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Abstract

We consider a multi-dimensional diffusion whose coordinates behave as one-dimensional Brownian
motions, evolving independently when apart, but with a sticky interaction when they coincide. We derive
the Kolmogorov backwards equation and show that for a specific choice of interaction it can be solved
exactly with the Bethe ansatz. The diffusion in R” can be viewed as the n-point motions of a stochastic
flow of kernels. We use our formulae to study the flow of kernels and show that atoms in the flow are
asymptotically exponentially distributed in size at large times.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper we study an R”-valued diffusion whose coordinates evolve as independent one-
dimensional Brownian motions when they are distinct and have an attractive, so called sticky
interaction when they are equal. The diffusion can be interpreted as the evolving positions of n
particles on the real line, which interact when they meet. In particular, the difference between
two coordinates is described by a one-dimensional sticky Brownian motion, which has been
studied as the weak solution to an SDE in [4,6]. Sticky Brownian motion with parameter 6 > 0
is a one-dimensional diffusion in natural scale and with speed measure m(dx) = 2dx+ %80(dx),
see [14] for a review of scale functions and speed measures. The R”-valued diffusion can visit
the diagonal {x € R"| x; = --- = x,} for a set of times with positive Lebesgue measure,
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quite unlike a standard Brownian motion in R”. The interaction between coordinates at such
times is not determined solely by specifying the parameter 6 describing the stickiness between
pairs of particles. It was shown in [9] that the possible interactions can be specified by a finite
measure on [0, 1] called the characteristic, or splitting, measure. The characteristic measure
determines, via its moments, the rate and direction at which the diffusion leaves the diagonal,
with the directions corresponding to the sizes of two clusters which are formed as the cluster of
n particles breaks up. As n varies, these multidimensional diffusions are consistent, in that for
any k < n, any k coordinates of the sticky Brownian motions in R” with characteristic measure
v, are sticky Brownian motions in R* with the same characteristic measure, v. An example of
such diffusions was originally investigated by Le Jan and Raimond [12] using Dirichlet forms
(on the torus rather than Euclidean space), and then the more general case was studied by
Howitt and Warren [9] via a martingale problem which we describe later.

The consistency property means that we can also consider such systems of sticky Brownian
motions to be the n-point motions of a stochastic flow of kernels. A flow of kernels
(Ks.:(x,dy))s< is essentially a random family of transition probability measures for a Markov
process. Le Jan and Raimond introduced flows of kernels in [11] as a generalisation of flows
of maps to study stationary evolutions of turbulent fluids. The n-point motions can then be
thought of as describing the behaviour of n particles thrown into the fluid. Stochastic flows of
kernels whose n-point motions are described by sticky Brownian motions are called Howitt—
Warren flows in [16], where their properties are studied in detail. Gawedzki and Horvai, [7],
discovered that for two particles, sticky behaviour arises in certain limits of the Kraichnan
model for turbulent advection. For the same model, Warren then proved the convergence of n
particles towards sticky Brownian motions with an explicit characteristic measure [19]. Sun,
Swart and Schertzer studied general Howitt—Warren flows in [16], where they constructed the
flows directly as flows of mass in the Brownian web by marking special separation points and
attaching extra random variables to them that tells the mass following a path in the web how to
split. The law of these additional random variables is described by the characteristic measure,
as we alluded to earlier. Amongst other results, they showed that the Howitt—Warren flows are
almost surely purely atomic at deterministic times.

The Howitt—Warren flow can be thought of as the continuum analogue to the random
transition probabilities of the random walk in a random environment (RWRE) with a space—
time i.i.d. environment. Consistent with this, sticky Brownian motions arise as scaling limits
of the n-point motions of random walks in space—time i.i.d. random environments. This was
first proved by Le Jan and Lemaire, [10], when the RWRE takes values on the circle and
the environment is Beta distributed. Howitt and Warren proved the result for RWREs on
Z for general environments, [9], before a simplified proof was given by Sun, Swart and
Schertzer, [16]. A special case of the RWRE, where the environment is Beta distributed, was
shown by Barraquand and Corwin, [2], to be exactly solvable; in particular, they found exact
solutions for the point to half line probabilities. This was shown using the Bethe ansatz and a
non-commutative binomial formula from [13]. These exact solutions were then used to establish
that there are GUE Tracy—Widom fluctuations in the large deviations of the random walk in
a beta random environment. In another work, Baldzs, Rassoul-Agha and Seppelildinen, [1],
showed that when the Beta RWRE is conditioned to escape at an atypical velocity it obeys the
wandering exponent % that is characteristic of models in the KPZ universality class.

In this paper, we will derive the Kolmogorov backwards equation for the sticky Brownian
motions with ordered coordinates from the martingale problem characterisation. In the case
that the characteristic measure is uniform, we apply the Bethe ansatz to find an exact formula
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for the transition density of this process. The choice of uniform characteristic measure seems
to be essential, only in this case is the diffusion exactly solvable by the Bethe ansatz. Further,
this seems to be the only case the diffusion is reversible, at least with respect to a measure
we can write down explicitly; we comment further on this in Remark 3.11. Note that we are
finding the transition density for the process with ordered coordinates. It is clearly possible to
retrieve the transition density of the two particle version of the original process; however, it is
much more difficult for an arbitrary number of particles; indeed, it is not clear that an explicit
formula will exist for the unordered process, and we do not pursue one here. Our method is
similar to that used by Tracy and Widom for the delta Bose gas [18]; however, the importance
of interactions between more than two particles adds significant complexity.

Another approach is to take limits of the exactly solvable model for the RWRE. It is a
straightforward application of the scaling limit result from [16], see Section 5.1, to show
the scaling limit of random walks in a Beta random environment corresponds to the sticky
Brownian motions with a uniform characteristic measure. Barraquand and Rychnovsky [3],
working independently of us, derived exact solutions for the point to half-line probabilities of
sticky Brownian motions with uniform characteristic measure by taking limits of the exact
formulae for the Beta RWRE. An asymptotic analysis then led to the discovery of GUE
Tracy—Widom fluctuations in the large deviations of sticky Brownian motions as well.

Before we introduce our main result, we must define some terms. We use the notations
W' ={x eR"|x; >x, > -+ > x,} and W* .= {x € R"| x; > --- > x,} for the principal
Weyl chamber, the images of this set under a permutation are called simply Weyl chambers;
however, we may sometimes refer to the principal Weyl chamber as just the Weyl chamber.
By CS(W”) we mean the set of functions f : W» — R that have a C? extension to some
open set containing W” such that f and all of its first and second partial derivatives vanish
at infinity. Let II, denote the collection of ordered partitions, (71, ..., ), of {1,...,n} such
thatif a € w;, b € my and j < k then a < b. That is the elements of the partition each consist
of intervals intersected with Z and are indexed according to the size of their elements.

We want to define what will be the invariant measure for the ordered sticky Brownian
motions. Because the coordinates of the process spend a positive amount of time being equal,
due to the sticky interactions, this measure takes the form of a linear combination of the
Lebesgue measure and lower dimensional copies of the Lebesgue measure on subspaces where
some combination of the coordinates are equal. Below we define these measures precisely,
before we define the invariant measure itself.

To each partition 7 € II, we associate a subset of W defined by

W ={x e W| Xo = xg if and only if there is a w; € m such that «, 8 € 7;}.

In other words, the set of all points in W” whose coordinates are equal if and only if their
indices are in the same element of . Notice, for # = {{1}, ..., {n}} we have W. = W";
in addition, W" = U, <7, W?, and the sets W7 are disjoint. It is clear that there is a natural
continuous bijection 1™ : W2 — Wl given by I"(x) = (x,,..., X, for some choice
of p; € m;. We can now define a Borel measure on W’ as the pushforward of the Lebesgue
measure A on Wl AT .= I7 . This extends to a Borel measure on W” via the formula
AT(A) = AT(ANWL).

Definition 1.1. For 6 > 0 the Borel measure mg’) on W is defined as

mi = 3 glrion (1‘[ %) .

nell, T ET
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Suppose 6 > 0 and that, under P,, X = (X(#)),>0 is a solution to the Howitt—Warren
martingale problem (we will define this in Section 2) in R" with characteristic measure
%]lmudx, zero drift and initial condition x € W". We choose to consider only the case of
zero drift for convenience, and the main result can be generalised to non-zero drifts without
difficulty. Define ¥ = (Y (¢));>0 as the process obtained by ordering the coordinates of X,
ie foreachr >0 Y(@) = Y'(t),...,Y"@t) = (X°D(@),..., X°™(¢)) for some permutation
o € S, such that Y!(¢#) > - -+ > Y"(¢), where for each n € N, S, denotes the set of permutations
on {1, ...,n}. Note that Y is a diffusion taking values in W”". We now state our main result:
an explicit formula for the transition density of the process Y in terms of the Bethe ansatz.

Theorem 1.2. For every bounded Lipschitz continuous function f : Wn — R, x € W" and
t>0

EL[f(Y)] = / i, ) f(Im(dy),

where u; : W* x Wt — R is defined for each t > 0 by

1 1,202 . i0 -
. ——th ko -(x—, l_l 10(kg () =Ko (8)) o (B)ko (@)
M[(.x, y) R e 2 k| el o (X—=Yo) i9(ka @ —kﬁ B )—k” i ka i dk,
(ZJT)" R o(a) "Ro(B)) " Ka(B) o (a)

o€eSy a<p:
o(p)<o(@)
where, as before, S, denotes the group of permutations on {1, ...,n}, ke = (keq), - .., ko))

andi=+—1.

Furthermore, we prove that m
ordered sticky Brownian motions, and that the process is reversible with respect to m

g’), (Definition 1.1), is in fact a stationary measure of the
(n)
9 -

Remark 1.3. Note that the function u, is well defined (the integral always converges), because
for every t > 0, x, y, k € R", and every permutation ¢ € S,

eiko (x=yo) 1_[ 0 (kg (0) =Ko (8)) ko (B)ko (o) -1
i0(kg (o) =Ko (8)) =Ko (B)ko (@) ’

a(B)<o(@)
Also note that substituting —k for k in the integral defining u,(x, y) proves that u,(x,y) =
u;(x,y), and thus, u,(x,y) is always real valued. The integrand appearing in the formula
for u;(x, y) is not defined where there are distinct o, 8 such that k, = kg = 0 (where the
denominator vanishes), but such points have measure zero. It is easily seen that we can pass
derivatives under the integral, and thus we have u,(-, y) € Cé(R”) forallt >0and y € R". In
particular, u,(-, y) € Cg(W”) for all # > 0 and y € W”, when restricted to x € W".

Remark 1.4. Another representation for u,(x, y) is in terms of eigenfunctions of the generator
of the ordered sticky Brownian motions. For each k € R” we have an eigenfunction given by

ike - 10kg (@) =Ko (8))Tka(B)ko (@)
Ev(x) = E eifox | | _—< .
k(x) 10(ko (@) =ko (8)) ko (p)ko (@)

o€eS, a<p:
a(B)<o(e)

The eigenfunctions give the following representation for u,(x, y).

u(x, ) = / Y B () Ex(y)dk.
Wn

4
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The proof that the above expression for u,(x, y) agrees with the one previously given is
straightforward; we will provide a short sketch here, but leave the details to the reader. To
begin the proof, we note that the factors that appear in the product defining E;(x) have modulus
one, and therefore, their conjugate is also their inverse. This fact leads to cancellation between
products, when we multiply Ex(x) and Ei(y), which gives the following equalities.

T (v) i(ko-x—k-y 0o (@ ko (B Ko (p)ko(@)
E E _ Z i(ko x—kgy) 1_[ 10t
) Ex(y) ¢ 10(ko (o) =Ko (8)) ko (B)ko (@)

0,6€S, a<p:
51 oa(ﬂ)<571 oo (ar)
2 ¢! Keoox—ks-y) 1_[ ?Q(k&oa(a) —k5 00(8)) k5 00 (8)K5 00 (@) )
10(k o0 (0) —k& 00 (8)) k00 (B)kG 00 (o)

0,6€S, a<p:

a(B)<o(@

If we apply the above formula to our above expression for u,(x, y), then we can recover the
original expression for u,(x, y) from Theorem 1.2 by noticing that ¢ is simply permuting the
coordinates of the integration variable, k. Thus, when we sum over every ¢ € S, the integral
over W” simply becomes an integral over R”, resulting in the expression from Theorem 1.2.
Since we know the expression from Theorem 1.2 is real valued, we also know that the
above expression for u,(x, y) is real. Notice that in the above expression, it is clear that
u(x,y) = u(y, x). But, since u,(x, y) is real, this tells us that u,(x, y) = u,(y, x). We will
provide a full proof of this fact in Lemma 4.10.

The Howitt—Warren flows are almost surely purely atomic; we will show in Proposition 5.4
that the size of an atom, when conditioned to be at a fixed location x, is a random variable
whose moments can be written in terms of the transition densities of the ordered sticky
Brownian motions, the process Y above. Using this identity, we show that the rescaled sizes of
the atoms are asymptotically exponentially distributed, as t — oo, with parameter determined
by 6. This result is similar to that found for the point to point probabilities of the Beta random
walk in a random environment studied by Thiery and Le Doussal [17] where the asymptotic
distribution is a Gamma distribution. In the same paper, the authors found that in the large
deviation regime, these point to point probabilities have Tracy—Widom GUE fluctuations, just
as for the point to half-line probabilities. Thus, it seems reasonable to conjecture the same
fluctuations appear in the size of atoms of the Howitt—Warren flows, but we do not pursue the
necessary asymptotic analysis here.

The outline of the paper is as follows: In Section 2 we define the diffusion via a martingale
problem. In Section 3, we derive the Kolmogorov backwards equation for the ordered n-point
motions, and show that the generator of the process is symmetric with respect to the measure
mé") when restricted to a certain class of C2 functions. In Section 4, we show that the backwards
equation is solvable by the Bethe ansatz, and as a consequence, we show that the ordered n
point motions are reversible with respect to mé"). Finally, in Section 5, we introduce stochastic
flows of kernels and apply the exact formula to study the fluctuations of the sizes of atoms in
the Howitt—Warren flow.

2. A consistent family of sticky Brownian motions

We introduce the Howitt—Warren martingale problem in R” with drift 8 € R and character-
istic measure v (a finite measure on [0, 1]), as formulated in [9]. Solutions are processes in R”
representing the positions of n particles each moving as one dimensional Brownian motions
with drift 5. When two or more particles meet, they undergo sticky interactions determined by
v. The solutions are consistent, in the sense that if X is the solution to martingale problem in R”

5
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with characteristic measure v and drift 8, then for any choice of distinct iy, ..., i € {l,...,n}
with k < n, (X ’J’)’}z | 1s a solution to the martingale problem in R* with characteristic measure
v and drift S.

To each point x € R" we associate a partition of the set {1, ...,n}, w(x), where i, j €
{1,...,n} are in the same component of 7 (x) if and only if x; = x;. Next, for each pair of
disjoint subsets I, J C {1, ..., n}, we define the vectors v; ; € R" as

1, ifiel;
(vr.p)i=143-1, ifielJ;

0, otherwise.
Note that / and J are allowed to be empty. Then, we define the set of vectors V(x) as
Vx)={v,;: 1TUJenkx), INJ =0}

V(x) keeps track of the directions in which the process can infinitesimally move from the
point x € R", and will be used to describe the interactions between particles. Now we define
the parameters (6(k, /)i en,» Which can be thought of as representing the rate, in a certain
excursion theoretic sense, that a cluster of k + [ particles break into two clusters of k and [
particles. For k,[ > 1, set

1
0k, 1) :=/ 71 = ) udx). 00
0

For k,[ > 0, first set 8(1,0) —6(0, 1) = B and 6(0, 0) = 0, imposing the consistency property,
0k, l)=0k+1,1)+6(k,l+ 1) for all k£, > 0, gives definition to 6(k, ) for all k,[ > 0.

Definition 2.1. Let D, be the collection of functions f : R” — R which are continuous
and are such that for all Weyl chambers A C R” the restriction of f to A is linear, so that
if A C R is a Weyl chamber, x,y € A and a,b € R are such that ax 4+ by € A, then

flax +by) = af(x) + bf(y).
For functions f € D,, we define the operator A% by
Afy=Y_ 03I 1TV, fx),
vy, JEV(x)

where V, 1 denotes the one sided derivative in direction v; ;. Since we assumed f to be linear
when restricted to Weyl chambers, the directional derivatives are constant on the interior of each
Weyl chamber. Going further, the linearity condition ensures, together with continuity, ensures
the value of Aﬁ f(x) is constant on any connected set on which 7 (x) is constant.

Definition 2.2. Let (X(¢))>0 = ((Xl(t), ...,X"(t)))t>O C R” be a continuous square-
integrable semi-martingale with initial condition X(0) = x € R", defined on a filtered proba-
bility space ({2, F, (F;)i>0, P). Then (X(#));>0 is a solution to the Howitt—Warren martingale
problem with drift 8 and characteristic measure v if for any i, j € {1, ..., n}:

t
(XZ,XJ)(l)=/0 Lixi()=xi )45

and the following process is a martingale with respect to the filtration generated by X, for
every function F € D,,

F(X(1)) — / AP F(X(s5))ds.
0
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Note that the first condition implies that (X’, X')(#) = ¢, and it follows from the second
condition and the definition of A? that X'(r) — Bt is a martingale for each i. Hence each coor-
dinate must be a Brownian motion with drift 8. The well posedness of this martingale problem
and that the solutions do indeed form a consistent family of Feller processes is shown in [9].

3. The backwards equation

3.1. The generator of ordered sticky Brownian motions

Define the functions F : R" — R by F(x) = x; where x; is the ith largest coordinate
of x, and F : R" — W" by F(x) := (FD(x),..., F™(x)). Note that these functions are in
D,. Further, suppose X = (X(#));>0 is a solution to the Howitt—Warren martingale problem in
R”" with characteristic measure v, drift § = 0 and initial condition x € W". Define the process
Y = (Y(#))s0 by Y(t) = F(X(2)). Note that we defined Y from x started inside the Weyl
chamber, so that Y(0) = x. The process, Y, lies entirely in the Weyl chamber W", which will
allow us to apply the Bethe ansatz in the same way as Tracy and Widom in [18]. This section
aims to identify the Kolmogorov backwards equation for Y and from it the invariant measure
for Y.

Remark 3.1. Before talking about its Kolmogorov backward equation, we need to know Y is
a Markov process. For this, we refer to Dynkin’s criterion [15]. In particular, we only need to
show that E, [f o F(X(1))] = Epu)[f(Y(#))] for every x € R" and every bounded measurable
function f : W" — R. The equality holds by definition for x € W"; for x € R”\ W, we need
to show that for any permutation o € S, o(X(1)) := (X°V(@), ..., X"(”)(t)) remains a solution
to the same Howitt—Warren martingale problem, but with initial condition o (x). It is clear o (X)
remains a continuous square-integrable semi-martingale and has initial condition o (x). Further,
it is immediate that o(X) has the correct quadratic variations. Finally, because the function o
is continuous, linear, and maps Weyl chambers to Weyl chambers, i.e. {Foo : F € D,} = D,,
the martingale problem is still satisfied by o (X). For each x € R”", there exists a permutation
o € S, such that o(x) € W", and by definition, o(x) = F(x). By uniqueness of solutions
to the martingale problem, we have E.[f o F(X(t))] = E[f o F oo~ 0o 0(X(t))] =
Eoml[foFoo~1(X(t))] but clearly Foo~! = F. Hence, E,[ foF(X(1))] = Eo[foF(X(1))] =
Erwlf(Y(2))] as required; thus, ¥ = F(X) is a Markov process.

We proceed by defining a subset of C? functions that is in the domain of the generator of
Y; then, we will show that the action of the generator on this set is given by the Laplacian.
In Proposition 4.2, we will show that the Bethe ansatz given in Theorem 1.2 is in this set of
functions; this will be a major step in showing that it does give us the transition probabilities
of Y.

Definition 3.2. Let Dy denote the set of functions f € C(%(W) such that for any a,b €
{1,...,n} with a < b, x, = x;, implies

1 2 f
5 n<i¥<b: 8)6[8)Cj (X)

i#j

b—a+1

Z ()Z( a+1>9(k,b—a+l—k)sign(k—i+a—l), )

where 51gn(0) is taken to be 1 here.
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In order to show that the action of the generator of ¥ on the set Dy we first need to compute
the quadratic covariation processes for Y. It turns out that the quadratic covariations for Y take
the same form as those of X, which are prescribed by the martingale problem in Definition 2.2.

Lemma 3.3. For each t > 0 the following equality holds almost surely.
1
<Y’, Yj>(t) = / ﬂ{yi(s):)/j(s)}ds.
0

Proof. We will calculate the quadratic covariations for Y by referring to [8, Proposition 8],
which provides a stochastic integral representation for the local martingale part of the semi-
martingale given by applying a convex function to a local martingale. To apply this proposition,
we will first decompose the function F' into a composition of convex and concave functions.
Denoting P, = {A C {1,...,n}| |A] =n — i+ 1}, we can define f4 : R" — R as fa(x) =
maxgeq X, and g : RP — R as g((ya)aep,) = mingep, ya. Then FO(x) = g; ((fa(x)acp,),
where f4 is a convex function and g; is a concave function. Now we can apply [8, Proposition
8] to write the local martingale part of F)(X) in terms of a linear combination of stochastic
integrals with respect to the X'. In particular, we can write

FAX@) = fa@)+ Y / 1,4 (X()dX“(5) + Ci,

acA

where C; has finite variation, and BA {x : minges{k : max;jecq x; = x;} = a}. Notice that
for a fixed x and A there is only one a such that 1 54 (x) is non zero.

Now we put an ordering on the set P;. The spe01ﬁc ordering does not matter; we just need
to be able to minimise over the indices of elements in R”:. Suppose A, B € P; are distinct,
define (a; )" ~i+! and (b; )" i+1 a5 the elements of A and B respectively in increasing order. We
say A < Blfforl —mm{keN: br #ar, 1 <k <n—1i+4 1} we have q; < by; if instead
b; < a;, then B < A. This ordering is a total ordering for P;. Suppose Z is a semi-martingale
taking values in RP with decomposition Z, = Zy+ M, +K,, where M is a local martingale and

K a process with finite variation. Then, using that for y € RY —g;(—y) = —maxaep,(—ya)
we have
—8i(=Z) = —gi(=Zy) + Z/ 13,(Z)dZ2 + D,
AeP;

where D has finite variation and B,y = {z € R : min{B € P, : infcep, zc = 28} = A}
with the minimum understood in terms of the ordering we just defined on P;. That is, B4 is
the subset of z € R”i such that z4 < z for any B € P;, and for any B < A (according to the
ordering defined in the previous paragraph) zp > z4. Notice that for a fixed z there is only one
A such that 1, (z) is non zero. The local martingale part of Yi = 8i((fa(X))aep;) is given by

2.2, / Lg (XD L, (fe(X())cen)d X" (s).

A€P; acA
Therefore, we can find the quadratic covariation processes.
(Y, y/)@
= Z 2/ Lpa(XNLp, (fe(X(Dcep)Lps (X ()L, (fe(X(Dcer) L ixags)=xb(s)ds-

A€P;, a€A,
BEP beB
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Recall fc(x) = MaxX.ec X¢, 50 that 1, ((fc(x))cep;) is non-zero precisely when A is the subset

of {1, ..., n} with indices corresponding to the first i — 1 largest coordinates of X(s) removed,
call thls set A;(X(s)). Then, 1 B .x»(X(s)) is non zero if and only if a is the smallest element
of {1, ..., n} such that X%(s) i 1s equal to the ith largest coordinate of X(s), i.e. Y'(s). Hence,

we have the desired equality

t
(Y’,Y’)(t)=/ Lyi=yigpds. U
0

With the above lemma, we can determine the action of the generator of Y on the set Dy.

Proposition 3.4. Suppose f € Dy then, denoting the generator of the process Y by Gy (in
the sense of [14]), we have

1
Gof = EAf'

As a consequence of this proposition, we can derive the backwards equation for the process.

Proposition 3.5. Suppose g € C2*(R-g x W), and g(t,-) € D, for all t > 0. Further,

suppose that g satisfies the PDE
a 1 _
a_f = 3Ag. forall1 >0, x €W, 3)

with the initial condition g(0,x) = f(x) for some function f € C,(W"). To be precise, we
require that g(t,-) — [ uniformly as t — 0. Then for each t > 0 (g(t — s, Y ()50 IS @
continuous local martingale.

Proof of Proposition 3.4. Since X solves the martingale problem (Definition 2.2), and
F% € D,, Y is a semi-martingale. For f € C3(W"), It6’s formula gives

E.[f(Y()l =

1 < rog2 o
f(x>+ZJE [ / T Y ear’ (s)} 5 2 E [ /0 axa’; A(Y(s))d<Y',Yf>(s>]
i0A)

ij=1

From Lemma 3.3, we know that
d(Yi, Yj)(s) = ]l{Yi(s)ij(S)}ds'
Another consequence of the martingale problem is that for each i,

Yit) — / APFO(X(s))ds

is a martingale. Recall f € CZ(W”) thus "7 is bounded on W” so that the stochastic
integral with respect to the martingale part of Y is a true martingale. Thus, we can rewrite
the expectation as

E.Lf(Y(t)] = f(x)+ZE [ / oy G ))AQF(”(X(s))ds}

9 f
T2 Z |:/(; 0x;0 X (Y(S))]I{Y"(x)ij(S)}dS]. @)

1]1

9
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By evaluating A? F), and then differentiating Eq. (4) in time, we can determine the generator
of Y.
Let x € R"” and denote y = F(x) € W, We have

AP FD(x) = Z O(v)V, FO(x), 5)
veV(x)

where V,, is the directional derivative in direction v. Recall v € V(x) is defined by the disjoint
subsets I, J C {l,...,n} such that U J € w(x), withv; = 1ifi € I, —1if i € J, and
0 otherwise. For each element, B, of the partition 7 (x) there is a corresponding element, C,
of the partition 7(y) such that for each i € B there is a j; € C with x; = y;,, and the j;
can be chosen so that the mapping i + i; is injective. Letting C denote the element of 7 (y)
corresponding to I U J € m(x), it is clear that if i ¢ C then V,F?(x) =0, and for i € C the
derivative is either 1 or —1 depending only on the sizes of I and J. Since y € W” there is an
aef{l,...,n}and m > 0 such that C = {a, ...,a + m — 1}. Hence, line (5) is equal to

3 ('Z)e(k, m—k)signtk —i +a— 1),

k=0

where sign(0) is taken to be 1 here. In particular, this means that when y; is distinct from all
other coordinates, the above equals 8(1,0) — 6(0,1) =8 =0.

n

S (38 POy
izl dyi
IC]
=y Z ( )Z( )G(k, |C| — k)sign(k — i +infC — 1), (6)
Cen(y) ieC

where each of the partial derivatives are evaluated at y. Putting (6) into (4) we can compute
the limit.

1
lim — ([ [f(Y ()] — f(0)

—lim / E[Af(Y(s)]ds

IC]

</ [Z Z ( )Z(|C|>9(k IC| — k)s1gn(k—l+1nfC—l)j|

Cen(y) ieC
{(5)=Y I (s)) ]ds)

+Z[

In particular, if we have f € Dy, then the term in the bracket cancels to O leaving only first
term after the equality, whose limit we now calculate. Recall that F : R" — W” is continuous
and Y(r) = F(X(¢)); since Af € Co(W"), we also have Af o F € Co(R") (since F(x) — oo
as |x| — oo). Thus, the Feller property of X implies that % /01 E.[Af(Y(s))]ds converges
uniformly to lAf(y) as t — 0. Hence, for f € Dy,

hm (]E [fY@)] — f(x)) = —Af(y) with respect to the uniform norm.

Therefore, we have proved that if f € Dy, then it is in the domain of the generator of ¥ and
Gof =3Af. O
10
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We now apply Proposition 3.4 to prove Proposition 3.5.

Proof of Proposition 3.5. Applying Proposition 3.4, we see that for any function g satisfying
the assumptions of the proposition, there is an adapted process (M (u)),c(o, that is a continuous
local martingale on [0, s] for each s < ¢ such that

gt —s,Y(s)) = —/ z—f(t —u, Y(u)du + / Ag(t —u, Y(u))du + M(s),
0 0
= M(s).

Now we just need to show that M(s) is a local martingale on [0, ¢]. Since g(¢, -) — f uniformly
as t — 0, we have

[M(s)| = gt — s, Y(s)I = 18t —5,) = flloo +11f lloo-
—0 as s—1

Thus, there is an & > 0 such that M(s) is bounded on [t — &, t]. Therefore, M(s) — M(t — ¢)
is a martingale on [t — ¢, t], and it follows that M(s) is a local martingale on [0, ¢]. Clearly,
M(0) = g(t,x) and M(t) = f(Y(¢)) since
[M(s) — f(Y(@0) = |gt —s,Y(s) — f(Y (D))
<1lgt —s,)— flloo + | f (¥ () — fXY (DI

The first term vanishes as s — ¢ due to the uniform convergence of g to f, and the second
almost surely due to the continuity of f and Y. O

Hence, we can find the transition probabilities of Y by looking for the Green’s function for
(3), providing solutions are sufficiently regular to make g(+ — s, Y(s)) a true martingale. In
general, it is not clear that (3) should have solutions in Dy; it is not even clear whether Dy is
non-trivial. In the rest of the paper, we focus on the case of a uniform characteristic measure:
v = %0 Ljo.1;dx. Since we know v, we can calculate the constants 6(k,[). By definition we
have

0 1
Ok, 1) = 5/ 1 = x)dx,
0
_ U= Dtk = 1)!
T2 (k=1

In this case, we also have 9(k, 0) = 6(0, k) for all £ € N. Hence, for the characteristic measure
v = %Ol[o,l]dx, (2) can be rewritten as

)

1 92 0
5 2,:,, 8xiZ)]:cj 0 =-3 Z 8—£(x)c(a, b,i), whenever x, = xp, ®)
TiEj B
where the coefficients are defined
b—a
L b—a+1 . .
c(a,b,z):zmmgn(k—z+a—1). ©)]

k=1
In the following section, this particular form of the constants 6(k, /) will allow us to replace the
conditions in line (8) with a simplified set of conditions, where each condition will only involve
a single second derivative, rather than a sum. This replacement will simplify the combinatorics
we need to do to show that the Bethe ansatz, given in Theorem 1.2, satisfies the conditions.

11
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Remark 3.6. If we try to derive the Kolmogorov backwards equation for the original process
X, we run into problems: the action of the generator of X within the set of Cg functions does
not determine the process. We can see this by considering a pair of sticky Brownian motions
with parameter # > 0 X', X2. We have by Itd’s formula for all f Cé(Rz)

1 2 1 ' 1 2
EL[f(X (1), X“(0)] =f(x1, x2) + 5/0 E.[Af(X (), X(s)]ds

2

t a f
EL [ x1omx2en ——— (X' (s), X*(s))]ds,
+/(; x[Lx1)=x2(s)) 8x13x2( (s) (s)lds

.. . . 2

so that f is in the domain of the generator if %(xl, x») = 0 whenever x; = x,. But, there
is no dependence on the parameter 6 in either the condition for f to be in the domain, or
in the action of the generator on this subset of C(% functions that are in the domain; thus, the

generator restricted to this set cannot determine the law of the sticky Brownian motions.

3.2. Rearranging the boundary conditions

Henceforth, we consider the case where the characteristic measure is uniform, i.e. v(dx) =
%H[O,l]dx. Let us first note that if we set |C| =2 in (8), we see f € Dy satisfies

2
3 f :9< af  of

0X,0X441 0xXqr1  0xq

) ,  whenever x, = x,4.

In the next lemma, will show that we can replace the full boundary conditions with equivalent
ones of the above form.

Lemma 3.7.
D(;:{fecg(Wﬂfor l<a<b<n,
0 af af \ _ % f
b—a\ox, 9x,) 0x,0x ]|
Remark 3.8. Essentially we are solving for the second derivatives of functions in Dy, given
their first derivatives. Whilst this should be possible for any characteristic measure, our method

relies on the special form of the parameters 6(k, /) in the case of the uniform characteristic
measure.

if xo = x;, then

Proof. Note that because we are in the Weyl chamber, x, = x; implies x, = x4+ = - - - = Xp.
Thus, if x, = x; then we also have x, = --- = x;. Using an inductive argument, we prove
that the original conditions, (8), are equivalent to the new conditions. To begin, we prove that
the new condition for x, = x; is implied by the old conditions, when we also assume the new
conditions for x. = x; are satisfied for alla < ¢ <d < b such thatd —c < b — a.

Hence, we assume that the boundary conditions (8) for x, = x; are satisfied for all
a<c<d<bandthatforalla <c<d <bwithd—-c<b—a
2 f 0 of of
= — (x) — , ifx. = =xy,. 10
0x.0xy ) d—c (E)xd (x) 0x, (x)) e d (10)

12
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Without loss of generality, we can relabel (x,, ..., xp) as (x, ..., x,) form =b—a-+1. Then
for u € Dy, we can rewrite the sum over mixed derivatives.

1 2f 1 = 3 f
5§3xi8xj ) Z dx;0x; +;8xk8xm +8x18xm‘
J l]#m -
Using Egs. (8) and (10), when x; = - - - = x,, we have the equality
azf m—1 9 8f 8f
9x19m Zay,( )Zk( oy Stk =) gj,:j—i (axj 8x,~>
0 af of
_ = - —). 11
+m—1<8xm 8x1> an
We have the following equalities

m j—1 m—1 j—1
y ! (ﬁ_ﬁ) D) DI o S LI
i<j J =i\ 0xi j=2 i=l1 J—i0x; Jj=2 i=l J=idx

m j—1 m—1 m

0 of 0 of
= — 4 .
]2:;1:1 J—1i0x; ]Z:l:l,;lj—zaxj
“ 9 1
=0 —
Zax, — j —1i
j=1 i#j

Therefore, the proof is finished if for each j € {1, ..., n},

m—1
% 2z k(mm— 0 sign(k — j) + ; ;= 0.
Noting that we have ﬁ = % + mL_k, we get
1’” 1 s1gn(k ) =l T "
2= k(m — k) 2 Py k(m — k)
Iy (l N ;)
2 = k m—k
:mﬂ % (12)
k=j
In addition,
[ LR
§j—i T ‘l;,_j
Ly omeiyg m=j
_k=1 kook - k=j k

13
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with the convention that when a < b the sum changes sign > ;_, ¢y = — Zzza ci. Putting this
into line (11), we see
3 f 0 < af aof )

0x10x,, - m—1\9dx, 0J0x;

As noted previously, for m = 2 both conditions are equivalent; thus, by induction the old
conditions imply the new conditions. Finally it is easy to see that, assuming the new conditions
hold on x, = x; for all ¢ < ¢ < d < b and the old conditions hold on x, = x; for all
a <c¢ <d < b such that d — ¢ < b —a, we can follow the above argument in reverse to prove
the new conditions imply the old ones. Hence, the equivalence of the two sets of conditions is
proved. [

As a consequence we can reframe Proposition 3.5 in terms of the new conditions.

Proposition 3.9. Suppose that g € Cg(R>0 x W) satisfying the PDE
3 1 Ty
{a—f = 5A4g, for x € W,

Pu 0 (B _ 08 —
gy = bea ( , ifb>a and x, = xp,

axp dxg

with initial condition g(t,-) — f uniformly as t — 0, where f € Cy(W"). Then, we have

g(t, x) = E, [f(Y ()]

This rearrangement will simplify the combinatorics required to show that we can solve the
PDE with the Bethe ansatz.

3.3. Invariant measure

In this section, we prove an integration by parts formula for the generator of the ordered
n-point motion of the Howitt—Warren flow with uniform characteristic measure. First, we
introduce some useful notation.

Recall that for 7 € II,, W consists of all x € W such that if i and j are in the same
element of 7, then x; = x;, and otherwise, x; # x;. Thus, by replacing the multiple indices
in each block of 7w with a single index, as the corresponding x; are all equal, we can map
W into Wil providing a natural bijection between W and W” which we will denote
1™ : W2 — Wil To be precise, let 7; = min{a € 7;} and set I™(x); = x,,. For a function
u: Wr — R, denote by u, : WTl — R the function defined by u,(x) :=uo (I™)~"(x) for all
x € W, For u, v e C'(W") such that the below integrals converge, we define

)y = 3 g (]‘[ wl_|) | v o (13)

well, T ET

Now we can state the integration by parts formula for the measure mé") from Definition 1.1.

Proposition 3.10. Suppose u € Dy and v € C} (W"), such that there exists a, ¢ > 0 such that
[Vu(x)| < ae ™. We have

7Au(x)v(x)m(9")(dx) =—(u,v),, (14)
WI‘!
whenever the above integrals are finite.

14
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Proof. Since u € Dy we can relate Au, and (Au), . Clearly, we have

Aun=3. ), <8x axk)

TER jkem
Hence,
— (Au), =
@0 =Y Y ()
mET j.kem
J#k
The second sum on the right-hand side of the above expression is empty whenever |r,| = 1, so

we can exclude those terms from the first sum. Using Egs. (8), (9) and the notations 7, := inf ,,
7, = supmw, = |m|+ 7w, — 1, the previous expression is equal to

=3 Z( > c(m, T, J).

mET: jem,
| |>1

Definition 1.1 allows us to rewrite the left hand side of Eq. (14) as

Zem( N |> / Au(x)(n" (dx). (1>

well,

By the definition of 1™, given above Definition 1.1, we can rewrite the integral in the summand
above in terms of a Lebesgue integral over a lower dimensional space; the result is the
equality:

T|—n 1
3 o (1‘[ H) fww(Au)n(x)vn(x)dx

rell, men
=Y gl (1‘[ |;|>/| (Aun(x)+0 > Z( ) C(ﬂsﬂj))vn(X)dX-
well, men Tt wir ”16” jem

7.
(16)

Since the Weyl chamber has a piecewise smooth boundary, we can apply Green’s identity to
the first term in each integral. Applying the identity on Wl N {x € W” : |x| < R} and then
taking R — oo, the exponential bound on |Vu| together with the boundedness of v ensures
the only boundary term to survive in the limit will be the integral over aWI7!,

The smooth part of the boundary of the Weyl chamber W*! can be written in terms of the
disjoint union of W‘;' over the set M, = {7 € Il : |7| = |n| — 1}. Note that if [7| =1
this union is empty, and the boundary integral vanishes. Each 7 in M, consists of |7| — 2
singletons and one set {/, [+ 1} for some [ € {1, ..., |x|}. Further, the outward unit normal on
W‘;‘ is given by

~5 ifr=10
n(x), = Lz, ifr=101+4+1;
0, otherwise.

15
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Finally, the boundary measure is given by ) - _ M, V207 so that the integral in (16) equals

o, ol -
Z — Ve dAT — Vi, (x) - Vu, (x)dx
wirt Ny 9y Wil

TEMy

e Z Z/ &l < ) ez, Ft’]')Un()C)d)c),

TET: jem,
| |>1

where / depends on 7 and is defined as above. We have written the partial derivatives of u,
with respect to y € Wil to emphasise the fact that u, is a function on W*! rather than W~.
Hence, to complete the proof it is enough to show that the first and third terms cancel when
we put this expression back into (16). Rewriting the integrals with respect to the Lebesgue
measure, the first term is equal to

ol ol
> - (vr)zdx,
Fern, JW Wi v/

which is equal to

ou ou
Z /W\ﬂl axj a Z E (x) (vr)z(x)dx.

/en/ i - jem iy .

Summing this over w € I, with the appropriate coefficients, we see that (15) is equal to

(L) ((3)) cmrmi

welly eMxy Jjem1Umy

Notice that for each w € II, and 7 € M, we can rewrite the summand in terms of a new
partition, 77, formed from 7 by merging two adjacent blocks to form the 7,4, U 7; block.
Further, because the partitions are in II,, there are exactly |m;41 U ;| — 1 partitions that yield
7 by merging two blocks to form 7,4, U 7r;. Rewriting the sum in terms of 7 we get

%] —1

. du
|7 |+1—n § : 17 ; i N
E 0 ‘m / » i k) (3 j)ﬁ (x)sign(j—m,—k) vz (x)dx.

nell, T ET ALER: W
|7 |>1

Here, the sum over j is over the partitions whose blocks have been merged to get 77, with k
corresponding to the size of the lower block. The extra factor k(‘jl%’fil 5 is simply a correction
to the product to write it in terms of 7 rather than the s partition whose blocks we merged.

Recalling that sign(0) = 1 here, Eq. (9) yields that the above is precisely equal to

— Y gl (l‘[ = ) > Z/ ﬂ( ) (X)e(7t,, 70, J)va (x)dx.

nell, T ET men

Hence, (16) is equal to

Y o ] — Iml Vitg (x) - Vg (x)dx

T
rwell, T ET wirl

—(u,v). O

Thus, if we denote by Lz(mg’)) the L? space on W" with respect to the measure mfg") and the
standard L? inner product, then the generator is symmetric on Dy N Lz(mgl)). This symmetry

16
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suggests the process is reversible with respect to this measure, but because our calculations are
only done for u € Dy, and we do not know how rich the set Dy is, this is not enough for a
proof.

Remark 3.11. We can also ask whether the same calculations can be done for choices of the
characteristic measure other than uniform. A different choice of characteristic measure leads
to a different invariant measure, and it turns out that if we suppose that this invariant measure
takes the form ) c; A" (with the coefficients ¢, determined by the characteristic measure),
as we would expect, then the only characteristic measure for which the above integration by
parts argument works is the uniform measure. This suggests that the process is only reversible
for a uniform characteristic measure.

If we take v = 1, the right-hand side of (14) vanishes, giving us the following helpful
corollary.

Corollary 3.12. For u € Dy such that there are a, ¢ > 0 with |Vu(x)| < ae~"! we have

% / Au(x)mP(dx) = 0.

4. Bethe ansatz for sticky Brownian motions

In this section, we will introduce the Bethe ansatz and show that it solves the backwards
equation with a delta initial condition, and thus, is the transition density for the process (with
respect to the measure mé")). Using this we can prove that mé") is the stationary measure, and
that Y is reversible with respect to mf,"). We are trying to find a solution to the PDE from
Proposition 3.9, which we recall now. For each fixed y € W", 6 some positive constant and
with the initial condition ug(x, y) = §(x — y), where § is the Dirac delta distribution, we wish
to solve

{ad‘% = 1 Au,, for all x € W,

. . 2
0 (;TL; — ;%) =0b-a)-2L%“, when x, = xp, for some a < b.
a

a7
Xq 0xp °

The Bethe ansatz suggests that we can construct a solution for general » € N by first
considering the n = 2 problem. The main idea is to try to combine solutions with permuted
coordinates in such a way that the boundary conditions are satisfied.

u(x,y) = / i e 2 (AR 4 Byt 2 ) gk, (18)
R

2y
Notice that when x; = x,, the exponential terms become equal. Thus, the boundary conditions
will be satisfied if we have

(0(ky — k1) + kikz) A(k) + (i0(ki — k2) + kikz) B(k) = 0.

It turns out that setting A(k) = 1 and B(k) = % ensures the correct initial condition

is satisfied. The Bethe ansatz then suggests that if we define
i0 (kg — ka) + kakp

Ry (k) = ,
20 = e — k) = keks

(19)

17
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then the solution for general n is given by the following function.

1 1,2 .
u(x,y) = e 2!l giko ¥ =yo) Ro ) oa(k)dk, 20
@) = G /R ) ij 1’! (8).0(k) (20)
o(B)<o(@)
where S, denotes the group of permutations on {1, ..., n} and ks = (ko(1)s - - -, ko).

This construction ensures that boundary conditions where b —a = 1 are satisfied; however,
the additional conditions in (17), corresponding to b — a > 1, have played no role. Therefore,
we will need to do additional work to verify that the extra conditions, where b — a > 1, are
indeed satisfied by (20).

Barraquand and Rychnovsky conjectured in [3] that the backwards equation for the system
of sticky Brownian motions was the heat equation with the boundary conditions corresponding
to b —a = 1 in (17), based on the Bethe ansatz answer for the system. It is important to
note that for any other choice of characteristic measure v with v([0, 1]) = %, the boundary
conditions corresponding to b —a = 1 would be the same, so we do not expect these boundary
conditions alone to give uniqueness of the PDE. However, we should note that it is possible
that, under the additional regularity assumption that the solution is C? in space, the b —a = 1
boundary conditions do determine the solution, and the transition densities for all of the other
systems of sticky Brownian motions are not C? in space. We do not know if this is the case
or not.

It is clear that (20) satisfies the first condition in (17) and our choice of (19) guarantees the
second condition holds when b — a = 1. However, when b — a > 1, it is not clear that it is
still satisfied. Fortunately, and surprisingly, the second condition turns out to be satisfied in its
entirety. Moreover, we can show the initial condition holds; hence, we obtain our main result,
Theorem 1.2.

In the rest of the section, we shall prove Theorem 1.2. First, we show the boundary
conditions are satisfied, and then the initial condition. To ensure we can perform the necessary
exchanges of integral and derivative, we start by collecting some bounds on the Bethe ansatz.

4.1. Bounds for dominated convergence

Lemma 4.1. For every x € W and t > 0 we have u;(x,-) € Ll(m(g")), where u;(x, -)
is defined as in (20). Further, for each x € W" and t > 0, there exist a,c > 0 such that
[Vyu(x, y)| < ae~V! for all y € Wn. The same statement holds if we instead consider the x
derivative and vary x with y being fixed. Similarly, for each x € W" and s > 0 we can find
a,c > 0 such that \u,(x, y)|, [9u:(x,y)| < ae“"yV‘ﬁfor allt > s and y € W",

We leave the proof of this lemma to the end of Section 4.3, as it is a simplification of the
methods used in that section.

The second part of the above lemma provides the necessary bounds to justify passing
derivatives through the integral in f u,(x, ) f (y)mg')(dy). Further, it is easy to see we can
apply dominated convergence to find

9 1 e,
s / e ket ) T Rogprowtb,

ox, Qm)y = t
o(B)<o(@)
O uy = ! —51lk[? koo k ike (X —Yo) Odk
xgdx,  Quy Jy ¢ Z a@Ko ()€ l_[ Ro )0 (k)dk,
¢ ! OES, a<p:

a(B)<o(a)
18
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du 1 1 _ LR oo (v
B_Itz_(ZJT)n/ SlPe2 ) et [T Rogpow R)dk.

2
R? oes, a<p:
o(B)<o(a)

This allows us to not only confirm that f u(x, ) f (y)mgl)(dy) solves the heat equation, but

also to reduce the boundary conditions to a combinatorial problem.
4.2. Boundary conditions

Proposition 4.2.
/ u,(x, y) f(y)mg"(dy) € Dy,

Due to Lemma 4.1, we know that f u, (-, y)f(y)mg‘)(dy) is in Cg(W). Hence, we just need
to show it satisfies the correct boundary conditions for the PDE (17). The proof will follow
from several lemmas. To begin, we derive the combinatorial identity that implies the above
proposition.

Fix a,b € {1,...,n} with a < b, then for > 0 we can differentiate under the integral, as
noted in the previous subsection, to see that the corresponding boundary condition is satisfied
if for all a < b, x, = x; implies

3 D (ko) — kota) + 0 — Dkowka@) || Re@ow®) =0. 1)
oeS, a<p:
a(B)<o(@)
This can be simplified by splitting the summand into parts dependent on o(a), ..., o(b) and
on the remaining values o takes. Noting that we have x, = --- = x

b b
l_[ eika(c)(xc_)’a((-)) — 1_[ eika(e)(xa_ya(c)) — 1_[ eik{-(xa_)’ﬁ).
c=a

c=a cefo(a),...,a(b)}

Notice that the last expression above depends only on the set {o(a),...,0(b)} =c({a, ..., b}),
and not the order of the values o takes on {a,..., b} . Thus, the exponential factor of the
summand in (21) only depends on o({a, ..., b}) and not o(a), ..., o(b) themselves. Now we

split the product
l_[ Rop), 0 (k) = l_[ Ro8),0) (k) 1_[ Ro )0 (k)

a<p: a<a<p=<b: a<a<b<p:
s(p)<o(@) o(B)<o(@) (B <o@)
[ Repow® [] Re@ow®.
a,Bela,...,b)C: a<a<B<b:
a<p, o (B)<o(a)
o(B)<o(a)

Note that R,;(g),+() does not depend on « and g directly, but on o () and o (8). Suppose, for
a given permutation o, R, g).+() appears in the first product, then for any permutation 7 with
o(c) = 1(c) for every c € {a, ..., b}, we have o(B) € {o(a),...,od)} = {t(a),..., (D)}

Thus, there exists y € {a, ..., b} such that t(y) = o(8), and so we have 7(a) = o(a) >
o(B) =1(y) and @ < a < y. Hence, Ry(;) 7(«) = Rs(8),0(a) appears in the product for 7. This
shows the first product does not depend on {o(a), ..., o(b)}, and similarly the second does not

either. The third product clearly does not depend on {o(a), ..., o(b)}, leaving only the fourth
product. Finally, we note that the fourth product does not depend on the values o takes outside
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{a, ..., b}. Hence, we can split the sum into a sum over possibilities for the permutation outside
{a, ..., b} and a sum over possibilities inside {a, ..., b}. Pulling the parts depending only on
the values of o outside {a, ..., b} out of the second sum we see that it is sufficient for the

second sum to vanish; thus, our condition will hold if

Z (10 (ko) — ko(r)) + (m — Dkgmke)) l_[ Ro),0()(k) =0,

gESH I<a<f=m:

o(B)<o(a)

where we have relabelled so that we sum over permutations in S,,, rather than over bijections
between {a, ..., b} and {o(a), ..., a(b)}. Hence, it is enough to prove the following

Proposition 4.3. For every n € N we have the identity

Z (19 (ka(n) - k(f(l)) + - l)ka(n)ka(l)) 1_[ Ra(ﬂ),a(a) =0. (22)
oeSy a<p:
a(B)<o(@)

We will prove this statement in several steps, first we will simplify Equality (22), by showing
that it is equivalent to a polynomial equation. Then, we will show the resultant polynomial is
alternating and is the product of the Vandermonde determinant and a symmetric polynomial.
To finish, we will prove the symmetric polynomial to be 0, proving the proposition.

As discussed above, we begin simplifying the left hand side by pulling out the common
denominator. Recalling (19)

[T (ke —kop) —kowkow) [] Rowrow
B

a(B)<o(a) a<p:
o(B)<o(a)
- 10(ko(@) — ko)) + ko)ko(p)
— l_[ (19(k0(a) — k(,(lg)) — k(,(ﬁ)ka(a)) 1_[ ie(ka o - ko B = ka o ka B
a(B)<o(a) a<p: o(a) a(B) o()o(B)
o(B)<o(a)
= 1—[ (10 (ko) = ko($)) = ko@kop)) 1_[ (10 ko(@) = kop) + ko@kaep)) -
B<a: a<p:
o(B)<o(a) o(B)<o(a)

Thus, multiplying both sides of (22) by [, 5)s () (10 (ko (@) — ko)) — ko(pykow) (since per-
mutations are bijections, this does not depend on o) gives the equivalent equation

> (10 (ko) — ko)) + (1 = Dkomko))

o€eS,

[1 (ko ko) —kowkow) [] ([0Ckow) = ko) + kotwkop) = 0-

B<a: a<p:

a(B)<o(@) o(B)<o(@)
We can get rid of the i6 factors by replacing each k; with ifk;, since 6 > 0 this change of
variables is invertible. This results in a factor of (i9)2((2)+1) appearing before the sum, which

we can cancel off. We are left with the following equivalent equation, which we will prove for
keC".

D (ko = ko)) + (2 = Dkoinko))

o€eS,

[T (o = ko) =kowkow) [] (Kow = ko) + kotwkop) =0
rr(g)j:(ﬁ) o(f) <o @)
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Now, we split the equation into two parts and simplify before showing they cancel. Making
the following rearrangements, and defining the polynomial B

[T (o —ko) =kowkon) [] (Chotwr = kop) + kotwkon) - (23)
o (; )<<(:(01) o (lg)ii:(ﬂl )
= H sign(o(B) — o(@)) (ko(g) — ko) — ko@ko))
a<p
= sign(0) [ | (kotp) = kote) — kotaho(s) =: sign(@)B(k,).
a<p

We proceed by considering the expressions

Y sign(0)(n — DkokoBky); (24)
o€eSy,
> sign(0) (ko) — ko(r)) Blko). (25)
o€Sy

It is clear that both (24) and (25) are polynomials in the k;; we will now make some more
general statements about polynomials of the form above; that is, given by an alternating sum
of f(ks)B(ky), for a polynomial function f.

It is clear that if f : R” — R is a polynomial, then

Y sign(0) f (ko) B(ks) (26)
o€eS,

is an alternating polynomial. To see this suppose a < b and we exchange k, and k;, in the
above expression. Then k, becomes k(, pyor giving

> sign(0) f (kia.pyoo) Bkia,pyos) = — Y _ sign((@. b) 0 &) f (k(a.5y00) B kia.byo0)

0eS, oeS,
==Y sign() f(ky)Blky ).
oeS,

In particular, whenever we have k, = kg, for « # B, any such polynomial must vanish.
Hence we must be able to take the Vandermonde determinant, [, _ ﬁ(kﬁ — ky), out as a factor;
since this is itself alternating, whatever remains must be symmetric. Thus for any polynomial
f :R*" — R, there exists a symmetric polynomial g : R” — R such that

3 sign(0) f (ko) Bky) = g(0) [ [ ks — k). 27)
oceS, a<p

In the case of (24) and (25), the polynomial f is also multilinear (no variable appears with
exponent higher than one), and depends only on two variables. In the following lemma, we
will use these additional assumptions on f to show that the polynomial operators H; ;, which
map polynomials on R” to polynomials on R"~2, defined by

Hijfk)= flki,....kict, =L kivr, ... kjo1, Lk, oo k)
reduce the degree of B by 2 when i, j € {2,...,n —1}.
Lemma 4.4. Suppose i, j € {2,...,n— 1} withi # j then H; ;B has degree at most n — 2
in ky orink,.
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Proof. Recalling the formula for B(k), (23), we have
HjBU) = [] (ks — ka —kakp) [ (sign(j — )1 = ka) — ko)

=
< [ (signG — (=1 — ko) + ko) (2sign(j —i)+1).
ai,j

The first product contains (n — 3) factors with k| and k, each. The second and third contribute
a factor of the form:

(1 =2k)(=1)
for ki, and a factor of the form

(=D@k, + 1) (28)
for k,,. Leaving a total of n—2 factors involving k| and k,, each, which proves the statement. [J

Now we can apply the above lemma to the expressions we are interested in.

Lemma 4.5. If f : R> — R is a multilinear polynomial, then there exists constants Cy, C|
and C, such that

> sign(©) f (kot), ko) Blko) = [ kg — ka)

oeS, a<f
Ln/2]

X C0+Z Ci Z ke, -kay, + C2 Z Koty -+ Kay
m=1

Qp<--<doy, o <-<epi

Proof. The discussion preceding Lemma 4.4 shows that we at least have Eq. (27), and that
g must be symmetric. To get the form given in the statement, we will show that g is also
multilinear. This tells us we can write it as a linear combination of elementary symmetric
polynomials; thus, in the last step, we only need to show that the coefficients in this combination
are of the form given above. Both of these arguments proceed by considering the exponents of
the variables k;.

To show multilinearity, we note that for each kj, Ha<ﬂ(kﬁ — ko) contains n — 1 linear
factors of k;. Furthermore, each B(k,) also contains exactly n — 1 linear factors of k;. But f
is multilinear, so in the summand sign(o) f (ko (1), ko(n)) B(ks) the largest possible power of k;
is n. Hence, the largest possible power of k; in g(k) is 1. This holds for each j; thus, g(k) is
multilinear. Since g(k) is multilinear and symmetric it must be of the form

n
g(k) = Co + Z Con Z Kety -y -
m=1 o] <--<Qm
Now we show that the constants C,, satisfy C; = Cy,41 and Cy = Cy,, for all m < n/2.
We will use the operator H,_; ,, as defined prior to Lemma 4.4, on the symmetric polynomial
g. Since g is a symmetric polynomial, if one of its terms contains k,_; but not k,, there is a
term otherwise equal where k,_; is replaced with k,, and vice versa. Thus, in H,_; ,g these
terms will cancel leaving only the terms that contain both or neither; but, we can also see that
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ky—1k, will be evaluated as —1 when we apply H,_ ,, so that we have the following.

n—2
Hy108K)=Co+ Y (Cn—Cui2) Y kayoka,

m=1 o) <--<apm<n—1
The next step is to consider the exponents on the left hand side of the expression appearing
in Eq. (27) when we apply H,_, , to it. We will use throughout that the operators H; ; are ring
homomorphisms. We aim to show that H,_; ,g must be constant, which we will achieve by
comparing degrees. First B(k,) contains (n — 1) linear factors of each k;, so the only way a
k; with exponent n can appear is if it also occurs in f(ky(1y, ko (n))k,=1,k,_,=—1; hence, only if
Jj =o(n) or o(1). But the previous lemma tells us that H,_; , B(k,) has degree at most n — 2
in kg(1y or in ky(y). Thus, the highest possible power of any of the k; that can appear when we
apply H,_; , to the left hand side of (27) is n — 1. However, when we apply H,_;, to the
right hand side of (27), the product alone contains n — 1 linear factors of each k;, so H,_; ,g
must be constant. Hence, C,, = C,42 for every m > 0, proving the result. [

Remark 4.6. Using the general formula for the sum of elementary symmetric polynomials
on n variables, ]_[;le(l + x;), together with the above lemma, gives us that for a multilinear
polynomial f : R> — R, there are constants C,, and D,, such that

Z sign(o) f (ko (1), kony) B(ks)

oeS,

= l_[(kﬁ - ka)(CO + %C1 1_[(1 +kj)+ 1_[(1 —kj)—2

a<f j=1 j=1

1 n n
+5C Jlj[l<1+kj>—11j[l<1—kj> )

=[]tks —ka) [ Do+ Dy [JA+ k) + D2 [ J(A = k)

a<f j=1 j=1
=det (K1) (Do + Dy det ((1 + k;)81;) + D det ((1 = k)

Now we can return to our original expressions (24) and (25). These two lemmas imply that
we have constants C(()"), C(()”), C,,C i"), Cé”) and Cé”) such that

> sign(@)kow) — ko) Bks) = [ [ ks — ka) (29)

o€eS, a<p
[n/2]

"+ O D kapekay, £ G Y kekag | ]
m=1 o < <02y A < <Q2m+1

and

> sign(@)(n — Dkowkoy Blko) = [ [ (ks — ko) (30)

oeS, a<p
[n/2]

~(n) ~(n) ~(n)

CM+ DY NC" D kapekay, + €D ki,
m=1 o <<y, o] < <041
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The next lemma provides a link between these constants for different values of n that will
allow us to find their value inductively.

I:emma 4.7. ~For m = 0,1,2 and n > 3, we have that C,S;’) = (n — l)C,(,:”l) and
C,(,f) =n- 1)C,(,:"1).

Proof. If we take k, = 0 in (29), then we get the equality

n—1
Z sign(o ) (ko (ny — ko (1)) B ko), =0 = n(_ka) l_[ (kg — ke)
g€Sy a=1 a<fB<n
[n/2]
() (n) (n)
CO + Z (Cl Z kal ~~-ka2m + Cz Z k"‘l "'k“2m+l>
m=1 o] < <@y <n o) < <Ay <n

Recalling how we defined the polynomial B in line (23), we see that the left-hand side of the
above equality is equal to

n—1
> ko — ko) (H(—k@) Dy (k) 31)

oeSy: a=1
o(l),0(n)#n
n—1 n—1
+ > kot (H(—k@) Dy(k) = Y ko (1‘[(—1@) Dy (k),
oeSp: a=1 0ESy: a=1
o(l)=n o(n)=n

where we have used the shorthand

Dy(ky= T (kp— ke —sign(o7'(B) — 0~ () kpks)

a<f<n

[] sien@(®) — 0 @)korp) — kotw) — katahkos))-

a<f:

a.po 1)

Note that o ~!(n) plays no role in the terms of the first sum on line (31). Thus, we can relabel
each permutation, ¢ in that sum to a new one, &, in S,_; defined as follows

o(@), if @ <o~ (n),

o) = o(la+1), ifa >0~ '(n).

As an example of this relabelling, when n = 4, we would replace the permutations (} i : 3)
and (} g i ‘31) with (} % ;) and (} 3 g) respectively. Note that each permutation in S,_; occurs
n — 2 times (it is n — 2, rather than n, because the sum excludes the cases where o ~!(n) is 1
or n). Importantly, this replacement does not change the value of sign (0’1(/3 ) — a’l(a)), and
thus does not change the summand. We can do the same with the two sums on the next line,
these have no repeats as o~ (n) must be 1 or n depending on the sum. Under this relabelling,
D, (k) becomes sign(o)B(ky). Thus, we get

n—1
(=) [ J(—ka) D sign(0) ko1 — ko)) Blko)

a=1 oceS, 1
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n—l n—1
+ [ [k Y sign@kom1)Bko) = [ [(—ka) D sign(o ko) Blks),

a=1 0€eS, 1 a=1 oceS, 1

which is equal to

n—1
=[]~k Y sign(@) ko1 — ko(1))Blko).

a=1 eSS,

Applying Eq. (29) in the n — 1 case, we get that the above is equal to

n—1
=[]k [] ks —k@(cg”“

a=1 a<f<n

[(n—1)/2]
n—1 n—1
T S e/ LI S N SO Se/ G B )
m=1

o <--<0;, A< <041

Comparing coefficients with what we started with, it is clear that C® = (n — 1)C&~V for
m=20,1,2 as requiregl.
The proof for the C® follows the same lines as above. [

Finally, we just need to establish the values C(z), Ciz), Céz), C‘(()z), CN‘EZ) and C‘;z) to find all the
remaining values by induction. Eq. (24) in the n = 2 case is

kiky(ky — ki — kika) + kiky(ky — ky + kiky) = 2(ky — ki)kik>.

Thus C(()z) =0,C 52) = 0 and Céz) = 2. Combining the two lemmas above this implies for
m=0,1 C(()") = 0 for every n, and Cé") = 2(n — 1)! for every n. (25) in the n = 2 case is

(ky — ki)(ky — ki — kika) + (ki — k2)(ka — ki + kikz) = —2(ky — ky)kiko.

Thus C~'(()2) =0,C 52) = 0 and ééz) = —2. Combining the two lemmas above this implies for
m=0,1C" = 0 for every n, and Cé") = —2(n — 1)! for every n. In particular, this shows

that the sum of (24) and (25) is 0, proving Proposition 4.3. As a consequence, we have proved
Proposition 4.2, concluding this subsection.

4.3. Initial condition

Proposition 4.8. For any bounded Lipschitz continuous function f : W* — R, we have
/u,(., YV mS(dy) — f uniformly, as t — 0,

where the definitions of mgl) and u, are given in Definition 1.1 and Eq. (20) respectively.

The proof of this proposition will be the focus of the rest of the section. We begin by proving

two useful properties of u,, namely, that it integrates to 1 under mé"), and that it is symmetric:

M[()C, Y) = Mt(ys X).
Lemma 4.9.
/u,(x, ymidy) =1 forall x e W, t > 0.
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Proof. Lemma 4.1 allows us to calculate the time derivative by passing it through the integral:

8 n 1 n
o f u (x, y)my(dy) = f 5 Au(x, »mP(dy)
=0.

The first equality is clear from the definition of u. The second equality follows from
Corollary 3.12 and Lemma 4.1. This shows the integral is constant, to finish we shall show

convergence to 1 as ¢+ — oo. Scaling y by t%, and then k by t_%, we see the following
equalities.

1 e
/ ur e, yymydy) = 37 gl (H m) / £ (e, VAT ()

well, TET
= Z 9|7T|—Vl (1—[ 1) %/f e—%\klz Z eika'(x/\/;—}’a)
mell, Ten |7TL| (zn)nﬁ(nf\n\) " =
[T Rewowk/vDdk 2 (@y).
U(g)ii:(ﬂ)

We can calculate the limit as ¢+ — oo above by first looking at the right-hand side of the first
line, and applying dominated convergence to pass the limit through the first integral; this is
justified by Lemma 4.1. We can then do the rescaling of the integral in the k variable to get to
the second line; we can calculate the limit of the k integral by applying dominated convergence
again; to find the limit of the integrand, note that R{,(ﬂ)ﬂ(a)(\%) — 1 as t — oo for almost
every k. Now we can calculate the limits of the summand above, all terms with || < n in the
sum over partitions vanish in the limit, because of the £z~ that appears in the denominator,
leaving only the partition consisting exclusively of singletons; for this partition, A™ is just the
Lebesgue measure on the Weyl chamber. Thus, we have

n n! L2k
/ut(x,y)mé)(dy)z (271)”/ / e 2=y ke
wn R”
= 1.

The n! comes from the sum over permutations, the resulting integral in k is just the Fourier
transform of a Gaussian; hence, the integral over the Weyl chamber is easily calculated. [l

Now we can write

/ u(x, ) fFmy(dy) — f(x) = / u(x, ) (fF) — fx)my (dy).

It follows directly from the definition of mé") that

‘ / u (e, ) (F) — F(x)) mé“(dy)‘

=Y oIl ‘ f Ui, ) (f() = FE) AT (@y)|. (32)
welly miET
Thus, we can restrict our attentions to the integral with respect to A for a fixed 7w € II,.
Let us briefly outline the proof. We wish to estimate u,(x, y), which we recall from 1.2, is
given as a sum of Fourier integrals, indexed by the permutation group on n elements. For each
permutation, o, we can try to estimate the Fourier integral by following the same idea used
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to calculate the Fourier transform of the Gaussian density; that is, we rely on completing the
square: —31k*+ikx = —--(tk —ix)*— 5.x* and then making the relevant contour shift to allow
us to rewrite the Fourier integral as a Gaussian integral multiplied by a Gaussian density. This
step is complicated by the presence of poles in the integrand of the integral defining u,(x, y).
However, because we are in the Weyl chamber, we do not need to shift the contour of every
integration variable, and indeed, we will instead determine a subset of the indices for which
the poles are restricted to one complex half-plane, allowing us, for certain valued of x and y,
to make the contour shifts without encountering any poles. Together, these contour shifts will
prove to be sufficient to get the desired bound, Proposition 4.14.

Another complication is caused by the dimension of space we are integrating over, that is,
the size of the partition w. Coarser partitions will require finer control over u,(x, y), and to
achieve this we will need to show that, on the parts of the boundary corresponding to these
partitions, there is cancellation occurring between terms in the sum over permutations defining
u,(x,y). We will achieve this with a combinatorial formula we state in Lemma 4.11. The
estimate we describe above, will actually be on the combined terms between which there is
cancellation.

In the final step, we combine the estimate on the Fourier integral defining u,(x, y) with the
Lipschitz property for f to derive the desired uniform convergence. This requires bounding of
the contribution from W7 to f lu,(x, y)|mé")(dy) and some care in considering what happens
when x is near, but not in, W” to ensure we get uniform convergence.

We start with a fact that will allow us to make a useful rearrangement: u,(x, y) is symmetric
under swaps of x and y.

Lemma 4.10. For every x,y e W' and t > 0
u(x, y) = u(y, x).
Proof. Recall that u is defined in (20) as
_ 1 — 41k ke -(x—yo) 10k @) —ko () Hko@ko(p)
ue(x, ¥) = Gy /R e Z ¢ H 10k @) —ko(8)—ko@ ko (p) dk

oeSy, a<p:
a(a)>o(B)

If we first take the sum outside the integral, then perform the change of variables in the k

integral, k — —k_ -1, this becomes

kP G —y i0(kg —ko)+kerk
1 tlk|“+ik __1-(x__1—y) l_[ i0(kp—ka)+kakp
Ty Z /”e ’ 7 005 —Fa)—Kal K-

oceS, a<p:
o(a)>a(B)

Notice that we can relabel the product as follows

l_[ i0(kg—ka)t+kakp 1_[ ie(kafl(a)_kafl(ﬂ))+kg*1(a)kg*1(§)
i0(kg —ka)—ka kg iO(k”,l(d)fka,l(ﬁ))fkg,l (a)k”,l(ﬂ) .

a<f: a<f:
o(@)>0(B) o~ l@>o~1(p)

Hence, by relabelling the sum to be over o=l e §,, we see that we get u,(y, x) as desired. O
Now, we proceed with the proof of Proposition 4.8. We start by writing u,(x, y) in (32)

in terms of a sum over permutations (as in Theorem 1.2), and then combining those terms in
this sum which cancel as + — 0. That is, we can rewrite the summand of (32) (ignoring the
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constants) as

/ u(y, x) (f(y) = f(x)) k"(dy)‘

=|[ [ ety o [T Reooaath) dk 10) = SN ). @9

€S,
7 AT

For a partition = € II, and permutation o € S, define the set of ordered pairs

o(m@) = {1, 00@), ..., [ T, o(@z))},

where 0 (A) denotes the image of A under 0. We can rewrite the sum appearing on line (33)

as follows
ikg -(y—x,
> > 0 T Regrow®)-
T€Sy: oESK: a<p:
7|z, is increasing Vi o(m)=t(7) o(a)>o(B)
Let 7, := supm, and 7, = supm,. Let us consider eifoO—%) — =kxTT"_ oike(jyi We
—_t j=1
know that for each m, € m, @, B € m, implies y, = yg A"-a.e. Hence, ]_[;le eke ()Y =
ik Y 3 T . _ fe et ik

[1rex [aen, €@ A7 -ae. Butsince o () = 7(rr), this is just equal to [ [, .. [[oer, €7@,

which equals ¢, Hence, we can pull the exponential out of the second sum to make the
previous expression equal A" -a.e. to

Z ik (—x1) Z 1_[ Reo8),0() (k).

TESK:
|z, is increasing Vi ff(ﬂ) T(JT) G(Ot)>0(l3)

Now, consider the product in the expression above; in particular, we can show that if « and B
are in different elements of 7, then the appearance of Ry (g +()(k) in the product depends only
on 7, and not on o. Suppose @ < f are in different elements of = and that ¢ (8) < o(«). Since
7 is an ordered partition, there exists ¢ < j such that o € 7, and 8 € 7;. But () = 7(7), s0
there must exist y € 7, and § € 7; (thus y < §) such that 7(y) = o(a) > o(8) = 7(5). Hence,
the appearance of Ry (g) +(v)(k) in the product depends only on 7, as desired. Similarly, we can
go in the other direction, so that if & and g are in different elements of m, then (o(8), o(a))
is an inversion for ¢ if and only if it is an inversion for t (that is, if « and g are in different
elements of 7, then & < B with 0(B) < o(a) occurs if and only if =" (o (ar)) < 7' (0(B))
with 0(8) < o(x)). Hence, we can split off the part of the product where o and § are in
different elements of w and rewrite it entirely in terms of t. Thus, the previous expression is
equal to

Z elkr- =) 1_[ ]_[ Rep).z(@) (k) Z Agn (k). 34

T€SH: 1<j aem, /Senj: o€eSy:
7|z, is increasing Vi (B)<t(e) o(m)=1(1)

where A? _ is shorthand for the summand of the second sum and is defined as follows.

o,
A7 (k) = l_[ 1_[ Ro),0() (k).
T ET a<p
a(a)>0(ﬂ)
o, Bem

We can now combine all the terms in the second sum in (34), using the formula in the following
lemma.
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Lemma 4.11. Suppose m € N and 6 > 0, then for all k € R™ such that k, # 0 for all
aec|l,...,m),

0k — ky)
2 [l Rwew®r=m]] i0(k — ) — kakg
g€ESs B a<fB B o akp

m a<p:
o@)>a(B)

Proof. First, we prove the following equality holds for all £ € C™:

S T OO Gow =&y — 1) =m! [ [Ga — &p)- (39)

oeSn a<p: a<f a<f
o(B)<o(a)

It is clear that the left hand side is a degree (;) polynomial, which we shall denote P(§). Thus,
if we can prove that P(£) is also alternating, it must be a constant multiple of the right hand
side. We then just need to check the constant to finish the proof.

To prove the left hand side is alternating it is enough to consider swaps of consecutive
variables, e.g. §; and &; 1 for some j € {1,...,m — 1}. Let s; = (j,j + 1) € §,, ie. the
permutation that swaps j and j + 1 leaving everything else fixed. Clearly, for all o € S,

I[] <vb=- ] 0D (36)

a<p: a<f:
o(B)<o(a) gos; (/3)<C70Sj (@)

It follows by relabelling the sum in its definition on the left-hand side of (35) that P(&;) =
—P(&). Hence, P is an alternating polynomial and there is a ¢ € R such that

D1 TT O] Gw —bow—1) =c ]G —&).

R N5 o<h o<h
To finish, we just have to note that if we expand the bracket on the left hand side we get
m![], s« — &p) plus additional terms of lower degree. But we know that the left hand side,
P, is a constant multiple of [],_ ﬂ(éﬁ — &,); thus, the lower degree terms must cancel. This
proves (35).

To prove the lemma, we just need to divide both sides of (35) by [, pa — g — 1), and
then, set §; =i0/k; for each j. An application of the following equality tp the left hand side
and some simple rearrangements give the desired identity.

[Taa—&-1|=| [] &w-bw-1 [l %@-&p-1|. O

a<pf a<p: a<p:
o(B)<o(a) o(a)<o(p)

Hence, we get that (34) is equal to

||
(Hmn) Yo T,
=1

TeSh:
7|z, is increasing Vi
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where 777" : C* — C" is defined (for a.e. k € C") below.

X — 10 (kr () —kz(a))
™7 (k) = l_[ H Rf(ﬁ)’f("‘)(k) H 1_[ 10(ke(g)—kr(@)—kr@)kep) | ° G37)
1<j aem, ﬁenj: mET a<p:
T(B)<t(e) apem

This rearrangement, together with the triangle inequality, gives us that (33) is bounded above
by

17 )t
Q2m)n Z

T€SH:
7|z, is increasing Vi

/ ei"k'z”‘f”’X”T””(k)dk‘v(y)—f(x)W(dy). (38)
R”?

Now we can move on to the next step, which we now discuss in a bit more detail. We want to
get control on the k integral in (38), and we need the bound to be integrable in y with respect
to A" and to be vanishing as t+ — 0 whenever y # x. As discussed earlier in this section, we
can complete the square in the exponent:

(Yo — xt(a))2

1 ) 1 & i
— Stk ik - (6 = x0) = =3¢t > ke — -0 = @)’ — ==

a=1
The above calculation suggests that we should use Cauchy’s residue theorem to shift the k()
contour from Rto C, :={ze€ C: 7z — ;i(yo, — X)) € R} for each « € {1, ..., n}, and then
parameterise the resulting contour integral as an integral over R. Supposing we can do this
without encountering any poles, the exponent becomes

1 - ~. ())a - xr(a))2
-ty K, - ==
2 ; T 2t

where k., € R is our new integration variable. The second term of the summand gives us the
necessary control in the y variable, and the first term should allow us to control the resulting
k integral. However, this approach is complicated by 7", which contribute poles that hinder
our contour shifting. We end up not being able to shift the integration contours for all of the
k variables without encountering poles; nevertheless, we are still able to make some of the
desired contour shifts. To see which shifts can be made, we need check where these poles
occur. The following lemma provides us with the desired information.

Lemma 4.12. Let H={x+iy € C| x € R, y € R.¢} be the upper half complex plane. The
function (z, w) — i10(z — w) — zw has no zeros in the set H x —H.

Proof. For w € —H there are a € R and b € R.( such that w = a — bi. It is easily checked
that i60(z — w) — zw = 0 if and only if we have
6%a —i6((0 + b)b + a?)
T 0+ +a
Thus, there are no zeros inside H x —H as claimed. O

e —H.

Observing the structure of the products in (37), we define the set E©" C C" to avoid
any poles. E™" is defined as x}_, E;’", where E;’" is given in terms of the following two
conditions. For (z, 7, k), say condition (A) is satisfied if there is 7, € 7 such that k = supr,
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and t(x) < t(k) for all @ < k, and say condition (B) is satisfied if there is &, € 7 such that
k = infm, and 7(B) > t(k) for all 8 > k. Then,

H, if condition (A) is satisfied, but not (B);

—H, if condition (B) is satisfied, but not (A);

C, if both (A) and (B) are satisfied;

R, if both (A) and (B) are not satisfied.

T . __
Ef™ =

Lemma 4.12 shows the denominator of 75", as in (37), has no zeros in the set E©"(37), and
thus, we can perform the desired contour shifts as long as the contours remain within this
set. To simplify our notation, we will once again write 7, := sup 7, and m, := inf 7, for each
T ET.

We will state the estimate that results from shifting contours in Proposition 4.14. But first,
we need to find a family of indices for which contour shifts can be made, that is, a collection
of « such that E'" contains at least one complex half plane.

Lemma 4.13. Suppose w € I, and t € S, such that T\, is increasing for every m, € . For
each w, € w there are a, <t < b, such that t(w;) < 1(7,,), and the following properties hold

o 7(mp,) < T(B) for every B > mp,;
e and t(7,) > t() for all @ < T,.

Further, given such a (a,, b)), if 7, < mp,, then we define m, := sup{t(x)| 7, < a < mp,}
and |, == inf{t(B)| T,, < B < mp,}; if instead Tq, = Tp,, then we define m, = t(7g) ‘and
I, := t(mp,). The following properties hold for m, and l,:

o there are ., wq € 7 such that t~'(m,) =75 and t~'(1) = s
e forall @ < = (m,) we have t(a) < m,;

o and for all B > t7'(1,) we have t(B) > L.

Proof. First we define u, := m,,, where a, := inf{a < ¢: ©(7,) > t(m,)}, and then from it,
we define v, == m,,, where b, := sup{b > ¢ : () = (W)} 1 and_w are introduced for
convenience and will be used throughout this section. In Fig. 1 we provide an example of a
permutation and partition and the resulting values of u, and v,.

It is easy to see that the a, and b, satisfy the first two properties we claimed for them,
namely that a, < < b, and t(v,) = t(7p,) < T(7T,) = T(W,).

We will show t(v,) < t(B8) for all B > v,, and t(u,) > t(a) for all @ < p,. Starting with
W, if there is an ¢ < u, such that t(u,) < t(w), then by definition of u,, « must be in a
different element of 7 to u,, say m., with ¢ < a,. Since 7 is increasing on every element of
7, this means we must have 7(7;) > t(«) > (1) = 1(7,,), which contradicts the definition
of a,, so no such « exists. By a similar argument, there is no § > v, such that 7(v,) > t(8).

It remains to prove the second set of statements, those about m, and /,. Suppose we are
given (a,, b)) as in the first part of the lemma, and once more define p, := 7, and v, = m;,.
The first property for m, and [, follows immediately from the fact that 7|, is increasing for
all w; € m, the definitions of m, and /,, and from 7 € II,. For the second and third statements,
we consider two cases separately: u, < v, and v, < u,. For the latter case, we have m, = t(v,)
and /, = t(u,), so the statements are the same as those we just proved. If instead we have
W, < v, we can argue the second statement as follows. Clearly, for all « such that u, < o <,
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[

1 2 3 4 5

Us! T2 T3 Tly
(1,4) (1,4) (1,4) (5,5)

Fig. 1. The bottom row displays the values of (u,,v,) for the permutation v = (1,3,4) in S5 and partition
T = ({1}, {2, 3}, {4}, {5}). Lines connect pairs of indices which 7 inverts, so i < j are connected if 7(j) < t(i).
1, is the largest element of the leftmost block of m connected to m, by a line. Similarly, v, is the least element
of the rightmost block of 7 connected to 7, by a line.

we have t(x) < m,; thus, we only need to check that « < p, implies t(«) < m,. Suppose
this is false, i.e. there is an « < pu, such that 7(a) > m,. Since m, > t(u,), this implies
() > T(,); since we also have o < p,, this is a contradiction, as we know from previously
that t(u,) > t(o) whenever u, > «. A similar argument proves the third statement, thereby
proving the lemma. [J

In the following proposition, we will assume we have a w € I, with a family (a,, b,)x,ex
given by the above lemma, and adopt the notation of the above proof, namely u, := 7, and
v, := mp,. The above lemma ensures that whenever o = p, or 7~ 1(m,), the set EZ7 contains the
upperEﬂf complex plane, and if 8 = v, or 7'(/,), then E;‘” contains the lower half complex
plane. It turns out that it is sufficient to consider the contour shifts corresponding only to these
indices, because of the fact that x, y € W, and because we are only interested in estimating
integrals with respect to the measure A™, which is supported on sets where certain coordinates
are always equal. As a result, we will get the desired estimate, which we state now.

Proposition 4.14. Suppose mw € II, and Tt € S, such that T\, is increasing for every m, € 7,
and for each w, € m we have a, <t < b, as in the above lemma. There is a constant C > 0,
depending only on w and n, such that the following bound holds for all x,y € W".

/ g;”k'z*ikf(yXT)TT’”(k)dk'

! by—x S — P — )2
<Ci= 3 log(n)|™le= T [ e oy (Cimg =X P+, x))’ (39)

T ET
where x = x(x) € R" is defined by xo == x' = %(xf(,m + Xe) for all o € m,.
We begin the proof with an intermediate bound, which is achieved by making the contour

shifts we have been discussing. Let I, = C, if x,y € W are such that the C,, contour lies
in EZ", and R otherwise.
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Lemma 4.15.

/ e—%t|k|2+ikr-(y—xf)Tt,n(k)dk

2
<e—% (1_[ ezim((xlruxl)2+(xlt)([)2))

T, ET

/ ™2 Xomi Relhe)® | 757 ()| dk. (40)
XqoiTox,y

Proof. On the left-hand side of (40), we can apply Cauchy’s residue theorem to shift the
contours of the integral into the complex plane, onto the contours Iy . This is possible,
because we have defined the contours I}, , , in such a way that they are either R, and thus no
deformation is required, or the integrand is analytic in whichever half plane they occupy. The
result is the following equality.

/ e—%l|k|2+ikr(y—xr)Tr,ﬂ(k)dk — e—% Za:ra,x_yﬂ()'a—xr(a))z
n

X / e_%l 22:1 Re(kr(a))2+i Za:[‘a_x.y:R kr(a)()’ot _Xr(a>)TT’7T(k)dk. (41)
X Fa,x.y

a=1
Note that on the right hand side, when the contour for k; is not the real line, we have rewritten
the exponential by completing the square: k3 — 2k;(y,-1(;) — X;) = (ki — 2(yp-14) — x))* +
,iz(yf—l(i) — xi)%.

From (41), we see that to prove Lemma 4.15 we must bound the exponential appearing in
front of the integral, which means we need to consider which contour shifts have been made. In
particular, we want to check when the condition for I , , = Cq is true, for o = p,, v,. Thus,
we want to check when C, lies inside E; . We know from Lemma 4.13 that E/»" contains the
upper half complex plane, and E}'™ contains the lower half complex plane. Thus, C,,, C E},
when y,, > x¢(,), and C,, C E] when y, < x,,). Hence, we have the following inequalities:

1 2 1 2
= 5 Ly #R Vi = Xe)” = — 57 Lo =xru O — Xru)™s

2t 2t
1 1

— =1 Ry (Yo _xrv)zf__Jl p, <X O, _xtv)z'
2t (I x,y#R} ( (V) 2t (O, =xz )} L )

There are two cases of interest, the first is when u, < v,. In this case, the two indices are
in different elements of . The second case is when u, > v,, for which the two indices are in
the same element of 7. Let us deal now with the first case.

By definition, we have 7(u,) > 7(v,); and since x, y € W, . < v, implies that y, <y,,.
Hence, if we have both y, > x;¢,) and y,, < X¢,), it follows that x;,) < X;(,,), but since
x € Wr this is a contradiction. Hence, for all x,y € W at least one of y,, > X, and
Yy, < Xr(v,) must be true. This means we have the equality,

1
2 2
- Zl{("‘“ >xo )t Ve = Xe(u))™ — z—tﬂ{w %ot — Xe )

1 2 .
=5 Oy = X)) 1 Y, = Xeu and yy, > Xe(ys
= _%(-y‘)t - xT(VL))Z’ lf yl’-L < xT(l‘-L) and th = xT(VL); (42)
1 1 .
_Z_f(y:u'l - xT(Ml))z - Z(yvl - ‘xT(Vt))Z’ lf yUL S xT(VL) and ylf-t Z ‘xT(ML)'
Let x' := %(xf(,h) + X-(v)), We can rewrite the first line as

1 1 1
—% ((ym - X+ Z(xrwl) - xr(v,>)2> + Z(M = X)) — Xew)-
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We have 7(w,) > t(v,) and x € W, so that (Xz(u) — Xr(v)) < 0. From y € Wr and n, <y, it
follows that y,, > %(y,h =+ y,,), which, under the conditions of the first line in (42), is bounded
below by x' = 2(X¢(u) + Xz(w)). Thus y,, — x* > 0, and the last term in the above expression
is negative. We also have y, — x, > y,, — X;(,) > 0, under the condition of the first line; thus,

using yy, < yu,, we get —(yu, — x9* < —(yy, — xY?%. Tt follows that the above expression is
bounded above by

1 1
-4 ((ym — X+ Ow — XD+ 5 G — xwz) :

The same ideas yield the same bound on the cases of the second and third lines of (42), so
that the above expression is an upper bound for (42).

In order to get the precise control of the decay in the x variable, which we need to cover
the case where x is near the boundary of W, we need to look at the contour shifts for m, and
l,. Recall m, = sup{r(a)| u, < @ <y} and /, = inf{r(B)| u, < B < v,}. Note that it is quite
possible for m, = t(u,) or for [, = t(v,), so that we will need to account for repetitions. We
need to check when C.-1,, C EI_”I (m)’ From Lemma 4.13 we know E;_”] ) contains the
upper half complex plane. Therefore, = Cr—iny if Yo=1(,) = Xm,» SO that

1

2 2
=5 Mt PRI 1) — Xm)” = =5 b, om0l =1y — Xm )"

t=10m).x,y

We can combine this bound with our previous bound to get the following inequality (where
we have accounted for the case m, = 7(u,) in the indicators).

1

2 2
- Z]l{Fm,x.y#R}(yu, — Xr(u)” — Zl{rw.x.yﬂ%}(yu, = Xz(w))
1
2
T o Mty PR mET 0} Ve 1y — Xm,)

1
< - Z ((y;;.t - XL)Z + (yvl - Xt)z + (xr(ul) - xr(vl))z)

1
2
B Z]l{yr’l(lm)zx’”“ mL#r(“’l)}(yfil(mt) - xmt) . (43)
We aim to show this is bounded above, for some positive constants Cy, C;, by

C
i
To prove this, we consider the various cases for the indicator in (43).
If m, = t(u,), then it follows from x,,, < x, < Xr(u) that (xz(u,) — Xrw))* < (m, — x4)?, sO
that our desired bound is easily seen.
In the case that m, # t(u,) and y,-14,,) = Xn,, if we further assume y -1, , > x', then it
follows that

C
(G = X+ o, — X + Ceguy — Xew)?) — f(xml — X%

- (ym - Xt)z - (yfl(mt) - xml)2
=— Ve — Yelmy)” — (X" = ) + 200, — X)X = Ye-1(m))
<= O = Vet — (X = xm)* < —(X" = xm)7,

where the last line is true because y € W, so that Ve = Ye=1my)- Thus, our assumptions imply
the last term on the third line above is negative. If instead, x,,, < y,-1(,,, < x', then y € W”"
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implies that y, < N T thus, 0 > Ye-lm) — x>y, — x'. Hence,
= O = X = Oty = Am)?
<= Oty = X = Or1gny = X))’
== 2(Ve-14m) — %(xm, +x)° — %(xmL —x) =< —%(xmL - X

Therefore, when Ye-1(m) = Xm, We have the bound on (43)
L ? (44)
——(x, — .
81 X

If instead, we have m, # t(u,) and y,-1(,, < Xn, then we have x,y € Wr; therefore,
Yoo < Velgmy < %m, < X' Thus, —(y,, — x)* < —(xm, — x*)%, so that Expression (44) is
a bound on (43) for any x,y € W", as desired. Following the same steps for /,, we get the
analogous bound

1

1
2 2
- ZR{F,L,”#R}(M — X)) — Z—tl{rvl.x,y#R}(yvl — Xz(v))
1

2
= 5 Mg, 2R o) 010y — X1)

1
<-4 (O = XD+ O, — XD+ Koy — Xe)?)
1

2
= 57 Loz e} ety ~ Xm,)

< 1( H? (45)
=7y X, — X )

Combining the bounds in (43), (44), and (45), we get the following bound when v, > w,.

- zitﬂirm,x,yﬂ%}(ym = () — Qltﬂ{rw,l,,-ﬂ&}(yw — ()’
T oy Mt 0y 2R mie (a0} (Ve=tmy) — xm)? = %H{Fﬁ](m_x,y#ﬂ& Lo ety = 21,
< (O =X O = x) = 5 (= 2 0, = x?)
1 i 2 1 12 2
s—wazz%@a—x)—24t(<xml—x>+<xz,—x>), (46)

where for the last line, we have used that by definition i, = 7, and v, = m,, and that under
AT, we have that for any 7; € &, if @, B € 7}, then y, = yg almost every_where as well as
having that y € W”, so that (y,, — x*) = (Vo — x.) = (3, — x) for all 7,, < a < 7. Thus,
either —(vo — X2 <~ — %)% o =y — x* < (o, — 1)

To finish the argument and get the bound on (38), we just need to deal with the second case:
V= My

In the second case, u, and v, are both in 7, and therefore, under A”, we have y, = y,
almost everywhere. Further, since 7 is increasing on every element of s, it follows that
m, = t(u,) = sup{t(@)| v <o < u,}and /, ;== t(v) = inf{z(B)| v, < B < w,}. Following the
same steps as before, if we assume both y, > x;¢,) and y,, < Xy, then since y,, = y,,, it
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follows that x(,,) < X7(4,), Which is a contradiction because 7(v,) < 7(u,) and x € W Thus,
at least one of y,, < x;,) and y,, > x(,,) must hold for all x, y € W". With similar ideas to
those used above, we find that

1

2 2
- z_t]]‘{Fu,,x,y¢R}(yﬂz - xT(NL)) - Z_t]l{FuL,x,y#R}(yVI - xT(VL))

1
- (O = XD+ O, — XD+ (o, — 1)%)

1 1
= = 157 (O =X+ Ou = x9°) = 53 (G = 10 + (0 = x9?) @7)
1 e L 1 L l
=7 12(,“4 - 1)!)[ D[:Zv(ya X )2 B 2741‘ ((-xm, X )2 + (xlt —X )2) . (48)

The idea behind the above bounds is similar to before, but this time we use y,, = y,,, and we
used that x;, > x‘ > x,, for the second inequality. The constants appearing in the denominator
have been chosen to be consistent with (46), and so are not optimal.

Applying the bounds (46) and (48) to (41) leads to the following inequality

1 2 2

T ET

/ e‘%flklzﬂkr'(Y—"T)T“”(k)dk
Rn

/ e 3 Do Relbe” | TOT (k) dk,  (49)
Xot:] Fm.x,y

where we have used pu, — v, , — m, < n for all ¢ to get the form of the Gaussian bound

given above. [
We complete the proof of Proposition 4.14 with the following lemma.

Lemma 4.16. There is a constant C > 0, depending only on w and n, such that

/ ¢! Lamt Relhe)” | 757 (k)| dk < Ct~ 27| Tog(t)|™. (50)

o=t laxy

Proof. To begin, we need to collect some bounds on the factors appearing in the products
(37). We need to make sure the bound covers the new contours; therefore, it is sufficient to
bound for k € E®7". This can be done for the factors in the first product by bounding for all
hayhy >0 and k4, kp € R

10((ka +iha) — (kp —ihp)) + ((ka + iha))((kp — ihp))
10((kg +iha) — (kp — ihp)) — ((ka + iha))(kp — ihp))
i0(ky — kp) — O(hp + hg) + ilkpha — kohp) + kokiy + hohy,
10(ky — kp) — O(hp + ha) — i(kpha — kahp) — kaky — hahyp

1
02 (ka—kp)*+(kpha—kahp) —20(k2ha-+kahp)+62 (hp+ha)>—20hahp(hp+ha)+kakp+hahp)? | 2
02(ka—kp)2+(kpyha—kahp)2+20(k2 ha+kZhp)+02(hp+ha)2+20hahpy(hp+ha)+(kakp+hahp)?

<1

— 4

because hy, hy > 0. (51)
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Here, the k variables are the real part of the integration variables, and the A variables are the
imaginary part. Hence, we have that for all k € E*7

1
/ e 2! Yzt Relle@)® | 707 ()] dk
X1 Tax,y
1 i _
< | | e~ 2! Laex, Re(kr (o)) | | ) 10k (p) k(@) ‘dk. (52)
r 10(ke () k(o) —Kr(a)kz(p)

T ET Xoem Lox,y a<p:

a,fem

This expression will be estimated using the following bound on the factors in the product in
the integrand. For any k,, k;, € R and h,, h;, > 0,

10((ka +iha) — (kp — ihp)) ‘
10((ka +iha) — (kp — ihp)) — ((ka + 1ha))((kp — ihp))

2
_ 02 (ka—kp Y +0*(hp+1a)?
02 (ka —kp)2+(kpyha—kahpp)2+20 (k2 ha+kZhp)+02(hp +ha)2+20hahpy(hp+ha )+ (kakp+hahp)?

L,
— 1o lka —kp| T +0 \fi;-‘rha\ 72
(Ghpha—kahp)?+kaky thahy)?) 2 ((pha—kahp)* +kakp+hah)?)
{1’ 53
< (53)
— 1
20 (\ka + Ik_/;|> .

The last line follows by expanding the brackets in the denominator, removing some non-
negative terms, and then applying the triangle inequality.

Returning to (52), we can divide each contour integral into two parts: one where |Re(k,)| <
&/+/t and another where |Re(ky)| > &/4/1; this gives the following

1
I / o 11 Taen, Relkr@)?
Xaem Fa,x,y

meEen
i0(kv(g)—kr(a))
[T (Uretar<ervmr + Lirewarzerv) 11 w0
oEm, a<pf:

a,fem

We can simplify as follows: expanding the first product, in each term where an indicator for
lky| < &/+/t appears, we bound all factors in the second product which depend on k, by 1,
using the first line bound in (53); it is then easy to see that the contribution from the &, integral
to that term is at most 2¢/+/z. We can then bound any remaining terms in the second product
by the second line bound in (53) (remembering that the k in that estimate represents the real
part of the complex integration variable), the resulting integral depends only on the number of
ko for which |Re(ky)| > ¢/ V. Relabelling the remaining variables, we see that the previous
expression is bounded above by

Al

12 (7)ot [ ettt T (i gy a.

men j=1 lka|ze//1, Va a<p
Rescaling the k variables by \Lﬁ we see that this equals

|77

I Z('”t>2|m| +@ g gimi—i 4 (D=lm) / o T () ke (54

TET j=1 kot |>e, Vo a<p

37



D. Brockington and J. Warren Stochastic Processes and their Applications 162 (2023) 1-48

Since the product runs through all pairs of o, 8 € {1, ..., j}, upon expanding the brackets,
every term will involve a k, to a power of at most 1 — j. Further, in each term, at most one
of the k, can have exponent —1, with the rest having exponent at most —2. It is clear from
repeated integration by parts that for each y # 1, there is some constant C > 0 such that

1
/ We_%"“zdx <Ce'™’, whene € (0,1).
lx|>e X
For y = 1, we instead have that there is a constant C > 0 such that
1
/ |—e—%'ﬂ2dx < C|log(e)|, when e € (0,1).
x|=e 1X

Since the sum of all the powers of all the k,, in each term of the expanded brackets is (é), and

because the product runs through all pairs of indices so that in each term in the expansion there
can be at most one k, appearing with power —1, there is some constant C > 0 depending only
on n and 7 such that for all ¢ € (0, 1), (54) is bounded above by

kAl . .
c1> ghml=i+i=1-¢)| log(g)“%((é)—\ml).

men j=1
If we set & = /¢, then the above expression is bounded above by
Cr 2 [ log()] ™,
which is the desired upper bound. [J

Proof of Proposition 4.14. Combining the bounds from the above lemma and Lemma 4.15
proves the statement. [J

We now have what we need to complete the proof of the main proposition of the subsection.

Proof of Proposition 4.8. Proposition 4.14 implies that (38) is bounded above by
cr il liognyitt Y

TE€SK:
T|g, is increasing Vi

_ 1 X — 24 —xb)2
/ erbilva? T e (0 0?) ) popny)  (59)
T ET

We can replace the function f : Wr — R with its symmetric extension z : R" — R, that
i_s the function f : R* — R such that for any 0 € §,, x € R” we have f(x,) = f(x) and
flgsw = f. Then, after rescaling y by /7, (55) is bounded above by

Cllogr)™ )~

T€SH:
7|, is increasing Vi

/ et (H ezﬁm(<m:x‘>2+<xw‘>2)> F(/iy + 10— For)ldy.

7|
w T ET

In the above, x € R" is defined by xo := x' when o € 7, y is defined by Yy, = for all
a € m,, and we have used that f(x) = f(x.). We have also rewritten the integral with respect
to A" as an integral with respect to the Lebesgue measure. Since f is a Lipschitz function, it
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is straightforward to show that f is also Lipschitz; therefore, the above expression is bounded
above by

Cllog|™ )~

T€SK:
T|x, is increasing Vi

1 02 02
/ e (] o~ 2 (Com =1+, =17?) («ﬁlyl +1x —xrl) dy.
witl men -

The integrand is non negative and | y | < |m||y|; therefore, this is bounded above (for a new
constant C) by

Cllogt)™ )~

T€SH:
7|z, is increasing Vi

_1 — 2+, —x 42
/‘ ‘e—ﬁ‘ylz (l_[ . 24m((xml X7+ (xy, X))) <ﬁ|X|+|X —xr|) dy
RT[

T ET
<Cllog)I"" > (56)
T, istiig:’e:asing A\
_ 1 Xon, — 02 X — 02
/‘ ‘(|y| + l)e_ﬁly‘zdy <\/E+ |x — xc|e 2 Zmen(( XA —xY )) . (57)
RT[

Now we note that |y — x;| < ZZ:I | Xa — Xz(@)|, but for all « € [u,, v] (or [v,, u,]) we have

Xm, =< Xr(a)> Xa =< X1, (Or X1, =< Xz(a)r Xa =< xm,)- Hence, either |th _xr(ot)| < |XDt _xml|

or |Xo — Xr)| < |Xe —x;,|. Note that for any ¢ > 0 and x € R we have the inequality
. 1 .

lxle=*> < (2ec)"z. Hence, (57) is bounded by

CVillogl™ f‘ Uyl +Demmbdy
R?T

T€SH:
T|g, is increasing Vi

<CV/t|log(t)|",

where we have bounded the integral independently of |x|, and the constant C has changed
between lines. Summing over = € II,, and using that since /I, is a finite set the constants C
in the above expression have a finite maximum, we get, for a new constant C > 0 depending
only on n,

sup | [ w,(x, ) fImg(dy) — f(¥)] <Ci Y [log(n)]™

xeWn well,
fo/zjlog(t)" — 0, ast— 0.

Note that the last inequality is valid only for + < 1/e. Hence, we have the desired uniform
convergence, and Proposition 4.8 is proved. [

Proof of Theorem 1.2. As a consequence of Proposition 4.2 and Proposition 4.8, we can apply
Proposition 3.9 to our function [ u,(x, y)f(y)mg’)(dy) to prove [ u,_s(Ys, y)f(y)mg’)(dy) is
a local martingale. Suppose that f € C2°(W"), i.e. f has an extension to an open set U
containing W” that is smooth and compactly supported. Then since [ u,(x, y)f (y)m((,")(dy)
converges uniformly to f as + — 0, and f is bounded, there must be some ¢ > 0
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such that [ u,(x, y)f(y)my (dy) is bounded for 1 € [0,¢] and x € W=. We also have
| [ (e, y) f()m(dy)] < W [ 1f)Imy’(dy), which is bounded for 7 € [g, 00). Hence,

fu,(x,y)f(y)m(g")(dy) is bounded as a function of (f,x) € R.g x W~. It follows that
[ (Y, ) f()myP(dy) is a true martingale; thus, B, [f(Y)] = [ u,(x, y)f(y)m (dy) for
every f € C(Wn).

To extend the equality to more general functions f, we note that the above argument shows
non-negativity of u,(x, y): if f(x) > 0 for all x € W”, then [ u,(x, y)f(y)mg')(dy) > 0. Since
this holds for every f € CSO(W), we have that for each t > 0 and x € W”, u,(x, y) > 0 for
m{ almost every y € W,

Returning to the case where f is merely bounded and Lipschitz, we can use the non-
negativity of u,(x, y) and Lemma 4.9 to get the bound | [ u,(x, y)f(y)mg’)(dy)| < 11 flloo-
Hence, the local martingale f ur—s(Ye, V) f (y)mé") (dy) is in fact a true martingale for s € [0, 7],
and so E.[f(Y)] = [ u,(x, y)f(y)mg')(dy). Thus, the proof of Theorem 1.2 is completed. [

As a consequence we can also prove the following.

Theorem 4.17. m((,”) is a stationary measure for Y, and Y is reversible with respect to mg').

Proof. For f a bounded, integrable, Lipschitz continuous function, we have for all + > 0

d d
4 / B ) = & / / (e, ) Fm P (dyym™(dx) (58)
—0. (59)

The first equality is a consequence of Theorem 1.2 and the second equality is a consequence
of Corollary 3.12 and Fubini’s theorem. Lemma 4.1 provides the necessary bounds to pass
the derivatives through the integrals and to apply Fubini’s theorem. Theorem 1.2 allows us to
prove the following limit, with an application of dominated convergence theorem justified by
Lemma 4.1.

lim f B[ f(Y)Imy (dx) = f femy(dx). (60)

We can extend this to any Ll(mé")) function by a density argument, proving that mg’) is the
stationary measure for Y.
If f and g are bounded, Lipschitz continuous, and integrable; Fubini’s theorem gives

/ E.[f(Y)lg(em (dx) = / / s (6 ¥) £ ImE (dy)g(OmP(dx)
— f f s, Vg M (dx) £ (Im(dy)

- / E, [g(Y)1f()mdy),

where we have used the symmetry u,(x, y) = u;(y, x) in the last line. Hence, Y is reversible
with respect to m)”. [

To finish this section, we return to prove Lemma 4.1.

Proof of Lemma 4.1. The proof of this lemma is a simplified version of the methods
we applied in earlier in this section; as such, we omit the main details to avoid repetition
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and instead sketch the proof. Following the arguments used to prove Proposition 4.14, with
x = {{1}, {2}, ..., {n}}, we can derive a Gaussian bound on the summand in (20). We can then
adapt the arguments in Lemma 4.16 to bound the resulting contour integrals, which will have
additional factors of k due to the derivatives. In fact, the proof can be significantly simplified
in this case as we do not need to consider the + — 0 limit, and therefore we do not need to
ensure we get the optimal exponent for . The above arguments give us a bound in the form of
a finite sum of Gaussian kernels, multiplied by a negative power of ¢, from which the above
bounds follow easily (note that for the bound on the x derivatives, we can apply the bound on
the y derivatives, as u,(x, y) = u,(y, x) which we proved in Lemma 4.10). O

5. Stochastic flows of kernels

5.1. Random walks in random environments

We will begin by recalling the definitions for the discrete counterparts of Howitt—Warren
flows and sticky Brownian motions: Random walks in space—time i.i.d. random environments
on Z and their n-point motions. A random walk in a random environment on Z is simply a
random walk on Z whose transition probabilities are themselves random variables. We define
the random environment as a family of i.i.d. [0, 1] valued random variables ® = (@ );.xez
with law and expectation [P and E, respectively. We then define a random walk running through
realisation of the environment with transition probabilities:

PX(t+ D =x+1| X(t) =x) = wy;
PXGt+D=x—1X({t)=x)=1—o,,.

Here, P® denotes the law of the RWRE, and E® its expectation, both of which depend on the
realisation of the environment. The random transition probabilities, P“(X, = y| Xo = x), can
be interpreted as a random flow of mass in a fluid, where the quantities describe how a point
mass at x has spread through the fluid by time z.

An important idea for studying such models are the n-point motions, we run n» random walks
independently through a sampling of the environment, and then average out the environment.
The averaging over the law of the environment will break the particles’ independence, so
that the resultant system has interactions. That is, if X(#) = (X Y1), ..., X"(@)) is the n-point
motion, then

n
PXt+1)=y|X@t)=x)=E |:1_[ PX't+1)=y|X@) = x,-):| .

i=1
Alternatively, we can view the n-point motions as describing the behaviour of n particles thrown
into the fluid. Notice now that since the environment is i.i.d, the coordinate processes of the
n-point motion behave independently when they are apart. However, when they meet, they
interact. In particular, it is a simple consequence of Jensen’s inequality that they are more
likely to move in the same direction when together than when apart; if we let w be a copy of
an environment variable, then we see

Elo"] + E[(1 — w)"] = E[w]" + E[1 — w]".

A group of particles situated at the same site, x, at time ¢ can break into at most two groups.
The probability of a group of n particles breaking into two groups of size k and /, with the k
moving to x + 1 and the [ to x — 1, is

Elw},(1 — w.)'].
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Hence, the distribution of @ can be viewed as controlling the rate at which groups of particles
break up, and the size of the groups they tend to break into. Of course, when clusters of
particles are in different locations the corresponding parts of the environment are independent,
and thus, the clusters of particles behave independently of each other, so that the distribution
of the environment only affects the behaviour of particles that are already in the same location.
At the extreme ends, if the environment variables are chosen to be {0, 1} valued Bernoulli
random variables, then the n-point motions become coalescing simple random walks. On the
other hand, it the environment variables are chosen to be deterministic with value %, then the
n-point motions will simply be independent simple random walks. Thus, the strength of the
effect of the environment on the interaction between the n-point motions is related to how
probable it is that the environment variables take values near O or 1.

If we take the diffusive scaling limit of these n-point motions in an environment having a
fixed distribution, then the contribution of the environment is overcome in the limit, and we
simply end up with independent Brownian motions (assuming the environment variables are
mean 1/2 so there is no drift).

It was shown by Howitt and Warren [9] that by changing the distribution of the w as we take
the diffusive scaling limit, we can obtain Brownian motions which still interact; specifically,
they are sticky when they meet, see also Schertzer, Sun and Swart [16]. To preserve the
interaction into the diffusive scaling limit the strength of the interaction has to be increased; this
means taking the laws of the environment random variables to be closer to that of a Bernoulli
random variable. This requirement is made explicit in the second condition of Howitt and
Warren’s theorem, stated below.

Theorem 5.1. Suppose X (t) is the n-point motion of a RWRE, where the environment variables
have law 1'® satisfying the following:

1 1
—/ (1 =2¢9)u®dg) — B, ase— 0;
& Jo

1
gq(l —gu(dqg) = v(dq), ase— 0.

Then the laws of the processes (e X(e%t));=0 converge weakly to the law of a solution to the
Howitt—Warren martingale problem with drift B and characteristic measure v.

In the special case of v(dx) = 6/2dx, where dx is the Lebesgue measure the above
result shows the solution to the Howitt—Warren martingale problem is the scaling limit of the
Beta random walk in a random environment. That is, choose 1 (dg) = %qgkl(l -
¢)?*~'dgq, then for any function C,([0, 1]) the dominated convergence theorem implies

I'(26¢)

1
Oer1 _ ,\0¢
—sr(es)F(eg)/o fl@q* (1 —q)*dq

1 1
- / f(@q( — u®dq) =
€ Jo

9 1
— 5/0 flg)dq,

using ['(x) = &) ~ 1

as x — 0. Hence 1g(1 — ¢)u® = %dx; since we also have
fol(l —2q)u'®(dg) = 0 for all ¢ > 0 the theorem implies the convergence of the n-point
motions of the Beta random walk in a random environment to solutions of the Howitt—
Warren martingale problem with characteristic measure %]l[oyl]dx and zero drift. This is the
key motivator for looking for exact solutions in the sticky Brownian motion case and was used
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by Barraquand and Rychnovsky in [3] to find Fredholm determinant expressions in the sticky
Brownian motions case by taking limits of those found for the Beta random walk in a random
environment in [2].

5.2. The Howitt-Warren process

We now briefly introduce stochastic flows of kernels, these are essentially random tran-
sition probabilities (K ,(x, dy));<;, with the following additional assumptions: independent
increments in the sense that for any #, < ---,t, the random kernels K, ,..., K, are
independent; stationarity, that is the law of K, depends only on # — 5. They can be thought
of as the continuum version of the random environment that is i.i.d. in space and time we
considered in the previous section.

The n-point motions of a stochastic flow of kernels are the family of Markov processes
(X,)52, with X, taking values in R" with transition probabilities

P(X, (1) € E| X,(s) = x) = E[/ [T K. Cxi. dy,»)], for x € R", E € BR").
Einy

Notice that this is very similar to the definition of the n-point motions in the RWRE case, with
K taking the place of the random transition probabilities.

Le Jan and Raimond [11] have shown that any consistent family of Feller processes are
the n-point motions of some stochastic flow of kernels. A family of Feller processes (X,)72,
X, : R.o — R”" is consistent, if for any k¥ < n and any choice of k coordinates from X,:
X, ... X5 s equal in law to Xj. For a more complete introduction to stochastic flows of
kernels we refer to [11]. When the family of n-point motions, (X,)72,, are sticky Brownian
motions characterised by a Howitt—Warren martingale problem the resulting flow of kernels
is called a Howitt—Warren flow. These flows have been studied extensively by Schertzer, Sun,

and Swart [16].

Definition 5.2. The stochastic flow of kernels whose n-point motions solve the Howitt—Warren
martingale problem, as stated in Definition 2.2, with characteristic measure v and drift 8 is
called the Howitt—Warren flow with characteristic measure v and drift S.

Rather than look at the flow directly, we want to consider the Howitt—Warren process a
measure valued process that describes how an initial mass is carried by the flow. In our case,
we are interested in the case where all mass starts at the origin; thus, we consider the Howitt—
Warren process with initial condition §. That is, for the Howitt—Warren flow (K ;);<, with
characteristic measure v and drift 8 we define the Howitt—Warren process started from §, with
characteristic measure v and drift B8 to be the measure valued process given by

pi(A) == Ko,(0, A), for every Borel set A C R. (61)

If f:R" — R is a symmetric function, then E.[ f(X())] = E.[f(Y(1))] for all x € W~.
Hence, we have the following corollary of our main result, Theorem 1.2, that allows us to study
the Howitt—Warren process.

Corollary 5.3. If f : R" — R is a symmetric function, and its restriction to W" is a bounded,
Lipschitz continuous function, then for a Howitt—Warren flow (K, )s<, with characteristic
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measure %dx and drift zero we have

E[ / f(y)]‘[Ks,xxi,dy,-)} = / (6, ) fImg’(dy)  for all x € W".
i=1

From which it clearly follows that for the Howitt—Warren process started from &y with
characteristic measure %]1[0,1] and drift 0, we have that

E [ / f(y)p?”(dy)] _ / 0 0, 3) £ Im(dy). 62)

This allows us to study the process directly, via u, which we will pursue further in the next
subsection.

5.3. Atoms of the Howitt-Warren process

Schertzer, Swart, and Sun proved [16, Theorem 2.8] that any Howitt—Warren process is
almost surely purely atomic for fixed times ¢. Thus, almost surely we can write the Howitt—
Warren process at time 7 as a linear combination of delta measures p,(dy) = ), w;8y,(dy),
where the w; and y; are both random. One can think of the Howitt—Warren process as the
density of an infinite number of sticky Brownian motions evolving in time. Thus, the fact that
the process is atomic shows that when the number of particles is very large, the sticky behaviour
leads to the formation of large clusters of particles. This is very different from the behaviour
of large numbers of independent Brownian motions.

We can think of the collection of pairs (y;, w;) as a point process on R x R.(. Note that
the Howitt—Warren process conserves mass, so that for any ¢ > 0 we will have ), w; = 1.
However, due to another result of [16], the total number of points will be infinite almost surely
This point process has an associated intensity measure y, on R x R.( defined by

vi(Ar X Ay) =E |:Z Liyea, wiEAz}:| :

We will use this intensity to study the behaviour of the weight of a single atom at a given point
in space. See [5] for an introduction to point processes. For any n € N and f : R — R that is
bounded and Lipschitz continuous, we have the equalities

/ fOW" yi(dy, dw) =E [Z f(y»w?]
RXR>0 i

=E [ /D f ®"(y)p£®”(dy)]

= / FE 0, yym” (dy)
]D)Il
=n"'9'"™" f FOuO, (v, ..., y)dy. (63)
R

Above, D" .= {(y,...,y) € R": y € R} and we have written uﬁ") for the transition density u,
on R", which we do for the rest of the section to indicate the dependency on dimension. The
first equality can be seen by approximating by simple functions, the second is direct from the
definitions, the third is a consequence of Corollary 5.3 and the fourth from Definition 1.1.
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Equality (63) also shows that the measure y,(dy, dw) can be written in the form y;(y, dw)dy,
and that we have for each n € N and almost every y € R the equality

/ W'y, (y, dw) = n~'0 U0, (v, ..., y)). (64)
R>O

We will study the asymptotic behaviour of the measure y;(y, dw) for certain choices of y. We
can interpret y,(y, dw) as describing the distribution of the size of an atom at y. However,
v:(y, dw) is not a probability distribution; the measure of any neighbourhood of w = 0 is
infinite. Introducing size biasing, and instead considering the measure wy;(y, dw), we do get
a finite measure. If we set n = 1 in (64), then we can see that the marginal of wy;(y, dw)dy,
when w is integrated out, is just a Gaussian measure. If we sample an atom and its size,
(X, W) € R x R, from the Howitt—Warren process, p;, with probabilities given by the size
of the atoms, then the distribution of (X, W) is given by wy,(y,dw)dy. In the following
proposition, we study this distribution in the large time limit, conditioned on X = /¢x. This is
analogous to Thiery and Le Doussal’s result in [17], where they found that the fluctuations
of the transition probabilities of the Beta RWRE were Gamma distributed in the large ¢
limit.

Proposition 5.4. For each x € R, we have as t — 00

722 e2wy,(«/—x \/_):>0v eZegznezwdw

’C
In particular, the convergence is towards the exponential distribution with rate 0+/2mwe 2 .

Proof. Note that the measure on the left hand side in the proposition has been normalised
and is a probability measure. Thus, it is enough to show pointwise convergence of the moment
generating functions on a neighbourhood of 0. With Theorem 1.2, we can rewrite the expression
for the moments derived in line (64) as follows.

1oa2 a2 gl
/ w2t 2e 2 wy, (\/;x, ‘%) V2me T w'y, <«/;x,dw>
) R-o
22 ntl (D)
_ 5 Uy ((0,...,0),v/1(x,...,x))
=V2mwe2t 2 T
x2 n+1

1 2 . :
2 Lk —ivik 10(kg (o) ko (8)) o 8k
—or_e21 o~ 2! kI =ivikx 2: I l 16(ko (o) ko (p) Fhoprko@) 47
R+l

(n+l)0n(2n)n+l le(kv(a)_ka(ﬁ))_ka(ﬁ)kﬁ(a)
aeSn_H a<f:
o(B)<o(a)
xz n+1 | ]
/ n'e 24 2 e—ﬁt\k@—iﬁk-g 1_[ i0(kg —ka) dk
TV gy f— 10(kg —ka)—kakp
a<f

x2

5 _Lrei i0(kg—k
Vgl [ R[] kg
R+l

gn(zﬂ)nJrl 1
a<f iQ(kﬁ*ku)ft zkakﬁ
To go from the first to the second line we have used line (64) and to go from the third to the
fourth line we have used the summation formula from Lemma 4.11. We can now write the
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moment generating function in terms of the moments.

x2 d
«/Zm‘*%eT/ My, (\/Zx, _w)
R>0 \/;

2
Z \/— Me 2 / ei%lklziikl l_[ le(kﬁ — ko{) dk.
072yt Jrat o 100k — ko) — 1™ 2ketk

To take + — 0o, we want to apply the dominated convergence theorem to pass the limit through
both the sum and the integral. Similarly to what we have seen previously, line (53) to be precise,
the modulus of the product within the integral is bounded above by 1. With this bound we find

that the modulus of the nth term of the series is bounded above for all + > 0 by A e e , which
is summable for |A| < @, and so we can take the limit 1 — oo through the sum. Further the
bound on the integral allows us to take the limit through the integral. Hence, for [A| < 6, we
have

%2
. Ae'T 12 10(kg — ky)
1 E / 2|k| lkil | B o dk
o An+le

00 Tor@uy asp i0(ks — ko) — 1™ 2kaky
x2 2 n
Ae 2 © )Lef%
=y Voar———— / o™ 2Pk g —
Z 9”(27‘[)"+1 Rn+1 g O~/ 2w

This is exactly the moment generating function of an exponential random variable with
2 .
parameter 6+/2me* /2, and thus the statement is proved. [J

We can reframe the above proposition as a result concerning the convergence of the intensity
measure of the point process. This gives us the following corollary.

Corollary 5.5.

d K2
t’%wy, <«/;x _w) dx = Qe Ve 2 Wy du.
Jt

Proof. This statement follows from the previous proposition by a simple application of the
dominated convergence theorem. [J

In a remark, Sun, Swart and Schertzer showed that the stationary distribution of the Howitt—
Warren process with a uniform interaction measure is given by a Poisson point process with
intensity measure dxie‘wd w [16]. This remark was based on a similar result by Le Jan and
Raimond for sticky flows on the circle [12]. In the same work, the authors show that when the
Howitt—Warren process is started from a distribution with infinite mass, it converges towards
the stationary solution. The above corollary concerns the case when the starting mass is instead
finite.

Remark 5.6. In the preceding corollary, we do not show that the point process itself is
converging, only its intensity. However, given the result of Sun, Swart and Schertzer mentioned
above, it is reasonable to expect that the point process should converge a Poisson point process.
To prove such a result, one could consider the convergence of the kth correlation measures, for
arbitrary k € N (rather than just the k = 1 case considered above). Similar identities to (64)
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exist for the kth correlation measures, and we believe convergence to a Poisson point process
can be shown by generalising the arguments above.

Another aspect of Thiery and Le Doussal’s work on the Beta RWRE, [17], was to derive a
Fredholm determinant formula, which, after some formal manipulations, was used to analyse
the behaviour of the transition probabilities in the large deviation regime. In our case, we can
derive the following Fredholm determinant formula, which is analogous to formula (52) in [17].

Proposition 5.7.

Y
1+Z/ n _l)vy,(y,dw)=9d6t<l+@1(>. (65)

Above, the determinant is a Fredholm determinant and K is an integral operator on L*(R)
with kernel

xye 4z(x +y?)
K(x,y)= ———. (66)
i0(y —x)+xy

Proof. Eq. (64) and the summation formula in Lemma 4.11 give the equality

(n—l)!/ e 0(ks — ko)
dw) = oo W =iky dk.
/;Mw P ) = Gy Je© Hl@(kﬁ_k )~ kakp

The proof is completed by the following identity, which is a consequence of the equalities
(A.1) and (D.1) in [17]

10(ky 8y — koo kgky
11 10(ks(8) — ko) ol det [ i ] O 7
veS, a<p 19(k(,(,g) — ka‘(a)) — ko‘(a)ko‘(/s) 1<a, /3<n 19([{/3 —k ) + k, kﬂ

It would be interesting to use the above formula to analyse the behaviour of y; in the
large deviation regime: I converges to a non zero number as t — oo, where we expect the
appearance of GUE Tracy—Widom fluctuations. Unfortunately, the above Fredholm determinant
is not in an ideal form for asymptotic analysis. We would instead want an analogue of the
conjectured formula (92) in [17]. In [3], Barraquand and Rychnovsky considered the tails of
the Howitt—Warren process, p,([x, 00]), and derived a Fredholm determinant formula for the
Laplace transform via a scaling limit from the Beta random walk in a random environment, with
which they were able to prove the existence of GUE fluctuations. In a non-rigorous work Thiery
and Le Doussal [17] show the existence of GUE fluctuations for the transition probabilities of
the Beta RWRE evaluated at a point. This suggests the following conjecture for the fluctuations
of the individual atoms.

x2
Conjecture 5.8. If X, , is a random variable on R with law /2rte™" > wy,(tx, dw), then
there are functions J : R — R and o : R — R such that

. log(Xy,1) + J(x)t

limP| ————— <
t130(x)

where Fgyg is the cumulative function for the Tracy—-Widom GUE distribution.

Z) = Foue(2), (68)

—00
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