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Multi-agent reinforcement learning control of a
hydrostatic wind turbine-based farm

Yubo Huang, Shuyue Lin, and Xiaowei Zhao

Abstract—This paper leverages multi-agent reinforcement
learning (MARL) to develop an efficient control system for
a wind farm comprising a new type of wind turbines with
hydrostatic transmission. The primary motivation for hy-
drostatic wind turbines (HWT) is increased reliability, and
reduced manufacturing, operating, and maintaining costs by
removing troublesome components and reducing nacelle weight.
Nevertheless, the high system complexity of HWT and the
wake effect pose significant challenges for the control of HWT-
based wind farms. We therefore propose a MARL algorithm
named multi-agent policy optimization (MAPO), which allows
agents (turbines) to gradually improve their control policies
by repeatedly interacting with the environment to learn an
optimal operation curve for wind farms. Simulation results
based on a wind farm simulator, FAST.Farm, show that
MAPO outperforms the greedy policy and a popular learning-
based method, multi-agent deep deterministic policy gradient
(MADDPG), in terms of power generation.

Index Terms—Wind farm control, hydrostatic wind turbines,
multi-agent reinforcement learning, power generation.

I. Introduction
Developing renewable energy to substitute traditional

fossil energy is one of the most promising ways to reduce
environmental pollution. In Europe, wind energy accounts
for the highest share of clean energy generation and is also
the fastest-growing electricity source in the market [1].
Nonetheless, there is an intractable drawback for offshore
wind farms comprising of gearbox-based wind turbines—
their maintenance is costly. Hydrostatic wind turbines
(HWT) can help tackle this problem [2] because the
hydrostatic transmission system is more robust than the
gearbox-based transmission and can offer a longer life
cycle. In addition, HWT allows to shift the heavy motor
and generator to the platform (Fig. 1), and therefore the
mass of the nacelle can be significantly reduced, which
vastly facilitates ease of installation and maintenance
of wind turbines. Furthermore, the frequency/inertial
response exhibited by HWTs is of clear value to large-scale
power systems because they are installed with synchronous
generators. These economical advantages motivate us to
study the HWT-based wind farm. We focus on its control
in this paper.

Like the case for the traditional wind turbines/farms,
the control method for a single HWT is not suitable
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Fig. 1. The substructures of a hydrostatic wind turbine.

for a HWT-based wind farm due to the wake effect.
Specifically, the optimal control policy for an isolated
HWT is maximum power point tracking (MPPT [3], see
Fig. 2): when the wind speed is below rated, the objective
is to control the generator torque to maximize its power
output. When the wind speed is sufficient to drive the full-
power operation of HWTs, the goal becomes to maintain
the output at the rated level to alleviate the structural
load via the joint control of blade pitch and generator
torque. In wind farms, turbines are normally installed in
arrays, and thus the actions of upstream turbines affect
the environmental state of their downstream counterparts
through the wake effect. Although MPPT can achieve op-
timal solutions for upstream turbines, the power outputs
of HWTs within the wake planes of upstream turbines are
reduced greatly, causing a decline in power generation of
the entire wind farm. Therefore, how to design a control
policy for wind farms which can overcome the wake effect
is an ongoing issue.

For the farm-level control, the model-free methods
may offer more benefits than the model-based methods
due to the high system complexity and environmental
uncertainty of wind farms. Firstly, model-based control
methods (e.g. Model Predictive Control) require an ac-
curate wind farm model, but the high environmental
uncertainty of wind farms will inevitably introduce con-
siderable modelling errors. Control policies designed based
on the model with modelling errors are likely to be
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Fig. 2. The optimal operation curve of an individual wind turbine—
MPPT [4].

sub-optimal. Additionally, the algorithm complexity of
model-based methods is usually higher than the model-
free methods, which can cause greater computational cost.
For example, when the task has a long horizon like the
wind farm control case, it might be difficult for model
predictive control to achieve real-time control because of
the expensive computation cost. Thus many studies have
recently attempted to leverage model-free data-driven
methods to approach a better wind farm control policy,
including dynamic programming [5], genetic algorithm [6],
and swarm optimization [7].

Among multitudinous model-free methods, model-free
reinforcement learning (RL) has its exclusive advantages
in solving the wind farm control task. For example,
dynamic programming is impractical for large-scale wind
farm control since it has high memory expenditure when
the state space is large. As for the genetic algorithm
and swarm optimization, they cannot guarantee the con-
vergence or stability of the control policy during the
optimization process. Model-free RL [8] can effectively
tackle these challenges with the assistance of deep neural
networks and has achieved excellent results in wind farm
control. Dong et al. integrated deep deterministic policy
gradient (DDPG) and the high-fidelity wind farm model
to learn the control policy [9]. Zhao et al. used the
knowledge-assisted DDPG to optimize the control policy
as well as ensuring safety during training [10]. Bay et al.
introduced a distributed RL-based method to wind farm
power capture maximization using yaw control [11]. These
works demonstrated that model-free RL can be applied
smoothly to wind farm control and achieve better results
than many selected data-driven methods.

Almost all existing model-free RL control methods for
wind farms (which consist of multiple turbines) regard
the wind farm as a single agent, but using multi-agent RL
(MARL) to train wind farm control policy is obviously
more rational than using single-agent RL (SARL). There
are some limitations encountered in applications of SARL:

• SARL is not scalable since the dimensions of the joint
action space will grow exponentially with the increase

in the number of HWTs in a wind farm.
• In execution, each HWT demands to acquire the

states of their teammates to generate its action
based on the control policy. This high degree of
communication can not be satisfied in the real-world
scenarios.

Both limitations can be addressed by introducing the
centralized training with decentralized execution (CTDE)
principle [12] in MARL. This implies that the concatena-
tion of the states of all HWTs is inputted to the value
network to estimate the future return (power) of each
HWT during training, but each HWT only uses their
private state to sample its action (low dimension) rather
than the joint action based on the individual policy in
execution (communication-free).

On the other hand, there are also several challenges
in designing the control system of a HWT-based wind
farm within the MARL framework. Firstly, to bridge
the simulation to reality gap, in the construction of the
wind farm simulator, we should not only consider the
aerodynamics of the wind farm but also the dynamics
of multifarious substructures of HWTs, which are typi-
cally ignored in the existing wind farm control research.
Moreover, there are significant differences in the RL-
based control designs between wind farms consisting of
gearbox-based wind turbines and the ones consisting of
HTWs. For example, to standardize the control task as
a complete MDP (Markov decision process, a compulsory
condition for RL design), the former only includes the
rotor speed in the state space because gearbox-based
wind turbines have constant gearbox ratios between the
rotors and generators. However, the latter must consider
the dynamics of the hydrostatic transmission of each
HWT besides the rotor speed. Last but not least, the
developed MARL algorithm need effectively enhance the
coordination between HWTs to overcome the wake effect.
This paper makes the following contributions to address
the aforementioned issues:

• Developed a HWT-based wind farm model based on
FAST.FARM [13], where the gearbox transmission of
the wind turbine is replaced by the hydrostatic trans-
mission. This model includes both the aerodynamics
of large-scale wind farms and the mechanical dynam-
ics of substructures of a HWT. Then, the FAST.Farm
driven by the proposed model is integrated with
Python to build a high-fidelity HWT-based wind farm
simulator used for training MARL algorithms.

• Proposed a novel CTDE-based MARL algorithm
named multi-agent policy optimization (MAPO) to
learn the wind farm control policy. MAPO balances
the collective return and the individual return by a
dynamical weight, which induces agents to explore
new policies in the initial training and exploit the
explored information to subsequently maximize the
group return. By encouraging agents to maximize the
collective return, MAPO can efficaciously promote
the coordination between HWTs and further minimize
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Fig. 3. Sub-model hierarchy of the HWT-based farm simulator for
MARL. Note that we only illustrate one turbine in this figure for
convenience. In fact, this simulator can include multiple turbines
during operation.

the negative effect of wakes on the power generation.
• Simulation results show that the control policy

trained by MAPO achieves high performance in
different wind farm power layout and fluctuating
environments. The structural dynamic analysis shows
that MAPO does not cause unusual vibrations of the
main sub-structures.

II. Constructing a HWT-based wind farm simulator for
MARL

Before we train control policies for HWTs by using
the MARL algorithms, a high-fidelity simulator should be
developed. This simulator includes the models of the aero-
dynamics of the wind farm and the elastic-servo dynamics
of HWT. Different from the traditional control methods
that use the HWT-based wind farm model to design the
control policy, MARL aims to teach each agent (turbine)
to learn the control policy through interacting with the
simulator. Please refer subsection III-A for details. Below,
we will introduce the used hydraulic wind turbine models
and its control modules.

A. Modeling the dynamics of hydrostatic wind turbines
At the farm level, the aerodynamic torque T i

r
1 of the

rotor and the thrust force F i
thrust

2 exerted by the turbine

1All variables in this paper are in the International System of
Units.

2In this paper, the superscript i denotes the i-th turbine (HWT).

i can be described through a quasi-static model [14]:

T i
r =

1

2
ρπR3vi

2
Cp(λ

i, βi)

F i
thrust =

1

2
ρπR2vi

2
CT (λ

i, βi)
(1)

where i = 1, 2, · · · , n and n is the number of HWTs in a
farm; ρ,R, ωi

r, β
i are the air density, blade length, rotor

speed, and pitch angle of turbine i, respectively; vi is the
wind speed at the i-th turbine. λi = ωi

rR/vi is the tip
speed ratio; Cp and CT are the the power coefficient and
the disk-based thrust coefficient [15], respectively.

FAST.Farm uses a gearbox-based turbine model to
simulate the operation of a wind farm. The main task in
this subsection is to embed the HWT model into the farm-
level aerodynamics model introduced in subsection II-A to
construct a complete HWT-based wind farm simulator.

For the i-th HWT, the dynamics of its rotor speed is
proportional to the difference between T i

r obtained from
Eq. 1 and T i

p (the torque of pump):

ω̇i
r =

1

J i
r + J i

p

(T i
r − T i

p) (2)

where J i
r and J i

p are the rotational mass moments of inertia
of the rotor and pump, respectively.

A hydrostatic drivetrain transmits the mechanical
power on the low-speed rotor side to the high-speed gener-
ator side for electricity generation. As shown in Fig. 1, this
hydrostatic drivetrain comprises a hydraulic pump, high-
pressure and low-pressure lines, and a hydraulic motor.
First, the rotation of the low-speed shaft with the rotor-
pump assembly can pump the hydraulic oil from the low-
pressure transmission line to the high-pressure line and
the pump torque is [16]:

T i
p = DpP

i
p +Bpω

i
r + CfpDpP

i
p (3)

where Dp is the pump displacement, meaning the volume
of fluid pumped per revolution, P i

p represents the pressure
difference across the pump, Bp is the viscous damping, and
Cfp is the Coulomb friction coefficient of the pump. The
net volumetric flow of the pump Qi

p is computed by:

Qi
p = Dpω

i
r − CspP

i
p (4)

where Csp is the laminar leakage coefficient of the pump.
Then, we use a dissipative model to interpret the dy-

namics of transmission lines [17]. Specifically, this model
describes how changes in the net volumetric flows of the
pump Qi

p and motor Qi
m cause the state transform of

hydraulic lines (Eq. 5), and further result in the variation
of pressure difference in pump and motor (Eq. 6), where
P i
m denotes the pressure difference across the motor.

ẋi = Axi +
[
B1,B2

] [Qi
p

Qi
m

]
(5)

[
P i
p

P i
m

]
=

[
C1

C2

]
xi (6)
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The presented model uses the form of state space to
represent the dynamics of fluid in a hydrostatic drivetrain.
Here, A, B = [B1,B2], and C = [C1;C2] are the state
matrix, input matrix, and output matrix, respectively,
and their values are determined by the length L and
inner diameter r of transmission lines, and the density
ρ, kinematic viscosity ν, and effective bulk modulus E of
the hydraulic oil (please see [18] for specific calculations).
xi is the state vector, Qi = [Qi

p, Q
i
m]T is the input vector

and P i = [P i
p, P

i
m]T is the output vector.

Similar to the pump, the motor can also be characterized
by its volumetric displacement Di

m, but the function of
the motor is to convert hydraulic power into mechanical
power. Thus, for the hydraulic motor, we only reverse the
sign of the leakage flow and friction torques in the pump
model [16]. The net volumetric flow Qi

m and torque T i
m

of the pump are:

Qi
m = Di

mωi
m + CsmP i

m

T i
m = Di

mP i
m −Bmωm + CfmDmP i

m

(7)

where ωi
m is the motor speed, Csm is the laminar leakage

coefficient of the motor, Bm is the viscous damping, and
Cfm is the Coulomb friction coefficient of the motor.

In a hydrostatic transmission system, we can control the
motor torque by changing its displacement Dm (Eq. 7).
The response of motor displacement is characterized via a
time constant tm = 0.5 and a displacement reference D̂i

m:

Ḋi
m =

1

tm
(D̂i

m −Di
m) (8)

And the power produced by the generator is:

P i
g = ηT i

mωi
m (9)

where η is the generator efficiency.
At this point, we have integrated the aerodynamic

model of the wind farm and the hydrostatic transmission
model of the turbine. Next we will implement them in
FAST.Farm. We replace the gearbox-based drivetrain with
the hydrostatic drivetrain by modifying the ServoDyn
module in FAST.Farm3. Firstly, the drivetrain rotational-
flexibility DOF is closed in the ElastoDyn input file (.dat)
and the GBRatio is set to 1. Then, we regard the generator
in gearbox-based wind turbines as the hydraulic pump in
HWTs and modify its inertial in the FAST input file (.fst).
The transmission dynamics (Eqs. 5-6) of the hydraulic
system in HWTs is modeled as a function in the ServoDyn
module and it will be called before the state update of the
servo system. Finally, in the UserVSCont_KP.f90 file, we
provide an interface to write the trained MARL control
policy and the MARL training samples can be collected in
the .out files. Now the HWT-based wind farm simulator
is constructed and can perform its core function shown in
Fig. 3.

3the source code of FAST.Farm: https://github.com/OpenFAST/
openfast

∫
: Integrator

OpenFAST:
AeroDyn Module

Torque reference
(Fig. 2)

OpenFAST:
ElasticDyn Module

OpenFAST:
ServoDyn Module

Hydrostatic
motor actuator

Torque
controller

−
+

ωr

T̂m

∆T

D̂m

Dm

Tm

Tp

ω̇r

Tr

Wind speed: v

Fig. 4. The torque control system of HWTs. In the simulator, the
AeroDyn module can compute the load of HWT according to the
inflow wind. The ElasticDyn module determines the kinematics of
each substructure of a wind turbine. The ServoDyn module describes
the dynamics of the servo system, and the control system is also
embedded in this module. D̂m is the displacement command of the
hydraulic motor.

B. The control framework of an individual HWT
Above we have constructed a simulator of the HWT-

based wind farm. Then we will introduce the torque
control and blade pitch control regimes of HWTs in the
simulator.

1) Torque control: For a single variable-speed HWT, its
operation curve (MPPT: maximal power point tracking,
also called the greedy policy) can be divided into three
regions shown in Fig. 2. In region 2, below the rated wind
speed, the wind is not sufficient to drive the turbine to
operate at its full-power point. The blade pitch angle will
keep at its minimum to capture wind energy as much as
possible. The primary task in region 2 is to control the
motor torque to make the HWT run on its optimal torque
curve (Fig. 2), maximizing the output power. Considering
the motor displacement actuator, the closed-loop torque
control system is shown in Fig. 4. It is worth mentioning
that we find the respond of motor displacement control is
obviously swift than that of the pump in pre-experiments
since the pump affects the generator torque by changing
the pressure and flow rate of the hydraulic oil but the
motor can directly determine the input mechanical torque
of generator.

2) Blade pitch control: According to MPPT, in region
3 (see Fig. 2), the output power of a HWT should be
kept at its nominal value via the blade pitch control [2].
The dynamics of pitch actuator can be represented by a
first-order differential equation:

β̇ =
1

tβ
(β̂ − β) (10)

https://github.com/OpenFAST/openfast
https://github.com/OpenFAST/openfast
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where β and β̂ are the real-time pitch angle and its
reference determined by MPPT and the pitch controller,
respectively, and tβ = 0.1 is the time constant of the blade
pitch actuator.

From the above introduction, for a single wind turbine,
the torque and pitch references are calculated by MPPT
during its operation. This coordination-free control policy
is optimal for an isolated turbine but is unsuitable for
a wind farm due to the wake effect. For instance, if
all upstream wind turbines adopted this greedy control
strategy4, although they could maximize their power
output, within their wake plane, the downstream wind
speed would experience a rapid drop and the power
generation of turbines situated at this area will plummet.
As a result, the power production of the entire wind
farm would keep at a relatively low level. To tackle this
problem, in the next section, a novel MARL method will
be proposed to train a collaborative control policy for all
the HWTs in a wind farm to overcome the wake effect.
Then, the real-time references of torque and pitch angle
of HWTS will be generated by the trained policy.

III. Multi-agent reinforcement learning control of a
HWT-based wind farm

In Section II-B, we have introduced the greedy control
policy (MPPT) that uses the optimal operation curve
to calculate the control references of a single HWT.
For wind farm control, however, there is no one-size-
fits-all optimal operation curve, but the policy network
in RL can approximate it through interacting with the
simulator. In this section, we propose the Multi-Agent
Policy Optimization (MAPO) algorithm to control the
wind farm. And we also illustrate how MAPO trains a
collaborative control policy for a HWT-based wind farm
by using the simulator introduced in Section II, and how
the control policy guides the actions of HWTs to alleviate
the wake effect and further boost the power generation of
the whole wind farm.

A. Modeling the HWT-based wind farm control task as a
Markov decision process

In MAPO, we regard each HWT in the wind farm as an
agent which has an independent policy network/function
πi and agent value network/function V i,∀i ∈ [1, 2, · · · , n].
Overall, there is a group value network/function V gru

used for estimating the future return of the wind farm
based on its state st. The policy network πi outputs the
action ait (control reference signals) for turbine i given its
observation oit and the agent value network V i estimates
the future return of turbine i (Eq. 12). The concrete
simulator state, agent action, and reward are defined as
follows:

• State: the observation oi of turbine i includes not
only its external information (e.g. the wind speed on
the rotor, the turbine location) but also its internal

4In this paper, MPPT is also known as the greedy control strategy.

Reward
(1e3)

Power

1

2

3

Rated point

(1)

(2)

Fig. 5. The reward functions in the wind farm control task.

status— the rotor speed ωi
r, and the pump and motor

pressure differences (P i
p and P i

m). The group (farm)
state s is the concatenation of observations of all
agents (Eq. 11).

• Action: the action ai is the control reference signals
(torque reference and pitch reference) that the corre-
sponding substructure of wind turbine i should track
to maximize the output power.

• Reward: the reward ri should be proportional to
the power generated by turbine i. Hence the reward
function is designed as Fig 5. We expect all turbines
can work in their rated state, so the reward of turbine
i is maximal at its rated point. When the power
exceeds its rated value, the reward is set to 0 to
punish the agent. The group reward r is the sum
of all agent rewards (Eq. 11).

And they satisfy that:

st = o1t ⊕ o2t ⊕ · · · ⊕ ont

at = a1t ⊕ a2t ⊕ · · · ⊕ ant

rt = r1t + r2t + · · ·+ rnt

st+1 = o1t+1 ⊕ o2t+1 ⊕ · · · ⊕ ont+1

(11)

where ⊕ is the operator of concat and n is the number of
turbines in the simulator.

Based on these concepts, the agent state value function
Vπi(oit) under policy πi and the group state value function
Vπ(st) under policy π can be defined as (Hereinafter,
Vπi(oit) and Vπ(st) are abbreviated as V i

t and Vt, respec-
tively):

Vπi(ot) = E

{ ∞∑
l=0

γlri(oit+l)

}
= ri(oit) + γVπi(ot+1)

Vπ(st) = E

{ ∞∑
l=0

γlr(st+l)

}
= r(st) + γVπ(st+1)

(12)

where γ is the discount coefficient.
The interaction between the RL agents and the HWT-

based wind farm simulator can be standardized as a
Partially Observable MDP. Initially, the weights of all
policy networks are randomly initialized and thus the
corresponding farm control policy is of low quality. At each
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Fig. 6. The MAPO-based control system for wind farms

discrete time t, as shown in Fig. 6, the agent i (turbine)
observes its private status oit ∈ Oi from the simulator.
The concatenation of observations of all agents is the
group state st ∈ S (Eq. 11). Based on the observation
oit, the policy network πi of agent i will sample an
action ait (control reference signal) for different turbine
substructures (Oi → Ai). Then all turbines will take
their actions (e.g. torque reference), and the simulator
will feed back a reward ri ∈ R to each agent while
jumping to the next state st+1 (refer to Fig 3). The
sample (st, at, rt, st+1) will be collected to train the policy
and value network (see the next subsection for details) to
improve the performance of the control policy, and then
this interaction will continue. At each iteration, the quality
of the policy πi,∀i ∈ [1, 2, · · ·n] can be evaluated by the
expected return (power generated by the wind farm):

L(πi) = E(oit,a
i
t)∼ρ(s0),πi,P

{ ∞∑
t=0

γtri(oit, a
i
t)

}
(13)

where s0 is the start state of the simulator and ρ is its
probability distribution.

After this process is iterated enough times, the original
random control policy will converge to a superior solution
that can be deployed to real-world machines. Additionally,
as illustrated in Fig. 6, we input the private observation
oi and the group state s to the value network V i(oi) and
V (s) to estimate the future return of agent i and the
group future return, respectively. However, in the policy

network πi, only the private observation oi is leveraged to
sample the action references. This setting is to satisfy the
principle of CTDE, which can avoid the communication
and environment non-stationary issues in MARL.

In the HWT-based wind farm control task, if all turbines
aim to maximize their own return, the ultimate control
policy will probably fall into a locally optimal solution.
Otherwise, if the objective of all agents is always to
maximize the group return throughout the training, in
the initial stage, agents tend to exploit the explored
information to increase the collective return rather than
discovering new states. It will limit the exploration of each
agent and thus the learning speed is extremely slow at this
stage. We expect the agent to focus on increasing their
own return at the beginning of the training but dedicate
to accumulating the group return in the latter stage to
find the best collaborative control policy. We can leverage
a dynamical parameter η, whose value gradually grows
from 0 at the beginning to 1 after the training, to Eq. 13
to achieve this purpose. Now the objective of the policy
network πi changes from Eq. 13 to:

L(πi) = (1− η)E(oit,a
i
t)∼ρ(s0),πi,p

{ ∞∑
t=0

γtri(oit, a
i
t)

}

+ ηE(st,at)∼ρ(s0),πi,p

{ ∞∑
t=0

γtr(st, at)

} (14)
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Whereupon, for the i-th agent, under the policy πi, the
advantage of action ai over other actions is:

Advπi(oit, a
i
t) = (1− η)[ri(oit, a

i
t) + γV (oit+1)− V (oit)]

+ η[(r(st, at) + γV (st+1))− V (st)]
(15)

To enhance the stability and facilitate the performance
of RL algorithms, in this paper, we use the general
advantage estimator (GAE) [19], [20] to calculate the
advantage:

AGi(ait, o
i
t) =

∞∑
k=0

(γλ)kAdvπi(oit+k, a
i
t+k) (16)

where λ is a constant less than 1.

B. Training the multi-agent RL functional networks
In this subsection, we present the training method

of functional networks in MAPO. During the interac-
tion between agents and the simulator, the operation
trajectory D of the wind farm (include the trajectory
Di of turbine i, ∀ i = 1, 2, · · · , n) can be collected for
training. The sample structures of these trajectories are
(st, at, rt, st+1) ∈ D used to train the group value network
and (oit, a

i
t, r

i
t, o

i
t+1) ∈ Di used to train the policy and

value network of agent i.
At the k-th iteration, the weight matrix of agent i’s

policy network πi
k is θik. The objective of πi

k is to maximize
Eq. 14. However, in practical, it is impossible that using
Eq. 14 to optimize πi

k directly. Instead, [21] proposed a
surrogate objective to update it based on the collected
samples Di

k:

θik+1 =argmax
θi

1

|Di
kT |

∑
τ i∈Di

k

T∑
t=0

min

(
πi(ait, o

i
t)

πi
k(a

i
t, o

i
t)
AGi(ot, at), g(ϵ, AGi(ot, at))

)
(17)

where T is the total time steps of an episode τ , AGi is the
advantage function calculated by Eq. 16 and g(ϵ, AGi) is
the clip function:

g(ϵ, AGi) =

{
(1 + ϵ)AGi, AGi ≥ 0
(1− ϵ)AGi, AGi < 0

(18)

The update rule of agent i’s value network V i (ϕi
k

denotes the weight matrix of network V i at the k-th
iteration) is:

ϕi
k+1 = argmin

ϕi

1

|Di
kT |

∑
τ i∈Di

k

T∑
t=0

(V i(oit)−Ri
t)

2 (19)

where Ri
t is the discounted return of agent i at time t:

Ri
t = rit + γrit+1 + γ2rit+2 + · · · (20)

After all agents’ value and policy networks are updated,
we can train the group value network V gru (ϕgru

k denotes

the weight matrix of network V gru at the k-th iteration)
by:

ϕgru
k+1 = argmin

ϕgru

1

|DkT |
∑

τ i∈Dk

T∑
t=0

(V gru(st)−Rgru
t )2 (21)

where Rgru
t is the discounted return of the wind farm at

time t.
Rgru

t = rt + γrt+1 + γ2rt+2 + · · · (22)

The complete training process of MAPO is showed in
Algorithm 1.

IV. Results
In our simulations, the observation oi of turbine i

includes its rotor speed ωi
r, pump and motor pressure

differences (P i
p and P i

m). The group state s is formed
by concatenating all agents’ observations. In the training
curves, the solid line represents the average episode return
of 5 trials started from random time seeds, and the
standard deviation of the episode return of the 5 trials
bounds the shaded region of a curve. There are two
criteria for evaluating the performance of RL algorithms
in wind farm control tasks: cumulative return (the solid
line) and stability (the shaded region). High returns show
that the tested control policy is effective in wind farm
power generation, and the small shaded region signifies
the corresponding agents can achieve similar performance
under fluctuating initial conditions and vice versa. To
reproduce the results, we provide the parameters used in
the HWT-based farm simulator and the hyper-parameters
of MAPO in Table I - Table III, respectively. The pseudo-
code of MAPO is shown in Algorithm 1. In addition, we
employ two useful techniques, namely policy smoothing
regularization and dual value network, to reduce the
variance of results during training.

During training and testing, the time step in Fast.Farm
is set to 0.00625s. The total simulation time of one episode
(the period from turbines launch to stop) in final testing
is 3600s, while this number is 250s in training. The inflow
surface (left) of the wind field follows a normal distribution
of: Vx = N (10, 4), Vy = N (0, 5), Vz = N (0, 1)(m/s), where
N denotes the normal distribution. Prior to calculating
the wake dynamics, the ambient wind is generated by the
inflow module in FAST.Farm at the beginning of each
episode. The parameters of the NREL 5-MW reference
wind turbine used in our simulations are listed in Table I.

A. Comparative evaluations
Fig. 8 compares the training curves of MAPO traced

by the cumulative returns in 200 episodes, with the
benchmark results of MADDPG and the greedy control
policy (MPPT). We conclude that MAPO can forcefully
raise the wind farm power generation, which suggests the
agents have learned how to cope with the wake effect
in turbine arrays. As shown in Fig. 9, the RL agents’
strategy involves slightly reducing the power output of
the upstream turbine (WT1) to weaken its wake effect
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Fig. 7. Layouts of the tested three wind farms.

TABLE I
Parameters of the wind farm and wind turbine

Wind farm parameters Unit Value

Size m3 1000 ∗ 3000 ∗ 1000
Timestep s 0.00625
Radial increment m 5.0
Number of Radii / 40
Number of wake Planes / 136
Air density Kg/m3 1.29
Speed of sound m/s 331
Atmospheric pressure Pa 101,325
Wind turbine parameters Unit Value
Rating power W 5e6
Rotor, Hub Diameter m 126, 3
Hub Height m 90
Rotor Mass kg 110,000
Nacelle Mass kg 240,000
Tower Mass kg 347,460
Number of blade stations / 49
Airfoil / NACA64_A17

on downstream turbines. During the training process,
upstream turbines aim to seek an equilibrium that can
maximize the power output of their downstream turbines
while minimizing their losses.

In both Fig. 8 and Fig. 9, the variance (shaded region)
of MAPO is relatively large in the initial training stage
because we encourage agents to explore new states and
policies at this stage. Afterward, all agents focus on
maximizing the group return, implying that the objectives
of agents are consistent now (coordination). As a result,
the variance gradually diminishes to a low level. In

TABLE II
Parameters of the hydraulic transmission system

Name Sign Unit Value
High pressure oil line length L m 100
Oil pipe line internal diameter r m 0.25
Density of mineral oil ρ kg ·m3 917
Kinematic viscosity of oil ν m2/s 4−5

Effective bulk modulus of oil E Pa 1.039
Pump displacement Dp L/rev 626
Motor displacement Dm L/rev 4.9
Viscous damping of pump Bp N ·m · s 5e4
Viscous damping of motor Bm N ·m · s 2.5
Pump Coulomb friction coefficient Cfp - 0.02
Motor Coulomb friction coefficient Cfm - 0.02
Pump laminar leakage coefficients Csp m3/s/Pa 7.1e−11
Motor laminar leakage coefficients Csm m3/s/Pa 7.0e−11

TABLE III
Hyper-parameters of MAPO

Name Value Name Value
Learning rate 1e-4 Clip range ϵ 0.2
Discounter coefficient 0.99 λ return 0.95
Activation function tanh Layer units [64, 64]
Episodes 200 Batch size 1024

contrast, the variance of MADDPG remains high even
at the end of training. Thus the policy learned by MAPO
is more stable than MADDPG for deployment in real-
world HWT-based wind farms. The curves of MAPO and
MADDPG have both converged after being sufficiently
trained by samples collected from FAST.Farm. Notably,
the convergence value of MAPO is significantly greater
than that of MADDPG, indicating that MAPO can
increase the power generation of HWT-based wind farms
more than MADDPG.

To illustrate how MAPO captures wind changes and

Algorithm 1 Multi-Agent policy optimization for a wind
farm with n HWTs

For all i = 1, 2, · · · , n, initialize the weight vectors
ϕgru
0 , ϕi

0 and θi0 of V gru
0 , V i

0 and πi
0, respectively.

for k = 0, 1, 2, · · · do
Collect set of trajectories Dk which includes Di

k =
{τ ij |j = 1, 2, · · · , J},∀i = 1, 2, · · · , n by running pol-
icy πk in the simulator;
Compute rewards-to-go Rtol

t and [R1
t , R

2
t , · · · , Rn

t ];
for each agent i = 1, 2, · · · , n do

Compute advantage estimates AGi
t based on

Eq. (16);
θik+1: Update the policy πi

k+1 by maximizing the
clip objective - Eq. (17);
ϕi
k+1: Fit the value function V i

k+1 by regression on
mean-squared error - Eq. (19);

end for
ϕtol
k+1: Fit the group value function V gru

k+1 by regression
on mean-squared error: Eq. (21).

end for
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Fig. 8. Comparison of MAPO with MADDPG and the greedy control policy. Left: results of the wind farm composed of three hydrostatic
wind turbines; Middle: results of the wind farm composed of six hydrostatic wind turbines. Right: results of the wind farm composed of
nine hydrostatic wind turbines. Please see Fig. 7 for the layouts of the three wind farms.

Fig. 9. Training curves of each HWT in a wind farm consisting of three HWTs. The sequence of them is: WT1, WT2 and WT3.

maximizes the power output of the wind farm, we gener-
ated heat maps during the training process. Fig. 10a shows
the wake effect of upstream wind turbines on downstream
turbines, indicating that without additional control, the
turbines located in the wake planes would experience
a significant decrease in the wind energy captured. In
contrast, Fig. 10b shows the learned strategy that controls
turbines to avoid wakes during the training process under
the similar state, where the wind direction is mainly along
the x-axis. In this strategy, each turbine selects a suitable
yaw angle to minimize the impact of its wake on the
surrounding turbines. Figs. 10c-d demonstrate the control
strategies learned by the turbines to adapt to changes
in the wind direction along the y-axis. As observed, all
turbines have adjusted their yaw angles to align with the
direction of the inflow wind, thereby maximizing wind
speed on their rotational planes. Moreover, they have also
been rotated to an optimal angle, directing their wakes
towards a direction that has minimal effect on surrounding
turbines.

We also test the final trained MAPO control policy
via embedding it into wind farms and Table IV lists
the test results. In this table, the mean column shows
the average power output of the wind farm over five
episodes, each lasting 3600 seconds. This data directly
reflects the amount of power generated by wind farms.

The std column indicates the standard deviation of the
mean power output across the five episodes, which helps
to evaluate the effect of different initial conditions on
the performance of the controllers. The max and min
columns respectively represent the highest and lowest
power output values during the five episodes, and the
difference between them, |max−min|, measures the power
fluctuations. Based on the results presented in this table,
it can be concluded that the MAPO controller is the
most effective at driving wind turbines to generate power,
and it demonstrates greater stability across the different
episodes compared to the other controllers. Additionally,
the wind turbine controlled by the MAPO controller
exhibits less power output fluctuation, indicating higher
power quality. Fig. 11 shows the variations in power
output of the nine-turbine wind farm. Compared with the
greedy control policy and wake steering-a fine industrial
method derived from a relatively low-fidelity wind farm
model named FLORIS [22], the wind farm manipulated
by MAPO generated more power, which is consistent with
the training curves. What’s more, the power output by the
MAPO-driven wind farm is more stable thanks to a fourth-
order filter being used to smooth the control actions.

Since our HWT-based wind farm model, adapted
from FAST.Farm, includes the sub-structural dynamics
of HWTs, which is an advantage over other wind farm
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Fig. 10. The yaw control policy of MAPO for overcoming the wake effect.

TABLE IV
Test results of three controllers in four wind farms, unit (W)

Farm Method mean std max min

1*3
MPPT 7.9767e6 2.1635e6 1.0413e7 5.8736e6

Wake Steering 8.5399e6 1.8913e6 1.0868e7 6.6319e6
MAPO 1.0097e7 1.2692e6 1.1823e7 9.7644e6

2*3
MPPT 1.5940e7 3.1723e6 1.9271e7 1.1834e7

Wake Steering 1.6414e7 2.0236e6 1.9021e7 1.4130e7
MAPO 1.9593e7 1.9280e6 2.1302e7 1.8206e7

3*3
MPPT 2.5057e7 2.5458e6 2.2675e7 2.9152e7

Wake Steering 2.6155e7 3.3494e6 3.0546e7 1.9254e7
MAPO 2.8620e7 1.3961e6 3.0235e7 2.5837e7

4*8
MPPT 7.7148e7 8.1264e6 6.3488e7 9.7482e7

Wake Steering 9.0032e7 1.1331e7 7.5314e7 1.2136e8
MAPO 9.9584e7 3.7853e6 9.1420e7 1.1527e8

models, we analyzed the flapwise tip deflection of one
blade and the fore-aft displacement of the tower of the
front-left HWT in a six-turbine farm layout under MAPO,
MADDPG, and the greedy control policy (Fig. 12). The
results show that none of these three control strategies
cause unusual vibrations of the blade and tower, and
other HWTs have similar results. This implies that HWTs
operate within safe structural limits under these three
controllers.

Furthermore, MAPO has an advantage: when additional
turbines are installed in the wind farm, we can transfer the
weights of the value and policy networks to new turbines as

Fig. 11. Power output of the nine-turbine wind farm.

the pre-trained model. It can greatly facilitate the sample
efficiency of the algorithm.

B. Parameter analysis
In MAPO, we use a group value network with the input

of the group state s to estimate the future wind farm
return, and an individual value network for each agent
with the input of its observation o to estimate its future
return. Without violating the principle of CTDE, the
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Fig. 12. Displacements of the Blade 1 and tower of the front-
left HWT in the 6-turbine wind farm, under different control
policies. Top: Blade 1 flapwise tip deflections. Bottom: Tower fore-aft
displacements.

input of individual value networks can also be the group
state s, which is referred to as MAPO-v2. Intuitively,
MAPO-v2 can predict the agent return more precisely
and faster as the network acquires more state information
about the wind farm. However, Fig. 13 shows that, in
terms of variance or cumulative return evaluation criteria,
the performance of MAPO-v2 is distinctly worse than
that of MAPO. Based on this result, we think that the
observations of other HWTs are not conducive to the
estimation of the target agent and even become noisy.
Therefore, using the local information to estimate the
individual return is more appropriate in the RL agent
training.

Fig. 13. Results of using local state or global state to estimate the
agent return

The core idea of MAPO is to utilize a dynamical
parameter η to balance the agent return and the group
return. There are two additional options: 1) Fixed weight
- η in Eq. 14 is set to a fixed value. 2) Agent weight

- η in Eq. 14 is set to 0. The fixed weight method
assigns equivalent weights to agents exploring their own
policies and boosting the group return. This results in a
large variance being maintained throughout the training
process (Fig. 14). The objective of the agent weight
method remains unchanged, causing low variances of
results. However, the learned control policy eventually falls
into a locally optimal solution (Fig. 14). In conclusion,
the dynamical weight method exhibits its superiority
thanks to a proper balance of the exploration-exploitation
dilemma.

Fig. 14. Results of using different methods to balance the individual
agent return and group return. Dyn: η = num_epoch/200; Fix:
η = 0.5; Agent: η = 0.

V. Conclusion
In this paper, we developed a HWT-based wind farm

model by adapting FAST.Farm. HWTs have the potential
to reduce the the maintenance cost of wind farms. We
also proposed MAPO (multi-agent policy optimization) to
optimize the wind farm control policy to boost the power
generation of HWT-based farms. Our simulation results
show that MAPO is of high performance in different
wind farm layout cases and fluctuating environments.
In addition, the control policy trained by MAPO has
not caused any unusual vibrations in the substructures
of HWTs, indicating it does not affect the safe opera-
tion of turbines. Moreover, the CTDE paradigm utilized
in MAPO is beneficial for real-world deployment as it
avoids the real-time communication issue between turbines
within a wind farm.
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