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Abstract 

Despite the recent rise of RNA-seq datasets combining single-cell (sc) resolution with 
4-thiouridine (4sU) labelling, analytical methods exploiting their power to dissect 
transcriptional bursting are lacking. Here, we present a mathematical model and Bayes-
ian inference implementation to facilitate genome-wide joint parameter estimation 
and confidence quantification (R package: burstMCMC). We demonstrate that, unlike 
conventional scRNA-seq, 4sU scRNA-seq resolves temporal parameters and further-
more boosts inference of dimensionless parameters via a synergy between single-cell 
resolution and 4sU labelling. We apply our method to published 4sU scRNA-seq data 
and linked with ChIP-seq data, we uncover previously obscured associations between 
different parameters and histone modifications.
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Background
The canonical understanding of transcription is that it consists of the steps of initiation, 
elongation and termination. During initiation of transcription in eukaryotes, RNA poly-
merase (RNAP) is recruited to the promoter via transcription factors (TF), followed by 
the synthesis of the first few bases of the new transcript [1]. Elongation succeeds initia-
tion, in which RNAP processes along the gene, incorporating RNA nucleotides into the 
nascent transcript as it progresses [2]. Upon reaching the transcription end site (TES), 
termination occurs, in which the transcript and RNAP are released from the DNA [3]. 
Various processing steps take place at different points during transcription to allow for 
a mature transcript to be produced, including 5′ capping during initiation, splicing to 
remove intronic (non-coding) sequences during elongation of protein-coding genes, and 
polyadenylation and cleavage during termination [1–4].

Beyond the general mechanism outlined above, transcription is also a stochastic pro-
cess subject to intrinsic noise through its fundamental dependence on probabilistic 
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collisions between molecules [5, 6], which are often present in relatively low numbers. 
Additionally, in many cases, transcription occurs only in short, intense bursts of activ-
ity followed by prolonged periods of inactivity, resulting in increased cell-cell variability 
in transcript counts [7, 8]. Indeed, studies have identified a broad spectrum of genes, 
from those that are transcribed in a Poissonian fashion, such as housekeeping genes, to 
those which are very bursty in nature and expressed only in relatively short windows 
[9, 10]. The transcriptional noise and cell-cell variance induced by bursting can be uti-
lised to, for example, achieve alternative cell fates during differentiation of cell popu-
lations without requiring explicit control by genetic programming or external signals 
[11]. There are several different possible mechanisms thought to contribute to burst-
ing, including the process of reinitiation, in which after transcribing a gene the RNAP is 
immediately recycled to the transcription start site (TSS) instead of simply terminating 
and disengaging [12]. This requires looping of the gene to bring the TSS and TES into 
physical proximity [13], and the link between TSS-TES interactions and bursting has 
been explored recently [14]. The chromatin state of a gene also plays an important role 
in governing transcriptional bursting dynamics, which in eukaryotes is dictated largely 
by histone modifications (HM). Different HMs may result in looser or tighter packing of 
the chromatin, respectively, with the chromatin density around the TSS being correlated 
with transcriptional noise [15]. Having active HMs at the TSS results in an increased 
probability of open chromatin, which facilitates initiation. This is proposed to reduce 
burstiness, possibly by reducing the duration between active periods [15, 16]. More 
recent studies have also reported genome-wide direct correlations between the pres-
ence of specific HMs at gene promoters and general transcriptional noise [17, 18], while 
further studies have even linked HMs with the underlying bursting dynamics, both at 
the individual gene level [19] and genome-wide [20]. Transcriptional bursting in bacte-
ria can also result from supercoiling of the DNA [21]. The proposed mechanism is the 
accumulation of positive supercoiling caused by the RNAP proceeding through the gene, 
until it reduces the rate of elongation to the point that it prevents further transcription. 
Intermittent clearing of supercoiling followed by rapid transcription, and subsequent re-
accumulation of supercoiling, results in bursty transcription. Studies have also observed 
the co-condensation of TFs with transcriptional coactivators such as p300, which medi-
ates cooperative activation of genes by clusters of TFs [22]. This cooperative activation 
results in non-linear gene regulation and increased burst frequency and burst size for 
genes enriched in coactivators.

Transcriptional bursting may be understood in terms of several parameters (Fig. 1a), 
including the burst size (transcripts produced per burst, b), burst frequency (bursts per 
unit time, κ ), decay rate (transcripts degraded per unit time, δ ), transcript lifetime (aver-
age transcript survival time, γ = 1/δ ), burst rate (bursts per transcript lifetime, a = κ/δ ), 
and expression level (mean transcripts per cell, µ = b× a ). Many studies make use of 
fluorescence microscopy-based approaches to interrogate transcriptional bursting 
dynamics. Single molecule fluorescence in situ hybridisation (smFISH) is a particularly 
popular approach here although the standard procedure offers only a snapshot of tran-
script counts across a cell population, with no time-variant information. Therefore, the 
timescales of bursting events may not be discerned [23], allowing estimation of µ , b and 
a but not κ or δ . Some smFISH-based experimental set-ups have progressed towards 
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a level of understanding bursting timescales by using hybridisation specific to nascent 
transcripts [24, 25], although smFISH approaches generally suffer from scalability. While 
progress is being made towards multiplexing, it can still only analyse a handful of genes 
at a time compared with sequencing [26–28] or requires complex and labourious set-
ups [29]. Sophisticated analysis methods [30] have been developed for time-lapse single-
cell RNA imaging data [31] which allows dissection of transcriptional dynamics in great 
detail, however such approaches are even more limited scale-wise.

Single cell RNA-seq (scRNA-seq) experiments are widely used to analyse genome-
wide bursting dynamics. However, scRNA-seq suffers from the same issue as standard 
smFISH regarding analysis of bursting timescales because it only provides a snapshot 
of the transcriptomes of a population of cells at a single point in time. Therefore, it has 
only been possible to obtain burst sizes (b) and burst rates (a), while burst frequencies 
( κ ) may not be understood without making assumptions or using prior information on 
decay rates ( δ ) measured through separate experiments [10, 32–34]. On the other hand, 
bulk RNA-seq-based approaches have for several years made use of chemically labelled 
nucleotides, primarily 4-thiouridine (4sU) as in SLAM-seq, to understand RNA synthe-
sis ( b× κ ) and degradation ( δ ) rates [35, 36]. The cells are incubated in the presence of 

Fig. 1 a Simulation demonstrating transcriptional bursting for a single gene in a single cell, indicating burst 
size (red), burst interval (blue, reciprocal of burst frequency), and decay rate (orange, reciprocal of transcript 
lifetime), while the thickness of the pink shaded regions indicate burst durations. b Table showing the 
parameters governing transcriptional dynamics that can theoretically be obtained using different RNA-seq 
approaches with no prior information. Dark blue and orange show if a data type does or does not inform a 
parameter, respectively
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4sU for a given duration, prior to RNA extraction. During this step, 4sU diffuses into 
the cell nucleus and becomes incorporated into nascently transcribed RNA. Labelled 
RNA can be bioinformatically distinguished from non-labelled RNA, previously resid-
ing in the cell, due to the higher rate of chemically induced cytosine conversion of 4sU 
relative to regular uracil. Using mathematical modelling, the ratio of labelled to unla-
belled transcripts can be used to estimate the turnover rate [37]. However, since bulk 
RNA-seq neglects the cell-cell variability, it can not be used to study bursting dynamics. 
Recent advances combine scRNA-seq with 4sU and such datasets have the potential to 
fully characterise transcriptional bursting dynamics and their timescales (Fig. 1b). Thus 
far, they have been used for understanding dynamic changes in the transcriptome and/
or RNA turnover/splicing rates that occur throughout the cell cycle and cell state transi-
tions [38–42]. Studies with data of this type that have looked at bursting have only done 
so in a limited manner, using empirically derived statistics as a proxy for burstiness [43], 
while bursting timescales have remained uncharacterised in recent works [44]. This is 
despite previous modelling works having shown that degradation is expected to con-
tribute significantly to transcriptional noise and therefore should be accounted for when 
investigating bursting dynamics [45].

Here, we construct mathematical models to relate observables from 4sU scRNA-seq 
data to the underlying bursting dynamics and develop an adaptive Markov chain Monte 
Carlo (MCMC) approach for Bayesian inference of the parameters governing those 
dynamics. We have produced an R package (https:// github. com/ heben strei tLab/ burst 
MCMC) from our method and applied this to published data from [38], demonstrating 
that we are able to characterise time-resolved transcriptional bursting dynamics for hun-
dreds of genes in parallel. Our approach generates joint probability distributions of the 
parameters of interest from which estimates can be extracted and confidence in these 
quantified. This is the first method for joint inference of time-resolved bursting dynam-
ics on a genome-wide scale and is generally applicable to 4sU scRNA-seq datasets. We 
also show that, even for the dimensionless parameters which can be obtained with con-
ventional scRNA-seq, the accuracy and reliability of estimates can be improved by incor-
porating the additional information provided by 4sU scRNA-seq. Finally, we build on 
a previous study which interrogated correlations between bursting parameter estimates 
and HMs in a genome-wide manner, linking scRNA-seq with ChIP-seq data [20]. Our 
analysis reveals position-dependent associations between different parameters and HMs 
only apparent with 4sU scRNA-seq.

Results
Model comparison

We tested the advantages provided by 4sU scRNA-seq data coupled with our inference 
approach over conventional scRNA-seq by comparing our recovery of known bursting 
parameter values from a simulated dataset using different likelihood functions (Meth-
ods). The MCMC algorithm was run five times, using Eqs. 4, 15, 16, 19 and 20 as the 
likelihood functions, referred to as L1, L2, L1+L2, L3 and L1+L3, respectively.

• L1: The likelihood function of model 1, equivalent to scRNA-seq data without 4sU, 
relying solely on the UMI counts.

https://github.com/hebenstreitLab/burstMCMC
https://github.com/hebenstreitLab/burstMCMC
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• L2: Equivalent to relying only on single cell T>C conversions, without fully incorpo-
rating the UMI counts.

• L1+L2: The likelihood function of model 2, equivalent to 4sU scRNA-seq data, 
incorporating all of the available information together.

• L3: Equivalent to bulk SLAM-seq data without spike-ins, ignoring UMI counts and 
using only cell-summed T>C conversions.

• L1+L3: The likelihood function of model 3, equivalent to combining bulk SLAM-seq 
data without spike-ins and scRNA-seq data.

Convergence to the target distribution is shown in Fig. 2 for each likelihood function, 
confirming that scRNA-seq data cannot resolve κ or δ , but does converge for the other 
parameters, while L2 and L1+L2 converge for all parameters, confirming that 4sU 
scRNA-seq data can time-resolve bursting. Unlike L2, L3 is unable to converge for any 
parameters other than δ , further demonstrating the advantage of cell-specific vs cell-
summed T>C conversion data. Conversely, L1+L3 does converge for all parameters, 
with L1 informing burstiness while L3 informs timescales.

The resulting posteriors (Fig. 3) indicate that the accuracy and precision of estimates 
for a, b and µ are improved by incorporating the single-cell 4sU conversion data com-
pared to relying solely on scRNA-seq or scRNA-seq with bulk SLAM-seq data, which 
is because the cell-cell variance in the T>C rate is a function of the transcriptional noise 
(burstiness) of the gene as well as turnover and, therefore, including such information 
makes the estimation more robust. Likewise, we see that while conventional scRNA-seq 
may not resolve κ or δ , including the UMI count information with the conversion data 
also results in more precise and accurate estimates of these parameters. This is because 
the set of T>C conversions is a function of a, b and δ , while the UMI counts are a func-
tion of a and b. Therefore, including the UMI data improves inference of a and b, which 
reduces the error associated with δ in our joint inference approach.

Overall, we see that L1+L2 outperforms all other likelihood functions for all param-
eters including L1+L3, demonstrating the benefits that a fully integrated analysis of 
time-resolved bursting dynamics using 4sU scRNA-seq data provides over more limited, 
separate treatments of subsets of the parameters by combining scRNA-seq (a and b) and 
bulk SLAM-seq ( δ ) information. This is apparent in this example of a gene with mod-
erate expression, high transcriptional noise and a transcript lifetime similar to the 4sU 
pulse duration.

Inference on data from Qiu

We next applied our method to 4sU scRNA-seq data published in 2020 by Qiu et  al, 
which used human K562 cells [38]. Inference on the data from Qiu was carried out for 
all genes with at least one read and observed T>C conversion in both the 4sU and con-
trol datasets, running the MCMC algorithm in parallel on each to obtain a posterior 
from model 2 or model 3 if required (Methods). The final set of genes to be analysed 
was selected based on those with sufficient confidence in all parameter estimates. There-
fore, a maximum CV value of 0.45 was imposed for all parameter estimates, so that only 
genes with no CV > 0.45 would be included, leaving 584 genes as the final selected set.
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For the selected genes we observe that the quality of our estimates depends upon 
the location of the gene within parameter space, as shown in Fig.  4, which depicts 
estimate vs CV for all parameters. CV (δ) has an optimal (minimum) value for δ 

Fig. 2 Convergence of Markov chains to true parameter values with simulated data for three different 
likelihood functions. The parameter values, θ , in the chain are divided by the true value to allow for joint 
visualisation, with the black horizontal line representing the target value
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corresponding to an average transcript lifetime equal to the 4sU pulse duration (4 
hours), with confidence decreasing bidirectionally and outliers with very low CV (δ) 
corresponding to genes with µ ≥ 1000 . We also have increased confidence in general 

Fig. 3 Probability density functions of each parameter derived from posteriors obtained using different 
likelihood functions, with the dashed black lines representing the true parameter values that were used to 
simulate the dataset upon which inference was carried out. The densities for δ obtained with L3 and L1+L3 
are difficult to distinguish because they almost perfectly overlap



Page 8 of 34Edwards et al. Genome Biology          (2023) 24:138 

for genes with higher µ since estimates for such genes are informed by a greater vol-
ume of data. Likewise, genes with greater b have greater confidence because, firstly, 
increased b results in higher µ . Secondly, for a given µ , having a higher b implies 
lower a, meaning that the transcriptional noise is higher, resulting in a more heav-
ily skewed transcript count distribution (across cells) which may be more precisely 

Fig. 4 Estimates vs CVs of all parameters derived from sampled posteriors for all 584 selected genes, with 
those obtained using models 2 or 3 displayed in black or red, respectively



Page 9 of 34Edwards et al. Genome Biology          (2023) 24:138  

attributed to a region of parameter space. We do not see a visually obvious trend 
in confidence for a. This is because it is associated with higher expression level but 
lower transcriptional noise. Therefore, a gene with higher a has more data points with 
which to inform the estimate but a less skewed transcript count distribution, so that 
the effects on confidence tend to cancel each other out. The trend in confidence for κ 
is essentially dictated by the a and δ values for the gene.

Instead of relying solely on model 2, for some genes we must switch to an alternative 
(model 3). This occurs when genes lie within a region of parameter space such that the 
solution to Eq. 9 becomes unstable. Figure 4 provides evidence supporting the reliabil-
ity of our inference approach, since the model 2 and 3 genes generally occupy the same 
regions of the plot and exhibit the same relationships between confidence and estimate 
for each parameter. This also illustrates the increased probability for a gene to reside 
within unstable parameter space, and therefore require use of model 3, when µ and a are 
higher and when δ is lower.

We reinforce our results by demonstrating a strong positive correlation about the 
diagonal between our estimates of δ and cell-matched values calculated in [36] for the 
same genes (Additional file 1: Fig. S3). Further assessment of our parameter estimation 
and confidence quantification was provided by carrying out inference on simulated data. 
This simulation-based validation differs from the previously described model compari-
son analysis (Figs. 2 and 3) in that experimental settings, such as cell number, cell cap-
ture efficiency and sequencing depth, were equivalent to those in the Qiu dataset rather 
than being idealised, and the bursting parameter values estimated for each of the 12276 
genes we analysed were used as the true values for a corresponding simulated gene. 
Strong, tight correlations about the diagonal between estimates and true parameter val-
ues confirmed the capacity for the algorithm to recover known parameter values (Addi-
tional file 1: Fig. S4).

Now that we have estimates for all parameters of interest, it is possible to demonstrate 
how the different aspects of the data feed into informing the joint probability distribu-
tion. Figure  5a illustrates some expected correlations, showing that µ correlates very 
strongly with the mean UMI count and that δ correlates very strongly with the 4sU - 
control T>C rate, since these values reflect the overall activity and turnover of the gene, 
respectively. We see that a correlates strongly against the CV of the UMI count, which 
reflects the relationship between bursting and cell-cell variability. It is also possible to 
demonstrate the aforementioned complex relationship between burstiness and the shape 
of the single-cell T>C count data, but not in a genome-wide manner since the effect is 
masked by variation in µ and δ . Therefore, we instead compare a pair of genes (ATF5 
and CAP1) with very similar estimates for µ and δ but very different values of a (and 

Fig. 5 a Correlations between statistics of the observable data and related bursting parameter estimates, 
with Spearman’s rank correlation strength (rho) and statistical significance (p) displayed. Bottom right 
compares the cell-specific T>C rates minus gene-specific background for the ATF5 and CAP1 genes, which 
are expressed with high and low noise, respectively. b Estimates for different parameters plotted against each 
other. Statistical significance of difference in b, κ and δ for genes with very high ( µ ≥ 1000 ) expression level 
vs other genes ( µ < 1000 ) is shown with the p-value calculated using the Wilcoxon test. Also shown in the 
bottom right is the Spearman’s rank correlation strength (rho) and statistical significance (p) of κ against δ

(See figure on next page.)
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(a)

(b)
Fig. 5 (See legend on previous page.)
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therefore also b and κ ), with ATF5 being expressed in a far more bursty fashion. The esti-
mates for the different parameters of these genes are given by Table 1.

The density plot in Fig. 5a compares the distribution of cell-specific T>C rates (minus 
gene-specific background) across all reads in the cell for the aforementioned pair of 
genes. There is a clear difference in the shape of the distribution, with the bursty gene 
having a greater density at either extreme while the gene with less noisy expression has 
a greater intermediate density. This is because large, infrequent bursting has a bina-
rising effect, meaning that most cells either have a low or high T>C rate. Those with 
a low rate correspond to those which have had no bursts occur during the 4sU pulse, 
resulting in their entire transcript population comprising those surviving from before 
the pulse. Those with a high rate correspond to those which have had at least one burst 
occur during the pulse. Since the bursts tend to be large, this results in the majority 
of the transcript pool being comprised of newly synthesised transcripts. On the other 
hand, smaller, more frequent bursts causes the surviving transcripts to gradually become 
replaced by new transcripts in a more uniform manner across cells. Similarly to how 
scRNA-seq reveals differences in cell-cell variation in transcript counts for two genes 
with otherwise equal expression levels, 4sU scRNA-seq also reveals differences in cell-
cell variation in new transcript proportions for two genes with otherwise equal decay 
rates.

Despite controlling for µ and δ in this pairwise comparison of a high vs low noise 
gene, the effect of bursting on cell-specific T>C rates shown in Fig. 5a is still somewhat 
obscured by the variable cell-specific capture efficiencies, α , present in the data. There-
fore, datasets were simulated in the same manner as for the model comparison analysis, 
except �s = 0.001 , and α = 1 to totally control for the effect of capture efficiencies. Data-
sets were simulated for a gene with high noise and another with low noise with param-
eter values set as shown in Table 2.

Table 1 Parameter estimates for the ATF5 and CAP1 genes

ATF5 CAP1

b 66.1 10.2

µ 62.5 66.1

κ 0.00426 0.0289

δ 0.00447 0.00409

a 0.957 7.07

Table 2 Parameter values for simulated high and low noise genes

High noise Low noise

b 250 25

µ 250 250

κ 0.001 0.01

δ 0.001 0.001

a 1 10
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The differential transition from surviving to new transcript pool for high and low noise 
genes is demonstrated in Additional file 2, which shows the cell-specific T>C rate distri-
butions for data simulated with different pulse durations. This illustrates the previously 
discussed effect of bursting on cell-cell turnover variation more clearly, visualising the 
bimodal vs unimodal transitions occurring under high vs low noise conditions with a 
video.

Biological findings

Correlating the parameter estimates against each other for our 584 genes also reveals 
that genes with extremely high expression levels, the majority of which are mitochon-
drial genes, are able to achieve these high levels primarily by having very large bursts, 
rather than very frequent bursts or very stable transcripts, although the decay rates do 
appear somewhat constrained (Fig. 5b). There may be biological upper limits on κ due 
to the various factors required to be in place to prime a gene for activity and, there-
fore, it may be preferable to instead increase burst duration (reduce koff  ), and therefore 
burst size, for very high expression levels [32]. A similar phenomenon has been observed 
previously, in which MYC overexpression lead to increased expression in target genes 
through increased burst duration and size, rather than increased burst frequency [46, 
47]. Estimates for κ and δ are also positively correlated, despite κ and δ varying across 
several orders of magnitude. This correlation may be the result of a selective pressure 
to limit the variability of a and, for example, prevent transcriptional noise levels from 
becoming excessively high. Alternatively, high burst frequencies would correspond to 
RNAP rapidly processing over the gene, allowing less time to pause for the nascent tran-
script to be folded/spliced appropriately than with lower burst frequencies [2], resulting 
in reduced transcript stability.

Histone modifications and bursting

We next explored the relationship between HMs and transcriptional bursting dynamics 
with a metagene analysis carried out using ChIP-seq data for eight previously analysed 
HMs [20] and two further HMs (Methods). In this analysis, we removed mitochon-
drial genes and genes for which we lacked HM data from our set with high confidence 
parameter estimates, with 505 genes ultimately being included. Of the eight previously 
studied HMs we analysed, the profiles generally fall into the two previously described 
categeories [20], being either predominantly promoter-localised (H3K4me2, H3K4me3, 
H3K9ac, H3K27ac, Fig. 6 and Additional file 1: Figs. S6-8) or gene body (GB)-localised 
(H3K4me1, H3K36me3, H3K79me2, H4K20me1, Additional file 1: Figs. S9-13). To bet-
ter understand the association between HM profile and bursting parameters, the genes 
were split in half, sorted by parameter estimate for each of the five parameters. Meta-
gene comparison reveals position-dependent associations for promoter-localised HMs, 
using H3K4me2 as an example (Fig. 6). It appears that HM presence at the promoter and 
through the GB is associated with increased µ and also a, while increased κ is specifically 
associated with promoter but not GB presence. Conversely, presence through the GB 
excluding the promoter region appears associated with increased b and reduced δ.

This analysis builds upon a previous scRNA-seq study which correlated bursting 
parameter estimates with HM localisation by averaging the ChIP-seq coverage from 
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2000 bp upstream of the TSS to the TES for each gene [20]. They were unable to 
obtain estimates of κ or δ due to a lack of published data on transcript turnover rates 
for the cell type (hESCs). Our results are in agreement with [20] despite having a dif-
ferent cell type, but additional complexities are revealed which are only apparent with 
our metagene analysis combined with the capacity to estimate κ and δ afforded by 4sU 
scRNA-seq. For promoter-localised HMs, they report positive associations between 
HM presence and both a and b, whilst we demonstrate that the association with b is 
specific to the GB. We confirm that the association with a holds throughout both the 
promoter and GB, but show that this is a result of a promoter-specific positive κ asso-
ciation and a GB-specific negative δ association, thereby further demonstrating the 
advantages of 4sU scRNA-seq inference.

In order to statistically test these apparent associations, the average HM cover-
age values around the promoter and through the GB excluding the promoter were 
obtained for each HM (Methods), taking the average value from 2000 bp upstream 
of the TSS to 5% through the GB (-2000:5%) and from 5% through the GB to the 
TES (5%:100%), respectively. Spearman’s rank correlation of the mean value for each 
promoter-localised HM against each parameter across our 505 genes confirmed the 
direction and quantified the strength (Fig. 7a), as well as confirmed the statistical sig-
nificance of the suspected associations (Fig. 7b).

The association between promoter-localised HM presence and reduced decay rate is 
consistent with previous reports of a link between HMs and pre-RNA processing. The 
RNAP elongation speed may be modulated by HMs or they may be responsible for 

Fig. 6 Metagene plots of H3k4me2 coverage, comparing profiles for the top and bottom 50% of genes 
when split according to their estimates for each parameter, denoted by high and low, as indicated
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the recruitment of splicing factors [48, 49]. This could result in more stable RNA by 
ensuring correct splicing and/or polyadenylation. GB presence of promoter-localised 
HMs could also result in increased burst size by facilitating TSS-TES contact through 

(a)

(b)
Fig. 7 a Heatmap showing the Spearman’s rank rho as the heat intensity value for the correlations between 
bursting parameter estimates and the mean promoter-localised HM coverage values across the -2000:5% and 
5%:100% regions. More intense red or blue colouration indicates a stronger positive or negative correlation, 
respectively, while neutral indicates no/weak correlation. b Heatmap showing the Spearman’s rank p-value 
(adjusted for multiple hypothesis testing) as the heat intensity value for the correlations between bursting 
parameter estimates and the mean promoter-localised HM coverage values across the -2000:5% and 
5%:100% regions. The heat values are discretised, corresponding to negative log10 p-value thresholds. For 
example, the most intense blue indicates that, for the given correlation, 10−2 < p , meaning no statistical 
significance, the neutral colour indicates that 10−4 < p ≤ 10−3 , while the most intense red indicates that 
p ≤ 10−6
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the maintenance of the open chromatin state around the TES. Coupled with the free 
movement of RNAP through the GB, this may increase the burst size by allowing 
RNAPs to quickly and repeatedly generate multiple transcripts by promoting poly-
merase recycling [14]. Another hypothesis is the presence alternative TSSs in the GB, 
which may transcribe simultaneously upon gene activation, causing increased burst 
size, with 483 out of the 505 analysed genes exhibiting alternative TSSs according to 
the gtf. Metagenes for the rest of the aforementioned HMs along with the correla-
tion/statistical analysis of the GB-localised HMs can be found in Additional file 1, as 
well as analysis of two additional HMs (H3K18ac and H4K16ac) not analysed in [20] 
(Additional file 1: Figs. S14-16), but which were shown to be strongly linked to active 
enhancer regions [50].

Discussion
With the inference approach presented here, we demonstrate the capacity to obtain 
genome-wide estimates of the parameters governing transcriptional bursting dynamics 
and the timescales upon which they occur from a single dataset with no prior knowl-
edge. By sampling from the full joint probability distributions of the parameter values 
given the data, we are able to quantify confidence in our estimates and take into account 
the complex interdependencies between the different parameters and 4sU scRNA-seq 
data, revealing the regions of parameter space for which we have the most accurate and 
precise estimates. We show that the distribution of 4sU-induced T>C conversions across 
cells is shaped not only by the turnover rate and expression level of the gene but also by 
the transcriptional noise and that this information can therefore be used to improve esti-
mates of burst rate (a) and burst size (b) beyond the level obtainable with conventional 
scRNA-seq. In this way, combining metabolic labelling and single cell resolution has an 
effect greater than the sum of their parts on inference power. Previous analysis of tran-
scriptional bursting using 4sU scRNA-seq data has tapped into this idea by estimating 
the proportion of new transcripts (based on T>C conversions) in each cell for a particu-
lar gene and then using the standard deviation of this new to total ratio as a proxy for 
burstiness [43]. However, as clearly demonstrated by the video in Additional file 2, this 
distribution, and therefore its standard deviation, is shaped not only by transcriptional 
noise but also by RNA turnover and may be skewed by technical noise such as varia-
tion in capture efficiency. Therefore, along with the overall expression level, this needs 
to be explicitly accounted for in order to accurately quantify burstiness, as is naturally 
achieved with our mathematical model.

Having genome-wide estimates of the parameters governing transcriptional dynam-
ics means that it is possible to use the variation which naturally exists between genes 
to examine the relationships between the different parameters and other features, such 
as HMs, instead of having to rely on experiments which artificially perturb the cells to 
gain insight via a single gene system. In agreement with previous reports [42], we find 
that the genes with very high expression levels are primarily mitochondrial genes. Going 
beyond this, we show that such activity levels are achieved by having large burst sizes 
rather than increased RNA stability or burst frequency, which we hypothesise could 
be due to biological constraints on the rate of switching between active and inactive 
states [32], potentially making it favourable to instead increase the duration of bursts, 
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and therefore the burst size, as has similarly been observed for MYC-driven transcrip-
tion [46, 47]. Whereas some studies have found the variation in decay rates (in mESCs) 
across genes to be an order of magnitude lower than for the other parameters, and there-
fore negligible [32], we found significant variation in K562 cells which was important to 
account for in order to properly estimate burst frequencies. This is in line with previous 
predictions that transcript stability plays an important role in modulating gene expres-
sion noise [45]. Indeed, our analysis revealed an unexpected positive correlation between 
burst frequency and decay rate, resulting in the burst rate, and therefore transcriptional 
noise, being constrained. One may speculate that only noise levels within a certain range 
are tolerated, with extreme values resulting in too few cells expressing the gene for a 
given function to be achieved, such as the appropriate proportion of cells in an isogenic 
population undergoing differentiation [11, 51], manifesting as the observed correlation. 
A mechanistic, rather than evolutionary, explanation is that high burst frequencies result 
in rapid flux of RNAP through the gene, such that less time is allowed for pausing, dur-
ing which appropriate folding and/or splicing of the nascent transcript is facilitated [2]. 
This would would reduce transcript stability and cause the observed correlation.

Examining the relationship between bursting parameters and HMs genome-wide pro-
duced results consistent with but advancing upon previous work [20]. Combining our 
metagene analysis with the additional information provided by 4sU scRNA-seq over 
inference on conventional scRNA-seq reveals intricacies that were not previously appar-
ent. The presence of GB-localised HMs throughout the gene is generally associated with 
increased burst rate (bursts per transcript lifetime) via increased burst frequency (bursts 
per minute), while promoter-localised HMs are only associated with increased burst fre-
quency when found around the TSS. Their presence further downstream remains associ-
ated with increased burst rate, and therefore reduced transcriptional noise, but through 
reduced decay rate rather than increased burst frequency. The association with reduced 
decay rate may be related to the previously documented influence of HMs on pre-RNA 
processing, which is achieved, for example, by modulating RNAP elongation speed and/
or by recruiting splicing factors [48, 49]. This may increase RNA stability by reducing 
the probability of incorrect splicing or polyadenylation. Presence of promoter-local-
ised HMs throughout the GB but not at the TSS is also associated with increased burst 
size. Downstream presence could facilitate interactions between the TSS and the TES 
by maintaining the open chromatin state around the TES. This, along with maintaining 
the free movement of RNAP through the GB, could promote polymerase recycling and 
therefore increased burst size by allowing RNAPs to quickly and repeatedly fire off mul-
tiple transcripts during an active period [14]. Another possible explanation for the asso-
ciation between promoter-localised HM presence in the GB with burst size is that there 
are multiple, alternative TSSs found within genes. These may initiate transcription in a 
non-independent manner, leading to increased burst size when there are more/stronger 
alternative TSSs, as signalled by HM presence.

The inference approach described here is generally applicable to 4sU scRNA-seq data-
sets which have RNA spike-ins and UMIs for any organism or cell type. Furthermore, 
the model could easily be expanded to integrate an arbitrarily large number of repeat 
experiments by extending the Markov chain according to the product of the likelihood 
functions of each dataset. Indeed, such a scheme which utilised datasets with different 
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4sU pulse durations could theoretically characterise the transcriptional dynamics of all 
genes genome-wide. For example, inference carried out using two datasets with long and 
short pulse durations would facilitate estimates for genes with long and short transcript 
lifetimes, respectively, along with everything in between. A caveat of our analysis is the 
asynchronisation of the cell cycle phase across the population. This may confound the 
results in two ways, firstly because different phases have a different cellular environment, 
influencing the global transcriptional dynamics and causing variation in the underlying 
parameter values for the same gene between cells in different phases. Secondly, there is 
variation in the copy number of genes throughout the cell cycle, with an unknown pro-
portion of cells having one or two copies of each nuclear gene. Confounding effects on 
the inference could be resolved by separation of the different subpopulations of cells by 
cell cycle phase using, for example, fluorescence-activated cell sorting prior to sequenc-
ing [33], and/or by using allele-specific/sensitive scRNA-seq approaches combined with 
metabolic labelling [17, 34]. As 4sU scRNA-seq data becomes more common place 
and there are improvements in capture efficiencies, sequencing depths and cell num-
bers, it will be possible to robustly infer time-resolved transcriptional bursting dynam-
ics for a far greater number of genes from a single experimental set up. Our findings on 
burst dynamics and their associations with HMs could be a valuable starting point to 
inform future experimental work investigating this area, while further application of our 
method beyond what is presented here might hint at other, novel mechanistic relations.

Conclusions
In conclusion, we have developed a mathematical model to maximally exploit the power 
of 4sU scRNA-seq datasets to examine transcriptional bursting, tapping into the synergy 
between single-cell resolution and 4sU labelling which manifests in the cell-specific T>C 
rate distributions. The advantages over conventional scRNA-seq were demonstrated in 
detail using small-scale simulations and performance of the algorithm across parameter 
space was validated with large-scale simulations. We applied our inference approach to 
published 4sU scRNA-seq data to obtain genome-wide joint parameter estimates and 
confidence quantifications, finding an unexpected correlation between burst frequency 
and decay rate, and that genes with extremely high expression levels achieve this pri-
marily through increased burst size. Finally, we linked our estimates with published 
ChIP-seq data, revealing position-dependent associations between different histone 
modifications and parameter estimates which only become apparent with 4sU scRNA-
seq as opposed to conventional scRNA-seq.

Methods
Data processing and analysis

4sU scRNA‑seq

The main datasets that were used for parameter inference in this study were pro-
duced in Qiu et  al 2020 [38], downloaded from the GEO series GSE141851. Two 
datasets from this series were used, both using K562 cells; a negative control data-
set with TFEA chemical conversion treatment but with no 4sU added, and another 
dataset which had 4sU added 4 h before chemical treatment, with GEO sample IDs 
GSM4512696 and GSM4512697, respectively. These are Drop-seq datasets and thus 
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were processed according to the “Drop-seq alignment cookbook” (https:// mccar 
rolll ab. org/ wp- conte nt/ uploa ds/ 2016/ 03/ Drop- seqAl ignme ntCoo kbook v1. 2Jan2 
016. pdf ). A custom Python script was used to carry out trimming of read pairs with 
any base with phred quality ≤ 10 , and to clip adaptor and polyA tail sequences. The 
trimmed reads were then aligned to the primary human genome assembly (GRCh38.
p13), the fasta file for which was obtained from gencode (https:// www. genco degen 
es. org/ human/), using bwa to build the genome index and for the actual alignment 
[52]. Custom Python scripts were then used to map the aligned reads with mapq 
score ≥ 10 to their genes according to the gencode.v36 primary human genome 
assembly annotation gtf file, before extracting cell-specific (using the cell ID part 
of the read 1 barcode) UMI counts and total read counts for each gene, along with 
gene-specific, cell-specific information for each read about the number of genomic 
T bases (found in the fasta sequence across the aligned read positions) and the num-
ber of those which were converted to C bases in the read sequence. Cell selection 
was then carried out to exclude those cell IDs corresponding to empty droplets by 
ordering the cell IDs based on the total number of corresponding read pairs and 
then selecting the top 400 or 795 IDs for the control and 4sU dataset, respectively, as 
specified in [38]. The control dataset was then used to derive the gene-specific back-
ground T>C conversion rates, �s , based on the proportion of genomic Ts which were 
converted to Cs across all reads across all selected cells for the given gene. Figure 8a 
provides a schematic overview of how the T>C conversion data arises from the 4sU 
scRNA-seq experimental protocol.

ChIP‑seq

Publicly available ChIP-seq datasets for ten active HMs produced with K562 cells 
were downloaded for our analysis. A H3K4me3 ChIP-seq dataset was obtained from 
the GEO series GSE108323 with sample ID GSM2895356, which had been processed 
with alignment to the hg19 human genome build [53]. Seven more ChIP-seq data-
sets, which had also been processed with alignment to the hg19 human genome 
build, were obtained from the GEO series GSE29611 with sample IDs GSM733778, 
GSM733651, GSM733653, GSM733656, GSM733675, GSM733692 and GSM733714, 
corresponding to H3K9ac, H3K4me2, H3K79me2, H3K27ac, H4K20me1, H3K4me1 
and H3K36me3, respectively [54]. Two additional ChIP-seq datasets for H3K18ac 
(aligned to hg19) and H4K16ac (aligned to hg38) were obtained from the series 
GSE106964 and GSE158736 with sample IDs GSM2862934 and GSM4809274, 
respectively [55, 56]. The position and read count information from these datasets 
was used to obtain the single-base resolution coverage values for each HM. These 
values were associated with their corresponding genes using the information from 
the comprehensive gene annotation hg19 (or hg38 for H4K16ac) gtf downloaded 
from Gencode. Analysis of the correlations between bursting parameter estimates 
and HM coverage at different sections of the gene was carried out by taking the 
average coverage value for all bases across the specified section (e.g. from 2k bp 
upstream of the TSS to the TES) for each gene, so a single value is obtained per gene 
per HM. Metagene plots were produced by averaging the coverage values for each 

https://mccarrolllab.org/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf
https://mccarrolllab.org/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf
https://mccarrolllab.org/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf
https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
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Fig. 8 a Cells with variable mRNA content (blue lines) shown for an example gene. Cells are incubated in 
the presence of the uracil analogue 4sU for a set amount of time (4h). Transcripts that are produced during 
that period (red) become labelled with 4sU, which is incorporated instead of uracil. During the incubation 
period, natural mRNA decay also takes place (dashed lines). Following cell barcoding and RNA extraction, the 
RNA is chemically treated, resulting in the modification (alkylation) of the 4sU moieties incorporated into all 
labelled transcripts  (US). In turn, this introduces T-to-C base flip mutations at the points of 4sU incorporation 
during the first stage of cDNA library preparation (reverse transcription), which are subsequently detected 
by sequencing. b Schematic representation of the two state model, with the four reactions (activation, 
repression, transcription and degradation) acting on the three species (repressed gene, active gene and 
transcript)



Page 20 of 34Edwards et al. Genome Biology          (2023) 24:138 

position through/around the gene across all specified genes, similarly to the meta-
gene analysis described in [57].

Mathematical modelling

In general, we model bursty transcription as a stochastic process closely related to 
the standard two-state model, as many previous works have [9, 10, 14]. The two-state 
model has four possible processes of gene activation, gene repression, transcription 
and degradation, where transcription may only occur with the gene in an active state 
while degradation acts continuously. This is represented by the following chemical 
reaction scheme

in which kon , koff  , β and δ represent the rate constants for gene activation, gene 
repression, transcription and RNA degradation, respectively, while Goff  , Gon and RNA 
represent the different species of repressed gene, active gene and transcript, respec-
tively. A schematic representation of the system is shown in Fig. 8b. Gene activation 
is known to involve facilitated diffusion, in which TFs not only diffuse through the 
cytoplasm but can also slide along the DNA after becoming associated, to find the 
target/activation site. This makes the process more complicated than the simple on/
off switch of our model, which reflects TF association/disassociation events without 
DNA sliding. However, previous modelling work has shown that the two-state model 
accurately captures gene activation due to the high speeds at which DNA-binding 
proteins slide along the DNA observed in biological systems, which ensures that they 
do not influence the transcriptional bursting dynamics [58].

With this model, we have burst frequency, κ = 1
(1/kon)+(1/koff )

 and burst size, b = β
koff

 , 

and we recall the burst rate, a = κ
δ
 . Aiming to understand bursting and its timescales 

specifically, we make the assumption that bursts occur instantaneously, arrive accord-
ing to a Poisson process and burst in a geometric fashion, which is valid when 
δ << koff  since a transcript produced in a given burst is unlikely to have degraded 
before the burst is over [7, 59], and when kon << koff  , which is supported by the 
parameter estimates reported in [32]. This model simplifies 
κ = lim

koff →∞
1

(1/kon)+(1/koff )
= kon while b remains finite with b = lim

β ,koff →∞
β
koff

 [60].

Model 1

The first model aims to model the observed unique molecular identifier (UMI) counts 
of a given cell, l, from the estimated capture efficiency (Additional file 1: Fig. S1) of 

Goff
kon−→ Gon

Gon

koff−−→ Goff

Gon
β−→ Gon + RNA

RNA
δ−→ ∅
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that cell, α , in a similar fashion to the technical noise model outlined in [61]. The cap-
ture efficiency, α , represents the transcript detection rate for that cell (probability of 
at least one read corresponding to a particular transcript). Based on the instantane-
ous bursting version of the two-state model described above, the steady state distri-
bution of the transcript count, m, can be derived directly from the master equation 
and corresponds to the negative binomial distribution [10, 59, 60, 62]

which is illustrated by the schematic in Fig. 9, where

The full derivation is available in [60]. We may then model the probability distribu-
tion of observing l UMIs given m transcripts in the cell with a capture efficiency of α , 
as a poisson approximation of the true binomial process

where

which is valid when α is small. We model the observed data, linked by the unobserved 
steady state transcript distribution by compounding Eqs. 1 and 2 across the state space 
of m and marginalise

where M is an upper bound corresponding to the 0.9999 quantile of Eq. 1, which 
avoids summing to ∞ , achieving a finite state projection (FSP) [63, 64] with an error 
of 0.0001. The resulting distribution and its dependence on P(m) is shown in Fig. 9. 
The approximation in Eq. 2 permits non-zero probability values when m < l , which 
allows our MCMC algorithm to more efficiently escape regions of parameter space 
for which M < l . This leads us to the likelihood function of model 1 by taking the 
product of Eq. 3 across all cells in the data

where lc and αc represent the observed UMI count (for the given gene) and capture 
efficiency for cell c, respectively, and L = (l1, . . . , lk) , with k cells in total in the data 
and θ = (µ, a, γ ) . Since we wish to infer the values of θ for each gene from the data 
using this model, we aim to obtain the posterior

(1)P(m) = fN Bin m|a,
b

1+ b

fN Bin

(

m|a,
b

1+ b

)

=
Ŵ(m+ a)

Ŵ(m+ 1)Ŵ(a)

(

1

1+ b

)a( b

1+ b

)m

(2)P(l|m,α) = fPois(l|mα)

fPois(l|mα) = (mα)le−mα

l!

(3)P(l|α) =
M
∑

m=0

P(l|m,α)P(m)

(4)P(L|θ) =
∏

c

P(lc|αc)
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Fig. 9 Schematic showing several of the hidden (black) and observed (grey) data we model and their 
governing parameters. For this illustration, values were set as a = 2 , b = 25 and δ = 0.001 for the biological 
parameters and t = 1000 , u ∼ Pois(60) , �n = 0.075 , �s = 0.01 and α ∼ Beta(1, 9) for the technical parameters. 
The encompassing boxes indicate the information used during parameter inference by model 1 (a and b) 
and 2 (a, b and δ ). The direction of the arrows indicate how the distributions feed into each other as dictated 
by the accompanying parameters. For example, a and b determine the steady state distribution, which 
determines the new and surviving transcript count distribution as dictated by δ for given t, while the new and 
surviving T>C count distributions combine to form the observed T>C count distribution, which is conditional 
upon the cell’s transcript count, m, with m = 100 shown here. More information on estimating α and �n 
specifically for the Qiu dataset is found in Additional file 1: Figs. S1 and S2, respectively



Page 23 of 34Edwards et al. Genome Biology          (2023) 24:138  

which we achieve through MCMC sampling.

Model 2

We will now construct a model which unifies the UMI and T>C conversion aspects of 
the data with the aim of understanding both bursting dynamics and the timescale 
upon which they occur. Figure 8a illustrates how the T>C conversion data arises from 
the experimental protocol. First of all, we define τ = tδ where t is the time before 
sequencing at which the 4sU nucleotides were added to the cells, otherwise known as 
the pulse duration. τ therefore represents unitless time in terms of transcript life-
times. Next, we must obtain the probability mass function of the number of tran-
scripts surviving to the sequencing point which were produced before the 4sU was 
added, otherwise known as the surviving transcripts, s. This distribution, P(s), may be 
understood as the time-decay of the steady state distribution, P(m), where we have 
lim
t→∞

P(s = 0) = 1 and P(s|t = 0) = P(m) when δ > 0 . Degradation acts upon each 

individual transcript molecule with rate δ , and therefore the probability of a given 
transcript produced before 4sU was added surviving is 1− FExp(X ≤ t|δ) = fPois(0|τ ) . 
Therefore, the probability of having s transcripts surviving given m originally is

where

and

giving the conditional distribution of s. Compounding this with the steady state dis-
tribution (Eq. 1) we obtain the marginal

We compute this distribution efficiently by using the approximation

Next, we obtain the probability mass function of the newly synthesised transcript 
count, P(n), for those transcripts that were produced after the 4sU was added and 
therefore have a higher T>C conversion rate than the background. This may be under-
stood in reverse to P(s), as it describes the convergence of the newly synthesised tran-
script count from a point mass at zero to the steady state distribution where we have 
P(n = 0|t = 0) = 1 and lim

t→∞
P(n) = P(m) when a, b, δ > 0 . An approximate solution 

(5)P(θ |L) = P(L|θ)P(θ)
∫

θ
P(L|θ)P(θ)dθ

(6)P(s|m) = fBin(s|m, fPois(0|τ))

fBin(s|m, fPois(0|τ)) =
(

m

s

)

fPois(0|τ )sFExp(X ≤ t|δ)m−s

FExp(X ≤ t|δ) = 1− e−τ

(7)P(s) =
M
∑

m=0

P(s|m)P(m)

(8)P(s) = fN Bin

(

m|a,
fPois(0|τ )b

1+ fPois(0|τ )b

)
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to such a distribution was derived as a model of translation in [59] though the 
assumed relationships apply here. The solution is

which is valid when koff >> δ and τ >> δ/koff  , where 2F1 refers to the hypergeometric 
function. The general dependency of the surviving and new transcript distributions on 
P(m), as dictated by δ , is illustrated by Fig. 9. Next, we obtain the probability distribution 
of transcripts at steady state conditional on our observed cell-specific capture efficiency, 
α , and UMI count, l, by using Eqs. 1 and 2

Now, we describe the probability distribution of n conditional on m as the joint distri-
bution of n and s

with the convolution 
∑m

n=0 P(n)P(s = m− n) ≈ P(m) being used as a normal-
ising value in place of P(m) due to the approximate nature of P(n), ensuring that 
∑m

n=0 P(n|m) = 1 . It is now possible to model the number of T>C conversions observed 
in a given read conditional on m, where we have expanded and built upon the poisson 
mixture model of conversions described in [36] and compounding with Eq. 11

where P(u) is the gene-specific empirical probability mass function of observing u ura-
cils across the fasta sequence corresponding to a given read’s mapping position. �s is the 
gene-specific background conversion rate observed in the control dataset (without the 
addition of 4sU) which represents conversion due to random mutations or other sources 
outside of chemical conversion. �n is the gene-invariant conversion rate due to 4sU 
incorporation and conversion which was estimated from the data (Additional file 1: Fig. 
S2). P(u) and the conditional T>C count distribution are shown in Fig. 9, along with the 
dependence of P(i|m) on P(u), P(s) and P(n) as dictated by �n and �s . We may now model 
the cell-specific T>C conversion rate for the given gene by compounding Eqs. 10 and 12

where M is an upper bound corresponding to the 0.9999 quantile of Eq. 1, again giv-
ing a FSP with error 0.0001. We are finally in a position to complete the model and link 
all our observables together. The observed counts of conversions in each cell may be 

(9)
P(n) =

Ŵ(a+ n)

Ŵ(n+ 1)Ŵ(a)

(

b

1+ b

)n(1+ be−τ

1+ b

)a

2F1

(

−n,−a, 1− a− n; 1+ b

eτ + b

)

(10)P(m|l,α) = P(l|m,α)P(m)
∑

m P(l|m,α)P(m)

(11)P(n|m) = P(n)P(s = m− n)
∑m

n=0 P(n)P(s = m− n)

(12)

P(i|m) =
m
∑

n=0

∑

u

P(u)
( n

m
fPois(i|u(�n + �s))+

(

1− n

m

)

fPois(i|u�s)
)

P(n|m)

(13)P(i|l,α) =
M
∑

m=0

P(i|m)P(m|l,α)
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represented by y, where yi is the number of reads that have i conversions. Therefore, the 
cell-specific observed distribution of conversions per read may be understood as a mul-
tinomial distribution with a probability vector determined by Eq. 13

enabling us to model the conversion data conditional on the UMI data. A likelihood 
function may now be obtained with

where yc is the conversions per read distribution observed in cell c and 
Y = (y1, . . . , yk) where yc,i is the number of reads with i conversions in cell c for the 
given gene. The final likelihood function of model 2 is now defined as the product of 
Eqs. 4 and 15

As in Eq. 5, MCMC sampling was used to obtain

One thing to note about model 2 is that Eq. 9 is an approximate solution and breaks 
down in certain regions of parameter space. When a and/or b become too large and/
or τ becomes too small, the function will oscillate around the true probability distribu-
tion function, with these oscillations quickly becoming more extreme to the point that 
the approximate solution gives negative probability values. The solution can be said to 
become unstable in these regions of parameter space, and therefore such regions will be 
referred to as unstable parameter space. If a gene is found to reside within an unstable 
region of parameter space then an alternative to model 2 must be used.

Model 3

Our final model acts as an alternative to model 2 when a gene resides within an unsta-
ble region of parameter space. Unlike model 2, this model ignores the cell-specific T>C 
information in favour of simply pooling the conversions across all cells. We define the 
probability distribution of observing i conversions for a given read

This is similar to Eq.  12 but is independent of the total transcript count, m, and is 
therefore not cell specific. We can apply Eq. 18 to the full set of observed conversions 
across cells, Y, again using the multinomial distribution to obtain a likelihood function

(14)P(y|l,α) = (
∑

i yi)!
∏

i yi!
∏

i

P(i|l,α)yi

(15)P(Y |L, θ) =
∏

c

P(yc|lc,αc)

(16)P(Y , L|θ) = P(Y |L, θ)P(L|θ)

(17)P(θ |Y , L) = P(Y , L|θ)P(θ)
∫

θ
P(Y , L|θ)P(θ)dθ

(18)P(i) =
∑

u

P(u)
[

FExp(X ≤ t|δ)fPois(i|u(�n + �s))+ fPois(0|τ )fPois(i|u�s)
]
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where yi represents the number of reads with i conversions summed across all cells 
rather than being a cell-specific value as in Eqs. 14 and 15. We define the final likelihood 
function of model 3 as the product of Eqs. 4 and 19.

As in Eqs. 5 and 17, MCMC sampling was used to obtain

Markov chain Monte Carlo algorithm

MCMC was employed in order to sample from the posterior distributions outlined in 
Eqs. 5, 17 or 21 using a Metropolis-adjusted Langevin algorithm (MALA) within a Gibbs 
sampler, which simulates a Markov chain using Langevin dynamics [65] and corrects the 
Euler-Maruyama integration error with an accept-reject step as with the Metropolis-Hast-
ings algorithm [66]. The chain is initialised semi-randomly, setting θ(1) in a manner which 
takes advantage of the information immediately available from the data to start the chain 
relatively close to the target density. We calculate empirical estimates of the expression 
level, µ , and transcript lifetime, γ , as

where N = 795 is the number of cells in the dataset, and as

where � is the observed conversion rate for the given gene across all reads, while �s and 
�n represent the background conversion rate measured in the control dataset and the 
estimated 4sU-mediated conversion rate, respectively. We then set µ = µ̂ and draw

and

where

with support [y, z] for y > 0 and

(19)P(Y |θ) = (
∑

i yi)!
∏

i yi!
∏

i

P(i)yi

(20)P(L,Y |θ) = P(L|θ)P(Y |θ)

(21)P(θ |L,Y ) = P(L,Y |θ)P(θ)
∫

θ
P(L,Y |θ)P(θ)dθ

µ̂ = 1

N

N
∑

c=1

lc/αc

γ̂ = −t/ log(max[0.1,min{0.9, (1− ((�− �s)/�n)}])

a ∼ LUnif (1, 10)

γ ∼ N (γ̂ , γ̂ /5)

fLUnif (x|y, z) =
1

x ln(z/y)
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We repeatedly draw θ(1) in this way until P(X |θ(1))P(θ(1)) > 0 where X is the dataset and 
P(θ) represents the prior distribution, which in this case is defined to be an uninforma-
tive multivariate uniform distribution such that

where

with support [y,  z]. At each step, j, in the Markov chain, the next step is sampled by 
proposing jumps to new positions in parameter space from the current position, pro-
ceeding through three dimensional parameter space with θ = (µ, a, γ ) . This parame-
terisation was chosen for Markov chain progression to minimise correlations between 
parameters and proposals to negative (unsupported) values. The classic Metropolis-
Hastings algorithm [66] corresponds to a random walk through parameter space, which 
converges relatively slowly to the target density, and which samples from the posterior 
inefficiently due to slow mixing of the chain, with the optimal acceptance rate (propor-
tion of accepted proposals) being only 0.234 [67]. Therefore, we make use of the MALA 
as a superior alternative, which converges much more efficiently, requiring only O(d1/3) 
steps, where d is the dimension of the target density, whereas the random walk requires 
O(d) steps, while the higher optimal acceptance rate of 0.574 allows for faster mixing and 
reduced dependence between samples [65]. The Markov chain is treated as an itô diffu-
sion and behaves according to Langevin dynamics with stochastic differential equation

evolving θ in imaginary time with a standard Brownian motion diffusion term, W, and a 
drift term determined by the vector gradient, ∇ , of the logarithm of the posterior density, 
π(θ) ∝ P(X |θ)P(θ) , with respect to θ evaluated at θt . However, we do not have an ana-
lytical solution for ∇ log π(θ) which means we must estimate this numerically using the 
change in likelihood observed between the current step, j, and the previous one when 
generating a proposal. This leads to an additional complication, wherein we may not 
propose a new sample for all parameters simultaneously since then the observed change 
in likelihood would be the combined effect of the change in each parameter, making the 
individual gradients impossible to estimate. Therefore, we must sequentially update each 
parameter conditional on the current value of all other parameters, which are treated 
as fixed constants. This corresponds to embedding our MALA within a Gibbs sampler 
[68, 69], meaning that d sub-steps are required to move from step j to j + 1 . At step j, we 
cycle through each parameter, k, from 1 to d, and draw a new proposal for parameter k 
from a proposal distribution as determined by Eq. 22

fN (x|M, σ) = 1

σ
√
2π

e
− 1

2

(

x−M
σ

)2

P(θ = (µ, a, γ )) = fUnif (µ|0, 100000)fUnif (a|0, 100000)fUnif (γ |1, 100000)

fUnif (x|y, z) =
1

z − y

(22)dθt = ∇ log π(θt)+
√
2dWt

θ
(∗)
k = θ

(j)
k + Sk∇k log π(θ)+

√

2Skξ
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where ξ is a standard normal random variable and S is an adaptive scaling constant such 
that the proposal is drawn from

This is accepted with a probability given by the likelihood ratio at the proposed and cur-
rent value

where substituting π(θ) for P(X |θ)P(θ) gives an equivalent ratio due to the propor-
tionality, which allows us to refer directly to the target density, π . Note that the intracta-
ble integrals in the denominators of Eqs. 5, 17 and 21 cancel out to allow the acceptance 
probability to be calculated with only the likelihood function and the prior density. In 
our special case with uniform priors, these also cancel, only serving to reject proposals 
outside of the plausible ranges of parameter space as defined by the prior. With prob-
ability A we set θ(j+1)

k = θ
(∗)
k  , otherwise θ(j+1)

k = θ
(j)
k  and since we treat parameters other 

than θk as constants, we iteratively draw θ from the conditional rather than joint densi-
ties as

If the proposal is accepted, we update our estimate of the local gradient for the param-
eter k as

otherwise we set ∇k = 0 . We also recursively update the adaptive scaling constant asso-
ciated with parameter k in the manner described for the Adaptive Scaling Metropolis 
algorithm of [67]

with a recursively updated decay term

which in the long-term results in the MALA mixing close to the optimal parameter-
specific acceptance rate of 0.574 [65]. At step 1, we initialise ∇ = 0 , S = θ(1)/100 and 
η = 0.1 . Density plots indicate that in the vast majority of cases acceptance rates close to 
0.574 were achieved (Additional file 1: Fig. S5).

The process repeats until 5000 steps have been completed ( j = 5000 ) if µ̂ < 1000 or 
1500 if µ̂ ≥ 1000 , since for these genes with very high expression levels each step takes 
longer but the stronger evidence means that fewer steps are required. Therefore, the 
Markov chain converges to the posterior distribution according to its gradient. Poste-
riors were produced from the sampled chain using the last 1000 or 2500 steps for high 

θ
(∗)
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θ
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expression or other genes, respectively, with a thinning factor of 2, where only every 
2nd point in the chain is used in order to reduce dependency between points, resulting 
in smoother posterior densities and sample sizes of 500 or 1250. When using model 2, 
for each step, we check if the proposal for any sub-step was rejected because of nega-
tive probability values appearing in Eq. 9 due to the approximate non-equilibrium solu-
tion failing for an unstable point in parameter space. We set a rolling window size, w, 
equal to 100 or 500 for high expression or other genes, respectively. We then check at 
each step, j, if the number of steps with a rejection of this nature is ≥ w/20 for steps 
[max((w/2)+ 1, j − w + 1), j] and if this condition is met then the Markov chain is 
restarted using model 3 instead of model 2.

Simulations for model comparison

The performance of inference using different likelihood functions was tested on simu-
lated data. Gillespie’s exact algorithm (stochastic simulation algorithm) [70] was used to 
simulate data according to the reactant matrix shown in Table 3 and the product matrix 
shown in Table 4, with the stoichiometry matrix shown in Table 5.

Table 3 Reactant matrix for new and surviving transcript count Gillespie algorithm simulations

RNA0 RNA1 Gon Goff

β0 0 0 1 0

β1 0 0 1 0

δ0 1 0 0 0

δ1 0 1 0 0

kon 0 0 0 1

koff 0 0 1 0

Table 4 Product matrix for new and surviving transcript count Gillespie algorithm simulations

RNA0 RNA1 Gon Goff

β0 1 0 1 0

β1 0 1 1 0

δ0 0 0 0 0

δ1 0 0 0 0

kon 0 0 1 0

koff 0 0 0 1

Table 5 Stoichiometry matrix for new and surviving transcript count Gillespie algorithm simulations

RNA0 RNA1 Gon Goff

β0 1 0 0 0

β1 0 1 0 0

δ0 -1 0 0 0

δ1 0 -1 0 0

kon 0 0 1 -1

koff 0 0 -1 1
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This allows simulation of the pool of transcripts in the cell that was 
synthesised before ( RNA0 ) and after ( RNA1 ) the 4sU pulse started. 
The simulation is run with initial conditions X0 = (0, 0, 0, 1) where 
X = (RNA0,RNA1,Gon,Goff ) and rate constant values are set for bursty expres-
sion θ = (β0 = 50,β1 = 0, δ0 = 0.001, δ1 = 0.001, kon = 0.0005, koff = 1) , running 
until t0 = 200000 to bring the system to steady state. The system state at the end of 
this run, Xt0 , is then used as the initial condition for a second run, where we now 
set θ = (β0 = 0,β1 = 50, δ0 = 0.001, δ1 = 0.001, kon = 0.0005, koff = 1) to simulate the 
newly synthesised transcripts produced during the 4sU pulse along with decay of 
pre-existing transcripts. A pulse duration of t1 = 1000 min was used here, giving the 
final state of the system Xt1 , and importantly giving the counts for RNA0 and RNA1 in 
the cell. This was repeated to simulate N = 10000 cells. In-silico sequencing data was 
then generated based on these simulated transcript count values. Cell-specific cap-
ture efficiencies were drawn

before drawing the cell-specific UMI counts, l, corresponding to the two pools of tran-
scripts as

for k = 0 and k = 1 , so that the total UMI count for the given cell is l = l0 + l1 . The cell-
specific total number of reads corresponding to each UMI in the two pools is then drawn

where ν = 5 represents sequencing depth and reads per UMI is a zero-truncated Poisson 
random variable with

using the same logic of Poisson assignment of reads to UMIs as in [71]. Then, the cell-
specific total number of reads of the given pool is

The number of uracils across the sequenced part of the transcript is then drawn for each 
read

where û = 60 is the average number of uracils per read. The number of conversions in 
each read in the cell is then drawn for the two pools of transcripts as

and

α ∼ Beta(1, 9)

lk ∼ Bin(RNAk ,α)

rk ,j ∼ ZTPois(ν)

fZTPois(r|ν, r > 0) = νr

(eν − 1)r!

rk =
lk
∑

j=1

rk ,j

uk ,j ∼ Pois(û)

i0,j ∼ Bin(u0,j , �s)
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where we set �s = 0.01 and �n = 0.075 . The overall conversion data across all reads in 
the cell is then i = (i0, i1) , where i0 = (i0,1, . . . , i0,r0) and i1 = (i1,1, . . . , i1,r1) , from which 
we obtain y, where yi is the number of reads with i conversions in the given cell. Now 
we have our simulated dataset which we can use to demonstrate our capacity to recover 
known parameter values. MCMC was carried out with different likelihood functions in 
the previously described manner to sample posterior distributions.
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