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ABSTRACT
The radial structure of debris discs can encode important information about their dynamical and collisional history. In this
paper we present a 3-phase analytical model to analyse the collisional evolution of solids in debris discs, focusing on their joint
radial and temporal dependence. Consistent with previous models, we find that as the largest planetesimals reach collisional
equilibrium in the inner regions, the surface density of dust and solids becomes proportional to ∼ 𝑟2 within a certain critical
radius. We present simple equations to estimate the critical radius and surface density of dust as a function of the maximum
planetesimal size and initial surface density in solids (and vice versa). We apply this model to ALMA observations of 7 wide
debris discs. We use both parametric and non-parametric modelling to test if their inner edges are shallow and consistent with
collisional evolution. We find that 4 out of 7 have inner edges consistent with collisional evolution. Three of these would require
small maximum planetesimal sizes below 10 km, with HR 8799’s disc potentially lacking solids larger than a few centimeters.
The remaining systems have inner edges that are much sharper, which requires maximum planetesimal sizes & 10 km. Their
sharp inner edges suggest they could have been truncated by planets, which JWST could detect. In the context of our model, we
find that the 7 discs require surface densities below a Minimum Mass Solar Nebula, avoiding the so-called disc mass problem.
Finally, during the modelling of HD 107146 we discover that its wide gap is split into two narrower ones, which could be due to
two low-mass planets formed within the disc.

Key words: submillimetre: planetary systems – planetary systems – circumstellar matter

1 INTRODUCTION

Debris discs, extrasolar analogues of the asteroid and Kuiper belt, are
a ubiquitous component of planetary systems (Wyatt 2008; Hughes
et al. 2018; Marino 2022). These discs are made of solids whose
sizes span ten orders of magnitude - from km-sized or larger down to
micron-sized. These grind down into a collisional cascade, producing
dust that is readily detected as infrared excesses around 20-30% of
nearby AFGK-type stars (Su et al. 2006; Sibthorpe et al. 2018).
Dozens of discs have been imaged in the optical and NIR tracing

★ E-mail: aimazblanco@gmail.com
† E-mail:sebastian.marino.estay@gmail.com

𝜇m-sized grains scattering stellar light (e.g., Mouillet et al. 1997;
Milli et al. 2017b; Feldt et al. 2017; Esposito et al. 2020) and at
millimetre wavelengths tracing the thermal emission of larger mm-
sized grains (e.g., MacGregor et al. 2013; Marino et al. 2016). The
latter are unperturbed by radiation and gas-drag forces, and thus
mm-sized grains tend to trace better the distribution of planetesimals
(Thebault et al. 2012).

Imaging debris discs has proven to be a powerful tool for con-
straining the dynamics and architectures of planetary systems. Disc
images reveal their morphology, which can be linked with the pres-
ence or absence of shepherding planets. For example, the presence
of a warp in 𝛽 Pic’s disc hinted at the presence of a massive planet
that was later discovered (Mouillet et al. 1997; Lagrange et al. 2009).

© 2022 The Authors
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Figure 1. Collisional evolution of the surface density of solids (left) and dust smaller than 1 cm (right) as a function of radius. The curves are computed using
the numerical model in Marino et al. (2017b) for a 1 𝑀� star surrounded by a debris disc with an initial surface density of (𝑟/1 au)−3/2 𝑀⊕ au−2, a maximum
planetesimals diameter of 100 km and the solid strength for ice as in §2. The arrows point at the critical radius, which shifts in time towards large radii. The
region interior to the critical radius has a surface density of solids and dust roughly proportional to 𝑟2.

Other discs show evidence of gaps that could have been cleared by
planets (e.g. Marino et al. 2020; Nederlander et al. 2021), eccentric
rings possibly forced by eccentric planets (Kalas et al. 2005; Faramaz
et al. 2019), clumps that could be due to resonant trapping (Wyatt
2006; Dent et al. 2014; Han et al. 2023), complex vertical structures
that hint at multiple dynamical populations of planetesimals (Matrà
et al. 2019), and shallow outer edges that suggest high degrees of
dynamical excitation (Marino 2021). Most of the time, these mor-
phologies could be produced by planets smaller than a few Jupiter
masses at tens of au that pre-JWST instrumentation was unable to
detect (Pearce et al. 2022); 𝛽 Pic b is an exception in that regard.
Therefore, in addition to constraining planetary systems’ dynamics,
the discs’ morphologies serve as an indirect way to infer the presence
of planets.
One feature that is of particular interest is the inner edge of a debris

disc. If the outer Solar System architecture was the norm, we would
expect debris disc inner edges to be truncated by planets. The inner
edge location has been extensively used to infer the location andmass
of such planets (e.g. Quillen 2006; Chiang et al. 2009; Nesvold &
Kuchner 2015; Pearce et al. 2022). However, only for a few systems
has the inner edge shape been directly compared to dynamical mod-
els to truly assess this scenario (e.g. Chiang et al. 2009; Read et al.
2018). Such comparisons require high-resolution and sensitivity ob-
servations that have only become available in the last few years with
the Atacama Large Millimeter/submillimeter Array (ALMA).
The observed inner edge of discs could, on the other hand, be a

result of collisional evolution. As the collisional lifetime of solids
decreases with decreasing radius, the inner regions of a wide disc
will collisionally deplete faster and become fainter than at larger radii
(Kenyon & Bromley 2002; Krivov et al. 2006; Wyatt et al. 2007;
Kobayashi et al. 2010). This will lead to a surface density that rises
with radius up to a critical radius, at which the collisional lifetime
of the largest planetesimals and the age of the system (or the time
since it was stirred) are the same. Disc observations that are limited
by their low resolution or sensitivity might easily miss the low-level
parts of the inner regions, and thus misinterpret this critical radius as
the disc inner edge. In this scenario, the inner edge would be shallow
with a surface density approximately proportional to 𝑟7/3 (Kennedy

&Wyatt 2010). So far, this behaviour of the surface density has been
characterized using very simple analytical models that assume either
size independent disruption threshold (Kennedy & Wyatt 2010) or
very narrow debris rings (Löhne et al. 2008; Geiler & Krivov 2017).
More complex numericalmodels ofwide debris discs that account for
how the strength of solids varies with size have shown this behaviour
(Schüppler et al. 2016; Marino et al. 2017b), but they did not provide
simple equations that characterize the surface density of dust and
that could be applied to observations.
In this paper, we present a 3-phase analytical model to characterise

the surface density ofmm-sized dust undergoing collisional evolution
in a wide debris disc and investigate whether such evolution is con-
sistent with the inner edge sharpness that we measure in seven wide
debris discs: HD 107146, HD 92945, HD 206893, q1 Eri, 49 Ceti,
AU Mic and HR 8799. These seven discs have been well resolved
with ALMA, with observations that resolve their radial extent with
> 5 resolution elements and signal-to-noise ratios larger than 10, and
thus ideal for investigating their inner edges. This paper is structured
as follows. In §2 we briefly summarise previous collisional models
and present our analytical model and relevant equations that can be
applied to observations. In §3 we fit the ALMA data of seven discs to
determine if they have sharp inner edges or are rather consistent with
having a smooth rising surface density due to collisional evolution.
In §4 we use our collisional model to interpret the results from fitting
the ALMA data and discuss our results. Finally, in §5 we summarise
our conclusions.

2 A COLLISIONALLY ERODED DISC INNER EDGE

The collisional evolution of debris discs is a topic that has been
studied at great length to interpret observations of debris discs. Col-
lisional models tend to split into a few different kinds. First, there
are simple analytical models that assume a pre-stirred disc with a
wide size distribution up to planetesimal sizes and described by a
single power law with an exponent of -3.5 (e.g. Dohnanyi 1969; Do-
minik & Decin 2003; Wyatt et al. 2007). These models were later
updated to consider that A) the internal strength of a solid, affecting

MNRAS 000, 1–20 (2022)
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its collisional lifetime, is a function of the solid’s size (O’Brien &
Greenberg 2003), and B) not all solids have collided by the age of
the system, with solids above a certain size retaining a primordial
size distribution (e.g. Löhne et al. 2008; Shannon &Wu 2011; Geiler
& Krivov 2017). Including these effects in these analytical models
modifies the single power law to a set of up to three power laws,
which we will explore in this paper.
A second type of model has still assumed a pre-stirred disc but

they numerically solve the size distribution evolution due to collisions
and considering additional effects such as radiation pressure and PR-
drag (e.g. Krivov et al. 2006; Thébault & Augereau 2007; Wyatt
et al. 2011; Gáspár et al. 2012). These models tend to have a fixed
maximum planetesimal size as there is no growth. Marino et al.
(2017b) explored this kind of model, for example, to explain how
collisional evolution alone may explain the 61 Vir disc’s observed
flat surface density distribution and inner edge location.
A third type of model has modelled debris discs being born with

solids up to ∼1 km in size and with very small eccentricities and
inclinations (dynamically cold). In thesemodels, solids grow through
collisions at low relative velocities until the formation of Pluto-sized
objects that effectively stir the disc triggering a collisional cascade
(e.g. Kenyon & Bromley 2004, 2008, 2010; Kobayashi et al. 2010;
Kobayashi & Löhne 2014). More recent updates to these models
have considered alternative initial conditions where debris discs are
born as a mix of cm-sized pebbles and 100 km-sized planetesimals,
closer to what could be expected if planetesimals are formed via
the streaming instability (Najita et al. 2022). This highlights the
uncertain initial conditions of debris discs as we we do not know how
debris discs transition from protoplanetary discs (Wyatt et al. 2015).
Finally, a fourth type of model has combined N-body simulations
and collisional evolution to study the dust production in planet-disc
interaction scenarios (e.g. Jackson & Wyatt 2012; Kral et al. 2013;
Nesvold & Kuchner 2015).
All these models have shown in one way or another how as a

debris disc collisionally evolves, its inner regions will deplete faster.
In Figure 1 we show this effect using the second type of model as
implemented in Marino et al. (2017b) assuming a pre-stirred disc
with planetesimals up to 100 km sizes. As the disc evolves, the
surface density in the inner regions becomes a simple power law
roughly proportional to 𝑟2 up to a critical radius 𝑟c. This critical
radius may be interpreted as the disc’s inner edge if observations
are unable to resolve and detect the lower densities at smaller radii.
One way to assess whether the observed inner edge corresponds to
this critical radius is to measure the slope of the surface brightness
or density just interior to the "observed" inner edge and compare it
with collisional models. If consistent, then the location of the critical
radius or observed inner edge together with the dust density at that
distance can be used to constrain the maximum planetesimal size
feeding the collisional cascade and the initial surface density of solid
material (Marino et al. 2017b).
In the following sections, we will present an analytical model

inspired by Löhne et al. (2008), to describe the collisional evolution
of an axisymmetric, radially wide, and vertically thin debris disc
(with a vertical aspect ratio ℎ � 1) as a function of radius (𝑟 in
cylindrical coordinates). The key difference compared to previous
analytical models is that wewill focus on the joint radial and temporal
dependence of the disc evolution. In particular, we will:

• define an analytical, general 3-phase collisional cascade, assum-
ing no solid growth and motivated by the behaviour of the solids’
disruption threshold strength as a function of size (§2.1);

• derive an expression for the largest bodies participating in the

cascade and their collision timescale, showing how their dependence
on radius naturally gives rise to the critical radius and a multi-phase
radial distribution of solids (§2.2);

• derive a full expression for the critical radius, and the expected
dust mass surface density at this critical radius, as key observables
to infer the maximum planetesimal size and the total surface density
(mass) of solids in the planetesimal belt (§2.3);

• show that interior to this critical radius, the surface density of a
collisionally evolving planetesimal belt should always follow a ∼𝑟2
dependence rising up to the critical radius (§2.4).

2.1 An analytical, 3-phase size distribution approach

We start by approximating the size distribution of solids with an
analytical three-phase distribution between minimum grain diameter
𝐷min and maximum planetesimal diameter 𝐷max as explored e.g. by
Löhne et al. (2008). This takes the form

𝑛(𝐷) = 𝑛𝐷max

(
𝐷

𝐷max

)2−3𝑞p
for 𝐷c < 𝐷 < 𝐷max (1)

𝑛(𝐷) = 𝑛𝐷max

(
𝐷c

𝐷max

)2−3𝑞p (
𝐷

𝐷c

)2−3𝑞g
for 𝐷b < 𝐷 < 𝐷c (2)

𝑛(𝐷) = 𝑛𝐷max

(
𝐷c

𝐷max

)2−3𝑞p (
𝐷b
𝐷c

)2−3𝑞g (
𝐷

𝐷b

)2−3𝑞s
for 𝐷min < 𝐷 < 𝐷b,

(3)

where 𝑛(𝐷)𝑑𝐷 is the number of objects with diameters in the range
𝐷 to 𝐷+𝑑𝐷. At the top of the size distribution (Eq. 1), objects whose
collision timescale (𝜏col) is longer than the system age (𝑡age) have not
collided yet, and follow a primordial size distribution assumed to be a
power law with slope 2− 3𝑞p down to objects of size 𝐷c = 𝐷 (𝜏col =
𝑡age), whose collision timescale is equal to the age of the system.
Smaller objects are part of the collisional cascade, and the slope of
their size distribution (Eq. 2 and 3) arises from catastrophic collisions
having disruption threshold strengths𝑄★

𝐷
, closely following a double

power law with slopes 𝑏g = (11 − 6𝑞g)/(𝑞g − 1) and 𝑏s = (11 −
6𝑞s)/(𝑞s − 1) (O’Brien & Greenberg 2003), where 𝑞g and 𝑞s are the
resulting size distribution slopes in the strength and gravity regimes,
respectively. The boundary between the two slopes takes place at
size 𝐷b with threshold𝑄★

𝐷b
, where we therefore expect a break from

𝑞g to 𝑞s in the slope of the size distribution. We use the strength
law adopted by e.g. Marino et al. (2017b) (their Eq. 2) which has a
dependence on the relative velocity of collisions 𝑣rel, inspired by the
results of Benz & Asphaug (1999) and Leinhardt & Stewart (2012).
This takes the form

𝑄★
D =

[
𝑄D,s

(
𝐷

1m

)𝑏s
+𝑄D,g

(
𝐷

1m

)𝑏g ] (
𝑣rel
𝑣0

) 1
2
, (4)

which we approximate as

𝑄★
D = 𝑄★

𝐷b

(
𝑣rel
𝑣0

) 1
2
(
𝐷

𝐷b

)𝑏g
for 𝐷 > 𝐷b (5)

𝑄★
D = 𝑄★

𝐷b

(
𝑣rel
𝑣0

) 1
2
(
𝐷

𝐷b

)𝑏s
for 𝐷 < 𝐷b, (6)

where 𝐷b = 420 m, 𝑄★
𝐷b

= 33 J kg−1, 𝑏s = −0.39 (implying
𝑞s = 1.89), 𝑏g = 1.26 (implying 𝑞g = 1.69), and 𝑣0 = 3000 m s−1
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Table 1. Collisional parameters that determine the size distribution. These
are consistent with ice in simulations by Benz & Asphaug (1999).

Parameter Value Description

𝐷b 420 m Boundary size between strength and gravity regimes.
𝑄★

𝐷b
33 J kg−1 Disruption threshold at size 𝐷b.

𝑏g 1.26 𝑄★
𝐷
slope in the gravity regime.

𝑏s -0.39 𝑄★
𝐷
slope in the strength regime.

𝑞g 1.69 𝑛(𝐷 > 𝐷b) ∝ 𝐷2−3𝑞g ∝ 𝑀−𝑞g .
𝑞s 1.89 𝑛(𝐷 < 𝐷b) ∝ 𝐷2−3𝑞s ∝ 𝑀−𝑞s .
𝑣0 3.0 km s−1 Reference relative velocity.
𝜌 1000 kg m−3 Bulk density of solids.
𝑖 0.025 Inclination dispersion (rms).
𝑒 0.05 Eccentricity dispersion (rms).

(consistent with icy solids in simulations by Benz & Asphaug 1999).
Fig. 2 (left) shows the dependence of our adopted 𝑄★

D law on the
radius 𝑟 and inclination rms 𝑖 of the belt, assuming a 1 𝑀� star and
an eccentricity rms (𝑒) that is twice the inclination rms (𝑖). Table 1
summarises the adopted collisional parameters.

2.2 The collision rate of the largest bodies in the cascade

We now proceed to derive simple analytical equations for the catas-
trophic collision rate of solids. For an object of size 𝐷, collisions
with impactors of size 𝐷im are only catastrophic if the impactors’
specific energy is above 𝑄★

D. That minimum specific energy can be
translated to a minimum size 𝑋c𝐷 (with 𝑋c ≡ (2𝑄★

D/(𝑣
2
rel))

1/3)
since the relative velocities are independent of size here. Therefore,
the catastrophic collision rate of material of size 𝐷 in the absence of
gravitational focusing, can be expressed as (e.g. Wyatt & Dent 2002)

𝑅col =
𝑣rel
𝑉

∫ 𝐷max

𝑋c𝐷
𝑛(𝐷im)𝜎𝐷im

(
1 + 𝐷

𝐷im

)2
𝑑𝐷im, (7)

where 𝑉 is the volume available for collisions, 𝑛(𝐷im) is the size
distribution, and 𝜎𝐷im =

𝜋𝐷2im
4 is the geometric cross section of

a given impactor. Fig. 2 (right) shows how the minimum impactor
size for a catastrophic collision (𝑋c, as a fraction of the target size)
varies as a function of size 𝐷 assuming a 2 𝑀� star (note that
𝑋c is proportional to 1/

√
𝑣rel, hence 𝑋c has a weak dependence

on 𝑀★). For the chosen composition, and all sizes considered here
(𝐷 6 100 km), we are in the regime where 𝑋c < 1, i.e. the smallest
impactors able to destroy a target are smaller than the target itself.
This is important since the collisional rate of bodies of size 𝐷 is
typically dominated by the smallest sizes able to disrupt it, i.e. those
with a size close to 𝑋c𝐷.
A fundamental parameter that sets the evolution, size distribution,

total mass, and radial distribution of material in a collisional cas-
cade is 𝐷c, the size whose collisional lifetime is equal to the age of
the system (i.e. the timescale at which it experiences a catastrophic
collision). Using only Eq. 7, we can deduce that the collision rate
increases with decreasing disc radius. This is because higher Keple-
rian velocities and smaller volumes produce more collisions in the
inner regions (𝑣rel ∝ 𝑣𝑘 ∝ 𝑟−0.5, and 𝑉 = 4𝜋𝑟3 𝑑𝑟𝑟 𝐼 ∝ 𝑟3). There-
fore, the maximum size 𝐷c to have suffered at least one collision
within the age of the system is larger at smaller radii, and decreases
at larger radii. But if 𝐷c changes with radius, the size distribution
changes with radius, because 𝐷c sets the boundary between primor-
dial planetesimals and the smaller solids in collisional equilibrium
(Eq. 1 and 2). Therefore, at a given system age, we can expect to

observe 4 radial regimes within a belt’s surface density distribution,
arising from this critical size 𝐷c decreasing with radius. In the in-
nermost regions within the critical radius (𝑟 < 𝑟c), we expect the
largest planetesimals to have collided and therefore all sizes to be
in collisional equilibrium (𝐷c > 𝐷max). Moving outwards, we then
expect a region (𝑟c < 𝑟 < 𝑟b) where bodies of size 𝐷b have collided
but the largest bodies have not yet (𝐷b < 𝐷c < 𝐷max). This region
corresponds to the flat lines in the right panel of Figure 1. This region
is followed by one where grains of sizes probed by our observations
(𝑟b < 𝑟 < 𝑟𝐷obs ) have collided but bodies of size 𝐷b have not yet
(𝐷obs < 𝐷c < 𝐷b). Finally, the outermost region (𝑟 > 𝑟𝐷obs ) where
observable grains themselves are yet to collide (𝐷c < 𝐷obs).
Here, we focus on the expected mass surface density distribution

of observable grains in the innermost region (𝑟 6 𝑟c, where 𝐷c >
𝐷max), where the ALMA data can provide the strongest constraints.
Therefore, of particular interest is the first transition in the radial
dependence of the size distribution around the critical radius 𝑟c,
which is defined as the location where 𝐷c = 𝐷max. At this location,
if 𝐷max > 𝐷b, the size distribution from Eq. 1, 2 and 3 reduces to

𝑛(𝐷) = 𝑛𝐷max

(
𝐷

𝐷max

)2−3𝑞g
for 𝐷b < 𝐷 < 𝐷max (8)

and

𝑛(𝐷) = 𝑛𝐷max

(
𝐷b
𝐷max

)2−3𝑞g (
𝐷

𝐷b

)2−3𝑞s
for 𝐷min < 𝐷 < 𝐷b.

(9)

We can then relate the number of grains in the largest size bin, 𝑛𝐷max ,
to the total mass 𝑀tot of solids in the distribution. For 𝐷c = 𝐷max,
assuming 𝐷min � 𝐷b < 𝐷max and 𝑞g < 2, we have

𝑀tot =
𝜋𝜌

6

∫ 𝐷max

𝐷min

𝑛(𝐷)𝐷3𝑑𝐷 ∼ 𝜋𝜌

6(6 − 3𝑞g)
𝑛𝐷max𝐷

4
max𝜖

where 𝜖 = 1 +
( 6 − 3𝑞g
6 − 3𝑞s

− 1
) (

𝐷b
𝐷max

)6−3𝑞g
.

(10)

This allows us to express the collision rate of the largest bodies in the
cascade as a function of the total mass in the size distribution, using
Eq. 7 and 10, finding

𝑅col (𝐷max) =
𝑣rel
𝑉

3(6 − 3𝑞g)
2𝜌

𝑀tot𝜖
−1𝐷

3𝑞g−6
max∫ 𝐷max

𝑋c𝐷max

𝐷
4−3𝑞g
im

(
1 + 𝐷max

𝐷im

)2
𝑑𝐷im,

(11)

where we have adopted Eq. 8 for the size distribution in the assump-
tion that 𝑋c > 𝐷b/𝐷max, i.e. the smallest impactors able to destroy
an object of size 𝐷max are larger than 𝐷b. Solving the integral leads
to

𝑅col (𝐷max) =
𝑣rel
𝑉

3(6 − 3𝑞g)
2𝜌

𝑀tot𝜖
−1𝐷

3𝑞g−6
max

𝐷
5−3𝑞g
im
5 − 3𝑞g

(
1 +
10 − 6𝑞g
4 − 3𝑞g

𝐷max
𝐷im

+
5 − 3𝑞g
3 − 3𝑞g

𝐷2max
𝐷2im

)
𝐷max

𝑋c𝐷max

,

(12)

which can be significantly simplified under the assumption 𝑋𝑐 � 1
and 𝑞g > 5/3, leading to

𝑅col (𝐷max) ∼
𝑣rel
𝑉

3(2 − 𝑞g)
2𝜌(𝑞g − 1)

𝑀tot𝜖
−1𝐷−1

max𝑋
3−3𝑞g
c . (13)

We note that the 𝑋𝑐 � 1 assumption may not be a good approxima-
tion at the top of the cascade for the 𝑄★

D law and relative velocities
we considered (Fig. 2, from Eq. 4 to 6).
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our adopted strength law, and sizes & 10 km, 𝑋c can approach 1 and the
collision rates therefore under/over estimated by a factor of a few. The small
dependence on 𝑞g is shown by the different line styles.

Fig. 3 shows that this approximation can underestimate the colli-
sion rates by a factor 2.4 for 𝑋c values around 0.5, and overestimate
them by a factor up to ∼3 for 𝑋c & 0.85. These factors have a weak
dependence on 𝑞g, and for the strength law adopted, mostly affect
maximum sizes 𝐷max & 10 km.
In the next step, we 1) substitute in the definition of 𝑋c, 2) as-

sume the volume to be that of a ring with constant vertical aspect

ratio 𝑉 = 4𝜋𝑟3 (𝑑𝑟/𝑟)𝑖 (where we approximate the vertical aspect
ratio encompassing the volume to be the average particle inclination
ℎ ∼ 𝑖 ≡

√︃〈
𝑖2

〉
), 3) use the definition of 𝑄★

𝐷
from Eq. 5, 4) ex-

press 𝑣rel = 𝑣k

√︃
1.25

〈
𝑒2

〉
+

〈
𝑖2

〉
= (𝐺𝑀★)0.5𝑟−0.5

√
6𝑖 (where we

assumed
√︃〈

𝑒2
〉
= 2

√︃〈
𝑖2

〉
, e.g. Ida & Makino 1992), and 5) express

the total mass 𝑀tot as a surface density Σ assuming a power law pro-
file (𝑀tot = 2𝜋𝑟2 (𝑑𝑟/𝑟)Σtot where Σtot = Σ0 (𝑟/𝑟0)−𝛼). This allows
us to write an expression for the collision timescale of the largest
planetesimals at 𝑟c,

𝜏col (𝐷max) ∼
2𝑞g−14𝜌(𝑞g − 1)𝜖
3(2 − 𝑞g)Σ0𝑟𝛼0

𝐷
12−6𝑞g
max (𝑄★

Db )
𝑞g−1𝐷

6𝑞g−11
b

𝑣
− 12 𝑞g+

1
2

0

(√
6𝑖

)− 32 𝑞g+ 12
𝑖(𝐺𝑀★)−

3
4 𝑞g+

1
4 𝑟

(
3
4 𝑞g+

3
4+𝛼

)
c ,

(14)

which, in summary, applies under the assumptions 𝐷b/𝐷max <

𝑋c � 1, 5/3 < 𝑞g < 2, and 𝐷min � 𝐷b � 𝐷max. This expression
indicates that the collision timescale of the largest planetesimals de-
pends on their size and bulk density (𝐷max and 𝜌), on the 𝑄★

D law in
the gravity regime (setting 𝐷b, 𝑄★

Db
, 𝑞g and 𝑣0), on the dynamical

excitation of the planetesimals (𝑖), on the stellar mass 𝑀★ and on the
distance of the planetesimals from the star 𝑟, as shown in previous
work (e.g. Löhne et al. 2008).
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2.3 The critical radius and surface density for an undisturbed,
collisionally evolving belt

Since the condition 𝐷c = 𝐷max at 𝑟c implies 𝜏col (𝐷max) = 𝑡age, we
can rewrite Eq. 14 to find 𝑟c, obtaining

𝑟c ∼
[
3(2 − 𝑞g)Σ0𝑟𝛼0
2𝑞g−14𝜌(𝑞g − 1)𝜖

𝐷
6𝑞g−12
max (𝑄★

Db )
1−𝑞g𝐷

11−6𝑞g
b 𝑣

1
2 𝑞g−

1
2

0(√
6𝑖

) 3
2 𝑞g−

1
2
𝑖−1 (𝐺𝑀★)

3
4 𝑞g−

1
4 𝑡age

] 1
3
4 𝑞g+

3
4 +𝛼

.

(15)

We can now evaluate this equation using: 𝑄★
D law with parameters

in Table 1); bulk density of planetesimals of 𝜌 = 1000 kg m−3 (ap-
propriate for ice); rms inclination 𝑖 = 0.025; and taking the initial
planetesimal surface density distribution to be the same as the stan-
dard Minimum Mass Solar Nebula (MMSN, Weidenschilling 1977;
Hayashi 1981) with values of ΣMMSN = 270 kg m−2, 𝑟0 = 1 au and
𝛼 = 1.5 (Kenyon & Bromley 2008) but scaled by a factor 𝑥MMSN
(Σ0 = 𝑥MMSNΣMMSN). With these parameters we obtain

𝑟c = 55 𝑀0.29★ 𝐷−0.53
max (𝜖−1𝑥MMSN𝑡age)0.28, (16)

with 𝑡age in Myr, 𝐷max in km, 𝑀★ in 𝑀� , and 𝑟c in au.
This allows us to make an analytical estimation of the radius at

which the maximum size of the collisional cascade is equal to the
largest body within the belt. Interior to this radius, bodies of all sizes
from 𝐷min to 𝐷max are colliding and participating in the cascade,
whereas exterior to this radius, not all sizes will have collided by
the system age, with 𝐷c lower than 𝐷max and moving towards 𝐷min
at increasing radii. This creates a knee in the radial surface density
distribution, which for planetesimals typically goes from rapidly in-
creasing with radius interior to 𝑟c, to decreasing with a slope equal to
that of the initialMMSN-like planetesimal distribution (e.g. Kennedy
& Wyatt 2010)1.
As well as the critical radius 𝑟c, we can estimate the surface density

of observable grains (Σdust,𝑟=𝑟c ) at 𝑟c. The observable grains are
those with a size smaller than ∼ 10 times the wavelength of interest;
larger grains do not contribute significantly. For grains sizes up to
this maximum observable size (𝐷obs), we are typically in the lowest
size regime of the size distribution, so Eq. 3 and 9 apply, and 𝑛𝐷max
can be once again linked to 𝑀tot through Eq. 10. In the assumption
that 𝑞s < 2 and 𝐷min � 𝐷obs, the total surface density in grains
of size up to 𝐷obs can be derived by solving the integral in Eq. 10
but with upper limit 𝐷obs rather than 𝐷max and using 𝑀 = 2𝜋𝑟𝑑𝑟Σ,
leading to

Σdust (𝐷 6 𝐷obs, 𝑟 = 𝑟c) =
6 − 3𝑞g
6 − 3𝑞s

Σtot𝜖
−1𝐷

3𝑞g−6
max 𝐷

3𝑞s−3𝑞g
b 𝐷

6−3𝑞s
obs .

(17)

Expressing Σtot in terms of the surface density at 𝑟0 we obtain

Σdust (𝐷 6 𝐷obs, 𝑟 = 𝑟c) =
6 − 3𝑞g
6 − 3𝑞s

𝑟𝛼0 Σ0𝜖
−1𝑟−𝛼𝐷

3𝑞g−6
max 𝐷

3𝑞s−3𝑞g
b 𝐷

6−3𝑞s
obs ,

(18)

which, when inserting the same values of 𝑞g, 𝑞s, 𝐷b,Σ0, 𝛼, 𝑟0, and
using the same units as Eq. 16, becomes

Σdust (𝐷 6 𝐷obs, 𝑟 = 𝑟c) = 0.019 𝜖−1𝑥MMSN𝑟−1.5c 𝐷−0.93
max 𝐷0.33obs ,

1 Though note that only the total surface density distribution follows the
initial planetesimal distribution outside of 𝑟c; for observable grains, the slope
becomes much flatter (e.g. Marino et al. 2017a; Schüppler et al. 2016; Geiler
& Krivov 2017).

(19)

with Σdust,𝐷6𝐷obs ,𝑟=𝑟c in M⊕ au−2 for 𝐷obs in mm. Replacing 𝑟c in
Eq. 19 by the right hand side of Eq. 16, we find

Σdust (𝐷 6 𝐷obs, 𝑟 = 𝑟c) = 4.6 × 10−5 𝜖−0.57𝑥0.57MMSN𝐷
−0.14
max 𝐷0.33obs

(𝑡age𝑀★)−0.43.
(20)

This expression for Σdust resembles Eq. 7 in Marino et al. (2017b),
having the same dependencies on 𝑥MMSN, 𝐷max, and 𝑡. The main
difference is that Eq. 20 gives a dust surface density 10 times larger
(after the correction provided by Marino et al. (2019)). This differ-
ence is due to a discontinuity in the size distribution obtained using
the numerical method proposed by Wyatt et al. (2011) and used in
Marino et al. (2017b). Such a discontinuity is not expected in reality
and also not seen in other simulations that evolve the size distribu-
tion (Löhne et al. 2008; Gáspár et al. 2012). The numerical method
tends to under-predict the dust levels by a factor 2-3 compared to the
most advanced simulations of Löhne et al. (2008). Therefore the true
surface density of dust is likely a factor of ∼ 3 smaller than equations
19 and 20 predict.
Note that while Eq. 20 is valid only at 𝑟 = 𝑟c, it has been shown

that the surface density of dust at 𝑟 > 𝑟c is expected to be flat
for a primordial surface density exponent (−𝛼) of -3/2, or more
generally proportional to 𝑟−0.6𝛼+0.9 (Schüppler et al. 2016; Marino
et al. 2017b; Geiler & Krivov 2017). The flat surface density is due
to two effects that balance each other out. On one hand, the surface
density of solids decreases with radius. On the other hand, the size
distribution at smaller radius is more collisionally eroded2. These
two effects combined result in a dust surface density that is close to
flat for a MMSN-like initial surface density. This also means that we
can extrapolate Σdust,𝐷6𝐷obs ,𝑟=𝑟c to larger radii assuming a certain
𝛼.
Together with Eq. 16, Eq. 19 implies that if we know the age of

a system and can accurately measure both the critical radius and the
surface density of grains at that radius, rearranging Eq. 16 and 19 and
keeping the same units, we can explicitly derive 𝐷max and 𝑥MMSN
from observables 𝑟c and Σc ≡ Σdust,𝐷<𝐷obs ,𝑟=𝑟c , obtaining

𝐷max = 2.6 × 108 𝑀1.09★ (𝑡ageΣc)1.07𝑟−2.16c 𝐷−0.35
obs (21)

𝑥MMSN = 3.8 × 109 𝜖𝑀1.02★ 𝑡ageΣ
2
c𝑟

−0.52
c 𝐷−0.65

obs . (22)

The above assumes we are in the regime where 𝐷max > 𝐷b and
𝑋c𝐷max > 𝐷b. If instead the entire size distribution is in the strength
regime of the 𝑄★

𝐷
law (i.e. 𝐷max < 𝐷b), we have

𝑟c = 81 𝑀0.32★ 𝐷−0.18
max (𝑥MMSN𝑡age)0.27, (23)

Σc = 1.5 × 10−5𝑀−0.48
★ 𝑡−0.41age 𝑥0.59MMSN𝐷

0.33
obs 𝐷

−0.06
max . (24)

𝐷max = 2.7 × 1027 𝑀3.58★ (𝑡ageΣc)3.07𝑟−6.65c 𝐷−1
obs (25)

𝑥MMSN = 8.0 × 1010 𝑀1.17★ 𝑡ageΣ
2
c𝑟

−0.67
c 𝐷−0.65

obs . (26)

When comparingEquation 24with the numericalmodel fromMarino
et al. (2017b), we find a better match than for 𝐷max > 𝐷b with a
difference of a factor of ∼ 3.
Fig. 4 visualizes the dependence of 𝑟c and Σ𝑐 for grains up to 1 cm

on 𝐷max and 𝑥MMSN for a 100 Myr-old system around a Sun-like
1.0 M� star. While 𝑟c has a clear dependence on 𝐷max, 𝑥MMSN
and 𝑡age, Σc only has weak dependence on 𝐷max, and so is mostly

2 For more details see §5 in Marino et al. (2017b).
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Figure 4. The colour scale shows the dependence of the critical radius 𝑟c (left panel) and the surface density of observable grains Σc,D61cm at that radius (right
panel) on the maximum size of planetesimals in the size distribution (𝐷max) and on the initial planetesimal disc mass (𝑥MMSN, as a multiple of the MMSN).
The vertical line represents the size boundary 𝐷b between the strength and gravity regime of our 𝑄★

D law, at which there is a discontinuity in the colour scale
due to our analytical approximation (see text for details).

sensitive to the scaling of the total initial planetesimal mass, 𝑥MMSN
and 𝑡age. As noted by Marino et al. (2017a), this is due to a balance
between i) higher 𝐷max values producing lower dust masses for the
same total mass 𝑀tot in the size distribution, and ii) higher 𝐷max
values leading to longer collision timescales at the top of the cascade
and therefore slower collisional evolution and higher dust masses for
a given system age. As a belt evolves collisionally (larger 𝑡age), 𝑟c
(i.e. the 𝐷c = 𝐷max point) moves outwards and Σc decreases as a
result, due to the lower initial surface densities at larger radii (for a
MMSN-like planetesimal disc). More massive host stars𝑀★ produce
larger collision velocities and faster collisional processing; therefore,
within a given age and initial surface density, 𝑟c will have moved
further out and the dust surface densities Σc will be lower around
more massive stars.
Finally, note that using the expressions above cause a discontinuity

at𝐷max = 𝐷b (black vertical line in Fig. 4). This is because just above
𝐷b we have 𝑋c𝐷max < 𝐷b < 𝐷max, so it is not possible to simplify
the collision rate integral in Eq. 11 as done above. This unfortunately
implies that we cannot extract the 𝑟 dependence from the collision
rate 𝑅col (and later timescale 𝜏col) analytically, but only establish a
limit to 𝐷max in the range [𝐷b, 𝐷b/𝑋c (𝐷max)].

2.4 The radial slope of the surface density interior to the
critical radius

Going one step further, we can establish the expected slope interior
to the critical radius (𝑟 � 𝑟c) of a collisionally evolving, undisturbed
planetesimal belt. The procedure is the same, starting from Eq. 9,
but this time substituting 𝑛𝐷max with the collisionally evolved density
𝑛𝐷max𝜏col (𝐷max)/𝑡age in Eq. 10. This is because at radii smaller than
𝑟c, all sizes participate in the cascade just like at 𝑟 = 𝑟c, but because

the largest bodies are colliding, the overall mass of the cascade is
decreasing and scaled down by a factor (1 + 𝑡age/𝜏col (𝐷max))−1 at
𝑡 = 𝑡age compared to the initial mass. Since we are interested in
𝑟 � 𝑟c, we take the approximation 𝑡age � 𝜏col to obtain

Σtot,𝑡age ,𝑟�𝑟c = Σtot,𝑡0 ,𝑟=𝑟c𝜏col (𝐷max)𝑡−1age. (27)

Inserting 𝜏col (𝐷max) from Eq. 14, we derive

Σdust (𝐷 6 𝐷obs, 𝑟 � 𝑟c) =
2𝑞g+1 (𝑞g − 1)
3(2 − 𝑞s)

𝜌𝐷
6−3𝑞g
max 𝐷

6−3𝑞s
obs (𝑄★

Db )
𝑞g−1

𝐷
3𝑞g+3𝑞s−11
b 𝑣

− 12 𝑞g+
1
2

0

(√
6𝑖

)− 32 𝑞g+ 12
𝑖(𝐺𝑀★)−

3
4 𝑞g+

1
4 𝑟
3
4 𝑞g+

3
4 𝑡−1age,

(28)

which is independent of the initial planetesimal surface density dis-
tribution Σtot and its parameters Σ0, 𝛼, and 𝑟0. We can simplify this
equation using the same values of 𝑞g, 𝑞s, 𝐷b, 𝜌, 𝑄★

Db
, 𝑖, and 𝑣0 and

units used so far and summarised in Table 1, finding

Σdust (𝐷 6 𝐷obs, 𝑟 � 𝑟c) = 5.4 × 10−7𝐷0.93max𝐷0.33obs 𝑀
−1.02
★ 𝑟2.02𝑡−1age,

(29)

where Σdust is in units of 𝑀⊕ au−2, 𝐷max in km, 𝐷obs in mm, 𝑀★

in 𝑀� , 𝑟 in au, and 𝑡age in Myr.
We find that the slope 𝛾 of the surface density of grains in this

regime, i.e. interior to the belt’s critical radius, should be positive (sur-
face density increasing with radius) and equal to 𝛾 = 0.75𝑞g+0.75 =
2.02. Therefore, the inner surface density slope for an undisturbed,
collisionally evolving planetesimal belt is solely determined by the
slope of the size distribution at the distribution’s upper end. This
comes from the slope of the 𝑄★

D law in the gravity regime if
𝐷max > 𝐷b, or in the strength regime if 𝐷max < 𝐷b. Note that
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the slope 𝛾 is slightly different from the value of 7/3 obtained in
more simple analytical models due to considering a𝑄★

D independent
of size and velocity (Kennedy &Wyatt 2010). Nevertheless, for typ-
ical values of 𝑞g (e.g. 1.9, Benz & Asphaug 1999), they differ by
less than 10%.

3 INNER EDGE CONSTRAINTS FROM THE DATA

In this section, we aim to constrain the inner surface density slope of
several wide debris discs that have been well resolved with ALMA.
Determining the slope will allow us to assess whether the inner edge
is consistent with being set by collisional evolution alone, or instead,
the disc was truncated at the inner edge, for example, by a planet. The
inner slope is retrieved by fitting a parametric model directly to the
ALMA visibilities. In order to choose the right parametric model, we
first use the frankenstein Python package (hereinafter referred to
as frank; Jennings et al. 2020) that reconstructs the intensity radial
profiles in a non-parametric manner and achieves higher resolutions
than typical clean images. The frank recovered profiles allow us to
have a clearer idea of the different features in each system that need to
be fit and thus we can make a more informed decision in choosing a
parametric model to best fit each target. Furthermore, they also allow
for a more consistent approach in how radial profiles are determined.
Below we describe the chosen targets, the frank profiles, and the
results after fitting the parametric models.

3.1 Targets

We focus on systems with wide exoKuiper belts that have been ob-
served with ALMA at a sufficient resolution (those with a radial span
that has been resolved with &5 beams across) and sensitivity to char-
acterize their inner slope (signal-to-noise ratios larger than 10 near
the inner edge in the azimuthally averaged radial profiles), and that
are not very asymmetric or too large as to require multiple pointings
with ALMA (e.g. 𝛽 Pic Matrà et al. 2019). We identify HD 92945,
HD 107146, HD 206893, HR 8799, q1 Eri, AU Mic and 49 Ceti as
the best systems to do this, all located at distances ranging from 10
to 60 pc, having wide discs, and observed with ALMA at sufficient
resolution and sensitivity to constrain the inner edge shape.
We use both 0.88mm (band 7) and 1.33mm (band 6) published

data of HD 1071463, HD 206893 and q1 Eri (Marino et al. 2018;
Marino et al. 2019, 2020; Nederlander et al. 2021; Lovell et al. 2021),
49 Ceti’s 0.61 mm (band 8) data (Higuchi et al. 2019)4, and the band
7 data of HR 87995, HD 92945 and AU Mic6 (Marino et al. 2019;
Faramaz et al. 2021; Daley et al. 2019). In addition to the published
data on HD 107146 (Marino et al. 2018; Marino 2021), we include
a new data set with a higher resolution (0.2 arcsec = 5 au) from an
unfinished cycle 7 program (2019.1.00189.S). This new data set is
described in Appendix A.
Finally, for HR 8799 and HD 107146 we subtract emission from

a background galaxy prior to any analysis using the best parameters

3 We do not include data from Ricci et al. (2015) in our analysis due to its
lower resolution and sensitivity.
4 We do not use the published band 6 data that has a much poorer resolution
(Hughes et al. 2017).
5 We do not use the published band 6 data that has a much poorer resolution
(Booth et al. 2016).
6 New 0.45mm (band 9) data were published while writing this paper, but
involved multiple pointings and thus were omitted them from our analysis
which cannot account for that.

Figure 5.UV coordinates of q1 Eri band 7 observations. The points in orange
represent the baselines that are most affected by the vertical thickness of the
disc and thus are removed from our analysis.

found in Marino (2021). Basic information of the targets in this
investigation can be found in Table 2.

3.2 Deconvolved Profiles

Prior to fitting a parametric model of the intensity radial profiles to
the data, we fit them in a non-parametric way using frank to avoid
introducing biases from the start. frank has one great advantage
over standard imaging (e.g. with tclean in CASA, McMullin et al.
2007), which is that it provides a significantly better resolution than
clean images. However, there are some assumptions that it makes and
some parameters that must be adjusted for it to provide appropriate
radial profiles. The first assumption that frank makes is that the
discs are axisymmetric as it only fits the real component of the
deprojected visibilities. This is mostly a valid assumption for these
targets, however, Lovell et al. (2021) andMarino et al. (2019) find that
the discs around q1 Eri andHD92945 show someminor asymmetries
that could bias our results for those targets.
The second assumption made by frank is that the discs are verti-

cally flat, which has been shown to not be the case for debris discs
(Matrà et al. 2019; Daley et al. 2019). In particular, previous analysis
of q1 Eri and HD 92945 found both discs to be marginally resolved
with vertical aspect ratios of ∼0.05 (Marino et al. 2019; Lovell et al.
2021). In order to account for this, data from uv points that could be
heavily affected by the vertical thickness of the disc are removed from
the analysis. These points can be roughly identified as those where
the uv coordinate parallel to the minor axis of the disc (𝑣′) is large
enough to resolve the projected vertical thickness or full width half
maximum (FWHM) of the disc. This maximum baseline is estimated
as

𝑣′ =
(
2.355

𝑟belt ℎ

𝑑
sin(𝑖)𝑐

)−1
, (30)

where 𝑟belt is the central radius of the disc, ℎ is the vertical aspect
ratio (a quantity that was assumed to be 0.05 in agreement with the
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Table 2. General information on the 7 systems studied: HD 92945, HD 107146, HR 8799, q1 Eri, AU Mic, 49 Ceti, and HD 206893. The 6th, 7th and 8th
columns show the discs’ fractional luminosities (this work), inclinations and position angles. Sources: (1) Marino (2021), (2) Lovell et al. (2021), (3) Hughes
et al. (2017), (4) Torres et al. (2006), (5) Harlan & Taylor (1970), (6) Gray & Kaye (1999), (7) Williams et al. (2004), (8) Plavchan et al. (2009), (9) Bell et al.
(2015), (10) Marmier et al. (2013), (11) Roberge et al. (2013), (12) Zuckerman & Song (2012), (13) Gray et al. (2006), (14) Watson et al. (2011), (15) Sepulveda
& Bowler (2022), (16) Mamajek & Bell (2014), (17) Plavchan et al. (2020), (18) Hinkley et al. (2022), (19) Gaia Collaboration et al. (2021), (20) Marois et al.
(2010), (21) Zurlo et al. (2022), (22) Wittrock et al. (2022).

System Distance Spectral Type Age Stellar mass 𝑓dust Inclination PA Planet semi-major axis Planet mass
[pc] [Myr] [𝑀�] [deg] [deg] [au] [𝑀Jup]

HD 92945 21.5 (19) K1V (4) 294 ± 23 (17) 0.86 ± 0.01 (8) 7 × 10−4 65.4(1) 100(1)
HD 107146 27.5 (19) G2V (5) 80 − 200 (7) 1.09 (14) 10−3 19.9 (1) 153(1)
HR 8799 41.3 (19) A5 (6) 42+6−4 (9) 1.43+0.06−0.07 (15) 3 × 10

−4 31.2 (1) 52.0 (1) 16, 27, 41, 71 (20,21) 8, 9, 8, 6 (20,21)
q1 Eri 17.4 (19) F9V (10) (1.4 ± 0.9) × 103 (10) 1.11 ± 0.02 (10) 3 × 10−4 78.6 (2) 57.0 (2) 2 (10) 1 (10)
AU Mic 9.7 (19) M1V (4) 22 ± 3 (16) 0.50 ± 0.03 (17) 4 × 10−4 88.2 (1) 128.5 (1) 0.065, 0.11 (22) 0.05, 0.007-0.079 (22)
49 Ceti 57.2 (19) A1V (11) 40 (12) 2.1 (3) 7 × 10−4 79.1 (3) 107.4 (3)
HD 206893 40.8 (19) F5V (13) 170 (18) 1.32+0.07−0.06 (17) 3 × 10

−4 40.0 (1) 61.7 (1) 3.5, 9.7 (18) 12, 27 (18)

Figure 6. Radial Profiles of the systems investigated, fitted using frank. The shaded regions represent the 1𝜎 uncertainties derived from frank. All surface
brightness profiles are normalized to the peak intensity. The black lines represent the resolution of the frank profiles, obtained by identifying the baselines
beyond which the power spectrum obtained by frank is damped.
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typical values derived for these and other systems), 𝑑 is the distance
to the disc from Earth, 𝑖 is the inclination of the disc with respect to
being face-on. The term inside the brackets is the projected vertical
FWHM at the disc central radius. The factor 2.355 is to convert from
the vertical standard deviation to a FWHM. The value for 𝑣′ was
then used to filter the data before using frank, removing the data
that would be most affected by the vertical thickness of the disc.
Figure 5 shows as an example the baselines that get removed

through this method (orange) for q1 Eri’s band 7 observations, repre-
senting 4% of all visibilities. Only 0.7% of the complementary band
6 data was removed. For HD 92945, only 0.05% of the 12m array
data got removed and none of the ACA data. HD 206893 had 1.52%
of band 7 and 0% of band 6 data removed. AU Mic, which is edge-
on, had 2.24% of its 12m data removed. Finally, none of the 12m
and ACA data of HD 107146, HR 8799 and 49 Ceti was removed.
These percentages vary greatly from system to system as they have
different sizes, distances, inclinations, and each was observed at dif-
ferent resolutions. Whilst these may not seem like high percentages
of removal, they could significantly distort the frank results and
thus their removal was important, particularly for the more edge-on
discs. Note that there might still be some minor vertical information
in the remaining visibilities (e.g. if the signal-to-noise is high or ℎ
is higher than assumed), but its effect on the deprojected visibilities
and recovered profile should be minor (Terrill et al. submitted). After
this process of removing data affected by vertical thickness, the flux
of each of the stars was removed in the visibility space7 prior to
running frank so that it would not bias the retrieved radial profiles
(Jennings et al. 2022).
Before applying frank to the discs, some parameters must be

determined for the fits to work properly. These are known in frank
as 𝛼 and 𝑤smooth. 𝛼 is a parameter that roughly defines the maximum
baseline to which frank will try to fit the data, acting as a signal-
to-noise threshold, a higher value imposing a stricter signal-to-noise
threshold. 𝑤smooth is a spectral smoothness parameter, with a higher
value more strongly smoothing the power spectrum. For more details
on these parameters refer to Jennings et al. (2020), and the frank
documentation. In order to determine an appropriate value for these
two parameters, we run frank for each system several times whilst
varying the values of the parameters. The most appropriate ones
were determined by visually inspecting the recovered profiles and
minimising the number of oscillatory artifacts, whilst still trying to
recover sharp features along the entire radius of the discs. The values
tested for 𝛼 were: [1.001, 1.01, 1.1], and for 𝑤smooth the values tested
were [10−4, 10−3, 10−2, 10−1]. The final values for these parameters
decided for each disc and band had mostly 𝛼 = 1.01, with one
exception of HD 107146 band 6 having an 𝛼 = 1.1. The 𝑤smooth
chosen parameter ranged from 10−2 to 10−4 depending on the disc.
The main features found in each of the profiles using frank were
not particularly sensitive to the chosen parameters and were visible
in most tested parameters and thus they can be considered robust.
The radial profiles using frank for the seven targets can be seen

in Figure 6. The differences between bands/wavelengths for q1 Eri,
HD 107146, and HD 206893 are due to the differing resolutions for
the data sets, making features appear smoother in one band compared
to the other. For q1 Eri, the profile was found to be a narrow peak at
∼90 au with a long extension out to 200 au. The profiles found by
frank for q1 Eri are consistent with previous analysis using clean

7 The stars and discs were well centred at the phase centre of these observa-
tions and thus we subtract the stellar flux simply as a constant from the real
component of the visibilities.

images and parametric modelling by Lovell et al. (2021). The profile
resolved for HD 92945 shows a gap centred at approximately 75au,
consistentwithMarino et al. (2019). The profile resolved forHR8799
shows a broad peak at ∼200 au with smooth inner and outer edges,
which is consistent with Faramaz et al. (2021). For AU Mic, frank
finds a broad peak at∼ 35 au and a tentative gap in the disc at∼ 15 au,
also found in parametric fits to the data (Daley et al. 2019; Marino
2021). For 49 Ceti, we find a wide peak at ∼ 100 au and a slowly
decreasing outer edge, which agrees with previous studies Hughes
et al. (2017); Pawellek et al. (2019). Finally, for HD 206893 frank,
finds a steep inner edge with two peaks at ∼ 40 au and ∼ 120 au and
a deep gap in between centred at ∼ 75 au (consistent with Marino
et al. 2020; Nederlander et al. 2021).
The main disc for which there is a significant difference between

this analysis and previous findings is HD 107146 (Ricci et al. 2015;
Marino et al. 2018; Marino 2021). Marino et al. found one wide and
shallow gap in the radial profile. However, using frank we find that
this wide gap is split into two narrow ones which previous clean
images did not resolve due to their poorer resolution. This double
gap structure is found in both the band 6 and 7 data of HD 107146
shown in Figure 6 (with a higher significance in the band 7 data
due to its higher resolution). Therefore, we consider this to be a
true feature rather than an artifact produced by frank. Moreover,
this feature is also revealed in the radial profile extracted from new
higher resolution clean images in band 7 presented in Appendix A.
These narrower gaps could be consistent with the scenario proposed
by Marino et al. (2018) where two 10 𝑀⊕ planets at separations
between 50 − 90 au could carve two independent gaps, which at low
resolution appeared as one half-empty wide gap. Note that previous
work that fit parametric models to the data did not try fitting a double
gap model, leaving this feature undiscovered. This highlights the
importance of using frank first to visualize the radial features of
the disc. This system will be observed by JWST in 2023 with MIRI
at 15 𝜇m in coronagraphic mode to search for companions above
a 0.2 𝑀Jup beyond 20 au (Marino et al. 2021). Such observations,
combined with the double gap structure, will allow for a much clearer
interpretation. Therefore, we defer the interpretation and discussion
of this feature until the JWST data becomes available.
Themain disadvantage of frank for this investigation is that it does

not directly provide estimates for the slope of the inner edge, which is
the aim of this investigation. Whilst this could be measured from the
recovered radial profiles, such measurements would be affected by
non-trivial systematic effects such as frank’s non-Gaussian PSF that
are hard to account for and thus could bias our results. Instead, the
profiles achieved with frank can be used to decide which parametric
models are most appropriate in order to constrain the steepness of
the inner edge.

3.3 Parametric Fits to the Data/Visibilities

As we are only interested in the radial profiles of these discs, we
can azimuthally average the visibilities and deproject them assuming
inclinations and position angles derived in previous studies, found
in Table 2. As in §3.2, before fitting the data we removed the data
points that could be affected by the vertical thickness of the disc. In
order to speed up the fitting process of millions of 𝑢 − 𝑣 points, we
binned the visibilities as a function of their deprojected uv distance.
The visibilities were binned with a bin width set to be 5% of the
smallest uv data point in each individual data set. We find this width
is small enough to not lose the details in the visibility profile, and
large enough to reduce significantly the number of data points being
fit. Within each bin, we determined the uncertainty as the standard
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deviation divided by the square root of the number of data points.
Note that we only consider the real component of the visibilities as
it is assumed the discs are axisymmetric and thus their imaginary
component is zero. Previous analysis by Marino et al. (2019) and
Lovell et al. (2021) showed some significant, but minor asymmetries
in the discs around HD 92945 and q1 Eri. Those asymmetries are
mostly located beyond the disc inner edge, and thus we consider they
should not affect our results and conclusions significantly. Moreover,
asymmetries will tend to smooth the azimuthally averaged profile,
and thus the true radial profile and inner edge could be sharper
than estimated below. Nevertheless, even with asymmetries we find
sharp inner edges for those two systems that are inconsistent with
collisional evolution (see below).

Having a better idea of the underlying intensity profiles, we identi-
fied the simplest parametric model that could reproduce the profiles
derived by frank shown in Figure 6. To decide which parametric
model was most appropriate, we initially tested a series of differ-
ent parametrizations and fitted them to the frank profiles. The final
models are the ones that could reproduce themain significant features
(local minima or maxima and inner and outer edge steepness) with
the least number of free parameters, and these models are described
in the following sub-sections from 3.3.1 to 3.3.6.

All models have an inner section in the their surface brightness
profiles that is parametrized as a power law with an exponent 𝛼i.
Since debris discs are optically thin and their mm emission in the
Rayleigh-Jeans regime, the surface density slope in this inner section
is simply 𝛼i +1/2 (a derivation for this can be found in Appendix C).
Therefore, whilst we fit the surface brightness inner slopes (found
in table B1), all values referred to as the inner slope and discussed
hereafter are 𝛾 values (including those extracted from the literature).
This inner section ends at a transition radius defined as the radial
distance where the slope of the disc changes considerably (plateau’s
or starts decreasing). Beyond this transition radius, the disc follows
a second power law (whether that is a middle or outer power law
depends on the disc). As shown in Figure 1, if the surface density
profile is set by collisional evolution alone the transition from these
two regimes should be smooth, and thus we introduce a smoothing
exponent 𝜂, with higher values of 𝜂 making the transition abrupter
(see description below). The smooth transition in the collisional
model presented in Figure 1 is best fit with 𝜂 ≈ 2. The parametric
models were then Fourier transformed and sampled at the same 𝑢− 𝑣

points as the binned visibilities. Finally, the stellar flux was also
included in our models as a free parameter—a point source at the
origin becomes simply a real constant in the visibility space.

The model visibilities were then compared directly to the binned
visibilities by calculating the corresponding 𝜒2. We find the best fit
parameters and associated uncertainties by using the Python pack-
age emcee (Goodman &Weare 2010; Foreman-Mackey et al. 2013),
which implements an Affine Invariant MCMC Ensemble sampler to
recover the posterior distribution of parameters. We assume uniform
priors for each parameter and limited their range in a few cases to
allow only physical solutions. We run the MCMC with 200 walkers
and 2000 iterations, which we found was enough to ensure conver-
gence (visually determined) and that the parameter space was well
sampled. Figure 7 shows the recovered profiles of the 7 studied sys-
tems using our parametric models along the profile recovered by
frank. Below we describe the model and results for each system. In
Figure 8 and Table 3, we summarise the values derived for the inner
surface density slope as well as the estimated dust surface density
and collisional lifetime of cm-sized grains.

3.3.1 q1 Eri

For this system frank found a profile with no visible gap in both
band 6 and 7. To reproduce a similar morphology we decided to use
a parametric model for the surface brightness 𝐼 (𝑟) composed of two
power laws joined at the disc peak or transition radius (𝑟t)

𝐼 (𝑟) = 𝐼0

((
𝑟

𝑟t

)−𝜂𝛼i
+

(
𝑟

𝑟t

)−𝜂𝛼o )− 1𝜂
, (31)

where 𝛼i and 𝛼o are the power law exponents interior and exterior
to 𝑟t, 𝜂 determines how smooth or sharp the transition is, and 𝐼0 a
normalization factor. This was the best parametric model found for
the visibilities and that could reproduce well the profile extracted
by frank. In Figure 7 we present the best-fit parametric model for
q1 Eri. We find a inner surface density slope 𝛾 = 4.7+0.5−0.4. This is
somewhat less steep, but still consistent within the errors to what
was found by Lovell et al. (2021) that found a value of > 5.1. The
radial profiles from the parametric model and frank are consistent
with each other, and the residuals are consistent with pure noise. In
particular, the inner sections are very similar. The main differences
are due to the non-significant wiggles caused by noise. We tested
several parametric models and found that the derived values of the
inner surface density slope were consistent across them.

3.3.2 HR 8799

Similar to q1 Eri, the best parametric model for HR 8799 was found
to be a model made of two power laws that join at the disc peak or
transition radius as described by Equation 31. The frank profile and
the best fit in Figure 7 coincide well and the residuals for this fit were
also consistent with pure noise, thus this is a good fit for this disc.
The inner surface density slope of HR 8799 was found to be 2.2+0.3−0.2,
which is consistent with the value found by Faramaz et al. (2021)
of 3.0+0.9−0.5. More importantly, this result confirms their findings that
this disc does not have a well defined inner edge as expected if it
was simply truncated by the HR 8799 b at its current location near
70 au (Read et al. 2018), but a surface density profile that smoothly
rises with radius as expected in a collisional evolution scenario. Note
that the uncertainties of our measured slope are a factor ∼ 3 smaller
than the ones from Faramaz et al. (2021). This difference is due to
the model used by Faramaz et al., which consisted of a triple power-
law. That model has many degeneracies that increase the uncertainty
of the inner slope (see their Figure 9). Finally, the derived radial
profile peaks at approximately 200 au rather than at 𝑟t = 240 au.
This difference is due to the low value of 𝜈 (<1.6) making the profile
smoother and the outer slope that is steeper than the inner one (1.7
vs -4.4).

3.3.3 49 Ceti

For 49 Ceti the best parametric model was also found to be two
power laws joining at the disc peak or transition radius, in the same
manner as for q1 Eri and HR 8799 and as described by Equation 31.
The frank profile and the best fit in Figure 7 coincide well and the
residuals for this fit were also consistent with pure noise, thus this
is an appropriate model for this disc. The value for the inner surface
density slope of 49 Ceti was found to be 1.3+0.3−0.3 through this fitting.
This is a very low value and consistent with collisional evolution
and the fact that no massive planets have been found around 49 Ceti
that could truncate or stir the disc. Hughes et al. (2017) found an
inner slope of 2.5+0.8−2.2, which is consistent with our finding and with
collisional evolution. Similar to HR 8799, the disk peaks at a radius
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Figure 7. Recovered surface brightness profiles from our parametric model fitting procedure. The solid black lines represent the best fit that minimizes the 𝜒2.
The dashed lines represent the frank profiles, for comparison with the fit found. The presented profiles correspond to band 6 (1.3 mm) for AU Mic, band 7 (0.9
mm) for q1 Eri, HD 92945, HR 8799, HD 107146, HD 206893, and band 8 (0.6 mm) for 49 Ceti. Note that for systems with where we use multiple bands, we fit
both simultaneously allowing for a different 𝑓disc and 𝑓★ for each band. The coloured lines represent the intensity profile of a random sample of 50 points from
the posterior distribution of each system.
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Table 3. Inner surface density slope (𝛾 = 𝛼i + 1/2), transition radius (𝑟𝑡 ), dust surface density at 𝑟𝑡 , estimated collisional lifetime of cm-sized dust using
Equation 14, and the ratio between their collisional lifetime and age of the system. HD 206893 the posterior distribution of 𝛾 reached our upper bound of 10,
and thus we report a 3𝜎 lower limit instead.

System Inner surface density slope 𝛾 Transition radius 𝑟t [au] Dust surface density at 𝑟t [𝑀⊕ au−2] 𝑡col(1 cm) [Myr] 𝑡col(1 cm)/𝑡age

HR 8799 2.2+0.3−0.2 240+10−10 5.2 × 10−7 9 0.2
q1 Eri 4.7+0.5−0.4 84+1−1 7.9 × 10−7 0.8 6 × 10−4
HD 92945 7.5+1.7−1.6 54+2−2 1.9 × 10−6 0.2 7 × 10−4
HD 107146 7.2+0.9−0.7 44+1−1 4.3 × 10−6 0.04 2 − 5 × 10−4
HD 206893 > 1.05 35+7−10 9.5 × 10−7 0.06 4 × 10−4
49 Ceti 1.3+0.3−0.3 130+10−10 1.9 × 10−6 0.4 0.01
AU Mic 1.4+0.4−0.4 36.5+0.7−0.7 5.3 × 10−6 0.05 2 × 10−3
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Figure 8. Values of the inner surface density slope (𝛾) against the location of
the transition radius (𝑟t) for the seven systems studied. The grey horizontal
line shows the expected slope value of 2 if the inner slope is set by collisional
evolution alone.

slightly smaller than 𝑟t due to the low value of 𝜈 and the outer slope
being steeper than the inner one.

3.3.4 HD 92945

For this system, frank found a wide disc with a single gap, and
thus we chose a parametric model that could mimic this gap and
adjust to the inner and outer edge sharpness. This model consists of a
power law inner section, a middle power law, a Gaussian gap, and an
outer edge parameterised as an hyperbolic tangent following Marino
(2021)

𝐼 (𝑟) = 𝐼0𝐺 (𝑟)
((

𝑟

𝑟t

)−𝜂𝛼i
+

(
𝑟

𝑟t

)−𝜂𝛼m )− 1𝜂 (
1 + tanh

(
𝑟out − 𝑟

𝑙out

))
, (32)

𝐺 (𝑟) = 1 − 𝛿g exp

(
(𝑟 − 𝑟g)2

2𝜎2g

)
. (33)

where 𝛼𝑚 is the slope of the middle section of the disc (if there was
no gap), 𝑟out is the location of the outer edge, 𝑙out determines how
smooth or sharp the outer edge is, and𝐺 (𝑟) represents aGaussian gap
centred at 𝑟g, with a standard deviation 𝜎g and a fractional depth 𝛿g.
In Figure 7 we present the best-fit parametric model for HD 92945.
Again, the residuals were consistent with pure noise, which means
that the chosen model is enough to explain the main features present
in the data. The inner surface density slope was constrained to 7.5+2−2,

which is consistent with the lower limit of 5.7 derived by Marino
et al. (2019).

3.3.5 HD 206893

For this system, frank found a wide disc with a single gap, and thus
we chose the same parametric model as for HD 92945 (described by
Equation 32). In Figure 7 we present the best-fit parametric model
for HD 206893. Again, the residuals were consistent with pure noise,
which means that the chosen model is enough to explain the main
features present in the data. The recovered profile is very uncertain
around the inner section, with it only managing to recover a lower
limit for the slope. The best-fit model is in good agreement with
the frank profile. Furthermore, it recovered the gap in the disc.
The value of the inner slope found for HD 206893 is > 1.05. Due
to this being only a lower limit, the inner slope is both consistent
with being shallow (i.e. consistent with collisional evolution) and
sharp (consistent with being truncated by planets), something that
Marino (2021) also found. This system is known to host two massive
companions interior to the disc at semi-major axes of 3.5 and 9.7 au
(Milli et al. 2017a; Delorme et al. 2017; Hinkley et al. 2022). The
disc inner edge or transition radius and slopes are, however, very
uncertain and thus it is hard to assess if the outer companion is what
set the inner extent of the disc.

3.3.6 AU Mic

For AU Mic, the best parametric model was found to be two power
laws joining at the disc peak or transition radius and an additional
Gaussian gap following

𝐼 (𝑟) = 𝐼0𝐺 (𝑟)
((

𝑟

𝑟t

)−𝜂𝛼i
+

(
𝑟

𝑟t

)−𝜂𝛼o )− 1𝜂
, (34)

𝐺 (𝑟) = 1 − 𝛿g exp

(
(𝑟 − 𝑟g)2

2𝜎2g

)
. (35)

The frank profile and the best fit in Figure 7 coincide well and the
residuals for this fit were also consistent with pure noise, thus this
is an appropriate fit for this disc. At a radius smaller than 10 au the
shape is very uncertain (which is in agreement with what frank
finds), however, all tested models required a local minimum around
20 au and significant emission at 10 au, thus making a gap in the
disc a likely feature. The single gap model was compared to the
no gap model, and considering the added number of parameters
of the single gap model, the Bayesian Information Criterium (BIC,
Schwarz 1978) value difference between the models is still > 10
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and thus statistically significant 8. The inner surface density slope of
AU Mic was found to be 0.9+0.4−0.4. This result implies that the inner
section is shallow and consistent with collisional evolution. Previous
analyses by Daley et al. (2019); Marino (2021); Vizgan et al. (2022)
also found a surface density profile that gently rises with radius,
with Daley et al. finding an inner slope of 0.9+0.5−0.4 which is in good
agreement with our findings.

3.3.7 HD 107146

For HD 107146 we tested out various different models due to its
complexity as frank revealed 2 gaps in the disc as opposed to the
single shallow and wide gap found in previous analysis. The chosen
parametric model for HD 107146 after extensive testing was a power
law inner section, a middle section power law, a hyperbolic tangent
outer edge, and two Gaussian gaps
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This was decided by comparing the BIC values for the single gap
model against the double gap, and when considering the increased
complexity of the two gapmodel the BIC value was still better for this
model 9. The fit can be seen in Figure 7. The fit is slightly different
to the frank profile, as the first gap is deeper and narrower than in
the frank profile. However, various models were tested and they all
had a consistent inner section. Furthermore, whilst the shapes of the
two gaps in the disc are uncertain, the fact that both frank and the
parametric fit both converge to a two gap disc strongly supports the
presence of substructures within the broad gap. Moreover, the double
gap is also recovered from Clean images from the newest and highest
resolution data, although at a lower significance partly due to the
lower resolution of Clean images compared to deconvolved models
(Appendix A). The inner surface density slope was found to be
7.2+0.9−0.7. Marino et al. (2018) finds an inner slope of 11.6

+3.0
−2.7, which

appears to be much higher than the value found in this investigation,
however still consistent within 3𝜎. Both derived values are much
higher than the value of 2 expected in a pure collisional evolution
scenario, which is what we aimed to determine. Regarding the two
gaps, we found that these are centred at 56±1 au and 79±1 au; these
results will be examined in more detail in a future work using JWST
data from cycle 1.

8 The difference in the BIC value of the two models was 15, with the model
with the gap having the lower BIC, supporting the usage of this model.
9 The difference in their BIC values was 37, with the two gap model having
a lower BIC, and thus supporting the use of this model.

4 DISCUSSION

4.1 Surface density

Based on the derived values for the inner surface density slope 𝛾 and
the transition radius 𝑟t presented in Table 3,we can now assess if these
could be consistent with a disc evolving through collisions without
the need for it being truncated. We expect that the surface density
slopes in the inner regions with unimpeded collisional evolution to
be equal to 𝛾 = 0.75𝑞𝑔 + 0.75 ≈ 2 (𝑞𝑔 = 1.69, §2.4). This value of 2
is consistent with the ones derived for HR 8799, HD 206893, 49 Ceti
and AU Mic. For the rest, we can rule out a smooth inner section as
it would be produced by pure collisional evolution. In the following
subsection we will use this information to constrain 𝑥MMSN and
𝐷max in these systems. A caveat to keep in mind when comparing
the values of 𝛾 derived from observations with our model, is that it
assumes that the timescale it took solids to be stirred and initiate the
collisional cascade (at all radii) is much shorter than the collisional
timescale of the larger bodies and the age of the system. If the stirring
timescale was longer than the collisional timescale, pure collisional
models could produce a sharp inner edge (Kennedy & Wyatt 2010).
Based on the surface brightness at the transition radius, we can

estimate the collisional lifetime of the observed mm-sized grains
and compare this to the age of these systems to assess whether the
dust is being replenished by collisions of larger solids. To do this,
we convert the dust surface brightness into a dust surface density
assuming a dust temperature equal to the equilibrium temperature at
the transition radius and a dust opacity 𝜅D<1 cm = 1.6(𝜆/1 mm)−0.9
cm2 g−1 calculated using Mie Theory for a grain size distribution
up to 1 cm (Marino et al. 2018, and references therein). We then use
Equation 14 to compute the lifetime of 1 cm-sized grains (replacing
𝑞g by 𝑞s and setting 𝜖 = 1 to be valid for 𝐷max = 1 cm < 𝐷b).
Table 3 presents the estimated dust surface densities (4th column)
and the collisional lifetime of cm-sized grains in Myr (5th column)
and relative to the age of the systems (6th column). We find that the
lifetime of grains at the transition radius is much shorter than their
ages for all the discs, except for HR 8799 (9Myr) where their lifetime
is shorter but still comparable to the age of the system (especially
considering the multiple uncertainties when transforming the disc
surface brightness into a density). This indicates that, apart from
HR 8799, the dust in these systems is collisionally processed and its
replenishment requires the presence of larger solids.

4.2 Constraints on 𝑥MMSN and 𝐷max

Based on the inner slopes and transition radii derived above, we now
proceed to use this information to constrain 𝑥MMSN and 𝐷max. We
start by focusing on HR 8799, HD 206893, 49 Ceti and AU Mic,
which have inner sections that are consistent with being shallow and
shaped by collisional evolution as discussed above. Using equations
21 and 22 (or 25 and 26 if 𝐷max < 𝐷b), the systems’ parameters
in Table 2, the transition radius as a proxy for the critical radius 𝑟c
(found in Table 3), and the estimated dust surface density, we derive
𝑥MMSN and 𝐷max for these four systems. In order to account for
the different systematic uncertainties in the system parameters and
emitting properties of dust, we perform a Monte Carlo simulation
injecting noise with a log-Normal distribution to the dust surface
brightness (0.3 dex), 𝑟c (0.1 dex), 𝑡age (0.2 dex), 𝑀★ (0.05 dex). The
resulting distributions of 104 points are presented in Figure 9, with
the faintest filled contours representing the 95% confidence limit.
Note that there is a discontinuity at 𝐷max = 𝐷b, where none of the
equations used are strictly valid.
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Figure 9. Constraints on 𝑥MMSN and 𝐷max for four discs with inner edge
slopes consistent with collisional evolution. The filled contours show themost
likely values when considering the systematic uncertainties in the system
parameters. The faintest contours represent the 95% confidence limit. The
vertical grey dashed line represents 𝐷b where there is a discontinuity in the
model.

Overall we find that the values for the transition radii and dust
surface densities can be explained by sub-km planetesimals for three
systems. AU Mic, 49 Ceti and HR 8799 require 𝐷max in the range
3×102 −104, 10−103 and 10−3 −102 m, respectively. These values
for 𝐷max are much lower than the typical values assumed for debris
discs (10-1000 km). The large size and short age of these systems
means that they do not require large planetesimals to sustain their
dust levels. HD 206893 with a likely older age compared to the rest
requires larger planetesimals with a size between 1-100 km. If we
look at 𝑥MMSN we find that the three systems require values below 1
(i.e. surface densities of solids that are lower than the MMSN). This
means that the total mass in solids is not in an obvious contradiction
with the available solid mass in protoplanetary discs, avoiding the
disc mass problem (Krivov et al. 2018; Krivov & Wyatt 2021).
It is interesting to note that HR 8799 does not require large solids

to sustain the observed dust levels. In other words, the circumstellar
dust is consistentwith being simply a leftover from the protoplanetary
disc phase. This conclusion is consistent with the long lifetime of cm-
sized grains that we estimated in §4.1. The derived dust mass below
1 cm is just ∼ 0.1 𝑀⊕ , which would have been . 0.1% of the dust
mass present in its primordial protoplanetary disc (assuming a disc
mass of 0.05 𝑀� and a gas-to-dust ratio of 100). This leftover dust
could have been the small fraction that did not grow to pebble sizes
fast enough to radially drift towards the star or a pressure maximum
near HR 8799 b’s orbit.
These conclusions on 𝑥MMSN and 𝐷max, however, rely on the as-

sumption that the disc inner edge was shaped by collisional evolution
and not by other processes such as planet-disc interaction. Such in-
teractions could be the ones responsible for shaping HR 8799 and
HD 206893 inner edges (Faramaz et al. 2021; Marino 2021). There-
fore, these results are only valid under a pure collisional evolution
scenario. Note that as discussed in §2.3 our analytic model is likely
over-predicting the dust levels by a factor ∼ 3. If we take this into
account, the required 𝐷max values to explain observations would be
a factor ∼ 3 larger for 𝐷max > 𝐷b and a factor ∼ 30 larger 𝐷max for
𝐷max < 𝐷b. Similarly, 𝑥MMSN would be a factor ∼ 10 larger in both
regimes. Therefore, the derived values must be taken with caution.

We can now focus on the opposite scenario: the size distribution
is not yet in collisional equilibrium throughout the disc as the largest
bodies have not collided yet. In this scenario the inner sections could
be much steeper than our collisional evolution model predicts (thus
has a 𝛾 > 2.0 as HD 107146, HD 92945, and q1 Eri) or be smooth
due to something other than collisional evolution (e.g. very high ec-
centricities, Marino 2021). There are two conditions that we can use
to constrain 𝑥MMSN and 𝐷max assuming this scenario is true. First, 𝑟c
must be smaller than 𝑟t. Otherwise, we would see a slowly increasing
surface density from 𝑟t to 𝑟c. This condition can be implemented
using Eq. 16 to derive the maximum 𝑥MMSN as a function of 𝐷max
such that 𝑟c < 𝑟t. The second condition is that the combination of
𝑥MMSN and 𝐷max must reproduce the estimated dust surface den-
sity. To implement this second condition we use Eq. 20 to constrain
𝑥MMSN as a function of 𝐷max such that it matches the observed dust
surface density. This assumes 𝛼 = 3/2 and that the largest body in
collisional equilibrium is larger than 𝐷b (Marino et al. 2017b). This
is not valid for HR 8799 and 49 Ceti given their large size and young
age, which are consistent with 𝐷max < 𝐷b

10. Therefore, these two
systems are excluded from this analysis.
Figure 10 shows the required 𝑥MMSN to explain the observed

amount of dust as a function of𝐷max (second condition).Weonly plot
𝐷max for which 𝑟c < 𝑟t (first condition). All systems are consistent
with 𝑥MMSN . 1 (avoiding the disc mass problem), and all except
HR 8799 and 49 Ceti require 𝐷max > 𝐷b (i.e. in the gravity regime).
We can add as a third condition that the surface density andmaximum
planetesimal sizes are large enough to have self-stirred the discwithin
the age of the system (Krivov & Booth 2018). This third condition is
met along the solid section of the lines in Figure 10. We find that the
discs could be self-stirred in HD 107146, HD 92945, HD 206893,
and q1 Eri if 𝐷max & 100 km. Note, however, that the equations used
to derive these lines might be invalid for 𝐷max > 100 km since 𝑋c
could be larger than 1 (§2.2). HD 107146 stands out in this figure
for requiring the largest value of 𝑥MMSN between 0.3 − 1, which
given its radial span from 44 to 144 au, is equivalent to a total mass
∼ 20 − 60 𝑀⊕ . As noted before, our model over-predicts the dust
surface density level, and thus the required 𝑥MMSN values could be
a factor ∼ 10 larger. Even with this correction, we find that all these
discs can avoid the disc mass problem.
Note that when deriving 𝑥MMSN and 𝐷max using the equations

in §2.3 we have assumed a particular solid strength law 𝑄★
𝐷
corre-

sponding to ice (Benz & Asphaug 1999) as the solids at tens of au
in these systems would probably be similar to Solar System comets
in composition. Ice has one of the weakest strengths, and thus if we
had assumed stronger solids the derived values of 𝐷max and 𝑥MMSN
would be lower. For example, assuming the strength values of basalt
(Benz & Asphaug 1999) that yield a similar 𝐷b and a 𝑄★

𝐷b
value

a factor 2 higher, we find that the 𝐷max and 𝑥MMSN values derived
from Figure 9 are a factor 400 and 5 smaller, respectively, in the
strength dominated regime (𝐷max < 500 m). In the gravity domi-
nated regime (𝐷max > 500 m), we find 𝐷max and 𝑥MMSN values
a factor 10 and 5 smaller, respectively. In addition, the values of
𝑥MMSN derived for Figure 10 would be a factor 3 smaller. Therefore,
stronger solids would imply an even smaller maximum size in the
collisional cascade and lower solid surface densities and thus it does
not alter our general conclusions of small planetesimals.

10 This was confirmed using numerical simulations from Marino et al.
(2017b).
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Figure 10. Constraints on 𝑥MMSN and 𝐷max for 5 discs for which 𝐷max >
𝐷𝑐 > 𝐷b, 3 of which have inner slopes inconsistent with collisional evolution
(HD 107146, HD 92945 and q1 Eri). The coloured lines show the required
𝑥MMSN as a function of 𝐷max. The solid lines mark the range where the
surface density and size of the largest planetesimals would be enough to stir
the disc (self-stirring). Note that the lines are restricted to the range in which
𝑥MMSN is below the maximum value such that 𝑟c < 𝑟t.

4.3 Truncation by planets

Here we investigate the masses and locations of putative planets that
could have truncated the discs in order to result in the shapes found.
Following Pearce et al. (2022), we find the minimum planet mass
using their publicly available code11, which accounts for the inner
edge location and the scattering time being shorter than the age of
the system. We define the inner edge location as the radius at which
the intensity (recovered by our parametric model fits) reaches half
of the value at the top of the first peak in the radial profile. Note
that Pearce et al. (2022) had estimated these masses using slightly
different inner edge values collected from the literature at that time.
Therefore, here and in the following section we repeat this exercise
using our derived inner edge locations. We assume an eccentricity of
zero as the discs are all approximately axisymmetric, and thus set the
apocentre and pericentre of the discs inner edge to be equal. Using
this code and these assumptions, we find the minimum planet masses
and maximum semi-major axis of the planets found in Table 4.
The estimated minimum planet masses for each of the systems can

be found in Table 4. The masses of the single planet truncation found
ranged from 0.2 MJup for q1 Eri to 1.7MJup for HR 8799. Most of
these values are well below the existing constraints for these systems
and beyond the current capabilities of ground-based direct imaging
instruments which can only detect planets more massive than few
Jupiter masses (e.g. Nielsen et al. 2019; Langlois et al. 2021). Only
for HR 8799 and 49 Ceti, the minimum planet masses are very close
to the detection limits. For 49 Ceti, SPHERE observations could have
detected a 2 𝑀Jup planet near 95 au (Choquet et al. 2017), but not if
that planet was near the minor axis of the disc and at a much smaller
apparent separation. For HR 8799, SPHERE observations have ruled
out the presence of a 0.6 𝑀Jup or more massive planet beyond 100 au
(Zurlo et al. 2022) and thus a fifth planet responsible for truncating
the the disc by itself would have been detected. However, it has
been suggested that the known four planets in the HR 8799 system

11 https://github.com/TimDPearce/SculptingPlanet

(the outermost at 70 au) migrated inwards into its close to resonant
configuration and thus could have truncated the disc without the need
of an additional planet (e.g. Goździewski & Migaszewski 2018).
It is also possible that the inner edge is truncated by a multi-planet

system (Shannon et al. 2016). Using Equation 15 from Pearce et al.
(2022), we calculate the minimum mass of planets required to clear
their orbits in a multi-planet system within the age of the system
assuming the outermost planet is at the disc inner edge. We have
calculated these masses for all of the systems, even those that have
been found to have a shallow inner edge consistent with collisional
evolution, since even in those systems planets may have been re-
sponsible for truncating the disc. The range of multi-planet masses
found is between 1M⊕ and 65M⊕ , all below the range of detection
for ground-based direct imaging instruments. JWST will allow for
detection of planets & 0.1MJup (Carter et al. 2021), therefore some
of these putative planets could be directly imaged in the near future.
In fact, the 7 systems studied here will be directly imaged during
JWST’s cycle 1. Finally, 4 of these systems (HR 8799, HD 92945,
HD 107146 and HD 206893) have significant Gaia eDR3proper mo-
tion anomalies (Kervella et al. 2022). For the case of HR 8799 and
HD 206893 this is caused by one of the known planets in these sys-
tems (Brandt et al. 2021; Hinkley et al. 2022), whereas for HD 92945
and HD 107146 such companion has not been detected yet.

4.4 Stirring by planets

Given the location of the disc inner edge and the extent of these discs,
we can also estimate the minimum mass of a planet just interior to
the disc inner edge for it to stir the orbits of solids across the whole
extent of the disc. For this, we use Equation 23 in (Pearce et al.
2022), assuming a planet eccentricity of 0.1. This is a necessary
assumption to make as stirring requires 𝑒p > 0, but the systems are
approximately axisymmetric and thus we use a low 𝑒p. We define the
outer edge radius as the location at which the disc intensity gets to
half of the outermost peak. The results for the values of𝑀p,stir can be
found in Table 4. The minimum planet mass for stirring range from
0.6 M⊕ for q1eri to 2200 M⊕ for 49 Ceti. The masses for HR 8799,
HD 107146, HD 206893, and 49 Ceti are above the expected JWST
detection limit, and these four systems have observing time allocated
during cycle 1. This would serve to test models of planet stirring and
disc truncation by planets.

4.5 Limitations

In addition to the limitations of our model described throughout the
paper due to the approximations that we used, here we briefly de-
scribe a few additional caveats. First, our model assumes that the
dynamic excitation or relative velocities of solids is not a function
of grain size. This might not be true across the size distribution if
collisional damping is important (e.g. Pan & Schlichting 2012) and
thus could slightly affect the surface density slope. Our assumption
would also not be valid near the bottom of the collisional cascade
where radiation pressure (or the effect of stellar winds) is not negli-
gible. Near the blow-out size, the dynamical excitation will be set by
radiation pressure (or stellar winds) and the smallest grains will be
released onto very eccentric orbits. The effects of radiation pressure
were considered by Schüppler et al. (2016) and they found a surface
density of solids in the inner regions rising as 𝑟2 (see their Figure 1).
Note that the optical depth (shown in the same figure) has a different
radial profile that rises more slowly, but this is dominated by the
smallest grains that are affected by radiation pressure. Since in this
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Table 4. Values for the minimum planet mass for single planet truncation to occur (𝑀p), maximum semi-major axis of the planet for truncation to occur (𝑎p),
minimum multi-planet mass for truncation to occur (𝑀p,n), and minimum planet mass for stirring to occur (𝑀p,stir) for all of the systems. All of the minimum
masses are calculated using the inner and outer edges derived from our modelling, where the inner edge is the radius at which the intensity (recovered by our
parametric model fits) gets to half of the value at top of the first peak and the outer edge is the radius at which the intensity is half of the value of the outermost
peak.

System Inner Edge Value [au] Outer Edge Value [au] 𝑀p [𝑀Jup ] 𝑎p [au] 𝑀p,n [𝑀⊕ ] 𝑀𝑝,stir [𝑀⊕ ]

HR 8799 109 300 1.7 80 65 650
q1eri 70 106 0.20 59 0.88 0.60
HD 92945 48 124 0.26 39 2.1 16
HD 107146 40 143 0.39 32 3.8 120
HD 206893 31 138 0.34 26 2.3 200
49 Ceti 35 175 1.0 28 15 2200
AU Mic 25 39 0.36 19 8.0 6.3

paper we focus on the mm-sized grains we conclude that neglecting
the effect of radiation pressure should not affect our conclusions.
A second limitation in our models is that we do not consider the

effects of radial mixing when eccentricities are high or any radial
transport. Our model treats the collisional evolution at each radii
independently, which would not be valid for high orbital eccentric-
ities as those orbits would span a wide range of orbital radii. Our
model also neglects the effect of P-R drag (the main radial trans-
port mechanism in the absence of planets as assumed in our model).
P-R drag causes small grains to migrate inwards producing a flat
radial distribution of small grains interior to the planetesimal disc
(e.g. Wyatt 2005; Kennedy & Piette 2015; Rigley & Wyatt 2020).
However, the bulk of the distribution of large mm-sized grains will
remain co-spatial with the parent planetesimals and thus P-R drag
would not affect the 𝑟2 surface density scaling of grains traced at mm
wavelengths.
Finally, our model assumes a pre-stirred disc or at least that the

collisional timescale of the largest planetesimals is much longer than
the stirring timescale throughout the disc. This may not be the true
in the planet- or self-stirring scenarios depending on the system
parameters (Mustill &Wyatt 2009; Kenyon&Bromley 2008; Krivov
& Booth 2018). If the stirring timescale was much longer, then the
surface density just interior to the critical radius would have a much
steeper profile (Kennedy &Wyatt 2010). Marino et al. (2017a) fitted
a similar radial profile model (allowing for a long stirring timescale)
to ALMA observations of 𝜂 Corvi assuming the disc is being self-
stirred, finding a that in order to reproduce the sharp inner edge the
collisional timescale had to be shorter than the stirring timescale.
However, self-stirring was found to be unlikely to explain the best-
fit values as they required very small planetesimals that would be
unlikely to have stirred the disc. Future work could evaluate this
type of self-stirred models in a systematic way to a larger sample of
systems and use more up-to-date self-stirring timescales (e.g. Krivov
& Booth 2018), which could change the conclusions of Marino et al.
(2017a).

5 CONCLUSIONS

In this paper we have presented an analytical model for the collisional
evolution of debris discs considering a three-phase size distribution
and we showed how it can be applied to interpret the morphology
of debris discs at mm wavelengths. In contrast to previous and simi-
lar analytic models, here we particularly focused on how collisional
evolution is expected to shape the inner edge of a disc forcing the
surface density to increase with radius to the power of 2 out to a criti-

cal radius. We use this model to derive simple analytical equations to
constrain the total surface density of solids and maximum planetesi-
mal size based on quantities that can be derived from observations,
such as the dust surface density and the disc critical radius where the
slope of the surface density flattens.
We tested if this simple collisionalmodel is consistent withALMA

observations of sevenwide debris discs: HD 107146, q1eri, HR 8799,
AU Mic, 49 Ceti, HD 206893, and HD 92945. We do this in a two
step process using both parametric and non-parametric models to
constrain the location and sharpness of the disc inner edge. We first
used frank to fit the visibility data of each disc and derive a non-
parametric model to determine an approximate shape of the disc
at a higher resolution than conventional imaging techniques. We
then used an MCMC to fit a parametric model to the visibilities
and estimate the inner surface density slope. Based on those values,
we determined if they are consistent with collisional evolution or if
truncation by planets was more likely.
For 4 out of the 7 discs (HR 8799, HD 206893, 49 Ceti, and

AU Mic) we found the inner edges are consistent with a power-law
index of 2, i.e. consistent with the models for collisional evolution.
For those we found that the inner edge location could be explained by
low disc masses relative to a MinimumMass Solar Nebula and small
planetesimals. In fact, we found for HR 8799, 49 Ceti and AU Mic
that the largest planetesimals could be sub-km in size. This is because
these discs are large and young, and therefore do not require large
planetesimals to sustain their dust levels. While the presence of large
planetesimals is not strictly required to explain the dust levels in these
systems, their presence cannot be excluded.
For the remaining three discs we found that the inner edges were

sharper than predicted by collisional evolution, and thus they must
have been set by something else. We explored the possibility that
the inner edges were set by the interaction with planets (even for
those with shallow edges), and we derivedminimum planet masses to
carve the inner edges within the age of the systems. For single planets
carving the inner edge we found values of between 0.2 and 2 MJup.
For multi-planet systems carving the inner edge we found masses
between 1 and 70M⊕ . We also derived the minimum planet mass for
stirring the disc through secular interactions, and we found masses
ranging between 0.6 M⊕ and 2000 M⊕ . All of these values are much
lower or at least consistent with detection limit of direct imaging
observations from ground-based instruments, except for HR 8799.
However, JWST could detect some of these; all of these systems will
be observed during cycle 1. Such observations will be able to test
some of our predictions and provide further insights about how the
inner edge of these discs was shaped.
Finally, during the non-parametric modelling of HD 107146, we
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discovered that there was an extra gap in the disc. This was present
in archival data, but impossible to see in clean images. New higher
resolution images and our parametric modelling confirmed this find-
ing. The double gap morphology was recovered from all data sets
with frank and was also what the parametric model fits converged
towards. This highlights the importance of non-parametric fits like
frank to extract detailed radial information prior to fitting a para-
metric model. Cycle 1 JWST observations of this disc will search for
low mass planets interior and in between the disc and thus provide
strong constraints on the origin of these gaps.
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APPENDIX A: NEW HD 107146 DATA

New ALMA data was acquired as part of cycle 7 for the project
2019.1.00189.S (PI: S. Marino). The new observations were in band
7 (0.87 mm) and aimed to image the continuum at a much higher
resolution (∼ 0.2′′) than previous observations to resolve the known
gap in this system (Marino et al. 2018). The cycle 7 observations
included observations at a more compact configuration to be able to
recover the large structure as this disc is ∼ 10′′ in diameter. The com-
pact configuration observations were obtained in December 2019 in
two execution blocks, and this data subset was used in the analysis
performed byMarino (2021). Due to the shutdown of ALMA in 2020
during the COVID-19 pandemic, only ∼ 20% of the extended con-
figuration observations were carried out in May 2021. Nevertheless,
these new observations proved useful in our analysis and thus we
included them.
The spectral setup for both sets of observations was set in time

division mode, with four spectral windows with a low spectral res-
olution to image the continuum emission. Their central frequencies
were 336.5, 338.4, 348.5, and 350.5 GHz, with 128 channels each
and a bandwidth of 2 GHz. Calibration of the raw data was done us-
ing the ALMA pipeline with CASA version 5.6.1-8 for the compact
configuration data and with 6.2.1.7 for the extended configuration
data, which included the flagging of two antennas. In addition, we
flagged antenna DV08 after consultation with the helpdesk to reduce
imaging artefacts. After flagging, there was a total of 41 antennas
available with minimum and maximum baselines of 15 and 312 m
in the compact configuration, and 39 antennas with minimum and
maximum baselines of 15 and 1400 m in the extended configuration.
When imaged separately, the compact and extended configuration
clean images have an rms of 17 and 26 𝜇Jy beam−1 with Briggs
weights (robust=0.5).
The previous analysis done of the compact configuration data

by Marino (2021) revealed that the inner emission discovered in
Marino et al. (2018) was a background submillimeter galaxy. Due
to HD 107146’s proper motion, the relative position of this galaxy
has changed over time. Therefore, prior to combining the data of
both configurations, we subtract this source using a 2D Gaussian
according to the best fit from Marino (2021) at its corresponding
position in December 2019 and May 2021. In addition, we use the
CASA task fixplanets to change the coordinates of the phase center
of the compact configuration observations (without changing the 𝑢𝑣
coordinates or visibilities. Finally, we combine the two data sets and
image the visibilities with tclean. The resulting image with Briggs
weights (robust=1.0) is presented in the top panel of Figure A1. This
image reconstruction is dominated by the compact configuration data.
The bottom panel shows the deprojected and azimuthally averaged
emission of the disc (obtained from a clean image with a robust
parameter of 0.3) together with the intensity profile derived by frank
using all available band 7 data. The new data confirms the finding the
double gap structure found by frank in the old band 6 and 7 data,
although the two dips are not recovered with the same amplitude
due to the poorer resolution of the Clean image (∼ 0.3′′ = 8 au).
Moreover, the clean image seems to be missing some flux likely
due to the low weights given to the short baselines through a robust
parameter value of 0.3. This flux iswell recoveredwith our parametric
model in §3.3.

APPENDIX B: PARAMETRIC MODELS

Table B1 presents the best fit values of all the parameters described
in §3.3 that we fit to the binned visibilities.
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Table B1. Best fit parameters for each of the models based on the MCMC results. The best fit value and uncertainties are based on the 16th, 50th and 84th
percentiles of the marginalised probability distribution. If a parameter distribution reached our prior boundaries we instead report a 5% lower or a 95% upper
limit (i.e. 2𝜎.

Where a certain parameter was not used for a particular system, this cell is left blank and if a parameter was unconstrained this is labelled by a U.

Parameter HR 8799 q1eri HD 92945 HD 107146 HD 206893 49 Ceti AU Mic

fdisc6 [mJy] ... 6.1+0.3−0.3 ... 15.35+0.14−0.13 0.88+0.050.05 ... 4.88+0.07−0.07
fdisc7 [mJy] 7.2+0.6−0.5 13.2+0.5−0.4 9.8+0.4−0.4 29.1+0.3−0.3 2.5+0.2−0.2 ... ...
fdisc8 [mJy] ... ... ... ... ... 36+3−3 ...
f★6 [mJy] ... 0.058+0.014−0.014 ... 0.022+0.006−0.006 0.013+0.005−0.006 ... 0.23+0.02−0.02
f★7 [mJy] 0.070+0.012−0.012 0.161+0.015−0.015 0.04+0.02−0.02 0.04+0.01−0.01 0.041+0.010−0.010 ... ...
f★8 [mJy] ... ... ... ... ... < 0.42 ...
𝑟t [au] 237+11−11 84+1−1 54+2−2 44+2−2 34.8+6.5−9.6 131+13−12 36.4+0.7−0.7

𝜂 < 1.6 > 2.8 U 2.8+1.2−0.7 U < 6.7 U
𝛼i 1.7+0.3−0.3 4.2+0.5−0.4 7+2−2 6.7+0.9−0.7 > 0.55 0.8+0.4−0.3 0.9+0.4−0.4
𝛼m ... ... −1.3+0.4−0.6 −0.7+0.1−0.2 0.4+0.6−0.8 ... ...
𝛼o −4.4+0.4−0.5 −3.14+0.09−0.10 ... ... ... −3.5+0.4−0.5 −9.9+1.01.4

𝑟out [au] ... ... 133+5−7 144.3+0.9−1.1 120+20−20 ... ...
𝑙out [au] ... ... 23+7−5 19+1−1 44+7−6 ... ...

𝛿1 ... ... 0.66+0.110.09 0.69+0.10−0.09 0.92+0.05−0.08 ... 0.94+0.04−0.08
𝑟1 [au] ... ... 72.0+1.5−1.5 56.0+0.7−0.6 69+3−3 ... 17.1+1.2−1.4
𝜎1 [au] ... ... 8+4−4 3.3+0.7−0.5 17+4−4 ... 5+2−1

𝛿2 ... ... ... 0.60+0.05−0.03 ... ... ...
𝑟2 [au] ... ... ... 78.3+1.1−1.2 ... ... ...
𝜎2 [au] ... ... ... 18+3−2 ... ... ...

APPENDIX C: INNER EDGE SLOPE DERIVATION FOR
INTENSITY PROFILES

The derivation begins with equation C1 where 𝐵(𝑇) is the blackbody
equation, 𝑇 is the temperature and 𝜏 is the optical depth.

𝐼 = 𝐵(𝑇) × (1 − exp (−𝜏)) (C1)

In the Rayleigh-Jean regime, which debris discs are, the black-body
equation correlates with temperature as in Equation C2

𝐵(𝑇, 𝜆 � 𝜆𝑐) ∝ 𝑇 (C2)

The optical depth, 𝜏, is equal to the surface density of solids (Σ)
times the opacity (𝜅), which together with the assumption that 𝜏 � 1
(which is the case for debris discs), leads to

𝐼 ∝ 𝑇 (𝑟)𝜏 = 𝑇 (𝑟)𝜅Σ(𝑟) (C3)

Assuming the dust temperature is equal to the equilibrium tempera-
ture we have 𝑇 (𝑟) ∝ 𝑟−1/2. Within the disc critical radius we expect
Σ ∝ 𝑟𝛾 . Therefore, we find

=⇒ 𝐼 ∝ 𝑟−
1
2 𝜅Σ(𝑟) =⇒ 𝐼 ∝ 𝑟−1/2+𝛾 (C4)

This means that 𝛼i (the intensity power law index) is 𝛾 − 1/2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Top panel: Clean continuum image of HD 107146 from the new
cycle 7 band 7 data. This image corresponds to Briggs weights (robust=1.0),
giving a rms of 14𝜇Jy beam−1 and a beam size of 0.′′77 × 0.′′57. Bottom
panel:Deprojected intensity profiles obtained from a clean imagewith Briggs
weights and robust=0.3 (blue) vs the intensity profile reconstructed from
frank (orange). The shaded regions represent ±1𝜎 confidence levels.
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