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Summary

Is granola healthy? What about steak? What knowledge do we use when judging
the healthiness of different foods? Previous research recognizes that various non-
nutrient related attributes are integral to food healthiness perceptions. However,
our understanding of what contributes to healthiness judgments is constrained by
researcher or participant assumptions. In this thesis, we uncover these attributes
through a study of how different food names co-occur with other words in large-scale
language data. Inspired by previous work using language data to predict judgments
and choices, we use this data-driven methodology to reveal the psychological under-
pinnings of healthiness perceptions across all food categories.

Chapter 2 investigates the representation of superfoods in online news arti-
cles. By comparing articles written about the same 25 foods in a superfood context
versus not, we were able to identify words uniquely used to characterize a food as a
superfood. Our findings show that superfoods have the strongest association with
health, far outweighing associations between organic and health, and even organic
and naturalness. Moreover, mentions of the medicinal properties of these foods
frequently occurred in a superfood context. Overall, the findings from this paper
illustrate the complex, and often biased, representation of superfoods.

Chapter 3 demonstrates the consistently high ability of knowledge represen-
tations (taken from computational models) in predicting people’s healthiness judg-
ments of foods. This is found to be the case even if people are shown front-of-pack
nutrient and calorie information. We also show how this approach can be used to
uncover words and concepts that are more associated with healthy and unhealthy
foods. Here, our results show that people’s judgments of food healthiness are largely
explained by the strength of association with naturalness and rawness. Conversely,
we find environmental and social contextual factors are strongly associated with the
model’s predictions of unhealthiness.

xiv



Chapter 1

Introduction

1.1 Prologue

Imagine you pick up your phone and check the news. While scrolling, you see a

headline entitled “A rasher of bacon a day increases risk of cancer”. This grabs

your attention, so you open the news article. While reading, you come across words

such as “latest study”, “red meat”, “harmful”, “sausages”, among many others.

Health is a topic of interest to you, and so you regularly read articles about foods

and their relation to health. For instance, on another day you read an article called

“The lifesaving food 90% are not eating enough of”, with references to “live longer”,

“fiber”, “pulses such as beans, lentils and chickpeas”. Now, you feel hungry, so you

head to the shop for a sandwich. When deciding what to have, you narrow it down

to your two favorite options: the “Chicken & Maple Cured Bacon Sandwich” and

the “Falafel & Hummus Wrap”. You go for the wrap, as it sounds like the health-

ier option. When making that healthiness judgment, however, you did not compare

nutrient content information. If you had, you would have seen that the nutrient

content for all key nutrients, except fiber, was worse for the wrap (based on nutri-

ent composition values for real food products). To an outsider, they would likely

conclude you either valued fiber content over the other nutrients, or health was not

your primary motivator. However, instead, you used learned associations with the

food names and product packaging to make this choice. Recent advances in compu-

tational science have raised the possibility of learning more about these associations

through analyzing linguistic co-occurrences in large-scale natural language texts, like

news articles. Thus, the aim of this thesis is to investigate the capability of such a

1



computational approach in approximating what people universally associate with the

intangible concept of food healthiness. Ultimately, this research will contribute to

our understanding of naturalistic decision-making as well as food healthiness, with

consequences for designing and evaluating related behavioral interventions.

1.2 Relevance of Food Healthiness Perception Research

How can we help people make better, healthier, food choices? This overarching

question dominates the psychology and behavioral science literature in the domain

of food choice (Downs et al., 2009; Mazzocchi et al., 2015; Vecchio and Cavallo,

2019; Wyse et al., 2021). Consumers reveal remarkably accurate recollection of

official generalized dietary advice (Laguna-Camacho and Booth, 2015; Paquette,

2005; Spiro and Wood, 2021), as well as a growing interest and preference for healthy

eating (Plasek et al., 2020; Ronteltap et al., 2012). However, paradoxically, countries

of all income levels are now facing a double burden of obesity and undernutrition

(World Health Organisation, 2021).

Given the importance of food healthiness perceptions in making healthy food

choices (Steinhauser and Hamm, 2018), there has been a substantial amount of re-

search dedicated to understanding healthiness judgment errors (Carels et al., 2006;

Gomez, 2013; Zou and Bhatia, 2021), as well as trying to correct inaccurate percep-

tions of commonly consumed foods (Borgmeier and Westenhoefer, 2009; Hagmann

and Siegrist, 2020; Manippa et al., 2020; Vanderlee et al., 2021). Still, despite best

efforts, consistently effective and evidenced-based approaches for helping consumers

make well-informed and healthier food choices are yet to be found (Bandy et al.,

2021; Brown et al., 2011; Gibson-Moore and Spiro, 2021).

1.3 The Complexity of Objective Food Healthiness

A caveat, of course, is that a food cannot be healthy or unhealthy (Rayner, 2017;

Scarborough and Rayner, 2014). In fact, describing foods as “healthy” or in terms of

“healthiness” has been contested in favor of “healthful(ness)”, since foods themselves

do not develop chronic diseases (Scarborough and Rayner, 2014). Nonetheless, these

aforementioned terms will be used interchangeably in this thesis, as is often the case

in the relevant literature and mainstream discourse.

2



Irrespective, a major challenge is that there is no gold standard measure for

the healthfulness of single foods (Pinho-Gomes et al., 2021). Even among experts,

there is much contention over how to establish food healthfulness objectively (Lob-

stein and Davies, 2009; Motoki et al., 2021; Nicklas et al., 2014; Plasek et al., 2020).

For some, food healthfulness is synonymous with nutrient density (see Nicklas et al.,

2014), others argue environmental and social aspects of well-being should also be

considered (Oljans et al., 2018), and the majority emphasize that the healthfulness

of individual foods should always be evaluated within the context of a person’s total

diet (Freeland-Graves and Nitzke, 2013; Plasek et al., 2020; Rayner, 2017; Scarbor-

ough and Rayner, 2014). That said, certified nutritional experts do agree that no

single food or food group can provide us with all the nutrients we need for good

health. Therefore, most experts are reluctant to rank the healthfulness of individual

foods (Gaspar et al., 2020; Nicklas et al., 2014).

Instead, experts encourage certain nutrients and food groups to be eaten

more (i.e., protein, fiber, fruit and vegetables, and nuts) and others to be eaten

less (i.e., foods high in energy, saturated fats, sodium, and sugars). As such, the

official recommendation across all countries for a healthy diet is balance, variety,

and everything in moderation (de Ridder et al., 2017). This advice is encompassed

within broad dietary guidelines, such as the EatWell Guide, to ensure recommended

nutrient intakes are met (Freeland-Graves and Nitzke, 2013), while recognizing that

a variety of different diets can meet nutritional needs (Green, 2015).

1.4 The Shift to Individual Food Healthiness

In recent years, however, there has been mounting pressure to classify or rank the

healthfulness of individual foods (Pinho-Gomes et al., 2021). For one, consumers

have communicated confusion over how to put broad dietary guidelines into practice

(Lobstein and Davies, 2009). This is because most food choices involve decisions

between foods within the same food category or product line, and some food items

also contain multiple ingredients e.g. ready meals (Lobstein and Davies, 2009).

Second, there has been a push to regulate marketing and advertising of foods high in

fat, salt and sugar (HFSS foods), which requires a universal and objective healthiness

criteria (Pinho-Gomes et al., 2021).

Therefore, for practical purposes, measures of individual food healthiness
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have been developed that reduce the concept of food healthiness to a food’s nutri-

tional composition and energy density (Lobstein and Davies, 2009; Nicklas et al.,

2014; Santos et al., 2021; Scarborough et al., 2007a). Specifically, in this nutrient

density approach to healthiness, these policy tools emphasize nutrients with the

most evidence for increasing or decreasing the risk of non-communicable diseases

such as Type-2 diabetes, high blood pressure, and some cancers (Jones et al., 2019).

1.5 A Nutrient-Focused Approach

1.5.1 Nutrient Labeling

Nutritional labeling is one of the most prominent policy tools worldwide for helping

consumers make more healthful food choices (European Food Information Council,

2016; Kanter et al., 2018; van der Bend and Lissner, 2019). The premise is that

visibility of nutrient content on food packaging will allow consumers to identify food

items that are more nutrient-rich and lower in energy density (An et al., 2021). By

informing consumers of nutrient content, and directing their attention towards this

information, it is hoped they will be guided towards choosing the healthier option

(An et al., 2021; Downs et al., 2009; Song et al., 2021).

At a minimum, back-of-pack nutrient labeling on food packaging must state

energy (kCal and kJ), fat, saturates, sugar, salt, carbohydrates, and protein con-

tent (Ogundijo et al., 2021; Santos et al., 2021). Moreover, several supplementary

nutrients (e.g., monounsaturated fats, polyunsaturated fats, and fiber) can also be

voluntarily declared (EU Regulation No. 1169/2011).

However, due to the limited success of such back-of-pack nutrient labeling

(Muller and Ruffieux, 2020; Rønnow, 2020), 31 countries have also implemented

front-of-pack (FoP) nutrient labeling in line with World Health Organization (WHO)

recommendations (Song et al., 2021). The purpose of all FoP nutrient labeling is

to complement, summarize and simplify back-of-pack labeling information by high-

lighting energy (kCal and kJ), fat, saturated fat, sugar, and salt; the key nutrients

from a population nutrition perspective (Jones et al., 2019; Santos et al., 2021).
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1.5.2 Nutrient Profiling

In contrast, nutrient profiling models are a widely used policy tool that classifies or

ranks foods according to their nutritional composition (Bandy et al., 2021; Scarbor-

ough et al., 2007a). Their specific purpose is to regulate both health and nutrient

claims on food products, and food advertising aimed at children (Pinho-Gomes et al.,

2021). Furthermore, nutrient profile models are used to decide how food items can

be reformulated to increase their healthfulness, as well as which foods should be

subject to health-related taxes (Rayner, 2017).

There are a variety of different nutrient density algorithms in use across

different countries (Kissock et al., 2021; Nicklas et al., 2014). This is largely due to

differing views on the standard units or serving sizes, but also what (and how many)

nutrients should be included (see Nicklas, 2014). Nevertheless, if we take the UK-

Ofcom nutrient profile model as an example, we can observe that the accepted key

nutrients are similar to front-of-pack nutritional labeling (energy density, saturated

fat, sugar, sodium), with fat content excluded but protein, fruit/vegetable/nut (as

a percentage), and fiber content also included (Rayner, 2017).

1.6 Measures of Food Healthiness Perception Accuracy

Currently, most of our insights into lay people’s healthiness perceptions are in ref-

erence to key nutrient content (Bucher et al., 2016; González-Vallejo et al., 2016;

Mötteli et al., 2016; Rizk and Treat, 2014). As increasing adherence to recommended

nutrient intakes is the goal, understanding healthiness perceptions of individual

foods has also been studied using a corresponding nutrient-focused approach. Thus,

judgment accuracy is typically assessed against scores calculated from nutrient pro-

filing models (Bucher et al., 2016, 2015), or from the key nutrient criteria used in

nutritional labeling and dietary guidelines (De Vlieger et al., 2017; Laguna-Camacho

et al., 2018; Mötteli et al., 2016; Rizk and Treat, 2014).

Judgment discrepancies with objective measures have been commonly at-

tributed to either lack of nutritional knowledge (Mötteli et al., 2016; Rizk and

Treat, 2014), not using nutrient labels (Bucher et al., 2016), as well as overvalu-

ing certain salient nutrients or keywords (e.g. “fruit”) presumably taken from the

food packaging (Bucher et al., 2015; Rizk and Treat, 2014; Sütterlin and Siegrist,
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2015). However, these studies do not offer generalizable insights into healthiness

perceptions as they are often focused on products from one food category (mainly

cereals, snacks, or beverages) (Bucher et al., 2016; González-Vallejo et al., 2016),

or one meal (typically breakfast) (De Vlieger et al., 2017; Laguna-Camacho et al.,

2018; Sütterlin and Siegrist, 2015).

Evidently, the perceived importance of the different key nutrients varies de-

pending on the food stimuli used, with existing regression-based studies highlighting

any of fat, fiber, sugar, nut or seed, and fruit or vegetable content as significant

predictors (Bucher et al., 2016; De Vlieger et al., 2017; Rizk and Treat, 2014). Nev-

ertheless, these nutrient-based regression models (using various combinations of key

contents) could only predict between 58%-71% of variance in healthiness judgments

(Bucher et al., 2016, 2015). It should also be noted that these models were fit-

ted to the entire dataset, without the use of cross-validation or separate testing

data (de Rooij and Weeda, 2020). Taken together with the finding that there is

no correlation between nutritional knowledge and reliance on certain key nutrients

(Orquin, 2014; Rizk and Treat, 2014), it raises the question of whether other (non-

nutrient) factors play a bigger role in food healthiness perceptions and judgments

than currently assumed.

1.7 Limitations of Objective Food Healthiness Measures

Interestingly, experts state that nutrient profiling models are not a policy tool in-

tended as dietary advice for consumers (Rayner, 2017; Scarborough and Rayner,

2014). This is because the presence of non-key nutrients and contextual information

(e.g. foods consumed alongside a given food) should be important to healthiness

perception accuracy (Scarborough and Rayner, 2014).

Indeed, Bucher et al. (2015) does acknowledge that some judgment discrep-

ancies may be due to limitations of the nutrient profiling model as an objective

measure. As an example, for smoked salmon, the researchers state consumers likely

also consider omega-3 content, whereas the UK-Ofcom nutrient profile model does

not take such supplementary nutrients into account. Similarly, in the same study,

it was postulated that consumers may have overestimated the unhealthiness of Mc-

Donald’s fries because of associations with the brand name, and other common

accompanying foods like added salt and sauces. The UK-Ofcom nutrient profile
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model, on the other hand, categorized these fries as “healthy”.

In another study, participants were asked to serve themselves food for an

entire day using a fake food buffet, containing 128 food replicas of perishable foods

alongside 51 single-packet portions of real foods (Mötteli et al., 2016). Participants

were randomly assigned to one of two conditions - to either demonstrate what they

would normally eat (control group), or what they would choose for a healthy and

balanced diet (healthy group). The results showed that consumers still exceeded

recommended intakes of sugar and salt when they were purposefully making healthy

food choices. As a result, Mötteli et al. (2016) recommended increasing nutritional

knowledge in the public. However, upon closer inspection, it can be observed that

the healthy choice group did choose fewer sweets, salty snacks, soft drinks, and fast

food products than the control group. Instead, the high negative nutrient content

was a result of consuming more foods like fruit juices, cheese, smoked salmon, and

vegetarian products such as nuts, falafel, and salad dressing. Principally, these foods

are from, or associated with, the main food groups provided in the broad dietary

guidelines (Rayner, 2017). Thus, arguably, the aforementioned foods could make the

total diet more healthy as intended (Nicklas et al., 2014; Rayner, 2017; Scarborough

and Rayner, 2014).

Drawing conclusions about whether these foods are objectively healthier

choices (not to mention what appropriate portion sizes might be) is outside the scope

of this thesis, and part of a longstanding dilemma (see Nicklas et al., 2014; Scarbor-

ough & Rayner et al., 2014). Nevertheless, this apparent complexity demonstrates

how the effectiveness of our current evaluation methods, and our understanding of

consumer healthiness perception accuracy, are both not clear-cut.

1.8 Importance of Non-Nutrient Related Attributes

Even dietitians mention a relevance of attributes outside of key nutrients when

judging the healthiness of individual foods (Scarborough et al., 2007b; Thurecht

et al., 2018, 2020). For instance, the presence of “whole-grains” was the most

important cue of healthiness for bread and breakfast cereals, whereas it was an

absence of “non-nutritive additives” when making healthiness judgments for flavored

yogurt (Thurecht et al., 2018). Indeed, dietitians also consider nutrients that are

not necessarily provided on food packaging (e.g. “calcium”) as well as keywords like
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“fruit or vegetable”, “takeaway”, “fried” (Scarborough et al., 2007b).

Of particular interest is the study by Perkovic et al. (2021), who used a psy-

chometric paradigm to explore food healthiness perceptions. This is a method that

allows for quantitative representations of both nutrient and non-nutrient attributes.

Recognizing that there are a wide range of attributes that may influence perceptions

of food healthiness, Perkovic et al. (2021) presented participants with 43 common

food items (from a range of food categories) and asked them to rate the healthiness

of each of these foods using a seven-point Likert scale. Following this, the same

participants were presented with the 43 food stimuli again, and asked to rate each

of them on a predetermined set of characteristics (e.g., sugar content, fiber content,

level of processing, origin (local vs nonlocal). In total, there were 17 characteris-

tics, taken from the findings of a prestudy where (different) participants were asked

what they considered relevant for judging food healthiness in an open-answer ques-

tion format. To identify the most relevant attributes, Perkovic et al. (2021) used

principal components analysis (PCA) to extract the reduced set of characteristics

that best explain the common variance across the aggregate food healthiness ratings.

In this study, perceptions of adolescents, adults and dietitians were compared, and

considerable agreement was found in how they differentiated the healthiness of the

food stimuli. For all three participant groups, perceived naturalness emerged as the

strongest predictor of healthiness perceptions. This importance of naturalness, and

related concepts such as “degree of processing”, “freshness”, “presence of food ad-

ditives”, being “locally produced” or “homemade”, has also been found repeatedly

in qualitative studies (Croll et al., 2001; De Vlieger et al., 2017; Paquette, 2005).

Nonetheless, it is worth highlighting that when a language analysis tool (Lex-

imancer) was applied to expert and lay definitions of the term “nutritious” as part

of a content analysis, there were 33 unique attributes that were identified as relevant

to participant perceptions. (Bucher et al., 2017). Moreover, another survey-based

study listed only 13 nutrient and non-nutrient based attributes when asking par-

ticipants what they consider when making healthiness judgments (Lusk, 2019). As

such, there appears to be a lack of consensus over what, and how many, attributes

might contribute to food healthiness judgment formation, with some potentially still

unknown.
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1.9 Applying Multi-Attribute Choice Models to the Food

Domain

Now consider the approximate 15,000 food and beverage products that can currently

be found on Tesco’s website (https://tesco.com/groceries), a leading supermarket in

the UK. How might the average person make healthfulness judgments of all potential

purchases? Even if one chooses to prioritize other motivators of food choice (sensory

appeal, price, mood, convenience, familiarity, natural content, weight control, ethical

concern), a healthfulness judgment of each item will still be made (Steptoe et al.,

1995). In fact, there is much debate over the relationship between healthiness and

tastiness perceptions, with references to an “unhealthy=tasty intuition” (Haasova

and Florack, 2019; Raghunathan et al., 2006; Werle et al., 2013). Hence it is accepted

that consumers demonstrate an ability to make healthfulness judgments of single

foods regularly, rapidly, and with relative ease (Bui et al., 2017).

As a result, there is a subset of judgment and decision-making literature

dedicated to understanding how food judgments and choices are made (Bhatia and

Stewart, 2018; Scheibehenne et al., 2007; Schulte-Mecklenbeck et al., 2013). At the

crux of this research is an investigation into the possible decision rules an individual

might use to integrate or trade-off the many relevant, external attributes and cues

available (Gigerenzer and Gaissmaier, 2011; Tversky and Kahneman, 1974; Weber

and Johnson, 2009). The following two subsections summarize the two main theories

of multi-attribute judgment and choice.

1.9.1 Weighted Additive Decision Rule

If the consumer is a rational decision-maker, they are expected to use the weighted

additive rule to arrive at the most accurate judgment (Payne et al., 1993). This

complex and effortful strategy requires the consumer to identify all relevant pieces

of information (Shah & Oppenheimer, 2008).

Ideally, and as often assumed in existing studies (Ares et al., 2014; González-

Vallejo et al., 2016; Van Der Merwe et al., 2010), this should be the government-

provided nutrient content information. The consumer is expected to store, organize

and recall the corresponding numerical values (key nutritional quantities) for each

key nutrient, weighing up these nutrients according to subjective importance while
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integrating information for the alternative product options (Ettlin et al., 2015; Shah

and Oppenheimer, 2008). It is at this stage that a healthiness judgment is made

(Shah and Oppenheimer, 2008). The assumed use of this strategy underpins many of

the commonly used front-of-pack nutrient labeling strategies from the monochrome

reference intake design to traffic-light labeling (Grunert and Wills, 2007). In fact,

support for evaluating nutritional information in this manner is provided by studies

using self-report measures (Cowburn and Stockley, 2005). Slightly tangentially,

consumers are also expected to retain and aggregate the reference intake information

(provided as a percentage) of the four key nutrients in every food they consume per

day (Lobstein et al., 2007; Yates, 2006). This is to ensure daily negative nutrient

targets are not exceeded (Yates, 2006).

Nonetheless, front-of-pack nutrient labeling information is meant to be a

benchmark, rather than the ground truth, as daily values vary based on each in-

dividual’s caloric needs (Rayner et al., 2004; Yates, 2006). For practical purposes,

standardization is necessary, and therefore all nutrient content guides are based on

2,000 calories, the recommended amount for the average woman (Rayner et al.,

2004). Therefore, arguably, a rational decision-maker would also be expected to

adjust the standardized reference intake percentages according to their caloric goals

(Campos et al., 2011; Lobstein et al., 2007).

Irrespective, in real-world settings, it is considered doubtful that consumers

have the time, cognitive resources, and computational capacity to compute these

steps for every potential food purchase (Sanjari et al., 2017; Schulte-Mecklenbeck

et al., 2013).

1.9.2 Heuristics

The alternative theory is that consumers rely on heuristics which are simplifying

strategies (Gigerenzer and Gaissmaier, 2011; Payne et al., 1993; Tversky and Kah-

neman, 1974). Essentially, heuristics enable people to make decisions using only a

few pieces of the available information (Scheibehenne et al., 2007).

To provide an example of the use of heuristics in the food domain, one can

look to a known consumer reliance on packaging features from nutrition or health

claims such as “rich in Vitamin C” (Davidović et al., 2021; Plasek et al., 2021), and

“no added sugar” (Al-Ani et al., 2016), non-nutrient related labels like “organic”
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and “fairtrade” (Schuldt et al., 2012; Schuldt and Schwarz, 2010), to even just the

brand name (Motoki et al., 2021). These attributes have been shown to increase

healthiness perceptions of a product, despite alternatives often having no substantial

differences in nutrient profile (Breen et al., 2020; Fernan et al., 2018; Kaur et al.,

2016). The heuristic (or rather the subsequent cognitive bias) in this instance is

often described as a health halo effect (Andrews et al., 2000; Chandon and Wansink,

2007), a derivative of the halo effect (Asch, 1961; Thorndike, 1920). A health halo

effect has occurred when one positive attribute is incorrectly taken as an overall

indicator of a product’s healthfulness (Andrews et al., 2000; Chandon and Wansink,

2007).

While the use of simple rules can allow people to make smart choices quickly

(Todd and Gigerenzer, 2000), many food companies are taking advantage of the

consumer desire for simplicity, and positioning their products as healthy by high-

lighting how they may have fewer “bad” ingredients (e.g. salt, sugar or fat) or more

“good” ingredients (e.g. protein or fiber) than the norm (Huang and Lu, 2016).

Yet, these aforementioned marketing claims on food packaging do not in-

crease healthfulness perceptions, or preferences, for every single food. (Steinhauser

and Hamm, 2018). Rather, the familiarity of a given claim with that specific food

item or food category is necessary to influence consumer behavior (Orquin and

Scholderer, 2015; Steinhauser and Hamm, 2018). Indeed, various eye-tracking stud-

ies reveal that attentiveness to nutrition information, brand, and design elements

of food packaging differs between food categories (Mhurchu et al., 2018; Orquin,

2014). In particular, nutrient labels, for example, were more likely to be viewed for

convenience foods, cereals, snack foods, bread, and oils (Mhurchu et al., 2018); foods

that are more ambiguous in healthiness. Instead, for the majority of foods, people

rely mostly on their existing knowledge and expectations of the food’s healthiness,

which is elicited through the food name or image on packaging (Schulte-Mecklenbeck

et al., 2013).

This is a distinct difference from the majority of judgment and decision-

making tasks, where choice sets are less familiar to the participant (e.g. choosing

between electrical devices, houses, or jobs), with few expectations of the information

relating to each attribute, or much awareness of other relevant attributes (Bhatia

and Stewart, 2018). Indeed, researchers know that people apply this knowledge in

the decision-making process of naturalistic choices, but seldom explore what this

knowledge might be (Bhatia, 2017; Bhatia and Stewart, 2018). As such, we believe
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it is imperative to gain insights into how foods are represented in the mind to fully

characterize perceptions and judgments of food healthiness.

1.10 Advances in Understanding Naturalistic Decision-

Making

Faced with the conundrum that everyday objects and concepts are complex and

require rich mental representations, judgment and decision-making researchers re-

cently put forward a methodological approach to uncover these representations in a

data-driven manner (Bhatia, 2017, 2019; Bhatia and Stewart, 2018). This has been

achieved by connecting existing theories of judgment and decision-making with in-

sights from other subfields of psychology and computational linguistics (Bhatia and

Stewart, 2018). Essentially, it is accepted that heuristic-based judgments rely on the

fundamental psychological process of association (Kahneman, 2002; Sloman, 1996).

These associative judgment processes are understood to use inferences drawn from

co-occurrence based statistical regularities from memory representations (Bhatia,

2017; Evans, 2008; Sloman, 1996; Tversky and Kahneman, 1974). However, until

recently, no formal model existed that could quantify this process and draw predic-

tions for naturalistic human behaviors (Bhatia, 2017).

Independently, associative processing had also been of interest to researchers

studying semantic memory and language (Bullinaria and Levy, 2007; Jones et al.,

2015). In these domains, there is a long history of using word co-occurrence statis-

tics in natural language to successfully uncover word meaning, as well as semantic

relationships (associations) between words (Firth, 1957; Harris, 1954). Motivated

by this research, judgment and decision-making researchers realized you can con-

siderably narrow down the number of unique, observable attributes associated with

thousands of naturalistic choice objects by shifting the focus onto the systematic

relationships that occur between these attributes, known as latent attributes. (Bha-

tia and Stewart, 2018). Simply put, the idea is that you could represent separate

attributes such as “natural production”, “presence of artificial additives”, and “level

of processing” using a single underlying theme, or latent attribute representation,

of “naturalness”.

As latent attributes are easier to retrieve from memory and incorporate,

this strategy would minimize the cognitive effort required, but still allow for large
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numbers of attributes to be considered (Bhatia and Stewart, 2018). Indeed, Bhatia

and Stewart (2018) found that using the weighted additive rule with latent attribute

representations, rather than observable attributes, significantly outperformed the

tested heuristic strategies for naturalistic multi-attribute food choices.

Typically, traditional methods of uncovering latent attributes require explicit

participant responses such as rating the similarity of object pairs (e.g. multidimen-

sional scaling), or the self-reporting of perceived important features (feature norms)

(Richie and Bhatia, 2020). The structure of co-variability across similarity ratings

reveal latent dimensions, which can be intuitively mapped to corresponding latent

attribute representations (Bhatia, 2019). As you may recall, the study that cur-

rently offers the most insights into food healthiness perceptions made use of one of

these traditional techniques (psychometric paradigm) in their approach (Perkovic

et al., 2021). Nonetheless, these existing approaches only possess a few dimensions,

and thus a limited number of latent attributes (Bhatia, 2019). In addition, the

findings from traditional approaches are not generalizable to foods for which survey

data does not exist. Of course, there are hundreds of attributes for hundreds of com-

monly consumed foods, with new or reformulated food products appearing regularly

(Bhatia and Stewart, 2018). Therefore, it would be unrealistic (in terms of time and

money) to attempt to obtain direct comparisons between all possible food pairs, or

even feature norms for all commonly consumed foods (Bhatia, 2019; Bhatia et al.,

2021a). Moreover, hundreds of latent attributes are needed to best mimic human

judgments for any everyday object, which would require extremely rich represen-

tations (Bhatia and Stewart, 2018). Thus, traditional methods would be unable

to scale to the number of latent attributes needed for accurate representations and

judgment predictions (Richie and Bhatia, 2020).

Fortunately, relatively recent advances in machine learning and data sci-

ence may offer a solution for approximating rich knowledge representations of foods

(Mikolov et al., 2017, 2013; Pennington et al., 2014). While using the same premise

as before, investigating co-occurrence based statistical regularities in natural lan-

guage, the internet is instead used as the source of data (Aka and Bhatia, 2021;

Bhatia, 2019; Bhatia et al., 2021a).

The underlying theoretical assumptions and computational techniques are

known as the distributional semantic hypothesis and vector space models respectively.

Importantly, however, we must emphasize that the purpose of vector space models

is not to explain cognitive processes, but rather to act as a proxy for the associations
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stored in the minds of decision-makers (referred to as knowledge representations)

(Bhatia et al., 2021a). In fact, predictive models would need to be trained on a

much larger corpora size (billions of words) than most adults have been exposed

to (Richie and Bhatia, 2020). If successful, there would no longer be a need for

participant responses to uncover latent attribute representations for foods as richer

insights could be generated from analysis of natural language texts (Richie et al.,

2019).

Indeed, the recent accessibility of large quantities of natural language, with

expansive vocabularies, has already led to highly accurate methods in other domains

involving naturalistic behavior and high-level judgments (Bhatia and Bhatia, 2021;

Bhatia, 2019; Richie et al., 2019). Nonetheless, the application of this approach as

a means of understanding food healthiness representations is yet to be explored.

1.11 Outline of Thesis

In this thesis, we focus on approximating food representations from online news

articles, as news sources most likely reflect the collective beliefs and representations

of everyday objects and concepts (Bhatia et al., 2021b). More importantly, while

references to nutritional content are likely to be captured in news articles, equally

likely are associations with other similar foods and non-nutrient words. For in-

stance, “fatty” and “salty” may frequently appear in articles about “bacon” but so

might words like “processed”, “sausages”, “pigs”, and “fry-up”. Hence, this com-

putational text analysis approach has the potential to encompass non-quantifiable

food attributes, triangulating the existing qualitative and quantitative research on

food healthiness. Thus, our goal is to establish the capability of numerous theoret-

ically similar, but computationally different, approaches in explaining healthiness

perceptions of individual foods. In both empirical chapters, we do not have any

hypotheses as our goal is to maximize the predictive accuracy of the computational

models.

In Chapter 2, our aim is to explore representations of a sub-group of foods

(superfoods) that are popularized in mainstream media discourse due to their high

association with healthiness. All of the computational techniques used in this chap-

ter apply a “bag-of-words” approach to uncovering representations. Essentially,

“bag-of-words” models reveal the most frequent co-occurrences of words in a group
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of articles, but disregard word order and other grammatical features (Gefen et al.,

2017). As we will demonstrate, while word meaning is not captured in its entirety,

this approach can be very informative and offers more intuitive results than those

using richer representations as obtained in Chapter 3.

In Chapter 3, our intention is to create a formal, predictive, model that can

provide quantitative healthiness judgment predictions for a wide range of foods. To

capture the rich and nuanced representations of foods as required for this task, we

use a popular subclass of vector space models known as word embedding models.

We use word embedding models, specifically word2vec as our main model, because

they provide us with extremely high-dimensional vectors. These word embedding

models have successfully predicted low-level psychological phenomenon such as hu-

man similarity judgments, free association, and categorization (Günther et al., 2019;

Jones et al., 2015; Lenci, 2018). More recently, researchers have used the represen-

tations from these word embedding models as predictors in regression models for

human judgments (Bhatia, 2019; Bhatia et al., 2021a; Richie et al., 2019). This

requires participant ratings in order to train the model and then the predictive abil-

ity is tested on out-of-sample ratings, using cross-validation (Aka and Bhatia, 2021;

Bhatia, 2019; Bhatia et al., 2021a). Using this approach, multiple studies reveal

that the rich representations obtained from vector space models successfully predict

participant ratings for multiple concepts, even though participants made judgments

when only given names of stimuli (Bhatia, 2019; Bhatia et al., 2021a). Consequently,

we use off-the-shelf (pre-trained) vector space models, in the same manner as the

existing research in other domains (Richie and Bhatia, 2020). As such, we will not

specify the technical details and assumptions for training these models in this the-

sis (instead see Mikolov et al., 2013; Mikolov et al., 2017; Pennington et al., 2014;

Pereira et al., 2016). Our main goal is to replicate the methodology from these

high-level judgment studies to this previously unexplored domain, but also extend

the research by adding a series of robustness checks (using expert judgments, food

images, and testing model generalizability). This is in addition to including com-

parative predictive models that use nutritional composition data (Nutrient Model,

Combined Model and two extended versions of both in the Supplementary Mate-

rials). Furthermore, we will also offer a theoretical contribution by exploring how

judgments made with quantitative numerical data alongside the food name (taken

from nutritional labeling strategies in the UK) might shift the predictive ability of

each of our models.

Next, in Chapter 4, I summarize the research findings of the previous two
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chapters. I also discuss the theoretical and practical implications of this research,

with recommendations for future research provided.

Finally, in Chapter 5, I give a reflective account of the additional analyses

and considerations that were not included in my main chapters.

1.11.1 Chronological Order

The structure of the chapters in this thesis does not reflect the order in which

they were written. Chronologically, Chapter 3 was written first and, after a series

of revisions, was published online in Psychological Science on March 17, 2022. The

findings of Chapter 3 informed the direction of Chapter 2 and the focus on exploring

superfood representations. At present, this paper has not been published. Notes

for the “Introduction” and “Discussion” chapters were written throughout, with the

write-up for both being predominately written during the final six months of the

thesis period. Lastly, the final “Further Reflections” chapter was written in response

to feedback from the viva examiners.

1.11.2 Data and Code Availability

Please note that de-identified (and permitted) data and code to replicate the find-

ings from all chapters in this thesis have been made publicly available via GitHub.

It can be accessed at https://github.com/ngandhi95/Food-Healthiness-Perceptions-

Thesis-Code.git
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Chapter 2

Superfood Representation in

News Media

2.1 Abstract

What does blueberry, avocado, quinoa, and ginger have in common? These food

items are often regarded as superfoods because of the assumed benefits these items

have for one’s health and well-being. These perceptions persist despite the fact

that many health benefits of superfoods are not supported by evidence. One route

by which incorrect beliefs about superfoods may be perpetuated and maintained is

through news media. In this chapter, we set out to investigate how foods claimed to

be superfoods are represented in the discourse of online news. We use computational

language models to extract the unique topics and terms used to discuss superfoods

over a ten year period, and compare those to descriptions of superfoods provided by

a sample of survey respondents. Our results show that news coverage is dominated

by many specific claims about the healing properties of superfoods. Terms occur-

ring in the context of such foods often refer to specific vitamins and minerals, and

diseases (e.g. cancer, heart disease). Results of the structural topic model further

demonstrate that articles mentioning superfoods are more likely to include topics

about a) nutrients, physical appearance and health in the same context, b) retail

strategies, and c) scientific research about the health benefits of superfoods. Over-

all, representations of superfoods uncovered by our analysis are well aligned with

people’s perceptions. Together, our results demonstrate a potential source of strong

and misplaced association between superfoods and health.
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2.2 Introduction

Despite the fact that many people strive to eat more healthily, there is little consen-

sus about the what, when, and how of a healthy diet. Although plenty of guidance

and recommendations from government and experts exists (Julia et al., 2021), dis-

course in online media is now dominated by diverse opinions and advice concerning

what people “should” be eating to improve their health and well-being. Given that

people’s perceptions and behavior are shaped by the media representation of food

healthiness (Nagler, 2014; Oakes and Slotterback, 2001), it is essential to better

understand what messages about food healthiness online media perpetuate.

It is known that food marketing influences consumers’ perceptions of food

healthiness (Chandon and Wansink, 2012; Plasek et al., 2021; World Health Or-

ganization, 2021). In fact, food and beverage companies invest heavily in healthy

food marketing in response to consumer demand (Samoggia et al., 2020). The most

recognized and researched type of food marketing strategies are those found on food

packaging, such as health claims and symbols, package design, and branding (Plasek

et al., 2020; Silchenko et al., 2020). However, large food and drink companies are

also positioning themselves as nutritional educators (Garcia and Proffitt, 2021), of-

ten marketing specific “healthy” product categories and ingredients (Chandon and

Wansink, 2012; Mintel, 2016). As a result, the online media discourse surrounding

foods also contains marketing concepts disguised as healthy eating advice (MacGre-

gor et al., 2021; Samoggia et al., 2020).

These online media messages have led to the marketing term “superfood”

being popularized in everyday discourse (Delicato et al., 2019; Roth and Zawadzki,

2018), which is the focus of this chapter. Broadly speaking, superfoods refer to

foods that are naturally rich in macro-nutrients, as well as various vitamins and

minerals (Jagdale et al., 2021). This is despite no clear evidence linking a given

food item to any health outcomes (Cloutier et al., 2013; Siipi, 2013; Thurecht et al.,

2018). Moreover, the superfood narrative in the media is at odds with the advice of

nutritional experts, who advocate a view of healthiness in terms of overall dietary

patterns (Freeland-Graves and Nitzke, 2013; Lobstein and Davies, 2009; Lusk, 2019).

In 2007 the European Food Safety Authority banned the word “superfood” on food

packaging unless accompanied by a specific permitted health claim (EU Regulation

No. 1924/2006). Likewise in America and Australia, as all food claims must be

supported by scientific evidence, superfood is not a claim that would be authorised
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for use on food packaging (Food Standards Australia New Zealand, 2018; US Food

And Drug Administration, 2016). Yet despite this regulation, perceptions about the

superiority of superfoods persist, which is likely to originate from the abundance of

mentions in magazine and news articles, blogs, and on social media channels (Liu

et al., 2021; MacGregor et al., 2021). Consequently, representations and implicit

beliefs about certain foods having a superfood status are still being reinforced, leav-

ing consumers misinformed (Delicato et al., 2019). Brands are then able to take

advantage of this loophole by adding putative superfoods to the ingredient list of

snack items (Breen et al., 2020), baked goods (Meyerding et al., 2018), and bever-

ages (Brownbill et al., 2020), as a means of increasing healthiness perceptions and

sales of their products (Meyerding et al., 2018; Mintel, 2016).

As superfood is a term often used to promote food items that are from the

main food groups (e.g., fruit and vegetables) (Jagdale et al., 2021), one may wonder

whether there is any harm to this practice. At a minimum, the superfood discourse

feeds into an overly simplistic view of foods as “good” or “bad”, causing people to

abandon efforts to improve their overall diet (Freeland-Graves and Nitzke, 2013).

Use of such language can also contribute to the prevalence of disordered eating

(Douma et al., 2021), where individuals follow strict, restricted diets and experience

guilt after perceived food transgressions in pursuit of healthiness (Galfano et al.,

2022). Furthermore, the classification of various foods as superfoods can produce a

health halo effect (Amos et al., 2019), whereby consumers incorrectly interpret the

health benefits and health risks of certain foods (Breen et al., 2020). Indeed, one

side effect is often for consumers to underestimate calorie consumption of healthy

foods (Carels et al., 2006, 2007; Larkin and Martin, 2016; Provencher et al., 2009),

resulting in weight gain and therefore an increased risk of diet-related illnesses.

From a psychological standpoint, little is known about what underpins peo-

ple’s representations of superfoods. Most academic research in this area uses case

studies of known superfoods to investigate either consumer demand for superfood

products (Graeff-Hönninger and Khajehei, 2019; Groeniger et al., 2017; Loyer, 2016;

Meyerding et al., 2018), nutritional evidence for popular health and nutrient claims

(Jagdale et al., 2021; Proestos, 2018; Šamec et al., 2019; Štepec et al., 2020), or

the environmental and social consequences from the rise in superfood consumption

(Bedoya-Perales et al., 2018; Magrach and Sanz, 2020; Reisman, 2020). Of the

studies that have explored perceptions and beliefs surrounding superfoods, partici-

pants were provided with pre-defined survey measures (Franco Lucas et al., 2021; Liu

et al., 2021; Rojas-Rivas et al., 2019), meaning that our understanding is potentially
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constrained by the researchers’ expectations and hypotheses.

As a complementary approach to the existing literature, here we undertake

an exploratory computational analysis of natural language corpora. Specifically, we

analyze superfood representations in online news articles. To date, only two papers

have looked at the coverage of superfoods in news articles (MacGregor et al., 2021;

Weitkamp and Eidsvaag, 2014), but for different purposes. Weitkamp and Eidsvaag

(2014) investigated the influence of scientists on the information reported in news

articles about superfoods, and MacGregor et al. (2021) used critical discourse anal-

ysis to explore how the marketing of superfoods in the media promotes neoliberal

ideologies.

A similar methodological approach has been used to investigate the relation-

ship between various foods and perceived health benefits, however, the superfood

status associated with these foods in the media discourse has been overlooked. More-

over, these studies were conducted using social media sources such as Twitter (Kāle

and Agbozo, 2020; Lynn et al., 2020; Pilař et al., 2021; Samoggia et al., 2020; Vidal

et al., 2015), or Reddit (Blackburn et al., 2018). For instance, one study investi-

gating perceptions of kale using Twitter data between January 2020 and June 2020

found frequent mentions of health-related concepts (e.g. “anti-inflammatory”, “im-

mune boost”) and a lack of reference to taste or hedonistic concepts in its research

(Kāle and Agbozo, 2020). However, the question remains about whether this finding

is reproducible when analysing the discourse in mainstream news media, as well as

if it would generalize to other known superfoods.

In this chapter, we leverage the latest methods from natural language pro-

cessing (NLP) to analyze online news articles about known superfoods in different

contexts. Our chosen corpus of online news articles (News on the Web—NOW) cap-

tures the representation of superfoods in the US and UK media over a ten year time

period (2010-2020). As such, this approach allows us access to the actual discourse

being used to shape widespread public opinion on superfoods. Our study focuses on

a sample of 25 food names, identified by a sample of survey respondents, resulting

in 872 articles that mention at least one of these foods and the word “superfood”

(superfood articles) and a further 56,981 articles about the same foods with no

mention of the word “superfood” (non-superfood articles). Such a large number of

relevant articles means that we can uncover meaningful patterns about superfood

representation in the media. We conduct three analyzes on our large corpus of online

news to evaluate the nature of discourse pertaining to superfoods. First, we explore
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commonalities in language between superfood articles and descriptions of superfoods

provided by participants who completed our survey. Next, we use two computational

techniques to establish predictive features of articles written about superfoods. The

first of these computational techniques is text classification. For this analysis, we

formally compare articles written about our 25 chosen foods in a superfood context

with closely matched articles written in a non-superfood context. Therefore, our

classifier is forced to rely on subtle differences in language when making predictions

as to whether an article is about superfoods or not. An advantage of this approach

is that we can uncover the most important words, used as predictors by the trained

classifier, to distinguish the representation of a food in a superfood specific context.

Last, in order to gain further insight into the interaction between various words

and concepts related to superfoods in online news media, we used structural topic

modeling. Topic modeling allows us to formally identify latent themes and topics in

our sample of news articles about the 25 foods. We use structural topic modeling

(STM) specifically as it allows us to compare the likelihood of each topic appear-

ing in superfood or non-superfood articles. Finally, as an additional comparison,

we replicated both of the above-mentioned computational analysis techniques us-

ing “organic” in place of “superfood” mentioning articles. The purpose of this is

to ascertain whether we can successfully capture the unique representation of su-

perfoods, rather than a general concept of healthiness. Ultimately, the goal of our

computational analyzes is to learn which food attributes, associations, and concepts

are emphasized in the representation of a food as a superfood in online news media.

2.3 Methods

2.3.1 Corpus Selection

The corpus of online news articles used in this chapter were taken from the NOW

Corpus (http://corpus.byu.edu/now/), which is a collection of online newspaper and

magazine articles, maintained by Mark Davies at Brigham Young University. This is

the only English-speaking corpus that is larger than a billion words (Davies, 2017),

and so was most suitable for exploring a relatively niche topic like superfoods. The

meta data for this corpus includes “article ID”, “word count”, “date”, “country”,

“news outlet”, “url” and “title”. Specifically, for our analysis, we used a static

local copy of the NOW Corpus, accessed in May 2020, which covers the time period

between January 2010 to February 2020. Only articles published in the United
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States of America and Great Britain were analyzed.

2.3.2 Identifying Food Names

We compiled a list of food names by downloading data from the U.S. Department of

Agriculture (2019) Food Composition Data, and McCance and Widdowson’s Com-

position of Foods Integrated Dataset (Public Health England, 2021), as both are

the official sources of information about commonly consumed foods in the USA and

UK respectively. This list was used in an initial preprocessing step to filter articles

only containing food names.

2.3.3 Participant Survey Data

We conducted a short online survey on Prolific Academic to obtain a list of most

recognized superfoods. Details of this study are provided in the Supplementary

Materials, as here we focus only on the use of the 25 most commonly identified

superfoods that we used to select online news articles for our computational analyzes.

2.3.4 Data Preprocessing and Article Selection

All steps to extract and clean the relevant sample of online news articles were per-

formed using R (version 4.1.0) (R Core Team, 2021). The R package “spacyr”

(Benoit and Matsuo, 2020), was used for data preprocessing. We started with a

sample size of 13,871,016 news articles published in the United States of America

and Great Britain during the time period specified. First, we removed HTML tags,

URL links, non-alphabetical characters (e.g. special characters, numbers, and all

punctuation except for hyphens), and standardized all text and titles of the news

articles to lowercase. Then we selected only news articles that contained the word

“food” or “diet” either in the text or title. At this stage there were 779,919 news

articles. We then removed all articles that either had duplicated article IDs or that

had identical article titles from the same news outlet. Following this, we filtered

articles that mentioned at least one of the food names in our food name list (see

Identifying Food Names section for detail), resulting in 547,568 food-related news

articles. Our next data preprocessing steps involved tokenization (splitting article

texts into single word units), removing stop words (frequent words that provide lit-
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tle information e.g. “and”, “in” and “the”), and part of speech tagging (to identify

a word’s function within a sentence, e.g., “green” as an adjective). Part of speech

tagging allowed us to select the most meaningful parts of speech (nouns, adjectives,

and verbs) from the articles. We also performed lemmatization, turning words rep-

resenting the same concepts into its base form (e.g., “energizing” and “energized”

both became “energize”). Next, we replaced all possible spellings of the word super-

food (e.g. “superfood”, “super-food”, “super foods”) with the former spelling for

consistency. This then allowed us to identify the 1,169 articles that mentioned the

word “superfood” at least once in the article text or title, and the 216,769 that did

not. Consequently, we further subset the data to only include articles that specifi-

cally mentioned the 25 superfood names given by participants in the online survey

mentioned above. This resulted in a final sample of 57,853 news articles, with 872

articles that mentioned the word superfood at least once (henceforth referred to

as superfood articles). As a last step, all articles were then tagged with a dummy

variable to denote their status as either a superfood or non-superfood article.

2.3.5 Computational Methods

Word Frequency: A Bag-of-Words Model

As an initial exploration of our corpus, we used a word counting technique known

as a bag-of-words model to provide a simplified representation of our superfood

articles sample (see Kowsari et al., 2019). The bag-of-words approach was chosen

over other known frequency statistics (such as tf idf and weighted logs odd ratio)

because these alternative methods would give priority to unique and obscure words

even when found in only a small number of articles. Instead, we were interested in

finding the most common words across all articles in our chosen context.

For this analysis, we included additional data preprocessing steps. The same

steps were replicated when preprocessing participants’ survey responses to two ques-

tions asking them to describe or define a superfood, for comparative purposes. Fur-

ther details are provided in the Supplementary Materials.
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Text Classification

Text classification is a supervised machine learning technique that allows us to

predict whether an article is written in a superfood context or not. An offshoot

of this approach is that we can subsequently identify the terms that underlie the

classifier’s predictions. As a consequence, text classification can enable us to make

inferences about concepts that are most likely to be associated with superfoods in

a sample of articles discussing the same group of foods.

For text classification, it is optimal to have a balanced distribution of articles

in each group. However, our dataset was highly unbalanced, with the superfood arti-

cles making up only 1% of the sample. In addition, the much larger ’non-superfood’

class likely included articles that only scarcely referenced the food items of interest.

Therefore to down-sample the non-superfood articles and balance the corpora, we

used propensity score matching (Ho et al., 2011; Rubin and Rosenbaum, 1985). We

obtained the propensity scores for each sample using a generalized linear model with

a logit link function. We regressed the article class (i.e., superfood mentioning or

not) on the counts of the top 25 superfoods selected by survey participants. The

premise was that the logit model could estimate the probability of each article be-

ing a superfood or non-superfood article, and the predicted probabilities (propensity

scores) would reveal how likely each non-superfood article could serve as a viable

counterfactual (or replacement) for that superfood article. All superfood articles

were paired with it’s nearest neighbor; the non-superfood article with the closest

propensity score. Note that each match was independent of each other, and thus the

same non-superfood article could be matched to several superfood articles (greedy

matching). All unmatched non-superfood articles were then discarded from the

sample, allowing for maximum homogeneity between the two comparison groups

and a reduced sample size. In total there were 872 pairs of articles in our text clas-

sification sample, 10% of which were always held-out for model evaluation during

cross-validation (as explained below).

Next, we trained a text classification model to discriminate between the

superfood and non-superfood articles in our balanced sample. Specifically, we used

the logistic regression classifier (also known as the maximum entropy classifier); a

linear model often used for text classification tasks due to its interpretability. We

chose to encode the data with unigrams, bigrams, and trigrams. Each type of an

n-gram is an expression of N consecutive words combined. Previous studies have

shown that increasing the n-gram range leads to better performance in variety of text
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classification tasks (Bharadwaj and Shao, 2019; Shah et al., 2018). We represented

the data using a document-feature matrix, where each column represented an n-

gram, each row represented a news article, and the observations for each of the

documents corresponded with the count of the word’s occurrence. As an example,

the single hypothetical sentence “Superfoods are very good”, would correspond to

N columns in the document-feature matrix: “superfoods”, “are”, “very”, “good”,

“superfoods are”, “are very”, “very good”, “superfoods are very”, “are very good”.

Also note that L1 penalty was imposed on the norm of the coefficients, which resulted

in majority of irrelevant coefficients shrinking towards 0, to avoid over-fitting.1

When training the regularized logistic regression, it was important to choose

the optimal strength of the penalty imposed on the L1 norm of the model’s coef-

ficients. We tuned the regularization strength parameter by running a grid search

over a range of values and evaluating the average F1 score on 10-fold cross-validation

split for each of them. The F1 score is the harmonic average of the model’s precision

and recall, further discussed in the results section. The entire fitting procedure was

implemented in the “glmnet” package in R (Simon et al., 2011).

As an additional analysis, we repeated all the aforementioned steps replacing

“superfood” with the word “organic”. The reason was to ascertain whether the

representation of superfoods is unique or reflects an overarching perception of food

healthiness. Specifically, using the sample of 25 superfoods given by participants,

we marked news articles that mentioned the word “organic” vs. those that did not.

Topic Modeling

Finally, in order to examine whether the differences identified by the classifier gen-

eralized to more broad, latent themes found in the entire subset of the news articles

corpus we used the Structural Topic Model (STM) (Roberts et al., 2016, 2014).

Topic modeling refers to a family of unsupervised statistical learning techniques

that identify underlying latent semantic structures characterized by frequent occur-

rence of a vocabulary subset in corpora of natural texts. In the past, topic modeling

has been applied to analyze corpora from variety of areas, such as social media dis-

1Formally, logistic regression solves the following optimization problem:

min(β0,β)∈Rp+1 −
[

1
N

∑N
i=1 yi · (β0 + xTi β)− log(1 + e(β0+x

T
i β))

]
, while the L1-regularized variant

changes that to min(β0,β)∈Rp+1 −
[

1
N

∑N
i=1 yi · (β0 + xTi β)− log(1 + e(β0+x

T
i β))

]
+ λ|β‖1, where

λ‖β‖1 is the regularization penalty imposed on the model’s coefficients.
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course (Zamani et al., 2020), financial news (Bybee et al., 2020) or historical texts

(Barron et al., 2018).

Topic modeling relies on several assumptions, which enabled us to extract

topics from our newspaper corpus. One such assumption is that each document

is composed of a mixture of topics, and each topic is formed using a probability

distribution of words. In the same manner as the bag of words model, it also

assumes that there is no order to the words in a document, and that documents are

independent. The distinguishing feature of STM is that, while building on the basic

idea of probabilistic topic modeling, it allowed us to incorporate document-level

covariates (or metadata) into the model’s structure (Roberts et al., 2019). STM

was therefore most appropriate for our goal of quantifying the effect of our dummy

variable (superfood article or not) on the topical structure of the news articles. As

such, STM allowed us to identify topics present across all articles that were more

prominent when the term “superfood” was used.

In order to facilitate model estimation, we further subset our data to only

include articles mentioning any of the superfood items specified by the survey par-

ticipants more than twice, resulting in a sample of 18,219 non-superfood articles and

577 superfood articles. Since the number of the latent topics to be estimated has

to be specified a priori, we conduct a grid-search over a range of values and chose

the highest number (K = 12) that offered a notable improvement in the exclusivity

score calculated over the top 10 words in each of the topics. A word is said to be

exclusive with respect to a given topic if it has a high probability of appearing in the

topic and low probability of appearing in the other topics estimated by the model

(Roberts et al., 2014). Exclusivity of a model is the aggregated exclusivity of the

top N words for each of the topics. The details of the parameter search can be found

in Figure 2.5 of the Supplementary Materials.
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2.4 Results

2.4.1 Superfood Names

Figure 2.1 All food items, that participants associate with the “superfood” label,

mentioned more than once (using word frequency).
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In total, there were 115 unique superfood names listed by our survey par-

ticipants (see the OSF repository associated with this project for the full list:

https://tinyurl.com/SuperfoodStudy), with 51 given by at least two participants.

As can be seen from Figure 2.1, these 51 foods named as superfoods belong to a

wide range of food categories from Vegetables and Vegetable Products (e.g., kale

and spinach) to Spices and Herbs (e.g., ginger and turmeric), and Sweets (e.g., dark

chocolate). Unsurprisingly, the majority of these foods were from the “Vegetables

and Vegetable Products” category and “Fruit and Fruit Juices” category with “blue-

berry”, “avocado”, and “kale” being the most frequently mentioned (53, 46 and 42

mentions, respectively). The top 25 food names mentioned by participants, and

the food names subsequently used for the computational analysis, are highlighted in

bold on the X-axis of Figure 2.1. These foods are listed in descending order of word

frequency and include blueberry, avocado, kale, goji, quinoa, spinach, chia seed,

nut, broccoli, acai, ginger, egg, berry, fish, sweet potato, beet, green tea, spirulina,

almond, pomegranate, salmon, turmeric, wheatgrass, yogurt, and oats.
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2.4.2 Word Frequency

Figure 2.2 A comparison of the top 25 adjectives, nouns, verbs and bigrams

taken from online news articles written in a superfood context with the adjectives,

nouns, verbs, and bigrams mentioned by more than one participant to describe or

define a superfood.
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Our first analysis concerns the distribution of most frequent words in superfood arti-

cles. These are presented in Figure 2.2 alongside data from our survey participants,

separately for adjectives, nouns, verbs, and bigrams. Even at a glance, the concept

of health is most prominent, but we can also see several references to the sensory

properties of foods, naturalness, weight control, and scientific research.

The relationship between superfoods and health is demonstrated by the dis-

proportionate prevalence of health related terms in superfood articles. Explicit ref-

erences to health related terms (e.g. “healthy” (N = 1,179), “health” (N = 1,261),

and “health benefit” (N = 261)) are evident in the adjectives, nouns, and bigrams

plots generated from the superfood article data. Broader connections to health were

also made with mentions of positive and negative nutrients such as “vitamin” (N

= 1,001), “protein” (N = 976), “sugar” (N = 822), “antioxidant(s)” (N = 296),

“fatty acid(s)” (N = 184), “amino acid(s)” (N = 115), and “healthy fat” (N = 89).

Relatedly, a link with specific diseases is apparent in the media coverage, with an

abundance of mentions of “cancer” (N = 725), “breast cancer” (N = 142), and

“heart disease” (N = 278). Moreover, texts included numerous references to medi-

cal concepts and terms such as “blood pressure” (N = 195), “immune system” (N

= 124), “anti inflammatory” (N = 107), and “blood sugar” (N = 105). Together

with common bigrams such as “reduce risk” (N = 113), “increase risk” (N = 96),

and verbs (e.g. “provide” (N = 465), “reduce” (N = 447), “offer” (N = 372), “im-

prove” (N = 359) and “increase” (N = 265)), these words highlight a discourse

where superfoods are likened to medicine.

Reference to the sensory properties of superfoods can be seen from the most

frequently used adjectives in superfood articles. Color is most mentioned, with

“green” (N = 592) the third most frequent adjective, and red (N = 349) and white

(N = 314) also present. Surprisingly, the only taste descriptor in the top 25 ad-

jectives was “sweet” (N = 426). Instead the majority of adjectives in superfood

articles refer to the concept of naturalness (e.g. “fresh” (N = 508), “natural” (N

= 453), “organic” (N = 406), “raw” (N = 361)). The theme of weight loss is most

apparent when looking at bigrams, with frequent collocations in the superfood arti-

cles including “weight loss” (N = 194), “lose weight” (N = 127), and “low calories”

(N = 85). Moreover, we can also see words (“study” (N = 820), “research” (N =

703), “percent” (N = 701)), alluding to the use of scientific evidence as a persuasive

technique for the promotion of superfoods in the media.

When comparing these frequent words from the superfood articles to the
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participant data, we find a similar prevalence of concepts. First, the healthiness as-

pect of superfoods is most emphasized, with “healthy” (N = 78) being the top

adjective, many references to health benefits and medically related terms (e.g.,

“anti inflammatory” (N = 4), “immune system” (N =3) and “reduce cholesterol”

(n = 2), and multiple nutrients named (e.g., “vitamin”, “antioxidant”, “protein”).

Similarly to the superfood articles, the most common terms for sensory properties

reflected the appearance of superfoods (“green” (N = 13), “red” (N = 2), “bright”

(N = 2) and the more general “colorful” (N = 2)). Taste was also referred to, but

both in a positive and negative way (e.g., “tasty” (N = 11), “delicious” (N = 3),

“bland” (N = 3)). Participants also associate superfoods with naturalness, with 16

individuals mentioning the term “natural” explicitly. Plus, other naturalness related

words such as “organic” (N = 12), “fresh” (N = 10), “clean” (N = 5), “wholesome”

(N = 4) and “pure” (N = 2), were mentioned. A few participants also referred to

aspects of weight control. For example, “weight loss” (N = 2) was explicitly men-

tioned but also “low calorie” content (N = 3), “detox” (N = 3) and “cleansing” (N

= 2), which are often used in the context of weight loss. Interestingly, no science

or research terms were referenced more than once, suggesting that participants may

either not remember this persuasion technique or deem it important.

To uncover the specific words that underlie predictions about an article be-

ing about superfoods, we used text classification. Note that the use of propensity

score matching means each of the superfood articles was compared against a non-

superfood article that was highly similar in context (determined by similar counts

of the top 25 foods selected by survey participants). For robustness purposes, we

replicated this analysis comparing articles that mentioned the word “organic” (or-

ganic articles) vs those that did not (non-organic articles). Table 2.1 shows the

performance of the classifier model on the out-of-sample dataset. We summarize

the results in terms of three commonly used classification metrics - accuracy, preci-

sion and recall. Accuracy is simply the number of cases predicted to be in their true

respective class. Precision refers to the number of examples correctly predicted as

belonging to a given class, as a proportion of all examples belonging to that respec-

tive class. Recall (also known as sensitivity) represents the number of observations

correctly predicted as a given class divided by the total number of observations ac-

tually belonging to that class. As seen in the Table, our classifier has an accuracy

rate of 67% for superfood articles and 72% for organic articles, meaning that it is

able to classify these online news articles better than chance. As a result, we can

conclude that our classifier model can sufficiently pick up linguistic differences be-
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tween articles written about foods in a superfood context or not, as well as in an

organic context or not.

2.4.3 Text Classification

Table 2.1 Text classification validation performance

Precision Recall Train size Test size Accuracy

Non-superfoods 0.663 0.701 785 87
0.672

Superfoods 0.683 0.644 785 87

Non-organic 0.688 0.803 4156 462
0.720

Organic 0.764 0.636 4156 462

A benefit of our approach is that we can use the classifier model to find the n-grams

with the highest probability of being in a news article classified as a superfood article

or an organic food article. Figure 2.3 presents the top 100 n-grams, scaled to be

proportional to the log-odds of the corresponding coefficients for each group.

Looking first at the superfood classifier n-grams in Figure 2.3, the first thing

to note is an overlap between the n-grams produced using this approach and the

words obtained from the simpler word-counting technique in Figure 2.2. The rela-

tionship between superfoods and health is yet again prevalent. For example, many

n-grams reference the nutritional composition of foods such as “source (of) potas-

sium”, “high protein”, “nutrient rich”, “mineral (and) vitamin”, “vitamin c (and)

e”, “monounsaturated fat”, “low sugar”, “anti-oxidant”, and “good/bad choles-

terol”. The classifier also picks up on the discourse surrounding superfoods and

illnesses, with n-grams predictive of superfood articles including “heart disease per-

cent”, “cancer percent/fight”, “boost immune system”, “carcinogen” and “reduce

stress”.

Additionally the unigram “premature” is highly predictive but it includes two

uses of the term in two separate contexts: premature death (for 16 of the superfood

articles) and premature ageing (for 13 of the superfood articles). Other n-grams

that show a relationship with beauty include “protect skin”, “facial”, “hydrating”,

“regime”, all of which were not seen in the word frequency (bag-of-words) analysis.
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In terms of sensory attributes, “tasty” is the only n-gram predictive of a

superfood article, and the only reference to natural content is “unpasteurised” or

“grass feed”. We also detect nuances in language such as the paradoxical nature

of foods marketed as superfoods, with predictive n-grams indicating a local origin

(“locally sourced”) but also their exotic nature (“ancient”, “Peruvian” and “South

America”).

In comparison, there is little crossover between n-grams predictive of su-

perfood articles and organic foods, despite the fact that both terms are typically

perceived as cues to healthiness. Instead, articles written in the context of organic

foods are predominately centered around food production methods, the concept of

naturalness, and foods’ environmental impact. Nonetheless, the most predictive

n-gram was “certified”, suggesting that articles about organic foods may highlight

the necessary government standards and regulations that must be met for a food to

be labelled organic. This is followed by “natural food”, which along with “whole-

some”, “pure”, “whole food” as well as “decay” and “rot”, suggest a strong link

between organic foods and naturalness. Similarly, there is an emphasis on the lo-

cal aspect of foods with n-grams like “locally source(d)”, “local food/farm”, “small

farm”, and “farmer’(s) market” also being predictive of news articles about organic

foods. Convenience or ease of access is also implied, as “delivery service”, “open

restaurant” and “metropolitan” may suggest. Environmental and ethical impact

is another theme that stands out, with direct references to “eco/environmentally

friendly”, “sustainable food”, “ethical”, “good quality” and “cooperative”. More-

over, while health benefits of foods are alluded to with descriptions like “healthful”

and “medicinal”, the focus is on the presence or absence of chemicals (e.g. “fer-

tiliser”, “pollutant”, “contaminant”). From this, we can conclude that our model

successfully picks up on representations of healthiness that are unique to superfoods,

rather than all health-related terms like organic.
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Figure 2.3 Wordcloud of the 100 n-grams most predictive of the terms

“superfood” and “organic” occurring in the sample of online news articles.

2.4.4 Topic Modeling

To confirm and extend the findings from the text classification, we used STM to

extract topics. Essentially, STM enables an automated discovery of differences in

latent themes and topics between articles written about the same 25 foods from

different contexts. Figure 2.4 summarizes the estimated effect of the presence of

the “superfood” or “organic” term on the difference in proportion of a latent topic

appearing in the articles. A positive value on the X-axis indicates a larger prevalence

of a given topic in superfood articles (Panel A) or organic articles (Panel B). Our

two reported topic models were fit with the same 12 topics as determined by the

grid search (see Methods for detail). Topic labels were assigned by using the top 10

keywords most associated with the given topic.

In articles written about the same 25 foods, what group of words (constitut-

ing a topic) is most likely to occur when the term “superfood” is mentioned? As

shown in Panel A of Figure 2.4, the topic relating to diet and weight clearly stands

out, with a 25.72% (95% CI [23.20%, 28.15%]) higher likelihood of occurring in su-

perfood articles. The words most indicative of this topic were “diet, fat, healthy,
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help, health, protein, vitamin, weight, body, and sugar”. Notably, this topic includes

both terms related to food nutrients (“vitamin”, “protein”, and arguably “fat”)

and appearance (“weight”, “shape”). The fact that these terms appear alongside

“health” as one of the most representative words, suggests that the model detected a

relationship in discourse between diet, appearance and health. In comparison, Panel

B shows that this topic was the third most prevalent in organic articles relative to

non-organic articles. Moreover, it was only 2.90% (95% CI [1.78%, 4.03%]) more

likely to occur in an organic context. Given that this topic is considerably more

prominent in the discussion around superfoods, one could infer that this association

is pivotal in the representation of superfoods in the media.

Perhaps less surprising was the higher likelihood of retailing concepts appear-

ing in superfood articles relative to non-superfood articles about the same foods.

However, although this topic was the second most prevalent in superfood articles,

the mean difference was much smaller compared with the first (diet, appearance and

weight) topic at 0.02 (95% CI [0.00, 0.04]). The 10 words that formed our interpre-

tation of this topic consisted of “product, company, market, store, sell, uk, business,

price, buy, and consumer”. This retailing topic was also the second most likely

to appear in organic food articles in proportion to non-organic food articles, but

was slightly more likely to occur in organic articles than superfood articles (mean

difference of 0.04, 95% CI [0.03, 0.05]).

The third topic more likely (by 1.94%, 95% CI [0.04, 3.84%]) to appear in su-

perfood articles vs non-superfood articles was one associated with scientific research.

Keywords constituting this topic such as “study”, “disease”, “cancer”, “health”, and

“research” had also been present in the findings of our previously mentioned com-

putational analysis techniques. Again, having the word “health” within the top 10

words of this topic suggests a discourse where scientific evidence is given to sug-

gest a relationship with these foods and health or disease. Interestingly, despite

more debate and scientific research conducted to assess the relationship between or-

ganic foods and health, this topic pertaining to research was less likely (by -0.97%,

95% CI [-1.92%, 0.03%]) to occur in organic news articles than non-organic arti-

cles. Moreover, this contrast in discourse demonstrates another distinction between

representations of superfoods and organic foods in the media.

Our topic modeling approach also reveals that the concept of cooking, “cook,

add, minute, recipe, salt, heat, serve, water, bowl, pan”, was slightly more likely to

be found in articles written about superfoods, by 0.75% (95% CI [-1.14%, 2.71%]).
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This was the topic with the largest difference in ranking between superfood and

organic contexts, shown from a visual comparison between the superfood (Panel A)

and organic (Panel B) plots. We can also see that this cooking topic was ranked

higher than the topic pertaining to eating out “restaurant, menu, dish, chef, serve,

wine, bar, open, taste and meal”, a topic found to be less likely to appear in su-

perfood articles than non-superfood articles (by -3.26%, 95% CI [-5.36%, -1.05%).

Thus, these findings suggest superfoods are more likely to be promoted as ingre-

dients for home cooking, rather than as a treat when dining out. Conversely, the

opposite is true for organic foods, where organic is more likely (by 0.84%, 95% CI

[-0.37%, 2.03%) to be discussed in the same context as eating out, but less likely

(by -2.28%, 95% CI [-3.38%, -1.23%]) to be mentioned in references to recipes.

Contrary to expectations, a topic relating to naturalness was only 0.34%

(95% CI [-1.03%, 1.90%]) more likely to occur in superfood articles relative to non-

superfood contexts. The words used to define this topic were “farm, grow, plant,

water, farmer, produce, crop, animal, feed, production”. On the other hand, this

topic was ranked first for likelihood (at 8.30%, 95% CI [7.41%, 9.17%]) in organic vs

non-organic articles, supporting the assumption that this finding is due to represen-

tation differences from these two contexts. It is also worth noting that the keywords

relating to naturalness all appear to relate specifically to food production methods,

with terms relating to the rawness or purity not detected by the topic model.

One may also wonder about the topics least likely to occur about these 25

foods in a superfood context, and how this differs to topics least likely to occur in

an organic context. Figure 2.4 shows us that the majority of the topics (7 out of the

12) were found in articles where the term superfood was not mentioned, with the

same being true for the organic comparison. Of these topics, the one referring to the

fishing industry was least likely (mean difference of -0.05, 95% CI [-0.07, -0.04]) to

be mentioned in a superfood context, defined by the topic label “water, river, lake,

sea, fishing, catch, boat, fisherman, whale, ocean”. This was also true of the topic

least likely to occur in articles about organic foods relative to non-organic foods,

but with a mean difference of -0.03 (95% CI [-0.04%, -0.02%]). The second least

likely topic in superfoods articles (mean difference of -0.05, 95% CI [-0.06, -0.04])

consisted of words such as “state, photo, family, city, school, community, country”,

which appears to reflect a discussion of social factors surrounding consumption of

our sample of foods. The same topic was ranked relatively similarly (third least

likely) in the organic comparison (mean difference of -0.02, 95% CI [-0.03, -0.02]).

Interestingly, the third least likely topic (mean difference of -0.05, 95% CI [-0.06,
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-0.04]) to occur in a superfood context demonstrates a focus on the unsustainability

of fishing practices and environmental consequences (consisting of unique words such

as “climate, change, fishery, population”). Along similar lines was a topic referencing

human-wildlife coexistence (mean difference of -0.04, 95% CI [-0.06, -0.03]) with the

words most representative of the topic being “animal, bird, specie(s), human, bear,

female, live, wildlife, male, insect”. These two topics were also less likely to occur in

an organic context but had a slightly higher mean difference (-0.02, 95% CI [-0.03,

-0.01] and -0.02, 95% CI [-0.03, -0.01] respectively) in comparison to superfoods vs

non-superfood articles. The next topic slightly more likely to be mentioned outside

of a superfood context (by -4.02%, 95% CI [-5.82%, -2.32%]), seems to reflect a

discourse relating to food tourism, with words including “island, hotel, local, city,

place, beach, town, old, around, visit”. For organic articles, this food tourism topic

was equally likely to occur relative to non-organic articles (mean difference of 0.00,

95% CI [-0.01, 0.01]). Lastly was a more abstract topic of words denoting the writer’s

personal perspective (“think, want, really, life, back, feel, love, never”), which had a

small mean difference of -0.04 (95% CI [-0.05%, -0.03%]). However, by comparison

this same topic was the second least likely to appear in an organic context (mean

difference of -0.03, 95% CI -0.04, -0.02]).

Figure 2.4 Estimated differences (and 95% confidence interval) in topic

probabilities between superfood and non-superfood articles (left panel - A), and

organic food and non-organic food articles (right panel - B). Each plot is ordered

by the topics most prevalent in the superfood or organic articles.
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2.5 General Discussion

Our computational approach makes a number of contributions to our understanding

of superfood representation in the online news media. Through a series of compar-

isons (with participant data, and with articles about the same foods in either a

non-superfood context or organic context) we extracted the words, concepts, and

topics most strongly associated with the term superfood. First, we found a unique

emphasis on the relationship between individual foods and health benefits in su-

perfood articles. Second, we observe a distinct use of medical terminology (such as

“cancer”, “immune system”, “heart disease”, “risk”) in a superfood context, which

is notably absent in the representation of organic foods. Third, against our own

expectations, terms stressing the naturalness and environmental impact of these

foods were infrequent in the characterization of superfoods. As a whole, considering

superfood has no official definition, our findings offer a deeper understanding into

the concept of superfoods. Given the role media plays in shaping people’s beliefs

and attitudes, our results also contribute to our understanding of the origins of

misconceptions concerning the health and well-being benefits of superfoods.

Although a link between superfoods and health benefits is expected, this

finding provides support of previous research findings in a data driven manner

(Franco Lucas et al., 2021; Loyer, 2016; Rojas-Rivas et al., 2019). All three of

our bottom-up approaches found “health”, “healthy” and specific nutrients such as

“protein”, “sugar”, “vitamin” to have the largest association with the term “su-

perfood”. Such consistency of findings between our three bottom-up techniques

demonstrates the robustness of a computational approach in uncovering superfood

representations. Indeed, drawing attention to isolated compounds present in foods

is not new to superfood advertising (Scrinis, 2013); in fact it was a highly successful

marketing strategy on food packaging until unfounded nutrient claims were banned

in the 1990s (Goldberg and Sliwa, 2011; Silchenko et al., 2020). Nonetheless, a

strength of our topic modeling approach is that we can now see the extent of the as-

sociation between this nutrient-focused conceptualization of health and superfoods.

As such, we observe how the representation of superfood with health considerably

exceeds the relationship of organic and health, and even organic and naturalness

in media discourse. While we cannot use present results to claim that this super-

food representation in the media directly influences consumer perceptions, similar

language in participant responses does suggest individuals are at least aware of the

same association. Furthermore, we found that mentions of health, various nutrients,

38



weight, and appearance, emerge within the same topic (taken from our topic mod-

eling analysis). This implies a discourse where superfoods are touted for weight loss

as part of health messaging (Rodney, 2018; Sikka, 2019), despite scientific evidence

establishing that weight is a poor indicator of health (Frederick et al., 2020; Saguy

and Almeling, 2008). Considering nutrient-focused marketing detracts from the rec-

ommended “total diet approach” to healthy eating (Freeland-Graves and Nitzke,

2013), plus the implications of a suggested linear relationship between weight and

health for disordered eating behaviors (Frederick et al., 2020; Pilař et al., 2021), our

findings highlight a need to further extend health and nutrition claim regulation to

the online media marketing of food items.

Our results also draw attention to a medicinal representation of foods, cen-

tered around disease prevention, which is more likely to occur in a superfood context.

Cancer is the most frequently associated disease in our article sample about super-

foods, with a slight emphasis on breast cancer. However, in the words of Cancer

Research UK (2020) “there is no good evidence that any one food prevents cancer,

including superfoods”. Most of the research conducted on individual foods that are

reported in the media are either from animal studies (Jagdale et al., 2021), in vitro

(outside of a living organism) studies (Šamec et al., 2019), or from single studies

that should be interpreted with caution (Ladher, 2016). This is also true for the

other diseases mentioned in our superfood articles (e.g. heart disease). Thus, the

ability of our untrained model to identify a representation of superfoods based on

weak evidence (Inoue-Choi et al., 2013), reinforces the role of the media in creating

confusion about healthy eating (Hackman and Moe, 1999; Nagler, 2014; Weitkamp

and Eidsvaag, 2014). Again, as evident from the language reflected in participant

responses, the superfood discourse in the media may therefore help explain the

discrepancy between people’s inaccurate beliefs about food healthiness and official

dietary guidance.

Contrary to the entwined relationship between health and naturalness found

in previous research (Loyer, 2016; Michel et al., 2021; Perkovic et al., 2021; Roman

et al., 2017; Siipi, 2013), naturalness was not a concept stressed in the online news

article representation of superfoods. This is more surprising because naturalness

representation was detected in participant responses, as well as in the comparative

analysis of organic food articles. One possible explanation is that the relationship

between chosen superfoods and naturalness can be assumed by design, whereas the

same food can be sold as organic or not and thus naturalness associations would

need highlighting in organic discourse. Another factor to consider is that superfoods
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are often sold in supplement form, involving high levels of processing, and so claims

about their naturalness may appear contradictory.

The general lack of coverage concerning the social and environmental con-

sequences of superfoods in online news articles may explain why some participants

perceived superfoods as “eco-friendly”. However, the existing scientific literature on

superfoods reports a detrimental social and environmental impact due to increased

demand worldwide (Bedoya-Perales et al., 2018; Loyer, 2016; Magrach and Sanz,

2020). It is perhaps unsurprising that superfoods are spun in a positive light within

a media marketing discourse, even if this unbalanced representation further enhances

the halo effect of superfoods. However, given the relatively broad range of news arti-

cles from a variety of news outlets in this study, one might expect a higher prevalence

of this topic in superfood articles than revealed in our topic modeling analysis. As

a result, it would be interesting to explore whether differences occur between differ-

ent news outlets, and if this finding is also true of representations in social media.

Moreover, as consumers demonstrate a preference for environmentally-friendly foods

(Franco Lucas et al., 2021), a recommendation for future research is to assess how

increased awareness of environmental consequences from global scale production of

superfoods (e.g. water depletion, soil degradation, reduction in biodiversity, and

carbon footprint) might influence perceptions, preferences, and purchase behavior

for superfoods.

Our relatively small number of superfood articles, both initially (1,169) and

after selecting only articles mentioning 25 known superfoods (872), is unlikely to

capture the entirety of online superfood news articles written between January 2010

and February 2020. We chose to prioritize minimizing researcher influence, select-

ing articles from our corpus using arbitrary means (count of the word “superfood”)

rather than adding further news articles from specific news outlets (e.g. The New

York Times, or The Guardian). It is also worth noting the existence of related mar-

keting terms that have spawned from the superfood discourse (e.g., “superfruit”,

“supergrain”, and “super berry”) (Liu et al., 2021; Loyer, 2016). Unfortunately,

too few articles were available in the NOW corpus to extract meaningful themes

and representations. Nonetheless, despite some limitations, our approach captures

meaningful patterns that are consistent with discourse findings about known super-

foods using other corpora (Kāle and Agbozo, 2020)

Overall, we believe that the strength of our approach is that we can uncover

and quantify the unique representations of superfoods in the news media. While
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the term superfood is banned on food packaging, here we demonstrate how this

term is prevalent outside of the supermarket environment. More importantly, we

demonstrate a number of unique dimensions that make up the representation of

superfoods in the media. The next stage for researchers is to ascertain the extent to

which these representations influence food perceptions, and ultimately food choices.

For now, we recommend advertising regulatory bodies to pay close attention to

the loopholes being used to produce these, misleading, and potentially harmful

associations.
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2.6 Supplementary Materials

2.6.1 Participant Survey

Here, we provide additional details about the participant online survey used to as-

certain a list of known superfoods as well as participant definitions and descriptions

for the term itself. Ethical approval for this study was obtained from the University

of Warwick’s Biomedical and Scientific Research Ethics Sub-Committee.

Participants

One hundred participants were recruited via Prolific Academic in return for a fixed

payment of £0.63 (£7.77/hour). Only English-speaking adults from the United

Kingdom or the United States of America were eligible to take part in our survey.

Four participants who answered “no” when asked if they were familiar with the term

superfood were removed from subsequent analysis, leaving 96 participants (69%

female) in our sample. On average, participants were 35.40 years old (SD = 13.48;

range = 18-77). Of these participants, 75% had no dietary restrictions.

Design and Procedure

Participants completed a short online survey, consisting of an eligibility question

followed by three main questions and three demographic questions. All questions

were presented in the same order and read: 1) “Are you familiar with the term

superfood (yes or no)?”, 2) “Name at least 5 superfoods”, 3) “List at least 5 adjec-

tives that you associate with superfoods” and, 4) “In your own words, how would

you define a superfood”. Participants were then asked about their age, gender and

dietary restrictions (options provided were “Vegan”, “Vegetarian”, “Other (please

specify if you wish)” and “None of the Above”).

Data Analysis

The list of 25 superfoods (as well as non-food words) was determined using word

frequency, identical to the computational method outlined in the section “Word

Frequency: A Bag-of-Words Model”.
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Data Preprocessing

The same data preprocessing steps as for the superfood articles (tokenization, stop

word removal, part of speech tagging, lemmatization, and conversion to lowercase)

were applied to the participant data, for analysis at the aggregate level. In addition,

as part of the standardization for food names, all spaces between open compound

words (e.g. peanut butter and sweet potato) were replaced with an underscore.

Moreover, bigrams from participants’ open text responses (to question 4) were iden-

tified as words that appeared next to each other in a sentence more than once.

Furthermore, we chose to concatenate all text given by the same participant to

account for, and remove, repeated words (e.g. if the same participant gave the

word “healthy” as a response to both question 4 and 5 it was only counted once).

Spelling mistakes and inconsistencies, either introduced by participants or through

the lemmatization process (e.g. “brocolli” to “broccoli” and “slimme” to “slim-

ming”), were identified using the “hunspell” package in R and corrected manually

(Ooms, 2020). Spellings were manually standardized to US spelling to avoid dupli-

cation. Only words tagged as adjectives, nouns, verbs (and manually as bigrams)

were kept for the analysis of non-food words.

2.6.2 Additional Data Preprocessing Steps of Superfood Articles

As mentioned in the main text, we included additional data preprocessing steps for

the Word Frequency (bag-of-words model) analysis only. First, we created a manual

list of stop words, allowing us to remove all food names from the 872 superfood

articles (see the Identifying Food Names section in main text for detail). Second,

we identified bigrams as words that appeared next to each other in a sentence

within the corpora 50 times or more, and replaced spaces between these words with

underscores. Next, we tokenized and lemmatized the article text, also removing stop

words and tagging parts of speech. Similarly to the participant data, all spelling

mistakes were identified using the “hunspell” package in R and corrected manually

(Ooms, 2020). We then removed sparse terms, which are the words that occur

in less than 3% of the 872 superfood articles. This allowed us to plot the most

common terms of the whole superfood corpora, rather than those than rarely occur.

Subsequently, we filtered the most meaningful parts of speech (adjectives, nouns,

verbs and bigrams). Finally, we subset the top 25 words for each of these part

of speech tags, which can be seen, alongside the comparative participant data, in
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Figure 2.2 of the main text.

2.6.3 Topic Modeling: Grid Search

Figure 2.5 Grid search evaluation results. The model was optimized based on the

exclusivity score.

As referenced in the Topic Modeling section of the Computational Methods Section,

Figure 2.5 shows the measures we used to find the optimal number of latent topics.

We searched K-values between 4 and 40, shown on the X-axis of Figure 2.5. From

left to right, the plots refer to exclusivity, semantic coherence, heldout likelihood,

residual, bound, lower bound, and finally “em.its” refers to the total number of EM

iterations used in fitting the model (Roberts et al., 2019). Here, our model was set

to run at a maximum of 100 iterations. We optimized the model on exclusivity,

which compares word distributions between topics to determine the likelihood of

the top words of one topic being top words in the other topics (Roberts et al.,

2019). Another important measure is semantic coherence, introduced by Mimno et

al. (2011), which refers to the probability that the top words of one topic co-occur

within our corpora of superfood articles (Pandur et al., 2020). We also consider

held-out likelihood estimation, similar to cross-validation, which checks the model’s

44



predictive performance by estimating the probability of words occurring within a

document after they have been removed (Pandur et al., 2020). Measuring residuals

is useful for determining how much variance remains at a given topic number, and

whether more topics would be needed to account for any overdispersion. The bound

is a measure of convergence, with the model considered converged when there is

a small enough change between iterations (Pandur et al., 2020). The lower bound

simply applies a correction to the bound so that the bounds are directly comparable

(Roberts et al., 2019).
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Chapter 3

Predicting Food Healthiness

Judgments

3.1 Abstract

People make subjective judgments about the healthiness of different foods every day,

which in turn influence their food choices and health outcomes. Despite their im-

portance, there are few quantitative theories about the psychological underpinnings

of such judgments. This study introduces a novel computational approach that can

approximate people’s knowledge representations for thousands of common foods.

We use these representations to predict how both lay decision-makers (general pop-

ulation) and experts judge the healthiness of individual foods. We also apply our

method to predict the impact of behavioral interventions such as the provision of

front-of-pack nutrient and calorie information. Across multiple studies with data

from 846 adults, our models achieve very high accuracy rates (r2 from 0.65 to 0.77),

and significantly outperform competing models based on factual nutritional content.

These results illustrate how new computational methods applied to established psy-

chological theory can be used to better predict, understand, and influence health

behavior.
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3.2 Introduction

Poor diet is one of the primary preventable causes of premature death in high-

income countries (Bauer et al., 2014). Understandably, people want to consume

healthy foods as they recognize the relationship between diet and health. However,

people can only make healthy food choices to the extent that they can correctly

judge a food’s healthiness. One obstacle to healthy eating is that there is no norma-

tive answer to the question: “what makes food healthy or unhealthy?” (Lobstein

and Davies, 2009). Still, it is commonly believed that food healthiness judgments

are strongly linked to beliefs about the nutritional content of food products (Scar-

borough et al., 2007a).

Indeed, health organizations worldwide routinely emphasize which nutrients

people should avoid (high saturates, fats, sugars, salt) and which they should con-

sume more of (high protein, fiber) (Lobstein and Davies, 2009). This is apparent

in the design of numerous front-of-pack food labeling formats, which attempt to

simplify complex nutrient information for consumers. Such interventions highlight

overall energy content and the presence of nutrients that are most associated with

the rising rates of obesity and chronic diseases (Kanter et al., 2018). Yet, evidence

about the effectiveness of such interventions is mixed (Sanjari et al., 2017).

The success of front-of-pack labeling rests on the assumption that people rely

on energy and nutrient information to judge a food’s healthiness (Orquin, 2014).

However, evidence suggests that healthiness judgments reflect pre-existing knowl-

edge that people associate with foods’ perceived naturalness (Siipi, 2013) and taste

(Turnwald et al., 2017). These are further influenced by cultural traditions (Pieniak

et al., 2009), previous eating experiences (Papies, 2013), media/advertisements

(Whalen et al., 2018), background nutrition knowledge (Miller and Cassady, 2015),

choice context (Downs et al., 2015), product category (Plasek et al., 2020), packaging

(Reutner et al., 2015), and health halo effects of labels such as “organic” (Perkovic

and Orquin, 2018; Schuldt and Schwarz, 2010).

These factors contribute to the diverse and multidimensional knowledge rep-

resentations that decision-makers draw upon when making food-related judgments

and choices. Indeed, specific knowledge representations that are retrieved from

memory (Scheibehenne et al., 2007) or explicitly provided to the decision-maker

(Schulte-Mecklenbeck et al., 2013) can be used to make choices between food items

using simple heuristics. Whereas knowledge representations may explain why people
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think some foods are healthier than others, they may be biased, causing systematic

and predictable errors in healthiness perception. This could explain why people’s

judgments of healthiness deviate from an estimate of healthiness based on nutrient

and energy values of the food (Orquin, 2014).

Researchers studying food judgment and choice typically rely on knowledge

representations that are restricted to a predefined and limited set of factors and at-

tributes (Steptoe et al., 1995). This also means that current approaches are not well

suited for making generalizable predictions about judgments in the presence of inter-

ventions, such as different food labeling strategies (Kanter et al., 2018). How can we

identify and quantify knowledge representations that underpin people’s judgment of

food healthiness? We propose a novel approach to overcome these challenges, which

relies on recent advances in computational linguistics. Unlike previous approaches,

in which food representations were either manually specified by the researchers or

based on self-reports, we establish food representations using natural language data.

More specifically, we use word distribution statistics in large text corpora to uncover

quantitative representations for words and phrases that describe food items. The use

of this type of data means that uncovered representations reflect information con-

veyed in language, which individuals may use to form beliefs, and may even guide

everyday health judgment. We find support for this prediction by studying how

knowledge representations retrieved from natural language can account for judg-

ments of food healthiness across six experiments. Our further analysis reveals that

our models perform well because they capture associations related to naturalness or

rawness of foods.

The knowledge representations used in our analysis are high-dimensional vec-

tors for words (also known as word embeddings) (Landauer and Dumais, 1997; Lenci,

2018; Mikolov et al., 2013). A useful property of word vectors is that the proximities

between vectors measure the associations between individual words. These associa-

tions have been shown to correlate with human semantic, factual, probability, and

social judgments (Bhatia, 2017; Caliskan et al., 2017; Pereira et al., 2016). Recently,

researchers have shown that these word vectors can be used to quantify people’s

knowledge about various natural entities by using these as inputs into regressions

that predict more complex (potentially non-associative) judgments in other domains

(Bhatia, 2019; Richie et al., 2019; Zou and Bhatia, 2021).

Our approach is as follows: First, we obtain high-dimensional vector repre-

sentations for food items from popular word embedding models trained on large-
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scale textual datasets. We hypothesize that these word vectors may serve as a

good approximation of knowledge representations that underpin judgments of food

healthiness. To test this proposition, with some training data involving people’s

ratings of diverse food items, we learn a mapping from our high-dimensional vec-

tor space to the (one-dimensional) scale that measures perceptions of healthiness

(i.e. people’s judgments). We then apply this mapping to food items outside of the

training data to predict people’s judgments for these “out-of-sample” food items.

Note that such a mapping identifies regions of the vector space implicitly associ-

ated with food healthiness, and thus can be used to understand the conceptual and

associative underpinnings of health judgment. We can also build this kind of map-

ping separately for different groups of people, to predict judgments of both lay and

expert judges, as well as differences in judgments between individuals exposed to

different front-of-pack labeling strategies. Across six studies, we demonstrate the

generalizability, accuracy, and power of our approach.

3.3 Studies 1A, 1B, and 1C

Our primary objective was to establish the feasibility of our computational approach

in predicting people’s judgments of food healthiness. Therefore, we elicited judg-

ments of healthiness for a wide range of food items (presented as food names) from

the general population (Study 1A) and from a sample of registered dietitians (Study

1B). In Study 1C, we tested the performance of our models on healthiness judgments

of foods’ names and images.

3.3.1 Methods

Participants

Our approach does not rely on standard null hypothesis testing but rather on maxi-

mizing out-of-sample predictions. Using previous work for guidance (Bhatia, 2019),

we chose to obtain judgments for a diverse set of 172 foods and aimed to recruit at

least 100 participants (with each participant judging each of the 172 food items).

The only exception was in Study 1B where we prioritized how many responses we

could obtain from nutritional experts in a three-month window. Note that in all

studies, the primary unit of analysis was the average healthiness rating, across all
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participants, for a given food item.

In all studies, only participants over 18 years of age were eligible to take part.

Our only exclusion criterion was based on the correlation between each person’s food

ratings and the grand mean of aggregate ratings for those foods within the sample.

Prior to data analysis (in all studies reported in this paper), we removed participants

with a correlation lower than 0.4 with the grand mean of all ratings in a given study

(based on the inspection of data from Study 1A). Although this exclusion criterion

aimed to remove participants with very noisy ratings that would generate outlier

responses, an analysis of the full sample shows that none of our results are affected

by this exclusion criteria (see Section 3.6.1 of the Supplementary Materials).

For Study 1A, 149 participants were recruited from Prolific Academic in re-

turn for a fixed payment of £1.30. Using the aforementioned criterion, data from 15

respondents were removed leaving 134 participants as our final sample (aged 18-74

years, Mage = 29.57 years, SD = 8.86, 43% females, and 84% had no dietary restric-

tions). For Study 1B, we contacted registered dietitians after a formal introduction

by email with a request to take part in our study and forward the invitation to their

colleagues. We also advertised the study on personal social media accounts. As an

incentive, participants were able to request a report of the main findings. Nineteen

registered dietitians took part in the study (none excluded, aged 23-56, Mage = 35.84

years, SD = 10.36, 89% females and 68% had no dietary restrictions). One hundred

participants recruited on Prolific Academic took part in Study 1C in return for a

fixed payment of £1.90. We excluded one participant based on the same criteria as

in Study 1A. This left 99 participants in our final sample (aged 18-69 years, Mage =

27.25 years, SD = 10.20, 44% females, and 82% had no dietary restrictions). A de-

tailed breakdown of participants’ characteristics for this and other studies reported

here is provided in the Supplementary Materials (Section 3.6.2). This research was

approved by the University of Warwick’s Biomedical and Scientific Research Ethics

Sub-Committee (approval # REGO-2018-2268).

Design and Procedure

In all studies, participants were asked to simply judge the healthiness of 172 foods

on a scale ranging from -100 (extremely unhealthy) to +100 (extremely healthy).

In Study 1A and 1B, each food was described using its name only. In Study 1C,

a generic image of the food item was presented directly below the food name. Re-
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sponses were made using a slider, with its starting position always at zero by default

(neither healthy nor unhealthy). This scale was chosen because it is fine-grained (200

intervals) and balanced (symmetric around 0), offering nearly continuous data for

predictive modeling (Bhatia, 2019). Participants had the option of selecting “Don’t

know” if they were unfamiliar with a food item, with those ratings removed from the

analysis. The order of the items was randomized for every participant and only one

item was visible at a time. The same generic task instruction: “Using the slider,

please use your first impression to rate the following food item according to the

scale below:” was displayed above all stimuli in every study condition. After rating

all foods, participants were asked about their age, gender, and dietary restrictions

(with the options of “Pescetarian (no meat, but eat fish and/or shellfish)”, “Vege-

tarian”, “Vegan”, “Other (please specify if you wish)” and “None of the above”).

Our nutritional experts in Study 1B were also asked two additional demographic

questions at the end of the survey (namely, “No. of Years as a Registered Dietitian”

and “Area of Specialism”).

Materials

We obtained a list of foods from the USDA Food Composition Database, the most

recent official publication of nutrient information pertaining to over 3102 unique food

items (U.S. Department of Agriculture, 2019). Only foods present in the vocabulary

of the pre-trained word2vec model were considered, leaving 571 food items (see the

Computational Approach section for detail). Two hundred food items, across all

food categories (e.g. vegetables, meats, dishes), were manually chosen by co-author

WZ to ensure diversity in the stimuli set. Next, co-authors NG and LW removed

uncommon and ambiguous food items such as “squash” (because of its additional

meaning related to sports), resulting in the final list of 172 food items (see the OSF

repository associated with this project for the full list: https://osf.io/jys6u/). Note

that the same list of 172 food items was used in all studies reported in the main

text of the manuscript.

In Study 1C, 69 of the food images were directly sourced from an image

database for experimental research (Blechert et al., 2019), with the remaining 103

images sourced online and standardized to match (white background, 600 x 450

dimensions, and jpeg format).
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Computational approach

We used three statistical models to predict subjective food healthiness judgments.

Our analysis relied on participants’ judgments at the aggregate level. We evaluated

the accuracy of each of our three statistical models in predicting subjective food

healthiness judgments using leave-one-out cross-validation, which means that we

trained our models on all but one aggregate judgment (“training data”) and used

the trained model to predict the rating of the left-out food item (“test data”). We

repeated this procedure 172 times so that each food item was in the test data once.

Cross-validation ensures that our modeling avoided overfitting and that performance

of each model was evaluated based on model generalizability.

In the first model, the Nutrient Model, we used nutrient content information

to predict healthiness judgments. This model was an ordinary-least-squared regres-

sion with main effects for food calorie content, amounts of nutrients (fat, saturates,

sugar, salt, and protein) per 100g, and the relative coding scheme based on the UK

traffic light labeling for fat, saturates, sugar and salt (green, amber and red). Under

the traffic light labeling system, green signifies a healthier food choice to consumers

implying “go ahead”; amber indicates the item contains moderate amounts of the

negative nutrient(s); and red signals caution for overconsumption (Trudel et al.,

2015). The model was fit on the training data, and the best fitting parameters of

the model were applied to the nutrient information of the (out-of-sample) food, in

order to predict participant ratings. The nutrients and calorie information included

in the Nutrient Model reflects the current European Union’s regulations concern-

ing mandatory information for food package labeling (Article 30, Regulation No.

1169/2011 European Commission, 2011). In the Supplementary Materials (Section

3.6.3), we summarize tests of the robustness of our results using three extended

versions of the Nutrient Model. First, we expanded the Nutrient Model to incorpo-

rate the potential role of 23 nutrients (e.g., fiber, calcium, and Vitamin C). Second,

we also tested a version of the model that used nutrient amounts per portion size,

defined as the amount per 100 calories. We also combined these two extensions into

our final, third model.

In our Vector Representation Model, we used vector representations from the

word2vec model (Mikolov et al., 2013). This model was pre-trained on a dataset

of Google News articles, and has 300-dimensional vector representations for three

million common words and phrases in the English language (see Mikolov et al., 2013

for details). In designing our studies, we only considered foods whose name features
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in the pre-trained word2vec model. We also analyzed the predictions of other es-

tablished pre-trained word vector models, which we discuss in the Supplementary

Materials (Section 3.6.4). In our main analysis, we used normalized word vectors, in

which the magnitude of the vectors was scaled to be equal to 1. We regressed partici-

pants’ healthiness ratings on these vectors, which allowed the model to learn a linear

mapping from the semantic vector space to health judgments. This learned mapping

was then applied to the vectors of other (out-of-sample) foods, in order to predict

participant ratings of those foods, and measure the models’ predictive accuracy.

Because of the high number of predictor variables in this model (300), we applied

a regularized regression technique known as ridge regression. Ridge regression al-

lows high numbers of predictors to be considered and takes into account whether

predictors are highly correlated. In previous and similar work, ridge regression was

the best-fitting regression technique for mapping pre-trained 300-dimensional vector

representations to judgments and was consequently chosen for our analysis (Bha-

tia, 2019; Richie et al., 2019). We also tested other regression techniques including

lasso, support vector, and k-nearest neighbors regression and found ridge regression

was indeed the best-fitting regression. We discuss this robustness test in the Supple-

mentary Materials (Section 3.6.5). Finally, our third Combined Model concatenated

the 11-dimensional Nutrient Model with the 300-dimensional Vector Representation

Model. Using ridge regression, we explore the extent that both models can collec-

tively explain people’s subjective food healthiness judgments.

3.3.2 Results

We began by examining the distribution of aggregate healthiness ratings in Figure

3.1. Here we observed that healthiness judgments varied greatly amongst food

stimuli, both across and within food categories. Unsurprisingly, the foods with

the healthiest ratings were all fruit and vegetables, with the top five mean ratings

ranging between 77 and 82 for tomatoes, cucumber, apple, carrots, and broccoli,

respectively. The five foods that received the unhealthiest ratings, ranging between

-65 and -50, were cola, donut, skittles, cheeseburger, and Kit Kat.
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Figure 3.1

Distribution of aggregated food healthiness ratings from Study 1A
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Figure 3.2 summarizes the accuracy rates of our three models in Studies 1A,

1B, and 1C. The dots within each scatterplot represent the out-of-sample predicted

vs actual (aggregated) healthiness ratings for the individual foods. As we are using

predictive modeling, the coefficient of determination (r2) reflects the performance

of the model when making out-of-sample predictions.

Figure 3.2

A Comparison of Predictive Accuracy between Models in Studies 1A, 1B, and 1C

General Population Sample
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Note. A comparison of predictive accuracy between models that used only nutrient

content, only word vector representations, or a combination of nutrient content

and word vector representations in a general population sample (1A), expert

sample (1B) and with food images included as stimuli (1C).
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As shown in Figure 3.2, the out-of-sample predictive accuracy of the Vector

Representation Model was very high across all studies, with an r2 ranging from 0.69

(95% CI [0.63, 0.75] to 0.76 (95% CI [0.71, 0.81]). By comparison, the predictive ac-

curacy of the model based on the foods’ nutritional information was always lower (r2

ranging from 0.35, 95% CI [0.24, 0.46] to 0.39, 95% CI [0.28, 0.50]). The Combined

Model performs best however, achieving marginally higher predictive accuracy than

the Vector Representation Model in every study (r2 ranging from 0.75 (95% CI [0.70,

0.80] to 0.77, 95% CI [0.72, 0.82]). Overall, these findings highlight that the perfor-

mance of the Vector Representation Model is stable, even when using ratings from

participants with high nutritional expertise and with food images as stimuli. We

performed several robustness checks to assure the reliability of our findings. First,

we ran separate paired sample t-tests to compare the squared errors from different

models for each study (see Section 3.6.6 in the Supplementary Materials). Across

all studies, the mean squared errors from the Vector Representation Model and the

Combined Model were significantly lower than those from the Nutrient Model (all p

< 0.01). We also repeated our analysis at the individual level, without aggregating

healthiness ratings for each food. Results are presented in our Supplementary Ma-

terials (Section 3.6.7) and show that our findings remain largely unchanged. Section

3.6.4 of the Supplement summarizes r2 for the Vector Representation Model based

on alternative word vectors obtained from fastText (Mikolov et al., 2017) and GloVe

(Pennington et al., 2014). Finally, in Section 3.6.5, we show the results of differ-

ent regression techniques, including lasso, support vector, and k-nearest neighbors.

Once again, using alternative word vectors or regression techniques did not alter our

results.

Returning to the results from the Vector Representation Model based on

the ridge regression and word2vec vectors, our approach was also able to capture

qualitative trends in our data by correctly predicting the categories of foods judged

as being high or low in healthiness. For example, both observed and predicted

ratings were highest for categories such as Fruits and Fruit Juices, Vegetables and

Vegetable Products, and Nut and Seed Products. Likewise, both observed and

predicted ratings were lowest for categories such as Baked Products, Sweets, and

Fats and Oils. In fact, when pooling the data by food category, we found the

Vector Representation Model predicted average healthiness ratings for categories

of foods with an out-of-sample r2 of 0.83 (95% CI [0.79, 0.86]). The Nutrient

Model, in contrast, achieved an r2 of only 0.31 (95% CI [0.20, 0.41]). It seems

healthiness judgments are sensitive to the category of the food item, a property
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easily captured by the Vector Representation Model, but less so for the Nutrient

Model (Orquin, 2014). Further details of this analysis are provided in Section 3.6.8

of the Supplementary Materials.

The reason why the Vector Representation Model performs well is that it

may capture the latent associations underpinning judgments of healthiness. To

explore these associations, we applied a Principal Component Analysis to the vector

representations of the 172 food items. Projections for the first two components are

shown in Figure 3.3. By inspecting Component 1, it is clear that negative values

correspond to mostly heavily processed and junk foods (e.g., pepperoni pizza, bacon,

onion rings), whereas positive values correspond mainly to organic and unprocessed

vegetables and fruits (e.g. apple, mango, lettuce, beets). Component 2 on the other

hand, appears to reflect the sweetness/sugariness of the food. The most positive

scoring foods on this component are sugary drinks (e.g. cola, lemonade) and sugary

snacks (e.g. kit kat, dark chocolate). Among the negative scores for Component 2,

we can see meats (e.g., roasted turkey) but also less sugary vegetables (e.g., brussels

sprouts, asparagus).
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Figure 3.3

A 2D projection (based on the Principal Component Analysis) of vector

representations for the 172 food names
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Note. For clarity, only a random subset of 50 names are labeled on the plot.

Another benefit of the vector representation approach is that it can identify

regions of the semantic space related to food healthiness. This can be done by pass-

ing the vector representations of common words (that are not necessarily food items)

through a model trained on participants’ food healthiness judgments. Words given

high predictions would be those most associated with healthiness and would capture

the conceptual underpinnings of health judgment. Figure 3.4 shows a word cloud

of the fifty English language words with the highest healthiness predictions, derived

with this approach (from a model trained on Study 1A ratings). See Appendix

A for words clouds trained on ratings from all other studies. Visibly, agriculture

and nature-related words, such as crop, organic, and leaf, make up the majority of

this word cloud. Interestingly, the word healthy is also present in the word cloud
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even though our model was never explicitly trained on this concept. It seems that

implicit in people’s judgments are associations with concepts like healthiness, as

well as other concepts (e.g., naturalness/degree of processing, organic, appearance)

identified by previous researchers as being psychological cues for food healthiness

(Siipi, 2013). Our novel computational approach provides quantitative methods for

uncovering these associations.

Figure 3.4

Healthiest “Other” Words based on the Vector Representation Model

Note. Words with the highest predicted healthiness ratings based on the Vector

Representation Model estimated for the lay people in Study 1A.

3.4 Studies 2A, 2B and 2C

Studies 1A-1C are based on judgments of food names and images. Yet, when people

evaluate foods, they are typically provided with additional nutritional information.

Moreover, many food labeling policies rest on the assumption that consumers make
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more informed decisions if nutritional information is prominently displayed on food

packaging. The relatively poor performance of the Nutrient Model documented in

Studies 1A-1C may reflect people’s lack of awareness (or memory) of the nutritional

values of the individual food items. Accordingly, if the nutritional information was

made more salient with the use of real food labeling strategies, we might expect

that the contribution of nutrients in the Nutrient Model would increase relative to

the Vector Representation Model. Finally, the results of Studies 1A-1C uncovered

underlying associations between foods and naturalness, or rawness, which underpin

food healthiness judgments. However, it is important to determine whether these

associations continue to play a role even if foods’ nutritional values are made more

salient.

We addressed these issues in Studies 2A-2C by eliciting food healthiness

judgments from participants who saw either food names alone (as in Study 1A) or

food names along with the label highlighting various aspects of its nutrition. Again,

we recruited adult participants for this series of studies. In Study 2A, we provided

our treatment group with information about the calories per 100g. The provision

of calorie information to aid healthy eating is supported by qualitative research

showing that consumers use energy content information (calories) as a proxy for

the overall nutritional value of a product (Van Kleef et al., 2008). In Studies 2B

and 2C, we examined the effects of information about key nutrients (fat, saturates,

sugars, and salt). Under EU rules, front-of-pack labeling of this kind is acceptable

with either no color-coding or traffic-light colored cues (i.e., red highlights high,

orange medium, and green low amounts of fat, saturates, sugar, and salt) (European

Commission, 2011). While both strategies highlight individual nutrients, it is the

color-coded format that also aids consumers to judge whether a particular amount

is high, medium, or low. In Study 2B we gave the treatment group nutrient labels

without color-coding and in Study 2C we gave this group with nutrient labels with

color-coding.

3.4.1 Methods

Participants

There were 202 participants in Study 2A, and after the removal of five using our

exclusion criteria, 197 participants were included in the final analysis (aged 18-

71 years, Mage = 30.30 years, SD = 10.74, 52% female, and 80% had no dietary
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restrictions). From the initial 199 participants who took part in Study 2B, four

were excluded leaving 195 participants (aged 18-65 years, Mage = 29.16 years, SD =

10.28, 48% female, and 82% had no dietary restrictions). Finally, 202 participants

took part in Study 2C (aged 18-78 years, Mage = 34.69 years, SD = 11.51, 70%

female, and 81% had no dietary restrictions). No participants were excluded from

this study as all participant responses fell above the threshold for removal. Only

residents of the UK were allowed to participate in Study 2C to assure knowledge

and familiarity with the traffic light food labeling system.

Design and Procedure

We tested the role of food labeling on judgment, in which we gradually (across

studies) introduced more informative (and realistic) formats of food labeling. All

three studies used a between-subjects design. In half of the sample (control group)

participants rated food healthiness of 172 foods in the same manner as in Study 1A

and 1B. In the treatment groups, participants rated each of the food names presented

alongside a nutrition label. In Study 2A, this was the energy (kcal) amounts per 100

grams of the food. In Study 2B, we additionally included the absolute amount of

fats, saturates, sugars and salts. Finally, in Study 2C, we used the same objective

information as above, but also added the “traffic light” system used in the UK,

which indicates the relative amount of different nutrients, categorizing them into

green, amber, and red groups. The examples of the labeling used in each study are

presented in Figure 3.5.

Figure 3.5

Food stimuli presented to participants in Studies 2A, 2B and 2C

Note. All participants were from a general population sample.
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3.4.2 Results

As shown in Figure 3.6, the Vector Representation Model performed very well across

all studies and conditions. In fact, the out-of-sample predictive accuracy of the Vec-

tor Representation Model was very high, with r2 ranging from 0.65 (95% CI [0.59,

0.72]) to 0.77 (95% CI [0.72, 0.81]), in each study and condition. By comparison,

the predictive accuracy of the models based on the foods’ nutritional information

was lower but also much more variable (r2 ranging from 0.33, 95% CI [0.22, 0.44]

to 0.77, 95% CI [0.72, 0.83]). Figure 3.6 reveals a systematic pattern – the predic-

tive accuracy of the Nutrient Model increased with the amount of the nutritional

information presented alongside foods’ names. This is unsurprising as it shows that

people integrated label information into their judgments (González-Vallejo et al.,

2016; Scarborough et al., 2007a). Despite this, the Vector Representation Model

still performed better than the Nutrient Model when participants saw only calorie

information (Study 2A) and calorie information with front-of-pack nutrient labeling

(Study 2B). Only in the most informative condition, traffic light labeling (Study 2C),

did the Nutrient Model outperform the Vector Representation Model. Figure 3.6

also shows that the accuracy of the vector representation model is identical across

the two conditions in Studies 2A and 2B, although it does drop slightly in Study

2C. This is not significant, as can be seen from the slight overlap in 95% CIs of the

control (r2 = 0.76, 95% CI = [0.71, 0.81]) and traffic light labeling conditions (r2 =

0.65, 95% CI = [0.59, 0.72]) in Figure 3.10 of the Supplementary Materials. In any

case, these results show that associations with food names play an important role

in people’s judgments of healthiness, often more than its nutritional composition.

Figure 3.6 also summarizes the predictive accuracy of the Combined Model

– which uses both the word vectors and nutritional information to predict people’s

judgments. In 5 out of 6 cases, the Combined Model performed better than the

individual models. The highest accuracy was achieved in the traffic light labeling

condition, with r2 of 0.91 (95% CI [0.89, 0.93]), which was markedly higher than

0.77 (95% CI [0.72, 0.83]) of the Nutrient Model and 0.65 (95% CI [0.59, 0.72])

of the Vector Representation Model. These results support the interpretation that

word vectors explain people’s judgments over and above the nutritional information

of individual foods.
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Figure 3.6

A Comparison of Predictive Accuracy between Models in Studies 2A, 2B and 2C
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Note. A comparison of predictive accuracy between models that used only nutrient

content, only word vector representations, or a combination of nutrient content

and word vector representations. Actual ratings were all from a general population

sample who were randomly assigned to either the control or the treatment

condition in each study.
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Do representations of foods change when nutrient information of foods is

highlighted? In other words, do we observe a systematic shift in knowledge repre-

sentations due to the various types of food labeling? To answer this question, we

computed differences between aggregate ratings for each food made in the condi-

tion with and without a food label. We then refitted our Vector Representation

and Combined Model with these difference scores as a dependent variable. Figure

3.7 shows that the Vector Representation Model explains a non-trivial amount of

variance in the difference between the conditions in all three studies. At the same

time, the predictive accuracy of the Combined Model increases markedly from Study

2A through to 2C, which confirms that people who saw additional nutritional in-

formation did in fact rely on it when making their judgments. This supports the

interpretation that even if food labeling changes how people make judgments, the

reliance on knowledge representations captured by the Vector Representation Model

remains stable and influential. It also shows that word vector representations can

predict the idiosyncratic effects of nutrient labels on health judgments for different

food items.

Figure 3.7

Leave-one-out cross-validation results for the ability of vector representations to

predict condition differences

General Population Sample
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Note. Leave-one-out cross-validation results for the ability of vector

representations (Vector Representation Model) and the Combined Model to

predict the difference between conditions in Study 2A (calorie information –

control), Study 2B (calorie information with front-of-pack nutrient labeling –

control) and, Study 2C (traffic light labeling – control).
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3.5 General Discussion

Everyday dietary decisions are influenced by people’s subjective perceptions of food

healthiness. Psychological explanations of this process are incomplete without an

accurate model of the rich knowledge and diverse associations underpinning people’s

judgments of what food is healthy and what is not. In this paper, we offer a novel

method for uncovering these knowledge representations by combining insights from

machine learning and computational linguistics. Using vector representations of

food items derived from natural language, we show that it is possible to predict

healthiness judgments highly accurately. We show that people’s judgments can

be partly explained by the strength of association between individual food items

and concepts pertaining to naturalness (e.g., harvest, leaf) and rawness (e.g., crop,

organic). These associations play a role even when judgments are made in the

presence of food images or are made by trained dietitians. In addition, high accuracy

rates obtained by our Combined Model indicate that such knowledge representations

in language do not merely reflect beliefs about nutritional composition; rather they

capture something unique about people’s associations with different foods. Thus,

our models can help evaluate how different front-of-pack labeling strategies influence

food healthiness judgments.

Unlike previous approaches, our method does not require us to identify spe-

cific factors or attributes that we, as researchers, believe to be related to healthiness

judgments. Instead, by using our best-fit model to predict the “healthiness” of

common words in the English language, we show that nature-related words such as

“crop”, “harvest”, and “agricultural” are implicit in people’s judgments. This is

consistent with other findings that perceived naturalness and healthiness are often

intertwined (Sanchez-Siles et al., 2019; Siipi, 2012 but see Fernbach et al., 2019).

These results also align with the finding that rawness or the degree to which a food

has been processed is a strong cue of healthiness in food choice (Scheibehenne et al.,

2007; Schulte-Mecklenbeck et al., 2013). Notably, our results indicate that models

based on these associations are accurate even if participants are explicitly told about

the nutritional composition of foods.

Our approach offers a unique insight into the psychological basis of subjective

food healthiness judgments by exploring foods in their most abstract forms (name or

image). That said, a model trained on written text is unlikely to accurately capture

sensorimotor information about foods (e.g. smell, texture), which would also be
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relevant in real-world situations (De Deyne et al., 2016; Lynn et al., 2020; Papies

et al., 2020). Hence, while our results are promising, they are only a first step in

providing a rich set of attributes and associations that people use in judging foods’

healthiness.

Neither explicit food labeling nor expert judgments reduced the contributions

of the knowledge associations established by the Vector Representation model. With

respect to expert judgments, these findings are in line with research showing that

nutritional expertise does not always translate into a higher reliance on nutritional

information when making healthiness judgments (Orquin, 2014). Our results also

speak to the value of nutritional labeling more generally. Given that associations

played a role in all studies, existing front-of-pack labeling can neither substitute nor

correct for the associations that people rely on when judging foods’ healthiness.

There are many potentially useful applications of our computational ap-

proach. Future studies could test the predictive ability of this Vector Represen-

tation Model with and against other formats of nutrient labeling such as France’s

Nutri-score label (color-coded without numerical information). Thus, the use of

this approach could be vital in determining a single internationally agreed nutrient

labeling system (Goiana-da Silva et al., 2019), especially since it provides directly

comparable results between labeling formats. However, further work is necessary

to establish whether the accuracy of our models changes when participants are pre-

sented with other information present on pre-packaged foods, such as branding,

health claims, and back-of-pack nutrition labeling.

An important outstanding question is whether our Vector Representation

Model is generalizable to judgments of other foods than the 172 items tested in all

six studies. In Section 3.6.10 of our Supplementary Material, we report the results

of a new study in which we elicited judgments of 60 new foods from a sample of 97

participants. Instead of training a new model, we used the Vector Representation

Model from Study 1A to derive predictions for our new foods. Our models performed

very well –with our approach we can predict healthiness judgments of new foods

from a new group of participants highly accurately. To assist future research, we

have obtained predictions of our models for hundreds of novel food items and made

these available via OSF (https://osf.io/jys6u/). These can be used to evaluate

future interventions and to test alternative psychological mechanisms that underpin

human judgments and choices of foods. Overall, our studies provide new insights into

people’s food healthiness judgments, while our methods offer an exciting new avenue
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to researchers and practitioners interested in designing interventions for healthy

eating.
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3.6 Supplementary Materials

In this section, we perform a series of robustness checks to provide a wider context

for the effectiveness of using a vector space approach to uncover insights about food

healthiness perceptions. We also provide further details about our study to increase

reproducibility.

Section 3.6.1 - Full Sample Results: This demonstrates that the exclu-

sion of participants with seemingly irrational responses does not affect the perfor-

mance of our models.

Section 3.6.2 - Demographic Characteristics: A breakdown of the par-

ticipant demographic information, including the details of the experience and spe-

cialty of the registered dietitians in Study 1B to support future research in this

area.

Section 3.6.3 - Extended Nutrient and Combined Models: Incor-

porates additional nutrient data and amounts per portion size, to assess whether

considering these factors improves the performance of these comparative models.

Section 3.6.4 - Alternative Word Embeddings: Compares our chosen

pre-trained word embedding model (word2vec) with two other popular pre-trained

word embedding models that have slightly different training algorithms. To clarify,

the purpose of this is not to compare word embedding approaches or advocate for

a single model, but rather to assess the robustness and consistency of the broader

vector-space-based approach.

Section 3.6.5 - Secondary Vector Representation Models: Details

the different regression techniques used to determine the accuracy of our Vector

Representation Model and Combined Model. The reason we replicated our tests

using multiple machine learning regularization techniques was because we faced a

high-dimensional regression problem (where we had over 300 predictor variables).

As a result, we could not use standard linear regressions so chose to test techniques

that have previously been found to address this problem, akin to other work using

a similar computational approach (Bhatia, 2019; Bhatia et al., 2021a).

Section 3.6.6 - Test for Model Comparison: Explicit statistical com-

parisons of our computational models using separate paired sample t-tests.
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Section 3.6.7 - Individual-level Modeling: Model performances in each

condition based on the individual’s set of judgments, to ensure our findings still hold

at the individual level.

Section 3.6.8 - Food Category Modeling: Model performances in each

condition when foods are aggregated to food category level.

Section 3.6.9 - Word Cloud for Unhealthy Associations: The 50 non-

food item words in American English that are given the lowest healthiness ratings

by our Vector Representation Model, trained on participant ratings from Study 1A.

Section 3.6.10 - Test of Model Generalizability: A study to determine

the accuracy of the Vector Representation Model healthiness rating predictions for

food names not used to train the model.

3.6.1 Full Sample Results

In our main manuscript, we excluded participants whose ratings correlated poorly

(r < 0.4) with average participant ratings. To make sure that the exclusion crite-

rion did not significantly alter the predictive accuracy of our models, we also fit the

three main models to the original data without the exclusion. Table 3.1 reports the

out-of-sample r2 with either 95% CI for the Nutrient Model, Vector Representation

Model, and Combined Model trained on average healthiness ratings. Compared to

the results reported in Table 3.6 (see Test for Model Comparison Section below),

model performance stayed the same when including all participants.
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Table 3.1 Aggregate level out-of-sample r2 for the Vector Representation Model,

Nutrient Model and Combined Model fit to the original data including all

participants, numbers in the brackets represent 95% CIs

Study Nutrient Model Vector Representation Model Combined Model

1A 0.35 [0.24, 0.46] 0.76 [0.71, 0.80] 0.76 [0.71, 0.82]

1B 0.39 [0.28, 0.50] 0.69 [0.63, 0.75] 0.75 [0.70, 0.80]

1C 0.37 [0.26, 0.48] 0.76 [0.71, 0.80] 0.77 [0.72, 0.82]

2A control 0.33 [0.22, 0.44] 0.77 [0.72, 0.81] 0.77 [0.72, 0.82]

2A treatment 0.45 [0.35, 0.56] 0.76 [0.71, 0.81] 0.81 [0.77, 0.85]

2B control 0.34 [0.23, 0.45] 0.76 [0.71, 0.81] 0.77 [0.72, 0.82]

2B treatment 0.53 [0.44, 0.63] 0.74 [0.69, 0.79] 0.82 [0.79, 0.86]

2C control 0.36 [0.25, 0.47] 0.76 [0.71, 0.81] 0.77 [0.72, 0.82]

2C treatment 0.77 [0.72, 0.83] 0.65 [0.59, 0.72] 0.91 [0.89, 0.93]
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3.6.2 Demographic Characteristics

Table 3.2 Demographic Characteristics of all Participants

Characteristic Study 1A Study 1B Study 1C Study 2A

Control Control Food Control Calorie

Images Labeling

(Lay) (Expert) (Lay) (Lay) (Lay)

Age

N 134 19 99 96 101

Mean 29.57 35.84 27.25 31.64 28.96

SD 8.86 10.36 10.20 11.66 9.81

Min - Max 18 - 74 23 - 56 18 - 69 18 - 71 18 - 60

n % n % n % n % n %

Gender

Female 58 43 17 89 44 44 50 52 53 52

Male 73 54 2 11 54 55 45 47 47 47

Other 2 1 0 0 1 1 1 1 0 0

Prefer not to say 1 1 0 0 0 0 0 0 1 1

Diet Restrictions

None 113 84 13 68 81 82 71 74 86 85

Pescetarian 1 1 2 11 3 3 7 7 4 4

Vegetarian 9 7 1 5 6 6 3 3 3 3

Vegan 2 1 0 0 2 2 3 3 1 1

Other 9 7 3 16 7 7 12 13 7 7
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Table 3.2 Demographic Characteristics of all Participants (Continued)

Characteristic Study 2B Study 2C Supplement

Control Front of Control Traffic New

Pack Light Food

Labeling Labeling Stimuli

(Lay) (Lay) (Lay) (Lay) (Lay)

Age

N 104 91 102 100 97

Mean 29.97 28.35 35.18 34.19 25.71

SD 11.27 9.28 10.60 12.41 8.97

Min - Max 18 - 65 18 - 57 18 - 64 18 - 78 18 - 60

n % n % n % n % n %

Gender

Female 42 40 51 56 77 75 64 64 38 39

Male 62 60 38 42 25 25 36 36 58 60

Other 0 0 1 1 0 0 0 0 1 1

Prefer not to say 0 0 1 1 0 0 0 0 0 0

Diet Restrictions

None 85 82 75 82 82 80 82 82 85 88

Pescetarian 2 2 4 4 4 4 3 3 2 2

Vegetarian 4 4 4 4 5 5 4 4 5 5

Vegan 4 4 2 2 4 4 5 5 2 2

Other 9 9 6 7 7 7 6 6 3 3
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Table 3.3 Demographic Characteristics specific to Nutritional Experts

Characteristic Study 1B

Control

(Expert)

n %

No. of Years as a Registered Dietitians

Less than 1 year 1 5

1-4 years 8 42

5-9 years 3 16

10-19 years 3 16

20 years or more 4 21

Area of Specialism

Diabetes 3 16

Gastroenterology 4 21

Older People 1 5

Oncology 1 5

Pediatric 2 11

Parenteral and Enteral Nutrition 1 5

Renal Nutrition 6 32

Other 1 5

3.6.3 Extended Nutrient and Combined Models

In testing the accuracy of the Nutrient Model our assumption was that partici-

pants’ healthiness ratings may be best reflected in people’s knowledge of the nutri-

tional/energy composition of individual foods. In our main manuscript, our Nutrient

Model included information about calories and nutrients (fat, saturates, sugar, salt,

and protein) per 100g, as well as the traffic light color-coding. Whereas this ap-

proach reflects current EU regulation about food labeling, it may not truly reflect

the nutritional information that people actually rely on when making their judg-

ments. In the following section, we provide further robustness checks to the results

we report in the main manuscript by using three different extended versions of the

Nutrient Model. First, most of the existing regulation is focused on highlighting

nutrients that are typically associated with weight gain and poorer health. We,
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therefore, extended our original Nutrient Model by adding (up to) 23 positive nu-

trient variables (including fiber, calcium, and vitamin C). Second, we consider the

possibility that perceptions of healthiness may better align with nutritional infor-

mation expressed in relation to the portion size amounts of each food. As there is no

agreement of what portion size should be, we made a judgment call to use nutrient

amounts per 100 calories (thus g/100kcal). This way, our Nutrient Model does not

punish foods that would never be eaten in large volumes (e.g., chewing gum).

Since many of the foods do not have all the micronutrients, we used ridge

regression instead of linear (ordinary least square) regression for the two alternative

Nutrient Models and Combined Models with micronutrients added. Further analysis

also confirmed that ridge regression is more appropriate for the extended Nutrient

Model as it achieved higher predictive accuracy than linear regression.

As can be seen in Tables 3.4 and 3.5, the use of portion size amounts does

not improve the accuracy of either the Nutrient Model or the Combined Model in

any condition or study. The addition of positive nutrients does not improve the

accuracy of the Combined Model but impairs the accuracy of the Nutrient Model.

The extended Nutrient Model with the added micronutrients (either per 100g or

per 100kcal) performed considerably worse than the original Nutrient Model. The

predictive power of the extended Nutrient Model was highly variable (r2 ranging

between 0.07 (95% CI [0.01, 0.14]) to 0.72 (95% CI [0.66, 0.78]), increasing across

the conditions where nutritional information was accessible to participants and per-

formed best in the traffic light labeling condition of Study 2C. Similarly, the alter-

native Combined Models performed consistently with the original Combined Model.

In all control conditions and Studies 1A and 1C, the r2 of the extended Combined

Model with micronutrients (either per 100g or per 100kcal) varied between 0.65

(95% CI [0.57, 0.73]) and 0.89 (95% CI [0.86, 0.92]). It performed slightly worse in

the sample of registered dietitians and reached the highest out-of-sample accuracy

in the treatment condition of Study 2C. Moreover, using separate paired-sample

t-tests for each study, we found that the mean squared errors from the extended

versions of the Nutrient Model were not significantly different from those of the

original Nutrient Model. This result holds for the Combined Model, suggesting that

adding more nuanced nutrient information did not improve the predictive accuracy

of the Nutrient Model or the Combined Model. The detailed statistics are available

upon request. Taken together, these robustness checks show that the relatively lower

accuracy of the Nutrient Model was not due to the incorrect assumption about the

role of micronutrients or portion size considerations in people’s judgments.
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Table 3.4 Out-of-sample r2 comparisons between the original and alternative

Nutrient Models

Study Nutrient Nutrient Nutrient Nutrient

Model Model Model Model

(per 100g) (per 100 kcal) with micronutrients with micronutrients

(per 100g) (per 100 kcal)

1A 0.35 [0.24, 0.46] 0.34 [0.23, 0.45] 0.12 [0.05, 0.20] 0.12 [0.05, 0.19]

1B 0.39 [0.28, 0.50] 0.38 [0.27, 0.49] 0.15 [0.07, 0.23] 0.14 [0.06, 0.22]

1C 0.37 [0.26, 0.48] 0.33 [0.23, 0.44] 0.18 [0.09, 0.26] 0.11 [0.04, 0.18]

2A control 0.33 [0.22, 0.44] 0.32 [0.21, 0.43] 0.08 [0.02, 0.14] 0.07 [0.01, 0.14]

2A treatment 0.45 [0.35, 0.56] 0.42 [0.31, 0.52] 0.26 [0.17, 0.35] 0.24 [0.15, 0.33]

2B control 0.34 [0.23, 0.45] 0.32 [0.21, 0.43] 0.08 [0.02, 0.14] 0.11 [0.04, 0.19]

2B treatment 0.53 [0.44, 0.63] 0.49 [0.39, 0.59] 0.37 [0.28, 0.46] 0.35 [0.26, 0.16]

2C control 0.36 [0.25, 0.47] 0.35 [0.24, 0.46] 0.11 [0.04, 0.18] 0.09 [0.03, 0.16]

2C treatment 0.77 [0.72, 0.83] 0.76 [0.70, 0.82] 0.74 [0.68, 0.79] 0.72 [0.66, 0.78]

Table 3.5 Out-of-sample r2 comparisons between the original and alternative

Combined Models

Study Combined Combined Combined Combined

Model Model Model Model

(per 100g) (per 100 kcal) with micronutrients with micronutrients

(per 100g) (per 100 kcal)

1A 0.77 [0.72, 0.82] 0.76 [0.71, 0.81] 0.66 [0.58, 0.74] 0.74 [0.67, 0.80]

1B 0.75 [0.70, 0.80] 0.72 [0.66, 0.77] 0.59 [0.50, 0.68] 0.67 [0.60, 0.75]

1C 0.76 [0.71, 0.82] 0.75 [0.70, 0.80] 0.68 [0.60, 0.75] 0.73 [0.66, 0.79]

2A control 0.77 [0.72, 0.82] 0.77 [0.72, 0.82] 0.66 [0.58, 0.74] 0.73 [0.67, 0.80]

2A treatment 0.81 [0.77, 0.85] 0.79 [0.74, 0.83] 0.73 [0.66, 0.80] 0.77 [0.71, 0.82]

2B control 0.77 [0.72, 0.82] 0.76 [0.71, 0.81] 0.66 [0.58, 0.74] 0.73 [0.67, 0.80]

2B treatment 0.83 [0.79, 0.86] 0.81 [0.76, 0.85] 0.75 [0.69, 0.81] 0.79 [0.73, 0.84]

2C control 0.77 [0.72, 0.82] 0.77 [0.72, 0.82] 0.65 [0.57, 0.73] 0.74 [0.68, 0.80]

2C treatment 0.91 [0.89, 0.93] 0.90 [0.80, 0.92] 0.88 [0.85, 0.91] 0.89 [0.86, 0.92]
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3.6.4 Alternative Word Embeddings

In the main text, we fit the Vector Representation Model using pre-trained word2vec

embeddings (Mikolov, et al., 2013) because these contained embeddings for multi-

word food items. To show the robustness of using word embeddings in the Vector

Representation Model, we also used other pre-trained word embeddings including

fastText (Mikolov et al., 2018) and GloVe (Pennington et al., 2014), which both

offer 300-dimensional vector representations of the food items. However, only 112

out of 172 food items have vector representation in fastText and 111 in GloVe. Un-

like word2vec, which was trained on a large dataset of Google News articles, the

GloVe model was trained on the Common Crawl 840B corpus and fastText on the

Common Crawl 600B corpus. These embeddings also differ in terms of training

algorithms. The pre-trained word2vec that we used was trained by a combination

of the continuous bag-of-words (CBOW) method (which predicts words from their

neighbors) and the skip-gram method (which predicts neighboring words of a given

word). GloVe was trained in such a way that the dot product between two word

vectors approximates the logarithm of the two words’ probability of co-occurrence.

FastText combines the CBOW method and position-dependent weighting to learn

n-gram embeddings, which are summed to create word-level embeddings. Figure

3.8 shows out-of-sample r2 of the Vector Representation Model (using ridge re-

gression with λ = 1) with different semantic vector representations from different

word embeddings for every study. As can be seen, the performance of the Vector

Representation Model with fastText or GloVe is comparable and even higher than

word2vec. We suspect the higher performance with fastText and GloVe is due to the

fact that the training corpus (Common Crawl) underpinning these two pre-trained

models contains a more diverse set of language data than that of word2vec (Google

News).
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Figure 3.8

Out of Sample Accuracy from Alternative Word Embedding Sources

Note. Out-of-sample r2 of the Vector Representation Models (VRM) with different

semantic vector representations from alternative word embeddings. The same set

of 172 food items were used in VRM with word2vec. However, only 112 were used

in the Vector Representation Model with fastText and 111 in GloVe due to the

limited vocabulary of these embeddings.

3.6.5 Secondary Vector Representation Models

In order to address the issue of having a high number of potentially highly correlated

predictors in the Vector Representation Model (and Combined Model), we used

a ridge regression. To check whether our results are influenced by the choice of
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method, we tested other regression techniques including lasso, support vector, and

k-nearest neighbors regression. Here we provide brief details about these techniques:

Both ridge and lasso learn a linear mapping from semantic vector representa-

tions (xij) to healthiness ratings (yi) while penalizing the magnitudes of coefficients

(βj) to avoid potential collinearities between dimensions (j). However, they differ

in the loss function used for estimating coefficients. Ridge penalizes the L2-norm of

the coefficients (Eq. 1), whereas lasso penalizes the L1-norm of the coefficients (Eq.

2). Penalization parameter, λ, controls the strength of the penalty.

Σi(yi − β0 − Σjxijβj)
2 +λ Σjβ

2
j (1)

Σi(yi − β0 − Σjxijβj)
2 +λ Σj |βj | (2)

Support vector regression uses a “kernel trick” to learn a nonlinear map-

ping from semantic vector representations to healthiness ratings with the penaliza-

tion parameter, c, which works similarly to λ in the lasso and ridge techniques.

We considered three common kernel functions – radial basis function kernel (SVR-

RBF), polynomial kernel (SVR-Polynomial), and sigmoidal kernel (SVR-Sigmoid).

K-nearest neighbor regression predicts the healthiness rating of a food item by com-

puting the average rating of the k nearest food items in the semantic vector space.

The optimal penalization parameters λ (in lasso and ridge) and c (in SVRs) and the

optimal number of neighbors k are chosen through leave-one-out cross-validation.

All analyzes were implemented in the Python scikit-Learn machine learning library

(Pedregosa et al., 2011). For simplicity, keeping other tuning parameters in this

library as default, we tested penalization parameters, λ (in lasso and ridge) and c

(in SVRs), in the following set: 10−2, 10−1, 100, 101, 102, 103, 104, 105, 106, 107, and

number of neighbors, k, in the following set: 1,2,3,...10. Figure 3.9 shows out-of-

sample r2 of different regression techniques with different tuning parameters for

every study.
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Figure 3.9

Out of Sample Accuracy of Secondary Vector Representation Models

Note. Out-of-sample r2 of secondary Vector Representation Models with different

penalization parameters.
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3.6.6 Test for Model Comparison

Figure 3.10 shows the out-of-sample r2 with the 95% CI for the Nutrient Model,

the Vector Representation Model, and the Combined Model trained on average

healthiness ratings. Table 3.6 reports the Pearson correlation between the observed

average healthiness ratings and the leave-one-out predictions, the out-of-sample r2,

and the mean squared errors of the Nutrient Model, Vector Representation Model,

and the Combined Model. We can see clearly that both the Vector Representation

Model and the Combined Model significantly outperformed the Nutrient Model

except in the treatment condition of Study 2C where participants were given the

most amount of nutrient information. We also ran separate paired sample t-tests

to compare the squared errors from different models for each study. Across all

studies, the mean squared errors from the Vector Representation Model and the

Combined Model were significantly lower than those from the Nutrient Model (all

p < 0.01). These results hold for the extended versions of the Nutrient Model and

the Combined Model (detailed statistics are available upon request), suggesting that

both the Vector Representation Model and the Combined Model outperformed the

Nutrient Model.

Overall, the mean squared errors from the Vector Representation Model were

not significantly different from those from the Combined Model (and its extended

version, detailed statistics are available upon request), suggesting that adding nu-

trient information (on either macro- or micro-level) to the word vectors did not

significantly improve the predictive accuracy of the Vector Representation Model.
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Figure 3.10

Group Level Modeling: Model Comparisons

Note. Out-of-sample r2 of the Nutrient Model (NM), Vector Representation Model

(VRM), and Combined Model (CM). Error bars represent the 95% CIs.
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Table 3.6 Pearson correlation r, out-of-sample r2 and mean squared errors (MSE)

for the Nutrient Model, Vector Representation Model, and Combined Model

Study Nutrient Vector Combined

Model Representation Model

Model

r r2 MSE r r2 MSE r r2 MSE

1A 0.60 0.35 1295.48 0.88 0.76 482.76 0.88 0.77 467.30

1B 0.63 0.39 1471.25 0.84 0.69 753.24 0.87 0.75 600.55

1C 0.61 0.37 1207.45 0.88 0.75 480.31 0.88 0.76 451.33

2A control 0.58 0.33 1353.49 0.89 0.77 471.76 0.88 0.77 460.46

2A treatment 0.67 0.45 1002.48 0.88 0.76 443.73 0.90 0.81 349.52

2B control 0.59 0.34 1183.60 0.88 0.76 427.76 0.88 0.77 410.59

2B treatment 0.73 0.53 828.56 0.87 0.74 461.70 0.91 0.83 309.75

2C control 0.60 0.36 1663.91 0.88 0.76 622.98 0.88 0.77 586.05

2C treatment 0.88 0.77 520.13 0.82 0.65 800.98 0.95 0.91 204.39
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3.6.7 Individual-level Modeling

In the main text, we evaluated a Nutrient Model, Vector Representation Model, and

Combined Model on group-level data, meaning that we averaged food healthiness

ratings across all participants within each condition. However, since averaging rat-

ings removes noise and variability, it is necessary to check if our results still hold on

the individual level. To model individuals with the three types of models, we per-

formed leave-one-out cross-validation on each individual’s set of judgments. This

yielded an out-of-sample prediction for each rating a participant gave. We then

calculated the coefficient of determination (r2) between these predictions and an in-

dividual’s actual ratings and averaged these calculations across participants within

studies. Figure 3.11 visualizes the out-of-sample r2 for the three types of models for

each study. The results on the group level are largely replicated on the individual

level. First, the Vector Representation Model performs better than the Nutrient

Model across all studies and conditions, except in the treatment condition of Study

2C. Second, the performance of the Nutrient Model increases as more nutritional

information is provided in the treatment conditions of Studies 2A-2C. Third, the

performances of the Vector Representation Model and Combined Model are indis-

tinguishable in the general public sample of Study 1A and the control condition of

Studies 2A-2C. Lastly, the Combined Model performs better than the Vector Rep-

resentation Model in the expert sample of Study 1B and the treatment conditions

of Studies 2A-2C.
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Figure 3.11

Individual Level Modeling: Model Comparisons

Note. Average individual level out-of-sample r2 of the Nutrient Model (NM),

Vector Representation Model (VRM), and Combined Model (CM). Error bars

represent standard errors.

3.6.8 Food Category Modeling

As a follow-up analysis, we applied our modeling to distinct categories of foods

(e.g. baked products, beef products, dairy, and egg products). Overall, our results

closely resemble our key findings reported in the main text, as can be seen in Table

3.7. The Vector Representation Model performs consistently high, with r2 ranging

from 0.76 (95% CI [0.72, 0.81]) to 0.83 (95% CI [0.79, 0.86]). By comparison, the

predictive accuracy of the Nutrient Model was much lower but improved with the

inclusion of more front-of-pack information across the studies (r2 ranging from 0.27,

95% CI [0.16, 0.37] to 0.79, 95% CI [0.74, 0.84]). The Nutrient Model performed

better than the Vector Representation Model when participants were shown traffic

light labeling (Study 2C). However, the Combined Model achieves an even higher

predictive ability than any individual model, with r2 reaching 0.95 (95% CI [0.94,
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0.96]) for the most informative (traffic light) labeling system.

We can also note the categories of foods that each of the models performs

the best and worst in. There were no substantial differences between the predicted

ratings and actual ratings for the Vector Representation Model in all the conditions

except when judgments were made in the presence of traffic light labeling. In this

condition, the biggest discrepancy between the model’s judgment predictions and

actual participant judgments was for the “Fats and Oils” category. Irrespective,

both model predictions and observed ratings were always less than zero, meaning

that the model accurately predicted that participants would perceive foods in this

category as unhealthy. The Nutrient Model had the biggest discrepancy for the food

categories of “Beverages”, “Fats and Oils”, and “Nuts and Seed Products”, which

was apparent in multiple conditions. As an example, for “Beverages”, the Nutrient

Model predicted healthier ratings than the actual ratings provided by participants

in every case. This gap was still present when participants made judgments using

traffic light labeling, despite the high overall predictive ability of the Nutrient Model

in this condition. A possible explanation is that beverages like “cola” and “beer” do

have a low negative nutrient content (e.g. fat, saturates, salt), hence why the model

predicted a relatively high healthiness (above a rating of zero). However, in every

condition except traffic light labeling, participants rated the “Beverages” category

as unhealthy implying a distinct disparity between nutrient content and judgment

formation. On the other hand, our Vector Representation Model always had a very

high predictive ability for the category of “Beverages” demonstrating, particularly in

this instance, that associations capture important attributes underlying healthiness

judgments.

85



Table 3.7 Out-of-sample r2 comparisons between the Vector Representation

Model, Nutrient Model and Combined Model for food category modeling, numbers

in the brackets represent 95% CIs

Study Vector Representation Nutrient Combined

Model Model Model

1A 0.83 [0.79, 0.86] 0.31 [0.20, 0.41] 0.84 [0.81, 0.88]

1B 0.78 [0.74, 0.82] 0.34 [0.25, 0.43] 0.82 [0.79, 0.86]

1C 0.80 [0.76, 0.84] 0.28 [0.18, 0.39] 0.81 [0.77, 0.85]

2A control 0.80 [0.76, 0.84] 0.28 [0.17, 0.38] 0.82 [0.78, 0.86]

2A treatment 0.79 [0.75, 0.84] 0.44 [0.35, 0.53] 0.86 [0.83, 0.89]

2B control 0.82 [0.79, 0.86] 0.27 [0.16, 0.37] 0.83 [0.79, 0.86]

2B treatment 0.76 [0.72, 0.81] 0.55 [0.46, 0.64] 0.88 [0.86, 0.91]

2C control 0.82 [0.78, 0.86] 0.32 [0.21, 0.43] 0.84 [0.80, 0.87]

2C treatment 0.68 [0.62, 0.74] 0.79 [0.74, 0.84] 0.95 [0.94, 0.96]

3.6.9 Word Cloud for Unhealthy Associations

It is possible to identify regions in vector space associated with unhealthiness in

the same manner that we uncovered words associated with healthiness in the main

manuscript (our Figure 3.4). As seen in Figure 3.12, the words with the lowest

healthiness ratings (using a model trained on Study 1A participant ratings), have

connotations that are more ambiguous. Despite this, there are recognizable terms

related to less healthy categories of foods (e.g. “sandwich”, “melt”, “candy”, “al-

cohol”), and also words that seem to correspond to aspects of the context in which

foods can be consumed (e.g.“midnight”, “couch”, “birthday”, “social”). While less

intuitive, these associations that allude to the emotional and social benefits of un-

healthy foods may explain why consumers choose them over options that are more

nutritious.

86



Figure 3.12

Unhealthiest “Other” Words based on the Vector Representation Model

Note. Words with the lowest predicted healthiness ratings based on the Vector

Representation Model estimated for the lay people in Study 1A.

3.6.10 Test of Model Generalizability

In order to establish whether our Vector Representation Model can provide true out-

of-sample predictions about healthiness ratings, we collected participant ratings for

an additional (not original 172) 60 foods (e.g. blackberries, custard, and spinach).

To obtain this set of new stimuli, we generated model predictions (trained on Study

1A aggregate ratings) for all foods from the Food and Nutrient Database for Dietary

Studies (U.S. Department of Agriculture, 2019). We then removed foods included in

the original stimuli and uncommon or ambiguous foods. Following this, we selected

20 foods from the lowest quartile, 20 from around the median and, 20 from the

highest quartile of predicted healthiness ratings, resulting in our final list of 60

foods. One hundred and one participants were recruited from Prolific Academic,
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with four participants removed using the same exclusion as the previous studies.

There were 99 participants in our final participant sample (aged 19-61 years, Mage

= 26.71 years, SD = 8.98, 39.2% females, and 87.6% had no dietary restrictions).

The design of this study was identical to Study 1A. The only difference was that

participants rated the healthiness of food names that had not previously been used

as stimuli. A paired-sample t-test was run to compare model predictions (trained

on Study 1A data) with human ratings on both the aggregate and individual levels.

On the aggregate level, the model predictions were not significantly different from

the average participant ratings (t(59) = -0.34, p = 0.735). On the individual level,

ratings from 53 out of 99 (53.54%) participants were not significantly different from

the model’s predictions. Based on these results, we conclude that the model can be

used to predict subjective healthiness judgments for new foods, even in the absence

of any nutritional information in the model specification.
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Chapter 4

Discussion and Conclusions

How would you judge the healthiness of the food currently sitting in your fridge? It is

likely that factors such as intended cooking method and accompanying foods would

contribute to your evaluations, alongside presumed or visible nutrient information.

These, and other, contextual factors are often overlooked in existing studies on

healthiness perception accuracy, largely due to an inability of knowing which, and

how many, of these attributes might be important. Two key recent advancements in

computational linguistics (availability of large corpora and accessibility of vector

space models) mean that psychology researchers have now discovered the value

of computational approaches for understanding naturalistic judgments and choices

(Bhatia, 2019; Richie and Bhatia, 2020). Inspired by such previous work, in this

thesis, we use co-occurrences of different food names with other words in large-scale

language data to uncover the most relevant attributes and associations for healthy

(and unhealthy) food judgments (Bhatia, 2016, 2017; Bhatia et al., 2021a; Richie

and Bhatia, 2020). Ultimately, we demonstrate how this data-driven methodology

can progress our understanding of food healthiness perceptions.

4.1 Summary of Research Findings

In Chapter 2, we show how computational models trained on online news articles can

uncover representations of superfoods. We chose to analyze superfoods specifically

because it is a term that, despite being banned from appearing on food packaging

since 2007 (EU Regulation No. 1924/2006), continues to be widely mentioned in re-
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lation to specific foods (Liu et al., 2021). Moreover, previous work suggests learned

associations with superfood ingredients in food and beverage products cause health

halo effects (Brownbill et al., 2018; Reisman, 2020), influencing consumer prefer-

ences (Meyerding et al., 2018). Yet, little is known about the nature of superfood

representations. Therefore, in this chapter we used natural language processing

methods to extract the words, concepts, and topics most likely to appear in “super-

food” articles, with comparisons made against news articles about the same foods

in non-superfood contexts. We also informally compare these frequent word co-

occurrences with participant responses. Using three, independent, bottom-up text

analysis techniques, we found that discourse surrounding superfoods in news me-

dia emphasizes and perpetuates health benefits, physical appearance, and disease

prevention (despite weak scientific evidence in support of these claims). These asso-

ciations, which emerge when using all three methodologies, showcase how pervasive

the unsubstantiated associations with superfoods are.

In Chapter 3, we demonstrate how pre-trained computational models can be

applied to predict food healthiness judgments. Across several experiments involving

lay participants and trained dietitians, we find that our models are capable of making

highly accurate out-of-sample predictions of food healthiness ratings for a wide range

of foods. Additionally, we extend previous similar research by also investigating the

susceptibility of judgments to observable information often found on food packaging,

in this case, nutrition labeling. As a result, we provide a tool that has the potential to

assist in the evaluation of behavioral interventions intended to shift individual food

healthiness perceptions in the right direction. A further advantage is that our models

are highly general, and so can be used to predict judgments (and intervention effects)

for nearly any food item. Indeed, we share our model’s predictions for hundreds of

novel food items as we believe it is a useful resource for future research. We also

shed light on the black box underlying the generated predictions of our machine-

learning approach. This conceptual mapping is achieved by applying the same model

to predict the healthiness ratings of common words from an established semantic

dictionary. Here, we uncover an entwined relationship between high healthiness

perceptions and naturalness related words. Moreover, for the first time, we find a

role of social and emotional contextual factors in underpinning perceptions of foods

as low in healthiness.
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4.2 Theoretical Implications

Theoretically, while we continue to make clear that vector-based representations are

not themselves a model of psychological processes (Bhatia et al., 2021a; Richie and

Bhatia, 2020), such a mechanism of associative judgment is cognitively plausible.

This is a strength of the approach, as it acts as a continuation of existing theoreti-

cal research (Bhatia, 2019). Indeed, cognitive scientists have effectively used vector

space models to predict both low-level behavioral phenomena and high-level judg-

ments in other domains (Bhatia, 2019; Bhatia et al., 2021b). The consistently high

accuracy of our vector representation model in predicting out-of-sample judgments

of independent groups of participants, can therefore offer a less costly method of

obtaining insights into latent attributes (Bhatia et al., 2021a). While a perfect rep-

resentation of people’s knowledge about foods is unlikely, the gradual exchange of

predictive power from the vector representation model to the nutrient model suggests

vector representations capture some truth. Moreover, this underlying human-like

mechanism, along with a high predictive power of our integrated model (Combined

Model), implies the possibility of an interaction between the two (currently per-

ceived separate) models of thought (Bhatia, 2017; Kahneman, 2003; Kahneman and

Frederick, 2002; Morewedge and Kahneman, 2010). This reinforces the idea of a

single system of learning, storing, and retrieving knowledge, as suggested by Bhatia

(2016). Thus, at the very least, our findings bring forth an exciting avenue for fur-

ther research into the interplay between knowledge representations and observable

information.

4.3 Practical Implications

4.3.1 Generalizability of our Predictive Model

The most significant practical implication of our research is the development of a

computational tool that can determine the influence of package features in shift-

ing healthiness perceptions of individual foods. Our primary achievement was in

creating baseline predictions for hundreds of commonly consumed foods trained on

ratings using food names only (see https://osf.io/jys6u).

As demonstrated through Studies 2A, 2B, and 2C in Chapter 3, judgments of

healthiness can also be predicted when participants are presented with energy and/or
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nutrition labeling (in various formats) alongside each food name. Our findings

that traffic light labeling is the most effective, out of the three types, in changing

judgments is in line with previous studies (An et al., 2021; Cecchini and Warin,

2016).

Indeed, policy-makers have been advised to avoid non-interpretive label for-

mats (like our monochrome version), despite being preferred by industry, because

many consumers struggle to understand and use them (Jones et al., 2019). Nonethe-

less, notably, we can now measure the extent of influence at a food or food category

level, and specifically, whether foods change from being considered as healthy at

baseline to unhealthy after intervention (or vice versa).

On a side note, one may have noticed that the reference intake guides were

absent from our monochrome and traffic light labeling designs. We chose to imple-

ment design features singly to ascertain the independent influence of each feature.

This would allow policy-makers and certified nutritional experts to deliberate over

the fewest features necessary to nudge the public effectively. Indeed, we encourage

researchers to test different combinations of features from existing nutrient label-

ing formats, including those from other strategies (e.g. health stars, nutritional

warnings, stop signs) used around the world (Jones et al., 2019).

The ideal scenario would be to ascertain how judgments culminate when lay

decision-makers are presented with all food packaging features, including market-

ing tactics, found in real-world environments. This would be the most effective

approach for an evidenced-based method to determining a single, universal, front-

of-pack nutrient labeling strategy. Furthermore, it would offer valuable insights into

how consumers trade-off conflicting government-provided and marketing-provided

information.

4.3.2 Potential for an Evaluative Objective Healthiness Tool?

It is also important to highlight that the aforementioned approach is not an eval-

uative tool itself. Nutritional experts would be needed to discuss and ascertain

the accuracy of (predicted) healthiness ratings. Instead, the novelty is in being

able to generate accurate predictions for hundreds or thousands of foods after being

trained on a small sample of human ratings for approximately 200 foods. Moreover,

a strength is that these predictions can be made without any objective model or
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nutritional composition data.

With that said, the high predictive power of the Combined Model shows that

it is also possible to incorporate nutrient composition data (e.g. from the very recent

Food Compass policy tool (Mozaffarian et al., 2021) with vector space models, or

run a Nutrient Model alongside, if a key-nutrient perspective is required.

Relatedly, one might anticipate the question of whether such a computational

approach can be used to create an objective, evaluative, individual food healthiness

model? As it stands, computational models are only as good as the data that they

are trained on. Unfortunately, there are statistical regularities in natural language

corpora that mean historic biases and prejudices are mirrored in word embeddings

(see Arseniev-Koehler and Foster (2020); Caliskan et al. (2017); Charlesworth and

Banaji (2021)). Thus, a machine-learning approach is unable to provide us with a

pure and neutral output (Caliskan et al., 2017). However, in contrast, for approaches

like ours that look to mimic human behavior and judgments, these are the exact

systematic biases that are of interest and value to our research.

4.4 Suggestions for Future Research

4.4.1 Use of Color

An advantage of using data-driven bottom up models is that the uncovered associa-

tions and biases can provide direction to future research on healthiness perceptions.

When informally comparing the superfood and organic associations from Chapter 2

with the latent associations reflected in the word clouds from Chapter 3, we notice

thought-provoking similarities and differences. As expected, reference to nutrient

content was reflected in all analyzes. The heuristic of color, particularly green, was

also found in all three outputs. Interestingly, the construct of naturalness appears

to have a prominent association with healthiness for organic representation and in

judgment prediction, however it had a smaller role in superfood representation than

expected. One stream of thought is that use of the color green may have a larger role

in healthiness perceptions than currently thought. For instance, both “organic” and

“fairtrade” labels have been found to increase perceptions of healthiness, despite be-

ing unconnected to nutrient content (Berry and Romero, 2021; Schuldt et al., 2012).

As both certified labels contain green in their design, it is conceivable that this use

93



of color may contribute to their perceived association with healthiness (Carlsson

et al., 2021; Schuldt, 2013).

4.4.2 Importance of Contextual Factors

Another interesting finding is in reference to the associations underpinning the model

predictions of foods rated as low in healthiness (see Supplementary Materials in

Chapter 3). First, it suggests that associations that influence perceptions of a food

as unhealthy are not necessarily the opposite of those for healthiness perceptions.

In fact, many of these terms appear to be associated with transgressional or depre-

cated behaviors (e.g. “fucking”, “cigarette”, “crack”, “slap”). Second, a reference

to both “heaven” and “hell” implies that unhealthy foods evoke stronger religious

associations than healthy foods. Considering the frequent language about certain

foods being denounced as sinful or immoral in the past (e.g. red meat, salt, spices),

one may wonder if historical representations about foods persist in language (Oakes,

2004).

4.4.3 The Evolution of Healthiness Representations over Time

Other computational approaches are emerging that may allow future researchers to

capture changes in food healthiness representations over time. As it stands, there

are several corpora that allow us to trace the historical meanings of words over a

sufficiently long period of time (Li et al., 2020). Among the most far-back reaching

ones are the Google Books Ngram Corpus (books published from 1600-2009) (Lin

et al., 2012); followed by “Find My Past” data from the British Library’s “British

Newspaper Project” (newspaper articles from 1710-1953); as well as the Corpus of

Historical American English (COHA), which consists of 400 million words produced

from 1810s to 2009 (Davies et al., 2012).

Whilst these corpora have shown considerable success for uncovering reliable

historical word embeddings for well-established terms such as wellbeing and risk

(Hills et al., 2019; Li et al., 2020), historical data for niche food healthiness terms

such as “superfood” are likely to be too sparse to reveal meaningful patterns. For

instance, “Find My Past” has only 523 articles mentioning “superfood”. To over-

come this issue, we would recommend capturing evolving representations of specific

food names (e.g., “banana”, “coffee”, and “avocado”), similarly to our approach in

94



Chapter 2. This approach would be more likely to provide the thousands of relevant

articles needed across periods of months or years (Bhatia et al., 2021a). However, it

should be acknowledged that the Google Books corpus only contains a digitized his-

torical record of approximately 6% of books published, so some food representations

may still occur too infrequently.

Irrespective, computational scientists have recently introduced dynamic word

embedding models (Yao et al., 2018), which are an extension to the word embedding

models (e.g. word2vec and GloVE) discussed in this thesis. Essentially, dynamic

word embeddings can take corpora from different time periods and learn correspond-

ing vector spaces for each time slice (Richie and Bhatia, 2020). Hence, these more

recent models show promise for allowing researchers to infer future social trends

and changing word semantic associations over time (Yao et al., 2018). Therefore,

with the increase in news articles since the start of the digital age, there will be new

opportunities to train embedding models in real-time (Bhatia et al., 2021a). As a

result, such an approach could be used in the creation of a policy tool to recognize,

flag and dispel myths arising from harmful wellness and diet trends (e.g. raw unpas-

teurized milk, appetite-suppressant lollies, and detox teas), which have unfounded

associations with healthiness.

4.4.4 Unintended Consequences of Current Healthiness Discourse

for Unhealthy Eating Behaviors

Many of the associations that underlie both the high and low healthiness perception

predictions could be seen as entering into the territory of disordered eating behavior

discourse. It is the emphasis on naturalness for healthy foods and transgression-

implying words for unhealthy foods that suggest a connection with “clean eating”

beliefs in particular. To clarify, clean eating is a diet where followers eat only non-

processed, organic, plant-based, raw, “real”, local or home-cooked foods (Ambwani

et al., 2019). This often also includes eliminating certain foods or food groups

(gluten, grains, dairy) from their diet without justification, and is not endorsed by

certified nutritional experts (Ambwani et al., 2019).

In fact, one noteworthy observation when informally comparing associations

generated by the predictive model trained on registered dietitians ratings (see Figure

A.1 in the Appendix) with the models trained on lay decision-maker ratings, is a

difference in intensity of the words associated with unhealthiness. For instance,
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words such as “slap”, “fucking”, “scream” are not present in the word cloud for

Study 1B, although references are still made to social and environmental context

of unhealthy food consumption (e.g., “midnight”, “drinking”, “promotion”. On the

other hand, we do observe the same nature-related associations with foods rated as

high in healthiness. Nevertheless, one could speculate that while associations for

healthy and unhealthy foods are relatively similar, the difference between healthy

and problematic perceptions is in the strength of these associations.

This would line up with research suggesting that people fail to recognize

the complexity of healthiness in reference to individual foods, preferring to classify

them as either “good” or “bad” (Freeland-Graves and Nitzke, 2013; Green, 2015;

Julia et al., 2021). As a consequence, there is a general tendency to underestimate

the calories of perceived healthy foods and vice versa (Bui et al., 2017; Larkin and

Martin, 2016). Indeed, this oversimplification ignores how some nutrient-dense foods

can be caloric (Nicklas et al., 2014), and how consuming less energy dense foods

only can have consequences for the intake of some essential nutrients (Nicklas et al.,

2008). Relatedly, purported superfoods often do have high nutritional content, but

the problem is claims about disease prevention, anti-aging, and weight loss benefits

become far-fetched (Curll et al., 2016; MacGregor et al., 2021).

However, further scientific studies, and input from disordered eating special-

ists, would be required to make any further comment on this topic. Nonetheless,

our research highlights a need for interdisciplinary collaboration to, at least, ensure

the complexities of healthful eating behaviors at a population-level are considered

when evaluating the effectiveness of policy tools.

4.4.5 Healthiness Predictions of More Words

It may also be of interest to know that the conceptual mapping from our predictive

healthiness model can be applied to a nearly unlimited set of words (Bhatia et al.,

2021a). The aforementioned word clouds were trained using the COCA (Corpus

of Contemporary American English) dictionary. However, if desired, the model can

predict the healthiness of any list of words in the same manner as out-of-sample food

predictions. This means that researchers can obtain a list of healthiness ratings from

marketing terminology, words with known valence and arousal ratings (Warriner

et al., 2013) to known sensorimotor norms (Lynott et al., 2019). Consequently,

our approach allows for detailed examination of all commonly used words and their
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relationship to either high or low healthiness perceptions.

We would encourage this approach over comparing vector similarities be-

tween words of interest (e.g. interpreting the cosine similarity difference between

the vector for “healthy” and the vector for a word like “natural” or a food like

“avocado”), such as Grand et al. (2018). This latter method has received criticism,

largely because it wrongly implies cosine similarity, and vector representations, are

a model of the cognitive process underlying human behaviors (Griffiths et al., 2007;

Jones et al., 2018; Richie and Bhatia, 2020). Whereas, a strength of our compu-

tational approach to obtaining associative words is that it avoids that assumption

(see Richie and Bhatia (2020) for detail).

4.4.6 Individual and Group Level Differences

Future researchers may also want to further explore individual-level idiosyncrasies

and heterogeneities in food healthiness representations across different population

groups. While we demonstrate that the pre-trained word2vec model performs well

for participant-level modeling, other predictive computational models may be better

suited to answer healthiness perception research questions about differences between

groups. For instance, Singh et al. (2020) highlights the potential of a more sophisti-

cated machine learning technique, called a multilayer perceptron, that can project

additional covariates (demographic variables, psychographic variables, EQE-Q (eat-

ing disorder questionnaire) results) into the hidden layers of the regression. These

hidden layers then learn how various individual characteristics interact with judg-

ments, and thus can provide insights into group-level variability (Singh et al., 2020).

Many existing studies have found mixed results over whether gender and sex is a

contributing factor to differences in food healthiness perceptions (Carels et al., 2007;

Foroni et al., 2022; Oakes and Slotterback, 2001, 2002), thus this would be a possible

avenue to investigate potential differences.

Of particular interest, however, is the influence of age. Perkovic et al. (2021)

reported concerning preliminary findings of binary perceptions of foods in adoles-

cents. Therefore, it would be fascinating to explore whether this difference in food

healthiness perceptions of adolescents is also picked up using our computational ap-

proach, and whether the latent associations remain the same. Indeed, Chapman and

Maclean (1993) found that, for adolescents, consumption of junk food was associated

with independence, pleasure, and friends whereas healthy food was associated with
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parents and being at home. Therefore, it would be of interest to know if the high

levels of unhealthy food consumption reported in teenagers is based on well-informed

decisions, or knowledge errors and biases in perception. Crucially, this finding would

be influential in the development of interventions aimed at curbing obesity in this

age-group, as it is possible that highlighting the unhealthiness of certain foods only

makes them more attractive. Subsequently, it would establish whether a more valu-

able approach would be to instead focus on food industry regulation and encourage

more food and beverage product reformulations (Gressier et al., 2020).

Some biases of our chosen news corpora will likely impede the generalizations

we can make to understanding universal food healthiness perceptions. For one, use of

English-speaking corpora means that our models are more likely to capture western

representations of foods (Bhatia et al., 2021a). For instance, one study found that

the western superfood, amaranth, was seen traditionally as a basic food, used in

the production of “Alegŕıa”, a Mexican candy (Rojas-Rivas et al., 2019). Similarly,

acai berry, one of our top 25 superfoods reported by consumers, was traditionally a

staple food for Amazonian peasants where it was eaten alongside fish and, cassava

flour or grits (Parker et al., 2019). In fact, traditional beliefs were that acai berry

caused lethargy, opposite to the western messaging associated with acai where it

is advocated for increasing energy (Parker et al., 2019). Therefore, it would be

interesting to assess whether our findings are replicated when using various non-

English corpora, task instructions and food names.

Another factor is the representativeness of these corpora to different popula-

tion demographics. It is possible that our focus on news articles is more likely to align

with the views of people who read news articles. Studies have shown that adoles-

cents are more likely to obtain information from social media channels, food industry

brands, YouTube, and relatable influencers than from those with expert nutritional

knowledge (Barklamb et al., 2020; Coates et al., 2020; Pilgrim and Bohnet-Joschko,

2019; Qutteina et al., 2019). These sources likely ignore the language nuances of

certified nutritional advice that tends to be kept in regulated sources of information

(e.g. “avoid for better health outcomes” vs the correct “eat less for better health

outcomes”) (Adamski et al., 2020; Ramachandran et al., 2018; Rousseau, 2015).

Moreover, the majority of posts from celebrity social media accounts show (and ar-

guably normalize) unhealthful eating behaviors (Turnwald et al., 2022). Therefore,

future researchers should also consider the representativeness of the news corpora

to target populations, particularly for individual or group level modeling.
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4.4.7 Exploring Perceptions of Other Food Choice Motivators

While the focus of this thesis was on food healthiness perceptions, the approach can

be directly transferred to study perceptions of other motivators of food choice. For

instance, consumers are becoming increasingly concerned with the environmental

impact of their diet (Delgado et al., 2021), Yet, little is known about consumers

perceptions of relevant concepts, like food edibility, which can reduce food waste

(Nicholes et al., 2019). Additionally, neither is it clear how accurate people’s knowl-

edge is about concepts like carbon footprint for different foods (Armstrong et al.,

2020). It would be straightforward to replicate our analysis, simply by changing

the question phrasing from “...rate the healthiness...” to “...rate the environmen-

tal impact...” for our 172 food stimuli. Subsequently, researchers can input the

new participant ratings into the available python script to add predicted perception

ratings of environmental factors for the hundreds of food names we made available.

However, for the instances where perceptions of objective, fixed, numerical

data is desired (e.g. carbon footprint, greenhouse gas emissions, water footprint),

a more suitable approach might be to use judgment error models (Zou and Bhatia,

2021). In a recent study where participants were asked to estimate the calorie con-

tent of foods and infant mortality rates in various countries, Zou and Bhatia (2021)

found that, in both scenarios, errors were more likely to be a result of using incor-

rect knowledge, rather than a difficulty in applying knowledge (as ascertained from

the predictive power of different computational models). Here, difference ratings

between the participant ratings with the objective rating allowed insights into the

associations that lead to over-estimations and under-estimations. Hence, the best

computational approach would depend on the intricacies of the research question.

Along these lines, other computational approaches may be more appropri-

ate for other research questions in the food domain. For instance, compositional

distributed representations, such as BERT and ELMO (Devlin et al., 2018; Peters

et al., 2018), can vectorize sentences rather than words. This allows them to ac-

count for sentence structure and incorporate more context into their embeddings.

As a result, these methods have the added benefit of recognizing identical words

with multiple meanings such as “orange” or “squash”, which has been shown to

improve performance (Richie and Bhatia, 2020). As such, these newer generation

models have been found to be well suited for tasks where researchers might want

participants to select a span of text from a passage (e.g. perceived important infor-

mation from a recipe or meal description) to answer a question (Richie and Bhatia,
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2020). Conversely, such an approach is unable to train representations of multi-word

phrases such as “apple pie” (Bhatia et al., 2021a), which we felt more important for

our particular research question. Irrespective, a strength of our research, in test-

ing vector representations using multiple computational models, is that we provide

further support for the robustness and relative similarity in predictive power across

different computational models (Bhatia, 2017).

4.5 Conclusions

In conclusion, how do we help people make better, healthier food choices? Our

response, and contribution to the literature, can be summed up in three key points.

First, find an approach that can capture (or approximate) the rich knowledge that

people hold about foods. Second, uncover the attributes that can explain, and

predict, the variability in healthiness judgments of different foods. Third, create

an evidence-based approach that can measure changes in healthiness perception

caused by different food package features (for all commonly consumed foods). It

is only at this point that we can assess the effectiveness of interventions aimed at

improving healthy eating in the public, as well as monitor any unintended conse-

quences of simplified messaging. Our approach highlights that lay decision-makers,

and registered dietitians, consider non-nutrient attributes important to food health-

iness. Indeed, foods are more than the sum of their nutrients (Forouhi et al., 2018).

Therefore, measures of perception accuracy should equally consider the importance

of mental, social, and physical health associations in people’s dietary patterns and

eating behavior. This holistic approach to healthy eating is encompassed within the

broad guidelines of “balance, variety, and everything in moderation” and food-based

(rather than nutrient based) guidelines such as the EatWell Guide (Green, 2015).

However, more needs to be done to empirically define these terms or provide ref-

erence points, as the interpretation of these terms varies greatly among consumers

(Paquette, 2005; vanDellen et al., 2016). Nonetheless, exaggerated associations have

emerged since the shift onto individual food healthiness. In truth, we should be

wary when following nutrient labeling (a tool to assist healthy eating behaviors)

obsessively, or rather perfectly, leads to the solution becoming part of the problem.

Available packages such as “gensim” and more recently, “magnitude” make pre-

trained embeddings for many word computational models accessible to researchers

new to natural language processing (Patel et al., 2018; Řehu̇řek et al., 2011). This

is particularly advantageous to psychologists and behavioral scientists who wish to
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explore and extend our research in this domain. Indeed, the research shown in this

thesis is just a drop in the ocean of the potential that computational approaches

have in transforming our understanding of food healthiness. Nonetheless, one thing

we have established (using a variety of computational methods) is that linguistic co-

occurrences in online news articles can remarkably reflect what people know about

foods. This means that associations in media, created to sensationalize and simplify

complex information, likely contribute to the strength of learned associations in lay

decision-makers’ minds. Ultimately, if only one thing could be remembered from

this thesis it would be, language matters.

101



Chapter 5

Further Reflections

In this section, I will provide a reflective account of my experience conducting the

aforementioned empirical chapters. Specifically, I will cover additional considera-

tions, constraints, and lessons I have learned, with the goal of helping future aca-

demics in this field who may wish to replicate and/or extend this research.

5.1 Superfood Representation in News Media

5.1.1 Ambitions

The inspiration behind this paper was an online data visualization from the Infor-

mation is Beautiful blog entitled “Snake Oil Superfoods” (McCandless et al., 2018).

The visualization is a bubble plot of 81 unique superfood names, rated on the level

of scientific evidence supporting a specific health benefit claim. The size of each

bubble indicates the claim’s popularity, measured by Google hits. I was intrigued

by the high popularity of certain foods associated with having a beneficial impact

on health, despite there only being “slight evidence” or “no evidence” reported.

For example, açáı berry is regarded as a food to help with weight loss but there

is no definitive scientific evidence in support of this claim. The information pre-

sented in this visualization formed the premise of my ambitions to investigate how

unsubstantiated associations with certain foods and health are formed.
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5.1.2 Corpus Challenges and Limitations

Before choosing the approach that formed my final analysis in Chapter 2, my collab-

orators and I first considered other avenues for collecting superfood representations

in the media. This included exploring whether the pre-trained word2vec model

(used in Chapter 3) could capture the unsubstantiated associations found within

the “Snake Oil Superfoods” visualization. Using the Vector Representation Model

trained on participant ratings from Study 1A and the control conditions of Study

2A-2C, I found that the mean rating of healthiness for these foods was far lower than

I expected. To explore this further, I checked the top 100 most similar vectors for

each of the 41 superfoods using the pre-trained word2vec corpus in Python (Mikolov

et al., 2013). I also looked into the similarity between the word embeddings for each

superfood and the associated condition mentioned in the “Snake Oil Superfoods”

visualization. These results implied that the pre-trained word embedding model was

likely trained using a small window size, which is better at capturing functionally

similar words than the domain or topic of each word. The low cosine similarity

scores also suggested that the “superfood” term may not be adequately represented

in the corpus. Subsequently, I concluded that the Google News corpora, trained

on articles written before 2012, may not be the best corpus to use for analysis of

niche topics such as superfoods. As a result, I pivoted towards finding another cor-

pus, which contained articles written more recently, to undertake my exploratory

analysis.

My main priority was to select a corpus that could capture how representa-

tions of superfoods might be formed at a population level. I chose the NOW Corpus

(http://corpus.byu.edu/now/), as articles from magazines and newspapers have a

broad reader base and are used to disseminate information about topics and trends

of interest to the public. I also felt that the size of the corpus and its date range

(approximately 10 billion words of data between January 2010 to February 2020)

would provide me with access to a large sample of the most up-to-date articles for

my analysis. This also raised the possibility of exploring changes in superfood rep-

resentation over time, which was part of my original ambition. However, the final

sample size of superfood articles was too small for this analysis.

At this stage, I thought the best approach would be to explore all articles

mentioning the word “superfood”. This would allow me to establish the largest sam-

ple size of potentially relevant articles in the corpus. Surprisingly, this produced just

1226 articles despite selecting only those from the United States of America or Great
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Britain, and those containing the words “food” or “diet”, as well as “superfood” at

least once. When manually checking the articles, I also noticed several irrelevant

articles had been included (e.g., detailing an accident that had occurred outside a

superfood store). As a result, my collaborators and I discussed various machine-

learning techniques that could help me obtain a greater number of relevant articles.

We first applied a natural language processing technique known as Doc2Vec, which

involved training a model on all the superfood articles in the NOW corpus, treating

each document as a vector. This approach used outlier encoding to try and rebuild

the same vectors for each document, with the goal of using only the most influen-

tial coefficients but minimizing the construction error. I decided not to take this

approach as manual inspection showed that some relevant articles were incorrectly

excluded. The second approach involved averaging pre-trained vectors for each word

in the title or text of all food-related articles, weighing them by frequency. Next,

using the first principal component of each article vector representation, we ran a

similarity check with the vector representation for the word “superfood”. However,

it was agreed that this method would be biasing the sample and it would be bet-

ter to use simpler methods of establishing the initial sample of superfood articles.

Subsequently, I decided on selecting articles that mentioned at least one food name

from the food name list as well as the word “superfood” in either the text or title.

Although there was a trade-off between finding all superfood articles, I felt this was

the best approach to reduce researcher bias yet improve the relevance of the articles

included.

The main limitation of the NOW corpus was that it did not contain all rele-

vant articles during the specified time frame as expected. This was discovered after

carrying out a manual Google News search, using the same dates as the NOW corpus

dataset, to investigate the cause behind the low sample size of relevant superfood

articles. This investigation found many article titles that were missing from the

NOW corpus, even when only filtered on articles containing the words “food” or

“diet”. It is unclear how many articles are missing in the NOW corpus, but this is

a consideration that will have had a limiting factor on the representativeness of my

findings.

Relatedly, I assumed that this corpus would provide a representative sample

of articles about superfoods from a broad range of news outlets. In hindsight, I

should have run a frequency analysis to visualize the distribution of news outlets

represented in the corpus. The reason is that the news outlet plays a role in the

language used and would increase the reproducibility of my findings in the future.
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Indeed, Figure 5.1 shows the news outlets from which at least two relevant articles

were published. Awareness of this limitation earlier would have permitted actions

to rectify any imbalance of articles from certain news outlets by collecting articles

from additional corpora, with less risk of this being seen as a response to unexpected

findings. I would also recommend that future researchers consider whether it is

possible to obtain information about the article’s author as well as the type of

outlet (e.g., broadcast, tabloid, magazine). This would allow for a more rounded

and insightful account of the media sources used to conduct the analysis.

Figure 5.1 The frequency of articles from different news outlets, separated by

country of origin (Great Britain or the United States of America)

It was imperative to identify a comparison group of articles to make any

claim that my findings were unique to superfood representation in news articles. As

a result, I decided to focus on a subset of foods that are commonly perceived as

superfoods and match articles about them written in different contexts. However,

unfortunately, there is no definitive list of superfoods, with a wide range of articles

written about different foods in recent years. I first considered using the list of

41 foods from the “Snake Oil Superfoods” visualization, but I was unsure of the

true origins and accuracy of this data. Therefore, I ran a frequency analysis to find
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the most commonly mentioned foods across all superfood articles, and see how the

words compared. I discovered that the most frequent foods did not align with the

superfoods from the “Snake Oil Superfoods” dataset. Thus, as a sanity check, I

decided to collect participant data to determine a list of the most recognized super-

foods by the public. As the participant data produced a different list of superfoods,

I concluded it was best to go forward using the list of 25 foods from the partici-

pant data collection. This was decided because, at the time, I felt the superfoods

mentioned by the sample of participants were the most reliable out of the available

options. Reflecting on this, the sample size used to collect the participant data was

relatively small, and not based on any previous literature. If this research was to be

replicated, one recommendation would be for researchers to follow my method but

collect participant data on a larger sample to increase the accuracy and reliability

of the foods identified.

My decision to include articles about the same foods in an “organic” context

was to show that my approach was not just capturing healthiness representations

in the broadest sense. I considered multiple terms that are related to a different,

but important, aspect of food healthiness perceptions such as “natural”, “vegan”,

and “raw”. However, I felt that “organic” was the least ambiguous term that could

demonstrate the subtlest of differences in the representation of the same foods writ-

ten in a superfood context. There is a considerable overlap of 194 articles that

mention both the “superfood” and “organic” terms. I did not exclude these articles

from my analysis and it is possible that they appeared twice in the two separate

contexts. Nonetheless, 4658 articles mentioned the term “organic” and not “super-

food”, whereas 679 articles mentioned “superfood” and not “organic”. For future

researchers, if they were able to obtain a larger sample size I would recommend

removing the articles that overlapped to have a clearer distinction of foods from

each group.
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5.2 Predicting Food Healthiness Judgments

5.2.1 Ambitions vs Reality

The ambition for this paper was to uncover how healthiness judgments of indi-

vidual foods are formed, and the extent to which attributes often found on food

packaging influence healthiness perceptions. Once it was established that a vector

space approach could accurately predict healthiness judgments when participants

were presented with a food’s name only, I wanted to investigate whether such judg-

ments could be shifted. I aimed to incrementally increase the information presented

to participants to eventually reflect naturalistic food packaging designs (including

nutrient labeling, nutrient and health claims, food descriptors, branding, ingredi-

ents list, product color, and product shape). This would allow for a rigorous and

evidence-based assessment to ascertain the influence of all food packaging attributes

on healthiness perceptions.

The reality, however, is that many elements within each design component

may shift the overall healthiness perception of a given food to varying degrees. For

example, as demonstrated in the results section of Study 2A to 2C in Chapter 3,

interpretative traffic light colors were most influential in aligning people’s healthiness

judgments with key nutrient content predictors. Hence, it is important to isolate the

effect of individual elements in each of these aforementioned design components to

identify simple changes to packaging that can help consumers make better-informed

choices. Thus, one can imagine the complexity of assessing the influence of each

design feature, both independently and in combination with other food packaging

features. Nonetheless, it is only then that an overall picture of how attributes are

traded off and healthiness perceptions shift for foods across all categories can be

obtained.

Consequently, I chose to focus my research on the one aspect of food packag-

ing that is designed to improve healthiness perceptions, nutrient labeling strategies.

Indeed, there are many nutrient labeling strategies around the world, but there is

limited research directly comparing their influence on people’s healthiness percep-

tions for a variety of foods across different food categories. Therefore, I felt that

focusing on this particular component would allow me to highlight the potential

of using a vector-based approach to evaluate the effectiveness of different nutrient

labeling designs. Moreover, I decided to share healthiness predictions for hundreds
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of food items using the Vector Representation models trained on participant ratings

from each of the conditions in the main study. It is hoped that other researchers

will extend this work by testing the influence of other food packaging features, as

per my initial ambitions.

Nevertheless, it is worth mentioning that I have also collected data to in-

vestigate the influence of three non-nutrient labels (that are often associated with

healthiness) in shifting healthiness perceptions. The following subsection will pro-

vide an account of this additional study, alongside my reflections from this body of

research.

5.2.2 Additional Study

Studies 2A-2C demonstrate how people can, and do, incorporate nutritional in-

formation into their healthiness judgments when provided. The consistently high

performance of the Vector Representation Model shows people still rely on associa-

tions with the food name. Typically, food companies also add non-nutrient-related

front-of-pack labeling, which consumers sometimes mistakenly take as an indicator

of the food product’s healthfulness (Berry and Romero, 2021; Richetin et al., 2022).

Therefore, I also ran this additional study to investigate how further associations

created by such labels, either highlighting food origin (“organic”) or ethical consid-

erations in food production (“fairtrade”), might influence the performance of the

computational models. Moreover, whilst the use of the term “superfood” is banned

on food packaging, in Chapter 2 we found the term superfood to be highly associated

with healthiness. Thus, in addition, I chose to assess whether adding a “superfood”

label to food items might shift healthiness perceptions. Indeed, it was hypothesized

that all three labels would increase the healthiness ratings of a given food relative

to a control condition. Furthermore, if associations were made more salient with

the use of these three labels, it would also be expected that the contribution of

associations in the Vector Representation Model would further increase relative to

the Nutrient Model.
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Methods

Design and Procedure

In the same manner as the studies from Chapter 3, participants were asked to judge

the healthiness of various food items one at a time using a scale ranging from -100

(extremely unhealthy) to +100 (extremely healthy). I tested the effects of three non-

nutrient-related labels in one study with four conditions. In the control condition,

participants saw food names alongside a food image (as in Study 1C). In the three

treatment conditions, participants also saw food names alongside a food image but

with a non-nutrient-related label appended to the top right of the image showing

either the word “organic”, “fairtrade”, or “superfood”.

The study used the same food stimuli as Studies 1A-2C (excluding “kit kat”,

“skittles”, “cheerios”, and “corn flakes” as they are brand names) resulting in 168

food items. Participants were randomly allocated to one of four surveys and were

shown all food items once in a randomized order. However, in each survey, par-

ticipants were shown a quarter of foods from each condition (48 food stimuli with

an organic label, 48 with a fairtrade label, 48 with a superfood label, and 48 with

no label). To give an example, participants were always shown “avocado” with a

“superfood” label and “broccoli” with no label in the first survey; “avocado” with

an “organic” label and “broccoli” with a “fairtrade” label in the second survey; “av-

ocado” with no label and “broccoli” with a “superfood” label in the third survey;

and “avocado” with a “fairtrade” label and “broccoli” with an “organic” label in

the fourth survey.

After rating all foods, participants were asked a series of questions to as-

sess their perceptions and understanding of the non-nutrient labels used in the

study. First, they were asked to rate the extent that they agreed with the state-

ment that fairtrade, organic, or superfood products are healthier than non-fairtrade,

non-organic, or non-superfood products respectively, using a 5-point Likert scale.

Second, participants were asked to match the correct definition to each label name.

This also included a definition of fortified food as a red herring. Finally, participants

were asked about their age, gender, and dietary restrictions using the same options

as in the main studies from Chapter 3 (“Pescetarian (no meat, but eat fish and/or

shellfish)”, “Vegetarian”, “Vegan”, “Other (please specify if you wish)” and “None

of the above”).
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Mixed Effect Model

I used mixed-effects modeling to ascertain whether there was a difference between

the label types of “organic”, “fairtrade”, “superfood”, and no label (control) in the

ability to shift people’s healthiness judgments of the food stimuli. This method

was able to model the random effects, from participant-level differences and food

stimuli differences, together with the fixed effect of label type on healthiness rat-

ings. I chose a counterbalanced design as all participants rated all food stimuli but

each participant responded to each food item in just one condition (Judd et al.,

2017). The data was analyzed using the R package “afex” (Singmann et al., 2015),

which automatically loads the “lmer4” package (Bates, Maechler, Bolker, & Walker,

2015), and computes p-values via the R package “lmerTest” (Kuznetsova, Brockhoff,

& Christensen, 2014). To note, p-values were calculated using the Satterthwaite

approximation (Satterthwaite, 1946), a method where the degrees of freedom are

lowered in an attempt to avoid Type 1 errors.

Results

Figure 5.2 shows the high predictive ability of the Vector Representation Model

in all conditions, consistent with all previous studies and conditions. The out-of-

sample predictive accuracy of the Vector Representation Model was highest in the

superfood condition (r2 = 0.73, 95% CI = [0.68, 0.79]), followed closely by the

organic condition (r2 = 0.72, 95% CI = [0.67, 0.78]), control (no label) condition

(r2 = 0.72, 95% CI = [0.66, 0.78]), and fairtrade condition (r2 = 0.71, 95% CI

= [0.66, 0.77]). Interestingly, the order of the Nutrient Model’s predictive ability

did not follow the same pattern. The highest out-of-sample predictive accuracy

was in the fairtrade condition and superfood condition, where the Nutrient Model

performed identically to two decimal places (r2 = 0.33, 95% CI = [0.22, 0.44]). Still,

the performance of the Nutrient Model does drop slightly in the control condition

(r2 = 0.32, 95% CI = [0.22, 0.43]) and organic condition respectively (r2 = 0.31, 95%

CI = [0.20, 0.42]). Nonetheless, as expected, these results show that the predictive

accuracy based on associations was higher than when based on factual nutritional

content in all conditions. Moreover, akin to the pattern seen in the main studies

from Chapter 3, the Combined Model has a slightly higher or equal predictive ability

to the Vector Representation Model in all conditions ranging from 0.72 (95% CI

[0.66, 0.78]) in the fairtrade condition to 0.74 (95% CI [0.68, 0.80]) in the superfood

110



condition.

Figure 5.2

A Comparison of Predictive Accuracy between Models in Studies 3A, 3B, 3C, and

3D

Note. A comparison of predictive accuracy between models that used only nutrient

content, only word vector representations, or a combination of nutrient content

and word vector representations. Actual ratings were all from a general population
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sample.

Following this analysis, I performed mixed-effects modeling to establish whether

any labeling type significantly affected healthiness judgments. Results showed that

organic labeling significantly predicted healthiness ratings (β = 2.074, SE = 0.709, t

= 2.926, p = .004). However, it cannot be concluded that the fairtrade (β = -0.331,

SE = 0.617, t = -0.536, p = .59) or superfood label (β = -0.809, SE = 0.654, t

= -1.236, p = .22) significantly affected healthiness ratings in this study. However,

when using the “r.squaredGLMM” function within the “MuMIn” R package, it was

found that while 62% of the variance in healthiness ratings could be explained by

the whole model, only .03% could be explained by the fixed factors of label type.

Therefore, as further detailed in the discussion, these findings must be taken with

caution.

Discussion

The results of this study again demonstrate the contribution of using vector rep-

resentations of food items to predict and explain healthiness judgments. There is

a consistent pattern with the main studies from Chapter 3, where associations be-

tween individual food items and concepts relating to naturalness and rawness were a

better predictor of healthiness judgments than key nutrient content in all conditions.

Indeed, each of the best-fit models in all four conditions predicted very similar words

when making healthiness predictions for “other” words in the English language, to

each other and the main studies from Chapter 3. Nonetheless, the predictive power

of each computational model is relatively similar between the labeling types and the

control condition. Therefore, it is hard to distinguish the unique influence of each

labeling type on judgments using only this approach.

Using mixed-effects modeling, only the organic labeling condition was found

to significantly influence healthiness judgments. This finding is in line with previ-

ous research (Besson et al., 2019), which found that 46% of people considered the

presence of an organic label as evidence that the product is healthy. An advantage

of the approach used in this study was that it could consider whether this effect

was true across a wide range of foods across food categories, rather than on a single

food item or category as in previous research. Nonetheless, I should highlight that

this study was only a first step in ascertaining the influence of all three labels on

food packaging. The current design of the food stimuli presented to participants
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in this study is not the format used in naturalistic settings. I made this decision

because there is no existing superfood label, as it is a term banned on food pack-

aging. Therefore, I opted for a consistent design between the three labels in this

study, where only the non-nutrient label word differed. As a result, in subsequent

research, I recommend that researchers test design elements from existing designs

of organic and fairtrade labels singularly to assess how these different features (e.g.

color, shape) influence healthiness perceptions.

It is worth mentioning that for the mixed effects model, I started with a

maximal model as recommended by Bates et al. (2015). However, I faced the com-

monly encountered issue of the model failing to converge, likely due to the model

being too complex for the data. From following the advice outlined in Barr et al.

(2013); Bates et al. (2015); Matuschek et al. (2017); Singmann and Kellen (2019),

the next step was to simplify the model as minimally as possible to increase power.

I first removed the random intercept only, keeping the slope, but this model still

failed to converge. Second, I ran a zero-random-correlation model, where random

correlations between the random intercepts and slopes are ignored, but this also

led to a failure to converge. Therefore, I implemented a solution from the “afex”

R package, which suppresses the correlation between factors by transforming them

into numerical covariates. While this model did converge, I still received a warning

for singularity. Singular fits are often indicative of overfitting (Barr et al., 2013; Ma-

tuschek et al., 2017), implying that more observations are necessary to distinguish

group variation from residual variation.

There are two ways to obtain more observations, increasing participant sam-

ple size or increasing the number of food stimuli. My main intention for this study

was to replicate the methodology of the main studies from Chapter 3 using a dif-

ferent food packaging design feature. Therefore, similar to these previous studies, I

did not apply standard power analysis to calculate the sample size of participants.

Instead, my estimates for sample size were informed by previous research that used

a similar predictive (machine learning) methodology (Richie et al., 2019). However,

while previous studies focused on analyses using aggregate-level data, I also included

a mixed-effects model that considers all observations. Unfortunately, I did not take

this into account and it is likely that the study was not sufficiently powered for

finding a small effect size like the one expected here.

Regarding the number of food stimuli, it has since been recommended that

the optimal number of food stimuli for computational modeling is between 200-300
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(Bhatia et al., 2021a), as the algorithms require a fair amount of training data. I had

172 food items in the main studies from Chapter 3, which my collaborators and I

reduced from 200 due to ambiguity and/or potential unfamiliarity in the UK. In the

present study, I reduced the number of food stimuli to 168, as they were brand names

(e.g. Kit Kat). Thus, my suggestion to future researchers would be to prioritize

increasing the number of food stimuli to increase the power when conducting mixed

effect models in similar studies, as this will also result in better model predictions.

5.2.3 Recommendations

Beyond the studies already mentioned, I encourage researchers to conduct another

empirical study to test the validity of the associations found using my vector space

approach. Since I collected my data, a new nutrient profiling system has been de-

veloped called the Food Compass System (Mozaffarian et al., 2021). This approach

addresses many of the limitations of previous nutrient profiling systems, which rely

on isolating single nutrients and cannot account for food processing methods. In-

stead, the Food Compass systematically scores all foods on 54 attributes (including

vitamins, minerals, additives, and processing) per 100 kcal, providing a final Food

Compass Score from 1 (least healthy) to 100 (most healthy). The supplemental

materials for this paper contain Food Compass Scores, Health Star Ratings, Nutri-

Score, and NOVA classifications for over 8,000 unique foods and beverages com-

monly consumed in the USA. Like in the USDA database, the descriptions of these

foods contain the level of processing of each item (e.g., “Orange Juice, 100%, freshly

squeezed”). In all my studies, I used the nutrient composition data for the rawest

version of each food item for consistency and because I was interested in capturing

associations of foods at their most abstract level. While it is possible to manipulate

the wording of a food item description to find it in the word2vec vocabulary (e.g.,

“freshly squeezed orange juice” and “steamed broccoli” are present), this level of

specificity is not available for many foods in word2vec. However, a solution may be

to present images to participants of the same foods in different processing stages,

which can then be used to compare shifts in perceptions due to the degree of pro-

cessing. It would then be interesting to compare the predictive performance of the

word2vec model against the scores provided by these different nutrient systems, to

assess how well the information captured by these systems overlaps with the associ-

ations with food processing uncovered from knowledge representations in language.

With these recommendations, I believe any extension of this work would produce a
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more complete picture of how food healthiness perceptions may shift in naturalistic

settings, in line with my original ambitions.
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Linguistics (ICEHL 16), Pécs, 23-27 August 2010, volume 325, page 231. John

Benjamins Publishing.

De Deyne, S., Perfors, A., and Navarro, D. J. (2016). Predicting human similarity

judgments with distributional models: The value of word associations. In Pro-

ceedings of COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers, pages 1861–1870.

121



de Ridder, D., Kroese, F., Evers, C., Adriaanse, M., and Gillebaart, M. (2017).

Healthy diet: Health impact, prevalence, correlates, and interventions. Psychology

& health, 32(8):907–941.

de Rooij, M. and Weeda, W. (2020). Cross-validation: A method every psycholo-

gist should know. Advances in Methods and Practices in Psychological Science,

3(2):248–263.

De Vlieger, N. M., Collins, C., and Bucher, T. (2017). What is a nutritious snack?

level of processing and macronutrient content influences young adults’ perceptions.

Appetite, 114:55–63.

Delgado, A., Issaoui, M., Vieira, M. C., Saraiva de Carvalho, I., and Fardet, A.

(2021). Food composition databases: Does it matter to human health? Nutrients,

13(8):2816.

Delicato, C., Salvatore, F. P., and Contò, F. (2019). Consumers’ understanding
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Appendix A

All Word Clouds

Figure A.1

Study 1B: Healthiest and Unhealthiest “Other” Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the registered

dietitians in Study 1B.
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Figure A.2

Study 1C: Healthiest and Unhealthiest “Other” Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names and images in Study 1C.

Figure A.3

Study 2A Control Condition: Healthiest and Unhealthiest “Other” Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names in the control group of Study 2A.
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Figure A.4

Study 2A Calorie Labeling Condition: Healthiest and Unhealthiest “Other” Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names and calorie labeling in the experimental

group of Study 2A.

Figure A.5

Study 2B Control Condition: Healthiest and Unhealthiest “Other” Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names in the control group of Study 2B.
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Figure A.6

Study 2B Front-of-Pack Labeling Condition: Healthiest and Unhealthiest “Other”

Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names and front-of-pack labeling in the

experimental group of Study 2B.

Figure A.7

Study 2C Control Condition: Healthiest and Unhealthiest “Other” Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names in the control group of Study 2C.
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Figure A.8

Study 2C Traffic Light Labeling Condition: Healthiest and Unhealthiest “Other”

Words

Note. Words with the highest (left) and lowest (right) predicted healthiness

ratings based on the Vector Representation Model estimated for the lay people

who were presented with food names and Traffic Light Labeling in the

experimental group of Study 2C.
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