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Abstract 
 

The National Institute for Health and Care Excellence (NICE) is the agency for 

England and Wales responsible for approving medical technologies for routine use 

in the National Health Service (NHS). When agencies such as NICE assess the value 

of health technologies, it is common to rely on predictions and extrapolations to 

assess their lifetime costs and benefits. The papers featured in this thesis set out to 

identify and assess the suitability of common extrapolation methods and explore 

the impact of their implementation within economic evaluations. 

A systematic search identified methods of survival extrapolation used in recent 

NICE technology appraisals. A systematic review of cost-effectiveness studies 

identified survival methods used outside of NICE appraisals. Monte Carlo 

simulations explored utility of these methods across multiple scenarios. An 

economic model was built to investigate whether existing NICE processes 

incentivise the development of stratified therapies when there is the possibility of a 

heterogeneous response within a population. 

Simulations demonstrated that life-year estimates obtained from routinely used 

parametric extrapolations were associated with bias and large imprecision. In 

heterogeneous populations, the bias was more severe. Averaging methods offered 

an improvement, generally reducing the error and bias of life-year estimates, but 

the variance remains high. In heterogeneous populations, stakeholders may 

disagree on their preference for a drug to be developed as a targeted therapy.  

Current extrapolation methods are unsuitable for the major role they play in 

influencing healthcare decision-making. Decisions that rely on parametric 

extrapolations should encourage continued data collection and be regularly 

reviewed as new evidence becomes available. Stronger encouragement to explore 

subgroup effects, consistent with the recently updated NICE Methods Guide, may 

better incentivise the development of targeted therapies, resulting in better care 

for patients. 
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1. Overview 
This thesis concerns the challenges faced when evaluating the efficacy of 

treatments using the methods which currently feature routinely within technology 

appraisals assessed by the National Institute for Health and Care Excellence (NICE). 

The application of statistical methodology into health technology assessment (HTA) 

is an emerging and evolving field. [1] Established statistical methods can be utilised 

in applications that they were not originally developed for, or without sufficient 

consideration of their suitability, and there is little evidence demonstrating whether 

these methods are fit for contributing to decision-making in HTA. [2] 

This thesis focuses on the extrapolation of time-to-event data, where there is 

interest in both whether an event occurs, and when it occurs. Examples of common 

events include death, treatment cessation or disease progression. Survival analysis 

is the general term encompassing analyses of these outcomes. The decision support 

unit (DSU) commissioned by NICE has published technical support documents 

(TSDs) for performing survival analysis within economic evaluations [3, 4], but there 

is insufficient research to support the suggested methodology and approaches in 

the way that they are used in HTA.  

Parametric modelling, the main method of extrapolation considered in this thesis, 

assumes survival times for a group of patients can be well represented by a single 

parametric form. Hence reliable extrapolation may be more difficult when 

unobserved event times do not come from the same parametric distribution. This 

thesis explores scenarios when parametric models are fitted to data where the 

survival times are sampled from either one distribution or two distinct distributions, 

the latter referred to as a heterogeneous population. This heterogeneity may be 

attributable to a combination of prognostic and treatment-effect modifying 

variables. Where treatment efficacy varies among different groups of patients, the 

therapy could be given only to those it is most beneficial to, meaning it would be 

described as a stratified therapy. 

The 6 publications included in this thesis identify current practice in technology 

appraisals and also in cost-effectiveness studies published in peer-reviewed 

journals. They explore the suitability of these approaches through simulations, and 
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present for the first time in this context the method of averaging across all plausible 

models, rather than relying on a single extrapolation. Potential problems of survival 

modelling of heterogeneous populations are explored. Finally, an application of 

heterogeneous population modelling is explored through a representation of NICE’s 

framework for appraising therapies. Looking at scenarios where patient response to 

treatment is variable, NICE’s valuation process is modelled to examine whether or 

not it encourages the development of stratified therapies by pharmaceutical 

companies.  

The papers in this thesis together address the research question: What is the utility 

and implications of current methods for extrapolating survival outcomes in NICE 

technology appraisals?  

The objectives of the first paper were to systematically identify the methods used 

to model survival data in the economic analyses, establish whether the approaches 

adhered to the NICE DSU TSD 14, and how the submissions explored model 

uncertainty in the survival extrapolations. [5]  The second paper was a systematic 

review of cost-effectiveness analyses for non-small-cell lung cancer (NSCLC), with a 

focus on the methods of extrapolating progression-free survival (PFS) and overall 

survival (OS) to investigate the methodology used beyond the setting of NICE 

technology appraisals. [6]  

Having established current practice across both technology appraisals and 

published literature, the papers three and four assess its utility. [7, 8] Paper three 

demonstrated the impact of relying on Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) alone, representing occasions when all 

candidate models could be considered plausible. The results suggested that typical 

phase III trial follow-up does not contain enough information to provide a reliable 

extrapolation, with the variance of life-year estimates increasing when a model is 

selected based on AIC or BIC. [7] Paper four investigated whether any 

improvements could be made over the approaches considered in the third paper. 

[8] The fourth paper introduced a range of model averaging approaches which 

provided an alternative to the selection of a single parametric model and 

considered model plausibility in combination with goodness-of-fit.  
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The fifth paper  used parametric models and methods of averaging to extrapolate 

from heterogeneous populations, where heterogeneity was present either in the 

form of prognostic or treatment effect-modifying factors. [9] It explored the impact 

of increasing a trial’s sample size and fitting separate survival models to subgroups 

when statistically significant heterogeneity was detected within a population.  

Paper six investigated if NICE’s valuation process discourages pharmaceutical 

companies from identifying heterogeneous treatment effects, beyond the bias in 

the survival modelling already identified.7 [10]  

The findings and methods introduced across these papers will influence current 

practice, create greater awareness of the issues related in extrapolating survival 

models and the associated uncertainty, and improve reliability in the assessment of 

health technologies.  

 

2.  Background 

2.1.  NICE health technology assessment  
 

In England and Wales, before a patient can access a particular treatment on the 

National Health Service (NHS), the treatment must be proven to be safe, be proven 

to be efficacious, and be deemed cost-effective by NICE. NICE is a public body 

responsible for improving health and social care outcomes. It achieves this by 

producing guidance and advice for health and care practitioners, developing 

standards and metrics for providers of health and care services and providing 

information services for those involved with health and social care delivery. One of 

the key forms of guidance are technology appraisals that recommend which new 

treatments should be made available on the NHS. Before a treatment is approved 

and made accessible, a submission of evidence is provided to NICE by the 

pharmaceutical company, which NICE pass on to one of their external assessment 

groups(EAGs) who provide an independent critique on the submission. EAGs are 

linked with academic institutions and comprise diverse teams including systematic 

reviewers, health economists and statisticians who investigate whether there is 
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evidence to support the benefit of a health technology as claimed by the company. 

[11] The EAG produce their own report, which is considered alongside the company 

submission by a committee of members from the NHS, academia, other companies 

and patient/carer representatives who decide whether or not the treatment is cost-

effective and suitable for reimbursement on the NHS. [12] 

Pharmaceutical companies are a common source of novel therapies [13] and so the 

responsibility to demonstrate a new technology’s safety and efficacy lies with them, 

rather than a public government or healthcare authority. A company typically 

identifies multiple potential treatments for initial investigation and selects the most 

promising for further development and testing. After numerous rounds of sifting 

and preclinical testing, the best performing products are tested for safety on 

humans in phase I clinical trials. [14] If there are no safety concerns, patients are 

given the treatment as part of a phase II clinical trial to identify the most 

appropriate dosing regimen to achieve a positive response. Once the optimal dose 

has been established, and if it is ethical to do so, a phase III trial will be conducted 

where participants are usually randomised to either the novel intervention or an 

existing comparator treatment, where the trial will contain sufficient patients in 

order to demonstrate statistical superiority or non-inferiority of the novel therapy 

relative to current standard treatment on one or multiple key clinical outcomes. 

[15]  

The cost of developing a successful therapy is undoubtedly high, with recent 

estimates ranging from $985 million [16] to $2.8 billion [17], and it is 

understandable that companies can only operate if they are able to not only recoup 

their investment in the successful therapy, but also that associated with the 

compounds that were unsuccessful.  

To improve standards of healthcare, and incentivise the development of new 

therapies, NICE is willing to consider a higher associated cost for a novel treatment 

if that treatment offers additional benefit to existing care. [18] Unfortunately, the 

budgets of healthcare providers are limited, and so NICE must consider the cost-

effectiveness of a new therapy in addition to its safety and efficacy. It is unlikely 

that healthcare providers have significant reserves of spare money earmarked for 
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new therapies, and so by agreeing to fund a new therapy they may be putting 

additional pressure onto the healthcare system, and potentially displacing other 

interventions.  

Companies demonstrate cost effectiveness using an economic model which is 

included in their submission to NICE. [19] As recommended by NICE for treatments 

that affect costs and outcomes across a patient’s lifetime, the model will usually 

capture all associated costs borne by the healthcare provider in caring for patients 

from the point of beginning the therapy until all patients are expected to have died. 

Depending on the disease and patient population, this time horizon could be very 

short, or could span many decades if patients have good survival prospects. The 

clinical benefits of the treatment across the patient population are also captured in 

the model and are measured in quality adjusted life-years (QALYs). [19] QALYs allow 

for the comparison of benefit to be made across different diseases and health 

problems, with one QALY representing a year of perfect health and death being 

represented by zero QALYs. Utility values are generated using tools such as 

EuroQol-5D (EQ-5D) [20] which assess population preferences for different health 

conditions. EQ-5D measures the impact across five domains (mobility, self-care, 

usual activity, pain/discomfort and anxiety/depression). Some severe health states 

can even be given a negative score meaning they are considered worse than death. 

[21] The value of different health-states can also vary by country, allowing for 

cultural differences around the world. [22] 

The main health states of a disease are represented within the economic model: for 

stage 3/4 cancer these are usually progression-free survival, post-progression 

survival and death. [23] A utility score for the quality of health expected in each 

health state is calculated and multiplied by the average time spent in each health 

state, life-years, in order to estimate the QALYs. 

If survival data are sufficiently mature, then the life-years may be estimated 

through calculating the area under the Kaplan-Meier curve. [24] A Kaplan-Meier 

curve estimates the proportion of a population who are event free over time, 

accounting for people who may be censored and their status being unknown 

beyond a certain point.[25] This is introduced in more detail in Appendix C. 
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However, as is often the case, there will be a proportion of patients who remain 

alive at the end of the trial follow-up. Whilst waiting for extended follow-up from a 

clinical trial could be an option, healthcare providers are often under significant 

pressure from the media, patients and politicians to ensure rapid access to the 

latest treatments meaning an earlier decision is usually required. Since NICE 

stipulates that the benefit must be estimated across the patient lifetime, it is 

common for companies to predict the survival of patients beyond the observed 

period of trial follow-up. [24] 

If a phase III trial has been conducted with a relevant comparator, the survival from 

both arms will be extrapolated. Sometimes a phase III trial is not feasible, or the 

comparator arm of the trial might be outdated and not representative of current 

practice. In this case, an estimate of efficacy for standard care must be obtained 

using other means, such as methods of indirect comparison or routine data. A 

reference point of existing care is necessary to estimate the incremental benefit of 

the new technology, which is measured in QALYs.  

From the author’s experience of appraising submissions received by NICE, it was 

observed that companies use a range of survival analysis techniques to model 

survival data and extrapolate into the future. These extrapolations are then used to 

estimate the life-years by calculating the area under the curve. However, these 

techniques were not developed with this application in mind, and their suitability 

for this use in appraising health technologies is unknown. Parametric survival 

models, like other explanatory models, are fitted to observed data to allow 

exploration of the effects of different variables and their extrapolations may 

misrepresent the true future behaviour. It is these observations that motivated the 

ideas behind the papers comprising this thesis. Where usual parametric models 

represent the data poorly, the population may be heterogeneous. In such a case, 

patients within a heterogeneous population can have varying prognoses or 

responses to treatment. Patients’ responses or prognoses may be predicted if these 

outcomes can be matched to a biomarker, or biological characteristic. On some 

occasions, a treatment may be less effective or ineffective for patients who do not 

have a certain biomarker.  Treatments given only to biomarker positive patients are 
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known as stratified therapies. The development of a stratified therapy may be more 

expensive due to the costs of discovery and detection of a biomarker. [26] 

Regardless of whether a treatment is stratified, the benefit it provides is assessed 

using life-years and QALYs in the same way.  

Life-years not only contribute to the estimate of treatment benefit received by 

patients but also affect the costs associated with each treatment, as many patient 

costs are associated with how long they remain alive. The additional QALYs a new 

treatment provides compared to existing care is known as the incremental benefit. 

Similarly, the incremental cost is the difference between the total costs of the 

intervention and comparator and, like the benefits, is estimated for the patient 

population across their lifetime. 

The incremental cost-effectiveness ratio (ICER) is defined as the incremental costs 

divided by the incremental benefits. NICE assesses cost-effectiveness of most 

therapies using a willingness-to-pay threshold of £20,000-£30,000/QALY gained, 

presuming a new treatment provides more QALYs at an additional cost compared 

to existing care, with the new treatment deemed cost-effective if the corresponding 

ICER is below the threshold. [27] Special consideration is given to treatments 

deemed end of life therapies, where the threshold is increased to £50,000/QALY 

gained, and to treatments for rare diseases, referred to as highly specialised 

technologies. [28, 29] 

Survival modelling is a fundamental tool used in the assessment of health 

technologies under the current approach to appraisal by NICE, [5, 24] and it is of 

the utmost importance that decision-makers are aware of the strengths and 

limitations of current methods to ensure that fair pricing and access to therapies is 

maintained. The performance of survival models and other statistical methods can 

be assessed through simulation. [30] Ideally, every statistical method will be 

unbiased and precise. The presence of bias means there is a systematic difference 

between the estimates and the truth that is skewing the results. A precise estimator 

for treatment effect will give similar results each time, with little variance in the 

estimates. Bias is assessed by comparing the mean value estimated by the 

estimator within the simulations to the true value. Mean-squared error assesses 
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the performance of an estimator examining both bias and variance of the 

estimator. [31] 

 

2.2.  Survival analysis and heterogeneity in HTA 

 

Extrapolation of survival data from a clinical trial is common in HTA [24]. The 

survival data will often come from a trial that was designed to demonstrate 

treatment safety or efficacy in terms of a hazard ratio. [5, 24] The point at which 

the main analysis of the trial data is conducted is usually driven by the number of 

observed events and will not usually require every patient to have experienced the 

event of interest. The NICE DSU has produced a series of TSDs to provide guidance 

on how to implement appropriate methods for appraising health technologies. 

Some of these are specific to survival modelling, the most relevant being TSD 14, 

which outlines methods for extrapolation of patient level data, and TSD 21 which 

describes flexible methods of survival analysis. [3, 4]  

TSD 14 outlines suitable modelling approaches, focusing largely on parametric 

models, but also mentioning piecewise approaches. It suggests using visual 

inspection of survival and log-cumulative hazard plots alongside AIC and BIC to 

identify the best fitting models. TSD 14 recommends that the clinical plausibility of 

each model should also be assessed by comparison to external data and expert 

clinical opinion. Importantly, it also states that it is not necessary to implement a 

proportional hazards assumption when modelling with patient-level data. For this 

reason, the implementation of the proportionality assumption is not explored in 

this thesis.  

TSD 21 describes more advanced techniques that can be useful when the expected 

hazard rate is not well represented by a common parametric model. These 

techniques include restricted cubic splines, mixture models and cure modelling, 

which offer a range of alternatives to regular parametric models. TSD 21 

demonstrates the efficacy of these techniques across a number of simulated 

scenarios. 



13 
 

Other more specialised documents also exist, such as TSD 16 which considers 

adjustments to survival time estimates to be applied when patients have switched 

treatments. [32]  

From the author’s experience, at the point of the first submission to NICE the data 

that are extrapolated will usually come from the main trial analysis. Occasionally 

the data will come from a pre-planned interim analysis if a trial is demonstrating 

superior efficacy early on. If NICE do not initially recommend a technology, then a 

company may submit additional information such as extended trial follow-up or 

with a new commercial agreement to try and reduce some of the uncertainties in 

the initial review. However, it is likely some extrapolation will always be necessary 

as there will be patients censored due to the limited follow-up who have not yet 

had the event of interest.  

Extrapolation is usually performed through the fitting of parametric models to the 

observed time-to-event data, though other approaches are possible [33, 34]. 

Common models considered are the exponential, Weibull, log-logistic, log-normal, 

generalised gamma and Gompertz, which are described in more detail in Appendix 

C. [24] These each assume different parameterisations of the survival function, 

allowing the modelling of constant, decreasing, increasing or other variable hazard 

rates. The company and EAG will usually both select a preferred model from those 

available, basing their decision on the fit to the observed data and on the 

plausibility of the extrapolation. [3]  

The assessment of the fit can be done visually, comparing the smooth line of the 

fitted model to the line of the Kaplan-Meier plot. [3] This can be subjective, and can 

lead to a focus on the fit in the tail of the Kaplan-Meier plot, where there are small 

numbers of patients at risk, and the uncertainty associated the population’s survival 

is much higher than in the early stages of follow-up. [35] Focusing on the tail region 

where data are sparse and variability is high could result in selecting an 

extrapolation model that overfits to the tail data, and is not representative of the 

population’s survival. [33] 
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An alternative approach to assess model fit is to consider the statistical goodness of 

fit. The two most common ways of doing this are using Akaike's information 

criterion (AIC) and Bayes information criterion (BIC).  

The AIC of a model is defined as: 

AIC = −2 log(𝐿) + 2𝑘, 

where 𝐿 is the likelihood associated with the model, and 𝑘 is the number of 

parameters. [36] 

Similarly, the BIC of a model is defined as:  

BIC = −2 log(𝐿) + 2𝑘 log(𝑛), 

where 𝑛 is usually defined as the number of patients in the analysis but can also be 

the number of observed events. [37, 38] 

Both information criteria attempt to balance closeness to the observed data against 

the potential for overfitting, through the inclusion of the likelihood term and a 

penalty term containing 𝑘. Whilst the values from the two criteria should not be 

compared, a lower value for either indicates a superior model. Burnham and 

Anderson [39] suggest definitions for how to interpret differences in AIC, and 

Raftery [40] suggests similar interpretations for BIC.  

Ideally, the visual fit of a model will be assessed first, to ensure the models are 

somewhat representative of the data. Once one or more visually plausible models 

are identified, their AIC and/or BIC values are then compared to provide further 

distinction.  

If few or no models resemble the data, then alternative models could be 

considered. Flexible parametric models such as restricted cubic splines or fractional 

polynomials can be used to capture complex survival data, or a piecewise approach 

can also be considered, where the usual parametric models are fitted only to data 

that occurs beyond a certain point of follow-up where the model is better suited to 

capturing and representing the behaviour of the data. [24] 
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In addition to their fit to the observed data, models are also assessed on their 

clinical plausibility. If external data sources exist, such as routine data or earlier 

stage clinical trials, the follow-up from these can be used to compare against model 

predictions. If no sources exist, then expert clinical opinion is relied upon. This can 

be very subjective and unreliable, with experts disagreeing or being unable to 

predict the future efficacy of a novel therapy, hence the fit to observed data is 

often given a high weighting.  

Usually, the effect of background mortality is applied to the survival extrapolations, 

which will ensure that implausibly optimistic extrapolations are curtailed to some 

extent. 

AIC and BIC can be used regardless of the models being compared to identify a well-

fitting parsimonious model. However, neither AIC nor BIC were specifically 

developed to be applied to selecting the most appropriate survival extrapolation. 

[36, 38] Typically, overfitting is a concern when there are a number of potential 

covariates to include in the model and including additional terms will increase the 

flexibility of the model and allow it to better fit to the data. AIC and BIC ensure that 

only covariates whose benefit outweighs the penalty for including an additional 

term are included in the final model. However, in the problem of selecting a model 

for the extrapolation of survival data, there are usually no covariates included in the 

models, with the only parameters in the model coming from underlying 

distributions and treatment effects.  

The exponential distribution is the simplest distribution with one parameter, whilst 

Weibull, log-normal, log-logistic, gamma and Gompertz models each have two 

parameters. The generalised gamma and generalised F distributions have the most 

parameters having three and four respectively. Hence the problem of overfitting 

may not be very relevant in this setting, where the range of potential parameters in 

the model is small.  

Usually, a single parametric model will be used to extrapolate survival data. There 

may be times where the observed survival is not well-represented by a single 

model. This might be attributable to different groups of patients having different 
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baseline prognoses or different responses to treatment. This is described as a 

heterogeneous population. When heterogeneity is present, companies can take 

different approaches. In the NICE appraisal of pertuzumab for adjuvant treatment 

of HER2-positive early breast cancer (TA569), the company initially sought approval 

for patients with either node-positive disease or hormone receptor negative 

disease. The company modelled these groups separately, however as these 

biomarkers are not mutually exclusive, some patients were contributing to both 

groups and both analyses. Later in the appraisal, the company abandoned the 

hormone-receptor negative subgroup and focused solely on the node-positive 

subgroup which received a positive recommendation.  

In the NICE appraisal of pembrolizumab for treating locally advanced or metastatic 

urothelial carcinoma after platinum containing chemotherapy (TA519), the 

company only considered a single, pooled population. This meant the population 

included patients with and without PD-L1 positive disease, defined as a tumour PD-

L1 combined positive score above 1%, despite the hazard ratio showing association 

with PD-L1 status. [41] This association is consistent with pembrolizumab’s 

mechanism of action that targets the PD-1 receptor, and the fact pembrolizumab is 

licensed only for patients with PD-L1 positive disease for other cancers, such as 

non-small-cell lung cancer. [42, 43] The cost-effectiveness of different subgroups 

was not explored, and pembrolizumab was eventually not recommended for any 

patients after spending some time in the Cancer Drugs Fund (CDF) to collect more 

data. 

Similarly, the NICE appraisal of lisocabtagene-maraleucel for treating relapsed or 

refractory aggressive B-cell non-Hodgkin lymphoma (TA10477) included patients 

with diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma 

(PMBCL) and follicular lymphoma grade 3B (FL3B). DLBCL affects older patients, 

whilst PMBCL occurs in younger individuals. FL3B is rarer but is characterised as a 

faster growing disease than DLBCL and PMBCL. Whilst each group is treated 

similarly, the long-term outcomes for cured patients are not necessarily equal due 

to natural life expectancy, with a patient cured of PMBCL potentially gaining many 

more life-years relative to the other two groups. However, this appraisal only 
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considered cost-effective analyses for one combined patient population and did not 

explore subgroups. The outcome is not known. 

In contrast, in the NICE appraisal of venetoclax and obinutuzumab for untreated 

chronic lymphocytic leukaemia (TA663), the company separately modelled two 

mutually exclusive subgroups based on whether or not a patients’ disease had 

either 17p deletion or TP53 mutation, with the presence of these features being 

associated with a worse prognosis. Venetoclax was recommended by the NICE 

committee for patients with either the deletion or mutation, and was permitted for 

use in the CDF for patients without the features until more evidence is available. 

It is unclear why there might be such a variety of approaches taken. Paget et al. 

present a list of “good statistical principles” for subgroup analyses in HTA but focus 

on the clinical effectiveness perspective. [44] The NICE DSU has published TSD 3 on 

heterogeneity, however this focuses on heterogeneity between trials in evidence 

synthesis using meta-analysis and meta-regression techniques, rather than within a 

trial. [45] The recently published NICE methods guide recommends exploration of 

subgroups where the level of treatment benefit may vary. [46] The subgroups 

should be based on an expectation of varying clinical- or cost-effectiveness, ideally 

identified early in the appraisal process. The guide mentions these subgroups can 

be based on differences in “baseline risk of specific health outcomes” but does not 

give examples. It also suggests considering using an established checklist such as by 

Sun et al., however these checklists are targeted at clinical effect modifiers and may 

miss prognostic factors that go on to become effect-modifying from a cost-

effectiveness perspective. [47] It is currently unclear what effect the latest methods 

guide will have, but it is apparent that prior to the publication of the updated guide 

there were a wide variety of approaches to modelling heterogeneity. It is not 

known why one the company submission for one intervention may pool patients 

together whilst another selects a subgroup to focus on. Survival modelling or even 

NICE’s methods of appraisal may influence the choices of pharmaceutical 

companies, but research is needed to better understand these possibilities.  

The work described by the papers in this thesis has the following aims: 
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- To establish current methods used to extrapolate survival data in HTA and 

peer reviewed journals. 

- To quantify the performance of these methods  

- To consider alternative methods which may improve accuracy or reliability. 

- To examine the utility of current methods when populations are 

heterogeneous. 

- To investigate whether NICE processes may disincentivise the development 

of stratified therapies for heterogeneous populations. 

 

3. Published works 
This section outlines each paper and describes how they fit together to form a 

cohesive body of work.  

3.1. Establishing current practice of survival analysis within health 

technology appraisals – Paper One 
 

Aims 

The primary aim of this paper [5] was to identify all recent cancer related 

technology assessments appraised by NICE and establish the methods used to 

model survival data and extrapolate, if necessary, across the patient population 

lifetime. NICE’s evaluation of therapies on a cost-per-QALY basis is similar to that of 

PABC and CADTH, who are HTA bodies in Australia and Canada respectively. [48, 49] 

NICE’s transparency in decision-making outcomes and its supporting methodology 

guides means it is very influential internationally. For example, it has established 

partnerships with Thailand’s Health Intervention and Technology Assessment 

Program. [50] For these reasons, NICE technology appraisals were chosen as the 

focus for this paper.  

The second aim of the paper was to establish how each appraisal considered and 

accounted for the uncertainty around estimates of life-years, e.g., through the 

exploration of different parametric models and parameter values.  

Methods 
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A systematic search was conducted on the NHS Evidence Search Webpage, 

restricted to single technology appraisals of cancer therapies. The decision to focus 

on cancer appraisals was made to ensure that survival analyses would feature 

prominently, with a time-to-event outcome featuring as a key clinical outcome. The 

search was restricted to 2017, as this was the most recent full year at the time of 

performing the analysis and ensured that out-of-date methodology was not 

captured. For each appraisal, the publicly available NICE committee papers were 

used as the primary source of information which includes the written company 

submission and the EAG critique.  

Results 

A total of 28 appraisals were identified representing 22 distinct therapies across 16 

types of cancer. Every appraisal used parametric models to extrapolate at least one 

time-to-event outcome for the economic model. In one submission, the company’s 

preferred extrapolation method was to use splines, but in all other appraisals a 

standard parametric form was preferred (e.g. exponential or Weibull). In one 

appraisal the company modelled a time-to-event outcome using the population’s 

survival time as estimated by a Kaplan-Meier curve, rather than fit a parametric 

model to the data. Where parametric models fitted poorly to data, a two-phase 

piecewise approach was taken, where parametric models were fitted to data 

beyond a certain point of follow-up, with the Kaplan-Meier estimator used to 

estimate survival prior to this point. The time horizons of the economic models 

ranged from 10 to 100 years, whilst the observed maximum follow-up periods from 

the key clinical trials ranged from 1.4 to 6.8 years. The mean for the percentage of 

the time horizon that had any observed follow-up was 12.4%. The reported median 

follow-up from each trial covered an average of 6.5% of the model time horizons.  

All submissions reported using information criteria and the model plausibility when 

selecting an extrapolation. Most also considered visual fit to the data, and some 

compared extrapolations to external sources of data. All but three submissions 

considered alternative extrapolations to the preferred models, exploring some 

uncertainty in the choice of extrapolation. In nine appraisals the EAG agreed with 

the company’s preferred choice of models for extrapolation.  



20 
 

Key messages and significance 

This paper revealed the heavy reliance on extrapolation of parametric models for 

assessing the cost-effectiveness of a treatment and confirmed that information 

criterion played a big part in model selection, alongside model plausibility. It also 

demonstrated the large degree of subjectivity in the selection of a preferred 

survival extrapolation.  

 

3.2. Assessing practice of survival modelling in cost-effectiveness 

modelling outside of technology appraisals – Paper Two 
 

Aims 

The primary aim of this paper [6] was to perform a systematic review of economic 

evaluations assessing licensed therapies for epidermal growth factor receptor 

(EGFR) and anaplastic lymphoma kinase (ALK) negative advanced/metastatic 

non‑small cell lung cancer (NSCLC). The project was funded by a small grant which 

dictated the disease area, however the paper was able to place additional focus on 

the modelling of time-to-event data compared to a typical systematic review of 

economic evaluations. Hence, the practice of obtaining survival estimates in 

published studies outside of NICE technology appraisals could be well documented, 

extending beyond the work in the first paper.  

Methods 

A literature search of key databases was performed according to the preferred 

reporting items for systematic review and meta-analysis (PRISMA) guidelines. The 

search was limited to articles published in the English language from 1 January 2001 

until 26 Jul 2019, reflecting the time since NICE recommended docetaxel for NSCLC 

until the commencement of the review. All titles and abstracts were screened by 

two reviewers, and studies were included if they examined at least one relevant 

treatment recommended by NICE for NSCLC. Two reviewers each performed 

primary extraction from half of the studies and verified the other extractions. The 
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Consolidated Health Economic Reporting Standards (CHEERS)[51] and Philips[52] 

checklists were used for critical appraisal and quality assessment.  

Results 

Following the screening of 612 titles and abstracts, 54 publications were assessed at 

full text, with 30 eligible for inclusion in the systematic review, seven of which were 

NICE appraisals. Focusing here on the 23 publications that were not NICE 

technology appraisals, the reporting quality, as assessed by the Philips and CHEERS 

checklists, was generally high though these do not focus specifically on survival-

related elements. Model structure was identical to that of models in most NICE 

cancer technology appraisals, featuring progression-free, post-progression and 

death health states, mostly modelled using either a Markov or partitioned survival 

model. These economic model types are described in more detail in Appendix C, 

alongside an overview of the survival related information for the studies. Some 

analyses used  median survival times taken from observed follow-up or estimated 

the area under the Kaplan-Meier curve, and so did not fit any parametric models. 

The most common approach was to fit parametric models to estimate mean 

survival, either independently or assuming proportionality between comparators, 

with the model selection methods being generally consistent with technology 

appraisals. A small number of analyses used advanced techniques for extrapolation 

including cure models, piecewise models or restricted cubic splines. Two studies 

avoided any survival related parameters by assuming there was no difference 

between the technologies they were comparing.  Factors associated with survival 

modelling such as hazard ratios, choice of extrapolation and cure proportions were 

consistently among the factors whose associated uncertainty had the largest impact 

on the cost-effectiveness outcomes. Many studies did not explore these areas of 

uncertainty comprehensively through scenario analyses, neither did they report any 

assumptions that were made as part of the economic analysis.  

Key messages and significance 

This paper established that the methods of extrapolating survival implemented in 

the literature were similar and at times far more basic than those used in NICE 
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technology appraisals. This further emphasised the need to generate evidence on 

the utility of these extrapolation methods for estimating life-years.  

 

3.3. Assessing efficacy of parametric extrapolation – Paper Three 
 

Aims 

This paper [7] aimed to demonstrate the reliability of life-year estimates generated 

using parametric survival models. Firstly, the ability of parametric models to 

accurately estimate life-years from trial follow-up was examined. Secondly, the 

models preferred by each of AIC, BIC and log-likelihood were compared to establish 

whether one could be considered more appropriate for identifying optimal 

extrapolations from a selection of candidate models in technology assessments.  

Methods 

Monte Carlo simulations were used to model 12 scenarios which replicated follow-

up of a single arm from four trials which provided key evidence in health technology 

appraisals reviewed by NICE. Single arm follow-up was chosen as it allows for a 

better understanding of the performance of the models to the data, and can be 

generalised to analyses of multiple arms by the basic properties of the mean and 

variance of a difference. Each trial was used to generate three different scenarios, 

where each assumed either an underlying exponential, Weibull or generalised 

gamma distribution of survival times. The trials had a range of sample sizes, follow-

up length, event rates and clinical outcomes. Two trials had observed median 

survival.  Eight parametric models (exponential, Weibull, log-normal, log-logistic, 

gamma, generalised gamma, Gompertz and generalised F) were fitted to complete 

and censored simulated data sets, and the corresponding life-years estimates were 

calculated, capped at the time horizon of each appraisal’s economic model. AIC, BIC 

and log-likelihood values of the models were compared to select the optimal 

extrapolation and corresponding life year estimate according to each method. No 

assessment of plausibility of each model was made nor were hazard rates assessed 

as it is not practical to compare fitted and observed hazard rates for each 
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simulation. This represents occasions where judgement is made solely on goodness 

of fit statistics, which can be due to limited resources or a lack of information. It is 

also expected that the best-fitting models will have some correlation to those that 

are plausible and have hazard rates that are close to those observed. 

Results 

It was found that if the form of a fitted parametric model does not match the 

underlying distribution of the data, it is likely to produce biased estimates of life-

years, even if follow-up is complete. Only data coming from a simple underlying 

distribution (exponential) could be reliably represented by the parametric models.  

BIC-preferred models had a lower mean-squared error than those preferred by AIC 

and log-likelihood when the median survival had been observed, however 

plausibility and underlying hazard shape assumptions should also be considered 

when selecting an extrapolation, rather than rely solely on any goodness-of-fit, to 

remove the possibility of an implausible extrapolation being chosen. When the 

underlying distribution contains multiple parameters, follow-up typical of a clinical 

trial at the point of appraisal did not contain enough information for the behaviour 

to be reliably captured when fitting a model. This was the case even if the model 

matching the underlying distribution was fitted. Models with the most parameters 

had the highest variation in their life-year estimates suggesting overfitting is a 

problem. Even when estimates of life-years were unbiased, variability was higher 

suggesting extrapolations cannot be considered reliable.  

Key messages and significance 

Applying AIC, BIC and log-likelihood without considering model plausibility can 

result in the selection of biased extrapolations as they only consider the fit to the 

observed period. This paper is the first step in evaluating the utility of present 

methodology for extrapolating survival data. 
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3.4. Considering the impact of assessing plausibility and exploring 

model averaging – Paper Four 
 

Aims 

This paper [8] aimed to extend the investigation of the third paper in two ways. 

Firstly, to consider the impact of including a plausibility assessment in the model 

selection algorithm on the performance of the parametric extrapolations and the 

methods of model selection. Secondly, to explore the utility of methods of model 

averaging at reducing the bias and improving the reliability of estimating life-years 

from a selection of parametric models. 

Methods 

Using the same simulation framework as the previous paper, the assessment of 

plausibility was introduced through a comparison to the true life-year estimate as 

calculated using the parameters from the underlying distribution. Models that 

produced estimates of life-years that had a difference greater than 25% from the 

underlying life-years were assumed as implausible and were removed from 

consideration, aiming to replicate the assessment of plausibility of extrapolations 

based on clinical expertise, though percentage differences of 15% and 50% were 

also considered. The possibility of the plausibility assessment being made on a 

biased prediction of the true life-years was also considered. A range of approaches 

to model averaging were included. Having identified the optimal model according 

to each of AIC, BIC and log-likelihood, different established thresholds of difference 

for AIC and BIC, that are usually used to indicate levels of distinction from the 

optimal model, were compared. Models that were within these thresholds of the 

optimal model for each simulation were averaged with equal weighting. Secondly, 

models were weighted according to their BIC, approximating Bayesian model 

averaging. The final averaging method considered was to take the mean average of 

all candidate models, with models weighted equally. The methods of model 

averaging were explored both with and without the plausibility assessment on the 

candidate models.  
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Results 

Assessing the plausibility of candidate models improved accuracy and reliability of 

both the extrapolations and using on AIC, BIC or log-likelihood to select a preferred 

model. BIC remained the optimal method of single model selection in the scenarios 

considered. Model averaging was generally superior to relying on a single 

extrapolation, having a considerably lower mean-squared error in most scenarios 

and often outperforming even the true underlying distribution (Table A2, Appendix 

C). The main exception is when the underlying distribution is exponential where an 

exponential model was superior. On such occasions, relying on the single model 

preferred by BIC, or BIC based weighting, both performed well as the penalisation 

of the BIC favours models with few parameters, such as the exponential. Averaging 

offered little reduction in bias, as the estimates from the single model selection 

methods were already generally unbiased. Estimates from the generalised gamma 

model were usually unbiased, perhaps explained by its nested relationship with 

each of the true distributions, however it was associated with a large MSE as the 

limited data prevented precise estimation of multiple parameters. Model averaging 

was robust to a biased prediction of the true life-years by which candidate models 

were excluded for being implausible. The benefits of model averaging were more 

noticeable in the scenarios where median survival was not reached according to the 

Kaplan-Meier estimator.  

Key messages and significance 

This paper demonstrates the utility of current methods in extrapolating survival 

data, combining model fit with plausibility. It showed that there are benefits of 

averaging across multiple plausible candidate models compared to selecting a 

single model where there are uncertainties or complexities in the underlying hazard 

rate. Model averaging reduces the chance of obtaining an extreme value estimate 

of life-years, compared to selecting a single model, even once implausible models 

are removed from consideration. Selecting a single model may be appropriate 

when it is consistent with a hazard rate from mature data.  
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3.5. The problem of extrapolating from heterogeneous populations – 

Paper Five 
 

Aims 

This paper [9] extended the methodology of the previous two papers [7, 8] and 

applied it to the setting where the populations survival times did not come from a 

single parametric distribution, representing differing baseline prognoses or 

responses to treatment. It aimed to demonstrate the relationship between clinical 

estimates of effectiveness (hazard ratios) and efficacy estimates used in cost-

effectiveness analyses (life-years) in heterogeneous populations. Additionally, this 

paper assessed the ability of parametric extrapolation when survival times came 

from a mixture of underlying distributions.  

Methods 

This simulation study modelled seven distinct scenarios where varying 

combinations of heterogeneity were represented in the intervention and control 

arms of a hypothetical randomised control trial. This paper used a similar approach 

to the previous simulation studies (papers 3 and 4). This time two arms were 

modelled for each scenario to explore the combined impact of varying kinds of 

heterogeneity occurring on either arm.  An exponential distribution was used to 

sample the different survival times, whilst censoring times were estimated using a 

Gompertz distribution. Different combinations of exponential hazard rates 

modelled different treatment subgroup/complement treatment and prognostic 

effects. Each arm was divided into a subgroup and complement with their survival 

times generated independently. Current methodology was represented by fitting 

the eight candidate parametric models that were introduced in paper three, ruling 

out implausible models based on their predictions at 5 and 10 years. AIC and BIC 

were used to distinguish between the remaining plausible models. Other 

approaches that were considered included taking the average life-years from every 

plausible model and fitting separate models where a statistically significant 

treatment-subgroup interaction was detected within a trial arm.  
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Results 

The paper’s appendices contained a proof of how an exponential model fitted to 

censored follow-up from a heterogeneous population would always produce a 

biased estimate of life-years. The simulations showed that this bias was present 

when life-year estimates were obtained from the compared methods. Life-years for 

censored follow-up of heterogeneous populations tended to be underestimated. 

Due to the various combinations and presence of the heterogeneity across the 

scenarios, estimates of incremental benefit were either under- or overestimated. 

The estimates of life-years from each sample of complete follow-up, without 

censoring, contained least but still considerable variability, suggesting that mature 

or complete follow-up of a trial cannot be relied upon to give an accurate 

prediction of life-years.  

In a scenario where treatment benefit was overestimated, increasing the sample 

size slightly reduced the variability of estimates and bias, and increased the power 

to detect a treatment effect. Fitting separate models when significant interactions 

were detected without increasing sample size reduced bias but variability remained 

high. Increasing sample together with fitting separate models when significant 

interactions were detected resulted in relatively unbiased estimates for all methods 

and estimates with the least variation.  

In the two scenarios where benefit was overestimated, model averaging was the 

best method when considering bias and mean-squared error simultaneously.  

Key messages and significance 

This study demonstrated the problems when current methods are used to 

extrapolate survival from trial data containing heterogeneous populations. These 

biased estimates of life-years are problematic as they result in unfair pricing of 

therapies according to NICE’s existing method of assessing value, which then go on 

to become the reference point for future therapies.  
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3.6. Does NICE’s appraisal process discourage the development of 

targeted therapies? – Paper Six 
 

Aims 

The aim of this paper [10] was to create a model which captured the key factors 

which influence the costs and effects of a treatment when its value is being 

assessed by NICE. This model was designed to explore the setting of a 

heterogeneous population where different subgroups have a different response to 

a treatment, and to investigate whether a pharmaceutical company and healthcare 

provider agree on their preference on whether an emerging therapy is developed 

as a stratified or unstratified treatment. It explores whether there may be another 

motivation to a company’s decision not to investigate potential heterogeneous 

subgroups, in addition to the potential biased survival estimates identified in the 

previous paper. Whilst this paper does not explicitly model survival, it uses 

treatment benefit based on life-year estimates that were obtained from parametric 

extrapolation. The model developed in this paper was used to establish whether 

the preference of the healthcare provider/decision maker would match that of 

pharmaceutical company researching and producing the treatment.  

Methods 

A model was created capturing the major inputs that are considered when 

appraising a health technology from a healthcare provider’s opinion. It was used to 

calculate a separate utility for the healthcare provider and for the pharmaceutical 

company and to deduce whether each stakeholder would rather a treatment with 

specific efficacy in a subgroup and complement population be developed as a 

stratified or unstratified treatment.  The model included development costs of the 

treatment, alongside the conditional costs of developing a stratified therapy. For 

situations when the healthcare provider and pharmaceutical company might 

disagree, potential solutions were considered to align the preferences, which were 

(i) the healthcare provider raising its willingness-to-pay threshold for a stratified 

therapy, (ii) the healthcare provider paying an upfront lump sum contribution for 

the development of a stratified therapy, and (iii) the pharmaceutical company 
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incurring a penalty for the negative effects. The parameter values were obtained 

from a recent NICE appraisal of pembrolizumab for urothelial carcinoma. 

Results 

A region of misalignment of preferences of the healthcare provider and 

pharmaceutical company was identified using the values obtained from the 

appraisal. This occurred when the treatment had a positive effect in the subgroup 

but a negative effect in the complement and depended on the prevalence of the 

subgroup.  The misalignment was driven by the costs associated with new 

treatment and the costs of developing and producing a biomarker test. The three 

solutions were successful at aligning the preferences, and the positioning and cost 

of the each depended on the subjective parameter of the true value of a year of 

health to the healthcare provider. The solutions were identical in terms of their 

alignment of the preferences, however differed on their influence on whether the 

pharmaceutical company is able to recover their development costs. The penalty 

term made this more likely, potentially discouraging drug development in other 

ways, whilst the other solutions made this less likely but came at an increased cost 

per life-year to the healthcare provider.  

Key messages and significance 

Under certain circumstances the current NICE framework may discourage 

pharmaceutical companies from developing stratified therapies, and companies 

may instead prefer to target a treatment to a wider population. Considering this 

alongside the potential for biased estimates of benefit when heterogeneity is 

present, assessors such as NICE should be cautious when appraising health 

technologies and look closely for potential differences in treatment effect that have 

not been identified by pharmaceutical companies, as permitted in the NICE 

methods guide. [46] 
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4. Discussion and recommendations 
  

The works in this thesis have identified parametric models as a common method of 

extrapolating survival data in economic analyses and demonstrated their 

performance in a range of scenarios representative of NICE technology appraisals. 

They have demonstrated that BIC may be slightly superior to AIC when selecting a 

single model for extrapolation, and that care should be taken to avoid an extreme 

extrapolation when no information is known about model plausibility. Model 

averaging is well suited in such instances or when the best parametric form remains 

unclear; however, data immaturity can considerably reduce the performance of all 

considered extrapolation methods. The presence of heterogeneity can introduce 

bias into the parametric extrapolations, which may disincentivise the development 

of therapies for targeted subgroups alongside the additional costs associated with 

identifying these subgroups, if sufficient reward is not available.  

Paper one was the first to give an overview of the methods used to extrapolate 

survival data in NICE technology appraisals since Latimer in 2013. [2] The size, 

variety and complexity of NICE appraisals mean it is difficult to standardise the 

approaches they use or to establish best practice. This paper achieved its aim to 

identify methods of extrapolation and accounting for survival-related uncertainty 

and generated valuable information as to the methods used alongside the 

characteristics of each study, including the supporting survival data and the extent 

of the reliance on extrapolations. It demonstrated that there was often 

disagreement between the different stakeholders over their preferred method of 

extrapolation, and that there were a range of approaches to exploring survival-

related uncertainty. It serves as an important cornerstone for the remaining papers 

of this PhD.  

A limitation of this paper was its short review period spanning 12 months, however 

this was selected on grounds of feasibility and in order to avoid identifying out-

dated methods. This review could be improved by expanding the timescale covered 

and updating it to see what has changed since 2017. Changes in methods either 

from methodological advances or differing evidence bases may mean the results of 



31 
 

this review are outdated. It is possible that the challenges faced in extrapolating 

survival have evolved, as more appraisals rely on indirect comparisons and data 

from single-arm trials. A broader review would also allow investigation of the 

changes of methods over time, rather than the current cross-sectional approach.  

The generalisability of this review could be extended if it included appraisals from 

other agencies that appraise technologies in similar ways and publicly release the 

documentation, such as the Canadian Agency for Drugs and Technologies in Health 

(CADTH).  

The second paper provided a comprehensive overview of cost-effectiveness 

analyses for treatments of NSCLC, demonstrating the range of modelling techniques 

and assumptions used, including the methods of estimating survival benefit. The 

broader aim of this paper meant that this paper could not focus solely on methods 

of survival extrapolation, however it still found evidence that the methods used in 

literature overlap heavily with the methods that feature in NICE technology 

appraisals, allowing a wider generalisation of the future papers included in this 

thesis.  

This paper included articles from as far back as 2002, meaning that some of the 

methods discovered may be considered outdated. The paper would have 

contributed more to this PhD if it had focused on the methods of extrapolating 

survival data, which could have allowed it to explore other disease areas as 

methods may vary in other populations and trials with different characteristics. 

Some of the studies in this review were also included in the review of NICE 

appraisals. Ideally this overlap would be avoided, perhaps through the production 

of a single review encompassing published literature and appraisals of health 

technologies.  

The two review papers of this thesis identified the popularity of parametric models 

but since they were published there have been many papers that explore the 

potential of emerging methods including splines, mixture models, mixture cure 

models (MCMs), landmark models. A common motivation for these papers was that 

novel treatments such as immuno-oncological and gene therapies often are 
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associated with complex hazard rates that parametric models can struggle to 

capture. Hence, it is no surprise that in some of these papers parametric models are 

found to be inferior to the novel techniques, but there is no clear best approach 

and raises the question of whether parametric models can still be considered a part 

of current practice. 

Some studies show that spline models are superior to parametric models when 

modelling data for immuno-oncological treatments [54, 55], whilst others show 

MCMs were superior to splines and parametric models. [56-59] Sometimes, the 

benefit of splines or MCMs was unclear, with no modelling approach clearly 

optimal. [60-62] 

In contrast Roth et al. found that parametric models performed very similarly to 

MCMs [63], whilst Klijn et al. found a log-logistic parametric model was the closest 

fit to their extended follow-up. [33] MCMs have been found to produce biased 

estimates of survival when immature follow-up fails to accurately capture the cure 

proportion, and may not always be reliable even if their usage is clinically plausible. 

[64, 65] 

A parametric model underpins modelling approaches such as mixture models, 

MCMs and piecewise models. Hence the findings of the simulations presented in 

this thesis may generalise to these more modern methods. Whilst these alternative 

approaches offer greater flexibility, they require either the estimation of more 

parameters compared to standard parametric models, or in the case of landmark 

models they use less follow-up, and so their benefits may not always be clear.  

Almost all these studies used parametric models as the reference case, with a 

recent guide to selecting a flexible survival model for extrapolation recommending 

that parametric models are used as parsimonious reference case for more complex 

methods. [66] There is evidence that parametric models are still used in economic 

evaluations despite increasing awareness about alternative methods,[67, 68] even 

for immune-oncology and gene therapies. [69, 70] Parametric models are the only 

method of extrapolation explicitly mentioned in the updated NICE methods guide 
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(section 4.10.5), though it refers readers to TSD 21 when the proportional hazards 

assumption is violated when multiple sources of survival data require synthesising. 

Whilst there may be times that parametric models are not appropriate, Kearns et 

al. recently described parametric models as “current practice” and it looks like they 

will remain popular for the foreseeable future. [71]  

A review of NICE technology appraisals by Bell Gorrod et al. reported similar 

findings to the reviews of this thesis, despite covering a much longer period (2011-

2017). [24] They found 91% of submissions used parametric models which were 

selected in consideration of their goodness of fit, with the EAG critical of the 

company’s preferred model in 71% of appraisals. Their recommendations were for 

a greater transparency and consistency in the application of survival methodology. 

Their review did not consider length of follow-up of the contributing data or the 

model time horizon, but this was considered in a review by Tai et al. which focussed 

the influence of immature data in NICE technology appraisals. [72] Tai et al. found 

that 41% of NICE appraisals between 2015 and 2017 used data described as 

immature by the EAG, and that this sometimes resulted in NICE approving the 

technology for a subgroup of the originally indicated population. They advocate for 

a review of past decisions when additional follow-up becomes available to ensure 

accurate estimation of survival benefit.  

Whilst the majority of the literature focuses on methods used in NICE technology 

appraisals, a review by Grumberg et al. revealed that extrapolation using 

parametric models and piecewise modelling is very common when appraising 

immune-oncological technologies in France. [73] Furthermore, guidance from 

Haute Autorité de Santé recommends using a parametric model for extrapolation 

selected using information criteria meaning the results of this thesis have an 

international influence. [74] 

Limitations of many of the papers that investigate the benefits of MCM or flexible 

parametric models are that they do so for the assessment of a single case study of a 

technology appraisal, or they use data that are not representative of those used in 
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a technology appraisal. Meanwhile, the simulation studies in this thesis considered 

a wide range of scenarios, all representative of technology appraisal.  

Paper three was the first to demonstrate the utility of parametric models for 

extrapolation of survival data to estimate the lifetime benefit of a treatment. The 

paper is a helpful reference point to assess the utility of novel extrapolation 

methods and serves as a guide for decision-makers when establishing criteria for 

assessing whether a technology is cost-effective. The paper details the design of the 

simulations, demonstrating how to maximise the trial-based information to 

replicate follow-up which can be used as a template for future simulation studies of 

time-to-event outcomes.  

A limitation of this paper is that it did not consider model plausibility and relied 

solely on AIC and BIC. The results of this paper are still informative in situations 

where no models can be ruled out on plausibility grounds. However, this paper 

would be improved if it had considered model plausibility. The results from the 

subsequent paper, which considered plausibility before selecting a single 

extrapolation model, were instead overshadowed by the methods of model 

averaging explored in that paper. The inclusion of flexible parametric models would 

have extended the scope and generated evidence on the comparable utility of 

these approaches.  

NICE TSD 21 conducted a similar simulation study assessing the efficacy of 

parametric models alongside flexible parametric and cure models, without 

considering model selection or plausibility. [4] It considered settings with complex 

underlying hazard rates and showed parametric models generally performed 

poorly, however no model type performed well across all scenarios with all 

methods being capable of generating implausible extrapolations, particularly when 

heterogeneity was strongly present. 

The main contribution of paper four is that it introduced and showed the potential 

benefit of averaging across multiple models for obtaining an estimate of long-term 

survival of a patient population. It compared these methods with the approach of 
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selecting a single model for extrapolation, reflecting how models are selected in 

NICE technology appraisals. 

The averaging methods considered are novel and highly relevant to stakeholders 

involved in the appraisal of health technologies, who may not have access to any 

data and only have output of a set of candidate models fitted to the data. This is the 

situation faced by External Assessment Groups in NICE technology appraisals who 

often only have access to a company’s partitioned survival economic model, and no 

patient level data. 

Whilst this and the previous paper do consider 12 baseline scenarios, an 

improvement to the paper would be to consider additional scenarios where the 

underlying data might come from alternative distributions or where a treatment 

has a curative effect. The models considered in the paper were often nested 

relative to each other and to the underlying distribution, which may restrict the 

generalisability of the findings. Similarly, the underlying distribution was always 

included in the set of candidate models. The papers also only model the benefit of a 

single technology, and do not estimate a relative benefit, which is usually of interest 

to the decision maker. Neither paper includes background mortality, which is 

usually accounted for in NICE technology appraisals. Background mortality reduces 

the bias associated with models that are too optimistic and may improve the fit of 

the log-models in these simulations, however there are still plenty of diseases 

where background mortality is unlikely to influence the survival extrapolations as 

the modelled hazard rate always exceeds background mortality. The paper could  

have been more generalisable if it included alternative types of survival model such 

as piecewise, cure or flexible parametric models. The focus on parametric models is 

still informative as they underpin some of these emerging methods and are still 

commonly used in their original form. 

The first two simulation papers of this thesis found a slight benefit of selecting 

models using BIC over AIC. Beca et al. also found BIC superior to AIC in their 

simulation study, however these results may be linked to the choice of underlying 

source distributions and may not extend to all situations. [75] Everest et al. only 

considered models preferred by AIC but reported that they produced biased 
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estimates of survival. [76] Overall, the performance of using information criterion 

to select a single extrapolation of trial follow-up does not seem reliable. However, it 

is not clear whether this is mostly attributed to the data or the methods of selection 

and extrapolation. Further work is needed to identify whether there is a point when 

data can be considered mature enough for extrapolation, through a combination of 

sample size, number of observed events and length of follow-up, that can be 

applied widely to technology appraisals.  

The fifth paper demonstrated the links between different kinds of heterogeneity in 

treatment effects when assessed from the perspectives of a clinical- and cost-

effectiveness assessor. This is an important but sometimes overlooked [53] 

consideration when assessing the cost-effectiveness of a health technology and is 

relevant whenever there may be a different response to treatment or baseline 

prognostic risk. The findings of this paper should motivate decision-makers to 

request more often further exploration of suspected heterogeneity and to interpret 

analyses of a heterogeneous population with caution.  

The limitations of this paper are that it did not include a supporting case-study, 

which would have demonstrated the problem and utility of the solutions more 

clearly. The simulated scenarios considered were all based on survival times 

following an exponential distribution, whilst real survival time may have complex 

distributions which may influence the utility of the methods used. The paper could 

also have included alternative types of candidate model which may have coped 

better with a heterogeneous population, such as mixture or flexible models. It 

would be interesting to construct an economic model factoring in the different 

biases identified to explore the implications on the decision-making and technology 

pricing decisions. 

The benefits of identifying subgroups where heterogeneity is suspected, and of 

fitting separate models accordingly has been shown, however sample sizes from 

trials may not be powered to detect such subgroups correctly. If subgroups cannot 

be identified, then methods such as mixture models, dynamic models, or flexible 

parametric models such as restricted cubic splines, may be better than standard 

parametric models at extrapolating for a heterogeneous population, however 



37 
 

research is needed to support this hypothesis. Mixture models and MCMs both 

assume there are two distinct patient subgroups present in a population. MCM 

assumes one of the subgroups is effectively cured, whilst mixture models just 

assume they come from two separate distributions. Their inclusion in the 

simulation of heterogeneity would have enhanced the paper, but these models 

have their limitations. Cislo et al. showed that mixture models can have 

convergence issues and require the specification of multiple initial values to ensure 

that the optimal value is obtained, [77] whilst the necessity of mature data for 

MCM has already been mentioned. Pharmaceutical companies may prefer to use 

cure models because of the known bias associated with MCM. Hence there are 

likely occasions where identification and separate modelling of subgroups will be a 

well-suited approach. Regular investigation of subgroups may lead to greater 

proactivity of pharmaceutical companies in their detection of optimal patient 

populations for their therapies. 

The sixth paper shows how the current means of assessing the cost-effectiveness of 

a health-technology may discourage a pharmaceutical developer from identifying 

the specific subgroup of patients in whom the treatment is most effective. 

Importantly, this reveals that decision-makers such as NICE may need to consider 

incentivising the development of stratified therapies by paying more for them than 

a non-stratified therapy.  

Paper six has limitations. The economic model relies on several unknown 

parameters, most notably the true value of a QALY to the healthcare provider. This 

parameter has considerable impacts of the degree of compromise achieved and the 

associated costs, yet remains a somewhat subjective and abstract value. The paper 

presents a simplified model of what is actually a very complex decision problem 

often spanning multiple populations and disease areas and approaches to 

appraising a health technology. This paper focused on NICE’s appraisal process, and 

it is possible that the approaches of other decision makers may not have the same 

effect. 

Antoñanzas et al. similarly assume some incentivisation may be required to 

encourage the development of stratified therapies and built a similar model which 
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implemented a policy where the healthcare provider only pays for the treatment of 

patients who respond well. [78]  They say this can be effective motivation to 

pharmaceutical companies to identify key patient subgroups. Such an approach 

may be difficult to implement widely as some health outcomes can be subjective 

and it is unknown how patients would have performed on an alternative therapy. 

However, it may be preferable to the healthcare provider if they can avoid having 

to pay more. This could result in potential discrimination issues if pharmaceutical 

companies became too selective over which patients receive their therapies.  

Although parametric models were identified as a current methodology in 2017, it is 

possible that their use is less common as alternative modelling approaches have 

become more popular. However, parametric models still act as a pivotal component 

in several more complex approaches, including mixture-cure and piece-wise 

models. Hence the findings of these papers are still relevant. 

The simulation papers compared models to the true underlying distribution rather 

than the sampled dataset they were fitted to. This meant that the simulated 

datasets may not always have been representative of the truth, which may have 

made the models look better or worse. This is an interesting problem, as NICE 

appraisals generally assume the data from a trial are representative of the target 

population and for very mature data, the area under Kaplan-Meier plot is treated as 

the gold standard of life-year estimation. [5, 24] However, because of either 

differences in baseline characteristics or random chance, there may be occasions 

when the data are not representative of the target population. It would be 

interesting to repeat these simulation studies but assessing a model’s performance 

by comparing it to the simulated data rather than the underlying truth, which may 

be more representative of current practice.   

The investigation of heterogeneity was inspired by the experience of a wide variety 

of approaches observed in my experience of critiquing health technology 

submissions. Approaches now may be more standardised with the support of the 

newly published NICE methods guide.  
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Emerging techniques: 

More recently, there is growing opportunity to factor in external sources of data 

when extrapolating survival outcomes. Historically external data would be used to 

validate a parametric extrapolation from a primary data source. [5, 24] Alternative 

approaches include those demonstrated by Wang et al. who investigated merging 

their dataset with the external data, but it was unclear whether the external data 

offered any improvement. [79] Pennington et al. explored a range of approaches 

including to assume a proportional hazard relationship between their internal and 

external data. [80] Aside from these methods, parametric models fitted to trial data 

generally only factor in external data through their use in a relative survival setting 

or through post-hoc adjustment such as treatment effect waning and background 

mortality. 

Emerging techniques such as dynamic relative survival models and Bayesian 

multiparameter evidence synthesis enable incorporation of external data into the 

extrapolation. [81, 82] Blended survival models combine parametric models with 

Cox proportional hazards models to wane the treatment effect over time, which 

can also include external information. [83] NICE TSD 21 does not mention all  these 

methods when considering approaches to using external data. The methods are 

also yet to feature routinely in NICE technology appraisals, possibly due to a 

combination of their complexity, recency and requirement for external data to be 

available in the correct format. These methods have the potential to provide 

improved extrapolations in cases where parametric models perform poorly. 

 

From the works of this thesis, I draw the following recommendations for both the 

current appraisal of health technologies and for future research. 
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Recommendations for practice: 

1. Take utmost caution when extrapolating without any consideration of 

plausibility and relying solely on information criterion, or when data are 

immature. 

2. Consider averaging across all plausible models when optimal extrapolation is 

unclear. 

3. Explore suspected heterogeneity and its potential impact on cost-

effectiveness outcomes. 

4. Consider HTA-related outcomes when designing clinical trials or other data-

generating systems.  

5. Re-evaluate treatment efficacy and value when trial follow-up is complete 

and/or when extended follow-up of real-world use is available.  

 

Recommendations for future research: 

6. Compare latest methods which replicates data and outcomes considered in 

NICE technology appraisals. 

7. Explore alternatives to using lifetime horizons to reduce the dependence on 

survival extrapolations from inadequate data. 

 

These recommendations are not all novel. Recommendation 3 is consistent with the 

recently published NICE methods guide which encourages clinical experts and other 

stakeholders to identify potential subgroups of interest. [46] The methods guide 

recommends identifying these in the scoping stage if possible, but permits later 

discovery and exploration. 

Recommendation 4 is also made by Tai et al, [72] who state that even analyses with 

high levels of confidence in their cost-effectiveness should be revisited when more 

data is available.  

Recommendation 6 means to combine the methods mentioned in TSD 21 [4] and 

the simulation style of this thesis where the steps of plausibility and model 
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selection are included to properly represent each approach, rather than just 

comparing classes of models and ignoring model performance within each class. 

 

5. Conclusion 
 

The works of this thesis have made significant contributions in the understanding 

and search for methods of obtaining an optimal survival extrapolation. Parametric 

models were identified and investigated using rigorous methodology to 

demonstrate their efficacy for estimating treatment benefit. Novel pragmatic 

methods of model averaging have been reported, and their benefits shown when 

data are too immature to reliably represent the true underlying behaviour. 

Complications in data such as heterogeneity and competing interests of 

stakeholders adds additional complexity to the already difficult task, however the 

works of this thesis informs current and emerging methods that seek to address 

these complexities. 

Substantial challenges of predicting the future efficacy of a treatment remain but 

these papers have enhanced our understanding of the problem. 
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Acronyms 
 

AIC: Akaike information criterion 

ALK: Anaplastic lymphoma kinase 

BIC: Bayes information criterion 

CDF: Cancer Drugs Fund, UK 

CHEERS: Consolidated Health Economic Reporting Standards 

DSU: Decision Support Unit 

EAG: External assessment group 

EGFR: Epidermal growth factor receptor  

EQ-5D: EuroQol 5 Domains 

HTA: Health technology assessment 

MCM: Mixture cure models 

NHS: National Health Service, UK 

NICE: National Institute for Health and Care Excellence 

NSCLC: Non-small cell lung cancer 

OS: Overall survival 

PFS: Progression-free survival 

PRISMA: Preferred reporting items for systematic reviews and meta-analyses 

PSA: Probabilistic sensitivity analysis 

QALY: Quality adjusted life year 

RMST: Restricted mean survival time 

TSD: Technical support document 
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Kaplan-Meier survival function 

The Kaplan-Meier estimator provides a way of accounting for censoring that occurs whilst following up the time-to-event outcome for a population, 

allowing follow-up of those who have not yet had the event to contribute information to the analysis rather than excluding them.  

Let S(t) be the survival function for event outcome death. In a population of 𝑛 people, there are 𝑘 unique event times each occurring at 𝑡𝑘. At the earliest 

event time, 𝑡1 , 𝑑1 of our population have the event. The probability of surviving beyond this time is  
𝑛1−𝑑1

𝑛1
  or 1 −

𝑑1

𝑛1
. This generalises to 1 −

𝑑𝑘

𝑛𝑘
  for 

surviving each interval. But also accounting for previous intervals gives us: 𝑆(𝑡𝑘) = (1 −
𝑑1

𝑛1
) (1 −

𝑑2

𝑛2
) … (1 −

𝑑𝑘

𝑛𝑘
)  which can be abbreviated as 

∏ 1 −
𝑑𝑖

𝑛𝑖

𝑘
𝑖=1 . This is the Kaplan-Meier survival function. 

This can be represented graphically, where the survival function only decreases when an event occurs, as shown in Figure A1. 
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Figure A1: Example of a Kaplan Meier plot with 95% confidence interval. 
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Survival models 

Parametric survival models are a group of models that can be used to represent the proportion of a population remaining event free over time, 

using a parametric form. They are useful because their defined parametric form means that their extrapolations each follow-up their own 

characteristic form, allowing simple predictions for the future survival of the patient population beyond the observed period. In this section, 

the survival functions of the parametric models used in the papers of this thesis are introduced briefly, alongside a visual representation of 

their survival and hazard forms. 

Generally, the survival function can be written as: 

The survival function where 𝑇 is a non-negative random variable of event times is given by: 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) =  ∫ 𝑓(𝑢)
∞

𝑡
 𝑑𝑢  

 where f(t) is the probability density function given by: 𝑓(𝑡) =  lim
𝛿→0 

𝑃(𝑡 ≤ 𝑇 < 𝑡+𝛿)

𝛿
 

The hazard function is the instantaneous failure rate at time 𝑡, and is defined as: ℎ(𝑡) =  lim
𝛿→0 

𝑃(𝑡 ≤ 𝑇 < 𝑡+𝛿 | 𝑇 ≥ 𝑡)

𝛿
=

𝑓(𝑡)

𝑆(𝑡)
=  

−𝑑

𝑑𝑡
 log (𝑆(𝑡))   
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Exponential survival model 

Survival function: 𝑆(𝑡) = exp(−𝜆𝑡) 

where 𝜆 > 0 

The survival and hazard profiles of a range of exponential distributions are shown in Figure A2, where the exponential model always has a 

constant hazard rate. 

  

Figure A2: Survival and hazard plots for an exponential distribution 
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Weibull survival model  

Survival function: 𝑆(𝑡) = exp (− (
𝑡

𝜇
)

𝑎

) 

The survival and hazard profiles of a range of Weibull distributions are shown in Figure A3, where the Weibull model can have an increasing, 

decreasing or constant hazard rate. 

  

Figure A3: Survival and hazard plots for a Weibull distribution  
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Log-normal survival model 

Survival function: 𝑆(𝑡) = 1 − ∫
1

𝑥𝜎√2𝜋

𝑡

0
exp (−

𝑙𝑜𝑔(𝑥−𝜇)2

2𝜎2
) 𝑑𝑥  

where   𝜎 > 0 

The survival and hazard profiles of a range of log-normal distributions are shown in Figure A4 where the log-normal often has decreasing 

hazard rate long term with a high or low initial hazard rate. 

   

Figure A4: Survival and hazard plots for a log-normal distribution  
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Log-logistic survival model 

Survival function: 𝑆(𝑡) =
1

(1+(
𝑡

𝑏
)

𝑎
)
 

Where   𝑎 > 0, 𝑏 > 0 

The survival and hazard profiles of a range of log-logistic distributions are shown in Figure A5 where the log-logistic often has decreasing 

hazard rate long term with a high or low initial hazard rate, like the log-normal.  

 

 Figure A5: Survival and hazard plots for a log-logistic distribution  
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Gompertz survival model 

Survival function: 𝑆(𝑡) = exp (− (
𝑏

𝑎
) (exp(𝑎𝑡) − 1))  

Where  𝑏 > 0 

The survival and hazard profiles of a range of Gompertz distributions are shown in Figure A6 where the hazard rate can either increase sharply 

or decrease to zero over time.  

  

 Figure A6: Survival and hazard plots for a Gompertz distribution  
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Gamma survival model 

Survival function: 𝑆(𝑡) = 1 − ∫
exp(−

𝑥

𝜇
)

𝜇𝑎 Γ(𝑎)

𝑡

0
𝑑𝑥  

where 𝜇 > 0, 𝑎 > 0  and Γ(𝑎) is the gamma function  

The survival and hazard profiles of a range of gamma distributions are shown in Figure A7 where the hazard function can increase, decrease or 

remain constant over time. 

 

 Figure A7: Survival and hazard plots for a gamma distribution  
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Generalised gamma survival model 

     𝑆𝐺 (
exp(𝑄𝑤)

𝑄2  |
1

𝑄2 , 1)  if  𝑄 > 0 

Survival function: 𝑆(𝑡) = 1 − 𝑆𝐺 (
exp(𝑄𝑤)

𝑄2
 |

1

𝑄2
, 1)  if  𝑄 < 0 

     𝑆𝐿(𝑡 | 𝜇, 𝜎)  if  𝑄 = 0 

where 𝑤 = (log(𝑡) − 𝜇)/𝜎 , 𝜎 > 0; and 𝑆𝐺 (𝑡 |
1

𝑄2
, 1) is the survival function of a gamma distribution with shape 𝑎 = 1/𝑄2 and scale = 1; 

and  𝑆𝐿(𝑡 | 𝜇, 𝜎) is the survival function of a log-normal distribution 

The survival and hazard profiles of a range of generalised gamma distributions are shown in Figure A8 where the hazard rate can take a range 

of flexible forms. 
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 Figure A8: Survival and hazard plots for a generalised gamma distribution  
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Generalised F survival model 

Survival function: 𝑆(𝑡) = 1 − ∫
𝛿(

𝑠1
𝑠2

)
𝑠1

exp(𝑠1𝑤)

𝜎𝑥(1+
𝑠1 exp(𝑤)

𝑠2
)

𝑠1+𝑠2
𝐵(𝑠1,𝑠2)

𝑑𝑥  
𝑡

0
 

Where 𝑠1 = 2 (𝑄2 + 2𝑃 + 𝑄𝛿)−1, 𝑠2 = 2(𝑄2 + 2𝑃 − 𝑄𝛿)−1, 𝛿 = (𝑄2 + 2𝑃)
1

2 and  𝑤 = δ(log(𝑥) − 𝑚)/𝜎  

with  𝜎 > 0, 𝑃 > 0, and 𝐵 is the beta function. 

The survival and hazard profiles of a range of generalised F distributions are shown in Figure A9 where the hazard rate can take a range of 

flexible forms. 
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Figure A9: Survival and hazard plots for a generalised F distribution 
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Table A1: Summary of Survival Information Extracted for Paper 2: Systematic Review of Cost-Effectiveness Studies of Treatments for NSCLC 

Paper/Source Year STA How was survival modelled How was model 
selected 

Were other 
curves explored? 

Were 
parameters 
included in PSA? 

Araujo 2008 No Parametric model - Weibull Unclear Yes Unclear 

Carlson 2008 No No modelling, Equal PFS and OS 
was assumed 

NA NA NA 

Cromwell 2011 No No extrapolation. Area under 
Kaplan Meier Curve 

NA NA NA 

Goeree 2016 No Parametric models - 
proportional for OS 

Goodness of fit 
statistics 

No No 

Holmes 2004 No No extrapolation, Area under 
Kaplan Meier Curve 

NA NA NA 

Leighl 2002 No No extrapolation, Area under 
Kaplan Meier Curve 

NA NA NA 

Matter Walstra 2016 No Constant hazard rate estimated 
from median survival 

NA NA Yes 

Pignata 2017 No Parametric models - various Best fitting models 
chosen 

Yes Unclear 

Ramucirumab STA 2016 Yes Parametric models, adjusted for 
covariates for OS (proportional), 
separately for PFS 

Goodness of fit 
statistics, visual fit, 
plausibility 

Yes Unclear 

Pemetrexed STA 2006 Yes Constant hazard rate estimated 
from pooled data 

NA NA NA 

Nivolumab non 
squamous STA 

2017 Yes Parametric models were used, 
piecewise approach preferred 
by ERG 

Goodness of fit 
statistics, plausibility 

Yes Yes 
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Nivolumab squamous 
STA 

2017 Yes Splines and parametric models 
were used 

Goodness of fit 
statistics, visual fit, 
plausibility 

Yes Yes 

Aguiar 2018 No No extrapolation, Area under 
Kaplan Meier Curve 

NA No No 

Asukai 2010 No Parametric model - exponential Unclear No Yes 

Cromwell  2012 No No extrapolation. Area under 
Kaplan Meier Curve 

NA NA NA 

Greenhalgh 2015 No Piecewise and spline models 
used, alongside Area under KM 
curve 

Visual fit Yes Unclear 

Huang 2017 No Piecewise modelling was used Goodness of fit 
statistics, visual fit 

Yes Unclear 

Lewis 2010 No No modelling, Equal PFS and OS 
was assumed 

NA NA NA 

McLeod 2009 No Parametric model - exponential Unclear No Unclear 

Vergnenegre 2011 No No extrapolation, Area under 
Kaplan Meier Curve 

NA NA NA 

Nintedanib STA 2015 Yes Parametric models - various Goodness of fit 
statistics, plausibility, 
external data 

Yes Unclear 

Pembrolizumab STA 2017 Yes Piecewise modelling was used Goodness of fit 
statistics, visual fit, 
plausibility 

Yes Unclear 

Atezolizumab STA 2018 Yes Parametric models (piecewise 
models were considered) 

Goodness of fit 
statistics, visual fit 

Yes Unclear 

Bosch 2016 No Used median survival NA NA NA 

Giurgis 2018 No Used median survival NA NA NA 
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Shafrin 2018 No Parametric models proportional 
for OS, not PFS 

Unclear No Unclear 

Zhu 2018 No Parametric models - various Goodness of fit 
statistics 

No Unclear 

Gao 2019 No Parametric models - various Goodness of fit 
statistics, visual fit 

Yes Unclear 

Merino 2019 No Used median survival NA NA NA 

Ondhia 2019 No Parametric mixture cure models Goodness of fit 
statistics 

Yes Unclear 
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Table A2: Comparing model averaging and model selection methods after plausibility to selecting the candidate models each time. 

 

Drug/ Trial/ 
Outcome/ 
Source 
distribution 

Measure Results 

  Bayesian 
Model 
Averaging 

Mean 
average of all 
models 

Single Model Selection Parametric Model (including implausible 
models) 

  Using BIC to 
estimate Bayes 
Factors 

 AIC BIC Log-
likelihood 

Exponential Weibull Generalised 

gamma 

Dacomitinib/ 

ARCHER 1050/ 

OS/ Exponential 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

51.32 [+0.48, +1%] 
(44.45, 58.42) 
51.24 [+0.40, +1%] 
17.78  
0.04  
4.19  
77% 

52.25 [+1.41, +3%] 
(47.02, 58.54) 
51.94 [+1.10, +2%] 
14.58  
0.04  
3.55  
83% 

51.72 [+0.87, +2%] 
(42.10, 61.46) 
51.63 [+0.78, +2%] 
32.96  
0.06  
5.67  
61% 

51.04 [+0.20, +0%] 
(43.55, 59.27) 
50.91 [+0.07, +0%] 
22.40  
0.05  
4.73  
71% 

52.52 [+1.68, +3%] 
(39.69, 62.66) 
53.78 [+2.94, +6%] 
59.30  
0.08  
7.52  
34% 

51.03 [+0.18, +0%] 
(43.79, 59.09) 
50.84 [-0.00, -0%] 
21.93  
0.05  
4.68  
72.5% 

50.95 [+0.11, +0%] 
(41.79, 61.61) 
50.46 [-0.38, -1%] 
37.14  
0.06  
6.09  
59.4% 

51.33 [+0.48, +1%] 
(35.28, 69.81) 
50.96 [+0.12, +0%] 
115.16 
0.11  
10.72 
31.2% 

Dacomitinib/ 

ARCHER 1050/ 

OS/ Weibull 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

40.39 [+1.06, +3%] 
(34.71, 45.38) 
40.51 [+1.18, +3%] 
10.87  
0.03  
3.12  
76% 

40.16 [+0.83, +2%] 
(36.85, 44.18) 
39.95 [+0.62, +2%] 
5.50  
0.02  
2.19  
90% 

40.41 [+1.08, +3%] 
(32.58, 47.91) 
40.60 [+1.26, +3%] 
22.61  
0.05  
4.63  
55% 

40.45 [+1.11, +3%] 
(32.66, 47.95) 
40.61 [+1.28, +3%] 
22.60  
0.05  
4.62  
55% 

40.64 [+1.31, +3%] 
(32.17, 48.30) 
41.02 [+1.69, +4%] 
28.48  
0.05  
5.17  
44% 

 52.27 [+12.93, +33%] 
(45.39, 59.73) 
52.05 [+12.72, +32%] 
186.18 
0.04  
4.35 
1.2% 

39.59 [+0.25, +1%] 
(34.40, 46.02) 
39.19 [-0.14, -0%] 
13.09  
0.04  
3.61  
74.1% 

40.90 [+1.57, +4%] 
(31.88, 54.52) 
39.61 [+0.28, +1%] 
52.26  
0.07  
7.06 
45.3% 

Dacomitinib/ 

ARCHER 1050/ 

OS/ Generalised 

gamma 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

37.67 [+1.94, +5%] 
(32.53, 42.17) 
37.85 [+2.12, +6%] 
12.18  
0.03  
2.90  
66% 

37.65 [+1.93, +5%] 
(34.32, 41.17) 
37.54 [+1.82, +5%] 
8.01  
0.02  
2.07  
77% 

37.32 [+1.60, +4%] 
(31.30, 43.56) 
37.41 [+1.68, +5%] 
17.57  
0.04  
3.87  
56% 

37.36 [+1.63, +5%] 
(31.37, 43.57) 
37.44 [+1.71, +5%] 
17.49  
0.04  
3.85  
57% 

36.98 [+1.26, +4%] 
(31.04, 43.81) 
36.49 [+0.76, +2%] 
18.15  
0.04  
4.07  
57% 

52.54 [+16.81, +47%] 
(45.69, 60.04) 
52.36 [+16.64, +47%] 
301.64 
0.04  
4.36 
0.0% 

40.00 [+4.28, +12%] 
(34.70, 46.72) 
39.54 [+3.81, +11%] 
32.08  
0.04  
3.71  
46.7% 

37.62 [+1.90, +5%] 
(30.77, 49.81) 
36.14 [+0.41, +1%] 
39.59  
0.06  
6.00 
55.1% 

Pembrolizumab
/ KEYNOTE 045/ 
PFS/ 
Exponential 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

5.62 [+0.02, +0%] 
(5.01, 6.29) 
5.60 [+0.00, +0%] 
0.15  
0.00  
0.39  
85% 

5.66 [+0.07, +1%] 
(5.07, 6.37) 
5.64 [+0.04, +1%] 
0.16  
0.00  
0.39  
85% 

5.63 [+0.03, +0%] 
(4.98, 6.40) 
5.60 [-0.00, -0%] 
0.18  
0.00  
0.42  
82% 

5.61 [+0.01, +0%] 
(5.00, 6.29) 
5.59 [-0.01, -0%] 
0.15  
0.00  
0.39  
85% 

5.80 [+0.20, +4%] 
(5.03, 6.73) 
5.76 [+0.16, +3%] 
0.30  
0.01  
0.51  
70% 

5.61 [+0.01, +0%] 
(5.01, 6.28) 
5.60 [-0.00, -0%] 
0.15  
0.00  
0.39 
85.6% 

5.62 [+0.02, +0%] 
(4.99, 6.33) 
5.59 [-0.01, -0%] 
0.17  
0.00  
0.41 
83.6% 

5.66 [+0.06, +1%] 
(4.97, 6.54) 
5.61 [+0.01, +0%] 
0.24  
0.00  
0.48 
78.4% 
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Drug/ Trial/ 
Outcome/ 
Source 
distribution 

Measure Results 

  Bayesian 
Model 
Averaging 

Mean 
average of all 
models 

Single Model Selection Parametric Model (including implausible 
models) 

  Using BIC to 
estimate Bayes 
Factors 

 AIC BIC Log-
likelihood 

Exponential Weibull Generalised 

gamma 

Pembrolizumab
/ KEYNOTE 045/ 
PFS/ Weibull 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

5.76 [-0.08, -1%] 
(5.04, 6.59) 
5.73 [-0.11, -2%] 
0.23  
0.00  
0.47  
77% 

5.82 [-0.02, -0%] 
(5.13, 6.55) 
5.81 [-0.03, -1%] 
0.19  
0.00  
0.43  
82% 

5.85 [+0.01, +0%] 
(5.05, 6.81) 
5.81 [-0.03, -1%] 
0.28  
0.01  
0.53  
73% 

5.74 [-0.10, -2%] 
(4.98, 6.65) 
5.70 [-0.14, -2%] 
0.26  
0.00  
0.50  
74% 

6.05 [+0.21, +4%] 
(5.12, 7.07) 
6.02 [+0.17, +3%] 
0.39  
0.01  
0.59  
64% 

5.51 [-0.33, -6%] 
(4.87, 6.18) 
5.49 [-0.35, -6%] 
0.27  
0.00  
0.40 
71.0% 

5.87 [+0.02, +0%] 
(5.09, 6.75) 
5.84 [-0.01, -0%] 
0.26  
0.01  
0.51 
76.1% 

5.93 [+0.09, +1%] 
(5.03, 7.10) 
5.85 [+0.00, +0%] 
0.43  
0.01  
0.65 
68.1% 

Pembrolizumab
/ KEYNOTE 045/ 
PFS/ 
Generalised 
gamma 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

11.64 [-0.36, -3%] 
(9.22, 14.54) 
11.52 [-0.48, -4%] 
2.97  
0.02  
1.69  
40% 

11.83 [-0.16, -1%] 
(9.31, 14.54) 
11.79 [-0.20, -2%] 
2.65  
0.02  
1.62  
45% 

11.65 [-0.35, -3%] 
(9.20, 14.57) 
11.54 [-0.46, -4%] 
3.05  
0.02  
1.71  
39% 

11.61 [-0.39, -3%] 
(9.19, 14.54) 
11.47 [-0.53, -4%] 
3.05  
0.02  
1.70  
39% 

11.95 [-0.05, -0%] 
(9.24, 14.67) 
11.96 [-0.04, -0%] 
3.06  
0.02  
1.75  
39% 

5.16 [-6.84, -57%] 
(4.52, 5.84) 
5.14 [-6.86, -57%] 
46.95  
0.00  
0.40 
0.0% 

5.22 [-6.78, -56%] 
(4.53, 6.00) 
5.19 [-6.80, -57%] 
46.14  
0.00  
0.45 
0.0% 

12.58 [+0.58, +5%] 
(7.67, 19.23) 
12.05 [+0.05, +0%] 
13.38  
0.04  
3.61 
26.3% 

Pertuzumab/ 
APHINITY/ IDFS/ 
Exponential 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

379.33 [+2.49, +1%] 
(354.47, 404.69) 
379.20 [+2.36, +1%] 
249.41 
0.16  
15.60  
98% 

390.21 [+13.36, +4%] 
(358.88, 424.63) 
389.42 [+12.58, +3%] 
585.25 
0.20  
20.17  
88% 

385.92 [+9.08, +2%] 
(342.90, 458.14) 
380.05 [+3.21, +1%] 
1203.52 
0.33  
33.48  
80% 

377.32 [+0.48, +0%] 
(353.33, 401.88) 
377.19 [+0.35, +0%] 
241.63 
0.16  
15.54  
98% 

391.39 [+14.55, +4%] 
(298.19, 465.01) 
401.66 [+24.82, +7%] 
3186.65 
0.55  
54.55  
33% 

377.08 [+0.24, +0%] 
(353.71, 401.26) 
377.13 [+0.29, +0%] 
207.85 
0.14  
14.42 
99.1% 

373.33 [-3.51, -1%] 
(311.12, 429.13) 
375.14 [-1.70, -0%] 
1299.50 
0.36  
35.88 
70.7% 

377.52 [+0.68, +0%] 
(249.62, 489.12) 
385.11 [+8.27, +2%] 
7044.03 
0.87  
83.93 
28.8% 

Pertuzumab/ 
APHINITY/ IDFS/ 
Weibull 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

371.07 [+32.41, +10%] 
(328.01, 400.67) 
373.89 [+35.24, +10%] 
1520.06 
0.22  
21.67  
46% 

357.67 [+19.02, +6%] 
(325.18, 395.89) 
355.85 [+17.19, +5%] 
830.87 
0.22  
21.66  
74% 

361.77 [+23.12, +7%] 
(286.66, 403.79) 
371.99 [+33.33, +10%] 
1786.22 
0.35  
35.38  
41% 

378.24 [+39.58, +12%] 
(348.56, 406.75) 
380.61 [+41.95, +12%] 
2095.15 
0.23  
22.99  
28% 

349.91 [+11.25, +3%] 
(266.25, 417.13) 
359.83 [+21.17, +6%] 
2677.42 
0.51  
50.51  
32% 

381.15 [+42.49, +13%] 
(356.83, 405.38) 
381.00 [+42.35, +13%] 
2021.77 
0.15  
14.70 
28.1% 

336.85 [-1.81, -1%] 
(270.45, 400.14) 
338.09 [-0.57, -0%] 
1562.08 
0.39  
39.48 
60.3% 

340.62 [+1.97, +1%] 
(191.83, 476.34) 
348.60 [+9.94, +3%] 
9878.10 
1.04  
99.37 
19.9% 

Pertuzumab/ 
APHINITY/ IDFS/ 
Generalised 
gamma 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

370.36 [+36.83, +11%] 
(323.67, 400.54) 
373.88 [+40.35, +12%] 
1861.86 
0.22  
22.49  
35% 

355.84 [+22.31, +7%] 
(321.09, 392.76) 
354.58 [+21.05, +6%] 
974.82 
0.22  
21.84  
69% 

360.34 [+26.81, +8%] 
(285.67, 402.90) 
371.40 [+37.87, +11%] 
2008.97 
0.36  
35.92  
34% 

377.55 [+44.01, +13%] 
(346.54, 405.39) 
380.34 [+46.81, +14%] 
2506.15 
0.24  
23.85  
17% 

346.36 [+12.83, +4%] 
(262.95, 411.68) 
357.66 [+24.13, +7%] 
2672.00 
0.50  
50.08  
30% 

381.40 [+47.87, +14%] 
(357.92, 405.76) 
381.06 [+47.53, +14%] 
2504.79 
0.15  
14.59 

336.71 [+3.18, +1%] 
(269.31, 400.80) 
337.99 [+4.46, +1%] 
1595.29 
0.40  
39.82 

337.86 [+4.32, +1%] 
(185.86, 477.76) 
343.81 [+10.28, +3%] 
10242.31 
1.05  
101.12 
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Drug/ Trial/ 
Outcome/ 
Source 
distribution 

Measure Results 

  Bayesian 
Model 
Averaging 

Mean 
average of all 
models 

Single Model Selection Parametric Model (including implausible 
models) 

  Using BIC to 
estimate Bayes 
Factors 

 AIC BIC Log-
likelihood 

Exponential Weibull Generalised 

gamma 

15.9% 58.9% 19.7% 

Venetoclax/ 

MURANO/ OS/ 

Exponential 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

171.63 [+2.23, +1%] 
(148.60, 195.15) 
171.72 [+2.31, +1%] 
207.15 
0.14  
14.22  
76% 

175.04 [+5.63, +3%] 
(149.94, 199.66) 
175.19 [+5.78, +3%] 
270.34 
0.15  
15.45  
65% 

172.79 [+3.38, +2%] 
(143.26, 206.24) 
172.08 [+2.67, +2%] 
350.29 
0.18  
18.41  
65% 

170.12 [+0.71, +0%] 
(145.49, 194.56) 
169.78 [+0.37, +0%] 
222.36 
0.15  
14.90  
75% 

180.43 [+11.02, +7%] 
(133.61, 209.68) 
188.18 [+18.77, +11%] 
741.22 
0.25  
24.89  
28% 

170.04 [+0.63, +0%] 
(146.76, 193.83) 
169.59 [+0.18, +0%] 
202.54 
0.14  
14.22 

77.5% 

162.14 [-7.27, -4%] 
(107.63, 202.72) 
166.07 [-3.34, -2%] 
879.61 
0.29  
28.76 

46.6% 

174.89 [+5.48, +3%] 
(97.86, 216.69) 
184.42 [+15.01, +9%] 
1344.54 
0.39  
36.26 

26.3% 

Venetoclax/ 

MURANO/ OS/ 

Weibull 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

187.84 [-5.38, -3%] 
(162.23, 213.14) 
187.76 [-5.46, -3%] 
268.95 
0.15  
15.49  
75% 

192.64 [-0.58, -0%] 
(168.17, 212.42) 
193.80 [+0.58, +0%] 
178.98 
0.13  
13.37  
85% 

192.91 [-0.31, -0%] 
(156.98, 223.36) 
194.39 [+1.17, +1%] 
447.77 
0.21  
21.16  
55% 

181.90 [-11.32, -6%] 
(153.00, 220.18) 
178.21 [-15.01, -8%] 
546.31 
0.20  
20.45  
48% 

199.74 [+6.52, +3%] 
(159.19, 222.96) 
203.96 [+10.73, +6%] 
390.05 
0.19  
18.64  
61% 

170.46 [-22.76, -12%] 
(146.87, 193.85) 
170.86 [-22.36, -12%] 
722.87 
0.14  
14.32 
40.3% 

188.41 [-4.81, -2%] 
(153.92, 213.39) 
191.17 [-2.05, -1%] 
378.06 
0.19  
18.84 
75.4% 

191.52 [-1.70, -1%] 
(149.76, 220.05) 
195.68 [+2.46, +1%] 
583.31 
0.28  
24.09 
49.0% 

Venetoclax/ 

MURANO/ OS/ 

Generalised 

gamma 

Mean 
(5%, 95%) 
Median 
MSE 
MCSE 
EmpSE 
% within 10% 

187.64 [-2.63, -1%] 
(161.00, 213.27) 
187.73 [-2.53, -1%] 
258.79 
0.16  
15.87  
75% 

192.55 [+2.28, +1%] 
(166.72, 213.03) 
193.85 [+3.59, +2%] 
196.38 
0.14  
13.83  
81% 

192.32 [+2.06, +1%] 
(156.22, 223.56) 
194.31 [+4.04, +2%] 
461.87 
0.21  
21.39  
54% 

181.57 [-8.70, -5%] 
(152.44, 219.97) 
177.84 [-12.43, -7%] 
495.44 
0.20  
20.49  
53% 

199.65 [+9.39, +5%] 
(158.92, 223.46) 
203.82 [+13.55, +7%] 
449.67 
0.19  
19.02  
53% 

171.04 [-19.22, -10%] 
(147.51, 194.63) 
171.21 [-19.05, -10%] 
579.04 
0.14  
14.47 
49.6% 

188.41 [-1.85, -1%] 
(153.05, 213.66) 
191.29 [+1.02, +1%] 
377.25 
0.19  
19.34 
73.4% 

191.67 [+1.41, +1%] 
(148.58, 220.17) 
195.91 [+5.64, +3%] 
567.09 
0.28  
23.77 
45.7% 
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Types of Economic Model 

 

A simple common type of economic model is a Markov model. A visual 

representation of one is shown below in Figure A10. 

This model consists of three health states: “Alive and Healthy”, “Alive and 

Unhealthy” and “Dead”. 

The model will begin with a starting distribution of patients across the health states. 

Typically, everyone will start in the same health state, which in this case would be 

the “Alive and Healthy” box. Each arrow represents a transition probability that 

denotes the expected proportion of patients to move from one health state to 

another within a single cycle of the model. Patients can also remain where they are. 

A cycle length can be any period of time. Usually these transition probabilities are 

constant in a Markov model. Each health state is assigned an associated cost of care 

and a quality of life, which are then used to calculate total costs and QALYs for each 

treatment group and allow them to be compared. 

 

Figure A10: A visual representation of a Markov model 
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A partitioned survival model (PSM) is an alternative type of economic model, which 

is well suited to modelling diseases where the main health states can be reflected 

by time-to-event outcomes, such as PFS and OS. A PSM is shown below in Figure 

A11. The pink area under the red PFS curve represents the average time spent in 

the progression-free health state. The area above the blue OS line represents the 

average time spent in the death health state, whilst the light blue area in between 

the red and blue lines is the average time spent in the post-progression health 

state. The proportion in each health state can be estimated at any time and can be 

used to apply costs and quality of life values to estimate total costs and QALYs for 

each treatments allowing a comparison of their costs and benefits.  

 

 

Figure A11: A visual representation of a partitioned survival model 

 

 

 


