

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/175621

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/175621
mailto:wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/175621

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/175621
mailto:wrap@warwick.ac.uk

Interactive Proofs For Differentially Private Counting

ABSTRACT
Differential Privacy (DP) is often presented as a strong privacy-

enhancing technology with broad applicability and advocated as

a de-facto standard for releasing aggregate statistics on sensitive

data. However, in many embodiments, DP introduces a new at-

tack surface: a malicious entity entrusted with releasing statistics

could manipulate the results and use the randomness of DP as a

convenient smokescreen to mask its nefariousness. Since reveal-

ing the random noise would obviate the purpose of introducing

it, the miscreant may have a perfect alibi. To close this loophole,

we introduce the idea of Interactive Proofs For Differential Privacy,
which requires the publishing entity to output a zero knowledge

proof that convinces an efficient verifier that the output is both

DP and reliable. Such a definition might seem unachievable, as a

verifier must validate that DP randomness was generated faithfully

without learning anything about the randomness itself. We resolve

this paradox by carefully mixing private and public randomness to

compute verifiable DP counting queries with theoretical guarantees

and show that it is also practical for real-world deployment. We

also demonstrate that computational assumptions are necessary

by showing a separation between information-theoretic DP and

computational DP under our definition of verifiability.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
differential privacy, secure multiparty computation, verifiable com-

putation, zero knowledge

ACM Reference Format:
. 2018. Interactive Proofs For Differentially Private Counting. In Proceedings
of Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 15 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
We are living in an age of delegation, where the bulk of our digital

data is held and processed by others in an opaque fashion. Our

interactions are collated by digital applications that continually

send our personal information to the “cloud”. Servers in the cloud,

typically owned by large monolithic organizations, such as Google,

AWS or Microsoft, then perform computations on our private data

to publish aggregate statistics for social utility. For example, we

send our GPS coordinates to services like Strava and Google which,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

in exchange, use this information to recommend low-traffic cycling

routes [52]. Similarly, we let entertainment companies like Netflix,

YouTube, TikTok and Hulu know our personal preferences so that

they can better recommend content for us to consume [10]. National

census bureaus collect personal information to publish aggregate

statistics about the population, and consider doing so a moral duty

to ensure transparency in the government’s policies [16].

However, it is often the case that published aggregate statistics

leak information about the activity of individuals. For example,

Garfinkel et al. and Kasiviswanathan et al. describe practical recon-
struction attacks that can be used to infer an individual’s private

data from aggregate population statistics [35, 44]. Boyd et al. show
that published census data has been used to discriminate against

groups in society based on race [16]. Hence the information that is

released, and how it is computed, requires careful scrutiny.

In response to these concerns, the privacy and security commu-

nity have sought to apply various privacy enhancing technologies

to protect the privacy of individuals contributing to data releases.

Most relevant to this discussion is Differential Privacy (DP) and its

generalizations, which require computations to be randomized, in

order to offer the (informally stated) promise that users will not

be adversely affected by allowing their data to be used. Typically,

this is achieved by adding carefully calibrated random noise to the

output, at the expense of reducing the accuracy of the computation.

Differential privacy is most commonly studied in the trusted curator
model, where a single entity receives all the sensitive data, and

is entrusted to execute the algorithm to apply the random noise.

Variations that modify the trust and computational model include

local privacy [57], shuffle privacy [5, 21], computational differential

privacy [50] and multi-party differential privacy [48].

A consistent theme across all existing work is to view DP simply

as a privacy-preserving mechanism. In this paper, we shift the focus

and view differential privacy through an adversarial lens: what if
the entity responsible for releasing aggregate DP statistics seeks to
abuse the protocol and pick noise chosen to distort the statistics, using
differential privacy as an attack vector?

That is, a malicious entity may tamper with the computation in

order to publish biased statistics, and claim this reflects the true

outcome; any discrepancies may be dismissed as artifacts of ran-

dom noise. Consider a counting query DP protocol to determine the

winner of a plurality election, where the users vote for 1 out of𝑀

candidates (say, which topping people prefer on their pizza). A cor-

rupted aggregator might not be interested in any particular user’s

vote but in biasing the aggregate output of the protocol instead.

Thus, if that server has auxiliary information about the preferences

of a subset of users, they might tamper with the protocol to exclude

those honest voters from the election or tamper with the protocol

to bias the results of the election (say, to pineapple) and blame any

discrepancies in the result on random noise introduced by DP. Note

that some loss in accuracy for privacy is unavoidable. By definition,

DP requires the output be perturbed by private randomness. Often,

outputting such random statistics creates tensions between pub-

lishing entity and the downstream consumer. In 2021, the State Of

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Alabama filed a lawsuit claiming that the use of DP on census data

was illegal [42], citing the inaccuracies introduced by DP. Thus,

to ensure public trust in DP, it is critical to verify that any loss in

utility can be attributed solely to unavoidable DP randomness.

To that effect, we formally introduce the idea of Interactive Proofs
For Differential Privacy in both the trusted curator

1
setting and

the multi-party setting in presence of active adversaries
2
. Our

contributions are as follows:

(1) We formally introduce definitions for Interactive Proofs For
Differential Privacy in both the trusted curator and client-

server multiparty setting [6]. Informally, the entity responsi-

ble for releasing DP statistics must also output a zero knowl-

edge proof to verify that the statistic was computed correctly

with respect to committed client inputs and the private ran-

domness generated faithfully. Such a proof reveals no ad-

ditional information and still enforces that user privacy is

protected via DP but ensures that the curator cannot use DP

randomness maliciously.

(2) We show concrete instantiations of verifiable DP by comput-

ing DP counting queries (histograms) in the trusted curator

and client-server multiparty settings. In the trusted cura-

tor setting, there is a single aggregating server that sees

client data in plaintext and is responsible for outputting a

DP histogram and a proof that the DP noise was generated

faithfully. In the client-server MPC setting, clients secret

share the inputs and send them to 𝐾 ≥ 2 servers, who then

participate in an MPC protocol to output DP histograms. The

protocol itself is secure in that not even the participating

servers are able to learn any new information beyond the

output nor are they able to tamper with the protocol.

(3) We conduct experiments to show that our protocols with

formal theoretical guarantees are also practical. Addition-

ally, we describe how our protocol ΠBin, for verifiable DP

counting, can be combined with existing (non-verifiable)

DP-MPC protocols, such as PRIO [25] and Poplar [15], to

enforce verifiability.

(4) We demonstrate that information-theoretic verifiable DP is

impossible. Specifically, if both the prover and verifier are

computationally unbounded, then statistical zero knowledge

and unconditional soundness cannot hold simultaneously.

Thus we could either prevent an all-powerful curator from

manipulating DP protocols or an all-powerful verifier from

being able to distinguish between neighbouring datasets

from the output, but not both. This result is related to an

open problem (Open Problem 10.6) of Vadhan [56], which

asks “Is there a computational task solvable by a single curator
with computational differential privacy but is impossible to
achieve with information-theoretic differential privacy?”. In
Section 5 we relate our result to efforts at resolving this

question.

1
When we say trusted curator, we imply that there is a single server that can view

client inputs in plaintext. However, this server could still be corrupted and therefore, it

must prove that the final released output was computed as prescribed the DP protocol.

Of course in the single server setting we cannot protect client privacy. The focus is on

ensuring the output is reliable

2
By active adversaries, we mean participants that may deviate from protocol specifica-

tions arbitrarily. In the MPC setting we can guarantee both privacy of client inputs

and reliability of output.

2 PRELIMINARIES
2.1 Notation
We write 𝑥

𝑅←− 𝑈 to denote that 𝑥 was uniformly sampled from

a set 𝑈 . We denote vectors with an arrow on top as in ®𝑥 ∈ Z𝑀𝑞 ,

where𝑀 represents the number of coordinates in the vector and

Z𝑞 represents a prime order finite field of integers of size 𝑞. We

write ®𝑎 + ®𝑏 to mean coordinate-wise vector addition 𝑎 + 𝑏 mod 𝑞,

where 𝑎 and 𝑏 correspond to values at the same position of ®𝑎 and
®𝑏. Similarly, when we write ®𝑎 × ®𝑏, we refer to the coordinate-wise

Hadamard product between the two vectors.

2.2 Privacy and Security Background
Indistinguishability. We define a computational notion of indis-

tinguishability.

Definition 2.1 (Computational Indistinguishability). Fix security
parameter 𝜅 ∈ N. Let {𝑋𝜅 }𝜅∈𝑁 and {𝑌𝜅 }𝜅∈𝑁 be probability distri-

butions over {0, 1}poly(𝜅) . We say that {𝑋𝜅 }𝜅∈𝑁 and {𝑌𝜅 }𝜅∈𝑁 are

computationally indistinguishable {𝑋𝜅 }𝜅∈𝑁
𝑐≡ {𝑌𝜅 }𝜅∈𝑁 if for all

non-uniform PPT turing machines 𝐷 (“distinguishers”), there exists

a negligible function 𝜇 (𝜅) such for every 𝜅 ∈ N��� Pr[𝐷 (𝑋𝜅) = 1] − Pr[𝐷 (𝑌𝜅) = 1]
��� ≤ 𝜇 (𝜅) (1)

Commitments. Commitments are used in our schemes to ensure

that participants cannot change their response during the protocol.

Definition 2.2 (Commitments). Let 𝜅 ∈ N be the security param-

eter. A non-interactive commitment scheme consists of a pair of

probabilistic polynomial time algorithms (Setup, Com). The setup
algorithm pp← Setup(1𝜅) generates public parameters pp. Given
a message space Mpp and randomness space Rpp, the commitment

algorithm Compp defines a function Mpp × Rpp → Cpp that maps a

message to the commitment space Cpp using the random space. For

a message 𝑥 ∈ Mpp, the algorithm samples 𝑟𝑥
𝑅←− Rpp and computes

𝑐𝑥 = Compp (𝑥, 𝑟𝑥). When the context is clear, will drop the subscript

and write Compp as Com.

Definition 2.3 (Homomorphic Commitments). A homomorphic

commitment scheme is a non-interactive commitment scheme such

that Mpp and Rpp are fields (with (+,×)) and Cpp is an abelian group

with the ⊗ operator, such that for all 𝑥1, 𝑥2 ∈ Mpp and 𝑟1, 𝑟2 ∈ Rpp
we have

Com(𝑥1, 𝑟1) ⊗ Com(𝑥2, 𝑟2) = Com(𝑥1 + 𝑥2, 𝑟1 + 𝑟2) (2)

Throughout this paper, when we use a commitment scheme, we

mean a non-interactive homomorphic commitment scheme with

the following properties (stated informally here, but formalized in

the Appendix A):

(1) Hiding: A commitment 𝑐𝑥 reveals no information about

𝑥 and 𝑟𝑥 to a computationally bounded adversary (Defini-

tion A.2).

(2) Binding: Given a commitment 𝑐𝑥 to 𝑥 using 𝑟𝑥 , there is

no efficient algorithm that can find 𝑥 ′ and 𝑟𝑥 ′ such that

Com(𝑥 ′, 𝑟𝑥 ′) = 𝑐𝑥 = Com(𝑥, 𝑟𝑥) (Definition A.3).

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(3) Zero Knowledge OR Opening: Given 𝑐𝑥 , the committing

party can prove to a polynomial time verifier that 𝑐𝑥 is a

commitment to either 1 or 0 without revealing which one it is.

We denote such a proof as ΠOR and say it securely computes

the oracle OOR, which returns true if 𝑐𝑥 ∈ 𝐿Bit
𝐿Bit = {𝑐𝑥 : 𝑥 ∈ {0, 1} ∧ 𝑟𝑥 ∈ Z𝑞 ∧ 𝑐𝑥 = Com(𝑥, 𝑟𝑥)} (3)

See Appendix B for a concrete construction of the Σ-OR
proof using Pedersen Commitment schemes from [27].

In all our experiments and security proofs, we use Pedersen

Commitments (PC), though one could replace PC with [7, 30, 58],

and still satisfy all the above properties.

Differential Privacy (DP and IND-CDP). We consider two vari-

ants of the privacy definition.

Definition 2.4 (Information Theoretic DP [56]). Fix 𝑛 ∈ N, 𝜖 ≥ 0

and 𝛿 ≤ 𝑛−𝜔 (1) . An algorithmM : X𝑛 × 𝑄 → Y satisfies (𝜖, 𝛿)
differential privacy if for every two neighboring datasets𝑋 ∼ 𝑋 ′ s.t.
| |𝑋 − 𝑋 ′ | |1 = 1 and for every query 𝑄 ∈ Q we have for all 𝑇 ⊆ Y

Pr

[
𝑀𝑄 (𝑋) ∈ 𝑇

]
≤ 𝑒𝜖 Pr

[
𝑀𝑄 (𝑋 ′) ∈ 𝑇

]
+ 𝛿 (4)

A direct corollary of the above definition is that, given𝑀𝑄 (𝑋)
and 𝑀𝑄 (𝑋 ′), with probability 1 − 𝛿 even an unbounded Turing

Machine (TM) 𝐷 is unable to distinguish between the outputs up

to statistical distance 𝜖 .

Definition 2.5 (Computational DP [50]). Fix 𝜅 ∈ N and 𝑛 ∈ N.
Let 𝜖 ≥ 0 and 𝛿 (𝜅) ≤ 𝜅−𝜔 (1) be a negligible function, and let

M = {M𝜅 : X𝑛𝜅 → Y𝜅 }𝜅∈N be a family of randomised algorithms,

where X𝜅 and Y𝜅 can be represented by poly(𝜅)-bit strings. We

say thatM is computationally 𝜖-differentially private if for every
non-uniform PPT TM’s (“distinguisher”) 𝐷 , for every query 𝑄 ∈ Q,
and every neighbouring dataset 𝑋 ∼ 𝑋 ′ ∈ X𝑛𝜅 , ∀𝑇 ⊆ Y𝜅 we have

Pr

[
𝐷 (M𝜅 (𝑋,𝑄) ∈ 𝑇) = 1

]
≤ 𝑒𝜖 ·Pr

[
𝐷 (M𝜅 (𝑋 ′, 𝑄) ∈ 𝑇) = 1

]
+𝛿 (𝜅)
(5)

Definition 2.6. (DP-Error) LetM : X × Q → Y be a (𝜖, 𝛿)-DP
mechanism over Q. Assume that the 𝐿1 norm is well-defined on

Y. For any 𝑛 ∈ N, 𝑋 ∈ X𝑛 , we define the expected error of the

mechanismM relative to 𝑄 as

ErrM,𝑄 = E[∥𝑄 (𝑋) −M𝑄 (𝑋)∥1] (6)

where the expectation is taken over internal randomness ofM.

When the context is clear, to simplify notationwe drop subscripts

and refer to equation (6) as just Err. It is well known that for

negligible 𝛿 , the counting query (i.e., DP histograms) has error

Err = 𝑂 (1𝜖) in the trusted curator model and MPC model [25, 56].

Binomial Mechanism. We use Binomial noise to achieve privacy.

Lemma 2.7 (Binomial Mechanism). Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛𝑞
and define counting query 𝑄 (𝑋) =

∑𝑛
𝑖=1 𝑥𝑖 . Fix 𝑛𝑏 > 30, 0 <

𝛿 ≤ 𝑜 (1

𝑛𝑏
) and let 𝑍 ∼ Binomial(𝑛𝑏 , 12). Then 𝑍 + 𝑄 (𝑋) is (𝜖, 𝛿)-

differentially private with 𝜖 = 10

√︃
1

𝑛𝑏
ln

2

𝛿
.

It is easy to see that the binomial mechanism incurs constant

DP error (i.e., it is independent of 𝑛 and depends only on 𝜖, 𝛿). The

proof for Lemma 2.7 can be found in [36].

Algorithm 1 Πmorra A protocol for sampling a public coin

Input: 𝜆1, . . . , 𝜆𝐾
Output: 𝑧

𝑅←− {0, 1}

(1) Each server 𝑘 ∈ [𝐾] is asked to sample𝑚𝑘
𝑅←− Z𝑞 uniformly

at random.

(2) Commit: Each server samples 𝑟𝑚𝑘
𝑅←− Z𝑞 and broadcasts

𝑐𝑘 = Com(𝑚𝑘 , 𝑟𝑘) to all other servers. Assume without loss

of generality that the servers broadcast their commitments

in natural lexicographical order 𝑘 ∈ [𝐾].
(3) Reveal: Once all servers have received 𝑐𝑘 , they now

broadcast𝑚𝑘 , 𝑟𝑚𝑘 to all servers in the reverse order in

which the commitments arrived. It is important that the

reverse order is respected as it guarantees that each server’s

inputs are independent of the inputs of other servers. Once

all commitments are revealed, each server verifies that

Com(𝑚𝑘 , 𝑟𝑘) = 𝑐𝑘 . If this test fails for any 𝑘 or one of the

servers does not respond, the protocol is aborted.

(4) Each server computes 𝑋 = (𝑚1 + · · · +𝑚𝑘) mod 𝑞. We

have 𝑋
𝑅←− Z𝑞 . If 𝑋 ≤ ⌈𝑞

2
⌉ then 𝑐𝑖 = 0. Otherwise 𝑐𝑖 = 1.

Thus we can use this protocol to generate unbiased coins

and uniformly random values.

Morra. We will prove zero knowledge (or security for MPC) as-

suming that the provers and verifiers (or all participants of the

MPC, respectively) have access to an oracle that returns a polyno-

mial sized stream of publicly random unbiased bits. In other words,

we assume that all parties have access to an oracle functionality

Omorra (1𝜅 , 𝜆1, . . . , 𝜆𝐾) = 𝑧 where 𝑧
𝑅←− {0, 1} and 𝜆𝑘 refers to the

empty string for all 𝑘 ∈ [𝐾].
In practice, this oracle is replaced by a lightweight MPC protocol

such as Πmorra defined in Algorithm 1, which is a modification of

an ancient game called Morra
3
, that securely computes Omorra in

the presence of a dishonest majority of active participants. It is

easy to see that as long as one participant is honest and samples

its value uniformly at random, the final protocol produces an unbi-

ased coin. Since the commitment is hiding, a corrupt party cannot

infer any information about the other parties choice𝑚𝑘 from the

published 𝑐𝑚𝑘 and by the binding property, a participant cannot

change their decision after observing another party’s opening. A

formal simulator-styled proof can be found in Blum’s seminal work

for flipping coins over a telephone [12] or any introductory text-

book on MPC (under the title weak coin flipping). If we omit the

final thresholding step, the above protocol can be used to sample

𝑧
𝑅←− 𝑍𝑞 .

3 SECURITY MODELS FOR VERIFIABLE DP
This section introduces verifiable DP in both the single trusted

curator and MPC model. In both settings, the input for the proto-

col comes from 𝑛 distinct clients. Informally, the main difference

between the two models is that the former has plaintext access

to the client data. In contrast, in MPC-DP, the clients secret share

(or partition) their inputs and each server receives information

3
https://en.wikipedia.org/wiki/Morra_(game)

https://en.wikipedia.org/wiki/Morra_(game)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Each client proves to
the verifier and the
provers in zero
knowledge that their
input x ∈ L

Verifier

Clients

Provers
X2

X1

 clients send shares
of their input to the
provers and hiding
commitments of these
shares to the verifier.

n

X2

X1
X2
X1

y = ℳ(X1, X2)

The provers and
verifier exchange
messages. At the end
the prover output

 and
the verifier decides to
accept or not.

y = ℳ(X1, X2)

Verifiable DP
Protocol

Client
Verification

Setup And
Inputs

Figure 1: The figure above describes the three stages of the
protocol. Any message sent and received by the verifier is
accessible to all clients and provers. In the setup stage, pub-
lic parameters are generated, and each client 𝑖 ∈ [𝑛] sends
inputs to the prover and the verifier. In the verification stage,
each client interactively exchanges messages with the veri-
fier and the provers to establish their private input 𝑥 ∈ 𝐿 in
zero knowledge. If a client fails to do so, they are tagged as
dishonest and excluded from the protocol. In the last stage,
each prover samples private randomness and then interac-
tively exchangesmessages with other provers and the verifier
to jointly compute 𝑦 = M𝑄 (𝑋1, . . . , 𝑋𝐾) for some common
knowledge query 𝑄 . The verifier validates that the provers’
output 𝑦 was computed as prescribed over the inputs of hon-
est clients only.

theoretically hiding shares (or a partial view) of client inputs. Addi-

tionally, instead of a single trusted entity computingM, the servers

participate in an MPC protocol Π to securely computeM without

revealing any information other thanM𝑄 (𝑥1, . . . , 𝑥𝑛).
For some queries 𝑄 ∈ Q, the protocol requires that the client

inputs come from a restricted subset 𝐿 ⊆ X. For such cases, the

clients must send a zero knowledge proof so that we can verify that

the inputs come from the specified language without learning any

other information about the inputs. Examples of such proofs can

be found in the prior literature [15, 18, 20, 25]. In the definitions

below and in what follows, we use the terms Pv (prover), server and
curator interchangeably, and the terms analyst and Vfr (verifier) to

refer to the same entity.

3.1 Verifiable DP
Next, we describe the MPC model and later discuss how it can be

specialised to the trusted curator model. LetM𝑄 be a DP (or IND-

CDP) mechanism as described in Definition 2.4 (or Definition 2.5

respectively) for a query 𝑄 ∈ Q. Let 𝜅 ∈ N denote the security

parameter. A verifiable DP mechanism forM𝑄 consists of three in-

teractive protocols (Setup, Verify,Π), between 𝑛 clients that have

private inputs (𝑥1, . . . , 𝑥𝑛) ∈ X and𝐾+1 “next-message-computing-

algorithms” Vfr and (Pv1, . . . , Pv𝐾). In next-message computing

algorithms, party 𝑉 ’s message𝑚𝑖 at round 𝑖 is determined by its

input, messages it has received so far from other parties and in-

ternal randomness ®𝑟𝑉 . Let ®Pv denote a succinct representation for

(Pv1, . . . , Pv𝐾).
In Setup, all parties jointly generate public parameters and

the provers and verifier receives inputs from 𝑛 clients. Let pp ←
Setup(1𝜅) denote public parameters. Each prover Pv𝑘 receives on

its input tape 𝑛 secret shares of client inputs

(
⟦𝑥1⟧𝑘 , . . . , ⟦𝑥𝑛⟧𝑘

)
,

succinctly denoted by ®𝑋𝑘 . The verifier receives hiding commitments

of the above shares. All messages sent and received by the verifier

are accessible to all other parties.

If the query 𝑄 restricts client inputs to a subset 𝐿 ⊆ X then in

Verify phase, the clients interactively exchange messages with

the provers and the verifier to prove in zero knowledge that their

private input 𝑥 ∈ 𝐿. If clients fail to do so, they are excluded from

the protocol.

Once dishonest clients with illegal inputs have been excluded

and honest client inputs have been recorded, the clients play no

further role in the protocol. The third protocol Π describes a multi-

party interactive proof system, where the provers and the ver-

ifiers interactively exchange messages for poly(𝜅) rounds. Let
𝑧 ∈ {0, 1}poly(𝜅) denote auxiliary input available to the verifier.

At the end of the protocol, the provers send ®𝑦 ∈ Y to the Vfr,
who then outputs either 0 or 1, with 1 indicating that the ver-

ifier accepts the provers’ claim that, the real protocol output is

indistinguishable from an ideal computation, i.e. ®𝑦 =M𝑄 (𝑋). Let
out

[
Vfr(pp, ®𝑟𝑣, 𝑧), ®𝑦, ®Pv(pp, ®𝑟 ®Pv)

]
∈ {0, 1} denote the verifying al-

gorithm’s decision. In the definition below, we write out(Vfr, Pv)
as shorthand for the verifier output.

The trusted curator can be understood as essentially this model

with a single prover, i.e., we set 𝐾 = 1. Thus the only functional

difference between MPC-DP and trusted curator DP is that in the

latter case, the curator sees all the data in plaintext. In MPC, the

data may be secret, shared or partitioned across the provers. In

both cases, the prover(s) must prove they did not tamper with

the protocol to generate an output distinguishable from the ideal

computation ofM 4
. Figure 1 summarises the information flow

between the parties.

Definition 3.1 (Verifiable DP). An interactive verifiable DP proto-

col forM is an interactive message passing protocol Π, such that

for 𝑛 ∈ N honest clients, 𝐾 ≥ 1 provers denoted by ®Pv and a single

verifier Vfr, there exists negligible functions 𝛿𝑐 and 𝛿𝑠 such that

the following hold:

(1) Completeness: Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ X𝑛 be the legal

client inputs that have been split in 𝐾 shares (®𝑋1, . . . , ®𝑋𝐾),
where ®𝑋 𝑗 denotes the input sent to the 𝑗 ’th prover, then as

long as the ®Pv and Vfr honestly execute Π, then we have

Pr

out(Vfr,
®Pv) = 0 :

pp← Setup(1𝜅)
Pv𝑗 ← (®𝑋 𝑗 , ®𝑟Pv𝑗 , pp)
Vfr← (𝑧, ®𝑟𝑣, pp)
®𝑦 ← Π(®Pv, Vfr, pp)

 ≤ 𝛿𝑐 .
4
When there is a single server only, the server can see inputs in plaintext. Thus in the

Verify phase, the clients only need to prove to the verifier in zero knowledge that the

inputs are legal

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(2) Soundness: Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ X𝑛 be the legal client

inputs. For any subset 𝐼 ⊆ [𝐾], let ®Pv∗ denote the collection
of corrupted provers, indexed by 𝐼 , that deviate from Π, and
®Pv denote the set of honest provers not indexed by 𝐼 . For any
output ®𝑦 ≠M(𝑋,𝑄), we have

Pr

out(Vfr,
®Pv, ®Pv∗) = 1 :

pp← Setup(1𝜅)
Pv𝑗 ← (®𝑋 𝑗 , ®𝑟Pv𝑗 , pp)
Vfr← (𝑧, ®𝑟𝑣, pp)
®𝑦 ← Π(®Pv∗, Vfr, pp)

 ≤ 𝛿𝑠 .
Note that the correctness of the protocol is defined in terms

of the actual inputs the clients sent toM and not the inputs

a corrupted set of provers might have used.

(3) Zero Knowledge: For any subset 𝐼 ⊆ [𝐾], let ®Pv∗ denote
the collection of corrupted provers, indexed by 𝐼 , that de-

viate from Π, and ®Pv denote the set of honest provers. Let

View
[
Π
(
(®Pv, ®Pv∗), Vfr∗

)]
be the joint distribution

5
of mes-

sages and output received during the execution of Π in the

presence of corrupted parties. There exists a PPT Simulator

Sim(Vfr∗,𝐼) with black box access to Vfr∗ and ®Pv∗, such that

for all ®𝑦 =M(𝑋,𝑄)

View
[
Π
(
(®Pv, ®Pv∗), Vfr∗

)]
≡ Sim(Vfr∗,𝐼) (®𝑦, ®𝑟𝑣, 𝑧, pp)

Contrary to soundness, for zero knowledge to hold, the sim-

ulated transcript should be indistinguishable from the actual

protocol transcript, based on the inputs adversaries used and

not the ones the clients sent to a set of corrupted provers.

An interesting point to note is that in verifiable differential pri-

vacy, the verifier plays a dual role. An honest verifier ensures that

the output is faithfully generated and thus plays an active role in

generating the DP noise without ever seeing it in plaintext. On the

other hand, a dishonest verifier tries to tamper with the protocol

to breach privacy. In non-verifiable DP, the analysts (verifier) only

have access to the DP statistic. They have no agency over how the

output is generated. Thus the verifier participating in verifiable DP

has a greater attack surface than a classical adversary in traditional

non-verifiable DP. We elaborate on this in Section 5, when trying

to establish separations between statistical DP and computational

DP. Additionally, just like in standard MPC, in the presence of a

dishonest majority of corrupted participants, we do not treat early

exiting by corrupted parties as a breach of security. This is easily

detected by the honest parties, and the output is ignored. Verifiable

DP, just like interactive zero knowledge proofs [37] comes in 24

different flavours based on the capabilities of the corrupted parties:

(1) Distinguishability: Based on the distinguishability proper-

ties of the simulator algorithm, the protocol may be perfect,

statistical or computationally zero knowledge. The protocol

described in Section 4 is computationally zero knowledge.

(2) Verifier specifications: Based on whether the verifier is

expected to follow the rules of the protocol (semi-honest) or

may deviate arbitrarily (active), we get honest-verifier zero

5
AsM is a random function, the joint distribution of the view of the adversary and

their output must be indistinguishable from the simulated transcript (and not just the

view of the adversary). See [46] for more details.

knowledge or unrestricted zero knowledge. All our results

are zero knowledge.

(3) Soundness: Based on the power of the corrupted provers,

the proof may be computationally sound (also known as

arguments) or statistically sound (secure against unbounded

provers). The verifiable DP protocol in Section 4 is computa-

tionally sound.

(4) Inputs: Based on whether the verifier has access to the aux-

iliary input, the protocol could be plaintext zero knowledge

or auxiliary input zero knowledge. Our protocols allow for

the verifier to have auxiliary input.

4 VERIFIABLE BINOMIAL MECHANISM
This section describes how to compute counting queries verifiably

with differential privacy in both the single curator and client-server

MPC models. We consider the trusted curator model to be a spe-

cial instantiation of the general MPC model where the number of

provers𝐾 = 1. In Section 4.1 we describe intuitions for our protocol,

and in Section 4.2 we explain what is needed for verifiability in the

MPC setting and tackle the additional challenges of verifying client

inputs. We describe how prior efforts at verifying clients fall short

of the security expectations of Definition 3.1. Finally, in Section 4.3,

we describe a protocol that verifiably computes counting queries

with DP.

Set X = Z𝑞 = Y, where Z𝑞 is a prime order finite field of size 𝑞

over the integers. Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) denote the client inputs and
𝑄 be the counting query𝑄 (𝑋) = ∑𝑛

𝑖=1 𝑥𝑖 . Let ⟦𝑥𝑖⟧𝑘 denote the 𝑘’th

additive secret
6
share of a client input 𝑥𝑖 . Each client splits their

input into 𝐾 secret shares and distributes them across the provers.

We will assume that 𝑛 ≪ 𝑞 and 𝜅 = ⌊log
2
𝑞⌋ can be viewed as the

security parameter. For 𝐾 ≥ 1 provers and 1 verifier, define the

oracle functionalityMBin in the ideal world as follows:

(1) MBin receives public privacy parameters 𝜖 and 𝛿 . It then

computes 𝑛𝑏 (number of coins for binomial noise) based on

Lemma 2.7.

(2) Let

(
⟦𝑥1⟧𝑘 , . . . , ⟦𝑥𝑛⟧𝑘

)
denote the inputs on the𝑘’th prover’s

input tape. Each prover Pv𝑘 is expected to compute 𝑋𝑘 =∑𝑛
𝑖=1⟦𝑥𝑖⟧𝑘 and sends toMBin as its input 𝑋𝑘 . A corrupted

prover might send an arbitrary input.

(3) MBin samples Δ𝑘 ∼ Binomial(𝑛𝑏 , 1/2) independently for

each input 𝑋𝑘 it receives. It then computes

𝑦 =
∑𝐾
𝑘=1
(𝑋𝑘 + Δ𝑘) (7)

(4) MBin sends the tuple (𝑦,Δ𝑘) as output to each prover Pv𝑘 .
On receiving its output, the Pv𝑘 sends CONTINUE toMBin.

OnceMBin receives the continue signal from prover Pv𝑘 it

moves on to deliver output to Pv𝑘+1.
(5) After all 𝐾 provers have sent CONTINUE,MBin sends 𝑦 as

output to the verifier Vfr. If a single prover fails to send the

continue message and thereby exits the protocol early, the

verifier and the remaining provers do not receive any output.

When 𝐾 = 1, i.e., the trusted curator setting, the single prover

receives 𝑛 client inputs in plaintext, so ⟦𝑥𝑖⟧𝑘 = 𝑥𝑖 for all 𝑖 ∈ [𝑛].
This is equivalent to an adversary corrupting all 𝐾 provers. Thus

6
Although we describe our protocols with additive secret sharing, any linear secret

sharing such as Shamir’s secret sharing also applies to all our results.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

in the MPC setting with 𝐾 ≥ 2 servers, it is safe to assume at least

one of them will follow the protocol. Our goal is to be able to come

up with an interactive protocol ΠBin, which allows us to compute

MBin verifiably as per Definition 3.1. Notice that in the ideal model

definition above, the oracle adds 𝐾 independent copies of DP noise

to the output, whereas Lemma 2.7 only calls for a single copy. This is

because, as we allow up to𝐾 −1 provers to collude with a corrupted

verifier, the corrupted provers could simply not add any noise to

the output. Ben Or et al. ’s completeness results [11] imply that 𝐾

independent copies of noise are necessary to guarantee differential

privacy unless the number of corruptions can be restricted to being

strictly less than
𝐾
3
, so each prover must independently generate

enough noise to guarantee DP. Our protocols defined below are

secure against computationally bounded provers and verifiers that

may deviate arbitrarily from protocol specifications and have access

to auxiliary inputs.

4.1 An Intuitive But Incomplete Protocol
Before describing the entire protocol in Section 4.3 and Figure 3,

we provide the reader with some intuition as to why the protocol

works for a single curator and verifier. In this section, we make
the unrealistic assumption that prover and verifier behave faithfully.
Assume all parties have joint oracle access to OMorra (as described
in Section 2.2) to jointly sample unbiased bits (𝑏1, . . . , 𝑏𝑛𝑏). It is
easy to see that using (∑𝑛𝑏

𝑖=1
𝑏𝑖) as DP randomness results in the

desired distribution defined inMBin. However, the oracle output

is known to both the verifier and prover; therefore, it cannot be

directly used to guarantee differential privacy. As discussed earlier,

this problem of proving that a prover faithfully sampled random

bits without disclosing them lies at the heart of any verifiable DP

protocol. Thus the protocol must combine public coins that satisfy

verifiability requirements and private coins that ensure secrecy.

The protocol for verifiable DP counting proceeds in 𝑛𝑏 identical

and independent invocations (run in parallel). In copy 𝑖 , the prover

samples 𝑣𝑖 ∈ {0, 1}, which it keeps private. Note that a prover could

sample this bit using any arbitrary bias. As this is the provers’ pri-

vate coin, the verifier has no control over how the prover generates

this information. After the prover has sampled their private bit,

the prover and verifier make one call to OMorra to get an unbiased

coin denoted by 𝑏𝑖 . Next, the prover locally computes 𝑣𝑖 = 𝑏𝑖 ⊕ 𝑣𝑖 .
Here ⊕ refers to the boolean XOR operation. It is easy to see that 𝑣𝑖
has the same distribution as 𝑏𝑖 , but its value is known only to the

parties with access to 𝑣𝑖 , i.e., the prover. After 𝑛𝑏 rounds, the prover

computes 𝑄 (𝑋) and 𝑍 =
∑𝑛𝑏
𝑖=1

𝑣𝑖 and outputs 𝑄 (𝑋) + 𝑍 where 𝑍

is used as DP randomness. By the assumption that the prover and

verifier are faithful, 𝑍 is distributed according to the desired distri-

bution stated in Theorem 2.7, and its value is only known to the

prover. To make this protocol practical, we need to resolve a few

issues.

(1) Although the above description requires a bitwise XOR oper-

ation to ensure the right distribution is used, we operate with

arithmetic circuits in the actual protocol. Thus, the provers

could sample arbitrary values 𝑣∗ ∈ Z𝑞 such that 𝑣∗ ∉ {0, 1},
and we need to fix how to express the XOR operation via

arithmetic circuits.

(a) (b)

Figure 2: Two types of attacks that go undetected in Poplar.
In (a) regardless of what the honest client sends, a corrupted
server simply ignores the input and excludes the client from
the protocol based on auxiliary information. In (b) a dishon-
est client colludes with the corrupted server by revealing
secret values, so that an illegal input is included. In both
cases, the honest server cannot distinguish between an hon-
est run and a corrupted run of the protocol.

(2) Even if we could verify that the prover sampled a private

bit correctly, we still need to verify that they faithfully per-

formed the local operations discussed above.

Thus, if we could guarantee that each server performed its com-

putations correctly and sampled a private value from the correct set,

we would get the desired outcome of verifiable and DP counting

queries.

4.2 Extending To Client-Server MPC-DP
To compute DP histograms verifiably in the client-server MPC-DP

setting, we use the same computational model used for PRIO [25]

and Poplar [15]. Prio is deployed at scale by Mozilla
7
. As discussed

earlier, in this setting 𝑛 clients secret share their inputs 𝑥𝑖 ∈ 𝐿
amongst 𝐾 ≥ 2 provers, where 𝐿 ⊆ X defines the language of legal

inputs to the protocol. For computing 𝑀-bin histograms over 𝑛

inputs, 𝐿 is the set of all one-hot encoded vectors of size 𝑀 . For

the core problem of a single-dimensional counting query, 𝑀 = 1

and 𝐿 = {0, 1}. Since the inputs on the prover’s tapes reveal no

information about a client’s input, for the protocol to be useful the

provers must first verify in zero knowledge that 𝑥𝑖 ∈ 𝐿 before using
such inputs to compute aggregate statistics. This additional step of

verifying a client is not required in the trusted curator model, as the

prover decides what inputs should be included in the computation

and can see them in plaintext.

Verifying Clients in MPC-DP.
Poplar and PRIO use efficient sketching techniques from [17]

to validate a client’s input in zero knowledge without relying on

any public key cryptography. Thus, as long as at least one out of 𝐾

provers does not reveal the inputs it received, even an unbounded

adversary corrupting the remaining provers cannot ascertain any

information about an honest client’s input. While such a system

protects an honest client’s privacy from an unbounded adversary, it

is not verifiable as per Definition 3.1. Specifically, for the techniques

used in PRIO and Poplar, a single corrupted prover could tamper

with its inputs and exclude an honest client from the protocol by

7
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-

telemetry-with-prio/

https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

forcing them to fail the verification test. Alternatively, a corrupt

client could collude with a prover to include arbitrary inputs, jeop-

ardising the correctness of the output. Figure 2
8
summarises these

attacks on Poplar and PRIO
9
. By our definitions of verifiability,

the protocol’s output must be a function of the inputs provided

by honest clients only. Thus the protocol described in Section 4.3

provides the following additional guarantees:

(1) Guaranteed Inclusion Of Honest Clients: If a client sub-
mits shares of an input 𝑥 ∈ 𝐿, then the final output of the

protocol is guaranteed to use this input untampered. Thus

an honest client is assured that, as long as a single prover

follows the protocol specifications, no one learns any infor-

mation about their private input and their input is correctly

used to compute the final output.

(2) Guaranteed Exclusion Of Corrupt Clients: A corrupted

client, even one that has control over any proper subset

of the 𝐾 provers, cannot include an invalid input to the

protocol. Thus if 𝑥 ∉ 𝐿, 𝑥 is discarded by our protocol with

overwhelming probability.

It is important to note that as we operate under stricter notions

of privacy and correctness, our results require the use of public-

key cryptography and security holds only against computationally

bounded adversaries. Furthermore, we show in Section 5 that it is

impossible to satisfy verifiable DP and provide information theoretic

guarantees.

4.3 Main Protocol Description
The protocol ΠBin described in Figure 3 provides a compact stan-

dalone description of the interaction between 𝐾 provers and the

verifier for computingMBin. We assume that both the provers and

the verifier have access to oracles Omorra and OOR as defined in

Section 2.2. In the real world, OMorra is replaced with ΠMorra (see

Algorithm 1) and OOR is replaced by Cramer et al. ’s Σ-OR proof [26]

(see Appendix B for an example implementation) which securely

compute the oracle functionalities in the presence of adversaries

that may deviate from protocol specifications. Thus, we define our

protocol in the hybrid world, and by the sequential composition the-

orem
10

[37], the security properties of the protocol are preserved.

Next, we describe the protocol in detail with line references to

Figure 3:

Line 1: In the first step, the prover(s) and verifier agree upon the

public parameters for the protocol. The public parameters in-

clude a description of Cpp = G𝑞,Mpp = X = Y = Z𝑞,Rpp =

Z𝑞 and a description ofMbin as defined in equation (7). The

group G𝑞 satisfies the requirements of the homomorphic

commitment scheme defined in Section 2.3 and we assume

that the discrete log problem is hard to solve in G𝑞 .
Line 2: For each client 𝑖 ∈ [𝑛], let ⟦𝑥𝑖⟧𝑘 denote the 𝑘’th share of

their input 𝑥𝑖 ∈ 𝐿. Define 𝑐𝑖,𝑘 = Com

(
⟦𝑥𝑖⟧𝑘 , 𝑟𝑖,𝑘

)
as the

8
Content from J.J. at the English-language Wikipedia, licensed under CC BY-SA 3.0.

9
Concretely, referring to notation from Appendix C of Poplar, in scenario (b), the

dishonest client reveals the values 𝜅 and [𝑣]0 to the server. This allows the server to

set 𝑧1 = −𝑧0, 𝑧∗
1
= −𝑧∗

0
and 𝑧∗∗

1
= −𝑧∗∗

0
, thereby admitting an illegal input into the

protocol.

10
Though we use sequential composition, both protocols Πmorra and Πor can be

parallelly composed.

commitment to the 𝑘’th share of 𝑥𝑖 . The client sends to

each prover Pv𝑘 the tuple (⟦𝑥𝑖⟧𝑘 , 𝑟𝑖,𝑘) and broadcasts the

commitments to each of the shares

(
𝑐𝑖,1, . . . , 𝑐𝑖,𝐾

)
to a public

bulletin board that is observable to all parties.

Line 3-4: Similar to PRIO and Poplar, we use 𝐿 = {0, 1}, and thus

verifier and the client use the oracle OOR to check if the

client’s input is indeed a commitment to a bit. For input

𝑥𝑖 , the verifier (and provers) sends to OOR the derived com-

mitment 𝑐𝑖 =
∏𝐾
𝑘=1

𝑐𝑖,𝑘 and the client sends the openings(
𝑥𝑖 ,

∑𝐾
𝑘=1

𝑟𝑖,𝑘

)
. The oracle responds with OOR (𝑐𝑖) = 1 if

𝑥𝑖 ∈ {0, 1} and 𝑐𝑖 is a commitment to 𝑥𝑖 . In the real world,

we replace OOR with a Σ-OR protocol
11
. This step resolves

the issues presented in Figure 2, as an honest client cannot

be excluded nor can a corrupt client input be included. From

here on, the protocol only uses inputs from validated clients.

Line 5: Pv𝑘 samples (𝑣
1,𝑘 , . . . , 𝑣𝑛𝑏 ,𝑘) where 𝑣 𝑗,𝑘 ∈ {0, 1} (private ran-

dom bit) and sends to the verifier commitments to 𝑣 𝑗,𝑘 for

𝑗 ∈ [𝑛𝑏]. Let 𝑐′𝑗,𝑘 = Com(𝑣 𝑗,𝑘 , 𝑠 𝑗,𝑘) denote the commitment

to 𝑣 𝑗,𝑘 with randomness 𝑠 𝑗,𝑘 . To enforce consistency in no-

tation and improve readability, we always use 𝑐 to denote

commitments to client inputs and 𝑐′ to denote commitments

to the prover’s private inputs. Similarly, we will always use

𝑟 and 𝑠 to denote the randomness used for client input and

prover bit commitments, respectively.

Line 6-7: The verifier uses OOR to check if the messages sent by the

prover were indeed commitments to 0 or 1 (similar to verify-

ing client inputs). This step is essential for the boolean to the

arithmetic conversion, as the linearisation of the XOR op-

eration is only valid for values 𝑣 ∈ {0, 1} (see completeness

property of Theorem 4.1).

Line 8-9: If for any 𝑖 ∈ 𝑛𝑏 , OOR = 0, the verifier aborts the protocol

and broadcasts that Pv𝑘 cheated. Otherwise, once all com-

mitments are verified, the prover and verifier jointly invoke

Omorra to get 𝑛𝑏 public unbiased bits (𝑏
1,𝑘 , . . . , 𝑏𝑛𝑏 ,𝑘).

Line 10: For all 𝑖 ∈ [𝑛𝑏], based on the value of 𝑏 𝑗,𝑘 , the prover sets

𝑣 𝑗,𝑘 and 𝑠 𝑗,𝑘 as follows

𝑣 𝑗,𝑘 =

{
1 − 𝑣 𝑗,𝑘 if 𝑏 𝑗,𝑘 = 1

𝑣 𝑗,𝑘 otherwise.

𝑠 𝑗,𝑘 =

{
1 − 𝑠 𝑗,𝑘 if 𝑏 𝑗,𝑘 = 1

𝑠 𝑗,𝑘 otherwise.

As long as 𝑣 𝑗,𝑘 ∈ {0, 1}, the above set of equations is equiva-
lent to setting 𝑣 𝑗,𝑘 = 𝑣 𝑗,𝑘 ⊕𝑏 𝑗,𝑘 . An important feature of this

step is that, conditioned on 𝑏 𝑗,𝑘 , the operations described

above are linear. Line 11 describes why this is critical for

correctness to hold.

Line 11: The prover sends (𝑦𝑘 , 𝑧𝑘) to the verifier:

𝑦𝑘 =

(𝑛∑︁
𝑖=1

⟦𝑥𝑖⟧𝑘 +
𝑛𝑏∑︁
𝑗=1

𝑣 𝑗,𝑘

)
(8)

11
In the interactive setting, the verifier, the provers, and the client jointly sample

public challenge by playing Morra. As long a single party is honest, the challenge is

guaranteed to be selected uniformly at random. Alternatively, in the ROM model, the

client sends to a public bulletin board a non-interactive Σ-proof using the Fiat-Shamir

transform.

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Verifier(Vfr) Prover(Pv𝑘)
1 : pp← Setup(1𝜅) Generate public parameters pp← Setup(1𝜅)

2 :

{{
𝑐𝑖,𝑘

}
𝑘∈ [𝐾]

}
𝑖∈ [𝑛]

Client inputs

{
⟦𝑥𝑖⟧𝑘 , 𝑟𝑖,𝑘

}
𝑖∈ [𝑛]

,

{{
𝑐𝑖,𝑘

}
𝑘∈ [𝐾]

}
𝑖∈ [𝑛]

3 : ∀𝑖 ∈ [𝑛] Send 𝑐𝑖 =
𝐾∏
𝑘=1

𝑐𝑖,𝑘 OOR ∀𝑖 ∈ [𝑛] Send 𝑐𝑖 =
𝐾∏
𝑘=1

𝑐𝑖,𝑘

4 : For any 𝑖 ∈ [𝑛] if OOR (𝑐𝑖) ≠ 1 Exclude (⟦𝑥𝑖⟧𝑘 , 𝑟𝑖,𝑘) from the protocol

5 : (𝑐′
1,𝑘
, . . . , 𝑐′

𝑛𝑏 ,𝑘
) 𝑐′

𝑗,𝑘
= Com

(
𝑣𝑗,𝑘 , 𝑠𝑣𝑗,𝑘

)
∀ 𝑗 ∈ [𝑛𝑏] Samples and commits 𝑣𝑗,𝑘 ∈ {0, 1}

6 : ∀ 𝑗 ∈ [𝑛𝑏] Send 𝑐′𝑗,𝑘 OOR ∀ 𝑗 ∈ [𝑛𝑏] Send openings(𝑣𝑗,𝑘 , 𝑠 𝑗,𝑘)
7 : ∀ 𝑗 ∈ [𝑛𝑏] Check OOR (𝑐′𝑗,𝑘) = 1

8 : ∀ 𝑗 ∈ [𝑛𝑏] Send empty string 𝜆𝑗 OMorra ∀ 𝑗 ∈ [𝑛𝑏] Send empty string 𝜆𝑗

9 : Receive (𝑏
1,𝑘 , . . . , 𝑏𝑛𝑏 ,𝑘) ∀ 𝑗 ∈ [𝑛𝑏] 𝑏 𝑗,𝑘 = OMorra (𝜆𝑗) Receive (𝑏

1,𝑘 , . . . , 𝑏𝑛𝑏 ,𝑘)
10 : ∀ 𝑗 ∈ [𝑛𝑏] Update 𝑣𝑗,𝑘 , 𝑠 𝑗,𝑘 to get 𝑣𝑗,𝑘 , 𝑠 𝑗,𝑘 based on 𝑏 𝑗,𝑘

11 :
(𝑦𝑘 , 𝑧𝑘) 𝑦𝑘 =

𝑛∑︁
𝑖=1

⟦𝑥𝑖⟧𝑘 +
𝑛𝑏∑︁
𝑗=1

𝑣𝑗,𝑘 and 𝑧𝑘 =

(𝑛∑︁
𝑖=1

𝑟𝑖,𝑘 +
𝑛𝑏∑︁
𝑗=1

𝑠 𝑗,𝑘

)
12 : Compute 𝑐′

𝑗,𝑘
using 𝑏 𝑗,𝑘 for all 𝑗 ∈ [𝑏𝑛𝑏]

13 : Check that

(𝑛∏
𝑖=1

𝑐𝑖,𝑘 ×
𝑛𝑏∏
𝑗=1

𝑐′
𝑗,𝑘

)
= Com(𝑦𝑘 , 𝑧𝑘)

Figure 3: The figure above describes the interaction between a single prover and verifier in ΠBin. In the single trusted curator
model 𝐾 = 1 we have 𝑥𝑖 = ⟦𝑥𝑖⟧𝑘 where the prover can see client inputs in plaintext. In the MPC setting, each prover Pv𝑘 follows
the exact same protocol on their respective inputs specified in Line 2. Thus at the end of the protocol, each prover Pv𝑘 outputs
the tuple 𝑦𝑘 , 𝑧𝑘 . A verifier aggregates the output from each prover to publish verifiable DP statistics.

𝑧𝑘 =

(𝑛∑︁
𝑖=1

𝑟𝑖,𝑘 +
𝑛𝑏∑︁
𝑗=1

𝑠 𝑗,𝑘

)
(9)

where (𝑦𝑘 , 𝑧𝑘) is the output for prover Pv𝑘 .
Line 12: Using the common public randomness {𝑏 𝑗,𝑘 } 𝑗∈[𝑛𝑏] gener-

ated by Omorra, the verifier updates their view of received

commitments as follows:

𝑐′
𝑗,𝑘

=

{
Com(1, 1) × 𝑐′−1

𝑗,𝑘
if 𝑏 𝑗,𝑘 = 1

𝑐′
𝑗,𝑘

otherwise.

Note that Pv𝑘 never opens 𝑐′
𝑗,𝑘
, and thus Vfr never sees

𝑣 𝑗,𝑘 in plaintext. By the hiding property of commitments,

an efficient verifier learns nothing about the prover’s pri-

vate values from these messages. However, as the update

conditioned on 𝑏 𝑗,𝑘 is linear and 𝑏 𝑗,𝑘 is public, Vfr can still

compute a commitment to 1 − 𝑣 𝑗,𝑘 without ever knowing

𝑣 𝑗,𝑘 . As a direct consequence, as discussed in the soundness

claim, the prover cannot deviate from its prescribed linear

operation, as the verifier can check it. As we will show later,

this step guarantees correctness, soundness and security.

Line 13: Finally, the verifier checks

𝑛∏
𝑖=1

𝑐𝑖,𝑘 ×
𝑛𝑏∏
𝑗=1

𝑐′
𝑗,𝑘

= Com(𝑦𝑘 , 𝑧𝑘) (10)

From these outputs, we can derive the desired result: we treat

the 𝑦𝑘 ’s as shares, and calculate 𝑦 =
∑𝐾
𝑘=1

𝑦𝑘 as the noisy sum. We

next show that this protocol achieves our desired properties.

Theorem 4.1. Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) be the client input. LetMBin

and O = (Omorra,OOR) be as defined above. ΠBin is a verifiably
differentially private argument with perfect completeness, negligible
soundness and is computational zero knowledge.

Proof.

Completeness: By the definition of Omorra, (𝑏1,𝑘 , . . . , 𝑏𝑛𝑏 ,𝑘) are
all unbiased bits. As per ΠBin, when 𝑏 𝑗,𝑘 = 1, 𝑣 𝑗,𝑘 = 1 − 𝑣 𝑗,𝑘 and

when 𝑏 𝑗,𝑘 = 0, 𝑣 𝑗,𝑘 = 𝑣 𝑗,𝑘 . We know that an honest prover is guar-

anteed to have sampled a private value 𝑣 𝑗,𝑘 ∈ {0, 1} for all 𝑗 ∈ [𝑛𝑏].
Thus the case-wise arithmetic operation described above is equiva-

lent to setting 𝑣 𝑗,𝑘 = 𝑣 𝑗,𝑘 ⊕ 𝑏 𝑗,𝑘 . This implies that for each server

𝑣 𝑗,𝑘
𝑅←− {0, 1} and ∑𝑛𝑏

𝑗=1
𝑣 𝑗,𝑘 ∼ Binomial(𝑛𝑏 , 1/2). The output of

each honest prover is thus𝑦𝑘 = Binomial(𝑛𝑏 , 1/2)+
∑𝑛
𝑖=1⟦𝑥𝑖⟧𝑘 . By

linearity of secret-sharing,

∑
𝑘∈[𝐾] 𝑦𝑘 =MBin (𝑋,𝑄) whereMBin

is defined in equation (7).

Soundess. Beyond exiting the protocol early (which is trivially

detected), an adversary A controlling a collection of dishonest

provers could force a prover to cheat by doing at least one of the

following:

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(1) (Cheat at Line 4): For any 𝑗 ∈ [𝑛𝑏], 𝑐′𝑗,𝑘 is not a commitment

to a bit. As the verifier has access to oracle OOR, it would
detect this immediately. Thus we can be guaranteed that 𝑐′

𝑗,𝑘

are commitments to 1 or 0.

(2) (Cheat at Line 7): The prover could sample improper public

randomness. However, this is impossible as the verifier and

prover jointly use OMorra to generate randomness.

(3) (Cheat at Line 10): Output messages (𝑦′
𝑘
≠ 𝑦𝑘 , 𝑧

′
𝑘
≠ 𝑧𝑘).

If the verifier check from (Line 12) fails then the verifier

knows Pv∗
𝑘
cheated. If Com(𝑦𝑘 , 𝑧𝑘) =

∏𝑛
𝑖=1 𝑐𝑖,𝑘×

∏𝑛𝑏
𝑗=1

𝑐′
𝑗,𝑘

=

Com(𝑦′
𝑘
, 𝑧′
𝑘
), thenA has broken the binding property of the

commitment scheme. AsA has negligible success in winning

the discrete log game, it has a negligible chance at breaking

the commitment scheme.

These are the only places where the Pv∗ sends a message to the

Vfr and thus we have our result.

Zero Knowledge. To prove zero knowledge we need to explicitly
define the commitment scheme we are using. We use Pedersen

Commitments which are defined as follows

Com(𝑥, 𝑟) = 𝑔𝑥ℎ𝑟 (11)

where Rpp =Mpp = Z𝑞 and Cpp = G𝑞 an abelian group where

the discrete log problem is hard. To enhance readability, we will

prove security for 𝐾 = 2 provers and one verifier, but the result

trivially generalises to 𝐾 ≥ 2 provers. To avoid confusion between

the MPC and single curator setting, we defer the simpler security

proof for single curators to Appendix C. Without loss of generality,

assume that the verifier Vfr∗ and Pv1 have been corrupted by a PPT

adversary A and that Pv2 is honest. Sim receives on its input tape

the inputs for Pv1 and Vfr∗. The ideal oracle functionalityMBin

is defined as before. Let Sim denote shorthand for SimVfr∗,Pv1 . We

construct the simulator as follows:

(1) Sim receives the public messages

{{
𝑐𝑖,𝑘

}
𝑘∈[𝐾]

}
𝑖∈[𝑛]

and

sets 𝑐𝑖 =
∏𝐾
𝑘=1

𝑐𝑖,𝑘 .

(2) Sim internally invokes Pv1 to receive inputs 𝑋1. If Pv1 was
honest then 𝑋1 =

∑𝑛
𝑖=1⟦𝑥𝑖⟧1. Of course, we have no control

over A, and 𝑋1 could be any arbitrary value. The definition

of security requires that we prove security using the actual

inputs used by the real-world adversary A and not the ones

it was handed to at the start of the protocol.

(3) Sim invokes Mbin with input 𝑋1 and receives (𝑦,Δ1) as
defined in equation (7). Note Sim never has access to the

honest party’s input 𝑋2 nor the randomness Δ2 used by

Pv2 in the real protocol. It must simulate the messages and

output of the real protocol from just its input and the output

it receives from the ideal model.

(4) Sim sets 𝑦1 = 𝑋1 + Δ1 and computes 𝑦2 = 𝑦 − 𝑦1, which by

the definition ofMBin, is equal to (𝑋2 + Δ2).
(5) Sim samples 𝑧2

𝑅←− Rpp and sets 𝑐2 = Com(𝑦2, 𝑧2).
(6) Sim samples 𝑐′

2,2
, . . . , 𝑐′

𝑛𝑏 ,2
such that 𝑐′

𝑗,2
= Com(1, 𝑠 𝑗,2)where

𝑠 𝑗,2
𝑅←− Rpp. It sets 𝑐′

1,2
= 𝑔1𝑎2 where𝑎2 = 𝑐2×

(∏𝑛𝑏
𝑗=2

𝑐′
𝑗,2

)−1
×(∏𝑛

𝑖=1 𝑐𝑖,2

)−1
× 𝑔−1. Notice that Sim is actually unable to

open 𝑐′
1,2

but is never required to do so, as opening a commit-

ment to a private value violates DP. The only informationA
can check is if 𝑐′

1,2
is a commitment to a bit, which it is. Thus

the simulator artificially constructs a set of commitments

that align like the real-world protocol, without having the

slightest idea what the randomness used by Pv2 actually

was. It is able to do so due to the hiding property of the

commitment scheme.

(7) Sim sends over {𝑐 𝑗,2} 𝑗∈[𝑛𝑏] toA pretending to be the honest

prover (Line 4 of Figure 3).

(8) Sim pretends to be the prover and jointly invokes OMorra
with A to sample 𝑛𝑏 unbiased public bits (𝑏1,2, . . . , 𝑏𝑛𝑏 ,2).

(9) Sim sends 𝑦2 and 𝑧2 to A and outputs whatever A outputs.

□

4.4 Public Verifiability and Randomness
Notice that the verifier does not contribute a private input to the

protocol, and its messages contain no private information either.

Furthermore, any party (the clients or the provers) may view the

messages sent and received by the verifier. The verifier’s role is

primarily to generate unbiased public randomness (that is inde-

pendent of the prover’s messages), which is used to ensure sound-

ness. It samples a challenge for the Σ-OR proof to verify that the

provers’ private values are well formed. Additionally, it participates

in Morra, to generate unbiased public coins to enforce the provers

DP noise is sampled from the correct distribution. In the computa-

tional complexity literature, such a verifier is called a public coin

verifier
12
. If there was another way to sample unbiased and reliable

randomness without the verifier, anyone accessing the message

transcript could verify if soundness holds. Consider the Random

Oracle Model (ROM), where the verifier’s randomness generation

(Morra) is replaced by applying a random oracle on the prover

and client messages. Further, consider that all messages from the

prover(s) are sent to a public bulletin board along with the client’s

input commitments and timestamps, with the slight modification

that the prover sends commitments and non-interactive proofs of

validity before the clients send messages to the board. The order

matters as this prevents the prover from adaptively selecting private

values based on the clients’ messages, thereby biasing the output

of applying a ROM on the board’s contents. This way, the provers’

messages are guaranteed to be independent of the honest client’s

messages. Now, any party (including the clients or even one that

did not participate in the protocol) can verify that the random-

ness is correctly generated (using the oracle on the bulletin board

messages) and then perform the checks assigned to the verifier

to ensure soundness holds. There is no longer a need for parties

to play Morra to generate reliable randomness. Thus, we do not

need an explicit verifier. Such a protocol, where the correctness

of the output can be verified by a non-participating entity, even

when all participants responsible for computing the output are

corrupted, is said to be publicly or universally verifiable (Definition

1 of [6]). Public verifiability is a critical property for protocols such

as E-voting [40], where one cannot trust a single verifier or a small

group of provers to help compute the output reliably. Of course, the

ROM model is a theoretical construct. In the real world, we do not

12
https://en.wikipedia.org/wiki/Interactive_proof_system

https://en.wikipedia.org/wiki/Interactive_proof_system

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

have a provable instantiation of a random oracle. Thus the protocol

described above is not verifiable unless we assume at least one party

(the verifier or one of the provers) is semi-honest. This semi-honest

participant ensures that the public randomness is sampled reliably.

So the question beckons, can we upgrade interactive proofs of dif-

ferential privacy from verifiability to public verifiability in the plain

model? Next we show that public verifiability (as defined Definition

1 of [6]) is impossible for interactive proofs for differential privacy

if all participants are corrupted. Thus, the trust assumptions in our

protocol above are the best we can hope for.

Unlike deterministic E-voting protocols, the outputs of a differ-

entially private mechanism are, by definition, random. Furthermore,

the output is a function of the client’s inputs and the prover’s pri-

vate randomness. In end-to-end auditable voting [2, 40] or publicly

verifiable MPC [6], the output of the protocol is a deterministic

function of the client inputs only. Correctness is measured with

respect to the output of an ideal functionality computing the de-

sired function over these inputs. For DP mechanisms, the prover

is responsible for providing a private but random input, which is

used along with client inputs to compute a DP statistic. Thus in

this setting, the prover has more agency to affect the output than

the computing parties in an universally auditable MPC. The core

problem for verifiable differential privacy lies in verifying that the

final DP randomness comes from the correct distribution (an unbi-

ased binomial distribution in our case) without learning anything

about the prover’s private random sample. Thus to verify a claim

about a DP statistic, at the very least, we need a source for public

and verifiable randomness. This is to say that the DP randomness

must be computed as a joint function of the prover’s private ran-

domness and reliable public randomness to enforce both secrecy

and verifiability. Without reliable public randomness, we cannot

make a meaningful claim about the final output distribution. Thus

a source of verifiable public randomness is necessary for verifiable

DP. Such sources of public randomness are often called random

beacons in the blockchain literature
13
. In the plain model (without

a common random string (CRS) or a random oracle), we either need

a trusted party to generate public randomness or require that the

public randomness be computed using MPC among the participants.

In the protocol above, we generate public randomness using Morra,

one possible MPC instantiation of a random beacon (based on the

classic commit and reveal approach). MPCs based on Verifiable

Delay Functions (VDFs) can also generate public randomness with

guaranteed output delivery [14]. Both Morra and VDFs require that

at least one participant be semi-honest. In general, if all participants

of the randomness-generating MPC are corrupted, then we cannot

guarantee reliable public randomness. Thus in the plain model, we

cannot guarantee public verifiability if all parties are corrupted,

giving us the following corollary.

Corollary 4.2. Provided that there is at least one honest partici-
pant or a reliable source of public randomness (random beacon), the
transcript of ΠBin can be efficiently verified by any party (even one
that did not participate in the protocol). Absent this, it is impossible
to provide universal verifiability in the plain model.

13
https://a16zcrypto.com/content/article/public-randomness-and-randomness-

beacons/.

5 SEPARATION UNDER VERIFIABLE DP
We show that information theoretic verifiable DP is impossible in

the trusted curator model. To prove our result stated in Theorem 5.2,

we rely on the impossibility of secure coin flipping by [39].

Theorem 5.1 (Impossibility Of Tossing A Fair Coin). [39] Let
(Pv, Vfr) be a coin tossing protocol and let𝐵𝜆 = E[out(Pv, Vfr) (1𝜅)]
be the bias of the output of such a protocol. Assuming that one-
way-functions do not exist, then for any 𝑔 ∈ poly(𝜅), there exists
a pair of efficient cheating strategies Pv∗ and Vfr∗ such that the
following holds: for infinitely many 𝜅’s, for each 𝑗 ∈ {0, 1} either
Pr[out(Pv∗, Vfr) (1𝜅) = 𝑗] or Pr[out(Pv, Vfr∗) (1𝜅) = 𝑗] is greater
than

√︃
𝐵
𝑗
𝜅 − 1

𝑔 (𝜅) , where 𝐵
1

𝜅 = 𝐵𝜆 and 𝐵0𝜅 = 1 − 𝐵𝜆 . In particular for

𝐵𝜆 = 1

2
, the corrupted party can bias the outcome by almost 1√

2

− 1

2
.

The theorem above states that it is impossible for two unbounded

parties to jointly sample an unbiased public coin. The result is

stronger than the impossibility result by Cleve [24], which states

that it is impossible to jointly flip an unbiased coin if we allow

parties to exit early. The theorem above states that it is impossible

even if we guarantee no party exists the protocol early.

Theorem 5.2 (Information Theoretic Verifiable DP is im-

possible). Any constant round interactive protocols Π for an DP-
mechanismMBin that satisfies Verifiable-DP (Definition 3.1) cannot
have unconditional soundness and statistical zero knowledge.

Proof. Verifiable DP requires that a verifier be able to guarantee

that the randomness generated by a prover remains unbiased, with-

out the verifier ever seeing the randomness. Theorem 5.1, states that

it is impossible for two unbounded parties to even jointly sample a

public unbiased coin without assuming one way functions. Thus

commitment schemes are both necessary and sufficient to jointly

sample an unbiased public coin.

The task of jointly sampling unbiased private randomness is

harder. If two parties could sample unbiased private randomness,

then they could just use the same protocol to sample unbiased pub-

lic randomness, by revealing the randomness. Thus, commitment

schemes are a necessary condition for verifiable DP. Commitments

cannot be both statistically binding and hiding, thus unbounded

soundness and statistical zero knowledge is impossible. □

Connection With Open Problem.

Definition 5.3 (𝛼-useful mechanism). Fix 𝛼 ∈ [0, 1]. Let 𝑢 : X𝑛 ×
Y →∈ {0, 1} be an efficiently computable deterministic function. A

mechanismM is 𝛼-useful for a utility function 𝑢 if for some𝑄 ∈ Q
and for all 𝑋 ∈ X𝑛

Pr

𝑦←M(𝑋,𝑄)
[𝑢 (𝑋,𝑦) = 1] ≥ 𝛼 (12)

In his survey on the complexity of DP, Vadhan [56] asks the

following question. Given 𝑋 ∈ X𝑛 and a differentially private

mechanismM : X𝑛 × Q → Y, is there an efficient utility func-

tion 𝑢 that is 𝛼-useful whenM is IND-CDP but not whenM is

information-theoretically DP. Groce et al. [38] show that if the

range of 𝑢 is in R𝑛 and the utility is measured in terms of the

L𝑝 -norm, then statistical-DP and computational DP are equivalent.

Thus for the separation to hold, the range of 𝑢 must have a more

https://a16zcrypto.com/content/article/public-randomness-and-randomness-beacons/
https://a16zcrypto.com/content/article/public-randomness-and-randomness-beacons/

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

complex structure, such as a graph, a circuit or a proof. Bun et al.
corroborate this result by describing a utility function such that 𝑢

is infeasible (not impossible) whenM is statistical DP and efficient

when M is computational DP [19]. Similar to our definition of

verifiability, their utility function 𝑢 is cryptographic and unnatural

from a data analysis point of view. Specifically, given 𝑦 =M(𝑋,𝑄),
Bun et al. define the utility as the answer to the question of whether

𝑦 is a valid zap proof [33] of the statement “there exists a row in 𝑋

that is a valid message signature pair”. Meanwhile, we define our

utility function as an interactive proof, that checks whether the real

protocol output 𝑦, is indistinguishable from the output of an ideal

run ofM. In Theorem 5.2, we show that verifiable DP is impossible

in the presence of computationally unbounded adversaries. This

provides a candidate for a separation between statistical DP and

computational DP.

However, there are some key differences between our formu-

lation of utility and how it was originally posed. For example, in

Bun et al. , the utility function 𝑢 is a deterministic non-interactive

function that receives the output 𝑦 and a dataset 𝑋 of message-

signature pairs. The task of evaluating utility is separate from the

task of computing DP statistics. In verifiable DP, both the DP statis-

tic and utility are computed simultaneously via a constant round

interactive protocol. Furthermore, the number of rounds of the

utility function is a function of the privacy parameter 𝜖 . Another

point of difference is that, in verifiable DP, the verifier performs the

dual role of evaluating the utility of the mechanism and generating

randomness that prevents a curator from cheating (although it does

not ever see this randomness). In Bun et al. , the verifier’s task is

just to verify the proof. They are not involved in generating the

DP noise. Although we show that information theoretic verifiable

DP is impossible, our definitions allow the adversary more agency.

Thus the two settings are not directly comparable. We defer finding

stronger connections between verifiable DP and finding a utility

function that separates DP as per [56] to future work.

6 PERFORMANCE
This section quantifies the computational cost of ΠBin, our protocol

for computing verifiable DP counting queries. All results reported

below were run on a single core of an Apple M1Mac and the code to

reproduce these results can be found at https://anonymous.4open.

science/r/Verifiable-Differential-Privacy-C6E0/README.md.

In all our experiments, we instantiate the homomorphic com-

mitment scheme using Pedersen Commitments (PC) [51] over the

Ristretto curve
14
. A single commitment operation requires two

multiplications and one addition and takes 156 𝜇𝑠 . We instantiate

OMorra using ΠMorra described in Section 2.2. We instantiate OOR
with the non-interactive Fiat-Shamir transform of the Σ-OR proto-

col described in Appendix B using SHA-3
15

as the random oracle.

In the experiments discussed below, each client 𝑖 ∈ [𝑛] sends com-

mitments to its inputs and a non-interactive Σ-OR proof of their

validity. Additionally, each client sends the prover(s) openings to

its commitments as described in Line 2 of Figure 3.

Table 1 describes the latency of different stages ΠBin with pa-

rameters 𝑛 = 10
6, 𝜖 = 0.095, 𝛿 = 10

−10
, in relation to Figure 3. Note

14
https://doc.dalek.rs/curve25519_dalek/ristretto/struct.RistrettoPoint.html

15
https://docs.rs/sha3/latest/sha3/

Table 1: The table below benchmarks the latency of each stage
of ΠBin for computing single dimension counting queries
with parameters 𝑛 = 10

6, 𝜖 = 0.095, 𝛿 = 10
−10. For a fixed value

of 𝛿 , an 𝜖 = 0.095 corresponds to 𝑛𝑏 = 262144 private coins for
the binomial mechanism.

C-Verifiy Bit-commit P-Verify Morra Agg Check

169 sec 53 sec 45 sec 33 sec 79 ms 189 ms

Each client proves to
the verifier and the
provers in zero
knowledge that their
input x ∈ L

Verifier

Clients

Provers
X2

X1

 clients send shares
of their input to the
provers and hiding
commitments of these
shares to the verifier.

n

X2

X1
X2
X1

y = ℳ(X1, X2)

The provers and
verifier exchange
messages. At the end
the prover output

 and
the verifier decides to
accept or not.

y = ℳ(X1, X2)

Verifiable DP
Protocol

Client
Verification

Setup And
Inputs

Figure 4: The figure above describes the latency of Σ-proof
creation and verification as a function of the privacy param-
eters 𝑛𝑏 and 𝜖. For a fixed 𝛿 = 10

−10, 𝜖 and 𝑛𝑏 have one to one
correspondence given by Lemma 2.7.

that for the fixed value of 𝛿 = 10
−10

, 𝜖 = 0.095 corresponds to

𝑛𝑏 = 262144.

(1) The first column C-Verify describes the time it takes for the

verifier to validate 𝑛 = 10
6
client Σ-OR proofs sequentially

(Lines 3-4).

(2) The second column Bit-commit describes the time it takes

a single prover to sample 𝑛𝑏 private bits and create 𝑛𝑏 non-

interactive Σ-OR proofs of their validity (Lines 5-6).

(3) The third column P-Verify, describes how long it takes the

verifier to validate these proofs (Line 7).

(4) The fourth column describes the time it takes to play Morra,

i.e., commit, open and aggregate 𝑛𝑏 values in Z𝑞 (Lines 9-10).

(5) The fifth column describes the time it takes to aggregate

𝑛𝑏 + 𝑛 vales in Z𝑞 (Line 11).

(6) Finally the last column describes the time it takes to check

the provers outputs are correct (Lines 12-13).

We remark that numbers reported in the table result from run-

ning computations sequentially on a single core. As each round of

ΠBin is independent of the other rounds, these computations could

also be run in parallel. As our main bottleneck is working with

the Σ-proof creation and verification, Figure 4 describes how proof

creation and verification latency scales with the privacy parame-

ter 𝜖 (or number of private coins 𝑛𝑏). Note that for high privacy

settings (small values of 𝜖), the prover(s) need to generate more

private coins to ensure indistinguishability. Specifically, the number

of coins (𝑛𝑏) is proportional to 1/𝜖2 (Lemma 2.7), and the time cost

is then linear in 𝑛𝑏 .

https://anonymous.4open.science/r/Verifiable-Differential-Privacy-C6E0/README.md
https://anonymous.4open.science/r/Verifiable-Differential-Privacy-C6E0/README.md
https://doc.dalek.rs/curve25519_dalek/ristretto/struct.RistrettoPoint.html
https://docs.rs/sha3/latest/sha3/

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Each client proves to
the verifier and the
provers in zero
knowledge that their
input x ∈ L

Verifier

Clients

Provers
X2

X1

 clients send shares
of their input to the
provers and hiding
commitments of these
shares to the verifier.

n

X2

X1
X2
X1

y = ℳ(X1, X2)

The provers and
verifier exchange
messages. At the end
the prover output

 and
the verifier decides to
accept or not.

y = ℳ(X1, X2)

Verifiable DP
Protocol

Client
Verification

Setup And
Inputs

Figure 5: The figure above describes the drop in performance
for using a Sigma protocol to verify that the client’s com-
mitment is wellformed. PRIO and Poplar use lightweight
sketching protocols and general-purpose MPC to check in
zero knowledge whether a client’s input is a one-hot vector
and do not need to assume one-way functions exist. But as
described earlier, they are susceptible to collusion attacks.

Time cost for client verification (MPC case). Clients submit

secret shares of their inputs in the MPC setting. Thus the servers

must verify that the client inputs are valid. For𝑀-dimensional DP-

histogram estimation, the client inputs are restricted to one-hot

encoded vectors of size𝑀 . As discussed in Section 4.2, the sketching

techniques used in PRIO and Poplar allow servers to verify clients

with information-theoretic security. Still, they are vulnerable to

attacks by malicious servers. Our use of Σ-OR-protocols can defend

against such attacks, but it comes at a higher computational cost due

to its reliance on commitments (which assume one-way functions

exist). Figure 5 benchmarks the increase in latency as a function of

the number of dimensions (𝑀) of client input. We remark that the

numbers in Figure 5 are pessimistic as the Sigma-OR proof can be

parallelised across the𝑀 dimensions (at the cost of communication

complexity), whereas the sketching techniques cannot as they are

based on the inner products.

7 RELATEDWORK
Dwork et al. introduced DP and described the Laplace mechanism

for outputting histograms in the trusted curator model [32]. Soon

after, McSherry et al. proposed the exponential mechanism [49]

(equivalently, report noisy max [29]), which lets us compute the

(approximately) most frequent bucket in a histogram, also under

pure differential privacy. Although these mechanisms give us pure

differential privacy and optimal error rates 𝑂 (1𝜖), implementing

such a “central” model requires trusting that the curator to follow

the protocol and not exploit the client data that it sees in plaintext.

Therefore, researchers studied local privacy (LDP) [43] using

randomised response [57] to prevent any other party from seeing

data in plaintext. Recently, Cheu, Smith and Ullman showed that

the randomised response algorithm generalises all locally private

protocols [23]. This generalisation highlights two unavoidable dis-

advantages of local differential privacy. The first is that the accuracy

of the protocol for even the binary histogram is𝑂 (
√
𝑛) compared to

𝑂 (1) in the central model. The second is that randomised response

systems offer a much weaker definition of privacy than the usual

cryptography standards such as semantic security. For example, if

the client flips their original answer with probability 𝑝 = 0.1, the

curator sees their sensitive information in plain text 90% of the time.

Further increasing 𝑝 reduces the accuracy of the protocol dramati-

cally. Consider the example from [25], where 1% of a million people

answer “yes” to a survey about a sensitive topic. If we set 𝑝 = 0.49,

then one-third of the time the central analyser concludes that not a

single member of the population answered “yes”. Thus if we want

to preserve utility, this definition of security is considerably weaker

than the indistinguishability guarantees provided by protocols such

as secret sharing.

Shuffle privacy [5, 22, 34] analyses local mechanisms under the

lens of central privacy and bridges the accuracy gap between local

and central models. Recent results [4, 36] prove that near central

error guarantees are possible with distributed local transforma-

tions. Although this bypasses the accuracy issue of LDP, shuffle

privacy assumes the existence of a secure shuffler, which is non-

trivial to implement. In recent work, Bell et al. show that secure

aggregation realises secure shuffling [8]. However, such protocols

impose the impractical constraint of secure peer-to-peer commu-

nication between clients, and the curator is still a single source

of failure. Despite the immense progress on differentially private

histogram estimation, all known efficient implementations assume

semi-honest participants and are a variant of either randomised

response or the additive mechanism. It only takes a small fraction

of clients to deviate from their prescribed protocol to destroy any

utility of randomised response [23]. Additive mechanisms involve

adding carefully curated randomness to the statistic before being

released as output.

To ensure central DP error without a trusted curator, Dwork et
al. proposed using standard MPC for computing DP statistics [31].

They proposed that each of the 𝐾 servers would own a fraction

of the entire dataset used for computation. As long as not more

than ⌊𝐾
3
⌋ of the servers are dishonest, it is possible to compute

DP-histograms with optimal accuracy. However, the protocol is not

publicly auditable and breaks down in presence of a dishonest ma-

jority of adversarial corruptions. McGregor et al. show a separation

between DP obtained using a trusted curator and that obtained us-

ing MPC [48]. Specifically, they show that there exist computations

(such as inner product or hamming distance) where mechanisms

with (1, 0)-DP incur Ω(
√
𝑛) reconstruction error compared to𝑂 (1)

in presence of a trusted curator. To bridge this gap, Mironov et al.
defined computational differential privacy, a relaxation of tradi-

tional DP [50]. They show that as long as semi-honest OT exists, it

is possible to compute any computationally DP function with the

same error rates as information theoretic DP in a trusted curator

model. Histograms, unlike inner product and hamming distance,

can be computed using MPC with the same error rates as trusted

curator DP, under infomation theoretic DP. Thus recent work has

focused on computing histograms using MPC.

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 2: Summary of efforts MPC computation of aggregate DP statistics. The active security column describes if the protocols
allowed participants to deviate arbitrarily. The Central DP column describes if the protocol output satisfies constant DP error
independent of the number of clients participating in the protocol. The auditable property describes if the final output can be
verified for correctness. Some interactive protocols leak additional information (such as prefix information about client input
bits) beyond just the DP output. The leakage column describes if the prescribed protocols suffered from additional leakage.

Protocol Active Security Central DP Auditable Zero Leakage

Cryptographic RR [3] ✓ ✓
Verifiable Randomization Mechanism [45] ✓ ✓ ✓
Securely Sampling Biased Coins [21] ✓ ✓
MPC-DP heavy hitters[13] ✓ ✓
PRIO [25] ✓ ✓
Brave STAR [28]

Sparse Histograms [8] ✓
Crypt-𝜖 [53] ✓
Poplar [15] ✓ ✓
Our work ✓ ✓ ✓ ✓

Bohler et al. use MPC to compute heavy hitters with semi-honest

adversaries [13]. Researchers at Brave use oblivious pseudorandom

functions (OPRF’s) [41] and Shamir secret sharing [54] to compute

𝑘-anonymous histograms in the two server setting [28]. However,

they do not include support for differential privacy. Researchers

at Google use linear homomorphic encryption and OPRFs to com-

pute differentially private sparse histograms in two-server models

(2PC) [9], but require both the servers and clients to be semi-honest.

Corrigan-Gibbs propose PRIO, a protocol in which a small number

of servers receive arithmetic shares of client input to compute differ-

entially private histograms [25]. PRIO uses shared non interactive

proofs (SNIP’s) to prevent clients from submitting illegal inputs

but the protocol is only honest-verifier zero knowledge. Following

the popularity of PRIO, Addanki et al. introduce PRIO+ to work

over Boolean shares [1]. Boneh et al. use distributed point func-

tions (DPFs) [18] to compute DP heavy-hitters in the two server

model to propose a system called Poplar [15] that is zero knowl-

edge even in presence of active adversaries. Roy et al. introduce
Crypt-𝜖 , a generic system to compute differentially private statisitcs

using garbled circuits and linear homomorphic encryption [53]. The

general purpose natue of Crypt-𝜖 guarantees security only in the

semi-honest threat model. Ambainis et al. proposed cryptographic

randomised response [3] but are able to only guarantee local differ-

ential privacy. Table 2 summarises the assumptions under which

the latest MPC protocols that have been used to compute DP statis-

tics. As described earlier, existing work either assumes semi-honest

adversaries or is not auditable. In 2021, the State Of Alabama sued

the US deparment of commerce with regard to the errors caused

due to random noise [42]. Differential Privacy by its defintion intro-

duces a random noise blanket that tradesoff accuracy for privacy.

This randomness is unavoidable if we wanted to protect individual

privacy, but it also enables a corrupt aggregating server to disguise

adversarial behaviour as randomness. In our paper, we first upgrade

to security against active adversaries. Like existing literature we

work in the dishonest majority model and further require the pro-

tocols to be publicly auditable. Our privacy constraints describe the

most strict adversarial setting for practical deployment.

8 CONCLUDING REMARKS
We have introduced the notion of verifiable differential privacy

to prevent malicious aggregators from using random noise as an

attack vector. We have demonstrated the feasibility of this notion

and showed that computational DP is necessary to achieve verifi-

ability. A natural open question is to provide protocols for more

complex DP mechanisms. Our protocol deliberately uses simple

randomness (a Binomial distribution constructed from Bernoulli

random variables), as making verifiable Laplace or Gaussian noise

is far from clear. Similarly, approaches based on sampling from

an appropriate distribution (the exponential mechanism) may be

challenging since the distribution itself leaks information about the

private data.

Acknowledgements.We thank the anonymous shepherd for guid-

ing us through implementing our results on elliptic curves, im-

proving the performance, and for helping us to clarify the limits of

interactive proofs for differential privacy. This work is supported

in part by the UKRI Prosperity Partnership Scheme (FAIR) under

the EPSRC Grant EP/V056883/1, and the Alan Turing Institute

REFERENCES
[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-

niadou. 2022. Prio+: Privacy preserving aggregate statistics via boolean shares.

In Security and Cryptography for Networks. 516–539.

[2] Ben Adida. 2008. Helios: Web-based Open-Audit Voting.. In USENIX security

symposium, Vol. 17. 335–348.

[3] Andris Ambainis, Markus Jakobsson, and Helger Lipmaa. 2004. Cryptographic

randomized response techniques. In International Workshop on Public Key

Cryptography. 425–438.

[4] Victor Balcer and Albert Cheu. 2020. Separating Local & Shuffled Differential

Privacy via Histograms. arXiv:1911.06879 [cs] (2020). arXiv: 1911.06879.

[5] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2019. The privacy

blanket of the shuffle model. In International Cryptology Conference. 638–667.

[6] Carsten Baum, Ivan Damgård, and Claudio Orlandi. 2014. Publicly auditable

secure multi-party computation. In Security and Cryptography for Networks.

175–196.

[7] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and Peter Scholl. 2021.

Mac’n’Cheese : Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In International Cryptology Conference. 92–122.

[8] James Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana

Raykova. 2020. Secure single-server aggregationwith (poly) logarithmic overhead.

In ACM CCS. 1253–1269.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[9] James Bell, Adria Gascon, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana

Raykova, and Phillipp Schoppmann. 2022. Distributed, Private, Sparse Histograms

in the Two-Server Model. Cryptology ePrint Archive (2022).

[10] Robert M Bell and Yehuda Koren. 2007. Lessons from the netflix prize challenge.

Acm Sigkdd Explorations Newsletter 9, 2 (2007), 75–79.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 2019. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation. In Providing

Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and

Silvio Micali. 351–371.

[12] Manuel Blum. 1983. Coin flipping by telephone a protocol for solving impossible

problems. ACM SIGACT News 15, 1 (1983), 23–27.

[13] Jonas Böhler and Florian Kerschbaum. 2021. Secure Multi-party Computation of

Differentially Private Heavy Hitters. In ACM CCS. 2361–2377.

[14] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable

delay functions. In CRYPTO. 757–788.

[15] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2021. Lightweight Techniques for Private Heavy Hitters. arXiv:2012.14884 [cs]

(2021).

[16] danah boyd and Jayshree Sarathy. 2022. Differential Perspectives: Epistemic

Disconnects Surrounding the US Census Bureau’s Use of Differential Privacy.

Harvard Data Science Review (Forthcoming) (2022).

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions. In ACM CCS. 1292–1303.

[18] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with pre-

processing via function secret sharing. In Theory of Cryptography Conference.

341–371.

[19] Mark Bun, Yi-Hsiu Chen, and Salil Vadhan. 2016. Separating computational

and statistical differential privacy in the client-server model. In Theory of

Cryptography Conference. 607–634.

[20] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and

more. In IEEE S&P. 315–334.

[21] Jeffrey Champion, Abhi Shelat, and Jonathan Ullman. 2019. Securely sampling

biased coins with applications to differential privacy. In ACM CCS. 603–614.

[22] Albert Cheu. 2021. Differential privacy in the shuffle model: A survey of separa-

tions. arXiv preprint arXiv:2107.11839 (2021).

[23] Albert Cheu, Adam Smith, and Jonathan Ullman. 2021. Manipulation attacks in

local differential privacy. In IEEE S&P. 883–900.

[24] Richard Cleve. 1986. Limits on the security of coin flips when half the processors

are faulty. In ACM STOC. 364–369.

[25] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. arXiv:1703.06255 [cs] (2017).

[26] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of partial

knowledge and simplified design of witness hiding protocols. In CRYPTO. 174–

187.

[27] Ivan Damgård. 2000. Efficient concurrent zero-knowledge in the auxiliary string

model. In the Theory and Applications of Cryptographic Techniques. 418–430.

[28] Alex Davidson, Peter Snyder, EB Quirk, Joseph Genereux, and Benjamin Livshits.

2021. STAR: Distributed Secret Sharing for Private Threshold Aggregation

Reporting. arXiv preprint arXiv:2109.10074 (2021).

[29] Zeyu Ding, Daniel Kifer, Thomas Steinke, Yuxin Wang, Yingtai Xiao, Danfeng

Zhang, et al. 2021. The permute-and-flip mechanism is identical to report-noisy-

max with exponential noise. arXiv preprint arXiv:2105.07260 (2021).

[30] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2020. Line-point zero knowl-

edge and its applications. Cryptology ePrint Archive (2020).

[31] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation.

In the theory and applications of cryptographic techniques. 486–503.

[32] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography

conference. 265–284.

[33] Cynthia Dwork and Moni Naor. 2000. Zaps and their applications. In Proceedings

41st Symposium on Foundations of Computer Science. 283–293.

[34] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2020. Amplification by Shuffling: From Local to

Central Differential Privacy via Anonymity. arXiv:1811.12469 [cs, stat] (2020).

[35] Simson Garfinkel, JohnMAbowd, and Christian Martindale. 2019. Understanding

database reconstruction attacks on public data. CACM 62, 3 (2019), 46–53.

[36] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker.

2020. On the Power of Multiple Anonymous Messages. arXiv:1908.11358 [cs,

stat] (2020).

[37] Oded Goldreich. 2007. Foundations of cryptography. Vol. 1: Basic tools (digitally

print. 1. paperback version ed.). Vol. 1. Cambridge Univ. Press, Cambridge.

[38] AdamGroce, Jonathan Katz, and Arkady Yerukhimovich. 2011. Limits of computa-

tional differential privacy in the client/server setting. In Theory of Cryptography

Conference. 417–431.

[39] Iftach Haitner and Eran Omri. 2014. Coin flipping with constant bias implies

one-way functions. SICOMP 43, 2 (2014), 389–409.

[40] Luke Harrison, Samiran Bag, Hang Luo, and Feng Hao. 2022. VERICONDOR:

End-to-End Verifiable Condorcet Voting without Tallying Authorities. In ACM

ASIACCS. 1113–1125.

[41] Stanisław Jarecki and Xiaomin Liu. 2009. Efficient oblivious pseudorandom func-

tion with applications to adaptive OT and secure computation of set intersection.

In Theory of Cryptography Conference. 577–594.

[42] Brennan Center For Justice. 2021. Alabama v. U.S. Dept of Commerce. https://

www.brennancenter.org/our-work/court-cases/alabama-v-us-dept-commerce

[43] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. 2011. What can we learn privately? SICOMP 40, 3 (2011), 793–

826.

[44] Shiva Prasad Kasiviswanathan, Mark Rudelson, and Adam Smith. 2013. The

power of linear reconstruction attacks. In ACM-SIAM SODA. 1415–1433.

[45] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2021. Preventing Ma-

nipulation Attack in Local Differential Privacy Using Verifiable Randomization

Mechanism. In IFIP Conf. on Data and Applications Security and Privacy. 43–60.

[46] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation proof

technique. Tutorials on the Foundations of Cryptography (2017), 277–346.

[47] Ueli Maurer. 2009. Unifying zero-knowledge proofs of knowledge. In Cryptology

in Africa. 272–286.

[48] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,

and Salil Vadhan. 2010. The limits of two-party differential privacy. In IEEE

FOCS. 81–90.

[49] Frank McSherry and Kunal Talwar. 2007. Mechanism design via differential pri-

vacy. In 48th IEEE Symposium on Foundations of Computer Science (FOCS’07).

94–103.

[50] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-

tational differential privacy. In International Cryptology Conference. 126–142.

[51] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure

verifiable secret sharing. In CRYPTO. 129–140.

[52] Varun Raturi, Jinhyun Hong, David Philip McArthur, and Mark Livingston. 2021.

The impact of privacy protection measures on the utility of crowdsourced cycling

data. Journal of Transport Geography 92 (2021), 103020.

[53] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,

and Somesh Jha. 2020. Crypt𝜖 : Crypto-assisted differential privacy on untrusted

servers. In ACM SIGMOD. 603–619.

[54] Adi Shamir. 1979. How to share a secret. CACM 22, 11 (1979), 612–613.

[55] Justin Thaler. 2020. Proofs, arguments, and zero-knowledge.

[56] Salil Vadhan. 2017. The complexity of differential privacy. In Tutorials on the

Foundations of Cryptography. Springer, 347–450.

[57] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

[58] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine: fast,

scalable, and communication-efficient zero-knowledge proofs for boolean and

arithmetic circuits. In IEEE S&P. 1074–1091.

A FORMAL SECURITY DEFINITIONS
Definition A.1 (Discrete Log Assumption). For all PPT adversaries

A, there exists a negligible function 𝜇 such that

Pr

𝑥 = 𝑥 ′ :

(G𝑞, 𝑔) ← Setup(1𝜅)
𝑥

𝑅←− Z𝑞, ℎ = 𝑔𝑥

𝑥 ′ ← A(pp, ℎ)

 ≤ 𝜇 (𝜅)
Definition A.2. (Hiding Commitments) Let 𝜅 be the security pa-

rameter. A commitment scheme is said to be hiding for all PPT

adversaries A the following quantity is negligible. The commit-

ment is perfectly hiding if 𝜇 (𝜅) = 0.

Pr


𝑏 = 𝑏′ :

pp← Setup(1𝜅)
𝑏

𝑅←− {0, 1}, 𝑟𝑥𝑏
𝑅←− Rpp

(𝑥0, 𝑥1) ∈ M2

pp ← A(pp)
𝑐 = Com(𝑥𝑏 , 𝑟𝑥𝑏), 𝑏′ = A(pp, 𝑐)


≤ 𝜇 (𝜅)

Definition A.3. (Binding Commitments) Let 𝜅 be the security

parameter. A commitment scheme is said to be binding if, for all

https://www.brennancenter.org/our-work/court-cases/alabama-v-us-dept-commerce
https://www.brennancenter.org/our-work/court-cases/alabama-v-us-dept-commerce

Interactive Proofs For Differentially Private Counting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Verifier Prover
1 : Common Input 𝑔,ℎ,G𝑞, 𝑞, 𝑐

2 : 𝑏, 𝑣1, 𝑒1
𝑅←− Z2𝑞 ; Set 𝑑0 = ℎ𝑏 and 𝑑1 such that 𝑑1

(𝑐
𝑔

)𝑒1
= ℎ𝑣1

3 : (𝑑0, 𝑑1) (𝑑0, 𝑑1) (𝑑0, 𝑑1)

4 : 𝑒
𝑅←− Z𝑞 𝑒

𝑒0 = 𝑒 − 𝑒1 mod 𝑞; 𝑣0 = 𝑏 + 𝑒0𝑟

5 : Check 𝑒1 + 𝑒0 = 𝑒 (𝑣0, 𝑒0, 𝑣1, 𝑒1)
6 : Check 𝑑0𝑐

𝑒0 = ℎ𝑣0 and 𝑑1𝑐
𝑒1 = 𝑔𝑒1ℎ𝑣1

Figure 6: Proof for convincing Vfr that 𝑐 = 𝑔ℎ𝑟 is in 𝐿Bit without revealing that 𝑥 = 1.

Verifier Prover
1 : Common Input 𝑔,ℎ,G𝑞, 𝑞, 𝑐

2 : 𝑏, 𝑣0, 𝑒0
𝑅←− Z2𝑞 . Set 𝑑1 = ℎ

𝑏
and 𝑑0 such that 𝑑0𝑐

𝑒0 = ℎ𝑣0

3 : (𝑑0, 𝑑1) (𝑑0, 𝑑1) (𝑑0, 𝑑1)

4 : 𝑒
𝑅←− Z𝑞 𝑒

𝑒1 = 𝑒 − 𝑒0 mod 𝑞; 𝑣1 = 𝑏 + 𝑒1𝑟

5 : Check 𝑒1 + 𝑒0 = 𝑒 (𝑣0, 𝑒0, 𝑣1, 𝑒1)
6 : Check 𝑑0𝑐

𝑒0 = ℎ𝑣0 and 𝑑1𝑐
𝑒1 = 𝑔𝑒1ℎ𝑣1

Figure 7: Proofs for convincing Vfr that 𝑐𝑥 = ℎ𝑟𝑥without revealing the value 𝑥 .

PPT adversaries A, there exists a negligible function 𝜇 such that������Pr
(𝑐𝑥0 = 𝑐𝑥1) :

pp← Setup(1𝜅)
𝑥0, 𝑟𝑥0 , 𝑥1, 𝑟𝑥1 ← A(pp)

s.t 𝑥0 ≠ 𝑥1

 −
1

2

������ ≤ 𝜇 (𝜅)
The commitment is perfectly binding if 𝜇 (𝜅) = 0.

B OR PROTOCOL
Define as public parameters a cyclic prime order group G𝑞 and

generators 𝑔 and ℎ for G𝑞 . LetMpp = Rpp = Z𝑞 . Pedersen Commit-

ments defined below satisfy all properties described in Section 2.2.

Com(𝑥, 𝑟𝑥) = 𝑔𝑥ℎ𝑟𝑥 (13)

For the sake of completeness, we describe the interactive disjunc-

tive OR proof using Σ-protocols from [26]. Note that the Σ protocols

are cheating verifier zero knowledge even without a random oracle.

Maurer [47] shows that if the verifier’s challenge space is polyno-

mial sized, then the protocol can be shown to be zero knowledge.

Damgard et al. show that by using Trapdoor commitments [27], one

can preserve soundness and get zero knowledge but the protocol

now has four messaging rounds instead of 3. Next, we describe the

Σ-protocol that can be used to verify the OR condition.

Let 𝑥 ∈ {0, 1} and 𝑐𝑥 = Com(𝑥, 𝑟𝑥) for 𝑟𝑥
𝑅←− Z𝑞 be the commit-

ment to 𝑥 . Given 𝑐𝑥 , ΠOR is an interactive zero knowledge proof

between a prover Pv and a verifier Vfr to show that 𝑐𝑥 ∈ 𝐿Bit. The
security properties can be found in [26, 27, 55]. Figure 6 and Figure

7 succintly describe the OR protocol to prove that 𝑐𝑥 ∈ 𝐿Bit.

𝐿Bit = {𝑐𝑥 : 𝑥 ∈ {0, 1} ∧ 𝑐𝑥 = Com(𝑥, 𝑟𝑥)} (14)

C DEFERRED SECURITY PROOFS

Single Curator Simulator Proof.

Theorem C.1. Let Vfr∗ denote the corrupted verifier. There exists
a PPT Simulator Sim(Vfr∗) such that for all 𝑦 =MBin (𝑋,𝑄)

View [Π(Pv, Vfr)] 𝑐≡ Sim(Vfr∗ (𝑦, ®𝑟𝑣, 𝑧, pp)

where 𝑧 ∈ {0, 1}poly(𝜅) and ®𝑟𝑣 ∈ {0, 1}poly(𝜅) represents auxil-
iary input and randomness available to all the corrupted parties.

Proof. Denote the corrupted verifier as Vfr∗. Sim receives on

its input tape the inputs for Vfr∗. The ideal oracle functionality
MBin is defined as before. Let Sim denote shorthand for SimVfr∗ .

We construct the simulator as follows:

(1) Sim receives the public messages {𝑐𝑖 }𝑖∈[𝑛] .
(2) Sim invokesMbin with the empty string 𝜆 and receives 𝑦

as defined in equation (7).

(3) Sim samples 𝑧
𝑅←− Rpp and sets 𝑐 = Com(𝑦, 𝑧).

(4) Sim samples 𝑐′
2
, . . . , 𝑐′𝑛𝑏 such that 𝑐′

𝑗
= Com(1, 𝑠 𝑗) where

𝑠 𝑗
𝑅←− Rpp. It sets 𝑐′

1
= 𝑔1𝑎 where 𝑎 = 𝑐 ×

(∏𝑛𝑏
𝑗=2

𝑐′
𝑗

)−1
×(∏𝑛

𝑖=1 𝑐𝑖

)−1
× 𝑔−1.

(5) Sim sends over {𝑐 𝑗 } 𝑗∈[𝑛𝑏] toA pretending to be the honest

prover (Line 4 of Figure 3).

(6) Sim pretends to be the prover and jointly invokes OMorra
with A to sample 𝑛𝑏 unbiased public bits (𝑏1, . . . , 𝑏𝑛𝑏).

(7) Sim sends 𝑦 and 𝑧 to A and outputs whatever A outputs.

□

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Privacy and Security Background

	3 Security Models for Verifiable DP
	3.1 Verifiable DP

	4 Verifiable Binomial Mechanism
	4.1 An Intuitive But Incomplete Protocol
	4.2 Extending To Client-Server MPC-DP
	4.3 Main Protocol Description
	4.4 Public Verifiability and Randomness

	5 Separation Under Verifiable DP
	6 Performance
	7 Related Work
	8 Concluding Remarks
	References
	A Formal Security Definitions
	B OR Protocol
	C Deferred Security Proofs

