to the measure m(n)

θ ). Using this we can prove that m(n)
θ is the stationary measure, and

hat Y is reversible with respect to m(n)
θ . We are trying to find a solution to the PDE from

roposition 3.9, which we recall now. For each fixed y ∈ Wn , θ some positive constant and
ith the initial condition u0(x, y) = δ(x − y), where δ is the Dirac delta distribution, we wish

o solve{
∂ut
∂t =

1
2∆ut , for all x ∈ Wn;

θ
(

∂u
∂xb

−
∂u
∂xa

)
= (b − a) ∂2u

∂xa∂xb
, when xa = xb, for some a < b.

(17)

The Bethe ansatz suggests that we can construct a solution for general n ∈ N by first
considering the n = 2 problem. The main idea is to try to combine solutions with permuted
coordinates in such a way that the boundary conditions are satisfied.

ut (x, y) =
1

(2π )n

∫
R2

e−
1
2 t |k|

2 (
A(k)eik·(x−y)

+ B(k)eik·((x2,x1)−y)) dk. (18)

otice that when x1 = x2, the exponential terms become equal. Thus, the boundary conditions
will be satisfied if we have

(iθ (k2 − k1) + k1k2) A(k) + (iθ (k1 − k2) + k1k2) B(k) = 0.

t turns out that setting A(k) = 1 and B(k) =
iθ (k2−k1)+k1k2
iθ (k2−k1)−k1k2

ensures the correct initial condition
s satisfied. The Bethe ansatz then suggests that if we define

Rα,β(k) :=
iθ
(
kβ − kα

)
+ kαkβ( ) , (19)
iθ kβ − kα − kαkβ

17
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then the solution for general n is given by the following function.

ut (x, y) =
1

(2π )n

∫
Rn

e−
1
2 t |k|

2 ∑
σ∈Sn

eikσ ·(x−yσ )
∏
α<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k)dk, (20)

here Sn denotes the group of permutations on {1, . . . , n} and kσ = (kσ (1), . . . , kσ (n)).
This construction ensures that boundary conditions where b − a = 1 are satisfied; however,

he additional conditions in (17), corresponding to b − a > 1, have played no role. Therefore,
e will need to do additional work to verify that the extra conditions, where b − a > 1, are

ndeed satisfied by (20).
Barraquand and Rychnovsky conjectured in [3] that the backwards equation for the system

f sticky Brownian motions was the heat equation with the boundary conditions corresponding
o b − a = 1 in (17), based on the Bethe ansatz answer for the system. It is important to
ote that for any other choice of characteristic measure ν with ν([0, 1]) =

θ
2 , the boundary

onditions corresponding to b−a = 1 would be the same, so we do not expect these boundary
onditions alone to give uniqueness of the PDE. However, we should note that it is possible
hat, under the additional regularity assumption that the solution is C2 in space, the b − a = 1
oundary conditions do determine the solution, and the transition densities for all of the other
ystems of sticky Brownian motions are not C2 in space. We do not know if this is the case
r not.

It is clear that (20) satisfies the first condition in (17) and our choice of (19) guarantees the
econd condition holds when b − a = 1. However, when b − a > 1, it is not clear that it is
till satisfied. Fortunately, and surprisingly, the second condition turns out to be satisfied in its
ntirety. Moreover, we can show the initial condition holds; hence, we obtain our main result,
heorem 1.2.

In the rest of the section, we shall prove Theorem 1.2. First, we show the boundary
onditions are satisfied, and then the initial condition. To ensure we can perform the necessary
xchanges of integral and derivative, we start by collecting some bounds on the Bethe ansatz.

.1. Bounds for dominated convergence

emma 4.1. For every x ∈ Wn and t > 0 we have ut (x, ·) ∈ L1(m(n)
θ ), where ut (x, ·)

s defined as in (20). Further, for each x ∈ Wn and t > 0, there exist a, c > 0 such that
∇yut (x, y)| ≤ ae−c|y| for all y ∈ Wn . The same statement holds if we instead consider the x
erivative and vary x with y being fixed. Similarly, for each x ∈ Wn and s > 0 we can find
, c > 0 such that |ut (x, y)|, |∂t ut (x, y)| ≤ ae−c|y|/

√
t for all t > s and y ∈ Wn .

We leave the proof of this lemma to the end of Section 4.3, as it is a simplification of the
methods used in that section.

The second part of the above lemma provides the necessary bounds to justify passing
derivatives through the integral in

∫
ut (x, y) f (y)m(n)

θ (dy). Further, it is easy to see we can
pply dominated convergence to find

∂ut

∂xa
=

1
(2π )n

∫
Rn

e−
1
2 t |k|

2 ∑
σ∈Sn

ikσ (a)eikσ ·(x−yσ )
∏
α<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k)dk,

∂2ut

∂xa∂xb
= −

1
(2π )n

∫
Rn

e−
1
2 t |k|

2 ∑
σ∈Sn

kσ (a)kσ (b)eikσ ·(x−yσ )
∏
α<β:

Rσ (β),σ (α)(k)dk,
σ (β)<σ (α)

18



D. Brockington and J. Warren Stochastic Processes and their Applications 162 (2023) 1–48

T
a

4

P

t
f
p

T
o

a
s
s

N
a
σ

T
σ

s
e
p

∂ut

∂t
= −

1
(2π )n

∫
Rn

1
2
|k|

2e−
1
2 t |k|

2 ∑
σ∈Sn

eikσ ·(x−yσ )
∏
α<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k)dk.

his allows us to not only confirm that
∫

ut (x, y) f (y)m(n)
θ (dy) solves the heat equation, but

lso to reduce the boundary conditions to a combinatorial problem.

.2. Boundary conditions

roposition 4.2.∫
ut (x, y) f (y)m(n)

θ (dy) ∈ Dθ .

Due to Lemma 4.1, we know that
∫

ut (·, y) f (y)m(n)
θ (dy) is in C2

0 (Wn). Hence, we just need
o show it satisfies the correct boundary conditions for the PDE (17). The proof will follow
rom several lemmas. To begin, we derive the combinatorial identity that implies the above
roposition.

Fix a, b ∈ {1, . . . , n} with a < b, then for t > 0 we can differentiate under the integral, as
noted in the previous subsection, to see that the corresponding boundary condition is satisfied
if for all a < b, xa = xb implies∑

σ∈Sn

eikσ ·(x−yσ ) (iθ (kσ (b) − kσ (a)) + (b − a)kσ (b)kσ (a)
) ∏

α<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k) = 0. (21)

his can be simplified by splitting the summand into parts dependent on σ (a), . . . , σ (b) and
n the remaining values σ takes. Noting that we have xa = · · · = xb

b∏
c=a

eikσ (c)(xc−yσ (c)) =

b∏
c=a

eikσ (c)(xa−yσ (c)) =

∏
c̃∈{σ (a),...,σ (b)}

eikc̃(xa−yc̃).

Notice that the last expression above depends only on the set {σ (a), . . . , σ (b)} = σ ({a, . . . , b}),
nd not the order of the values σ takes on {a, . . . , b} . Thus, the exponential factor of the
ummand in (21) only depends on σ ({a, . . . , b}) and not σ (a), . . . , σ (b) themselves. Now we
plit the product∏

α<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k) =

∏
α<a≤β≤b:

σ (β)<σ (α)

Rσ (β),σ (α)(k)
∏

a≤α≤b<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k)

∏
α,β∈{a,...,b}c :

α<β,
σ (β)<σ (α)

Rσ (β),σ (α)(k)
∏

a≤α<β≤b:

σ (β)<σ (α)

Rσ (β),σ (α)(k).

ote that Rσ (β),σ (α) does not depend on α and β directly, but on σ (α) and σ (β). Suppose, for
given permutation σ , Rσ (β),σ (α) appears in the first product, then for any permutation τ with
(c) = τ (c) for every c ∈ {a, . . . , b}

c, we have σ (β) ∈ {σ (a), . . . , σ (b)} = {τ (a), . . . , τ (b)}.
hus, there exists γ ∈ {a, . . . , b} such that τ (γ ) = σ (β), and so we have τ (α) = σ (α) >

(β) = τ (γ ) and α < a ≤ γ . Hence, Rτ (γ ),τ (α) = Rσ (β),σ (α) appears in the product for τ . This
hows the first product does not depend on {σ (a), . . . , σ (b)}, and similarly the second does not
ither. The third product clearly does not depend on {σ (a), . . . , σ (b)}, leaving only the fourth
roduct. Finally, we note that the fourth product does not depend on the values σ takes outside
19
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{a, . . . , b}. Hence, we can split the sum into a sum over possibilities for the permutation outside
a, . . . , b} and a sum over possibilities inside {a, . . . , b}. Pulling the parts depending only on

the values of σ outside {a, . . . , b} out of the second sum we see that it is sufficient for the
second sum to vanish; thus, our condition will hold if∑

σ∈Sm

(
iθ (kσ (m) − kσ (1)) + (m − 1)kσ (m)kσ (1)

) ∏
1≤α<β≤m:

σ (β)<σ (α)

Rσ (β),σ (α)(k) = 0,

here we have relabelled so that we sum over permutations in Sm , rather than over bijections
etween {a, . . . , b} and {σ (a), . . . , σ (b)}. Hence, it is enough to prove the following

roposition 4.3. For every n ∈ N we have the identity∑
σ∈Sn

(
iθ
(
kσ (n) − kσ (1)

)
+ (n − 1)kσ (n)kσ (1)

) ∏
α<β:

σ (β)<σ (α)

Rσ (β),σ (α) = 0. (22)

We will prove this statement in several steps, first we will simplify Equality (22), by showing
hat it is equivalent to a polynomial equation. Then, we will show the resultant polynomial is
lternating and is the product of the Vandermonde determinant and a symmetric polynomial.
o finish, we will prove the symmetric polynomial to be 0, proving the proposition.

As discussed above, we begin simplifying the left hand side by pulling out the common
enominator. Recalling (19)∏

σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) − kσ (β)kσ (α)

) ∏
α<β:

σ (β)<σ (α)

Rσ (β),σ (α)

=

∏
σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) − kσ (β)kσ (α)

) ∏
α<β:

σ (β)<σ (α)

iθ (kσ (α) − kσ (β)) + kσ (α)kσ (β)

iθ (kσ (α) − kσ (β)) − kσ (α)kσ (β)

=

∏
β<α:

σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) − kσ (α)kσ (β)

) ∏
α<β:

σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) + kσ (α)kσ (β)

)
.

Thus, multiplying both sides of (22) by
∏

σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) − kσ (β)kσ (α)

)
(since per-

utations are bijections, this does not depend on σ ) gives the equivalent equation∑
σ∈Sn

(
iθ
(
kσ (n) − kσ (1)

)
+ (n − 1)kσ (n)kσ (1)

)
∏
β<α:

σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) − kσ (α)kσ (β)

) ∏
α<β:

σ (β)<σ (α)

(
iθ (kσ (α) − kσ (β)) + kσ (α)kσ (β)

)
= 0.

e can get rid of the iθ factors by replacing each k j with iθk j , since θ > 0 this change of
ariables is invertible. This results in a factor of (iθ )2((n

2)+1) appearing before the sum, which
e can cancel off. We are left with the following equivalent equation, which we will prove for
∈ Cn .∑

σ∈Sn

((
kσ (n) − kσ (1)

)
+ (n − 1)kσ (n)kσ (1)

)
∏
α<β:

σ (α)<σ (β)

(
(kσ (β) − kσ (α)) − kσ (α)kσ (β)

) ∏
α<β:

σ (β)<σ (α)

(
(kσ (α) − kσ (β)) + kσ (α)kσ (β)

)
= 0.
20



D. Brockington and J. Warren Stochastic Processes and their Applications 162 (2023) 1–48

W

I
g
o

i
a

I
H
s

I
e
w
m

r

L
i

Now, we split the equation into two parts and simplify before showing they cancel. Making
the following rearrangements, and defining the polynomial B∏

β<α:

σ (β)<σ (α)

(
(kσ (α) − kσ (β)) − kσ (α)kσ (β)

) ∏
α<β:

σ (β)<σ (α)

(
(kσ (α) − kσ (β)) + kσ (α)kσ (β)

)
. (23)

=

∏
α<β

sign(σ (β) − σ (α))
(
kσ (β) − kσ (α) − kσ (α)kσ (β)

)
= sign(σ )

∏
α<β

(
kσ (β) − kσ (α) − kσ (α)kσ (β)

)
=: sign(σ )B(kσ ).

e proceed by considering the expressions∑
σ∈Sn

sign(σ )(n − 1)kσ (n)kσ (1) B(kσ ); (24)∑
σ∈Sn

sign(σ )
(
kσ (n) − kσ (1)

)
B(kσ ). (25)

t is clear that both (24) and (25) are polynomials in the k j ; we will now make some more
eneral statements about polynomials of the form above; that is, given by an alternating sum
f f (kσ )B(kσ ), for a polynomial function f .

It is clear that if f : Rn
→ R is a polynomial, then∑

σ∈Sn

sign(σ ) f (kσ )B(kσ ) (26)

s an alternating polynomial. To see this suppose a < b and we exchange ka and kb in the
bove expression. Then kσ becomes k(a,b)◦σ giving∑

σ∈Sn

sign(σ ) f (k(a,b)◦σ )B(k(a,b)◦σ ) = −

∑
σ∈Sn

sign((a, b) ◦ σ ) f (k(a,b)◦σ )B(k(a,b)◦σ )

= −

∑
σ∈Sn

sign(σ ) f (kσ )B(kσ ).

n particular, whenever we have kα = kβ , for α ̸= β, any such polynomial must vanish.
ence we must be able to take the Vandermonde determinant,

∏
α<β(kβ − kα), out as a factor;

ince this is itself alternating, whatever remains must be symmetric. Thus for any polynomial
f : Rn

→ R, there exists a symmetric polynomial g : Rn
→ R such that∑

σ∈Sn

sign(σ ) f (kσ )B(kσ ) = g(k)
∏
α<β

(kβ − kα). (27)

n the case of (24) and (25), the polynomial f is also multilinear (no variable appears with
xponent higher than one), and depends only on two variables. In the following lemma, we
ill use these additional assumptions on f to show that the polynomial operators Hi, j , which
ap polynomials on Rn to polynomials on Rn−2, defined by

Hi, j f (k) = f (k1, . . . , ki−1, −1, ki+1, . . . , k j−1, 1, k j+1, . . . , kn)

educe the degree of B by 2 when i, j ∈ {2, . . . , n − 1}.

emma 4.4. Suppose i, j ∈ {2, . . . , n − 1} with i ̸= j then Hi, j B has degree at most n − 2
n k or in k .
1 n

21
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Proof. Recalling the formula for B(k), (23), we have

Hi, j B(k) =

∏
α<β:

α,β ̸=i, j

(
kβ − kα − kαkβ

) ∏
α ̸=i, j

(sign( j − α)(1 − kα) − kα)

×

∏
α ̸=i, j

(sign(i − α)(−1 − kα) + kα) (2 sign( j − i) + 1) .

The first product contains (n − 3) factors with k1 and kn each. The second and third contribute
a factor of the form:

(1 − 2k1)(−1)

for k1, and a factor of the form

(−1)(2kn + 1) (28)

for kn . Leaving a total of n−2 factors involving k1 and kn each, which proves the statement. □

Now we can apply the above lemma to the expressions we are interested in.

Lemma 4.5. If f : R2
→ R is a multilinear polynomial, then there exists constants C0, C1

nd C2 such that∑
σ∈Sn

sign(σ ) f (kσ (1), kσ (n))B(kσ ) =

∏
α<β

(kβ − kα)

×

⎛⎝C0 +

⌊n/2⌋∑
m=1

⎛⎝C1

∑
α1<···<α2m

kα1 ...kα2m + C2

∑
α1<···<α2m+1

kα1 ...kα2m+1

⎞⎠⎞⎠ .

roof. The discussion preceding Lemma 4.4 shows that we at least have Eq. (27), and that
g must be symmetric. To get the form given in the statement, we will show that g is also

ultilinear. This tells us we can write it as a linear combination of elementary symmetric
olynomials; thus, in the last step, we only need to show that the coefficients in this combination
re of the form given above. Both of these arguments proceed by considering the exponents of
he variables k j .

To show multilinearity, we note that for each k j ,
∏

α<β(kβ − kα) contains n − 1 linear
actors of k j . Furthermore, each B(kσ ) also contains exactly n − 1 linear factors of k j . But f
s multilinear, so in the summand sign(σ ) f (kσ (1), kσ (n))B(kσ ) the largest possible power of k j

s n. Hence, the largest possible power of k j in g(k) is 1. This holds for each j ; thus, g(k) is
ultilinear. Since g(k) is multilinear and symmetric it must be of the form

g(k) = C0 +

n∑
m=1

Cm

∑
α1<···<αm

kα1 ...kαm .

Now we show that the constants Cm satisfy C1 = C2m+1 and C2 = C2m for all m ≤ n/2.
e will use the operator Hn−1,n , as defined prior to Lemma 4.4, on the symmetric polynomial

g. Since g is a symmetric polynomial, if one of its terms contains kn−1 but not kn , there is a
erm otherwise equal where kn−1 is replaced with kn , and vice versa. Thus, in Hn−1,ng these

erms will cancel leaving only the terms that contain both or neither; but, we can also see that
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kn−1kn will be evaluated as −1 when we apply Hn−1,n , so that we have the following.

Hn−1,ng(k) = C0 +

n−2∑
m=1

(Cm − Cm+2)
∑

α1<···<αm<n−1

kα1 ...kαm .

he next step is to consider the exponents on the left hand side of the expression appearing
n Eq. (27) when we apply Hn−1,n to it. We will use throughout that the operators Hi, j are ring
omomorphisms. We aim to show that Hn−1,ng must be constant, which we will achieve by
omparing degrees. First B(kσ ) contains (n − 1) linear factors of each k j , so the only way a
j with exponent n can appear is if it also occurs in f (kσ (1), kσ (n))|kn=1,kn−1=−1; hence, only if

j = σ (n) or σ (1). But the previous lemma tells us that Hn−1,n B(kσ ) has degree at most n − 2
n kσ (1) or in kσ (n). Thus, the highest possible power of any of the k j that can appear when we
pply Hn−1,n to the left hand side of (27) is n − 1. However, when we apply Hn−1,n to the
ight hand side of (27), the product alone contains n − 1 linear factors of each k j , so Hn−1,ng
ust be constant. Hence, Cm = Cm+2 for every m > 0, proving the result. □

emark 4.6. Using the general formula for the sum of elementary symmetric polynomials
n n variables,

∏n
j=1(1 + x j ), together with the above lemma, gives us that for a multilinear

olynomial f : R2
→ R, there are constants Cm and Dm such that∑

σ∈Sn

sign(σ ) f (kσ (1), kσ (n))B(kσ )

=

∏
α<β

(kβ − kα)
(

C0 +
1
2

C1

⎛⎝ n∏
j=1

(1 + k j ) +

n∏
j=1

(1 − k j ) − 2

⎞⎠
+

1
2

C2

⎛⎝ n∏
j=1

(1 + k j ) −

n∏
j=1

(1 − k j )

⎞⎠)

=

∏
α<β

(kβ − kα)

⎛⎝D0 + D1

n∏
j=1

(1 + k j ) + D2

n∏
j=1

(1 − k j )

⎞⎠
= det

(
k j−1

i

) (
D0 + D1 det

(
(1 + k j )δi j

)
+ D2 det

(
(1 − k j )δi j

))
.

Now we can return to our original expressions (24) and (25). These two lemmas imply that
e have constants C (n)

0 , C̃ (n)
0 , C1, C̃ (n)

1 , C (n)
2 and C̃ (n)

2 such that∑
σ∈Sn

sign(σ )(kσ (n) − kσ (1))B(kσ ) =

∏
α<β

(kβ − kα) (29)⎛⎝C (n)
0 +

⌊n/2⌋∑
m=1

⎛⎝C (n)
1

∑
α1<···<α2m

kα1 ...kα2m + C (n)
2

∑
α1<···<α2m+1

kα1 ...kα2m+1

⎞⎠⎞⎠ ,

nd ∑
σ∈Sn

sign(σ )(n − 1)kσ (n)kσ (1) B(kσ ) =

∏
α<β

(kβ − kα) (30)⎛⎝C̃ (n)
0 +

⌊n/2⌋∑⎛⎝C̃ (n)
1

∑
kα1 ...kα2m + C̃ (n)

2

∑
kα1 ...kα2m+1

⎞⎠⎞⎠ .
m=1 α1<···<α2m α1<···<α2m+1

23
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The next lemma provides a link between these constants for different values of n that will
llow us to find their value inductively.

emma 4.7. For m = 0, 1, 2 and n ≥ 3, we have that C (n)
m = (n − 1)C (n−1)

m and
˜ (n)

m = (n − 1)C̃ (n−1)
m .

roof. If we take kn = 0 in (29), then we get the equality∑
σ∈Sn

sign(σ )(kσ (n) − kσ (1))B(kσ )|kn=0 =

n−1∏
α=1

(−kα)
∏

α<β<n

(kβ − kα)⎛⎝C (n)
0 +

⌊n/2⌋∑
m=1

(
C (n)

1

∑
α1<···<α2m<n

kα1 ...kα2m + C (n)
2

∑
α1<···<α2m+1<n

kα1 ...kα2m+1

)⎞⎠ .

ecalling how we defined the polynomial B in line (23), we see that the left-hand side of the
bove equality is equal to∑

σ∈Sn :

σ (1),σ (n)̸=n

(kσ (n) − kσ (1))

(
n−1∏
α=1

(−kα)

)
Dσ (k) (31)

+

∑
σ∈Sn :

σ (1)=n

kσ (n)

(
n−1∏
α=1

(−kα)

)
Dσ (k) −

∑
σ∈Sn :

σ (n)=n

kσ (1)

(
n−1∏
α=1

(−kα)

)
Dσ (k),

here we have used the shorthand

Dσ (k) =

∏
α<β<n

(
kβ − kα − sign

(
σ−1(β) − σ−1(α)

)
kβkα

)
=

∏
α<β:

α,β ̸=σ−1(n)

sign(σ (β) − σ (α))(kσ (β) − kσ (α) − kσ (α)kσ (β)).

ote that σ−1(n) plays no role in the terms of the first sum on line (31). Thus, we can relabel
ach permutation, σ in that sum to a new one, σ̃ , in Sn−1 defined as follows

σ̃ (α) =

{
σ (α), if α < σ−1(n),
σ (α + 1), if α ≥ σ−1(n).

s an example of this relabelling, when n = 4, we would replace the permutations ( 1 2 3 4
1 4 3 2 )

nd ( 1 2 3 4
1 2 4 3 ) with ( 1 2 3

1 3 2 ) and ( 1 2 3
1 2 3 ) respectively. Note that each permutation in Sn−1 occurs

− 2 times (it is n − 2, rather than n, because the sum excludes the cases where σ−1(n) is 1
r n). Importantly, this replacement does not change the value of sign

(
σ−1(β) − σ−1(α)

)
, and

hus does not change the summand. We can do the same with the two sums on the next line,
hese have no repeats as σ−1(n) must be 1 or n depending on the sum. Under this relabelling,
Dσ (k) becomes sign(σ )B(kσ ). Thus, we get

(n − 2)
n−1∏

(−kα)
∑

sign(σ )(kσ (n−1) − kσ (1))B(kσ )

α=1 σ∈Sn−1

24
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+

n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ )kσ (n−1) B(kσ ) −

n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ )kσ (1) B(kσ ),

hich is equal to

(n − 1)
n−1∏
α=1

(−kα)
∑

σ∈Sn−1

sign(σ )(kσ (n−1) − kσ (1))B(kσ ).

pplying Eq. (29) in the n − 1 case, we get that the above is equal to

(n − 1)
n−1∏
α=1

(−kα)
∏

α<β<n

(kβ − kα)
(

C (n−1)
0

+

⌊(n−1)/2⌋∑
m=1

⎛⎝C (n−1)
1

∑
α1<···<α2m

kα1 ...kα2m + C (n−1)
2

∑
α1<···<α2m+1

kα1 ...kα2m+1

⎞⎠).

omparing coefficients with what we started with, it is clear that C (n)
m = (n − 1)C (n−1)

m for
= 0, 1, 2 as required.
The proof for the C̃ (n)

m follows the same lines as above. □

Finally, we just need to establish the values C (2)
0 , C (2)

1 , C (2)
2 , C̃ (2)

0 , C̃ (2)
1 and C̃ (2)

2 to find all the
emaining values by induction. Eq. (24) in the n = 2 case is

k1k2(k2 − k1 − k1k2) + k1k2(k2 − k1 + k1k2) = 2(k2 − k1)k1k2.

hus C (2)
0 = 0, C (2)

1 = 0 and C (2)
2 = 2. Combining the two lemmas above this implies for

= 0, 1 C (n)
0 = 0 for every n, and C (n)

2 = 2(n − 1)! for every n. (25) in the n = 2 case is

(k2 − k1)(k2 − k1 − k1k2) + (k1 − k2)(k2 − k1 + k1k2) = −2(k2 − k1)k1k2.

hus C̃ (2)
0 = 0, C̃ (2)

1 = 0 and C̃ (2)
2 = −2. Combining the two lemmas above this implies for

= 0, 1 C̃ (n)
m = 0 for every n, and C̃ (n)

2 = −2(n − 1)! for every n. In particular, this shows
hat the sum of (24) and (25) is 0, proving Proposition 4.3. As a consequence, we have proved
roposition 4.2, concluding this subsection.

.3. Initial condition

roposition 4.8. For any bounded Lipschitz continuous function f : Wn → R, we have∫
ut (·, y) f (y)m(n)

θ (dy) → f uniformly, as t → 0,

where the definitions of m(n)
θ and ut are given in Definition 1.1 and Eq. (20) respectively.

The proof of this proposition will be the focus of the rest of the section. We begin by proving
wo useful properties of ut , namely, that it integrates to 1 under m(n)

θ , and that it is symmetric:
t (x, y) = ut (y, x).

emma 4.9.∫
ut (x, y)m(n)

θ (dy) = 1 for all x ∈ Wn, t > 0.
25
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Proof. Lemma 4.1 allows us to calculate the time derivative by passing it through the integral:
∂

∂t

∫
ut (x, y)m(n)

θ (dy) =

∫
1
2
∆ut (x, y)m(n)

θ (dy)

= 0.

The first equality is clear from the definition of u. The second equality follows from
Corollary 3.12 and Lemma 4.1. This shows the integral is constant, to finish we shall show
convergence to 1 as t → ∞. Scaling y by t

1
2 , and then k by t−

1
2 , we see the following

qualities.∫
ut (x, y)m(n)

θ (dy) =

∑
π∈Πn

θ |π |−n

(∏
πι∈π

1
|πι|

)∫
t

|π |

2 ut (x,
√

t y)λπ (dy)

=

∑
π∈Πn

θ |π |−n

(∏
πι∈π

1
|πι|

)
1

(2π )n t
1
2 (n−|π |)

∫ ∫
Rn

e−
1
2 |k|

2 ∑
σ∈Sn

eikσ ·(x/
√

t−yσ )

∏
α<β:

σ (β)<σ (α)

Rσ (β),σ (α)(k/
√

t)dk λπ (dy).

e can calculate the limit as t → ∞ above by first looking at the right-hand side of the first
ine, and applying dominated convergence to pass the limit through the first integral; this is
ustified by Lemma 4.1. We can then do the rescaling of the integral in the k variable to get to
he second line; we can calculate the limit of the k integral by applying dominated convergence
gain; to find the limit of the integrand, note that Rσ (β),σ (α)( k

√
t
) → 1 as t → ∞ for almost

every k. Now we can calculate the limits of the summand above, all terms with |π | < n in the
sum over partitions vanish in the limit, because of the t

1
2 (n−|π |) that appears in the denominator,

eaving only the partition consisting exclusively of singletons; for this partition, λπ is just the
ebesgue measure on the Weyl chamber. Thus, we have∫

ut (x, y)m(n)
θ (dy) =

n!

(2π )n

∫
Wn

∫
Rn

e−
1
2 |k|

2
−ik·ydkdy

= 1.

he n! comes from the sum over permutations, the resulting integral in k is just the Fourier
ransform of a Gaussian; hence, the integral over the Weyl chamber is easily calculated. □

Now we can write∫
ut (x, y) f (y)m(n)

θ (dy) − f (x) =

∫
ut (x, y) ( f (y) − f (x)) m(n)

θ (dy).

It follows directly from the definition of m(n)
θ that⏐⏐⏐⏐∫ ut (x, y) ( f (y) − f (x)) m(n)

θ (dy)
⏐⏐⏐⏐

≤

∑
π∈Πn

θ |π |−n
∏
πi ∈π

1
|πi |

⏐⏐⏐⏐∫ ut (x, y) ( f (y) − f (x)) λπ (dy)
⏐⏐⏐⏐ . (32)

hus, we can restrict our attentions to the integral with respect to λπ for a fixed π ∈ Πn .
Let us briefly outline the proof. We wish to estimate ut (x, y), which we recall from 1.2, is

given as a sum of Fourier integrals, indexed by the permutation group on n elements. For each
permutation, σ , we can try to estimate the Fourier integral by following the same idea used
26
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to calculate the Fourier transform of the Gaussian density; that is, we rely on completing the
square: −

1
2 tk2

+ ikx = −
1
2t (tk − ix)2

−
1
2t x2 and then making the relevant contour shift to allow

s to rewrite the Fourier integral as a Gaussian integral multiplied by a Gaussian density. This
tep is complicated by the presence of poles in the integrand of the integral defining ut (x, y).

However, because we are in the Weyl chamber, we do not need to shift the contour of every
integration variable, and indeed, we will instead determine a subset of the indices for which
the poles are restricted to one complex half-plane, allowing us, for certain valued of x and y,
to make the contour shifts without encountering any poles. Together, these contour shifts will
prove to be sufficient to get the desired bound, Proposition 4.14.

Another complication is caused by the dimension of space we are integrating over, that is,
the size of the partition π . Coarser partitions will require finer control over ut (x, y), and to
achieve this we will need to show that, on the parts of the boundary corresponding to these
partitions, there is cancellation occurring between terms in the sum over permutations defining
ut (x, y). We will achieve this with a combinatorial formula we state in Lemma 4.11. The
estimate we describe above, will actually be on the combined terms between which there is
cancellation.

In the final step, we combine the estimate on the Fourier integral defining ut (x, y) with the
Lipschitz property for f to derive the desired uniform convergence. This requires bounding of
the contribution from Wπ to

∫
|ut (x, y)|m(n)

θ (dy) and some care in considering what happens
hen x is near, but not in, Wπ to ensure we get uniform convergence.
We start with a fact that will allow us to make a useful rearrangement: ut (x, y) is symmetric

nder swaps of x and y.

emma 4.10. For every x, y ∈ Wn and t > 0

ut (x, y) = ut (y, x).

Proof. Recall that u is defined in (20) as

ut (x, y) =
1

(2π )n

∫
Rn

e−
1
2 t |k|

2 ∑
σ∈Sn

eikσ ·(x−yσ )
∏
α<β:

σ (α)>σ (β)

iθ (kσ (α)−kσ (β))+kσ (α)kσ (β)
iθ (kσ (α)−kσ (β))−kσ (α)kσ (β)

dk.

f we first take the sum outside the integral, then perform the change of variables in the k
ntegral, k → −kσ−1 , this becomes

1
(2π )n

∑
σ∈Sn

∫
Rn

e−
1
2 t |k|

2
+ik

σ−1 ·(x
σ−1 −y)

∏
α<β:

σ (α)>σ (β)

iθ (kβ−kα )+kαkβ

iθ (kβ−kα )−kαkβ
dk.

otice that we can relabel the product as follows∏
α<β:

σ (α)>σ (β)

iθ(kβ−kα )+kαkβ

iθ(kβ−kα )−kαkβ
=

∏
α<β:

σ−1(α)>σ−1(β)

iθ(k
σ−1(α)−k

σ−1(β))+k
σ−1(α)kσ−1(β)

iθ (k
σ−1(α)−k

σ−1(β))−k
σ−1(α)kσ−1(β)

.

ence, by relabelling the sum to be over σ−1
∈ Sn , we see that we get ut (y, x) as desired. □

Now, we proceed with the proof of Proposition 4.8. We start by writing ut (x, y) in (32)
in terms of a sum over permutations (as in Theorem 1.2), and then combining those terms in
this sum which cancel as t → 0. That is, we can rewrite the summand of (32) (ignoring the
27



D. Brockington and J. Warren Stochastic Processes and their Applications 162 (2023) 1–48

k∏
w

N
a
o
π

t
t
g
i
e
w
d
e

w

W
l

constants) as⏐⏐⏐⏐∫ ut (y, x) ( f (y) − f (x)) λπ (dy)
⏐⏐⏐⏐

=

⏐⏐⏐⏐⏐⏐⏐
∫ ∫

Rn
e−

1
2 t |k|

2 ∑
σ∈Sn

eikσ ·(y−xσ )
∏
α<β:

σ (α)>σ (β)

Rσ (β),σ (α)(k) dk ( f (y) − f (x)) λπ (dy)
(2π )n

⏐⏐⏐⏐⏐⏐⏐ . (33)

For a partition π ∈ Πn and permutation σ ∈ Sn , define the set of ordered pairs

σ (π ) := {(π1, σ (π1)), . . . , (π|π |, σ (π|π |))},

where σ (A) denotes the image of A under σ . We can rewrite the sum appearing on line (33)
as follows ∑

τ∈Sn :

τ |πι is increasing ∀ι

∑
σ∈Sn :

σ (π )=τ (π )

eikσ ·(y−xσ )
∏
α<β:

σ (α)>σ (β)

Rσ (β),σ (α)(k).

Let πι := sup πι, and πι := sup πι. Let us consider eikσ ·(y−xσ )
= e−ik·x ∏n

j=1 eikτ ( j) y j . We
now that for each πι ∈ π , α, β ∈ πι implies yα = yβ λπ -a.e. Hence,

∏n
j=1 eikσ ( j) y j =

πι∈π

∏
α∈πι

eikσ (α) yπι λπ -a.e. But since σ (π ) = τ (π ), this is just equal to
∏

πι∈π

∏
α∈πι

eikτ (α) yπι ,
hich equals eikτ ·y . Hence, we can pull the exponential out of the second sum to make the

previous expression equal λπ -a.e. to∑
τ∈Sn :

τ |πι is increasing ∀ι

eikτ ·(y−xτ )
∑
σ∈Sn :

σ (π )=τ (π )

∏
α<β:

σ (α)>σ (β)

Rσ (β),σ (α)(k).

ow, consider the product in the expression above; in particular, we can show that if α and β

re in different elements of π , then the appearance of Rσ (β),σ (α)(k) in the product depends only
n τ , and not on σ . Suppose α < β are in different elements of π and that σ (β) < σ (α). Since

is an ordered partition, there exists ι < j such that α ∈ πι and β ∈ π j . But σ (π ) = τ (π ), so
here must exist γ ∈ πι and δ ∈ π j (thus γ < δ) such that τ (γ ) = σ (α) > σ (β) = τ (δ). Hence,
he appearance of Rσ (β),σ (α)(k) in the product depends only on τ , as desired. Similarly, we can
o in the other direction, so that if α and β are in different elements of π , then (σ (β), σ (α))
s an inversion for σ if and only if it is an inversion for τ (that is, if α and β are in different
lements of π , then α < β with σ (β) < σ (α) occurs if and only if τ−1(σ (α)) < τ−1(σ (β))
ith σ (β) < σ (α)). Hence, we can split off the part of the product where α and β are in
ifferent elements of π and rewrite it entirely in terms of τ . Thus, the previous expression is
qual to

∑
τ∈Sn :

τ |πι is increasing ∀ι

eikτ ·(y−xτ )

⎛⎜⎜⎝∏
ι< j

∏
α∈πι, β∈π j :

τ (β)<τ (α)

Rτ (β),τ (α)(k)

⎞⎟⎟⎠ ∑
σ∈Sn :

σ (π )=τ (π )

Ao
σ,π (k), (34)

here Ao
σ,π is shorthand for the summand of the second sum and is defined as follows.

Ao
σ,π (k) :=

∏
πι∈π

∏
α<β:

σ (α)>σ (β),
α,β∈πι

Rσ (β),σ (α)(k).

e can now combine all the terms in the second sum in (34), using the formula in the following
emma.
28
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Lemma 4.11. Suppose m ∈ N and θ > 0, then for all k ∈ Rm such that kα ̸= 0 for all
∈ {1, . . . , m},∑

σ∈Sm

∏
α<β:

σ (α)>σ (β)

Rσ (β),σ (α)(k) = m!

∏
α<β

iθ (kβ − kα)
iθ (kβ − kα) − kαkβ

.

roof. First, we prove the following equality holds for all ξ ∈ Cm :

∑
σ∈Sm

⎛⎜⎝ ∏
α<β:

σ (β)<σ (α)

(−1)

⎞⎟⎠∏
α<β

(
ξσ (α) − ξσ (β) − 1

)
= m!

∏
α<β

(ξα − ξβ). (35)

t is clear that the left hand side is a degree
(m

2

)
polynomial, which we shall denote P(ξ ). Thus,

f we can prove that P(ξ ) is also alternating, it must be a constant multiple of the right hand
ide. We then just need to check the constant to finish the proof.

To prove the left hand side is alternating it is enough to consider swaps of consecutive
ariables, e.g. ξ j and ξ j+1 for some j ∈ {1, . . . , m − 1}. Let s j = ( j, j + 1) ∈ Sn , i.e. the
ermutation that swaps j and j + 1 leaving everything else fixed. Clearly, for all σ ∈ Sn∏

α<β:

σ (β)<σ (α)

(−1) = −

∏
α<β:

σ◦s j (β)<σ◦s j (α)

(−1). (36)

t follows by relabelling the sum in its definition on the left-hand side of (35) that P(ξs j ) =

P(ξ ). Hence, P is an alternating polynomial and there is a c ∈ R such that

∑
σ∈Sm

⎛⎜⎝ ∏
α<β:

σ (β)<σ (α)

(−1)

⎞⎟⎠∏
α<β

(
ξσ (α) − ξσ (β) − 1

)
= c

∏
α<β

(ξα − ξβ).

o finish, we just have to note that if we expand the bracket on the left hand side we get
!
∏

α<β(ξα − ξβ) plus additional terms of lower degree. But we know that the left hand side,
P , is a constant multiple of

∏
α<β(ξβ − ξα); thus, the lower degree terms must cancel. This

roves (35).
To prove the lemma, we just need to divide both sides of (35) by

∏
α<β(ξα − ξβ − 1), and

hen, set ξ j = iθ/k j for each j . An application of the following equality tp the left hand side
nd some simple rearrangements give the desired identity.⎛⎝∏

α<β

ξα − ξβ − 1

⎞⎠ =

⎛⎜⎝ ∏
α<β:

σ (β)<σ (α)

ξσ (β) − ξσ (α) − 1

⎞⎟⎠
⎛⎜⎝ ∏

α<β:

σ (α)<σ (β)

ξσ (α) − ξσ (β) − 1

⎞⎟⎠ . □

Hence, we get that (34) is equal to(
|π |∏
ι=1

|πι|!

) ∑
τ∈Sn :

eikτ ·(y−xτ )T τ,π (k),
τ |πι is increasing ∀ι
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where T τ,π
: Cn

→ Cn is defined (for a.e. k ∈ Cn) below.

T τ,π (k) :=

⎛⎜⎜⎝∏
ι< j

∏
α∈πι, β∈π j :

τ (β)<τ (α)

Rτ (β),τ (α)(k)

⎞⎟⎟⎠
⎛⎜⎝∏

πι∈π

∏
α<β:

α,β∈πι

iθ(kτ (β)−kτ (α))
iθ (kτ (β)−kτ (α))−kτ (α)kτ (β)

⎞⎟⎠ . (37)

his rearrangement, together with the triangle inequality, gives us that (33) is bounded above
y ∏|π |

ι=1 |πι|!

(2π )n

∑
τ∈Sn :

τ |πι is increasing ∀ι

∫ ⏐⏐⏐⏐ ∫
Rn

e−
1
2 t |k|

2
+ikτ ·(y−xτ )T τ,π (k)dk

⏐⏐⏐⏐| f (y) − f (x)|λπ (dy). (38)

ow we can move on to the next step, which we now discuss in a bit more detail. We want to
et control on the k integral in (38), and we need the bound to be integrable in y with respect
o λπ and to be vanishing as t → 0 whenever y ̸= x . As discussed earlier in this section, we

can complete the square in the exponent:

−
1
2

t |k|
2
+ ikτ · (y − xτ ) = −

1
2

t
n∑

α=1

(kτ (α) −
i
t
(yα − xτ (α)))2

−
(yα − xτ (α))2

2t
.

he above calculation suggests that we should use Cauchy’s residue theorem to shift the kτ (α)

ontour from R to Cα := {z ∈ C : z −
i
t (yα − xτ (α)) ∈ R} for each α ∈ {1, . . . , n}, and then

arameterise the resulting contour integral as an integral over R. Supposing we can do this
without encountering any poles, the exponent becomes

−
1
2

t
n∑

α=1

k̃2
τ (α) −

(yα − xτ (α))2

2t
,

here k̃τ (α) ∈ R is our new integration variable. The second term of the summand gives us the
ecessary control in the y variable, and the first term should allow us to control the resulting
integral. However, this approach is complicated by T τ,π , which contribute poles that hinder

ur contour shifting. We end up not being able to shift the integration contours for all of the
variables without encountering poles; nevertheless, we are still able to make some of the

esired contour shifts. To see which shifts can be made, we need check where these poles
ccur. The following lemma provides us with the desired information.

emma 4.12. Let H = {x + iy ∈ C| x ∈ R, y ∈ R>0} be the upper half complex plane. The
unction (z, w) ↦→ iθ (z − w) − zw has no zeros in the set H × −H.

roof. For w ∈ −H there are a ∈ R and b ∈ R>0 such that w = a − bi . It is easily checked
that iθ (z − w) − zw = 0 if and only if we have

z =
θ2a − iθ ((θ + b)b + a2)

(θ + b)2 + a2 ∈ −H.

hus, there are no zeros inside H × −H as claimed. □

Observing the structure of the products in (37), we define the set Eτ,π
⊂ Cn to avoid

ny poles. Eτ,π is defined as ×
n
k=1 Eτ,π

k , where Eτ,π
k is given in terms of the following two
onditions. For (τ, π, k), say condition (A) is satisfied if there is πι ∈ π such that k = sup πι

30



D. Brockington and J. Warren Stochastic Processes and their Applications 162 (2023) 1–48

k

L

π

w
o

L
e

a
l

P
w

µ

d
π

g
T

and τ (α) < τ (k) for all α < k, and say condition (B) is satisfied if there is πι ∈ π such that
= inf πι and τ (β) > τ (k) for all β > k. Then,

Eτ,π
k :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H, if condition (A) is satisfied, but not (B);
−H, if condition (B) is satisfied, but not (A);
C, if both (A) and (B) are satisfied;
R, if both (A) and (B) are not satisfied.

emma 4.12 shows the denominator of T τ,π , as in (37), has no zeros in the set Eτ,π (37), and
thus, we can perform the desired contour shifts as long as the contours remain within this
set. To simplify our notation, we will once again write πι := sup πι and πι := inf πι for each

ι ∈ π .
We will state the estimate that results from shifting contours in Proposition 4.14. But first,

e need to find a family of indices for which contour shifts can be made, that is, a collection
f α such that Eτ,π

α contains at least one complex half plane.

emma 4.13. Suppose π ∈ Πn and τ ∈ Sn such that τ |πι is increasing for every πι ∈ π . For
ach πι ∈ π there are aι ≤ ι ≤ bι such that τ (πbι ) ≤ τ (πaι ), and the following properties hold

• τ (πbι ) < τ (β) for every β > πbι ;
• and τ (πaι ) > τ (α) for all α < πι.

Further, given such a (aι, bι), if πaι < πbι , then we define mι := sup{τ (α)| πaι ≤ α ≤ πbι}

nd lι := inf{τ (β)| πaι ≤ β ≤ πbι}; if instead πaι ≥ πbι , then we define mι := τ (πaι ) and
ι := τ (πbι ). The following properties hold for mι and lι:

• there are πc, πd ∈ π such that τ−1(mι) = πd and τ−1(lι) = πc;
• for all α < τ−1(mι) we have τ (α) < mι;
• and for all β > τ−1(lι) we have τ (β) > lι.

roof. First we define µι := πaι , where aι := inf{a ≤ ι : τ (πa) ≥ τ (πι)}, and then from it,
e define νι := πbι , where bι := sup{b ≥ ι : τ (µι) ≥ τ (πb)}. µι and νι are introduced for

convenience and will be used throughout this section. In Fig. 1 we provide an example of a
permutation and partition and the resulting values of µι and νι.

It is easy to see that the aι and bι satisfy the first two properties we claimed for them,
namely that aι ≤ ι ≤ bι and τ (νι) = τ (πbι ) ≤ τ (πaι ) = τ (µι).

We will show τ (νι) < τ (β) for all β > νι, and τ (µι) > τ (α) for all α < µι. Starting with
ι, if there is an α < µι such that τ (µι) < τ (α), then by definition of µι, α must be in a
ifferent element of π to µι, say πc, with c < aι. Since τ is increasing on every element of
, this means we must have τ (πc) > τ (α) > τ (µι) = τ (πaι ), which contradicts the definition

of aι, so no such α exists. By a similar argument, there is no β > νι such that τ (νι) > τ (β).
It remains to prove the second set of statements, those about mι and lι. Suppose we are

iven (aι, bι) as in the first part of the lemma, and once more define µι := πaι and νι := πbι .
he first property for mι and lι follows immediately from the fact that τ |π j is increasing for

all π j ∈ π , the definitions of mι and lι, and from π ∈ Πn . For the second and third statements,
we consider two cases separately: µι < νι and νι ≤ µι. For the latter case, we have mι = τ (νι)
and lι = τ (µι), so the statements are the same as those we just proved. If instead we have
µ < ν , we can argue the second statement as follows. Clearly, for all α such that µ ≤ α ≤ ν
ι ι ι ι
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Fig. 1. The bottom row displays the values of (µι, νι) for the permutation τ = (1, 3, 4) in S5 and partition
= ({1}, {2, 3}, {4}, {5}). Lines connect pairs of indices which τ inverts, so i < j are connected if τ ( j) < τ (i).

ι is the largest element of the leftmost block of π connected to πι by a line. Similarly, νι is the least element
f the rightmost block of π connected to πι by a line.

e have τ (α) < mι; thus, we only need to check that α < µι implies τ (α) < mι. Suppose
his is false, i.e. there is an α < µι such that τ (α) > mι. Since mι > τ (µι), this implies
(α) > τ (µι); since we also have α < µι, this is a contradiction, as we know from previously

hat τ (µι) > τ (α) whenever µι > α. A similar argument proves the third statement, thereby
roving the lemma. □

In the following proposition, we will assume we have a π ∈ Πn with a family (aι, bι)πι∈π

iven by the above lemma, and adopt the notation of the above proof, namely µι := πaι and
ι := πbι . The above lemma ensures that whenever α = µι or τ−1(mι), the set Eτ,π

α contains the
pper half complex plane, and if β = νι or τ−1(lι), then Eτ,π

β contains the lower half complex
plane. It turns out that it is sufficient to consider the contour shifts corresponding only to these
indices, because of the fact that x, y ∈ Wn , and because we are only interested in estimating
ntegrals with respect to the measure λπ , which is supported on sets where certain coordinates
re always equal. As a result, we will get the desired estimate, which we state now.

roposition 4.14. Suppose π ∈ Πn and τ ∈ Sn such that τ |πι is increasing for every πι ∈ π ,
nd for each πι ∈ π we have aι ≤ ι ≤ bι as in the above lemma. There is a constant C > 0,

depending only on π and n, such that the following bound holds for all x, y ∈ Wn .⏐⏐⏐⏐∫
Rn

e−
1
2 t |k|

2
+ikτ ·(y−xτ )T τ,π (k)dk

⏐⏐⏐⏐
≤Ct−

1
2 |π |

| log(t)||π |e−
|y−χ |

2
12nt

∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
)
, (39)

here χ = χ (x) ∈ Rn is defined by χα := χ ι
:=

1
2 (xτ (µι) + xτ (νι)) for all α ∈ πι.

We begin the proof with an intermediate bound, which is achieved by making the contour
hifts we have been discussing. Let Γα,x,y = Cα if x, y ∈ Wn are such that the Cα contour lies
n Eτ,π , and R otherwise.
α
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Lemma 4.15.⏐⏐⏐⏐∫
Rn

e−
1
2 t |k|

2
+ikτ ·(y−xτ )T τ,π (k)dk

⏐⏐⏐⏐ ≤e−
|y−χ |

2
12nt

(∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
))

∫
×

n
α=1Γα,x,y

e−
1
2 t
∑n

α=1 Re(kτ (α))2
|T τ,π (k)| dk. (40)

roof. On the left-hand side of (40), we can apply Cauchy’s residue theorem to shift the
ontours of the integral into the complex plane, onto the contours Γα,x,y . This is possible,
ecause we have defined the contours Γα,x,y in such a way that they are either R, and thus no
eformation is required, or the integrand is analytic in whichever half plane they occupy. The
esult is the following equality.∫

Rn
e−

1
2 t |k|

2
+ikτ ·(y−xτ )T τ,π (k)dk = e−

1
2t
∑

α:Γα,x,y ̸=R(yα−xτ (α))2

×

∫
×

n
α=1Γα,x,y

e−
1
2 t
∑n

α=1 Re(kτ (α))2
+i
∑

α:Γα,x,y=R kτ (α)(yα−xτ (α))T τ,π (k)dk. (41)

ote that on the right hand side, when the contour for k j is not the real line, we have rewritten
he exponential by completing the square: k2

j −
2i
t k j (yτ−1( j) − x j ) = (ki −

i
t (yτ−1(i) − xi ))2

+
1
t2 (yτ−1(i) − xi )2.

From (41), we see that to prove Lemma 4.15 we must bound the exponential appearing in
ront of the integral, which means we need to consider which contour shifts have been made. In
articular, we want to check when the condition for Γα,x,y = Cα is true, for α = µι, νι. Thus,
e want to check when Cα lies inside Eτ,π

α . We know from Lemma 4.13 that Eτ,π
µι

contains the
pper half complex plane, and Eτ,π

νι
contains the lower half complex plane. Thus, Cµι ⊂ Eτ

µι

hen yµι ≥ xτ (µι), and Cνι ⊂ Eτ
νι

when yνι ≤ xτ (νι). Hence, we have the following inequalities:

−
1
2t
1{Γµι,x,y ̸=R}(yµι − xτ (µι))

2
≤ −

1
2t
1{(yµι≥xτ (µι))}(yµι − xτ (µι))

2
;

−
1
2t
1{Γνι,x,y ̸=R}(yνι − xτ (νι))

2
≤ −

1
2t
1{(yνι≤xτ (νι))}(yνι − xτ (νι))

2.

There are two cases of interest, the first is when µι < νι. In this case, the two indices are
n different elements of π . The second case is when µι ≥ νι, for which the two indices are in
he same element of π . Let us deal now with the first case.

By definition, we have τ (µι) ≥ τ (νι); and since x, y ∈ Wn , µι < νι implies that yνι ≤ yµι .
ence, if we have both yνι > xτ (νι) and yµι < xτ (µι), it follows that xτ (νι) < xτ (µι), but since

x ∈ Wn this is a contradiction. Hence, for all x, y ∈ Wn at least one of yµι ≥ xτ (µι) and
yνι ≤ xτ (νι) must be true. This means we have the equality,

−
1
2t
1{(yµι≥xτ (µι))}(yµι − xτ (µι))

2
−

1
2t
1{(yνι≤xτ (νι))}(yνι − xτ (νι))

2

=

⎧⎪⎨⎪⎩
−

1
2t (yµι − xτ (µι))

2, if yµι ≥ xτ (µι) and yνι > xτ (νι);

−
1
2t (yνι − xτ (νι))

2, if yµι < xτ (µι) and yνι ≤ xτ (νι);

−
1
2t (yµι − xτ (µι))

2
−

1
2t (yνι − xτ (νι))

2, if yνι ≤ xτ (νι) and yµι ≥ xτ (µι).

(42)

et χ ι
:=

1
2 (xτ (µι) + xτ (νι)), we can rewrite the first line as

−
1
(

(yµι − χ ι)2
+

1
(xτ (µι) − xτ (νι))

2
)

+
1

(yµι − χ ι)(xτ (µι) − xτ (νι)).
2t 4 2t
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We have τ (µι) > τ (νι) and x ∈ Wn , so that (xτ (µι) − xτ (νι)) ≤ 0. From y ∈ Wn and µι < νι, it
follows that yµι ≥

1
2 (yµι + yνι ), which, under the conditions of the first line in (42), is bounded

elow by χ ι
=

1
2 (xτ (µι) + xτ (νι)). Thus yµι − χ ι > 0, and the last term in the above expression

s negative. We also have yνι − χι ≥ yνι − xτ (νι) > 0, under the condition of the first line; thus,
using yνι ≤ yµι , we get −(yµι − χ ι)2

≤ −(yνι − χ ι)2. It follows that the above expression is
ounded above by

−
1
4t

(
(yµι − χ ι)2

+ (yνι − χ ι)2
+

1
2

(xτ (µι) − xτ (νι))
2
)

.

he same ideas yield the same bound on the cases of the second and third lines of (42), so
hat the above expression is an upper bound for (42).

In order to get the precise control of the decay in the x variable, which we need to cover
he case where x is near the boundary of Wn , we need to look at the contour shifts for mι and
ι. Recall mι = sup{τ (α)| µι ≤ α ≤ νι} and lι = inf{τ (β)| µι ≤ β ≤ νι}. Note that it is quite
ossible for mι = τ (µι) or for lι = τ (νι), so that we will need to account for repetitions. We
eed to check when Cτ−1(mι) ⊂ Eτ,π

τ−1(mι)
. From Lemma 4.13 we know Eτ,π

τ−1(mι)
contains the

pper half complex plane. Therefore, Γτ−1(mι),x,y = Cτ−1(mι) if yτ−1(mι) ≥ xmι , so that

−
1
2t
1{Γ

τ−1(mι),x,y ̸=R}(yτ−1(mι) − xmι )
2

≤ −
1
2t
1{(y

τ−1(mι)
≥xmι )}(yτ−1(mι) − xmι )

2.

e can combine this bound with our previous bound to get the following inequality (where
e have accounted for the case mι = τ (µι) in the indicators).

−
1
2t
1{Γµι,x,y ̸=R}(yµι − xτ (µι))

2
−

1
2t
1{Γνι,x,y ̸=R}(yνι − xτ (νι))

2

−
1
2t
1{Γ

τ−1(mι),x,y ̸=R, mι ̸=τ (µι)}(yτ−1(mι) − xmι )
2

≤ −
1
4t

(
(yµι − χ ι)2

+ (yνι − χ ι)2
+ (xτ (µι) − xτ (νι))

2)
−

1
2t
1{y

τ−1(mι)
≥xmι , mι ̸=τ (µι)}(yτ−1(mι) − xmι )

2. (43)

e aim to show this is bounded above, for some positive constants C1, C2, by

−
C1

t

(
(yµι − χ ι)2

+ (yνι − χ ι)2
+ (xτ (µι) − xτ (νι))

2)
−

C2

t
(xmι − χ ι)2.

o prove this, we consider the various cases for the indicator in (43).
If mι = τ (µι), then it follows from xmι ≤ χι ≤ xτ (νι) that (xτ (µι) − xτ (νι))

2
≤ (xmι − χ ι)2, so

hat our desired bound is easily seen.
In the case that mι ̸= τ (µι) and yτ−1(mι) ≥ xmι , if we further assume yτ−1(mι) ≥ χ ι, then it

ollows that

− (yµι − χ ι)2
− (yτ−1(mι) − xmι )

2

= − (yµι − yτ−1(mι))
2
− (χ ι

− xmι )
2
+ 2(yµι − xmι )(χ

ι
− yτ−1(mι))

≤ − (yµι − yτ−1(mι))
2
− (χ ι

− xmι )
2

≤ −(χ ι
− xmι )

2,

here the last line is true because y ∈ Wn , so that yµι ≥ yτ−1(mι). Thus, our assumptions imply
he last term on the third line above is negative. If instead, x ≤ y < χ ι, then y ∈ Wn
mι τ−1(mι)
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implies that yνι ≤ yτ−1(mι); thus, 0 > yτ−1(mι) − χ ι
≥ yνι − χ ι. Hence,

− (yνι − χ ι)2
− (yτ−1(mι) − xmι )

2

≤ − (yτ−1(mι) − χ ι)2
− (yτ−1(mι) − xmι )

2

= − 2(yτ−1(mι) −
1
2

(xmι + χ ι))2
−

1
2

(xmι − χ ι)2
≤ −

1
2

(xmι − χ ι)2.

herefore, when yτ−1(mι) ≥ xmι we have the bound on (43)

−
1
8t

(xmι − χ ι)2. (44)

If instead, we have mι ̸= τ (µι) and yτ−1(mι) < xmι , then we have x, y ∈ Wn; therefore,
yνι ≤ yτ−1(mι) < xmι ≤ χ ι. Thus, −(yνι − χ ι)2

≤ −(xmι − χ ι)2, so that Expression (44) is
bound on (43) for any x, y ∈ Wn , as desired. Following the same steps for lι, we get the

nalogous bound

−
1
2t
1{Γµι,x,y ̸=R}(yµι − xτ (µι))

2
−

1
2t
1{Γνι,x,y ̸=R}(yνι − xτ (νι))

2

−
1
2t
1{Γ

τ−1(lι),x,y ̸=R, lι ̸=τ (νι)}(yτ−1(lι) − xlι )
2

≤ −
1
4t

(
(yµι − χ ι)2

+ (yνι − χ ι)2
+ (xτ (µι) − xτ (νι))

2)
−

1
2t
1{y

τ−1(lι)
≥xlι , lι ̸=τ (νι)}(yτ−1(mι) − xmι )

2

≤ −
1
8t

(xlι − χ ι)2. (45)

ombining the bounds in (43), (44), and (45), we get the following bound when νι > µι.

−
1
2t

1{Γµι,x,y ̸=R}(yµι − xτ (µι))
2
−

1
2t

1{Γνι,x,y ̸=R}(yνι − xτ (νι))
2

−
1
2t

1{Γ
τ−1(mι),x,y ̸=R, mι ̸=τ (µι)}(yτ−1(mι) − xmι )

2
−

1
2t

1{Γ
τ−1(lι),x,y ̸=R, lι ̸=τ (νι)}(yτ−1(lι) − xlι )

2

≤ −
1

12t

(
(yµι − χ ι)2

+ (yνι − χ ι)2
)

−
1

24t

(
(xmι − χ ι)2

+ (xlι − χ ι)2
)

≤ −
1

12(πbι − πaι )t

πbι∑
α=πaι

(yα − χ ι)2
−

1
24t

(
(xmι − χ ι)2

+ (xlι − χ ι)2
)

, (46)

here for the last line, we have used that by definition µι = πaι and νι = πbι , and that under
π , we have that for any π j ∈ π , if α, β ∈ π j , then yα = yβ almost everywhere as well as
aving that y ∈ Wn , so that (yµι − χ ι) ≥ (yα − χι) ≥ (yνι − χι) for all πaι ≤ α ≤ πbι . Thus,
ither −(yα − χ ι)2

≤ −(yµι − χ ι)2 or −(yα − χ ι)2
≤ −(yνι − χ ι)2.

To finish the argument and get the bound on (38), we just need to deal with the second case:
ι ≤ µι.

In the second case, µι and νι are both in πι, and therefore, under λπ , we have yµι = yνι

lmost everywhere. Further, since τ is increasing on every element of π , it follows that
ι := τ (µι) = sup{τ (α)| νι ≤ α ≤ µι} and lι := τ (νι) = inf{τ (β)| νι ≤ β ≤ µι}. Following the
ame steps as before, if we assume both yνι > xτ (νι) and yµι < xτ (µι), then since yµι = yνι , it
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follows that xτ (νι) < xτ (µι), which is a contradiction because τ (νι) < τ (µι) and x ∈ Wn . Thus,
at least one of yνι ≤ xτ (νι) and yµι ≥ xτ (µι) must hold for all x, y ∈ Wn . With similar ideas to
hose used above, we find that

−
1
2t
1{Γµι,x,y ̸=R}(yµι − xτ (µι))

2
−

1
2t
1{Γνι,x,y ̸=R}(yνι − xτ (νι))

2

≤ −
1
4t

(
(yµι − χ ι)2

+ (yνι − χ ι)2
+ (xmι − xlι )

2)
≤ −

1
12t

(
(yµι − χ ι)2

+ (yνι − χ ι)2)
−

1
24t

(
(xmι − χ ι)2

+ (xlι − χ ι)2) (47)

≤ −
1

12(µι − νι)t

µι∑
α=νι

(yα − χ ι)2
−

1
24t

(
(xmι − χ ι)2

+ (xlι − χ ι)2) . (48)

he idea behind the above bounds is similar to before, but this time we use yµι = yνι , and we
sed that xlι ≥ χ ι

≥ xmι for the second inequality. The constants appearing in the denominator
ave been chosen to be consistent with (46), and so are not optimal.

Applying the bounds (46) and (48) to (41) leads to the following inequality⏐⏐⏐⏐∫
Rn

e−
1
2 t |k|

2
+ikτ ·(y−xτ )T τ,π (k)dk

⏐⏐⏐⏐ ≤e−
1

12nt |y−χ |
2

(∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
))

∫
×

n
α=1Γα,x,y

e−
1
2 t
∑n

α=1 Re(kτ (α))2
|T τ,π (k)| dk, (49)

here we have used µι − νι, πbι − πaι < n for all ι to get the form of the Gaussian bound
given above. □

We complete the proof of Proposition 4.14 with the following lemma.

Lemma 4.16. There is a constant C > 0, depending only on π and n, such that∫
×

n
α=1Γα,x,y

e−
1
2 t
∑n

α=1 Re(kτ (α))2
|T τ,π (k)| dk ≤ Ct−

1
2 |π |

| log(t)||π |. (50)

roof. To begin, we need to collect some bounds on the factors appearing in the products
37). We need to make sure the bound covers the new contours; therefore, it is sufficient to
ound for k ∈ Eτ,π . This can be done for the factors in the first product by bounding for all

ha, hb ≥ 0 and ka, kb ∈ R⏐⏐⏐⏐ iθ ((ka + iha) − (kb − ihb)) + ((ka + iha))((kb − ihb))
iθ ((ka + iha) − (kb − ihb)) − ((ka + iha))((kb − ihb))

⏐⏐⏐⏐
=

⏐⏐⏐⏐ iθ (ka − kb) − θ (hb + ha) + i(kbha − kahb) + kakb + hahb

iθ (ka − kb) − θ (hb + ha) − i(kbha − kahb) − kakb − hahb

⏐⏐⏐⏐
=

(
θ2(ka−kb)2

+(kbha−ka hb)2
−2θ (k2

b ha+k2
a hb)+θ2(hb+ha )2

−2θha hb(hb+ha )+(kakb+ha hb)2

θ2(ka−kb)2+(kbha−ka hb)2+2θ (k2
b ha+k2

a hb)+θ2(hb+ha )2+2θha hb(hb+ha )+(kakb+ha hb)2

) 1
2

≤1, because ha, hb ≥ 0. (51)
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Here, the k variables are the real part of the integration variables, and the h variables are the
maginary part. Hence, we have that for all k ∈ Eτ,π∫

×
n
α=1Γα,x,y

e−
1
2 t
∑n

α=1 Re(kτ (α))2
|T τ,π (k)| dk

≤

∏
πι∈π

∫
×α∈πιΓα,x,y

e−
1
2 t
∑

α∈πι
Re(kτ (α))2 ∏

α<β:

α,β∈πι

⏐⏐⏐ iθ (kτ (β)−kτ (α))
iθ(kτ (β)−kτ (α))−kτ (α)kτ (β)

⏐⏐⏐ dk. (52)

his expression will be estimated using the following bound on the factors in the product in
he integrand. For any ka, kb ∈ R and ha, hb ≥ 0,⏐⏐⏐⏐ iθ ((ka + iha) − (kb − ihb))

iθ ((ka + iha) − (kb − ihb)) − ((ka + iha))((kb − ihb))

⏐⏐⏐⏐
=

(
θ2(ka−kb)2

+θ2(hb+ha )2

θ2(ka−kb)2+(kbha−ka hb)2+2θ (k2
b ha+k2

a hb)+θ2(hb+ha )2+2θha hb(hb+ha )+(kakb+ha hb)2

) 1
2

≤

⎧⎨⎩1,

θ

(
|ka−kb |

((kbha−ka hb)2+(kakb+ha hb)2)
1
2

)
+ θ

(
|hb+ha |

((kbha−ka hb)2+(kakb+ha hb)2)
1/2

)
≤

{
1,

2θ
(

1
|ka |

+
1

|kb |

)
.

(53)

he last line follows by expanding the brackets in the denominator, removing some non-
egative terms, and then applying the triangle inequality.

Returning to (52), we can divide each contour integral into two parts: one where |Re(kα)| <

/
√

t and another where |Re(kα)| ≥ ε/
√

t ; this gives the following∏
πι∈π

∫
×α∈πιΓα,x,y

e−
1
2 t
∑

α∈πι
Re(kτ (α))2

∏
α∈πι

(
1{|Re(kα )|<ε/

√
t} + 1{|Re(kα )|≥ε/

√
t}

) ∏
α<β:

α,β∈πι

⏐⏐⏐ iθ (kτ (β)−kτ (α))
iθ (kτ (β)−kτ (α))−kτ (α)kτ (β)

⏐⏐⏐ dk.

e can simplify as follows: expanding the first product, in each term where an indicator for
kα| < ε/

√
t appears, we bound all factors in the second product which depend on kα by 1,

sing the first line bound in (53); it is then easy to see that the contribution from the kα integral
o that term is at most 2ε/

√
t . We can then bound any remaining terms in the second product

by the second line bound in (53) (remembering that the k in that estimate represents the real
part of the complex integration variable), the resulting integral depends only on the number of
kα for which |Re(kα)| ≥ ε/

√
t . Relabelling the remaining variables, we see that the previous

xpression is bounded above by∏
πι∈π

|πι|∑
j=1

(
|πι|

j

)
2|πι|− j+( j

2)θ( j
2)(ε/

√
t)|πι|− j

∫
R j :

|kα |≥ε/
√

t, ∀α

e−
1
2 t |k|

2 ∏
α<β

(
1

|kα |
+

1
|kβ |

)
dk.

escaling the k variables by 1
√

t
, we see that this equals

∏ |πι|∑(
|πι|

j

)
2|πι|− j+( j

2)θ( j
2)ε|πι|− j t

1
2

(
( j

2)−|πι|

) ∫
R j :

e−
1
2 |k|

2 ∏ (
1

|kα |
+

1
|kβ |

)
dk. (54)
πι∈π j=1 |kα |≥ε, ∀α α<β
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Since the product runs through all pairs of α, β ∈ {1, . . . , j}, upon expanding the brackets,
very term will involve a kγ to a power of at most 1 − j . Further, in each term, at most one
f the kγ can have exponent −1, with the rest having exponent at most −2. It is clear from
epeated integration by parts that for each y ̸= 1, there is some constant C > 0 such that∫

|x |≥ε

1
|x |

y e−
1
2 |x |

2
dx ≤ Cε1−y, when ε ∈ (0, 1).

or y = 1, we instead have that there is a constant C > 0 such that∫
|x |≥ε

1
|x |

e−
1
2 |x |

2
dx ≤ C | log(ε)|, when ε ∈ (0, 1).

ince the sum of all the powers of all the kγ in each term of the expanded brackets is
( j

2

)
, and

because the product runs through all pairs of indices so that in each term in the expansion there
can be at most one kγ appearing with power −1, there is some constant C > 0 depending only

n n and π such that for all ε ∈ (0, 1), (54) is bounded above by

C
∏
πι∈π

|πι|∑
j=1

ε|πι|− j+ j−1−( j
2)| log(ε)|t

1
2

(
( j

2)−|πι|

)
.

If we set ε =
√

t , then the above expression is bounded above by

Ct−
1
2 |π |

| log(t)||π |,

hich is the desired upper bound. □

roof of Proposition 4.14. Combining the bounds from the above lemma and Lemma 4.15
proves the statement. □

We now have what we need to complete the proof of the main proposition of the subsection.

Proof of Proposition 4.8. Proposition 4.14 implies that (38) is bounded above by

Ct−
1
2 |π |

| log(t)||π |
∑
τ∈Sn :

τ |πι is increasing ∀ι∫
e

1
12nt |y−χ |

2 ∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
)
| f (y) − f (x)|λπ (dy) (55)

e can replace the function f : Wn → R with its symmetric extension f : Rn
→ R, that

is the function f : Rn
→ R such that for any σ ∈ Sn , x ∈ Rn we have f (xσ ) = f (x) and

f |Wn = f . Then, after rescaling y by
√

t , (55) is bounded above by

C | log(t)||π |
∑
τ∈Sn :

τ |πι is increasing ∀ι∫
W|π |

e−
1

12n |y|
2

(∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
))

| f (
√

t y + χ ) − f (xτ )|dy.

n the above, χ ∈ Rn is defined by χα := χ ι when α ∈ πι, y is defined by y
α

= yι for all
∈ πι, and we have used that f (x) = f (xτ ). We have also rewritten the integral with respect

to λπ as an integral with respect to the Lebesgue measure. Since f is a Lipschitz function, it
38
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is straightforward to show that f is also Lipschitz; therefore, the above expression is bounded
bove by

C | log(t)||π |
∑
τ∈Sn :

τ |πι is increasing ∀ι∫
W|π |

e−
1

12n |y|
2

(∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
))(√

t |y| + |χ − xτ |

)
dy.

The integrand is non negative and |y| ≤ |π ||y|; therefore, this is bounded above (for a new
onstant C) by

C | log(t)||π |
∑
τ∈Sn :

τ |πι is increasing ∀ι∫
R|π |

e−
1

12n |y|
2

(∏
πι∈π

e−
1

24nt

(
(xmι−χ ι)2

+(xlι−χ ι)2
))(√

t |y| + |χ − xτ |

)
dy

≤C | log(t)||π |
∑
τ∈Sn :

τ |πι is increasing ∀ι

(56)

∫
R|π |

(|y| + 1)e−
1

12n |y|
2
dy
(

√
t + |χ − xτ |e

−
1

24nt
∑

πι∈π

(
(xmι−χ ι)2

+(xlι−χ ι)2
))

. (57)

Now we note that |χ − xτ | ≤
∑n

α=1 |χα − xτ (α)|, but for all α ∈ [µι, νι] (or [νι, µι]) we have
xmι ≤ xτ (α), χα ≤ xlι (or xlι ≤ xτ (α), χα ≤ xmι ). Hence, either |χα − xτ (α)| ≤ |χα − xmι |

or |χα − xτ (α)| ≤ |χα − xlι |. Note that for any c > 0 and x ∈ R we have the inequality
|x |e−c|x |

2
≤ (2ec)−

1
2 . Hence, (57) is bounded by

C
√

t | log(t)||π |
∑
τ∈Sn :

τ |πι is increasing ∀ι

∫
R|π |

(|y| + 1)e−
1

12n |y|
2
dy

≤C
√

t | log(t)||π |,

here we have bounded the integral independently of |π |, and the constant C has changed
between lines. Summing over π ∈ Πn , and using that since Πn is a finite set the constants C
in the above expression have a finite maximum, we get, for a new constant C > 0 depending
only on n,

sup
x∈Wn

|

∫
ut (x, y) f (y)m(n)

θ (dy) − f (x)| ≤C
√

t
∑

π∈Πn

| log(t)||π |

≤C
√

t log(t)n
→ 0, as t → 0.

ote that the last inequality is valid only for t < 1/e. Hence, we have the desired uniform
onvergence, and Proposition 4.8 is proved. □

roof of Theorem 1.2. As a consequence of Proposition 4.2 and Proposition 4.8, we can apply
roposition 3.9 to our function

∫
ut (x, y) f (y)m(n)

θ (dy) to prove
∫

ut−s(Ys, y) f (y)m(n)
θ (dy) is

local martingale. Suppose that f ∈ C∞
c (Wn), i.e. f has an extension to an open set U

ontaining Wn that is smooth and compactly supported. Then since
∫

ut (x, y) f (y)m(n)
θ (dy)

onverges uniformly to f as t → 0, and f is bounded, there must be some ε > 0
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such that
∫

ut (x, y) f (y)m(n)
θ (dy) is bounded for t ∈ [0, ε] and x ∈ Wn . We also have

|
∫

ut (x, y) f (y)m(n)
θ (dy)| ≤

1
(2π t)n/2

∫
| f (y)|m(n)

θ (dy), which is bounded for t ∈ [ε, ∞). Hence,

ut (x, y) f (y)m(n)
θ (dy) is bounded as a function of (t, x) ∈ R>0 × Wn . It follows that

ut−s(Ys, y) f (y)m(n)
θ (dy) is a true martingale; thus, Ex [ f (Yt )] =

∫
ut (x, y) f (y)m(n)

θ (dy) for
very f ∈ C∞

c (Wn).
To extend the equality to more general functions f , we note that the above argument shows

on-negativity of ut (x, y): if f (x) ≥ 0 for all x ∈ Wn , then
∫

ut (x, y) f (y)m(n)
θ (dy) ≥ 0. Since

his holds for every f ∈ C∞
c (Wn), we have that for each t > 0 and x ∈ Wn , ut (x, y) ≥ 0 for

(n)
θ almost every y ∈ Wn .
Returning to the case where f is merely bounded and Lipschitz, we can use the non-

egativity of ut (x, y) and Lemma 4.9 to get the bound |
∫

ut (x, y) f (y)m(n)
θ (dy)| ≤ ∥ f ∥∞.

ence, the local martingale
∫

ut−s(Yt , y) f (y)m(n)
θ (dy) is in fact a true martingale for s ∈ [0, t],

nd so Ex [ f (Yt )] =
∫

ut (x, y) f (y)m(n)
θ (dy). Thus, the proof of Theorem 1.2 is completed. □

As a consequence we can also prove the following.

heorem 4.17. m(n)
θ is a stationary measure for Y , and Y is reversible with respect to m(n)

θ .

roof. For f a bounded, integrable, Lipschitz continuous function, we have for all t > 0
d
dt

∫
Ex [ f (Yt )]m

(n)
θ (dx) =

d
dt

∫∫
ut (x, y) f (y)m(n)

θ (dy)m(n)
θ (dx) (58)

= 0. (59)

he first equality is a consequence of Theorem 1.2 and the second equality is a consequence
f Corollary 3.12 and Fubini’s theorem. Lemma 4.1 provides the necessary bounds to pass
he derivatives through the integrals and to apply Fubini’s theorem. Theorem 1.2 allows us to
rove the following limit, with an application of dominated convergence theorem justified by
emma 4.1.

lim
t→0

∫
Ex [ f (Yt )]m

(n)
θ (dx) =

∫
f (x)m(n)

θ (dx). (60)

e can extend this to any L1(m(n)
θ ) function by a density argument, proving that m(n)

θ is the
tationary measure for Y .

If f and g are bounded, Lipschitz continuous, and integrable; Fubini’s theorem gives∫
Ex [ f (Yt )]g(x)m(n)

θ (dx) =

∫∫
ut (x, y) f (y)m(n)

θ (dy)g(x)m(n)
θ (dx)

=

∫∫
ut (x, y)g(x)m(n)

θ (dx) f (y)m(n)
θ (dy)

=

∫
Ey[g(Yt )] f (y)m(n)

θ (dy),

here we have used the symmetry ut (x, y) = ut (y, x) in the last line. Hence, Y is reversible
ith respect to m(n)

θ . □

To finish this section, we return to prove Lemma 4.1.

roof of Lemma 4.1. The proof of this lemma is a simplified version of the methods
e applied in earlier in this section; as such, we omit the main details to avoid repetition
40
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and instead sketch the proof. Following the arguments used to prove Proposition 4.14, with
π = {{1}, {2}, . . . , {n}}, we can derive a Gaussian bound on the summand in (20). We can then
dapt the arguments in Lemma 4.16 to bound the resulting contour integrals, which will have
dditional factors of k due to the derivatives. In fact, the proof can be significantly simplified
n this case as we do not need to consider the t → 0 limit, and therefore we do not need to
nsure we get the optimal exponent for t . The above arguments give us a bound in the form of
finite sum of Gaussian kernels, multiplied by a negative power of t , from which the above

ounds follow easily (note that for the bound on the x derivatives, we can apply the bound on
he y derivatives, as ut (x, y) = ut (y, x) which we proved in Lemma 4.10). □

. Stochastic flows of kernels

.1. Random walks in random environments

We will begin by recalling the definitions for the discrete counterparts of Howitt–Warren
ows and sticky Brownian motions: Random walks in space–time i.i.d. random environments
n Z and their n-point motions. A random walk in a random environment on Z is simply a
andom walk on Z whose transition probabilities are themselves random variables. We define
he random environment as a family of i.i.d. [0, 1] valued random variables ω = (ωt,x )t,x∈Z
ith law and expectation P and E, respectively. We then define a random walk running through

ealisation of the environment with transition probabilities:

Pω(X (t + 1) = x + 1| X (t) = x) = ωx,t ;

Pω(X (t + 1) = x − 1| X (t) = x) = 1 − ωx,t .

Here, Pω denotes the law of the RWRE, and Eω its expectation, both of which depend on the
realisation of the environment. The random transition probabilities, Pω(X t = y| X0 = x), can

e interpreted as a random flow of mass in a fluid, where the quantities describe how a point
ass at x has spread through the fluid by time t .
An important idea for studying such models are the n-point motions, we run n random walks

ndependently through a sampling of the environment, and then average out the environment.
he averaging over the law of the environment will break the particles’ independence, so

hat the resultant system has interactions. That is, if X (t) = (X1(t), . . . , Xn(t)) is the n-point
otion, then

P(X (t + 1) = y|X (t) = x) = E

[
n∏

i=1

Pω(X i (t + 1) = yi |X (t) = xi )

]
.

lternatively, we can view the n-point motions as describing the behaviour of n particles thrown
nto the fluid. Notice now that since the environment is i.i.d, the coordinate processes of the
-point motion behave independently when they are apart. However, when they meet, they

nteract. In particular, it is a simple consequence of Jensen’s inequality that they are more
ikely to move in the same direction when together than when apart; if we let ω be a copy of
n environment variable, then we see

E[ωn] + E[(1 − ω)n] ≥ E[ω]n
+ E[1 − ω]n.

group of particles situated at the same site, x , at time t can break into at most two groups.
he probability of a group of n particles breaking into two groups of size k and l, with the k
oving to x + 1 and the l to x − 1, is

E[ωk (1 − ω )l].
x,t x,t
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Hence, the distribution of ω can be viewed as controlling the rate at which groups of particles
break up, and the size of the groups they tend to break into. Of course, when clusters of
particles are in different locations the corresponding parts of the environment are independent,
and thus, the clusters of particles behave independently of each other, so that the distribution
of the environment only affects the behaviour of particles that are already in the same location.
At the extreme ends, if the environment variables are chosen to be {0, 1} valued Bernoulli
andom variables, then the n-point motions become coalescing simple random walks. On the
ther hand, it the environment variables are chosen to be deterministic with value 1

2 , then the
-point motions will simply be independent simple random walks. Thus, the strength of the
ffect of the environment on the interaction between the n-point motions is related to how
robable it is that the environment variables take values near 0 or 1.

If we take the diffusive scaling limit of these n-point motions in an environment having a
xed distribution, then the contribution of the environment is overcome in the limit, and we
imply end up with independent Brownian motions (assuming the environment variables are
ean 1/2 so there is no drift).
It was shown by Howitt and Warren [9] that by changing the distribution of the ω as we take

he diffusive scaling limit, we can obtain Brownian motions which still interact; specifically,
hey are sticky when they meet, see also Schertzer, Sun and Swart [16]. To preserve the
nteraction into the diffusive scaling limit the strength of the interaction has to be increased; this

eans taking the laws of the environment random variables to be closer to that of a Bernoulli
andom variable. This requirement is made explicit in the second condition of Howitt and

arren’s theorem, stated below.

heorem 5.1. Suppose X (t) is the n-point motion of a RWRE, where the environment variables
ave law µ(ε) satisfying the following:

1
ε

∫ 1

0
(1 − 2q)µ(ε)(dq) → β, as ε → 0;

1
ε

q(1 − q)µε(dq) H⇒ ν(dq), as ε → 0.

Then the laws of the processes (εX (ε2t))t≥0 converge weakly to the law of a solution to the
owitt–Warren martingale problem with drift β and characteristic measure ν.

In the special case of ν(dx) = θ/2dx , where dx is the Lebesgue measure the above
esult shows the solution to the Howitt–Warren martingale problem is the scaling limit of the
eta random walk in a random environment. That is, choose µ(ε)(dq) =

Γ (2θε)
Γ (θε)Γ (θε) q

θε−1(1 −

)θε−1dq, then for any function Cb([0, 1]) the dominated convergence theorem implies

1
ε

∫ 1

0
f (q)q(1 − q)µ(ε)(dq) =

Γ (2θε)
εΓ (θε)Γ (θε)

∫ 1

0
f (q)qθε(1 − q)θεdq

→
θ

2

∫ 1

0
f (q)dq,

sing Γ (x) =
Γ (x+1)

x ∼
1
x as x → 0. Hence 1

ε
q(1 − q)µ(ε)

⇒
θ
2 dx ; since we also have

1
0 (1 − 2q)µ(ε)(dq) = 0 for all ε > 0 the theorem implies the convergence of the n-point
otions of the Beta random walk in a random environment to solutions of the Howitt–
arren martingale problem with characteristic measure θ

21[0,1]dx and zero drift. This is the
ey motivator for looking for exact solutions in the sticky Brownian motion case and was used
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by Barraquand and Rychnovsky in [3] to find Fredholm determinant expressions in the sticky
Brownian motions case by taking limits of those found for the Beta random walk in a random
environment in [2].

5.2. The Howitt-Warren process

We now briefly introduce stochastic flows of kernels, these are essentially random tran-
ition probabilities (Ks,t (x, dy))s≤t , with the following additional assumptions: independent
ncrements in the sense that for any t0 < · · · , tn the random kernels Kt0,t1 , . . . , Ktn−1,tn are
ndependent; stationarity, that is the law of Ks,t depends only on t − s. They can be thought
f as the continuum version of the random environment that is i.i.d. in space and time we
onsidered in the previous section.

The n-point motions of a stochastic flow of kernels are the family of Markov processes
(Xn)∞n=1 with Xn taking values in Rn with transition probabilities

P(Xn(t) ∈ E | Xn(s) = x) = E
[∫

E

n∏
i=1

Ks,t (xi , dyi )
]
, for x ∈ Rn, E ∈ B(Rn).

Notice that this is very similar to the definition of the n-point motions in the RWRE case, with
K taking the place of the random transition probabilities.

Le Jan and Raimond [11] have shown that any consistent family of Feller processes are
the n-point motions of some stochastic flow of kernels. A family of Feller processes (Xn)∞n=1,
Xn : R>0 → Rn is consistent, if for any k ≤ n and any choice of k coordinates from Xn:
X i1

n , . . . , X ik
n ) is equal in law to Xk . For a more complete introduction to stochastic flows of

ernels we refer to [11]. When the family of n-point motions, (Xn)∞n=1, are sticky Brownian
otions characterised by a Howitt–Warren martingale problem the resulting flow of kernels

s called a Howitt–Warren flow. These flows have been studied extensively by Schertzer, Sun,
nd Swart [16].

efinition 5.2. The stochastic flow of kernels whose n-point motions solve the Howitt–Warren
artingale problem, as stated in Definition 2.2, with characteristic measure ν and drift β is

alled the Howitt–Warren flow with characteristic measure ν and drift β.

Rather than look at the flow directly, we want to consider the Howitt–Warren process a
easure valued process that describes how an initial mass is carried by the flow. In our case,
e are interested in the case where all mass starts at the origin; thus, we consider the Howitt–
arren process with initial condition δ0. That is, for the Howitt–Warren flow (Ks,t )s≤t with

haracteristic measure ν and drift β we define the Howitt–Warren process started from δ0 with
haracteristic measure ν and drift β to be the measure valued process given by

ρt (A) := K0,t (0, A), for every Borel set A ⊂ R. (61)

If f : Rn
→ R is a symmetric function, then Ex [ f (X (t))] = Ex [ f (Y (t))] for all x ∈ Wn .

Hence, we have the following corollary of our main result, Theorem 1.2, that allows us to study
the Howitt–Warren process.

Corollary 5.3. If f : Rn
→ R is a symmetric function, and its restriction to Wn is a bounded,

Lipschitz continuous function, then for a Howitt–Warren flow (K ) with characteristic
s,t s≤t
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measure θ
2 dx and drift zero we have

E

[∫
f (y)

n∏
i=1

Ks,t (xi , dyi )

]
=

∫
ut−s(x, y) f (y)m(n)

θ (dy) for all x ∈ Wn.

From which it clearly follows that for the Howitt–Warren process started from δ0 with
haracteristic measure θ

21[0,1] and drift 0, we have that

E
[∫

f (y)ρ⊗n
t (dy)

]
=

∫
ut (0, y) f (y)m(n)

θ (dy). (62)

This allows us to study the process directly, via u, which we will pursue further in the next
ubsection.

.3. Atoms of the Howitt-Warren process

Schertzer, Swart, and Sun proved [16, Theorem 2.8] that any Howitt–Warren process is
lmost surely purely atomic for fixed times t . Thus, almost surely we can write the Howitt–
arren process at time t as a linear combination of delta measures ρt (dy) =

∑
i wiδyi (dy),

here the wi and yi are both random. One can think of the Howitt–Warren process as the
ensity of an infinite number of sticky Brownian motions evolving in time. Thus, the fact that
he process is atomic shows that when the number of particles is very large, the sticky behaviour
eads to the formation of large clusters of particles. This is very different from the behaviour
f large numbers of independent Brownian motions.

We can think of the collection of pairs (yi , wi ) as a point process on R × R>0. Note that
he Howitt–Warren process conserves mass, so that for any t > 0 we will have

∑
i wi = 1.

owever, due to another result of [16], the total number of points will be infinite almost surely
his point process has an associated intensity measure γt on R × R>0 defined by

γt (A1 × A2) = E

[∑
i

1{yi ∈A1, wi ∈A2}

]
.

e will use this intensity to study the behaviour of the weight of a single atom at a given point
n space. See [5] for an introduction to point processes. For any n ∈ N and f : R → R that is
ounded and Lipschitz continuous, we have the equalities∫

R×R>0

f (y)wn γt (dy, dw) =E

[∑
i

f (yi )wn
i

]

=E
[∫

Dn
f ⊗n(y)ρ⊗n

t (dy)
]

=

∫
Dn

f ⊗n(y)u(n)
t (0, y)m(n)

θ (dy)

=n−1θ1−n
∫
R

f (y)u(n)
t (0, (y, . . . , y))dy. (63)

bove, Dn
:= {(y, . . . , y) ∈ Rn

: y ∈ R} and we have written u(n)
t for the transition density ut

n Rn , which we do for the rest of the section to indicate the dependency on dimension. The
rst equality can be seen by approximating by simple functions, the second is direct from the
efinitions, the third is a consequence of Corollary 5.3 and the fourth from Definition 1.1.
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Equality (63) also shows that the measure γt (dy, dw) can be written in the form γt (y, dw)dy,
and that we have for each n ∈ N and almost every y ∈ R the equality∫

R>0

wnγt (y, dw) = n−1θ1−nu(n)
t (0, (y, . . . , y)). (64)

We will study the asymptotic behaviour of the measure γt (y, dw) for certain choices of y. We
can interpret γt (y, dw) as describing the distribution of the size of an atom at y. However,
γt (y, dw) is not a probability distribution; the measure of any neighbourhood of w = 0 is
infinite. Introducing size biasing, and instead considering the measure wγt (y, dw), we do get

finite measure. If we set n = 1 in (64), then we can see that the marginal of wγt (y, dw)dy,
hen w is integrated out, is just a Gaussian measure. If we sample an atom and its size,

X, W ) ∈ R × R>0 from the Howitt–Warren process, ρt , with probabilities given by the size
f the atoms, then the distribution of (X, W ) is given by wγt (y, dw)dy. In the following
roposition, we study this distribution in the large time limit, conditioned on X =

√
t x . This is

analogous to Thiery and Le Doussal’s result in [17], where they found that the fluctuations
of the transition probabilities of the Beta RWRE were Gamma distributed in the large t
limit.

Proposition 5.4. For each x ∈ R, we have as t → ∞

t−
1
2
√

2πe
x2
2 wγt

(
√

t x,
dw
√

t

)
⇒ θ

√
2πe

x2
2 e−θ

√
2πe

x2
2 wdw.

n particular, the convergence is towards the exponential distribution with rate θ
√

2πe
x2
2 .

roof. Note that the measure on the left hand side in the proposition has been normalised
nd is a probability measure. Thus, it is enough to show pointwise convergence of the moment
enerating functions on a neighbourhood of 0. With Theorem 1.2, we can rewrite the expression
or the moments derived in line (64) as follows.∫

R>0

wn
√

2π t−
1
2 e

x2

2 wγt

(√
t x, dw

√
t

)
=

√
2πe

x2

2 t
n+1

2

∫
R>0

wn+1γt

(√
t x, dw

)
=

√
2πe

x2

2 t
n+1

2 u(n+1)
t ((0,...,0),

√
t(x,...,x))

(n+1)θn

=
√

2π e
x2

2 t
n+1

2
(n+1)θn (2π )n+1

∫
Rn+1

e−
1
2 t |k|

2
−i

√
tk·x

∑
σ∈Sn+1

∏
α<β:

σ (β)<σ (α)

iθ (kσ (α)−kσ (β))+kσ (β)kσ (α)
iθ (kσ (α)−kσ (β))−kσ (β)kσ (α)

dk

=
√

2π n!e
x2

2 t
n+1

2
θn (2π )n+1

∫
Rn+1

e−
1
2 t |k|

2
−i

√
tk·x

∏
α<β

iθ (kβ−kα )
iθ (kβ−kα )−kαkβ

dk

=
√

2π n!e
x2

2
θn (2π )n+1

∫
Rn+1

e−
1
2 |k|

2
−ik·x

∏
α<β

iθ (kβ−kα )

iθ (kβ−kα )−t
−

1
2 kαkβ

dk.

o go from the first to the second line we have used line (64) and to go from the third to the
ourth line we have used the summation formula from Lemma 4.11. We can now write the
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moment generating function in terms of the moments.
√

2π t−
1
2 e

x2
2

∫
R>0

eλwwγt

(
√

t x,
dw
√

t

)

=

∞∑
n=0

√
2π

λne
x2
2

θn(2π )n+1

∫
Rn+1

e−
1
2 |k|

2
−ik·x

∏
α<β

iθ (kβ − kα)

iθ (kβ − kα) − t−
1
2 kαkβ

dk.

o take t → ∞, we want to apply the dominated convergence theorem to pass the limit through
oth the sum and the integral. Similarly to what we have seen previously, line (53) to be precise,
he modulus of the product within the integral is bounded above by 1. With this bound we find
hat the modulus of the nth term of the series is bounded above for all t > 0 by λnex2/2

θn , which
s summable for |λ| < θ , and so we can take the limit t → ∞ through the sum. Further the
ound on the integral allows us to take the limit through the integral. Hence, for |λ| < θ , we
ave

lim
t→∞

∞∑
n=0

√
2π

λne
x2
2

θn(2π )n+1

∫
Rn+1

e−
1
2 |k|

2
−ik·x

∏
α<β

iθ (kβ − kα)

iθ (kβ − kα) − t−
1
2 kαkβ

dk

=

∞∑
n=0

√
2π

λne
x2
2

θn(2π )n+1

∫
Rn+1

e−
1
2 |k|

2
−ik·x dk =

∞∑
n=0

⎛⎝λe−
x2
2

θ
√

2π

⎞⎠n

.

This is exactly the moment generating function of an exponential random variable with
parameter θ

√
2πex2/2, and thus the statement is proved. □

We can reframe the above proposition as a result concerning the convergence of the intensity
easure of the point process. This gives us the following corollary.

orollary 5.5.

t−
1
2 wγt

(
√

t x,
dw
√

t

)
dx ⇒ θe−θ

√
2πe

x2
2 wdxdw.

Proof. This statement follows from the previous proposition by a simple application of the
dominated convergence theorem. □

In a remark, Sun, Swart and Schertzer showed that the stationary distribution of the Howitt–
Warren process with a uniform interaction measure is given by a Poisson point process with
intensity measure dx 1

w
e−wdw [16]. This remark was based on a similar result by Le Jan and

Raimond for sticky flows on the circle [12]. In the same work, the authors show that when the
Howitt–Warren process is started from a distribution with infinite mass, it converges towards
the stationary solution. The above corollary concerns the case when the starting mass is instead
finite.

Remark 5.6. In the preceding corollary, we do not show that the point process itself is
converging, only its intensity. However, given the result of Sun, Swart and Schertzer mentioned
above, it is reasonable to expect that the point process should converge a Poisson point process.
To prove such a result, one could consider the convergence of the kth correlation measures, for
rbitrary k ∈ N (rather than just the k = 1 case considered above). Similar identities to (64)
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exist for the kth correlation measures, and we believe convergence to a Poisson point process
can be shown by generalising the arguments above.

Another aspect of Thiery and Le Doussal’s work on the Beta RWRE, [17], was to derive a
Fredholm determinant formula, which, after some formal manipulations, was used to analyse
the behaviour of the transition probabilities in the large deviation regime. In our case, we can
derive the following Fredholm determinant formula, which is analogous to formula (52) in [17].

Proposition 5.7.

1 +

∞∑
n=1

∫
R>0

(λw)n

n!(n − 1)!
γt (y, dw) = θ det

(
I +

λ

θ2π
K
)

. (65)

Above, the determinant is a Fredholm determinant and K is an integral operator on L2(R)
with kernel

K (x, y) =
xye−

1
4 t(x2

+y2)

iθ (y − x) + xy
. (66)

roof. Eq. (64) and the summation formula in Lemma 4.11 give the equality∫
R>0

wnγt (y, dw) =
(n − 1)!

θn−1(2π )n

∫
Rn

e−
1
2 t |k|

2
−ik·y

∏
α<β

iθ (kβ − kα)
iθ (kβ − kα) − kαkβ

dk.

he proof is completed by the following identity, which is a consequence of the equalities
A.1) and (D.1) in [17]∑

σ∈Sn

∏
α<β

iθ (kσ (β) − kσ (α))
iθ (kσ (β) − kσ (α)) − kσ (α)kσ (β)

= n! det
1≤α,β≤n

[
kβkα

iθ (kβ − kα) + kαkβ

]
. □ (67)

It would be interesting to use the above formula to analyse the behaviour of γt in the
arge deviation regime: y

t converges to a non zero number as t → ∞, where we expect the
appearance of GUE Tracy–Widom fluctuations. Unfortunately, the above Fredholm determinant
is not in an ideal form for asymptotic analysis. We would instead want an analogue of the
conjectured formula (92) in [17]. In [3], Barraquand and Rychnovsky considered the tails of
the Howitt–Warren process, ρt ([t x, ∞]), and derived a Fredholm determinant formula for the

aplace transform via a scaling limit from the Beta random walk in a random environment, with
hich they were able to prove the existence of GUE fluctuations. In a non-rigorous work Thiery

nd Le Doussal [17] show the existence of GUE fluctuations for the transition probabilities of
he Beta RWRE evaluated at a point. This suggests the following conjecture for the fluctuations
f the individual atoms.

onjecture 5.8. If Xx,t is a random variable on R with law
√

2π te−t x2
2 wγt (t x, dw), then

here are functions J : R → R and σ : R → R such that

lim
t→∞

P
(

log(Xx,t ) + J (x)t
t1/3σ (x)

< z
)

= FGU E (z), (68)

here FGU E is the cumulative function for the Tracy–Widom GUE distribution.
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