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Abstract—Human activity recognition (HAR) is a core research
topic in mobile and wearable computing, and has been applied
in many applications including biometrics, health monitoring
and sports coaching. In recent years, researchers have focused
more attention on sensor-based HAR due to the popularity of
sensor devices. However, sensor-based HAR faces the challenge
of limited data size caused by the high cost of data collection and
labelling work, resulting in low performance for HAR tasks. Data
transformation and generative adversarial network (GAN) have
been proposed as data augmentation approaches to enrich sensor
data, thereby addressing the problem of data size limitations. In
this paper, we studied the effectiveness of diffusion-based gener-
ative models for generating synthetic sensor data as compared to
the other data augmentation approaches in sensor-based HAR.
In addition, UNet has been redesigned in order to improve the
efficiency and practicality of diffusion modelling. Experiments
on two public datasets showed the performance of diffusion
modelling compared with different data augmentation methods,
indicating the feasibility of synthetic sensor data generated using
diffusion modelling.

I. INTRODUCTION

Human activity recognition (HAR) involves using tech-
nology to identify and classify the physical movements of
individuals, and has been applied in areas such as biometrics,
healthcare, sports, and entertainment [1]–[4]. Sensor devices
such as smartphones, smartwatches, and fitness trackers are
becoming increasingly popular for tracking and monitoring
a person’s daily activity. A wide range of physiological and
kinematic parameters can be measured by these devices,
including heart rate, step count, movement speed, and a
wide range of activity information. Sensor-based HAR has
been gaining popularity in recent years for various purposes,
for example, in biometrics to detect patterns of behaviour
unique to individuals. As a form of biometric signature, these
patterns can be used to identify or authenticate an individual,
and can also be used to detect if a person is attempting to
impersonate another by mimicking their movement patterns.
Additionally, sensor-based HAR can be used in situations in
which traditional biometric characteristics cannot be easily
accessed, such as when a person is wearing gloves or masks, or
when there is poor lighting or image quality. These cases can
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be addressed by sensor-based HAR, utilizing the movement
patterns of the individual being identified.

Using sensor devices for activity recognition is associated
with challenges and limitations. These include issues related to
sensor accuracy and data quality [5]. The capability of sensor-
based HAR has been greatly improved by recent advances
in machine learning (ML). In order to improve the model’s
performance, these methods require a large amount of data.
However, it is often time-consuming and costly to collect and
annotate sufficient sensor data. In addition, ML methods are
sensitive to the quality of the data and may perform poorly if
the data is noisy or contains biases. The difficulty of collecting
sufficient quality sensor data has hindered research progress
in the HAR field. Researchers have proposed some practical
solutions to the problem of insufficient data in sensor-based
HAR, such as data augmentation. In contrast to data trans-
formation methods limited by the original data size, Senso-
ryGans [6] used Generative Adversarial Network (GAN) as a
data augmentation tool to generate additional synthetic sensor
data. GAN was first introduced in [7] and has been proven
successful in many areas, including computer vision [8], [9]
and language processing [10], [11]. However, despite their
success in other areas, GAN has not been widely used in the
field of sensor-based HAR. GAN is difficult to train due to
the large amount of data required and the constant competition
between the generator and the discriminator, making training
unstable and slow.

As compared to GAN, diffusion models have been shown
to enhance data generation capabilities in computer vision,
making them more appropriate for generating synthetic data
and attracting more audience members. The Denoising Dif-
fusion Probabilistic Model (DDPM) [12] has been popular in
image generation within the computer vision community for
some time. In this paper, we studied the diffusion modelling
based on DDPM, and explored the possibility of applying the
diffusion modelling to generate synthetic sensor data. Prior to
this work, diffusion models had not been adapted for sensor-
based HAR tasks. The main contributions of this work are as
follows.

• To the best of our knowledge, this is the first study to
compare diffusion modelling with other data augmenta-
tion approaches for sensor-based HAR.979-8-3503-3607-8/23/$31.00 ©2023 IEEE



• Redesigned the UNet model to make the diffusion mod-
elling more applicable to sensor data.

• Visual analysis of the synthetic sensor data generated by
diffusion modelling.

The remaining of this paper is organized as follows. In
section II, we review the related work. In section III, we
explain the DDPM in detail. In section IV, we introduce
the method for applying diffusion modelling to sensor-based
HAR, and the experiments are shown in section V. In section
VI, the results of the experiments and some insights are
discussed. Finally, section VII summarizes this work.

II. RELATED WORK

A. Sensor-based Human Activity Recognition

Sensor-based HAR is a rapidly growing field with numerous
applications in different areas. A wide range of approaches and
techniques have been proposed and used for this purpose, the
machine learning using manual feature engineering is the most
common method for HAR tasks [4], [13]. However, feature
engineering requires sufficient quantities of sample data [14].

In light of the difficulties in collecting and annotating
sensor data, data augmentation is gaining more attention
among researchers. Several methods have been proposed and
used for augmenting sensor data. One method is to apply
transformations to the data [15], such as scaling, jittering,
rotation, and cropping, to create new data points. However, the
original data size may limit the size of the new data that can be
generated by the transformation method. Another method is to
use synthetic data [6], [16], which is generated by a machine
learning model. Synthetic data has the advantage of being able
to simulate a wide range of scenarios and can be generated in
large quantities. While synthetic data can produce significant
amounts of data, existing GAN-based methods suffer from a
number of shortcomings. In [6], since GANs are challenging to
train, each activity may need its own GAN to generate related
synthetic data. However, creating a separate GAN for each
activity is not efficient and cannot be generalised in practice.

B. Diffusion Models

The diffusion model was first proposed in 2015 and inspired
by Nonequilibrium Thermodynamics [17]. Currently, diffusion
models have gained attention in the field of computer vision
due to their ability to generate high-quality images while also
preserving fine details. These models are based on the idea
of using diffusion processes to denoise images and improve
their quality. One significant research is DDPM [12] which has
demonstrated its effectiveness for image generation. Following
this, a number of variations of diffusion models have been
proposed, including those based on image generation [18],
image super-resolution [19], anomaly detection [20] and other
similar topics. Although diffusion models have proven their
effectiveness in the field of computer vision, it is still a blank
for sensor-based HAR.

III. DENOISING DIFFUSION PROBABILISTIC MODEL

Diffusion refers to the process of spreading through time. In
the context of DDPM, this means that the model attempts to
smooth out the noise in the data by considering the values of
nearby points in the time series. DDPMs have the advantage
of being probabilistic models, which means that they can
provide estimates of the uncertainty in their estimates of
the underlying structure. This can be particularly useful for
making predictions or for identifying patterns in the data that
may not be immediately apparent.

In the forward process, the Gaussian noise is used to
gradually degrade the samples in T steps, where the samples
are from a real data distribution x0 ... q(x), according to a
variance schedule β1 . . . βT . And the noise samples are
produced as x1 ... xT . Followed as (1):

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),
T

q(x1:T |x0) =
∏
t=1

q(xt|xt−1)
(1)

By using the reparameterization trick, we can sample xt at
any arbitrary time step t by Equation (2). Let αt = 1−βt and
ᾱt =

∏t
i=1 αi, we can have:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

The reverse diffusion process pθ(x0:T ) gradually denoises
from a Gaussian noise input xT ∼ N (0, I) and allows
generating new data samples. It follows the reverse steps in
Equation (3):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)
(3)

In training, the usual variational bound on negative log-
likelihood is optimized as follows:[

E [− log pθ (x0)] ≤ Eq − log
pθ (x0:T )

]
q (x1:T | x0)

=[ ∑
Eq − log p (xT )− log

pθ (xt−1 | xt)
] (4)

q (xt | xt−1)
=: L

And L in Equation (4) can be written as:

L = Eq


DKL (q (xTx0) ∥p (xT )) ︸

︷︷ +︸
LT∑

t>1 DKL (q (xt−1xt,x0) ∥pθ (xt−1xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0x1)︸ ︷︷

︸
L0

(5)

where KL refers to the Kullback-Leibler divergence.
The reverse conditional probability is tractable when con-

ditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI) (6)



In [12], the covariance is set as a constant and calculated
µθ(xt, t) as a function of noise:

µθ =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (7)

where αt = 1− βt, ᾱt =
∏

i≤t αt, and ϵθ(xt, t) is defined
as a function approximator which can predict ϵ from xt. The
simplified mean-squared error between ϵθ(xt, t) and ϵ along
with time t is defined as:[∥

L(θ) = Et,x0,ϵ
∥ϵ− ϵθ(

√
ᾱtx0 +

√ ∥2]1− ᾱtϵ, t)
∥

(8)

IV. DIFFUSION MODELLING FOR SENSOR-BASED HAR

In this paper, we studied diffusion modelling based on
DDPM, which is a generative model for reconstructing latent
signals from noisy observations for sensor-based HAR. We
followed the same process of DDPM, which consists of two
stages, forward diffusion and backward denoising. Instead of
feeding image data, we modified the input layer to accept sen-
sor signal data. We applied the sliding window technique [21]
to segment sensor signals into frames to capture proper activity
information. Each frame represents 1s sensor signals. Then,
diffusion and denoising processes can be performed using
frames of sensor data.

The UNet [22] was introduced in DDPM to represent the
reverse process, which improved the quality of image synthe-
sis. UNet is initially designed for image segmentation. It has
a U-shaped architecture that consists of an encoder network
to downsample the input image, and a decoder network to
upsample the encoded image back to the original size. The
traditional UNet is not suitable for processing sensor data
directly because of the significant difference between sensor
data and images. In addition, UNet has a deep network for
downsampling and upsampling, which is ineffective for sensor
data with fewer channels or short frame lengths.

Fig. 1. The proposed UNet architecture (example for 100x1 sensor data)

Instead of using a traditional UNet, we redesigned the
UNet shown as Fig. 1, which can take sensor data and be
more efficient when applied in HAR tasks. We redesigned the
input layer of UNet to accept sensor data frames with fewer
channels (e.g. single channel) and different frame lengths.
Due to the simpler nature of sensor data, we restructured the
downsampling and upsampling layers. In the downsampling

layer, we proposed using a self-attention layer followed by
a 2x1 max pooling. In the upsampling layer, we proposed
using a self-attention layer followed by 2D convolutions.
The network was optimized for HAR tasks by reducing the
contracting path (left side) and expansive path (right side)
to avoid over-featuring the sensor data with fewer channels
or short frame lengths. In the training process, we embedded
class labels so that a unified framework could be developed to
handle a variety of activities. Lastly, we generated synthetic
sensor data in the form of frames using diffusion modelling.

V. EXPERIMENTS

A. Dataset

We choose two public datasets for our experiments. The
HASC2010corpus (HASC) [23] consists of seven subjects and
six activities. Sample data includes accelerometer values for
three axes. In PAMAP2 [24], twelve activities were recorded
across nine subjects using IMUs (including accelerometers,
gyroscopes, and magnetometers) attached to hands, chests, and
ankles. Our data is recombined based on different activities in
the datasets (accelerometer data only in HASC, and wrist-
worn accelerometer data only in PAMAP2), and three typical
activities (Stay, Walk, and Jog) are chosen to represent the
original data. The hold-out method is used to split the dataset
into training and testing data. In order to prevent information
leakage, generative models are trained using the training data
only to generate the synthetic data, and using testing data
to verify the quality of generated data by evaluating the
performance of selected ML models. Since machine learning
models may be preferred when testing the quality of generated
data due to their simplicity, interpretability, efficiency, and
their statistical understanding. In order to eliminate direction
effects from accelerometers, we preprocessed the values using
Euclidean norm as X =

√
ax2 + ay2 + az2, where ax,

ay , az are accelerometer values in three different directions
respectively. By applying sliding window techniques, we were
able to obtain the data of the appropriate size. Each dataset
had a frame length of 1s, and all frames were normalised by
Z = X−µ

σ , where µ and σ are the training data’s mean and
standard deviation respectively. Afterwards, normalised data is
used for all analyses.

B. Result

In order to verify the reliability of the diffusion modelling
for sensor-based HAR, four different data augmentation meth-
ods are chosen for comparison. These methods include data
transformation and data generation.

We evaluated synthetic data using Logistic Regression (LR),
Decision Tree (DT), Random Forest (RF), k-Nearest Neighbor
(KNN) and Support Vector Machine (SVM). The parame-
ters of these classifiers were all selected by grid search.
We selected fourteen statistical features extracted by sliding
windows from raw and synthetic data. The features include
mean, standard deviation, min, max, 50th and 75th percentile,



TABLE I
THE MEAN F1 RESULT ON REAL VS SYNTHETIC DATA

LR DT RF KNN SVM

HASC

Real Data Baseline 0.898 0.901 0.903 0.901 0.899

Data Scaling [15] 0.901 0.903 0.904 0.899 0.901Data Transformation Data Jittering [15] 0.899 0.899 0.903 0.901 0.900

SensoryGANs [6] 0.908 0.910 0.912 0.908 0.911
Synthetic Data ActivityGAN [16] 0.896 0.902 0.901 0.899 0.903

Diffusion Modelling 0.916 0.918 0.923 0.920 0.919

PAMAP2

Real Data Baseline 0.935 0.938 0.942 0.936 0.937

Data Transformation Data Scaling [15] 0.936 0.940 0.944 0.937 0.936
Data Jittering [15] 0.935 0.938 0.943 0.936 0.935

SensoryGANs [6] 0.945 0.947 0.948 0.946 0.945
Synthetic Data ActivityGAN [16] 0.945 0.946 0.946 0.947 0.944

Diffusion Modelling 0.948 0.949 0.953 0.950 0.949

TABLE II
THE MEAN F1 RESULT FOR TRAINING ON REAL DATA AND TESTING ON SYNTHETIC DATA IN HASC

LR DT RF KNN SVM

Training/Testing (real data/real data) Baseline 0.898 0.901 0.903 0.901 0.899

SensoryGANs [6] 0.900 0.901 0.902 0.899 0.900
Training/Testing (real data/synthetic data) ActivityGAN [16] 0.897 0.898 0.901 0.900 0.899

Diffusion Modelling 0.901 0.902 0.903 0.903 0.902

kurtosis, skewness, standard error of the mean, median, in-
terquartile range, range of values, median absolute deviation,
and count below mean.

We measured performance using the mean F1-
score for all experiments, which is defined as
F̄1 = 1

∑K
K k=1

2TPk

2TPk+FPk+FNk
, where K stands for

the number of classes (activities). TPk, FPk, FNk denote
the number of true positive, false positive, and false negative
predictions, respectively.

We compared diffusion modelling with other data augmen-
tation approaches in Table I. In light of the simplicity of the ac-
tivity and the distinction between activities, the raw data allows
the model to learn certain features for classification, thereby
weakening the role of data transformation in performance
improvement. Therefore, data transformation methods perform
at the same level as baseline results. On the other hand,
synthetic data can improve the model’s performance. Since
synthetic data can be labelled with no errors or ambiguities,
and it can be generated with an even distribution of classes,
these properties can help avoid bias when training models.
We can see that SensoryGANs has a better performance
than ActivityGAN in both datasets, particularly in HASC
where the mean F1 score is increased by 1% for all ML
methods. In spite of SensoryGANs achieving better results,
it is not practical because it requires a separate GAN for
each activity. While ActivityGAN can generate all activities
from a unified architecture, it fails to improve performance.
Conversely, we found that the data generated by diffusion

modelling can obtain satisfactory performance gains compared
to data transformation and GANs. In HASC, the mean F1 score
of all ML models can be improved by more than 1%, and
reached 2% for RF and SVM. As opposed to SensoryGANs,
diffusion modelling has a unified architecture, making it more
efficient and practical. In PAMAP2, where the activities are
more standardized, the diffusion modelling can still improve
the mean F1 score by more than 1% compared with the
baseline.

1) More testing on synthetic data: The quality of synthetic
data was further explored to confound the model’s perception
of the data. As seen in Table II, there are two groups of
testing: The first group is the same baseline experiment as
in Table I, and the second group is an additional verification
for synthetic data, where the model trained using real data,
and then tested using synthetic data. This allows us to verify
whether the model is capable of distinguishing between real
and synthetic data.

From the result in Table II, SensoryGANs has similar
results as baseline, while ActivityGAN has a slight decrease,
suggesting these GANs can generate accurate synthetic sensor
data. A better classification performance is obtained with
synthetic data generated by diffusion modelling compared
with baseline and other GANs, which indicates that diffusion
modelling has the ability to generate higher-quality data.

These experiments have shown that the data generated by
diffusion modelling may have similar features to real data,
which can prove the quality of synthetic data. However, testing



on synthetic data may not be useful in a real scenario, the result
in Table I suggests that the synthetic data could contribute to
the training of the model.

C. Synthetic Data Visualization

To assess the quality of the synthetic data, we selected three
activities (Stay, Walk, and Jog) which can be distinguished by
visual observation. In this paper, we compared the amplitudes
of real and synthetic data to visualize the degree of similarity.
Inspired by the approaches in [6], we applied the synthetic
sensor data in two different visualization methods: local visu-
alization and global visualization.

(a) Stay (b) Walk (c) Jog

Fig. 2. Local visualization of real and synthetic data in HASC dataset

(a) Stay (b) Walk (c) Jog

Fig. 3. Global visualization of synthetic data in HASC dataset

1) Local Visualization: In order to investigate whether local
amplitude trends are similar between the synthetic and real
data, we first accessed training data for one sliding window,
as shown in Fig. 2, the blue line is real data and the orange line
is synthetic data. As can be seen from the amplitude trends
observed for all three activities, the synthetic data is highly
similar to the real data. As a result of these observations,
it is clear that the synthetic data generated by the diffusion
modelling demonstrate a satisfactory representation of real
data.

Additionally, synthetic data offers other benefits beyond its
ability to mimic real data to a high degree. While the sliding
window technique is widely accepted in sensor-based HAR
tasks, it suffers from the problem that the window may contain
activities that are not matched with the labels. Nevertheless,
synthetic data generated by diffusion modelling could correct
the problem and generate accurate data that matches the label.

2) Global Visual Evaluation: In addition, we evaluated the
synthetic data from a global perspective illustrated in Fig. 3.
Based on the results, we can clearly identify synthetic data for
different activities. While the stay activity in Fig. 3 (a) shows
the smoothest trend, the walk and jog in Fig. 3 (b, c) have
much more varying amplitude, but we can also clearly identify
them based on their frequency. Compared to real data, the

TABLE III
COMPARISON OF UNET AND REDESIGNED UNET

Parameter Size Time for generating one-
second frame data

UNet 14988865 3s
Resigned UNet 3794369 1s

generated data tend to be more regular and does not fluctuate
as much as real data, which allows the data to better reflect
the activity label.

D. Further Experiments

Fig. 4. The performance on HASC for different ratios of mixed data

1) The effect of training samples: Mixing real data with
synthetic data not only increased the size of the data, but
also provided comprehensive training samples. Synthetic data
can be used to augment real data, by generating additional
examples that are similar to the real data but differ in certain
ways, which can help to improve the generalization of the
model. To explore the relationship between mixed data ratio
and performance, we tested mixing real data with synthetic
data with ratios of 1:1, 1:2, 1:3, 1:4 and 1:5. From Fig. 4,
we can see that the model’s performance improves as data in-
creases. The 1:1 mixed data has a significant performance gain
compared with the real data baseline, and the best performance
occurs with 1:4 mixed data for most cases. After a certain
amount of mixed data from the 1:4 ratio, the performance
gradually begins to level off.

2) The effect of UNet architecture: The UNet was re-
designed to work better for sensor-based HAR tasks. As well
as changing the input layer to accept sensor data, we also
reduced the contracting path and expansive path, yielding a
more efficient model with 75% fewer parameters and 67% less
generation time (for one-second frame data) while keeping
the same quality of synthetic data. Due to the nature of
the simplicity of sensor data compared with the image, the
simplified structure of UNet is more suitable for sensor-based
HAR tasks.

VI. DISCUSSION

This paper demonstrates the potential of diffusion mod-
elling in generating synthetic sensor data for human activity



recognition (HAR) tasks. By specifying desired properties,
such as noise levels and variability, diffusion modelling can
generate predictable and consistent synthetic data, making it
easier to train models. However, this regularity can also limit
the ability of synthetic data to capture the complexity and
variability of real-world data. In general, real data is preferred
for training models, as it better reflects the diversity of real-
world conditions. Synthetic data, however, can be a useful
supplement shown in Fig. 4 when real data is scarce or
expensive.

In this study, we utilized diffusion modelling to verify its
feasibility for sensor-based HAR tasks, choosing three simple
activities and single-channel sensor data. Our findings suggest
that diffusion modelling outperformed other data augmentation
methods, owing to the high quality of the synthetic data.
Nonetheless, the approach faces challenges when dealing with
complex activities or multi-channel sensor data. Therefore,
further research is essential to improve the efficacy of diffusion
modelling for sensor-based HAR tasks. Our study serves as a
preliminary exploration of the potential of diffusion modelling
for HAR, highlighting the need for more comprehensive
research to deepen our understanding of this approach in the
context of sensor-based HAR.

VII. CONCLUSION

In this paper, we studied diffusion modelling compared with
other data augmentation approaches for sensor-based HAR.
Based on three identifiable activities, diffusion modelling
can generate high-quality sensor data, effectively providing
a new direction for data augmentation in the HAR field. We
demonstrated the usability and recognizability of the synthetic
data through different visualization methods, illustrating the
improved performance of the generated data in two different
datasets. It is expected that sensor-based HAR research will
benefit from the development of more diffusion models, espe-
cially in situations with limited resources.
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