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Sketch-Flip-Merge: Mergeable Sketches for Private Distinct Counting

Jonathan Hehir 1 2 Daniel Ting 3 Graham Cormode 4

Abstract

Data sketching is a critical tool for distinct count-
ing, enabling multisets to be represented by com-
pact summaries that admit fast cardinality esti-
mates. Because sketches may be merged to sum-
marize multiset unions, they are a basic build-
ing block in data warehouses. Although many
practical sketches for cardinality estimation exist,
none provide privacy when merging. We pro-
pose the first practical cardinality sketches that
are simultaneously mergeable, differentially pri-
vate (DP), and have low empirical errors. These
introduce a novel randomized algorithm for per-
forming logical operations on noisy bits, a tight
privacy analysis, and provably optimal estimation.
Our sketches dramatically outperform existing
theoretical solutions in simulations and on real-
world data.

1. Introduction
Many applications that model large volumes of data are
based on tracking cardinalities of events or observations.
Consequently, these applications make extensive use of data
sketches that support fast, approximate cardinality estima-
tion (Cormode & Yi, 2020). For instance, approximate dis-
tinct counting is supported via variants of the HyperLogLog
(HLL) sketch (Flajolet et al., 2007; Heule et al., 2013) in
popular data management systems including Amazon Red-
shift, ClickHouse, Google BigQuery, Splunk, Presto, Redis,
and more. At the expense of a small estimation error, these
approximate methods drastically reduce the computational
cost of distinct counting to run in linear time, using only
bounded memory. An additional key feature of distinct-
count sketches is the ability to merge two or more sketches
to obtain cardinality estimates over their union. This enables
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not only distributed computation, but also many rich aggre-
gation possibilities from previously computed sketches. As
a result, modern data pipelines rely extensively on the per-
formance and functionality of such cardinality sketches.

Increasingly, privacy concerns constrain the operation of
data processing. Organizations demonstrating commitments
to preserving users’ privacy require that data collected from
individuals be subject to appropriate mitigations before be-
ing passed to downstream processing. Specifically, protec-
tions such as differential privacy are used to protect sensitive
data while still giving accurate query response.

Although sketching techniques may appear to offer pro-
tection by reducing data, it is well-known that sketching
alone does not automatically provide a privacy guarantee
(Desfontaines et al., 2019). The summaries—or even the
estimates calculated from them—can leak considerable in-
formation about whether the specific items belong to the
underlying set. Recently, it has been shown that the contents
of sketches do meet a privacy standard if the associated hash
functions are not known to the observer (Choi et al., 2020;
Smith et al., 2020; Dickens et al., 2022). However, it is not
plausible to assume secret hash functions when the com-
putation is shared among multiple entities in a large scale
system. In particular, all participants must know the hash
when working with sketches that will be merged, and using
the same hash in multiple sketches generates correlated ran-
domness that breaks the privacy guarantees. This creates
an important gap to make these high-throughput systems
private. Previous attempts to construct privacy-preserving
sketches (Pagh & Stausholm, 2021) do not offer practical
mergeable sketches as the errors are too large (Section 6).

In this work, we present the Sketch-Flip-Merge (SFM) sum-
maries, a practical, mergeable, and provably private ap-
proach to distinct-count sketching. In particular, we produce
summaries that satisfy the strong definition of ε–differential
privacy (DP) (Dwork et al., 2006; Dwork, 2008) even when
the hash function is known publicly. By attaching the pri-
vacy guarantee to the summary itself—not just the cardi-
nality estimate—we may safely release summaries corre-
sponding to sensitive multisets, enabling safe cardinality
estimation over any union of such sets using the privacy-
preserving summaries in lieu of the original sensitive data.

The key to our approach is to adapt the sketch of Flajolet
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& Martin (1985), which is often referred to as either FM85
or probabilistic counting with stochastic averaging (PCSA).
Although subsequent sketches such as HLL (Durand & Fla-
jolet, 2003; Flajolet et al., 2007; Heule et al., 2013) further
optimized the space usage, squeezing the space makes them
less amenable to privacy protection. In contrast to PCSA
where the simple, partitioned binary structure limits the sen-
sitivity to a bit flip, these sketches store extremal hash values
where small changes to the input can cause big changes in
the summary, requiring more noise and yielding less accu-
rate results. Furthermore, our methods generalize to any
bitmap based sketch.

Related Work. Privacy-preserving cardinality sketches
have been the subject of several earlier works. While re-
cent efforts provide DP guarantees for HLL-like sketches
(Smith et al., 2020; Dickens et al., 2022), they rely on ran-
dom, secret hash functions that preclude the ability to merge
sketches. Using a fixed, public hash, Choi et al. (2020)
obtain a DP cardinality estimate from a LogLog sketch by
adding noise to the cardinality estimator, but the sketch
itself remains sensitive and unsafe for release or sharing.
Stanojevic et al. (2017) design a DP algorithm for obtaining
cardinality estimation on the union of two multisets using
perturbed Bloom filters, but their method does not general-
ize and scale to the union of more than two multisets.

One line of work extends PCSA with randomized response
and subsampling of items to achieve privacy (Tschorsch &
Scheuermann, 2013; Nuñez von Voigt & Tschorsch, 2019).
However, Tschorsch & Scheuermann (2013) fails to achieve
a DP guarantee, and Nuñez von Voigt & Tschorsch (2019)
does not address merging sketches. Kreuter et al. (2020)
design two sketches, including one based on PCSA. While
their DP sketches cannot be merged to form a single sketch,
multiple sketches may be used to estimate the union’s cardi-
nality if all sketches use the same privacy parameters. The
PCSA-based sketch of Pagh & Stausholm (2021, Section 6)
achieves DP and supports merging but is impractical. In our
experiments, their estimator frequently failed to produce
an estimate and returned impractically large errors. Finally,
Desfontaines et al. (2019) give an impossibility result where
both privacy and high accuracy are impossible, but only
when many sketches are merged, which is consistent with
our results.

Contributions. We propose two practical methods for con-
structing mergeable DP cardinality sketches and obtaining
cardinality estimates. The first uses a deterministic bit-
merging operation used by Pagh & Stausholm (2021). We
prove this merge requires a suboptimal form of randomized
response, even after exponential improvement to the prior
privacy analysis (Corollary 4.5). Our main methodological
contribution is a novel randomized merge allowing for up
to a further 75% variance reduction over the optimized de-

terministic merge. We generalize our randomized merge to
perform to arbitrary bitwise operations on binary data that
may be of independent interest. We also develop a com-
posite likelihood-based estimator for cardinality and prove
this estimator is asymptotically optimal for both private and
non-private sketches based on PCSA.

Outline. We give a brief overview of PCSA sketching in
Section 2, then define privacy and recap randomized re-
sponse in Section 3. Merging sketches is enabled through
the careful design of randomized response mechanisms and
merge operations over collections of randomized bits in Sec-
tion 4. In Section 5, we propose a fast cardinality estimator
for the private PCSA sketch and analyze its properties. We
compare these methods with private and non-private alter-
natives in Section 6 and state conclusions in Section 7. All
proofs are deferred to the appendices.

Notation. We write [m] = {1, . . . ,m}. ⊗ denotes the
Kronecker product. Logical operations are denoted ∨ (or),
∧ (and), ⊻ (xor), and ¬ (not). We use the natural logarithm
log = loge. Equality in distribution is denoted D

=. The
cardinality of a set D is denoted |D|.

2. Background and Problem Setup
Let D ∈ XN denote a multiset of N items from some uni-
verse X of objects. The count-distinct problem is the task
of estimating the number of unique elements in D. That
is, if set(D) denotes the support set of items in D, the
count-distinct problem aims to approximate n = |set(D)|
with a data sketch in bounded memory in a single pass over
the data. We consider the private count-distinct problem for
mergeable sketches where the information in a sketch satis-
fies differential privacy (DP) and sketches can be merged to
obtain a sketch of the union of underlying datasets.

We focus on solutions to the count-distinct problem in which
sketches form a binary vector, subject to merge operations
performed through element-wise logical operations (e.g.,
or). The class of sketches to which our methods apply in-
clude PCSA, linear counting (Whang et al., 1990), Bloom
filters (Broder & Mitzenmacher, 2004), and Liquid Legions
(Kreuter et al., 2020). These are particularly amenable to
privacy enhancement through the application of randomized
response (Warner, 1965) but require careful design of merge
operations for randomized bits. Although this excludes other
commonly used sketches such as HyperLogLog and the k-
minimum value sketch (Bar-Yossef et al., 2002; Giroire,
2009), the richer set of values stored in these sketches make
them less suitable for privatization due to their high sensi-
tivity and, hence, higher noise required for privacy. In the
remainder of this paper, we focus on the PCSA sketch of
Flajolet & Martin (1985), noting that the results for con-
structing and merging private sketches in Sections 3 and
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4 apply to related sketches through direct application or
simple extensions.

The classical PCSA sketch takes the form of a matrix
S = S(D) ∈ {0, 1}B×P with B buckets and precision
parameter P . Given two independent, universal hash func-
tions, h1(x) ∼ Uniform([B]), h2(x) ∼ Geometric(1/2),
let bucket(x) = h1(x),value(x) = min{P, h2(x)}.
Then each bit Sij is equal to 1 iff there exists x ∈ D such
that bucket(x) = i,value(x) = j. Some desirable
properties of S are immediate. First, S relies only on the set
of hashed values {h1(x)}x∈D and {h2(x)}x∈D. Hence, it
is invariant both to repetitions in D and to the order in which
the elements of D are processed. Additionally, two sketches
S(D1) and S(D2) may be merged via a simple bitwise-or,
S(D1) ∨ S(D2) = S(D1 ∪ D2), as each entry Sij in the
merged sketch is equal to 1 iff there is an item x in at least
one of D1, D2 for which bucket(x) = i,value(x) = j.

Importantly, when an adversary knows h1 and h2, the sketch
S(D) reveals information about elements in D. For exam-
ple, any x ∈ X for which Sbucket(x),value(x) = 0 cannot
belong to D. In what follows, we extend the PCSA sketch
to minimize this sort of privacy leakage.

3. Private Sketches
Differential privacy (DP) (Dwork et al., 2006; Dwork, 2008)
offers a strong and quantifiable notion of privacy. DP man-
dates that algorithms (privacy mechanisms) acting on a
dataset D must be randomized—typically through the addi-
tion of some carefully tuned noise—so that the distribution
of a privacy mechanism’s output cannot be significantly
influenced by a single input record. As a result, the abil-
ity to reverse-engineer information about a single record is
limited, and any analysis performed using only the output
of the algorithm also satisfies DP. The strength of the DP
guarantee is quantified by the parameter ε > 0, often called
the privacy budget, with smaller ε offering stronger privacy.
Definition 3.1 (Dwork et al. (2006)). A randomized algo-
rithm M is said to satisfy ε–differential privacy (DP) if for
any two neighboring databases D,D′ and any set of outputs
E ⊆ Range(M), we have:

Pr(M(D) ∈ E) ≤ eε Pr(M(D′) ∈ E).

In the count-distinct problem, we say two multisets D,D′

are neighbors if D′ can be obtained by adding or re-
moving one unique item to D. Given two neighboring
multisets D,D′ and their corresponding PCSA sketches
S(D),S(D′), it follows from the definition of PCSA that
these sketches must agree on all but at most one bit. To
create DP sketches from S(D), then, we consider general
DP mechanisms applied to vectors of {0, 1} bits, where two
vectors x, x′ ∈ {0, 1}d neighbor if they differ on at most
one bit (i.e., have sensitivity 1).

When restricting our attention to mechanisms whose input
and output are both a single bit, every DP mechanism can be
viewed as an instance of randomized response (RR) (Warner,
1965). We describe a generalized form of RR as follows. Let
Fp,q denote a general bit-flipping algorithm, parameterized
by two probabilities p and q, and where classical RR (in the
style of Warner) is recovered when q = 1− p:

Fp,q(x) ∼ Bernoulli(p if x = 1 else q).

Theorem 3.2. Assume q ≤ 1/2 ≤ p. Applied to vectors
with sensitivity 1, the algorithm Mp,q : {0, 1}d → {0, 1}d
that independently applies Fp,q to each element of its input
is ε-DP if and only if:

p, q ∈ (0, 1) and max
{

p
q ,

1−q
1−p

}
≤ eε. (1)

Theorem 3.2 provides an entire family of privacy mech-
anisms, any Mp,q with p, q satisfying Eq. 1, that can be
applied to a PCSA sketch or any bit vector to make its output
ε-DP. Our contribution is then to address several important
questions: How can we merge two sketches if their bits have
been perturbed via Fp,q? How can we estimate cardinality
from noisy sketches? And how should we choose p and q?

4. Merging Perturbed Bit Vectors
While a randomized response mechanism Mp,q converts
a PCSA sketch to a private equivalent, this breaks PCSA’s
merge operation. For ordinary PCSA and multisets D1, D2,
the bitwise-or S(D1) ∨ S(D2) = S(D1 ∪ D2) defines a
merge operation on sketches that yields the same sketch
that would be obtained by first taking the union. However,
the same operation on noisy sketches does not satisfy this
desirable property. We develop merge operations on noisy
sketches and identify under what conditions they exist. In
particular, Theorem 4.1 shows that if a merge operation is
deterministic, then xor (⊻) is the only possible merge on
noisy sketches, and it only works for certain choices of the
mechanism Mp,q. We show these choices imply that, at
best, such a noisy sketch’s cardinality estimates have 4×
worse variance than that for regular PCSA on the same
sized sketch, even if the privacy budget is near-infinite. Our
main contribution is to provide a novel randomized merge
operation that adds less noise to the sketch. Furthermore,
we generalize this operation to perform arbitrary boolean
operations on noisy bit vectors.

4.1. Deterministic Merging

Applying the standard randomized response mechanism to
a PCSA sketch breaks mergeability. PCSA merges sketches
using bitwise-or, and in the presence of RR noise, the or
operation results in non-RR noise that biases bits towards 1.
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Pagh & Stausholm (2021) address this by replacing bitwise-
or (∨) with bitwise-xor (⊻) operations whenever the sketch
is updated or merged. However, the xor operation destroys
cardinality information. In particular, the xor of a PCSA
sketch with itself is the empty sketch. Rather than ensuring
sketches are invariant to duplicates, they ensure the distri-
bution of (merged) sketches are invariant. They do this
by subsampling items (including duplicates) independently
with probability 1/2. This effectively encodes bits that were
1 in PCSA as Bernoulli(1/2) values, while 0 bits remain 0.
Unfortunately, this subsampling operation introduces a lot
of noise. Figure 2 shows that even for large ε the resulting
cardinality estimates have 4 times the variance.

We show that this penalty on the accuracy is inherent for
any deterministic merge. Theorem 4.1 shows xor is, in fact,
the only possible way to merge deterministically, so that
randomized merges are the only way to improve merging.
Our analysis also improves the Pagh & Stausholm (2021)
sketch by significantly reducing the noise required for an
ε-DP privacy guarantee and demonstrates how to merge
sketches with different privacy budgets.

Theorem 4.1. Let f1 = Fp1,q1 , f2 = Fp2,q2 , f3 = Fp3,q3 ,
and let ◦ : {0, 1}2 → {0, 1} denote a deterministic and
symmetric operation. The following conditions may only be
satisfied simultaneously if ◦ = ⊻ and p1 = p2 = 1/2:

1. f1, f2 are ε1-DP and ε2-DP for ε1, ε2 < ∞.
2. f1(x) ◦ f2(y)

D
= f3(x ∨ y).

3. fi(0)
D

̸= fi(1) for i = 1, 2, 3.

Using our general family of RR mechanisms, we define a
mechanism that adds noise to a PCSA sketch to provide
privacy (Lemma 4.3) while preserving mergeability (Theo-
rem 4.4). Corollary 4.5 shows our privacy analysis is much
tighter than that of Pagh & Stausholm (2021).

Definition 4.2. For ε > 0, let Mxor
ε : {0, 1}d → {0, 1}d

denote the mechanism that independently applies an asym-
metric random response Fp,q to each element of its input
with p = 1/2, q = 1/(2eε).

Lemma 4.3. Mxor
ε is ε–differentially private.

Theorem 4.4 (Deterministic Mergeability).
Mxor

ε1 (x) ⊻ Mxor
ε2 (y)

D
= Mxor

ε∗ (x ∨ y), where ε∗ =

− log(e−ε1 + e−ε2 − e−(ε1+ε2)).

Corollary 4.5. Let MPS
ε denote the ε-DP privacy mech-

anism of Pagh & Stausholm (2021, Section 6). Then
Mxor

ε = MPS
2(exp(ε)−1).

This tighter privacy analysis1 dramatically reduces noise

1It is proven in the appendix of Pagh & Stausholm (2021) that
q = 1/(eε + 1) satisfies ε-DP, although the recommendation and
main results in the paper rely on the choice of q = 1/(2 + ε). Our
recommendation of q = 1/(2eε) is optimal under DP constraints.

added to achieve the privacy guarantee, effectively increas-
ing the privacy budget by at least a factor of 2. Pragmatically,
Figure 2 shows that error increases exponentially as ε → 0.

4.2. Randomized Merging

Theorem 4.1 showed that a deterministic merge is only
possible if the 1-bits in a PCSA sketch are randomized to
Bernoulli(1/2) values. Thus, even if the privacy budget is
nearly infinite, the mergeable DP sketch must add significant
noise to the base PCSA sketch. We show that by moving
randomness from the base sketch to the merge procedure,
we can achieve lower overall noise while using the standard
random response mechanism (Definition 4.6).

Definition 4.6. For ε > 0, we denote by Msym
ε : {0, 1}d →

{0, 1}d the mechanism that independently applies the stan-
dard RR mechanism Fp,1−p to each element of its input
with p = eε/(eε + 1).

Lemma 4.7. Msym
ε is ε–differentially private.

A merge is a randomized algorithm gε1,ε2 : {0, 1}2 →
{0, 1} that commutes with ∨ in the following sense:
gε1,ε2(Msym

ε1 (x),Msym
ε2 (y))

D
= Msym

ε∗ (x ∨ y). Since
gε1,ε2 is a random mapping from pairs of bits to single bits,
we can represent it as a 4× 2 Markov transition matrix. A
valid merge operation is the solution of the resulting matrix
equality, with ε∗ a free parameter. We obtain a optimal
randomized merge operation for Msym by solving for the
largest ε∗ that generates a valid solution, which is given by:

Theorem 4.8. Assume ε1, ε2 > 0. Let q(ε) = (eε + 1)−1,

ε∗ = − log(e−ε1 + e−ε2 − e−(ε1+ε2)), q∗ = q(ε∗),

Ki =

[
1− q(εi) q(εi)
q(εi) 1− q(εi)

]
for i ∈ {1, 2}, and

v∗ = (q∗, 1− q∗, 1− q∗, 1− q∗)T ,

Letting ⊗ denote the Kronecker product, define:

(t00, t01, t10, t11)
T = (K−1

1 ⊗K−1
2 ) v∗, and

gε1,ε2(a, b) ∼ Bernoulli(tab), a, b ∈ {0, 1}.

Then gε1,ε2(Msym
ε1 (x),Msym

ε2 (y))
D
= Msym

ε∗ (x ∨ y), where
g is taken bitwise and independently.

When the original vectors x and y are visible in addition
to the merged vector, the ε∗ parameter of Theorems 4.4
and 4.8 is best interpreted as a measure of utility in the
merged sketch, rather than a privacy budget, since by the
post-processing invariance of DP (Dwork et al., 2006), no
additional privacy leakage occurs from the release of the
merged vector. It is for this reason we seek the maximal
ε∗ in merging. Noting that Theorems 4.4 and 4.8 produce
identical ε∗ and that Msym

ε is less noisy than Mxor
ε , Msym

remains the preferred mechanism after merging.
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Remark 4.9. By induction, the merges prescribed in The-
orems 4.4 and 4.8 allow any k bit vectors of equal length
x1, . . . , xk privatized using ε1, . . . , εk to be merged, result-
ing in a vector v = (x1 ∨ · · · ∨ xk) privatized with

ε∗ = − log
(
1−

∏k
i=1(1− e−εi)

)
.

A natural question is whether there exists a randomized
merge algorithm gε1,...,εk : {0, 1}k → {0, 1} that satisfies
a property like Theorem 4.8 with a larger ε∗ than given by
induction over the pairwise merges. In Appendix A, we
prove a more general form of Theorem 4.8 (Theorem A.2),
which answers this question in the negative.

4.3. General Boolean Operations

We briefly switch focus from distinct counting to present
a generalization to Boolean operations under randomized
response that may be of foundational interest, e.g., in de-
signing intersection operations. In distinct-count sketches,
set unions correspond to bitwise-or operations, and the chal-
lenge posed by privacy is performing an equivalent opera-
tion over noisy bits. PCSA, like other mergeable sketches,
defines a homomorphism S from multisets to sketches. The
commutative diagram below illustrates this mergeability
property, since it does not matter which path one takes
from D1, D2 to v1 ∨ v2. Likewise, our merge operation g
from Theorem 4.8 ensures that the privacy mechanism M
makes the diagram commute. By preserving the structure
of the union operation, inferences about the cardinality of
the union can be made from merged, private sketches.

SETS BIT VECTORS DP BIT VECTORS

D1, D2 v1, v2 Mε(v1),Mε(v2)

D1 ∪D2 v1 ∨ v2 Mε∗(v1 ∨ v2)

∪

S

S
∨

Mε

Mε∗

g

Here, we generalize the or (∨) merge under Msym to
any logical operation. In particular, Corollary 4.10 shows
a simple change in our target probabilities v∗ yields
the appropriate randomized merge for and (∧), while
Lemmas B.1 and B.2 in Appendix B demonstrate a merge
for xor (⊻) and show that not (¬) commutes with Msym.

Corollary 4.10. Assume the setting of Theo-
rem 4.8, but set v∗ = (q∗, q∗, q∗, 1 − q∗)T . Then

gε1,ε2(Msym
ε1 (x),Msym

ε2 (y))
D
= Msym

ε∗ (x ∧ y), where g is
taken bitwise and independently.

Formally, for each binary logical operator □, there is a
function ε∗□(ε1, ε2) combining two privacy budgets that en-
dows pairs of bit vectors and privacy budgets with the semi-
group structure (v1, ε1) · (v2, ε2) := (v1 □ v2, ε

∗
□(ε1, ε2)).

The privacy mechanism Msym then defines a mapping

Table 1. Boolean Operations on Bit Vectors under Msym

OP. □ DP OP. ε∗□(ε1, ε2)

¬ LEM. B.2 —
∨ THM. 4.8 − log(e−ε1 + e−ε2 − e−(ε1+ε2))

∧ COR. 4.10 − log(e−ε1 + e−ε2 − e−(ε1+ε2))

⊻ LEM. B.1 log
(

1+eε1+ε2

eε1+eε2

)
ϕ(v, ε) := (Msym

ε (v), ε) that is a homomorphism from
this semigroup to its noisy counterpart. These operations
are summarized in Table 1.

Our randomized merging technique is crucial in supporting
general Boolean operations. Unlike our randomized merge
operations, Corollary 4.11 shows no deterministic opera-
tions ◦ and • can define merge operations for both or (∨)
and and (∧) under the same RR mechanism.
Corollary 4.11. Assume the setting of Theorem 4.1. Let
• : {0, 1}2 → {0, 1} denote a deterministic and symmetric
operation. It is impossible to satisfy conditions (1)–(3) of
Theorem 4.1 in addition to the following:

4. f1(x) • f2(y)
D
= f3(x ∧ y).

5. Cardinality Estimation
The Sketch-Flip-Merge method developed so far satisfies
privacy and mergeability requirements, but it remains to
show how SFM summaries may be used to estimate cardi-
nalities. We develop a composite likelihood–based estimator
that is consistent and asymptotically optimal. We give an
analytic estimator of the error that closely matches the true
error in our experiments.

Likelihood-based approaches to cardinality estimation have
been used in the non-private setting (Clifford & Cosma,
2012; Lang, 2017; Ertl, 2017; Ting, 2019), where they have
demonstrated greater accuracy than competing estimators
for PCSA. While true maximum likelihood estimation of
n given a sketch is computationally infeasible due to non-
independence of bits in the sketch (Ting, 2019; Ertl, 2017),
the marginal likelihood for any bit is easy to derive. Similar
to Ting (2019), we derive a composite marginal likelihood
estimator (Lindsay, 1988; Varin et al., 2011) for n.

Let Cij denote the number of unique items x ∈ D mapped
to bucket i and value j in the sketch and ρij be the probabil-
ity an item is mapped to that location. Then, assuming the
use of universal random hashes, the following generative
process describes the SFM summary T = Mp,q(S(D)).

(C11, . . . , CBP ) ∼ Multinomial(n, ρ11, . . . , ρBP )

Tij | Cij ∼ Fp,q(1(Cij > 0))

While the joint distribution of the Cij’s, and hence the ob-



Sketch-Flip-Merge: Mergeable Sketches for Private Distinct Counting

served Tij’s, involves an intractable sum over integer parti-
tions of n into at most BP parts, the marginal distribution
of a single bit Tij is easy to compute. Note that cell Cij’s
probability of occupancy ρij depends only on its level j,
with ρij = 2−min{j,P−1}/B. Then Pr(Cij = 0 | n) = γn

j ,
where γj = 1− ρij , and

Tij ∼ Bernoulli
(
p(1− γn

j ) + qγn
j

)
.

The composite marginal log-likelihood (Lindsay, 1988;
Varin et al., 2011) replaces the true log-likelihood by the sur-
rogate ℓp,q(n; t) that sums over marginal log-probabilities,

ℓp,q(n; t) =
∑

ij(1− tij) log
(
1− p+ (p− q)γn

j

)
+
∑

ij tij log
(
p− (p− q)γn

j

)
,

where t = Mp,q(S(D)) denotes a realized SFM summary.
The corresponding composite maximum likelihood estima-
tor is n̂ = maxn ℓp,q(n; t) and can be optimized by New-
ton’s method. The required derivatives of ℓp,q are

ℓ′p,q(n; t) =
∑

ij(1− tij)
(p−q)γn

j log(γj)

1−p+(p−q)γn
j

−
∑

ij tij
(p−q)γn

j log(γj)

p−(p−q)γn
j

,

ℓ′′p,q(n; t) =
∑

ij(1− tij)
(1−p)(p−q)(log γj)

2γn
j

(1−p+(p−q)γn
j )2

−
∑

ij tij
p(p−q)(log γj)

2γn
j

(p−(p−q)γn
j )2 .

In the absence of privacy (i.e., p = 1, q = 0), ℓp,q( · ; t)
is strictly concave. While this is not true in the private
case, Theorem 5.1 states that the expectation of ℓp,q remains
concave over the interval (0, n+∆) for some ∆ > 0.

Theorem 5.1. Let D be a multiset such that |set(D)| = n.
Let T = Mp,q(S(D)). Let f(n̂) = E[ℓp,q(n̂;T )], where
the expectation is taken over the randomness of the hash
functions h1, h2 and the privacy mechanism Mp,q. Then
f(n̂) attains a global maximum at n̂ = n and is concave on
an interval containing (0, n] in its interior.

5.1. Theoretical Results

We choose to use composite marginal likelihood due to its
attractive theoretical properties. In particular, the use of a
true likelihood, even if incomplete, ensures that cardinality
estimates are asymptotically consistent, and the Hessian
of the composite likelihood provides an estimate of the
variance (Ting, 2019). We further show the cardinality
estimates are asymptotically optimal in the typical case
when the cardinality is large relative to the sketch size.

Theorem 5.2. Let Sn denote a PCSA summary of n distinct
items with B(n) buckets and P = ∞ levels. Let Sn denote
a modified PCSA summary of Poisson(n) distinct items,
and S̃n denote one where the composite marginal likelihood

is the true likelihood. If B logB = o(
√
n), then there exists

modified PCSA summaries S̃n, Sn where

Pr(Sn = S̃n = Sn) → 1 as n → ∞.

Corollary 5.3. The composite likelihood estimator of the
SFM sketch’s cardinality is asymptotically efficient in the
asymptotic regime in Theorem 5.2.

We outline the proofs and provide details in Section A.5
of Appendix A. The main difficulty is that entries in an
SFM summary are dependent, since each item can only
be allocated to one cell. By constructing a coupling be-
tween sketches Sn, Sn with dependent and independent
entries, we show they are asymptotically equal. In these
coupled processes, the bucket with maximum difference in
item allocations can only differ by only a small amount,
Op(

√
n/B logB). By showing an item updates its bucket’s

sketch values with probability O(1/vi) (where vi is the
number of items in bucket i), we conclude the coupled
sketches are, in fact, equal with probability going to 1 when
the average bucket allocation vi ≈ n/B grows fast enough
to make the small differences in item allocation irrelevant.
Since Sn, S̃n have independent bits, we couple them via
the inverse CDF method and directly bound the probability
that they differ. Since the sketches are the same asymptot-
ically, applying the exact same RR noise to them implies
their privatized versions are the same, and any estimator on
them has the same asymptotic sampling distribution. There-
fore, the asymptotically efficient MLE for the independent-
entry sketch, i.e., the composite likelihood estimator, is also
asymptotically efficient for the true SFM summary Sn.
Remark 5.4. This result also proves the MLE derived under
the approximation that each bin has Poisson(n/B) items
is asymptotically efficient. This can be extended to Hyper-
LogLog and other sketches to show pseudo-likelihood based
estimators (Ertl, 2017; Ting, 2019) that have good empirical
properties are, in fact, asymptotically optimal.

Error Estimation. Like the Fisher information matrix for
MLE’s, the inverse Godambe (or sandwich) information
provides a consistent estimate of the estimator’s variance.
The Godambe information is G(n) = H(n)J−1(n)H(n)
where −J(n) is the Hessian of the expected log composite
likelihood at n and H(n) = Var(ℓ′p,q(n, T )) is the vari-
ance of the composite score functions. In the non-private
case, Ting (2019) demonstrated that composite marginal
likelihood variance estimates for HyperLogLog based on
Fisher information and Godambe information are nearly
identical for large cardinalities and that the Fisher informa-
tion overestimates the variance at small cardinalities due to
the negative dependence of buckets. Figure 1b shows this
overestimation is much less pronounced when independent
randomized response noise is added. Thus, we use only the
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Hessian to define the estimated standard error as

ŜEp,q(B,P, n) =
√
1/E[−ℓ′′p,q(n;T )] (2)

=
[
B(p− q)

∑P
j=1(log γj)

2γn
j

×
(

p
p−(p−q)γn

j
− 1−p

1−p+(p−q)γn
j

) ]−1/2

,

where T = Mp,q(S) for a random PCSA sketch S of size
B×P and cardinality n. Figure 2 in Section 6 demonstrates
empirically that our error estimates ŜEp,q(B,P, n) are a
good approximation for the error.

6. Evaluation
We evaluate our methods on both real-world and synthetic
datasets. We demonstrate empirically that the SFM sum-
mary is the first mergeable ε-DP distinct counting sketch
with practical performance, since the errors for the Pagh &
Stausholm (2021) sketch are impractically large. Among pri-
vate sketches, our novel randomized-merge sketch construc-
tion dominates the deterministic-merge sketches. Thus, our
improvements on the construction, estimation, and privacy
analysis yield practical gains. Moreover, our theoretical
error closely approximates empirical error.

6.1. Experiment Setup

We consider four different private distinct counting sketches
in our experiments. Among our methods, SFM (sym) pairs
Msym

ε with our randomized merge procedure, while SFM
(xor) pairs Mxor

ε with the deterministic xor merge. Both
SFM methods use the estimator of Section 5. We compare
these methods against the sketch and estimator of Pagh
& Stausholm (2021) implemented two ways: PS (loose)
constructs sketches using MPS

ε = Mp,q with p = 1/2, q =
1/(2 + ε) as prescribed in Pagh & Stausholm (2021), while
PS (tight) uses the tightened Mxor

ε (Definition 4.2). By
Corollary 4.5, the sketch construction of PS (tight) at ε is
equivalent to that of PS (loose) at ε′ = 2(eε − 1).

We also consider two non-private sketches as baseline com-
parisons in our final experiment, noting that we should not
expect the accuracy of a private sketch to be as strong as a
non-private one. In what follows, FM85 denotes non-private
PCSA using the estimator of Flajolet & Martin (1985), and
HLL denotes HyperLogLog (Flajolet et al., 2007). We com-
pare HLL sketches against PCSA sketches at equal bucket
counts, noting that the HLL sketches are smaller per bucket
than the corresponding PCSA sketches.

We measure estimation error primarily in the form of relative
root mean squared error (RRMSE), defined as

RRMSE(n̂1, . . . , n̂m;n) = 1
n

√
1
m

∑m
i=1(n̂i − n)2.

We also measure the relative efficiency of two methods as
the ratio of their mean squared error,

RE(n̂(1), n̂(2)) = MSE(n̂(2)) /MSE(n̂(1)).

If two sketches have unbiased estimators, a relative effi-
ciency of r indicates that the less efficient sketch must
asymptotically use r times more buckets to get the same
accuracy. This is because the asymptotic MSE (variance)
decreases proportionally to 1/B for these estimators.

The simulations use sketches with dimensions B = 4096,
P = 24 by default, using the xxHash64 (Collet, 2022) hash
function, averaged over m = 1000 trials.

Modification to Pagh & Stausholm (2021). In our experi-
ments, their original estimator frequently failed to produce
an estimate. For a desired error tolerance β, the method
computes intervals for all P levels of the sketch and inter-
sects them to produce an estimate. This intersection was
frequently empty for small β. To patch this, we search for
the smallest β resulting in a non-trivial intersection. We use
the midpoint of this interval to estimate n.

Data Sources. Our experiments use both synthetic and real
data. Synthetic data consist of random sets of integers with
a fixed cardinality. Real data is taken from the BitcoinHeist
paper (Akcora et al., 2020), which provides a database of
Bitcoin transactions to n = 2,631,095 unique addresses.
The dataset is available in the UCI repository under the CC
BY 4.0 license. We note that distinct-count sketches are
insensitive to the value distribution of inputs since values
are hashed as part of the processing.

6.2. Results

Figure 1a compares the accuracy of the four private methods
on synthetic data as the cardinality n ranges from 102 to 106

given a fixed privacy budget of ε = 1. For large cardinalities,
RRMSE tends toward a fixed constant for each method. Our
methods have error that is an order of magnitude better
than Pagh & Stausholm (2021) even after we tighten their
privacy analysis. For small cardinalities, the relative error
increases as the cardinality decreases, which is expected
for differentially private methods. Figure 1b compares the
accuracy for multiple values of ε but only for the best sketch,
SFM (sym). It also shows that the RRMSE stabilizes as n →
∞ regardless of the choice of ε. In contrast to DP methods,
the SFM summary with infinite privacy budget, which is
the same as PCSA, yields especially accurate estimates at
small n. Figure 1b further shows that the estimated relative
error ŜE/n (Eq. 2) is an upper bound on the empirical error
and yields a good estimate of RRMSE, especially for large
cardinalities or small ε.

Figure 1c demonstrates the tradeoff between merging and
privacy in SFM summaries at large cardinality (n = 106).
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Figure 1. (a) RRMSE vs. n compared across the four private methods. (b) RRMSE for SFM (sym) at various ε. (c) RRMSE after merging
a given number of SFM summaries, each with a given privacy budget ε. Across plots, dashed lines show estimated relative error, ŜE/n.
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Figure 2. (left) Relative efficiency of SFM (sym) vs. other methods
on BitcoinHeist (n ≈ 2.6M). SFM is far more efficient than PS.
SFM (sym) is 4x more efficient than SFM (xor) for larger privacy
budgets. (right) RRMSE vs. ε. For SFM, dashed lines show
estimated relative error match the true error.

Merge operations result in an accumulation of noise, re-
quiring the use of larger privacy budgets to accommodate
greater merge counts. The estimated relative error here is
calculated according to Remark 4.9 and once again closely
matches empirical error.

We also compare private methods against the real-world Bit-
coinHeist data over a variety of privacy budgets ε, ranging
from 0.25 to 4. The left panel of Figure 2 shows the relative
efficiency of SFM (sym) as compared with the other private
methods. SFM (sym) is uniformly more efficient than the
PS estimators by at least an order of magnitude. The 100×
better efficiency compared to PS (loose) implies SFM (sym)
would require just 1% of the space to achieve the same error.
Moreover, SFM (sym) outperforms SFM (xor) with relative
efficiency tending toward 4 for larger ε, indicating that for
larger privacy budgets, the randomized-merge SFM (sym)
can achieve comparable accuracy to SFM (xor) in as little as
one fourth the space. The estimation error from this experi-
ment is depicted in absolute terms in the right panel, where
we again see that the estimated relative error for SFM is a
good approximation for RRMSE.

Finally, we compare SFM to popular non-private alterna-
tives and show that error similarly decreases with the bucket
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Figure 3. RRMSE at n = 106 vs. bucket count B for private
sketches at ε = 2 vs. common non-private alternatives (on log–log
axes). For SFM, dashed lines show estimated relative error. For all
methods, RRMSE scales with B−0.5.

count. Using synthetic data with cardinality n = 106, we
construct sketches of varying bucket count B, using a pri-
vacy budget of ε = 2 for SFM. Figure 3 shows RRMSE
as a function of B for each method. Like the familiar non-
private distinct counting sketches, our RRMSE decreases
with B−0.5. Thus, like non-private sketches, the RRMSE of
our DP summaries can be easily characterized by a simple
formula cε/

√
B at large cardinalities, where cε is a constant

specific to a method and privacy budget.

7. Discussion and Conclusion
The Sketch-Flip-Merge summaries demonstrate dramatic
improvement over the current state-of-the-art mergeable
and differentially private distinct-count sketches. This is
achieved through novel merge algorithms (Theorem 4.8 and
Section 4.3), asymptotically optimal estimation (Section 5),
and an improved privacy analysis (Corollary 4.5).

An important limitation in mergeable private summaries
is the inherent tension between privacy and mergeability.
While both are attainable, repeated merging in the private
setting degrades accuracy. This tradeoff, argued in the gen-
eral distinct-count setting by Desfontaines et al. (2019), is
explicitly quantified for SFM in Remark 4.9 and Figure 1c.
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Finally, we note the generality of some of our findings. In
particular, our methods for aggregating noisy binary data
provide fundamental machinery and a quantification of the
noise-compounding effects of bitwise operations under ran-
domized response that apply to a wide array of problems,
particularly in the privacy-preserving space.
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A. Proofs of Main Results
A.1. Additional Notation

In the proofs to follow, we use the following notation. 1k is the column vector of k ones, and Ik is the k × k identity matrix
(with subscripts omitted when dimensions are clear). We denote by ei the i-th elementary basis vector, i.e., the vector whose
entries are all 0, except at position i, where the entry is 1. We use ⟨·, ·⟩ to denote the inner product between two vectors.

A.2. Proofs of Results in Section 3

Proof of Theorem 3.2. The proof follows along the same lines as Erlingsson et al. (2014, Theorem 2). We first prove that
Fp,q is ε-DP if and only if p ∈ (0, 1) and max{p/q, (1− q)/(1− p)} ≤ eε. For this to hold, we must satisfy

Pr(Fp,q(x) = y) ≤ eε Pr(Fp,q(1− x) = y)

for all x, y ∈ {0, 1}. If p = q, Fp,p is a mechanism that ignores its inputs and outputs a randomly chosen bit value and so
this holds trivially. Assuming p ̸= q, this holds if

Pr(Fp,q(1− x) = y) > 0 and
Pr(Fp,q(x) = y)

Pr(Fp,q(1− x) = y)
≤ eε.

The first condition is equivalent to the requirement that p, q ∈ (0, 1), and the second condition is equivalent to max{p/q, (1−
q)/(1− p)} ≤ eε.

For Mp,q, note that the entries of Mp,q are independent by construction, so for x, x′ ∈ {0, 1}d differing only on one bit
xj = 1− x′

j and some y ∈ {0, 1}d, we have:

Pr(Mp,q(x) = y)

Pr(Mp,q(x′) = y)
=

∏
i Pr(Fp,q(xi) = yi)∏
i Pr(Fp,q(x′

i) = yi)
=

Pr(Fp,q(xj) = yj)

Pr(Fp,q(1− xj) = yj)
.

As shown above, this quantity is bounded by eε under the stated conditions on p and q.

Theorem 3.2 is used below to demonstrate that both Mxor
ε and Msym

ε satisfy ε-DP via Corollaries 4.3 and 4.7.

A.3. Proofs of Results in Section 4.1

Before proving Theorem 4.1, we provide a helpful result:

Fact A.1. Let X ∼ Bernoulli(p), Y ∼ Bernoulli(q) be independent. Then:

1. X ∧ Y ∼ Bernoulli(pq).

2. X ∨ Y ∼ Bernoulli(p(1− q) + q(1− p) + pq).

3. X ⊻ Y ∼ Bernoulli(p(1− q) + q(1− p)). Moreover, if p = 1
2 or q = 1

2 , then X ⊻ Y ∼ Bernoulli( 12 ).

Proof.
Pr(X ∧ Y = 1) = Pr(X = 1, Y = 1)

= pq,

Pr(X ⊻ Y = 1) = Pr(X = 1, Y = 0) + Pr(X = 0, Y = 1)

= p(1− q) + q(1− p),

Pr(X ∨ Y = 1) = Pr(X ∧ Y = 1) + Pr(X ⊻ Y = 1).

Proof of Theorem 4.1. We begin with some simple necessary conditions for (1)–(3) to hold. From Theorem 3.2, we know
that p1, p2, q1, q2 must lie in (0, 1). Another necessary condition is that p1 ̸= q1 and p2 ̸= q2, as otherwise (3) is violated.
For this reason, we can assume p1 ̸= q1 and p2 ̸= q2.
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Modulo negation, there exist four symmetric operations {0, 1}2 → {0, 1}: and (∧), or (∨), xor (⊻), and the trivial operator
that maps all inputs to 0. We will now rule out the operators other than ⊻.

(Trivial Operator) Let ◦ denote the operator x ◦ y = 0. Then f1(x) ◦ f2(y) = 0 for any x, y. If (2) holds, then
f3(0) = f3(1) = 0, violating (3).

(And) Let ◦ = ∧, and assume (2) holds. Then we must have:

f1(0) ∧ f2(1)
D
= f3(1)

D
= f1(1) ∧ f2(1).

By Fact A.1, this implies that:
q1p2 = p1p2.

Since we assumed p2 ̸= 0, this implies that p1 = q1, in contradiction to our assumption.

(Or) Let ◦ = ∨, and assume (2) holds. Then we must have:

f1(0) ∨ f2(1)
D
= f3(1)

D
= f1(1) ∨ f2(1).

By Fact A.1, this implies that:

p1(1− q2) + q2(1− p1) + p1q2 = p1(1− p2) + p2(1− p1) + p1p2.

After rearranging terms, we obtain:
0 = (1− p1)(p2 − q2).

Since we assumed p1 ̸= 1, this implies that p2 = q2, in contradiction to our assumption.

(Xor) Now we will show that when ◦ = ⊻, we must have p1 = p2 = 1
2 . Assuming condition (2) holds, we have:

f1(0) ⊻ f2(1)
D
= f3(1)

D
= f1(1) ⊻ f2(1),

which implies (by Fact A.1):
q1(1− p2) + p2(1− q1) = p1(1− p2) + p2(1− p1).

Rearranging terms yields:
p2(p1 − q1) = (1− p2)(p1 − q1).

Since we assumed p1 ̸= q1, we must have p2 = 1
2 . A similar argument shows p1 = 1

2 .

Proof of Lemma 4.3. We need to show that p/q ≤ eε and (1 − q)/(1 − p) ≤ eε for p = 1/2 and q = 1/(2eε). Clearly,
p/q = eε, satisfying the first component. Next, consider the expression

eε − 1− q

1− p
= eε −

1− 1
2e

−ε

1
2

= eε − (2− e−ε)

= eε + e−ε − 2

= (eε/2 − e−ε/2)2

≥ 0.

Therefore, (1− q)/(1− p) ≤ eε as required.

Proof of Theorem 4.4. Since the entries of Mxor(·) are independent, it suffices to show this holds for Mxor applied to
arbitrary xi, yi ∈ {0, 1}. Observe that if xi = 1 or yi = 1, then xi ∨ yi = 1, and so Mxor

ε∗ (xi ∨ yi) ∼ Bernoulli( 12 ). On
the other hand, since we know xi = 1 or yi = 1, then Mxor

ε1 (xi) ∼ Bernoulli( 12 ) or Mxor
ε2 (yi) ∼ Bernoulli( 12 ), and so by

Fact A.1, Mxor
ε1 (xi) ⊻Mxor

ε2 (yi) ∼ Bernoulli( 12 ).
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Thus all that remains to show is that Mxor
ε∗ (x ∨ y)

D
= Mxor

ε1 (xi) ⊻Mxor
ε2 (yi) when xi = yi = 0. In this case, Mxor

ε1 (xi) ∼
Bernoulli( 12e

−ε1), and Mxor
ε2 (yi) ∼ Bernoulli( 12e

−ε2). By Fact A.1, we have that:

Mxor
ε1 (xi) ⊻Mxor

ε2 (yi) ∼ Bernoulli(q∗),

where

q∗ =
1

2
e−ε1

(
1− 1

2
e−ε2

)
+

1

2
e−ε2

(
1− 1

2
e−ε1

)
=

1

2

(
e−ε1 + e−ε2 − e−(ε1+ε2)

)
=

1

2
exp

−

− log
(
e−ε1 + e−ε2 − e−(ε1+ε2)

)
︸ ︷︷ ︸

ε∗




=
1

2
e−ε∗ .

Finally, since xi ∨ yi = 0, we have that Mxor
ε∗ (xi ∨ yi) ∼ Bernoulli( 12e

−ε∗).

A.4. Proofs of Results in Section 4.2

Proof of Lemma 4.7. Since p = eε/(eε + 1) and q = 1− p = 1/(eε + 1), we have p/q = (1− q)/(1− p) = eε, and so
the result follows immediately from Theorem 3.2.

We now state a more general form of Theorem 4.8 for proof. Where Theorem 4.8 gives a randomized merge for 2 bits,
which may be invoked repeatedly to merge k > 2 bits, Theorem A.2 considers a simultaneous merge of k ≥ 2 bits. Beyond
simply serving to prove the original pairwise theorem, this generalization shows that nothing is gained in ε∗ (i.e., the noise
level of the final sketch) by simultaneously merging k bits vs. performing repeated pairwise merges.
Theorem A.2. Fix an integer k ≥ 2. For i ∈ [k], assume εi > 0. Let

q(ε) =
1

eε + 1
, Kε =

[
1− q(ε) q(ε)
q(ε) 1− q(ε)

]
,

ε∗ = − log

(
1−

k∏
i=1

(1− e−εi)

)
, q∗ = q(ε∗),

and let v∗ ∈ R2k be the vector whose first entry is q∗ with all other entries 1− q∗. Let

t = (t...01, t...10, t...11, . . . )
T = (K−1

ε1 ⊗ · · · ⊗K−1
εk

)v∗,

g(x1, . . . , xk) ∼ Bernoulli(tx1...xk
).

Then g(Msym
ε1 (x1), . . . ,Msym

εk
(xk))

D
= Msym

ε∗ (x1 ∨ · · · ∨ xk).

Before proving Theorem A.2, we provide another fact that will be used in the proof.
Fact A.3. Let AmA×nA

, BmB×nB
be matrices satisfying A1 = 1 and B1 = 1. Then (AB)1 = 1 and (A ⊗ B)1 = 1.

Additionally, if A−1 exists, then A−11 = 1.

Proof. Since A1 = 1 and B1 = 1, we must have (AB)1 = A(B1) = A1 = 1.

Next, write 1mAmB
= 1mA

⊗ 1mB
. Then

(A⊗B)1mAmB
= (A⊗B)(1mA

⊗ 1mB
)

= (A1mA
)⊗ (B1mB

)

= 1mA
⊗ 1mB

= 1mAmB
.

Finally, in the case when A is invertible, A−1A = I , and so we must have A−11 = A−1A1 = I1 = 1.
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Proof of Theorem A.2. Since all operations are performed bitwise and independently, assume without loss of generality that
the bit vectors xi are scalar, i.e., x1, . . . , xk ∈ {0, 1}.

The fundamental idea is to model the chain of operations performed on the bits xi as a Markov chain. This involves three
different types of transition probability matrices. The matrices Kε defined in the theorem statement map the state space
of a single bit in {0, 1} to another bit in {0, 1} via the application of Msym

ε . Next, we define Kor to be the 2k × 2 matrix
mapping k bits in {0, 1}k to a single bit in {0, 1} via an or operation. Finally, we define Kmerge to be the 2k × 2 matrix
corresponding to our desired merge operation, which maps {0, 1}k to {0, 1}.

Since the bit-flipping operations of Kε are performed independently, the matrix Kε1 ⊗ · · · ⊗Kεk represents the 2k × 2k

matrix jointly mapping the state space of the original bits {xi}ki=1 to {Msym
εi (xi)}ki=1. Thus we wish to solve:

(Kε1 ⊗ · · · ⊗Kεk)K
merge
ε′ = KorKε′ , (3)

where ε′ is a free parameter that we will fix, and Kmerge
ε′ is the unknown quantity. We proceed by solving the matrix equation

above, finding the maximum ε′ for which Kmerge
ε′ represents a valid transition probability matrix.

Let qi = q(εi), q
′ = q(ε′). We note that Kεi is invertible and write K−1

εi as follows:

K−1
εi =

1

1− 2qi

[
1− qi −qi
−qi 1− qi

]
.

So we may solve our matrix equation (3) by left-multiplication of (Kε1 ⊗ · · · ⊗Kεk)
−1:

Kmerge
ε′ = (K−1

ε1 ⊗ · · · ⊗K−1
εk

)KorKε′ .

The first column of KorKε′ is equal to
w′ = (1− q′, q′, . . . , q′)T .

It follows from Fact A.3 that Kmerge
ε′ 1 = 1 and therefore Kmerge

ε′ is stochastic if and only if:

u′ = (K−1
ε1 ⊗ · · · ⊗K−1

εk
)w′ ∈ [0, 1]2

k

.

We may write u′
i, the i-th entry of u′, as the inner product of w′ with the i-th row of (K−1

ε1 ⊗ · · · ⊗K−1
εk

). We denote by ri
this row vector. Writing w′ = q′1+ (1− 2q′)e1, u′

i may be written:

u′
i = ⟨ri, w′⟩
= ⟨ri, q′1+ (1− 2q′)e1⟩
= q′⟨ri, 1⟩+ (1− 2q′)⟨ri, e1⟩
= q′ + (1− 2q′)(K−1

ε1 ⊗ · · · ⊗K−1
εk

)i1,

where the final equality comes from the fact that ⟨ri,1⟩ = 1 (Fact A.3) and that ⟨ri, e1⟩ is equal to the (i, 1)-th entry of
K−1

ε1 ⊗ · · · ⊗K−1
εk

.

Since each u′
i entry must be in [0, 1], each entry defines a constraint on q′. In particular, since these values are affine

functions of q′, each constraint corresponds to an interval. We can see that q′ = 1
2 is valid for each of these constraints, as

u′
i =

1
2 when q′ = 1

2 for all i. Thus it suffices to find a lower bound for q′ using these constraints.

We ask next which values of u′
i are most extreme. For any fixed choice of q′ ∈ [0, 1

2 ], we obtain the largest entry u′
i where

(K−1
ε1 ⊗ · · · ⊗K−1

εk
)i1 is maximized and the smallest where that same value is minimized. In particular:

max
i

(K−1
ε1 ⊗ · · · ⊗K−1

εk
)i1 =

(∏
i

(1− 2qi)
−1

)∏
i

(1− qi),

since 1− qi > qi > 0 for all i. (The constant
∏

i(1− 2qi)
−1 appears in all entries.) Similarly, we can see that:

min
i
(K−1

ε1 ⊗ · · · ⊗K−1
εk

)i1 =

(∏
i

(1− 2qi)
−1

)
(−qj)

∏
i ̸=j

(1− qi),
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where j = argmaxj qj , since this yields the most extreme negative term.

It suffices to constrain the two most extreme entries of u′ to [0, 1]. The constraints defined by these two entries are:

q′ + (1− 2q′)

∏
i(1− qi)∏
i(1− 2qi)︸ ︷︷ ︸

=:c1

≤ 1 ⇐⇒ q′
(a)

≥ c1 − 1

2c1 − 1
,

and

q′ + (1− 2q′) (−qj)

∏
i ̸=j(1− qi)∏
i(1− 2qi)︸ ︷︷ ︸

=:−c2

≥ 0 ⇐⇒ q′
(b)

≥ c2
1 + 2c2

.

We note that c1 > 1 and c2 > 0. Moreover, comparing c1 and c2, we find that c1 > c2 + 1, as:

c1 − (c2 + 1) =

∏
i(1− qi)∏
i(1− 2qi)

−
qj
∏

i ̸=j(1− qi) +
∏

i(1− 2qi)∏
i(1− 2qi)

=
(1− qj)

∏
i ̸=j(1− qi)∏

i(1− 2qi)
−

qj
∏

i ̸=j(1− qi) +
∏

i(1− 2qi)∏
i(1− 2qi)

=
(1− 2qj)

∏
i ̸=j(1− qi)−

∏
i(1− 2qi)∏

i(1− 2qi)

> 0.

So it follows that:
c1 − 1

2c1 − 1
− c2

1 + 2c2
=

(c1 − 1)(1 + 2c2)− c2(2c1 − 1)

(2c1 − 1)(1 + 2c2)

=
c2 − (c1 + 1)

(2c1 − 1)(1 + 2c2)

> 0,

which indicates that constraint (a) implies constraint (b).

We denote by q∗ the minimal q′ allowed under constraint (a):

q∗ =
c1 − 1

2c1 − 1
=

∏
i

1−qi
1−2qi

− 1

2
∏

i
1−qi
1−2qi

− 1
.

Putting this in terms of ε, note that 1− qi =
eεi

eεi+1 , 1− 2qi =
eεi−1
eεi+1 , so:

1− qi
1− 2q1

=
eεi

eεi − 1
= (1− e−εi)−1,

and hence:

q∗ =

∏
i(1− e−εi)−1 − 1

2
∏

i(1− e−εi)−1 − 1
=

1−
∏

i(1− e−εi)

2−
∏

i(1− e−εi)
,

which gives a final ε∗ of:
ε∗ = q−1(q∗)

= log
(
(q∗)−1 − 1

)
= log

(
2−

∏
i(1− e−εi)

1−
∏

i(1− e−εi)
− 1

)
= log

(
1

1−
∏

i(1− e−εi)

)
= − log

(
1−

k∏
i=1

(1− e−εi)

)
.
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Finally, to translate from transition probability matrices back to the theorem statement, note that Kmerge
ε∗ = (K−1

ε1 ⊗ · · · ⊗
K−1

εk
)KorKε∗ maps the {0, 1}k state space to {0, 1}—i.e., the 2k possible inputs map to Bernoulli random variables with

probabilities taken from the second column of Kmerge
ε∗ . It follows from the preceding discussion that this vector is precisely

(K−1
ε1 ⊗ · · · ⊗K−1

εk
)v∗.

A.5. Proofs of Results for Section 5

Proof of Theorem 5.1. Let f(n̂) = E[ℓ(n̂;T )]. We will use the notation En[·] to denote expectation under a cardinality of
n, while abusing notation with En̂[·] to denote the equivalent quantity with n̂ replacing n, as below:

En[Tij ] = Pr(Tij = 1)

= p(1− γn
j ) + qγn

j

= p− (p− q)γn
j

En̂[Tij ] = p− (p− q)γn̂
j .

(Note that En̂[·] is not truly an expectation, since when n̂ is non-integer, the distribution of T is not defined.) Observe that:

En[f
′(n̂)] = B

P∑
j=1

(1− En[Tij ])(p− q)γn̂
j log(γj)(1− En̂[Tij ])

−1

−B

P∑
j=1

En[Tij ](p− q)γn̂
j log(γj)(En̂[Tij ])

−1

= B(p− q)

P∑
j=1

ϕ′
j(n̂),

where

ϕ′
j(n̂) = γn̂

j log(γj)

(
1− En[Tij ]

1− En̂[Tij ]
− En[Tij ]

En̂[Tij ]

)
.

As expected, this equals zero when n̂ = n. Moreover, it is strictly positive for n̂ < n and strictly negative for n̂ > n. Thus
the same properties hold for f ′(n̂), and so n is the global maximizer of f .

By similar logic, we may write

En[f
′′(n̂)] = B(p− q)

P∑
j=1

ϕ′′
j (n̂),

where

ϕ′′
j (n̂) = (log γj)

2γn̂
j

(
(1− p)

1− En[Tij ]

(1− En̂[Tij ])2
− p

En[Tij ]

(En̂[Tij ])2

)
.

Although ϕ′′
j (n̂) > 0 for sufficiently large n̂, note that the parenthetical quantity is monotonically increasing in n̂. Moreover,

we know ϕ′′
j (n) < 0 since ϕ′

j(n) corresponds to a maximum. Thus the parenthetical (and indeed all of ϕ′′
j (n̂)) must be

negative for n̂ ≤ n. Since this is true for all j, it follows that f ′′(n̂) < 0 for n̂ ≤ n.

Lemma A.4. Consider a bucket in a PCSA summary with v items where the bucket has P = ∞ bits. The probability that a
new item allocated to the bucket modifies the bucket is bounded by c/v for all v > v0 for some constants c, v0.

Proof. The probability a bucket containing v items is modified by a new item allocated to the bucket is
∑∞

ℓ=1 2
−ℓ
(
1− 2−ℓ

)v
.

Split this sum into the ranges ℓ ∈ I1 := (0, log2 v − log2 log2 v), ℓ ∈ I2 := [log2 v − log2 log2 v, log2 v), ℓ ∈ I3 :=
[log2 v,∞). Since 2−ℓ ≤ 1 and (1− 2−ℓ)v < exp(−2−ℓv) ≤ 1,∑

ℓ∈I1

2−ℓ
(
1− 2−ℓ

)v ≤ log2 v exp(− log2 v) = o(1),

∑
ℓ∈I2

2−ℓ
(
1− 2−ℓ

)v ≤
∫ log2 v

log2 v−log2 log2 v

2−x exp(−2−xv)dx
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=
1

v log 2
exp(−v2−x)

∣∣∣log2 v

log2 v−log2 log2 v

=
e−1

v log(2)
−O(exp(− log2 v)/v),∑

ℓ∈I3

2−ℓ
(
1− 2−ℓ

)v ≤
∑
ℓ∈I3

2−ℓ ≤ 1

v
.

Summing these components gives the desired result.

Proof of Theorem 5.2. The modified PCSA summary Sn can be generated in the following way. Draw a new cardinality
N ∼ Poisson(n). The first min{n,N} items are shared for the regular SFM summary Sn and modified summary Sn. Each
of these items are allocated to the same bucket for both summaries. Denote the remaining items by R = |N − n|. The
variance of a Poisson(n) gives R = Op(

√
n).

Using Theorem 3 in Kolchin et al. (1978) for the asymptotic distribution of the maximum value in a multinomial vector,
the bucket allocated the largest number of remaining items has Op(R/B logB) = Op(

√
n/B logB) items. Likewise the

bucket with the minimum number of items has n/B + Op(
√
n/B logB) items. By Lemma A.4, the probability a new

item in a bucket will update the bucket’s value is O(1/Vi) given Vi, the number of items already in the bucket. Thus, the
probability that no bucket is updated by one of the remaining items is(

1− O(
√
n/B logB)

n/B +O(
√
n/B logB)

)B

+ o(1) =

(
1− O(logB)√

n

)B

+ o(1)

= (1− o(1/B))B + o(1) → 1

as n → ∞. This gives that Pr(Sn = Sn) → 1 as n → ∞ and the true PCSA sketch and the Poissonized one are
asymptotically equal.

We can also relate the Poissonized PCSA sketch to the one whose true likelihood is the composite marginal likelihood.
By Poisson splitting, the entries of Sn are independent. Thus, we can couple the entries of Sn with those of S̃n via the
inverse CDF method by using the same underlying Uniform(0, 1) random variables. The probability that an entry in level j
is different across the coupled sketches is

Pr(S̃n(i, j) ̸= Sn(i, j)) = exp
(
− n

B 2j

)
−
(
1− 1

B 2j

)n

= exp
(
− n

B 2j

)(
1− exp

[
n log

(
1− 1

B2j

)
+

n

B2j

])
< exp

(
− n

B 2j

)(
1− exp

[
− n

B222j+1

])
< exp

(
− n

B 2j

) n

B222j+1
.

Applying a union bound gives and splitting the sum at some positive integer k gives

Pr(S̃n ̸= Sn) ≤ B

∞∑
j=1

exp
(
− n

B 2j

) n

B222j+1

≤
k∑

j=1

exp
(
− n

B 2j

) n

B
+

∞∑
j=k+1

n

B22j+1

≤ exp
(
− n

B 2k

) nk

B
+

n

B22k
.

Take k = log2

(
n/B

2 log(n/B)

)
+ δ for some δ ∈ [−1/2, 1/2). Then the first part

exp
(
− n

B 2k

) nk

B
=

nk

B
exp

(
−21−δ log(n/B)

)
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≤ nk

B
(n/B)−3/2 → 0.

as n/B → ∞. Likewise, the second part

n

B22k
=

n

B

(
n/B

2 log(n/B)

)−2

2−2δ =
4 log2(n/B)

n/B
2−2δ → 0

as n/B → ∞. Thus Pr(S̃n = Sn) → 1 as n → ∞ as well.

Proof of Corollary 5.3. Since both a PCSA sketch Sn and modified sketch with independent bins S̃n are equal with
probability going to 1 as n → ∞, the private SFM sketches Tn, T̃n obtained by applying the same randomized response
noise to them are also equal with probability going to 1. Let θ̂(Tn) be some cardinality estimator and V (θ̂(Tn)) denote its
asymptotic variance. Then minθ̂∈Θ V (θ̂(Tn)) = minθ̂∈Θ V (θ̂(T̃n)), and a cardinality estimator for Tn is asymptotically
efficient if and only if it is asymptotically efficient for T̃n. Since the composite likelihood estimator for Tn is the true
maximum likelihood estimator for T̃n, it is asymptotically efficient.

B. Proofs and Results for General Boolean Operations
In the main text, we concern ourselves primarily with merge operations under randomized response that emulate the logical
operator or (∨). Here we discuss generalizations of these merge operations to other Boolean operations.

B.1. Boolean Operations under Symmetric Randomized Response

Recall that a merge for and (∧) under Msym was presented in Corollary 4.10.

Proof of Corollary 4.10. We prove this in the more general setting of merging k bits, as in Theorem A.2. Indeed, proving
this is essentially equivalent to Theorem A.2, except that we must replace Kor with a transition matrix Kand that maps
(x1, . . . , xk) to 1 only when x1 = · · · = xk = 1. Then for fixed ε′ we have a potential solution:

Kmerge
ε′ = (K−1

ε1 ⊗ · · · ⊗K−1
εk

)KandKε′ .

Once again, we seek the largest ε′ for which Kmerge
ε′ is a valid transition probability matrix. This time, we will use the

second column of KandKε′ to determine constraints on ε′. (This is allowable since KandKε′1 = 1.) We write the second
column as:

w′ = (q′, . . . , q′, 1− q′)T = q′1+ (1− 2q′)e2k.

Using w′ as in the proof of Theorem A.2, we obtain the same constraints on ε′. Applying the remainder of the proof of
Theorem A.2 yields the final result.

Next, we demonstrate xor (⊻) merging under Msym.

Lemma B.1. Msym
ε1 (x) ⊻Msym

ε2 (y)
D
= Msym

ε∗ (x ⊻ y) for ε∗ = log(1 + eε1+ε2)− log(eε1 + eε2).

Proof. Let p1 = eε1/(eε1 + 1), p2 = eε2/(eε2 + 1). Using Fact A.1, we have that:

Msym
ε1 (xi) ⊻Msym

ε2 (yi) ∼ Bernoulli(θxi,yi
),

where
θ0,0 = θ1,1 = p1(1− p2) + p2(1− p1)

θ0,1 = θ1,0 = p1p2 + (1− p1)(1− p2).
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Through a bit of algebra, we obtain

θ0,0 = θ1,1 =
eε1

(eε1 + 1)(eε2 + 1)
+

eε2

(eε1 + 1)(eε2 + 1)

=
eε1 + eε2

eε1+ε2 + eε1 + eε2 + 1

=
1

1+eε1+ε2

eε1+eε2 + 1
,

while
θ1,0 = θ0,1 = 1− θ0,0.

So we have
Msym

ε1 (xi) ⊻Msym
ε2 (yi)

D
= Mθ1,0,1−θ1,0(xi ⊻ yi).

Finally, to obtain ε∗, note that Mθ1,0,1−θ1,0 = Msym
ε∗ for

eε
∗
=

1 + eε1+ε2

eε1 + eε2
.

As our final step in supporting general Boolean operations under Msym, we show that the unary operation not (¬) commutes
with Msym.

Lemma B.2. For any bit vector x, we have ¬(Mp,q(x))
D
= Mp,q(¬x) if and only if q = 1−p. In particular, ¬(Msym

ε (x))
D
=

Msym
ε (¬x).

Proof. Note that

¬(Mp,q(xi))
D
= M1−p,1−p(xi)

D
= M1−q,1−p(¬xi).

Consequently,

¬(Mp,q(x))
D
= Mp,q(¬x) ⇐⇒ p = 1− q ⇐⇒ q = 1− p.

B.2. Boolean Operations with Deterministic Merging

In contrast with the results that leveraged randomized merging, we demonstrate that a deterministic merge for a given
Boolean operation requires specific choices of randomized response mechanism, precluding the use of general Boolean
operations under a single RR mechanism. In particular, we demonstrate that a deterministic and (∧) merge requires a
different privacy mechanism than the or (∨) merge described in Theorem 4.1.

Corollary B.3. Let f1 = Fp1,q1 , f2 = Fp2,q2 , f3 = Fp3,q3 , and let • : {0, 1}2 → {0, 1} denote a deterministic and
symmetric operation. The following conditions may only be satisfied simultaneously if ◦ = ⊻ and q1 = q2 = 1/2:

1. f1, f2 are (respectively) ε1-DP and ε2-DP for ε1, ε2 < ∞.

2. f1(x) • f2(y)
D
= f3(x ∧ y).

3. fi(0)
D

̸= fi(1) for i = 1, 2, 3.

Proof. Note that this theorem statement is identical to that of Theorem 4.1 except that condition (2) has changed from using
the or operation ∨ to the and operation ∧ and that the necessary condition is no longer on p1, p2 but instead q1, q2.
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Consider the original condition (2) of Theorem 4.1. Since this must hold for all x, y ∈ {0, 1}, we may alternatively write
this condition in terms of ¬x and ¬y instead:

Fq1,p1
(x) ◦ Fq2,p2

(y)
D
= Fp1,q1(¬x) ◦ Fp2,q2(¬y)
D
= f1(¬x) ◦ f2(¬y)
D
= f3((¬x) ∨ (¬y))
D
= f3(¬(x ∧ y))

D
= Fq3,p3(x ∧ y).

From Theorem 4.1, we know that we can only satisfy this condition simultaneously with (1) and (3) if p1 = p2 = 1/2.
Recognizing that this statement is equivalent to condition (2) of the corollary but with the roles of pi and qi swapped, it is
apparent that to satisfy (1)–(3) of our corollary, we must have • = ⊻ and q1 = q2 = 1/2.

From here, it follows that no privacy mechanism Mp,q can satisfy the conditions of Theorem 4.1 and Corollary B.3
simultaneously.

Proof of Corollary 4.11. Assume conditions (1)–(4) are satisfied. By Theorem 4.1, we must have p1 = p2 = 1/2, while
Corollary B.3 states that q1 = q2 = 1/2. This results in a contradiction: f1(0)

D
= Bernoulli(1/2)

D
= f1(1), violating

(3).


