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Abstract

Here I present theoretical work that explores the mechanisms underlying, and epidemi-

ological consequences of, Major Histocompatibility Complex (MHC) genetic diversity.

MHC genes encode molecules which present peptides for recognition by T cells, and are

essential to the immune system of vertebrates. I explore three aspects of MHC genetic

diversity and evolution:

1. I created an epidemiological model that takes into account a host population’s MHC

genotype. I modelled the infectious disease dynamics of a multi strain pathogen

infecting that host population, in order to investigate how MHC allele frequencies

affect the pathogen climate. I investigated a case control study carried out in that

simulated population, in order to investigate the protectiveness of MHC variants. I

found that the apparent protection against infection a specific MHC allele confers to

a host is inversely proportional with the frequency of said allele in the population.

2. I created an individual based model that models the number of repeated MHC

genes on chromosomes within a diploid population (i.e. copy number variation,

or CNV). I simulated unequal crossing over recombination to generate repeated

copies of genes, and also allowed mutations to occur which varied the properties of

each gene. I tested different rules of fitness for MHC genotype and demonstrated

a variety of evolutionary outcomes in terms of CNV for the MHC. I found that if

the fitness of the host is equal to the mean of the possible fitness contributions of

their MHC genes, then the number of copies of MHC genes is inversely related to

the intensity of changing pathogen selection

3. I created an individual based model that allowed the promiscuity of MHC molecules

(i.e. their MHC peptide binding repertoire) to vary. I show how pathogen climates

may shape the pattern of MHC promiscuity present in a host population.



Chapter 1

Introduction

This thesis considers evolutionary and epidemiological questions relating to immune sys-

tem gene diversity, specifically Major Histocompatibility Complex (MHC) diversity. In

this introductory chapter, I provide a background of previous research about the MHC

from both experimental and theoretical backgrounds. In chapter 2, I investigate the dy-

namics of a multi strain pathogen infecting an immunogenetically diverse host population,

and show how these dynamics can cause difficulties in detecting the true impact of MHC

genes on infection. In chapter 3 I investigate why copy number variation (CNV) of the

MHC may have evolved differently for different vertebrate species. Chapter 4 concerns

why MHC molecules in some species have evolved to be very fastidious or promiscu-

ous. I explore these research questions using mathematical modelling and computational

simulations.

1.1 The Major Histocompatibility Complex

1.1.1 Background

MHC molecules are found on the surface of all nucleated cells in vertebrates. They play

a vital role in the adaptive immune system (Klein et al. [2007]). The main function of

the MHC molecule is to present peptides to T-cells to test for foreign peptides. MHC

molecules hold peptides by binding peptides to a part of the MHC molecule called a
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binding cleft. MHCs are divided into two classes the MHC class I and the MHC class II.

MHC class I molecules are expressed on all nucleated cells. MHC class II molecules are

expressed only on the surface of antigen-presenting cells (macrophages, dendritic cells,

and B cells) (Abbas et al. [2014]). MHC class I molecules are heterodimers that consist

of two polypeptide chains α and β-microglobulin. In figure 1.1a we see that the binding

cleft is formed from different parts of the α chain. MHC class II molecules are also

heterodimers and consist of two peptide chains an α and β chain. The MHC class II

binding cleft is formed from both the α and β chain.

𝛼1𝛼2

𝛼3 𝛽

Cell Membrane

Binding Cleft

𝛽 -microglobulin

(a)

𝛼1

Cell Membrane

Binding Cleft

𝛼2

𝛽1

𝛽2

(b)

Figure 1.1: Diagram showing the peptide chain layouts of MHC molecules. (a)

is of a MHC class I molecule and (b) is of a MHC class II molecule.

The shape of the binding cleft determines the shape of peptide an MHC molecule

can hold. This aspect is extremely important in the recognition of foreign peptides from

pathogens as the shape of binding cleft an individual has (which is determined by the

MHC alleles they have) might affect whether or not that individual can present peptides

from a particular pathogen.

The main function of MHC molecules is to present peptides to T-Cells. Class I MHC

molecules present peptides from inside the cell. These peptides are representations of what

is inside the cell. CD8+ T-cells express a T-cell receptor (TCR) which can recognise a

specific antigen bound by a class I MHC molecule. If the TCR binds strongly to the

antigen and the peptide held by the MHC class I molecule is then recognised as non
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self the CD8+ T-cells then destroys the cell presenting the non self peptide. The CD8+

T-cell destroys the infected cell by secreting cytotoxins which will eventually lead the

cell to apoptosis which is called programmed cell death. It then replicates multiple times

to produce more CD8+ T-cells to detect and destroy further infected cells around the

currently found infected cell. Once the infection has been dealt with, memory T cells

are produced that will recognise the peptide from the pathogen that has been previously

destroyed.

Class II MHC molecules present antigens that are derived from extracellular proteins.

As class II MHC present extracellular peptides they are mainly concerned with helping

to detect extracellular pathogens. For MHC class II molecules, it is CD4+ T-cells that

the MHC molecules present peptides to. If a CD4+ T-cell recognises the peptide from

an MHC class II molecule it will release cytokines which help to polarize the immune

response into the appropriate kind. For instance these cytokines could help a B cell

secrete antibodies or or macrophages to destroy ingested microbes.

A T-Cell recognises a peptide as non-self if its receptor binds strongly to the peptide.

The shape of the receptor determines whether or not it can bind to a particular molecular

motif. As there are many peptide shapes that are generated that are non self, T-Cells need

to cover a wide range of receptor shapes, which in turn means T-Cell receptors need to be

generated with a wide range of diversity. This is achieved through a process called somatic

recombination, and a single individual has the possibility to generate T cell receptors to

bind to theoretically any molecular shape. However these non self peptides need to be

displayed in order for T-Cells to even attempt to recognise them. As mentioned this is

the main function of MHC molecules and in particular it is an MHC molecules binding

cleft which determines if a peptide can be displayed or not. As an individual is limited in

what MHC genes they have, they are limited in the peptides that can be displayed, thus

the MHC acts as a bottleneck in terms of how effective our T-cell responses can be.

1.1.2 MHC diversity

Genes encoding MHC molecules are found within the MHC region, which in humans is

a 3Mbp stretch within chromosome 6. MHC genes are some of the most polymorphic

gene families known. For instance the MHC for humans, known as the Human Leukocyte
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Antigen (HLA) has three major class I genes: HLA-A, HLA-B and HLA-C. As of 2020

the recorded number of HLA-A alleles are 5266, HLA-B 6537 and HLA-C 5140 (Robinson

et al. [2020]).

Despite this large polymorphism of class I HLA alleles, it has been argued that the

functionality of these alleles may have large crossovers and the number of uniquely func-

tioning HLA class I types is much smaller. Studies looking into the binding properties

of MHC molecules that are encoded by HLA-A and HLA-B alleles have shown that for

the majority of tested alleles there are common shared peptide binding motifs. From

this they have defined 10 groups that HLA-A and HLA-B alleles can fall into (in terms of

their binding peptide repertoire) called supertypes (Sidney et al. [2008]) which are defined

around shared peptide motifs between the HLA alleles.

The MHC between different species all share the fact that it is generally one of the

most polymorphic gene regions on a species genome. However an aspect of the MHC that

may differ between species is the number of copies of a particular MHC gene and more

particularly how that number may vary. The number of copies of a gene and how this

number varies within a population is called “copy number variation” (CNV) (Freeman

et al. [2006]).

CNV of the MHC is different between species. More copies of an MHC gene could

potentially mean more pathogen peptides that could be presented to the immune system.

However if we see varying numbers of copies of MHC genes it could suggest there is a

cost to possessing too many genes. The selective forces that govern how many copies of

an MHC gene that are present in a genome are not very well understood. If we look at

the HLA-A gene, all humans have only one copy of this gene therefore there is no CNV

for HLA-A. The equivalent gene in Indian Rhesus macaques (mamu-A) has 4 copies and

the number of copies of the mamu-A gene varies between individuals of that population

(Otting et al. [2007]). Cynomolgus macaque HLA-A and HLA-B gene the mafa-A and

mafa-B genes also have CNV (Otting et al. [2007], Wiseman et al. [2013]) where there

are up to 5 copies of mafa-A genes. If we look at HLA-B only one copy exists among

humans however over 18 functional Mamu-B-like genes exist (Daza-Vamenta et al. [2004]).

Comparing the configurations of mamu-A with cynomolgus macaque mafa-A Otting et al.

[2007] shows that Mamu-A haplotypes or gene copy structures pre date speciation of the
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two macaque species (the rhesus macaque, Macaca mulatta and the cynomolgus macaque

Macaca fascicularis). This suggests haplotypes containing variable numbers of Mamu-A

or Mafa-A have been around for a long time and potentially are evolutionarily stable.

MHC alleles can vary in their promiscuity in terms of their peptide binding repertoire.

What this means is that some MHC alleles encode MHC molecules that are capable of

binding to more varied peptide shapes than others. For example the most promiscuous

HLA alleles are ones that belong to the HLA-A2 supertype (Kaufman [2020]), these

molecules can accommodate two or three different amino acids in each pocket of its

binding cleft (Madden et al. [1993], Chen et al. [2012]). In contrast HLA-B*57:01 which

is considered fastidious for humans, has a pocket requiring a rare amino acid tryptophan

(Illing et al. [2012]). A nice example of predicted binding repertoires and how they

vary is shown in figure 1A of Paul et al. [2013] and in general Paul et al. [2013] shows

evidence of HLA alleles varying in binding peptide repertoire. For chickens one of their

most promiscuous MHC alleles is BF2*02:01 (Chappell et al. [2015]) which has binding

cleft pockets that can hold six different amino acids. BF2*04:01 is a highly fastidious

chicken MHC allele which requires binding of rare amino acids in each of three pockets

(Wallny et al. [2006], Zhang et al. [2012]). Chickens compared to humans have the more

extreme alleles on the spectrum of fastidious to promiscuous MHC alleles. MHC molecule

promiscuity has had very few studies in depth in other species (Kaufman [2020]).

For humans binding peptide repertoire is not necessarily related to the defined su-

pertype group. As mentioned earlier some of the most promiscuous HLA alleles belong

to the A2 supergroup (Kaufman [2020]). Kaufman [2020] points out that it is only this

supertype group (A2) that correlates to the promiscuity of HLA alleles and in fact the

peptide binding range of HLA alleles is not necessarily related to the supertype group.

1.1.3 Pathogen selection on the MHC

Given the nature of MHC genes’ role in adaptive immunity it is believed that natural

selection from pathogens has impacted their evolution. (Spurgin and Richardson [2010],

Jeffery and Bangham [2000], Hedrick [2002], Pierini and Lenz [2018], Prugnolle et al.

[2005]).

It has been shown for a wide range of infectious diseases that HLA genotype can
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influence disease outcome (Hill et al. [1991], Tian et al. [2017], Dunstan et al. [2014],

McLaren et al. [2015], Sveinbjornsson et al. [2016], Thursz et al. [1995], Oliveira-Cortez

et al. [2016], Carrington and O’Brien [2003]), more details in section 2.1. However, even

with the numerous works on finding associations between HLA alleles and pathogens it

has classically been very difficult to pin down the exact roles of different HLA types,

with associations being very weak or even contradictory between case control studies on

different populations.

While MHC allele associations with infectious disease outcomes are suggestive of

pathogen involvement in MHC evolution, direct evidence for pathogen selection acting

on the MHC is hard to come by. When discussing the potential types of selection on the

MHC generally people are concerned with the type of selection that has maintained the

high level of MHC polymorphism. The difficulties of finding whether or not pathogen me-

diated selection is the cause for maintaining MHC polymorphism is due to disentangling

the effects of potentially other selective forces (e.g mating selection).

Balancing selection, meaning selective processes which maintain multiple alleles, seems

to be acting on the MHC over purifying selection given the fact that the MHC is very poly-

morphic. Not only is it polymorphic but frequencies of individuals who are homozygous

are lower than expected from under neutrality theory (Hedrick and Thomson [1983]).

Further research on MHC diversity has given evidence of balancing selection (Aguilar

et al. [2004], Hawley and Fleischer [2012]). Hawley and Fleischer [2012] found sequence

and diversity based signatures of pathogen mediated balancing selection on a population

of house finches exposed to an epidemic of Mycoplasmal Conjunctivitis which were not

found in unexposed populations of house finches. Diversity studies have also shown that

balancing selection seems to only occur on the allelic level and not on the level of MHC

haplotypes (Alter et al. [2017]). Evidence of balancing selection does not uncover the

actual mechanisms driving diversity, as balancing selection itself is a broad term and can

be reduced to more fundamental mechanisms. Three main mechanisms could be main-

taining the allelic diversity of (and hence balancing selection on) MHC loci: Heterozygote

advantage, negative frequency dependent fitness and fluctuating selection (Spurgin and

Richardson [2010]). The vast majority of theoretical work on MHC evolution is around

the question of which of these mechanisms (or combinations of these mechanisms) is most
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important, as I discuss in section 1.1.5.

The heterozygote advantage proposes that an individual who has two different MHC

alleles at a single locus will be protected from more pathogens than an individual who is

homozygous (has two copies of the same MHC allele at that locus), since more peptide

shapes can be presented by the two different MHC molecules. It follows that individuals

who are heterozygous would on average have an increase in fitness compared to homozy-

gous individuals. If heterozygous individuals are surviving longer then there will be more

MHC alleles within a population due to this. The heterozygote advantage can be referred

as overdominant selection which means that the phenotype of a heterzygote differs to

that of homozygotes. Doherty and Zinkernagel [1975] used in vivo and in vitro experi-

ments on mice to showcase that immune responsiveness to lymphocytic choriomeningitis

is enhanced with heterozygous individuals at H-2 genes (the mouse version of MHCs).

However this specific experimental system does not show heterozygote advantage as in-

creased immune responses to lymphocytic choriomeningitis actually could be lethal to the

mice. Hughes and Nei [1988] analysed the pattern of nucleotide substitutions between

polymorphic alleles. They find that nonsynonymous substitutions are far more frequent

than synonymous substitutions in the binding cleft region of MHC alleles. However the

opposite is true outside of this binding cleft region. Using these results and relying on a

theoretical prediction from Maruyama and Nei [1981] (that in the presence of overdom-

inant selection the rate of gene substitution should be more than that of neutral alleles)

they reject other mechanisms for causing polymorphism and suggest overdominant selec-

tion, specifically heterozygote advantage to be the main cause for MHC polymorphism.

However heterozygote disadvantage has been shown for mice, Ilmonen et al. [2007] in-

fected mice with different strains of Salmonella. They find that resistance is recessive and

that females infected and who were heterozygous produced less pups than homozygous

females.

Frequency dependent selection is the idea that a pathogen may evolve to avoid the ma-

jority MHC genotype binding cleft peptide repertoire, whilst rarer MHC molecules may

still be able to display peptides from an adapted pathogen climate (Slade and McCallum

[1992]). Frequency dependent selection thus implies the existence of host-pathogen co-

evolution, since it would not occur if the pathogen were not adapting to the host. Lange-

7



fors et al. [2001] find associations between MHC alleles and resistance/susceptibility to

furunculosis for Atlantic Salmon. They do not find any association between being het-

erozygous and being resistant/susceptible to the disease hence they suggest their results

indicate that frequency dependence has maintained polymorphism for the MHC in At-

lantic Salmon. Frequency dependent selection has been tackled theoretically numerous

times and is discussed later in section 1.1.5).

Fluctuating selection in terms of pathogens is the idea that pathogen spatial and tem-

poral climates may change (fluctuate), which may occur even in the absence of pathogens

adapting to their hosts, causing the selection on MHC’s to fluctuate in different spaces/ or

time (Spurgin and Richardson [2010]). With multiple pathogens fluctuating in presence

or not causing fluctuating selection on the MHC could maintain diversity of the MHC.

Hedrick [2002] creates a model that allows the number of pathogens present in a popu-

lation to vary temporally. They show this fluctuation of the number of pathogens could

maintain diversity and that intrinsic heterozygote advantage is unnecessary. Hedrick

[2002] also points out in the model that when multiple pathogens were present in a given

generation that heterozygotes would have a higher fitness than homozygotes, without this

needing to be a specific assumption of the model.

1.1.4 Mate choice and the MHC

An alternative hypothesis to pathogen selection is that mate choice has driven MHC

diversity. The earliest evidence of such selection was found by Yamazaki et al. [1976].

Yamazaki et al. [1976] tested male mice mating choices when presented with two females

of differing H-2 genotypes (Mice MHC). They found that statistically significantly more

males chose to mate with female mice who have a differing H-2 type. Mating choices

like this would lead to larger amounts of heterozygous genotypes of the H-2 gene. Later

indirect evidence of MHC dependent sexual selection for house mice was found (Potts

et al. [1991]). Potts et al. [1991] found significantly fewer MHC homozygous offspring

than would be expected from random mating and no evidence of for abortional selection

or nonrandom fertilisation.

Hughes and Hughes [1995] suggests that the above results could come from mate

choices avoiding inbreeding and that experimental studies would need to be done in
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order to account for the relatedness of mice. Direct experimental evidence of MHC-

disassortative mating preferences have been mixed. Experimental evidence for MHC-

dependent sexual selection has been found for both male labarotory mice and wild-derived

female mice (Beauchamp et al. [1988], Yamazaki et al. [1988], Eklund [1997]). Other

studies have found no evidence for MHC sexual selection (Eklund et al. [1991], Beauchamp

et al. [1988], Manning et al. [1992]). More detailed reviews of MHC-sexual selection

evidence exist (Penn [2002], Penn and Potts [1999]).

More recent work Schubert et al. [2021] review the role of the MHC in sexual selection

such as the affect the MHC has on odour. Huang et al. [2021] use Monte Carlo simulations

to investigate MHC non random mating along with diplotyped sheep population. Huang

et al. [2021] find evidence of sexual selection against certain haplotypes of the MHC,

but offer other suggestions for why this might be occurring for instance the avoidance of

inbreeding.

The vast majority of MHC sexual selection studies have been on mice. Some studies

found evidence for humans that MHC-disassortative odour and mating preferences, how-

ever evidence is mixed. MHC disassortative odour preferences were found among Swiss

students (Wedekind et al. [1995], Wedekind and Füri [1997]). MHC associated marriage

preferences were found in Hutterites in isolated populations of North America (Ober

et al. [1997]). However other studies found no evidence for MHC associated marriage

preferences in Amerindians and Japanese couples (Hedrick and Black [1997], Ihara et al.

[2000]).

1.1.5 Theoretical models for MHC Polymorphism

The vast majority of theoretical work has been trying to disentangle the relative effects of

different possible mechanisms which could maintain MHC polymorphism. Early work by

Hughes and Nei [1988] used theoretical models from Maruyama and Nei [1981] which is a

stochastic differential equation model applied to population genetics. While Maruyama

and Nei [1981] is not directly applied to the MHC it extremely relevant. They explore

how overdominant genes differ from neutral genes in terms of genetic polymorphism and

heterozygosity. They show that overdominant selection is a strong mechanism for main-

taining polymorphism.
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Takahata and Nei [1990] is another early example of theoretical work applied directly

to the MHC. They use an individual based model of a diploid population to find mech-

anisms to explain long-term persistence of MHC alleles using various forms of selection.

They test neutral mutation, overdominant selection and frequency dependent selection.

They showcase that both over-dominant selection and frequency dependent selection could

maintain high levels of polymorphism, however they doubt that a rare allele advantage

should exist in reality and suggest overdominant selection to be the more realistic mecha-

nism, although they admit that experimental data would needed to be used to show this.

Takahata and Nei [1990] reasoning for disbelieving in rare allele advantage for an MHC

allele is very subjective and is based on a argument that an allele that becomes rarer

after being dominant in a population should not gain advantage again due to pathogens

having already adapted to it.

De Boer et al. [2004] create another individual based model to test the overdomi-

nant/heterozygote advantage, however they differ from Takahata and Nei [1990] due to

the fact that fitness of individuals depends on the MHC alleles they have and not just

only on whether they are heterozygous. Takahata and Nei [1990] gave all individuals who

were homozygous the same fitness and all individuals who were heterozygous the same

fitness. De Boer et al. [2004] shows here that if each allele is given individual values of

fitness, that the heterozygote advantage can only maintain high levels of polymorphism if

the fitness values of the MHC alleles are of extremely similar value, which of course was

not a problem in Takahata and Nei [1990].

Some theoretical works also incorporate pathogen genetics into their models such

as Stoffels and Spencer [2008]. They define MHC alleles in a population by the set of

pathogens that an MHC molecule can recognise. Stoffels and Spencer [2008] vary the

amount of overlap MHC alleles have in their recognition of pathogens. They also define

an advantage an individual can have if both their MHC alleles can recognise a pathogen,

which they call ”Intersection advantage”. They found that the more overlapping MHC

molecules had in terms of pathogen recognition the more polymorphic their simulated

population was. They also show that increasing intersection advantage reduced polymor-

phism within their model and concluded that if intersection advantage at the MHC is

important for an individual’s fitness then heterozygote advantage may fail to explain the
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high levels of polymorphism.

Siljestam and Rueffler [2019] produces a model that does not give a direct fitness to

alleles or hosts and simulates pathogens to give hosts inherent fitness. Siljestam and

Rueffler [2019] produced a model where each allele is given a number of attributes which

is a number between 0 and 1. These attributes are matched by attributes that a pathogen

also has. The closer an allele’s attributes are to a pathogen’s the more chance that host

has of surviving and passing on its genes. With a static pathogen climate they show a host

population evolves to have and maintain high levels of alleles. These systems self-organise

into generating lots of alleles that specialise around the multiple pathogens within the

system.

Table 1.1 summarises key theoretical models of MHC polymorphism. The majority

of these use individual based models and test the heterozygote advantage. The majority

do not actually include any type of co evolving system (both host and pathogen climate

changing). The conclusion of these works all depend on the assumptions made in the

model and no clear consensus is reached as time has moved on.
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Study Type of

model

Heterozygote

advantage

Negative

frequency

dependence

Fluctuating

selection

Coevolution Conclusion

Hughes and Nei [1988]

Maruyama and Nei [1981]

stochastic

differential

equation

yes no no no heterozygote

advantage

Takahata and Nei [1990] individual

based

yes yes no no heterozygote

advantage

Hedrick [2002] stochastic

model

yes no yes no fluctuating

selection

De Boer et al. [2004] individual

based

yes no no no not

heterozygote

advantage

Borghans et al. [2004] individual

based

yes yes no yes negative

frequency

dependence

Stoffels and Spencer [2008] individual

based

yes no no no not

heterozygote

advantage

Siljestam and Rueffler [2019] individual

based

yes no no no heterozygote

advantage

Table 1.1: Table that categorises literature that theoretically explores mecha-

nisms to explain MHC allelic polymorphism. Here I list descriptions of the headers

in the table. Study, is a reference to the work of interest. Type of model, refers to the

mathematical tool or modelling technique used in the theoretical work. Heterozygote

advantage, refers to whether or not the work tested the effects of the heterozygote advan-

tage. Negative frequency dependence, refers to whether or not the work tested the effects

of negative frequency dependence. Fluctuating selection, refers to whether or not the

work tested the effects of fluctuating selection. Coevolution, refers to whether or not the

work included not only a host population evolving but also a pathogen climate or varying

selection that changed according to the populations genetic landscape. Conclusion, refers

to the main mechanism the work suggests causes MHC allelic polymorphism.
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1.1.6 Other works related to the MHC

The majority of theoretical work about the MHC investigates the main mechanisms main-

taining the high polymorphism of individual MHC loci, however there do exist other the-

oretical works that try to tackle other questions about the MHC or even the MHC’s effect

on pathogen epidemiology. Gupta and Hill [1995] was one of the first theoretical works

that used an epidemiological model and applied it to questions about the HLA. Gupta

and Hill [1995] looks at the possible effect HLA type has on the epidemiology of infection

in terms of maintenance of pathogen diversity. Gupta and Hill [1995] use an Ordinary

differential equation (ODE) model which is commonly used in epidemiology. This work

is a multi host and multiple pathogen strain model where the hosts are defined around

the HLA genotype. They show that under certain conditions host heterogeneity in terms

of resistance can maintain pathogen virulence.

Sambaturu et al. [2018] is another work that theoretically explores the effects of HLA

genotype on the epidemics of a pathogen. It explored the effect HLA genotype has on

the R0 of H1N1 influenza for different populations. Sambaturu et al. [2018] classifies

HLA type on the number of influenza epitopes an MHC molecule that HLA type encodes

are predicted to present (Mukherjee and Chandra [2014]). They assume that the more

epitopes an HLA type can present the more reduced a host’s susceptibility to H1N1 in-

fluenza. They show that populations with varying susceptibilities to a strain of H1N1

influenza can actually reduce the size of an epidemic from said strain. Gupta and Hill

[1995] and Sambaturu et al. [2018] are rare examples of theoretical works that model

host HLA diversity to see its effect on pathogen dynamics in classic epidemiological mod-

els. Including epidemiology into theoretical works about the MHC is worth doing as

if we believe pathogens have co evolved with the MHC then pathogen dynamics are a

very important detail needed to be considered. Understanding how a population’s MHC

profile affects disease dynamics could potentially increase our effectiveness at protecting

populations from pathogens.

Penman et al. [2013] also uses an epidemiological ODE model to tackle questions

about the MHC but uses these tools to focus on evolutionary questions about the MHC.

Penman et al. [2013] defines hosts by HLA genotype over two loci, where HLA genotype

affects the susceptibility to multi-strain pathogens. Penman et al. [2013] shows that
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pathogen mediated selection can cause HLA alleles at different loci to form associations

that are non-overlapping and are nonrandom. This could potentially contribute to the

maintenance of long range haplotypic associations between MHC loci.

Lobkovsky et al. [2019] explores mechanisms for HLA haplotype diversity. They fit

multiple models to haplotype frequency data sets. Each model varies how they assign

fitness to their host depending on their HLA genotype. They use additive fitness, mul-

tiplicative fitness, overdominance and hybrid fitness rules. Lobkovsky et al. [2019] fits

models using each of these fitness rules to haplotype frequency datasets and concludes

that multiplicative fitness appeared to be the fitness rule that best accounts for MHC

haplotype patterns. They show that when using frequency dependence selection the

improvement in model fit over models that did not include it were significant. More

surprisingly is that the frequency dependence selection on the haplotypic level was found

to be positive in contrast to the negative frequency dependent selection being found on

individual MHC loci. Both Penman et al. [2013] and Lobkovsky et al. [2019] explore the

effects of more than one HLA loci interacting, albeit in very different ways. Both studies

showed that introducing multiple loci into a model gave insight into mechanisms (such as

linkage disequilibrium Penman et al. [2013]) that would have otherwise been very difficult

to predict if only considering one loci at a time.

1.2 Specific topics explored in this thesis

1.2.1 The effectiveness of case control studies to detect MHC -

pathogen associations

As mentioned the peptide shape an MHC can hold depends on the binding cleft of the

MHC molecule. The binding cleft shape of an MHC molecule depends on the MHC allele

that encodes the MHC molecule. This has led to case control studies trying to find which

MHC alleles or haplotypes confer protection to which pathogens. In large this has been

done for humans i.e for HLA genes. Hill et al. [1991] is the earliest work in finding such

associations between a HLA-B type and malaria. Hill et al. [1991] finds that HLA-Bw53

was associated with reduced chances of developing severe malaria in The Gambia. Class II

haplotype DRB1*1302-DQB1*0501 was likewise found to offer protection against severe

14



malaria.

I mentioned previously that despite numerous works into finding HLA allele associa-

tion with infectious disease outcome, associations tend to be weak or even inconsistent.

Explanations as to why this might be happening have been theorised. One explanation

could be for multi strain pathogens HLA alleles might be associated with specific strains

rather than the pathogen in general. Toyo-Oka et al. [2017], Salie et al. [2013] show HLA

associations being strain specific for the case of Tuberculosis (TB). It is this phenomenon

I explore theoretically in chapter 2.

The theory of how to obtain accurate results in a case control study of the impact

of host genotype on a pathogen has not been widely explored. One of the most relevant

theoretical works is MacPherson et al. [2018], this study is not specific to the MHC but

does tackle genome wide association studies with pathogen infection. They use what

they call a “phenotypic-difference model” and show that if you do not take into account

a pathogen’s genetics, important host loci may be ignored. Although not directly related

to the HLA, comparisons are obvious with what we see in contradictory results in HLA

association studies with pathogens.

To my knowledge it has not been theoretically explained why, if a HLA molecule does

confer protection or susceptibility to pathogen infection, it might not be possible to detect

such associations in a case control study. In chapter 2 of this thesis I explore the case of

a multi-strain pathogen for which the presence of a specific HLA molecule in the host is

necessary to develop an effective memory immune response against a specific pathogen

strain, and how well case-control studies can detect the importance of that particular

HLA type.

1.2.2 The evolution of MHC copy number variation (CNV)

I previously noted that CNV of the MHC varies between species and some CNV of the

MHC may be evolutionary stable due to evidence of CNV being present pre speciation of

two macaque species (Otting et al. [2007]).

Steinmetz et al. [1986] found 11 recombination events on the MHC for the mouse, of

which 7 of these recombination events were unequal crossing over recombination. Otting

et al. [2005] note that variation in the Mamu-A and Mamu-B gene in the rhesus macaque
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is probably due to unequal crossing over. Unequal crossing over recombination is one

mechanism that can cause copies of genes and result in a species having CNV. In chapter

3 I simulate unequal crossing over recombination, as it provides a mechanism to generate

new copies of genes. I investigate how natural selection, due to interaction between

MHC molecules and pathogens, will affect the numbers of copies of MHC genes within a

population.

As far as I am aware there is very little theoretical work into the variation of CNV

of the MHC for different species. There are however theoretical works that tackle similar

questions. Krüger and Vogel [1975] creates several models that theoretically explore

how unequal crossing over affects the distribution of numbers of copies of a gene in a

population for different types of selection. The three types of selection they explore are:

No selection, the individual with the larger number of copies is fittest and finally the

individual with a set number of copies of genes is the fittest. For certain versions of the

model in the case where there is no selection they found that the stationary distribution of

the number of alleles depended on the initial distribution of allele copies and the number

of generations to converge to this stationary distribution depended on the probability

of unequal crossing over events occurring. For the case where larger numbers of copies

of alleles are the fittest, they show that the distribution of the number of allele copies

increases continuously. When an optimum number of allele copies is the fittest they show

stationary distributions vary around this optimum number of alleles where the most

frequent value number of alleles is the optimum number, the width of these distributions

positively correlated with the probability of unequal crossing over events occurring.

Takahata [1981] creates a similar model to Krüger and Vogel [1975] however it incorpo-

rates sister chromatid exchange. Due to boundary conditions implemented in Takahata

[1981] on the number of repeated genes that are viable for an individual to survive,

equilibrium distributions on the number of repeated genes can always be found. They

show that when the sum of the rate of sister chromatid exchange and inter-chromosomal

crossing-over were constant, that distributions of the numbers of repeated genes did not

change when the relative rates of these two processes changed, implying that theoretically

it would be unnecessary to distinguish the two processes. This however is only because of

the assumption that sister chromatid exchange and inter-chromosomal crossing-over had
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the same patterns.

Since then multiple mathematical studies exist on the distribution of the number of

repeated genes due to unequal crossing over (Baake [2008], Shpak and Atteson [2002],

Redner and Baake [2004]). In the second chapter I do not explore multiple versions of

unequal crossing over; rather I choose specific assumptions and analyse the model numer-

ically (see methods chapter 2 and result section chapter 2). While previous theoretical

work explores unequal crossing over and the distribution of repeated genes, I am con-

cerned with the rules of selection caused by pathogens and its effect on CNV and use

unequal crossing over as a tool to merely generate new functional genes.

As mentioned earlier there is very little theoretical work on the MHC and gene copy

number variation. One such piece of work (Bentkowski and Radwan [2019]) uses an in-

dividual based model that explores how the presence of multiple pathogens might affect

the number of copies of MHC genes. They use a similar framework to Borghans et al.

[2004] where MHC molecules and pathogens are represented by strings of bits and mu-

tations can change both MHC molecules and pathogens by altering this string of bits

however they introduce a new feature that allows the duplication and deletion of MHC

genes. Bentkowski and Radwan [2019] assumes there is a cost associated with increased

number of copies of MHC genes but this increased number of genes could help recognise

more pathogen variants. Bentkowski and Radwan [2019] varies the diversity of pathogens

present, the cost of having multiple MHC copies and the rates of mutations. Bentkowski

and Radwan [2019] found that having a higher diversity of pathogens present only caused

more copies of MHC genes when the cost of multiple MHC copies was low. My work in

chapter 3 follows similar assumptions, such as having a cost for having too many MHC

copies. However, the process by which I generate copies of genes and how I represent

MHC allele fitness and therefore individual fitness is different, and offers new insights

into MHC copy number variation.

Theoretical works that model the MHC with multiple loci are very sparse. However

as noted in section 1.1.6, previous models have considered the haplotypic structuring

of MHCs (specifically the HLA in humans) over multiple loci (Penman et al. [2013],

Lobkovsky et al. [2019]). Lobkovsky et al. [2019] develop a range of possible rules for

combining MHC haplotype fitnesses (e.g. a ”maximum” rule, whereby an individual’s
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fitness is equal to the higher fitness out of the fitnesses of the two MHC haplotypes they

possess). This approach is similar to the work here however I combine the fitnesses of

all MHC genes encoded by an individual into an overall individual fitness. Lobkovsky

et al. [2019] assigns individual haplotype fitnesses for all the possible MHC haplotypes in

the population (regardless of the particular genes within each haplotype), and then each

individual’s fitness is based on a combination of the two MHC haplotypes they possess.

The research objective here (understanding MHC CNV) is also different to the objective

of Lobkovsky et al. [2019].

1.2.3 The evolution of MHC molecule binding promiscuity

As noted in section 1.1.1, MHC molecules possess a binding cleft which is crucial to their

functions as they need to represent peptides to the immune system and do this by binding

them to the binding cleft. However it has been noted that MHC alleles differ in their

binding cleft peptide repertoire (Paul et al. [2013]). This gives rise to the possibility

that some alleles have evolved to protect against multiple pathogens/pathogen strains

while others have evolved to be more specialised. Considering MHC alleles with varying

binding peptide repertoires has given rise to viewing them as specialist (i.e. fastidious

- binding a small range of peptides) or generalist (i.e. promiscuous - binding a large

range of peptides) (Kaufman [2018], Chappell et al. [2015], Kaufman [2020]). In chapter

4 I explore what pathogen climates give rise to MHC alleles of varying promiscuity co

existing.

MHC promiscuity in terms of peptide binding cleft repertoire is another form of di-

versity among MHC alleles and the knowledge of MHC alleles having various promiscuity

brings in ideas for different ways of modelling MHC allele finesses in a theoretical sense.

A large portion of theoretical work just considers MHC alleles as having flat fitness values

(De Boer et al. [2004], Lewontin et al. [1978]) as well as the work here in chapter 2. These

fitness values cannot represent MHC alleles functionality if we are considering how well a

MHC allele helps a host is based upon how well its MHC molecule can bind to a peptide

or how many different types of peptides it can bind to. Siljestam and Rueffler [2019]

represents MHC functionality by representing MHC alleles as having different function-

ing parts and these parts are represented by numbers. How close these numbers match
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to a pathogens numbers (which also have corresponding attributes) determines how well

it helps a host survive infection. My work in chapter 4 also represents MHC alleles as

having multiple attributes; however, in the work here each attribute represents a type of

peptide shape. How high the number is for a particular shape represents how well that

MHC molecule can bind to a peptide of that shape. Using this way of representing MHC

alleles I develop an individual based model that explore how pathogen climates affect the

types of alleles that can co exist in terms of MHC molecule binding promiscuity.
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Chapter 2

Detecting HLA-infectious

disease associations for

multi-strain pathogens

2.1 Introduction

An individual’s ability to fend off invading pathogens is affected by their genotype. Co-

evolution between humans and pathogens has generated extreme diversity in certain hu-

man genes, in particular the human Major Histocompatibility Complex loci: the Human

Leokocyte antigens (HLAs) (Spurgin and Richardson [2010], Jeffery and Bangham [2000],

Hedrick [2002], Pierini and Lenz [2018]) making HLA loci the most polymorphic in the

human genome (Robinson et al. [2014]). Understanding which HLA genotypes are best

adapted to which infectious diseases is an ongoing challenge. Here I investigate how

epidemiological and population genetic factors combine to influence whether individual

HLAs appear to protect against infection with multi-strain pathogens.

HLA molecules play an integral role in the human immune system. They are cell surface

proteins containing a binding cleft. The binding cleft is loaded with peptides sampled

from either inside (class I HLA molecules) or outside (class II HLA molecules) the cell
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(Horton et al. [2004]). T cell receptors bind to the HLA/peptide complex and if the bound

peptide is recognised as “non-self” by a T cell, this will trigger an immune response. HLA

molecules encoded by different alleles have binding clefts with different properties. The

specific peptide fragments which are displayed by HLA molecules determine an individ-

ual’s T cell responses, thus HLA genotype acts as a bottleneck, which can shape adaptive

immunity.

HLA genotype has been shown to affect the outcome of a wide range of infectious

diseases (Tian et al. [2017], Dunstan et al. [2014], McLaren et al. [2015], Sveinbjornsson

et al. [2016], Hill et al. [1991], Thursz et al. [1995], Oliveira-Cortez et al. [2016], Carrington

and O’Brien [2003]). The first HLA/infectious disease association was demonstrated for

malaria: HLA-Bw53 was associated with a reduced chance of developing severe malaria

disease in a population in The Gambia (Hill et al. [1991]). Also in The Gambia, HLA-

DRB1*1302 was associated with a reduction in the probability of developing persistent

hepatitis B (HBV) infection (Thursz et al. [1995]). Various HLA alleles have been shown

to affect the time to Acquired Immune Deficiency Syndrome (AIDS) for Human Immun-

odeficiency Virus (HIV) infected individuals (Just [1995]); and individual amino acids in

the binding clefts both HLA-A and HLA-B molecules can impact HIV setpoint viral load

(McLaren et al. [2015]). For some common infections including mumps, childhood ear

infections and strep throat, a recent Genome Wide Association Study (GWAS) suggests

that HLA genotype may affect the probability of experiencing symptomatic infection at

all (Tian et al. [2017]).

Studies which identify HLA-infectious disease associations typically compare a group

of individuals with an infectious disease phenotype (cases) to a group of individuals with-

out it (controls) and examine differences in the frequencies of HLA types in the two

groups. An over representation of a specific HLA type in the control group could be

because it has a protective effect. However, such case control studies do not always give

consistent results. A case control study of severe malaria, similar to the previously men-

tioned study in The Gambia (Hill et al. [1991]), was performed in Mali (Lyke et al. [2011]).

The Mali study did not find HLA-Bw53 to be protective against severe malaria but they

did find that HLA-A*30:01 and HLA-A*33:01 increased susceptibility to developing se-

vere malaria. Lyke et al noted that this discrepancy could be due to different strains of
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malaria parasite circulating in Mali as opposed to The Gambia. If specific HLA alleles

are associated with better immune responses to just a subset of pathogen strains, then

the effectiveness of HLA alleles will depend on which pathogen strains are circulating in

a population.

The interaction between host genotype and pathogen strain in determining disease

outcome is highlighted by recent studies of Tuberculosis (TB). A case control study in

the Chiang Rai province of Thailand split TB patients into groups infected with modern

strains of TB and those infected with ancient strains of TB (Toyo-Oka et al. [2017])

(the ancient/modern distinction is based on the presence/absence of a TbD1 deletion in

the TB genome). They found HLA DRB1*09:01 to be associated with protection from

infection with modern strain tuberculosis. They did not find this association when they

grouped patients with modern and ancient tuberculosis strains together. A similar study

was performed in Cape Town, South Africa (Salie et al. [2013]), distinguishing TB strains

by restriction fragment length polymorphism genotyping. Salie et al found that HLA

class I types A*01, B*08 and C2∗ were all associated with increased susceptibility to

Beijing strain TB; B*27 and C1 were associated with lower susceptibility to the Beijing

strain.

The possible impact of HLA type on the epidemiology of infection has been con-

sidered in terms of the maintenance of parasite diversity (Gupta and Hill [1995]), and

more recently in terms of the effect of HLA type on pathogen R0 in different populations

(Sambaturu et al. [2018]). Specifically, Sambaturu et al addressed the impact of HLA

type on the spread of H1N1 influenza (Sambaturu et al. [2018]), by first classifying HLA

types by the range of influenza epitopes they are predicted to present, (Mukherjee and

Chandra [2014]), and then making the assumption that the more viral epitopes a host can

represent, the lower that host’s susceptibility to H1N1 influenza. They show that when

a population has a wide range of individual susceptibility to a strain of H1N1 influenza,

it can reduce the size of an epidemic from said strain of H1N1 influenza. This previous

work highlights the potential significance of HLA diversity for public health. However, no

previous model has considered the epidemiological processes underlying why, if an HLA

type truly does affect infection, it might not always be detected as having such an effect

∗HLA-C in this study was classified into C1 or C2, a distinction based on the interaction between

HLA-C and Killer-cell Immunoglobulin-like Receptor (KIR) molecules.
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in a case control study.

MacPherson et al recently analysed the effect of pathogen diversity and host-pathogen

coevolution on the ability of genome wide association studies (GWAS) to detect which

host genes matter for infection (MacPherson et al. [2018]). They elegantly demonstrated

that if pathogen diversity is ignored, many important host loci will go undetected by

GWAS. In the case of HLA genes, and the further complication of adaptive immunity,

the problems highlighted by MacPherson may be compounded.

Here I explore the case of a multi-strain pathogen for which the presence of a specific

HLA molecule in the host is necessary to develop an effective memory immune response

against a specific pathogen strain. I identify the different epidemiological outcomes which

arise as a consequence of this HLA-strain relationship, when population HLA frequencies

vary. I simulate case control studies of infection, and demonstrate the circumstances

under which an HLA type offering an advantage against a specific pathogen strain is

likely to appear protective or risky against the prevailing local infection.

Neisseria meningitides, Streptococcus pneumoniae and Plasmodium falciparum are

examples of multi-strain pathogens where humans experience multiple infections; become

immune to different strains, and where T cell responses (and hence HLA type) are im-

plicated in the generation of protective immunity (Wiertz et al. [1996], Davenport et al.

[2003], Aslam et al. [2010], Mordmüller et al. [2017], Aslam et al. [2011]). My model offers

insight into how HLA/strain interactions may impact the epidemiology of such systems.

My model further suggests a technique to detect the existence of HLA/strain specific

associations in a system, even if the key properties distinguishing different strains are not

yet known.

2.2 Methods

2.2.1 The Epidemiological Model

I consider a pathogen which exists as at least two strains (1 and 2). I assume that the

diploid HLA genotype of a host (ij) determines whether or not that host will be able to

develop a memory immune response against a particular pathogen strain after infection.
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To model these possible immune outcomes, I use SIR and SIS models which are commonly

used ordinary differential equation (ODE) models in epidemiology (for a full review of

such approaches, see Keeling and Rohani [2011]). If a host’s genotype includes an HLA

allele which allows the recognition of strain i, that host will become immune to strain

i following infection (SIR dynamics). If a host does not have an HLA allele enabling

them to recognise a pathogen strain, that host will not become immune to that pathogen

strain on recovery (SIS dynamics). This is a simplifying assumption (although very stark

MHC/pathogen strain relationships are observed in nature specifically in chickens, as

I detail in the discussion). My aim here is to ask the question: if certain HLA types

make the difference between mounting successful memory immune responses or not (as

simulated in the model), will this ever be detectable by the current standard methodology

(the case control study)?.

The force of infection for pathogen strain i is λi. The rate of recovery from pathogen

strain i back to being susceptible is σi. The rate an infected individual becomes immune

to pathogen strain i is µi. I simulate a population with a constant size, so births and

deaths happen at the same rate d. Newborns are always born as susceptible and all

rates have the unit year−1. Pathogen induced mortality is not included in this model.

The reasons for this decision are firstly that the rate at which pathogens would adapt

to a population’s genetic landscape are vastly faster than the rate a host population

adapts to the pathogens. Secondly we are comparing our results to case control studies

which are snap shots in time of a populations genetic landscape related to infectious

disease. If we were to include pathogen induced mortality, we would see allele frequencies

reach some stable equilibrium which would depend on pathogen parameters as well as

initial allele frequencies of the population. For the purposes of investigating case control

studies I believe fixing the allele frequencies to remain constant is a reasonable choice for

simplifying the analysis. Flow chart of the model is given in figure 2.1.
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Figure 2.1: The possible states of the population and pathways between them.

(a) is a flow chart of the possible paths a host of any genotype ij can take from initially

being susceptible to all pathogen strains. (b) is a flow chart specifically for a host whose

genotype means they can only mount a memory immune response against pathogen strain

1.

I use a double letter notation to denote susceptibility (S), infectiousness (I), immunity

(R), to pathogen strain 1 (first letter) and to pathogen strain 2 (second letter). For

instance host IS is infected with pathogen strain 1 and susceptible to pathogen strain 2;

a host with SR is susceptible to pathogen strain 1 and immune to pathogen strain 2. I

denote the proportion of the population susceptible to pathogen strain 1 and immune to

pathogen strain 2 with genotype ij as NSR
ij . The total proportion of a genotype in the

population is
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Nij =NSS
ij +NSI

ij +NSR
ij +N IS

ij +N IR
ij +NRS

ij

+N II
ij +NRI

ij +NRR
ij ,

(2.1)

where the total size of the population is

N =
∑
i,j

Nij = 1. (2.2)

I denote the proportion of hosts who are infected with pathogen strain i as Ii and I

denote the proportion of hosts immune to pathogen strain i as Ri.

I1 =
∑
{i,j}

(
N IS

ij +N IR
ij +N II

ij

)
I2 =

∑
{i,j}

(
NSI

ij +NRI
ij +N II

ij

)
R1 =

∑
{i,j}

(
NRS

ij +NRI
ij +NRR

ij

)
.

(2.3)

The transmission rate for pathogen strain i is notated as βi, therefore the force of

infection from pathogen strain i is

λi = βiIi. (2.4)

ODEs for this model can be found in section A.2 in the Appendix A.

In order to scale the degree to which a host can be infected with both pathogen strains

simultaneously I introduce the parameter c. When c = 0 coinfection is impossible. When

c = 1 infection with one pathogen strain has no effect on the rate a host becomes infected

with the other pathogen strain. In order to scale the strength of strain transcending (and

host-genotype-independent) immunity, I introduce the parameter α. A proportion α of

all recoveries enter the RR state and a proportion (1−α) recover according to the host’s

genotype. In section 2.3.1, 2.3.2 and 2.3.3 of the results, c = 0 and α = 0. In section

2.3.4 I demonstrate the impact of varying these parameters.

My host population is divided into different possible diploid HLA genotypes (ij) at

a single HLA locus. In my main model, I include two pathogen strains (1 and 2) and
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two HLA alleles (1 and 2). I assume a 1:1 correspondence between HLA alleles and

pathogen strains, meaning that the presence of HLA allele 1 is necessary to mount a

memory immune response against pathogen strain 1.

I also extend the main model in two ways. I allow for three possible pathogen strains

(1, 2 and 3), with 3 corresponding HLA alleles necessary for the recognition of each (see

section A.3 of Appendix A). I also include a “perfect” or a “useless” HLA allele, recog-

nising both or neither of pathogen strains 1 and 2, alongside strain specific HLA 1 and 2

alleles (see section A.4 of Appendix A).

A key parameter of all the models is HLA allele frequency. I notate this as pi for allele i.

The birth rates of different host genotypes are in accordance with the Hardy-Weinberg

principle (Relethford [2012]), implying random mating within the population. In a two

allele model, the frequency of homozygotes (11 and 22) and heterozygotes (12), are as

follows:

N11 = p21

N12 = 2p1(1− p1)

N22 = (1− p1)2.

(2.5)

Figure 2.2 illustrates how the frequencies of each genotype vary as p1 varies between

0 and 1.
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Figure 2.2: The frequency of genotypes according to the Hardy-Weinberg prin-

ciple

Starting frequencies of each genotype were assigned in these proportions and the fre-

quencies of each genotype remained unchanged over time. Hardy-Weinberg proportions

were similarly used for three allele models, in which 3 homozygotes (11, 22 and 33) and 3

heterozygotes (12, 23, 13) are possible. In three allele models I set p2 = p3 = (1− p1)/2.

This means that as p1 is varied I allocate an equal frequency to alleles 2 and 3. This

maximises HLA diversity.

All results described here are obtained by numerically solving the ODEs described above,

using solver ode45 in Matlab and calculating quantities from these numerically solved

solutions. Matlab code to run the two pathogen and three pathogen ODE models

is available in the following repository : https://github.com/ConnorFrancisWhite/

HLA Infection Association Model White et al 2020.
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2.2.2 The Odds Ratio

The key feature of the model is that possession of a particular HLA type is necessary in

order for a host to develop a specific memory immune response against a specific pathogen

strain. That HLA type will always be “protective” against infection with the strain it

matches. However, when assessing the protectiveness/riskiness of an allele or genotype in

a case control study, it is rare that such functional strain definitions are already known. I

wish to investigate how the interplay between a diverse host and pathogen makes partic-

ular alleles risky or protective against infection in general (i.e. infection with any strain),

since this is the property which will most likely be captured by case control studies in

practise.

The odds ratio for being infected with any strain given a host has a specific allele i is

calculated as follows:

ORi =

(
P (I | i)

1− P (I | i)

) / (
P (I | î)

1− P (I | î)

)
.

Here, P (I | i) is the proportion of hosts with allele i that are infected and P (I | î)

is the proportion of hosts that do not have allele i that are infected. If ORi < 1 allele i

is protective against the prevailing local infection. This method of calculating the odds

ratio uses proportions of the population at the steady state of the ODE model, which was

calculated numerically.

In section 2.3.3 I investigate whether the effects I are modelling could be detected in

a real world study. I assume this real world study involves 500 cases and 500 controls,

and assign different numbers of genotypes to both groups by multiplying relevant steady

state proportions from the model by 500. A standard method to calculate the odds ratio

for studies involving finite sample sizes of cases and controls, which I denote as OR′i, is

as follows:

OR′i =

(
n(I | i) + g

n(Î | i) + g

) / (
n(I | î) + g

n(Î | î) + g

)
.

Where n(I | i) is the number of people who are infected and have allele i. n(Î | i)

is the number of people who are not infected and have allele i. n(I | î) is the number

of people who are infected and do not have allele i. n(Î | î) is the number of people
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who are not infected and do not have allele i. g is a value used so there is no undefined

calculation for the odds ratio even if the number of individuals in one of the categories

is 0, g is always greater than 0. A commonly used value for g is g = 0.5 (Woolf [1955],

Gart [1966]). Woolf [1955] also provides a method for calculating the confidence interval

for the odds ratio which I use in section 2.3.3. In figures 2.8 and 2.9 I round the sample

sizes to integer values to further simulate a real world study.

2.3 Results

2.3.1 The protectiveness of a strain-specific HLA allele against

infection is related to the population frequency of that al-

lele.

I first consider one pathogen strain in a population that contains two HLA alleles. Only

one of these alleles (allele 1) allows a host to generate a memory immune response against

the pathogen strain. In figure 2.3a I illustrate how varying HLA frequencies affects OR1,

the odds ratio for a genotype containing allele 1 being infected with any strain.

If only pathogen strain 1 is present OR1 is always below 1 for the entire range of p1

values (0 < p1 < 1) (figure 2.3a, dashed line). The distribution of HLA alleles within

the population does not alter the fact that allele 1 is beneficial. This result is intuitive,

since the only circulating pathogen strain is one to which hosts with allele 1 can develop

memory immunity. No matter how many hosts have allele 1, possessing allele 1 will always

make hosts less likely to be infected. In figure 2.3b for the 1 pathogen strain scenario we

see OR2 is always above 1 meaning you are more likely to be infected if you have HLA

allele 2. OR2 approaches the value 1 but never actually equals it in figure 2.3b.
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Figure 2.3: The relationship between HLA allele frequencies and ORi. The

three different line styles indicate scenarios with 1, 2 and 3 pathogen strains. Panel (a)

illustrates how the odds ratio for allele 1 changes as p1 is increased. Panel (b) illustrates

how the odds ratio for every other allele other than allele 1 varies as p1 is increased. The

parameter values are: d = 0.01, βi = 0.06, µi = 0.02 and σi = 0.02 (i = 1, 2, 3).

As noted in the introduction, however, many pathogens exist as multiple strains. Let

us suppose that among the pathogen variants, some express an immunogenic peptide

which can be bound by one HLA type, and others express a different form of the im-

munogenic peptide which can be bound by a different HLA type at the same HLA locus.

I simulate a two strain, two HLA type system, where HLA allele 1 is necessary to mount

a memory immune response against strain 1, and HLA allele 2 is necessary to mount a

memory immune response against strain 2. Heterozygotes for alleles 1 and 2 (genotype

12) can generate a memory immune response against both strains. Now as p1 is increased

OR1 goes from below 1 to above 1 (figure 2.3a, solid line). The frequency of HLA allele

1 in the population is negatively correlated with its ability to protect a host from the

prevailing local infection. The same applies to HLA allele 2 (figure 2.3b), noting that

p2 = 1− p1. To understand why this is happening I need to look at the level of infection

from each strain, within the population as p1 varies.

If allele 1 is more frequent than allele 2, there are more hosts who can become immune

to pathogen strain 1 than hosts who can become immune to pathogen strain 2. Pathogen

strain 2 will be more successful in such an environment. As p1 is increased (figure 2.4),
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the proportion of hosts infected with pathogen strain 1 at equilibrium decreases and the

proportion of hosts infected with pathogen strain 2 increases. The distribution of HLA

alleles in the population affects the pathogen strain structure in the population. This

explains why ORi is positively correlated with the frequency of allele i.
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Figure 2.4: The relationship between the steady state values of I1 and I2 and

the frequency of HLA allele 1, in a 2 strain, 2 allele model where possessing

allele i is necessary to mount a memory immune response against strain i. The

equilibrium values of I1 and I2 against p1. Ii is the total proportion of the population

infected with pathogen strain i. The parameter values are: d = 0.01, βi = 0.06, µi = 0.02

and σi = 0.02 (i = 1, 2).

In a 3 strain, 3 allele extension of the system, OR1 follows the same trend found with

the two pathogen strain model (figure 2.3a, dotted line). As a further extension of the

model, in Appendix A section A.4, I add a different type of third allele to the system

where HLA alleles 1 and 2 confer the ability to recognise pathogen strains 1 and 2. This

third allele is either a “perfect” allele (conferring the ability to mount an immune response
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against either strain 1 or strain 2) or a “useless” allele (conferring no ability to mount

any immune response).

The presence of the useless allele alongside alleles 1 and 2 and strains 1 and 2 does

not substantially alter the pattern shown in figure 2.3a (see figure A.2) The presence of

the perfect allele likewise does not alter the positive correlation between p1 and OR1,

although it does reduce the set of circumstances where HLA allele 1 is protective against

the prevailing local infection.

I finally tested a system including two pathogen strains, in which HLA allele 1 recog-

nises strain 1, and only the perfect or useless allele is present alongside HLA allele 1. For

both of these cases, OR1 did not cross the value 1 for the entire range of p1 (figure S3).

It would seem a system requires at least two pathogen strains and the presence of at least

two HLA alleles that differ in their strain specificity in order for OR1 to go from below 1

to above 1 as p1 is increased.

2.3.2 The more rapid the immune response associated with a

particular HLA allele against a particular pathogen strain,

the less likely that HLA allele is to appear protective.

In the results just presented, genotypes containing allele 1 become immune to strain 1

at exactly the same rate that genotypes containing allele 2 become immune to strain 2.

However, it is possible that HLA molecules encoded by different HLA alleles differ in

their fundamental ability to activate T cells and allow hosts to clear infection. One way

to investigate this possibility within the framework is to allow each allele to be associated

with a different recovery rate. I retain the strain specificity of the alleles in my main

two strain, two allele model, but hosts with allele 1 recover more quickly than hosts with

allele 2 after infection with their matched strain.
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Figure 2.5: ORi and how its relationship with the frequency of allele 1 changes

as the rate of recovery associated with HLA allele 1 becomes higher than that

of associated with HLA allele 2. OR1 against p1 for the two pathogen strain model

(a). OR2 against p1 for the two pathogen strain model (b). The parameter values are:

d = 0.01, βi = 0.06, µ2 = 0.02 and σi = 0.02 (i = 1, 2).

As shown in figure 2.5, increasing µ1 relative to µ2 (enhancing the recovery rate

associated with allele 1), changes the behaviour of ORi (compare dashed lines to solid

lines). Lower allele frequencies are still associated with greater protection against infection

in general, but OR1 crosses the value 1 for a much smaller value of p1. The faster recovery

rate of allele 1 has caused allele 1 to be protective over a smaller region of p1, and allele

2 to be protective over a greater range of values of p1. This counter intuitive result is

explained when I look at the level of infection of each pathogen strain at equilibrium

(figure 2.6).
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Figure 2.6: Pathogen strain dynamics are affected by increasing the recovery

rate associated with HLA allele 1 relative to that associated with HLA allele

2. The graph is of Ii against p1 for the two pathogen strain model. The parameter values

are: d = 0.01, βi = 0.06, µ1 = 0.2, µ2 = 0.02 and σi = 0.02 (i = 1, 2).

When µ1 >> µ2, pathogen 1 can only invade the system at low levels of p1. The

shorter duration of infection with pathogen strain 1 associated with allele 1 makes it

harder for pathogen strain 1 to thrive. This in turn causes pathogen strain 2 to be the

only circulating pathogen strain for the majority of p1 values. In this environment only

allele 2 will provide any protection.

These results demonstrate that, in a multi-strain pathogen system, the protective

effect of an HLA allele may arise from being associated with a relatively slow recovery

rate. Counter intuitively, this “poor” HLA allele could end up being protective in a

population due to it helping one pathogen strain to out compete another. If we were to

allow HLA allele frequencies to change we might see situations where allele 2 is selected

for for a larger region of p1, if µ1 is higher than µ2.
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2.3.3 Genotype/infection associations for HLAs which protect

against specific pathogen strains are only detectable under

limited circumstances.

To investigate how strain specificity of HLA/pathogen recognition may impact our ability

to detect HLA-infectious disease associations in real world case control studies, I calcu-

lated 95% confidence intervals for OR′1, on the assumption of 500 infected cases and 500

disease-free controls (see Methods for further details).

I considered three different systems containing only HLA alleles recognising single

pathogen strains. In a two HLA allele system where just pathogen strain 1 is present, for

most of the range of p1 OR
′
1 has a confidence interval small enough that a case control

study would be able to conclude that HLA type has an effect on infection (figure 2.7a).

In a two allele system where both strains 1 and 2 are present a case control study would

only identify that an HLA type protects against the prevailing local infection for a smaller

range of p1 (figure 2.7b). For the three strain, three allele system, with these parameter

values, there is an even smaller range of values of p1 where a case control study of 500

cases and 500 controls could declare if OR′1 is below 1. This effect arises because the

value of p1 at which the odds ratio moves from below 1 to above 1 (henceforth pcrit),

shifts to lower values of p1 as the complexity of the system increases from two to three

strains (examined further in section A.5.2 of the Appendix A).
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(a) (b) (c)

Figure 2.7: OR′1 and its relationship with the frequency of HLA allele 1. The

highlighted regions are the 95% confidence intervals for OR′i. (a) illustrates a system

with one pathogen strain and two HLA alleles in the population. (b) illustrates a system

with two pathogen strains and two strain specific HLA alleles within the population.

(c) illustrates a system with three pathogen strains and three strain specific HLA alleles

within a population. The confidence intervals were calculated with a sample size of

500 cases and 500 controls (see Methods for further details). The parameter values are:

d = 0.01, βi = 0.06, µi = 0.02 and σi = 0.02 (i = 1, 2, 3).

Figure A.4 in section A.5.1 of appendix A material illustrates the behaviour of the

system if only 100 cases and 100 controls are used. Now, despite there still being a

relationship between HLA frequency and protectiveness (i.e. OR1 still correlates with

p1), there is no frequency of p1 at which the 95% confidence interval for OR1 does not

encompass 1. However, if I change the properties of the pathogen by increasing R0, I do

find values of p1 at which the 95% confidence interval for OR1 does not include 1, even

in the smaller case control study (figure S5).

To further explore how pathogen properties affect the ability of case control studies

to detect protective or risky HLAs, I define Ω as the difference between the maximum

and minimum values of p1 at which the odds ratio for HLA type 1 is significantly below

(ΩB) or above (ΩA) 1 (which is taken to be when the 95% confidence interval does not

encompass 1). Ω therefore represents the ease with which a HLA protective (ΩB) or risky

(ΩA) association against local prevailing infection might be detected in the system. If Ω

is large, then the detection of the association is less dependent on a specific frequency of

p1. Figure 2.8 and 2.9 illustrates how ΩB and ΩA vary for different recovery rates and
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different values of the basic reproductive number (R0) of the pathogen in the 2 strain/2

allele and 3 strain/3 allele scenarios. For these simulations µi = σi = σ thus σ refers to

all recovery rates in the system.
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Figure 2.8: A measure of how well protective (ΩB) or risky (ΩA) associations

can be detected in simulated case control studies in the two strain, two allele

system. Panel (a) shows ΩB , panel (b) shows ΩA. R0 is increased from 2 to 10 along

the y axis of each heat map, σ is increased logarithmically from 10−3 to 102 along the x

axis of each heat map. βi is calculated βi = R0(d+ σ) (for i = 1, 2) and d = 0.01.
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Figure 2.9: A measure of how well protective (ΩB) or risky (ΩA) associations

can be detected in simulated case control studies in the three strain, three

allele system. Panel (a) shows ΩB , panel (b) shows ΩA. R0 is increased from 2 to 10

along the y axis of each heat map, σ is increased logarithmically from 10−3 to 102 along

the x axis of each heat map. βi is calculated βi = R0(d+σ) (for i = 1, 2, 3) and d = 0.01.
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Figures 2.8 and 2.9 shows that ΩB and ΩA are both 0 when the recovery rate (σ) is

low (black region). Detecting any HLA-infection association is difficult if the infectious

period is too long. This is unsurprising, because the key to protection against infection

in the system is the ability, or not, of a host to mount a memory immune response.

A pathogen which has a recovery rate similar to the mortality rate of the host cannot

generate a strong HLA-dependent signal within such a system.

Figure 2.8 relates to the two strain, two allele system. ΩB is a measure of the ability to

detect whether HLA type 1 is protective against the prevailing local infection. Detecting a

protective effect of HLA type 1 in a two strain-two allele system requires that homozygotes

without HLA type 1 (e.g. genotype 22) bear the brunt of infections. This can only occur

if pathogen strain 1 (to which genotype 22 is especially vulnerable) is circulating in the

population. The ability to detect protective associations over a wide range of p1 (a high

value of ΩB in figure 2.8a) implies that pathogen 1 is able to circulate at a reasonably

high frequency in the population even as the proportion of allele 1 becomes relatively

high. This requires there to remain a good balance between strain 2 ,which benefits from

the increased frequency of genotype 11, and strain 1. The balance between the strains is

affected by both R0 and σ (explored in section A.5.2 of the Appendix A). In most cases,

increasing R0 increases the coexistence of the strains, which is reflected in the broad

relationship between R0 and ΩB seen in figure 2.8a.

Detecting that HLA type 1 is risky (i.e. increases susceptibility to the prevailing

local infection) in the two strain-two allele system (ΩA) requires genotype 11 to bear the

brunt of infections. This requires the presence of a high level of pathogen strain 2 among

circulating strains. A high value of ΩA implies that pathogen 2 is able to dominate the

population even at relatively low frequencies of allele 1. This effect, likewise, depends on

the relative values of R0 and σ (see section A.5.2 of Appendix A). Broadly, the faster

the recovery rate, the easier it is for one pathogen strain to out-compete the other. ΩA,

therefore, tends to increase with increasing σ, as seen in figure 2.8b.

When we move from a two strain, two allele system to a three strain, three allele

system (figure 2.9), ΩB becomes smaller and ΩA becomes larger. In other words, it has

become easier to detect risky associations and harder to detect protective associations.

It also appears that so long as σ and R0 are both above a certain threshold, they have
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little effect on ΩA or ΩB . When calculating an odds ratio for the effect of HLA-1 on

infection in a three allele-three strain system, we are comparing the distribution of “HLA-

1 containing genotypes” (11, 12, 13) and “non HLA-1 containing genotypes” (22, 33, 23)

among cases and controls. Unlike in the two strain, two allele system, both sets of

genotypes now include heterozygotes as well as homozygotes, and both sets of genotypes

include a genotype particularly vulnerable to one of the strains (genotype 11 and genotype

33 are both equally vulnerable to strain 2). These factors increase the similarity of the

two sets of genotypes being compared by the odds ratio, and mean that a lower value of p1

is necessary for HLA-1 to be detected as protective against the prevailing local infection.

In section A.5.2 of the Appendix A I derive an expression for pcrit, the frequency at which

an HLA type switches from being protective to being risky, and show that pcrit is more

limited in the three strain, three allele model than in the two strain, two allele model,

accounting for the plateauing of Ω in figure 2.9.

2.3.4 Model behaviour is insensitive to co-infection, but breaks

down at high levels of strain transcending immunity

As noted in section 2.2, parameter c controls the effect to which a host can be infected

simultaneously with two pathogen strains and α controls the proportion of hosts infected

with a pathogen who recover to being immune to both pathogen strains (henceforth strain

transcending immunity). So far, I have displayed results where c = 0 and α = 0.

My key result is that the protectiveness of a strain-specific HLA allele against the

prevailing local infection caused by a multi-strain pathogen is correlated with its pop-

ulation frequency. I define the breakdown of this trend as the case where neither OR1

nor OR2 switch from above/below to below/above 1 over the range of p1. Figure 2.10

illustrates when this breakdown occurs in the main two strain, two allele model as c and

α are varied. I also explore the impact of introducing a discrepancy in fitness between

the pathogen strains in the model, achieved by varying the transmission parameter, β.
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Figure 2.10: Showcasing how co-infection and strain transcending immunity

affects the outcome of the original model. The three figures are of binary heat

maps where a white indicates the trend disappearing, black indicates when the trend is

still present. The parameter values are: d = 0.01, for (a) β1 = 0.061, for (b) β1 = 0.065,

for (c) β1 = 0.08, β2 = 0.06, µi = 0.02, σi = 0.02 (i = 1, 2).

When there is only a small difference between β1 and β2 (figure 2.10a), the relationship

between HLA allele frequency and protectiveness against infection exists at all levels of

co-infection, and in the presence of some strain transcending immunity, but not when

strain transcending immunity is complete (α = 1). As the fitness difference between the

strains is increased, the relationship between HLA allele frequency and the protectiveness

of that allele against the prevailing local infection breaks down at lower levels of strain
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transcending immunity, but this effect can be countered by allowing more co-infection to

occur (figure 2.10b and 2.10c). Overall, the relationship I have identified requires that

both strains of pathogen are able to co-circulate in the population, over at least some

values of p1. Both strains need to be present in order to drive the relationship between

HLA frequency and protectiveness against local prevailing infection. Any process that

promotes co-circulation (e.g. co-infection) makes such a relationship more likely, and any

process which acts against co-circulation (e.g. fitness differences between strains; strain

transcending immunity) makes such a relationship less likely.

2.4 Discussion

Population level differences in the protectiveness of HLAs against infection with multi-

strain pathogens may be a result of HLAs being strain specific in their effects. Here I

simulated such HLA-strain interactions in a epidemiological model. I showed that the

adaptation of a multi strain pathogen to the HLAs of a host population will generate a

negative association between the population frequency of an HLA allele which is beneficial

against a specific pathogen strain and the protectiveness of that HLA type against the

prevailing local infection. I also showed that if certain HLA types cause hosts to recover

from infection with particular pathogen strains more quickly than other HLAs, those

HLAs are less likely to protect against infection in general, since the strains against

which those HLA types are particularly effective may be outcompeted by other pathogen

strains in the population.

All of the simulations included HLA alleles/types which were “protective” in the

sense that they conferred the ability to mount an immune response against a specific

strain. However, despite these extreme HLA-strain associations, I found that under a

great many circumstances no association would be detected between HLA type and infec-

tion in general in a typical case control study (figure 2.7 and figure S4). This is because

the frequencies of the prevailing pathogen strains adapt to the HLA’s present in the pop-

ulation. Previous efforts to use case control studies to identify HLA-infection associations

for multi strain pathogens may have been hindered by such effects.

I presented results for two HLA allele and three HLA allele systems. Two and three
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alleles are far fewer than the diversity of HLA alleles present in human populations (e.g.

there are 100 HLA-B alleles observed in the German population Gonzalez-Galarza et al.

[2010]). However, classical definitions of HLA alleles, based on the amino acid sequence of

the HLA molecule, do not necessarily reflect functionally relevant properties. Class I HLA

alleles are grouped into 10 HLA supertypes based on their binding capabilities (Sidney

et al. [2008]). Associations between HLA supertypes and susceptibility to and severity

of tuberculosis have been found Balamurugan et al. [2004]. Other HLA supertype asso-

ciations have been found for HIV (Trachtenberg et al. [2003], MacDonald et al. [2000]).

Functional grouping of HLA alleles has also been performed for specific pathogens such as

the H1N1 influenza. Mukherjee et al classified the HLA diversity of human populations

into “response types” which are HLA class I genotypes that share similar epitope binding

pools to the H1N1 virus Mukherjee and Chandra [2014]. If I were to classify HLA alleles

by whether or not they were able to bind a specific peptide sequence from an immmun-

odominant epitope in a particular pathogen, then there would only be two types of HLA:

those that bind the peptide of interest and those that do not. The two allele and three

allele systems (or more properly “two binding type” and “three binding type” systems)

can therefore deliver insights into how HLA-strain systems operate, even if the simulated

alleles are not directly equivalent to known HLA alleles.

I focused on the impact of strain-specific HLA types which I assumed to be mutually

exclusive in their ability to protect against different pathogen strains (i.e. where the abil-

ity to display an immunogenic peptide from strain 1 precludes the ability to display an

immunogenic peptide from strain 2). This has a precedent, albeit in a non-human sys-

tem. Experiments in chickens have shown that single MHC types can be associated with

completely opposite responses to different pathogen strains (McBride et al. [1981]). GB1

line chickens are susceptible to rous sarcoma virus (RSV) subgroup C PR-RSV strain, but

resistant to rsv subgroup C B77 strain. GB2 line chickens (of a different MHC type Briles

et al. [1982]) display exactly the opposite pattern (resistant to PR-RSV but susceptible

to B77).

MHC/HLA molecules exhibit a range of binding properties. Some are specialist (bind-

ing only a narrow range of types of peptides), others are more generalist (able to bind
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a wider range of peptides). It is possible that the maintenance of both generalist and

specialist MHC/HLAs in populations may be because each are best adapted to respond

to different types of pathogen (Chappell et al. [2015]). Chappell et al. [2015] highlight

Marek’s disease in chickens as an example of an infectious disease where generalist MHCs

have been shown to provide the best responses, and HIV in humans as an example where

specialist HLAs are associated with the most effective immune responses. Kaufman

[2018] gives review of generalist and specalist MHC class I molecules. It might seem

that, since generalists can present a wide range of peptides, specialist MHCs/HLAs are

redundant and should not be maintained in populations. The continued existence of spe-

cialist MHCs/HLAs can be understood if we suppose that sometimes the best immune

responses are associated with mounting an immune response against a very particular

pathogen peptide. Even if a generalist MHC/HLA can present that peptide, it will not

necessarily present it as reliably and consistently as a specialist MHC/HLA with narrower

binding properties. As I described previously, my model applies to systems where it is

beneficial for a host HLA to present a particular immunodominant peptide, but where

not all HLAs are capable of doing this. This therefore implies the HLA types in my

model are relatively narrow in their binding (although I do not mean this to imply they

are specialised only to the hypothetical pathogen at hand). As illustrated in figure S2 ,

the inclusion of an HLA type capable of presenting peptides from any of the strains in

the system (the “perfect allele”, which could also be called a generalist) does not change

the overall conclusions provided there are still at least 2 types of more specialist HLA in

the system.

Figures 2.8 and 2.9 shows that it is plausible for a real world case control study to detect

a significant effect of a strain specific HLA type on infection, driven by the processes

modelled here. The only necessary conditions are that the recovery rate of the pathogen

is faster than the background mortality rate of the host and the frequency of the HLA

type is within a certain range. However, defining “HLA type” is problematic, since the

functionally relevant “HLA type” for a particular pathogen might in fact be a set of HLAs

encoded by a range of different alleles, which share the property of being able to bind

a critically important (and unknown to us) pathogen peptide. Nevertheless, my model
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suggests a method to identify such systems. If the odds ratio for being infected with a

disease caused by a multi-strain pathogen changes for the same HLA type or supertype

in different populations, and if there is a positive relationship between that odds ratio

and the frequency of that HLA type or supertype, this would be highly suggestive that

there are HLA -pathogen strain associations to be found.

In the introduction I noted three pathogens where my model is likely to be particularly

relevant: Neisseria meningitides, Streptococcus pneumoniae and Plasmodium falciparum

malaria. Existing work attempting to link the risk of disease caused by these pathogens

to host genetics focuses on severe disease outcomes (invasive meningococcal or pneumo-

coccal disease or severe malaria), rather than infection (or “carriage”) per se. My model

does not attempt to simulate the development of severe infection. However, if severe

disease is associated with particular strains, and immunity to strains outside of this sub-

set does not prevent severe disease, my model can be interpreted in terms of how HLAs

impact the accumulation of immunity to just those strains that are capable of causing

severe disease. For Streptococcus pneumoniae and Neisseria meningitides it is widely

accepted that only a subset of strains cause severe disease (Enright and Spratt [1998],

Peltola [1983]). The situation for P. falciparum is complicated by the antigenic variation

P. falciparum exhibits during infection, but the presence of particular group A var genes

in the genomes of parasites may determine their potential to cause severe disease (Bull

et al. [2008]). Although the above pathogens have different life histories they all share the

common attribute of being multi strained pathogens, which is represented in this model.

Here we have shown, for a variety of pathogen parameters, the effects of HLA on the odds

ratio. I believe the results presented here can be applied to such different pathogens. I

propose that a correlation between population frequency of an HLA type and the odds

ratio for severe disease associated with the presence of that HLA type would be suggestive

of an HLA-strain relationship in any of these systems.

My model fixed HLA frequencies within each simulation which I believe to be reason-

able given that we are looking into the mechanisms behind case control studies which in
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themselves are snap shots in time in terms of a populations genetic landscape. However

Over the longer term, HLA frequencies themselves must be evolving under selection from

pathogens (Jeffery and Bangham [2000], Prugnolle et al. [2005], Hertz et al. [2011]). Ex-

tending the model into a co-evolutionary framework (similar to those explored by Penman

Penman et al. [2013] and MacPherson MacPherson et al. [2018]) would deliver further in-

sights, especially into long term HLA supertype dynamics. If I allowed pathogen induced

mortality we could see our model tend to stable equilibrium or even perhaps cyclic be-

haviours. If we found that a stable equilibrium existed for both HLA alleles being present

the pathogen strain dynamics would also stabilise and the odds ratio would remain con-

stant for both alleles. If we observed cyclic behaviour in terms of the HLA frequencies

then again pathogen strain dynamics would be cyclic and we would also see the odds

ratio to be cyclic following observations I have seen in this model. I could also increase

the complexity of the model further to include for more alleles or multiple linked HLA

allele loci, which previous modelling work has shown to enable a range of co-evolutionary

outcomes (Penman et al. [2013]).

I have explored one way in which epidemiology may affect our ability to detect the im-

portance of HLA type in infectious disease. However, other processes can also cause case

control studies to generate conflicting results, including within-host adaptation of chronic

viral diseases and epistasis between HLAs and other loci. Within-host adaptation of HIV

to escape HLA restricted immune responses has spilled over into population level adap-

tation that renders previously protective HLA alleles non protective (Kawashima et al.

[2009], Payne et al. [2014]). HLA’s are also known to interact epistatically with Killer-cell

immunoglobulin-like receptors (KIRs) (Khakoo et al. [2004], Martin et al. [2002]), and

failing to account for KIRs genotype could also lead to HLA-infectious disease associa-

tions being overlooked.

Multi-strain pathogens include infections of vast public health significance such as malaria,

TB, influenza, and streptococcal and meningococcal bacterial disease. A deeper under-

standing of the immunogenetics of such infections could pave the way to develop more

personalised vaccines or other control measures. However, finding associations between
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HLA alleles and these infectious diseases has been an ongoing challenge. The model I

present here explores the consequences of one potential mechanism of HLA-pathogen in-

teraction and suggests a method to detect the signature of HLA-strain relationships in

combined analyses of case control studies in different populations.
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Chapter 3

The Evolution of copy number

variation of the MHC

3.1 Introduction

As mentioned in section 1.1.2 variation in the number of MHC genes present in a particular

MHC cluster is typically referred to as “copy number variation” (CNV) (Freeman et al.

[2006]), even though strictly speaking, multiple copies of an MHC gene (e.g. mamu-A1

and mamu-A4 in Indian Rhesus Macaques) may not be identical copies of each other.

For simplicity, and to be in keeping with other studies I too will refer to the existence

of multiple copies of a MHC locus as CNV. Within humans, HLA class I genes have no

CNV: if we consider HLA-A ,HLA-B, and HLA-C, all humans have one copy of each

of these genes. However, equivalent genes in rhesus macaque (Mamu-A and Mamu-B)

exhibit CNV (Otting et al. [2005], Otting et al. [2007]). In the case of Mamu-B up to 18

functional Mamu-B-like genes have been identified (Daza-Vamenta et al. [2004]). Otting

et al. [2007] shows that CNV for mamu-A existed before the speciation of the Rhesus

macaque and the Cynomolgus macaque, suggesting this state may be evolutionarily stable

and has certainly persisted for an extremely long time.

In cattle there are 6 documented functional MHC class I genes that have varying

degrees of presence between different haplotypes (Ellis and Ballingall [1999], Hammond
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et al. [2012]). Tasmanian devils have been found to have varying numbers of MHC class I

sequences ranging from 2 to 7 per individual (Siddle et al. [2010]). Swine have 6 classical

class I genes of which SLA-1 and SLA-3 have shown evidence of CNV (Tanaka-Matsuda

et al. [2009]). For the mouse certain functional H2 (MHC for the mouse) loci are and are

not present on different haplotypes such as H2-Eb and H2-Ea (Stuart [2015]).

There are four major mechanisms that can cause a gene to be duplicated Unequal

crossing over, Retroposition, Duplicative transposition and Polyploidization (Magadum

et al. [2013]). Otting et al. [2005] note for the rhesus macaque the variation in gene

numbers for the Mamu-A and Mamu-B is probably generated by unequal crossing over.

Different haplotypes of the mouse have been found to have varying numbers of MHC class I

genes (Stuart [2015]). Further work looking into recombination events on the mouse MHC

found 11 independent recombination events with seven of those being unequal crossing

over recombination events (Steinmetz et al. [1986]). However, unequal crossing over (or

any other molecular mechanism duplicating genes) merely provides the raw material i.e.

different number of copies of genes present on chromosomes. I speculate that natural

selection, due to the interaction between MHC molecules and pathogens, will affect the

fate of copy number variants within the MHC, and in this study I explore how such

mechanisms could play out.

Recombination break points for recombination events where the resulting recombinant

persists in the population normally occur in the regions between genes, however there is

evidence that such break points can occur between exons of an MHC gene. Schwartz and

Hammond [2015] compares intronic and exonic sequences of cattle MHC class I genes and

note that the 6 MHC class I genes clade together after the α2 domain. They note that

the binding cleft domains show no relationship and that it is likely that there have been

recombination breakpoints at introns between the α1 and α2 exon domains. If unequal

crossing over occurs between such intronic break points then it is conceivable that copy

number variation could be generated at the same time as creating new combinations of

exons (i.e. a new MHC gene with potentially different functional properties). I explore

the possible impact of such a mechanism on CNV within the MHC in my analysis.

There have been other theoretical treatments of recombination and copy number vari-

ation. The earliest works I mentioned were Krüger and Vogel [1975] who created models
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to explore how unequal crossing over recombination affects the number of copies of an

allele. Takahata [1981] creates a similar model to Krüger and Vogel [1975] however it

incorporated sister chromatid exchange. Since Krüger and Vogel [1975] multiple models

of unequal crossing have been analysed (Takahata [1981], Baake [2008], Shpak and At-

teson [2002], Redner and Baake [2004]). Bentkowski and Radwan [2019] is a model that

does not explore unequal crossing over but does use an individual based model to analyse

how the number of copies of MHC genes evolve due to varying pathogen diversity. They

found that a higher diversity of pathogens only led to more copies of MHC genes if the

cost of having more genes was low. Bentkowski and Radwan [2019] also found that when

the mutation rates of pathogens were increased when there is a low number of pathogens

present, it caused an increased number of MHC gene copies.

Here, I present an individual based model that explores the interaction of MHC

molecules with pathogens and how this interaction may affect the CNV of MHC genes

within a population. I explicitly simulate the process of unequal crossing over recombina-

tion to lengthen and shrink the MHC cluster. I compare two possible rules for calculating

a host’s fitness based on its MHC genotype. I demonstrate a variety of evolutionary

outcomes and detail the reasons why these outcomes occur.

3.2 Methods

Here I will describe the individual based model I designed to gain insight into MHC gene

number variation. We use an individual based model due to the complicated host types

we anicicpate when dealing with varying numbers of loci. The model presented here is

essentially a Wright-Fisher model where the fitness of each host is determined by their

MHC alleles.

3.2.1 Population

The population is represented by a matrix of integers G. Each two rows in the matrix

represents an organism in the population. The first row is the maternal chromosome and

the second row is the paternal chromosome. An integer in the matrix represents an MHC

exon. A pair of exons and their combination represents a unique MHC sequence, thus
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every two columns is a potential MHC gene. The number of copies of MHC genes present

can change by having zeros occupy positions in the matrix; only a pair of non-zero integers

indicates the presence of an MHC gene. Note that I intend this model to simulate just

one MHC gene type, e.g. a gene encoding an MHC-A type protein, where in some species

there is just one MHC-A present per chromosome, but in others there are multiple copies

of MHC-A (each of which may vary slightly from each other), per chromosome.

I set a maximum possible length of the MHC cluster in my simulations of UL thus the

maximum number of columns in G is 2UL. The size of the population in each generation

is a fixed size N , and so the number of rows of G is 2N. The number of MHC genes in

the clusters in the population (i.e. the length of the clusters) can change via unequal

crossing over recombination events (described in more detail in section 3.2.3). Mutations

can also occur at the individual exon level, introducing extra diversity into the system

(described in more detail in section 3.2.3). My representation of MHC genes as pairs of

exons is necessary in order to explore the additional phenomenon of recombination events

occurring between exons (e.g. as has been observed in cattle Schwartz and Hammond

[2015]).
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Loci

Individual

Figure 3.1: An example of the matrix G that represents the population. The

numbers 1 and 2 represent different exons and the combinations of them as pairs represent

MHC genes. Within this simple example, 4 MHC sequence variants are possible (11, 12,

21, 22). Note that the identities of “left” and “right” exons are entirely independent:

exon 1 on the “left” is not the same exon as exon 1 on the “right” hence a sequence of

exons 1 and 2 is different to a sequence of exons 2 and 1. 0 represents an empty space,

thus three of the chromosomes in this diagram contain only 1 MHC gene.

3.2.2 Reproduction

Each new generation in the model is generated from the previous generation, meaning

individuals inherit maternal and paternal chromosomes from the previous generation.

Pairs of parents are selected randomly, but the probability of being a parent (i.e. passing

on a chromosome) is determined by the individual fitness of a genotype in the parental

generation.

An individual’s fitness is denoted as Sn (n denotes the nth individual in the popu-

lation) which is a number between 0 and 1, the higher Sn the more likely an individual

is going to be selected to pass on its genes. The value Sn takes is determined by MHC

genotype, based on rules governing the fitness contributions of individual MHC sequences

and how these combine to generate the contributions of a genotype as a whole (sections
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3.2.2.1 and 3.2.2.2).

Figure 3.2 illustrates the parent selecting process. When we are selecting parents

for the next generation I first calculate the sum of the fitnesses of all individuals in the

population (U(0, S), where S =
∑N

n=1 Sn). I then assign each individual in the population

a certain range of the values between 0 and S ; the size of this region is equal to that

individual’s fitness. I generate a uniform random number between 0 and S and whichever

individual’s region that number corresponds to is selected to become one of the parents

of the next generation.

  

Figure 3.2: An illustration of how U(0, S) is used to select a parent. The fitter an

individual the larger its region will cover S giving it a higher chance for U(0, S) to be a

value within that individual’s region. In this example individual 5 is being selected as a

parent.

3.2.2.1 Gene-level Fitness Contributions

We are considering an MHC cluster containing one or more copies of a particular MHC

gene. The terminology of how to describe different variants of that gene, which can exist

in different combinations in chromosomal clusters of different lengths, is challenging.

I will refer to individual variants of the MHC gene as ”sequence variants”, where a

particular sequence variant in the system has the potential to appear more than once

on a single chromosome, alongside different combinations of other sequence variants of

the same gene, which have their origins in unequal crossing over and subsequent mutation
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events. Combinations of exon pairs determine the identity of sequence variants, these are

denoted as [ij] where i and j are exon i and exon j. For each combination of i and j I

give the sequence variant [ij] a raw fitness contribution (Aij). Aij is generated uniformly

between 0 and 1 (U(0, 1)), and is meant to represent that sequence’s fundamental ability

to help a host survive. If Aij is a high number this implies ij may have an inherent

advantage against a wide range of pathogens; if Aij is a low number this implies ij might

lead to adverse consequences for the host (e.g. perhaps even a predisposition to severe

autoimmune disease).

Various measures of MHC diversity concur with the hypothesis that negative frequency

dependence occurs at the allelic level (Aguilar et al. [2004], Alter et al. [2017], Hawley

and Fleischer [2012]), thus I also include negative frequency dependence in the model. A

sequence variant’s frequency pij is calculated as the proportion of individuals who have

the sequence variant. I compute the fitness contribution of an individual sequence variant

as follows: fij = Aij(1 − pij). A sequence variant makes a greater positive contribution

to an individual’s fitness when it has a low presence in the population.

3.2.2.2 Individual Fitness

When calculating the fitness of individual members of the population, I use two different

calculations to generate an individual’s fitness from the fitness contributions of the MHC

sequences in that individual’s genotype.:

1. The fitness of an individual is equal to the fitness contribution of the most advanta-

geous MHC sequence in the genotype as a whole (i.e. including both chromosomes).

(max fij)

2. The fitness of an individual is equal to the mean fitness contribution of their chro-

mosomes, where the fitness contribution of each chromosome is the mean fitness

contribution of the sequences present on that chromosome. (mean fij)

I call the first fitness calculation the Max fitness rule and the second calculation the Mean

fitness rule. The max fitness rule implies that being able to express just one well adapted

variant of the MHC gene of interest will increase the fitness of an individual. The mean
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fitness rule captures a case where most or all variants of the MHC gene present in the

genome need to be well adapted in order for an individual to be considered fit.

These two fitness calculations view the MHC in very different ways. Exactly how

the different properties of MHC alleles and genes combine to generate an overall fitness

of an individual is still unknown. I regard the max rule and the mean rule as informa-

tive alternatives within a spectrum of possibilities, and will compare the results of each

throughout my analysis. I also have a universal rule for all fitness calculations which is

that when the number of MHC sequences in a gene cluster passes a certain number (UL)

the fitness of that individual is 0. This is meant to represent biological disadvantages to

having too many gene sequence variants for the MHC such as auto-immune diseases (Yim

et al. [2015]) or an over saturated MHC molecule pool. In the appendix B.3 I look into

the affects of this boundary condition (when the number of gene sequences goes above

UL). I investigate the effects of the above boundary condition as well as having a gradual

decrease in fitness of an individual when the number of gene copies goes above UL (which

I consider a softer boundary).

3.2.3 Mutations and Recombination

Mutations in my model occur at the level of individual exons. pM is the per individual

exon probability an exon mutation will occur when a parent’s chromosome is inherited.

When a mutation occurs I randomly select an exon which will mutate and I create

a new exon to replace the old one. This introduces new possible combinations of exons

(ij) and hence new potential MHC sequences into the system. I generate new raw fitness

contributions (Aij) specific to each potential new sequence variant by selecting a number

from a uniform distribution between 0 and 1 for every possible combination of the new

exon with all the other exons in the system.

Recombination in my model can happen at sites located between MHC genes, or be-

tween exons. Recombination at sites between genes leads to new combinations of sequence

variants on chromosomes, or to new numbers of sequence variants on chromosomes (in

the case of unequal crossing over). Recombination at sites between exons leads to both

of the above phenomena but can also simultaneously create a new MHC sequence by

putting together a new combination of exons. The proportion of recombination break
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points that happen between exons compared to between genes in the model are denoted

as β. When β = 0 all recombination sites happen between genes and when β = 1 all

recombination sites happen between the exons of a gene. The possibility of recombina-

tion occurring between exons is motivated by the observation of this phenomenon in the

cattle MHC (Schwartz and Hammond [2015]). For simplicity I assume no more than one

recombination event in the gene region is occurring per parent. I assign a probability of

recombination occurring in any given individual as pRL. This means that the probability

of recombination occurring is proportional to the number of genes in the MHC cluster (i.e.

the length of the cluster). Recombination is a process involving two chromosomes, the

length I use to determine the probability of recombination needs to be chosen carefully.

I use the length of the shorter MHC cluster in the parent in question to determine the

probability of recombination occurring in that parent (i.e. L is the shorter of the two

possible values). This is on the assumption that, for recombination to occur, the chro-

mosomes must align in a way that allows crossing over between them, and the possibility

of this occurring at an appropriate site will be limited by the length of the shorter MHC

cluster in the pair.

Figures 3.3 and 3.4 illustrate the mechanics of between-gene recombination (Fig 3.3)

and between-exon recombination (Fig 3.4) within the model. For between-gene recombi-

nation the break points are located between exons in an even column number on the left

and exons with an odd column number on the right. For between-exon recombination

the break points are located between exons with an odd number column on the left and

an even exon column number on the right (figure 3.4). For both types of recombination

I select where the break point will occur randomly for both the maternal and paternal

chromosome. When the break points are decided I swap the exons on the right hand side

of break point on the maternal chromosome with the exons on the right hand side of the

paternal chromosome (figures 3.3 and 3.4).
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(a)

  

(b)

Figure 3.3: Diagram illustrating allele recombination. The black crosses represent

break points and only occur in-between alleles (a) is a diagram of chromosomes before

recombination and (b) is a diagram after recombination.

  

(a)

  

(b)

Figure 3.4: Diagram illustrating exon recombination. The black crosses represent

break points and only occur in-between exons (a) is a diagram of chromosomes before

recombination and (b) is a diagram after recombination.

3.2.4 Changing Pathogen Selection

For simplicity, I do not explicitly simulate a co-evolving pathogen population. The

assumption of negative frequency dependence implies some host-pathogen coevolution,

whereby common MHC sequences become disadvantaged by pathogens adapting to evade

their immune recognition. However, I also wanted to include additional possible fluctua-

tions in the selective pressure from pathogens. I therefore also introduced the possibility

of changing pathogen selection (CPS), by allowing the raw fitness contribution (Aij) of

each MHC sequence variant to change according to the following rules.

Each generation I take a proportion of the sequence variants within the population

(α) and assign them new raw fitness contribution values (Aij). For each sequence variant

I generate a new value of Aij from a truncated normal distribution which has a mean

equal to that MHC sequence’s Aij in the previous generation and a standard deviation

of σ. This is meant to capture the possibility of entirely new pathogens arriving in the
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population, against which certain MHC variants may now be advantageous or disadvan-

tageous. However by making the truncated normal distributions mean equal to the MHC

sequence previous value of Aij I allow the change to be influenced by how well adapted

the MHC sequence was before the new pathogen came into the population. As an al-

ready well adapted MHC sequence is more likely to be still relatively well adapted in the

new pathogen climate since the pathogens against which the MHC was originally advan-

tageous are likely to still also be present. By changing the variance of this truncated

normal distribution I can alter the probability of large changes in Aij occurring. The

bigger the variance, the greater the chance of an MHC variant experiencing a big change

in Aij from generation to generation.

3.2.5 Parameter Values

Due to computational limitations we have fixed some parameters (see table 3.1). Justi-

fication for why these value were chose can be found below. Throughout the analysis I

prioritised varying other parameters (such as α).

Parameter Description Values used Figures

N Population size 5000 All Figures

IL Initial number of Loci 2 everything past

section 3.3.2

IA Initial number of Alleles 25 everything past

section 3.3.2

UL Maximum number of gene sequences

allowed in a gene cluster

5 everything past

section 3.3.2

pR The probability a recombination event

will occur per individual per loci

10−4 everything past

section 3.3.2

pM The probability a mutation event

will occur per individual per loci

10−6 everything past

section 3.3.2

Table 3.1: Parameter values which were fixed throughout the results section.
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Here is a list of justifications for the value assigned to each parameter.

N : I needed a population which was computationally feasible to simulate but also

likely to be biologically relevant.

IL: see section 3.3.1

IA: I wanted to start the system with a reasonable number of alleles for an MHC

locus.

UL: this is a plausible value for the organisms that have exhibited CNV (Otting

et al. [2007]).

pR: I needed the rate of recombination to be high enough for CNV to occur over a

reasonable time scale as I have only so much computational power. Sperm typing

studies have directly observed recombination events in hotpots, where they have

seen recombination events 5× 10−6 to 2.4× 10−5 of the time (Clark et al. [2007]).

The number used here is higher than this results but I needed to select a value for

simplicity (and computational expedience)

pM : vertebrate per-nucleotide mutation rates are of order 10−9 and 10−8 per gen-

eration. MHC class I molecule variable chains (the alpha chain -see figure 1.1) are

approximately 300 amino acids long , which means they are encoded by approx-

imately 900 nucleotides. However, mutations in some of those 900 will be silent

(not change amino acids) and others will not change the functional properties of

the protein. The chosen rate (10−6) is at the higher end of what is biologically

reasonable, for computational efficiency.

Other parameter values are varied throughout the results section. For a full list of

parameters see section table B.1 in the Appendix B.1.

3.2.6 Measuring Stability

My analysis concerns the number of MHC sequences on a chromosome ( L). To determine

whether I have run a simulation long enough for this quantity to stabilise, I look at the

behaviour of L̄ : the mean value of L in the population.
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During the simulations I record 50 time steps for the last 25% of generations. I split

these 50 recorded time steps into two groups of 25 (a first half and a second half). For

each group of 25 time steps I calculate the mean L̄ and I take the difference between

these two mean values of L̄ and notate this as L̄diff . For each parameter set I run 100

simulations giving us a distribution of a 100 samples of L̄diff . I then do a one sample

t-test to determine whether or not this distribution has a mean of zero. If the resulting

p value is above 0.05 I assume that the simulations are not trending in any particular

direction and the duration of the simulations is sufficient for the lengths of the clusters

to have reached a stable distribution. As shown in table 3.2, after 1,000,000 generations

all but three of the scenarios had stabilised. For the three which had not, the change in

L̄ over the final 25% of the generations is so small that I do not expect it to change much

until its steady state and are satisfied with presenting the results for those two scenarios.

In appendix B, figure B.1 I illustrate the time series of the distribution of L̄ (section B.2)

for selected parameter sets. In figure B.1 (a) is the only one where L̄ has not stabilised,

where as in (b), (c) and (d) L̄ has stabilised.
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Gen FR β α σ L̄ p value L̄ pass 〈L̄diff 〉

1000000 Null 0 0 0 3.57e-01 3 4.66e-02

1000000 mean 0 0 0 7.53e-03 7 6.07e-02

1000000 mean 0 0.01 0.01 9.358e-01 3 1.93e-03

1000000 mean 0 0.01 0.1 3.69e-01 3 4.66e-03

1000000 mean 0.0001 0 0 6.63e-02 3 4.24e-02

1000000 mean 0.0001 0.01 0.1 1.45e-01 3 5.96e-03

1000000 mean 0.001 0 0 7.35e-03 7 6.41e-02

1000000 mean 0.001 0.01 0.1 9.47e-01 3 2.96e-04

1000000 mean 0.01 0 0 1.06e-01 3 3.65e-02

1000000 mean 0.01 0.01 0.1 1.67e-01 3 6.93e-03

1000000 mean 0.1 0 0 1.64e-01 3 3.03e-02

1000000 mean 0.1 0.01 0.1 5.47e-01 3 2.25e-03

1000000 mean 0.5 0 0 2.41e-01 3 2.89e-02

1000000 mean 0.5 0.01 0.1 1.49e-01 3 4.14e-03

1000000 mean 1 0 0 2.65e-08 7 1.61e-02

1000000 mean 1 0.01 0.1 NaN 3 0

1000000 max 0 0 0 5.43e-01 3 5.09e-03

1000000 max 0 0.01 0.01 8.80e-01 3 1.41e-03

1000000 max 0 0.01 0.1 7.01e-01 3 2.98e-03

1000000 max 0.0001 0 0 7.10e-01 3 2.94e-03

1000000 max 0.0001 0.01 0.1 5.54e-02 3 1.92e-02

1000000 max 0.001 0 0 6.90e-01 3 3.35e-03

1000000 max 0.001 0.01 0.1 5.75e-01 3 5.20e-03

1000000 max 0.01 0 0 2.30e-01 3 8.90e-03

1000000 max 0.01 0.01 0.1 9.04e-01 3 1.35e-03

1000000 max 0.1 0 0 7.47e-01 3 2.56e-03

1000000 max 0.1 0.01 0.1 8.47e-01 3 2.51e-03

1000000 max 0.5 0 0 1.78e-01 3 1.24e-02

1000000 max 0.5 0.01 0.1 1.27e-01 3 1.95e-02

1000000 max 1 0 0 6.13e-01 3 4.68e-03

1000000 max 1 0.01 0.1 1.09e-01 3 4.86e-02

Table 3.2: Table that summarises the stability test done for parameter set used

in the results section The columns represent the following quantities: Gen is the the

number of generations measured for the stability test; FR is the fitness rule I used at the

individual fitness level; β is the proportion of recombination events that are between the

exons of an MHC sequence; α is the proportion of alleles that are affected by CPS each

generation and σ is the standard deviation of the truncated normal distribution I use to

draw the new raw fitness contribution of the allele when its raw fitness contribution is

changed by CPS. 〈L̄diff 〉 is the average value of L̄diff over the 100 simulations.
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3.3 Results

3.3.1 In the absence of pathogen mediated selection, length of

cluster is determined by a combination of (i) the proba-

bility of recombination occurring in any given generation

and (ii) the upper limit to the size of the cluster.

We first explore how the mean number of sequence variants of an MHC in a cluster L̄

behaves in the absence of pathogen mediated selection. I therefore applied no selection

rules to choose each pair of parents, other than if chromosomes longer than the maximum

size of UL or of length zero were created by recombination during the reproduction step,

they would have no chance of being selected as a parent.
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Figure 3.5: Mean lengths of MHC clusters (L̄) in the absence of pathogen

mediated selection for each simulation. Each individual line is the L̄ for a single

simulation. The parameters used are as follows: N = 5000, pR = 1 and β = 0. For the

blue lines UL = 50, red lines UL = 100, green lines UL = 200.

The system stabilises to specific distributions of values for L̄, depending on the upper

limit for the length of the cluster and the probability of recombination happening each

generation. This means that parameters : UL, pR and N all combine to determine the

length of MHC clusters in the model. I regard this as the null state of the model, which

may be altered by including different possible rules about how the presence of different

MHC alleles affect the fitness of a genotype.

For the simulations shown in the remainder of the results section I have selected

population size (N) of 5000, pR = 10−4 and an upper limit of UL = 5. With these values,

L̄ stabilises on a value 2 if determined solely by recombination and UL. I initiate the

population with L̄ = 2 to determine if when I apply pathogen mediated and other forms

of selection into the model, L̄ is shifted from its expected null value.
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Figure 3.6: Lengths of MHC clusters (L) in the absence of pathogen mediated

selection for each simulation. This is a histogram showing the distribution of L for

the final generation of one simulation. The parameters used are as follows: N = 5000,

pR = 1 and β = 0 and UL = 100.

Figure 3.6 shows how L was distributed in the population. We see that all values of

L exist within the population with a decrease towards the upper limit (UL = 100). Some

results do lie above L = 100 as recombination events can still cause this however these

individuals would be given a fitness of 0. The values for L̄ we see in figure 3.5 are the

mean values of distributions like in figure 3.6. We use higher values for UL in this section

than we do in the rest of the results as it gives a clearer picture of the behaviour of L

when there are more states of L to occupy. In the rest of the results we use UL = 5,

which I consider to be biologically more viable.
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3.3.2 A “mean fitness” rule and changing pathogen selection

pressure encourages short MHC clusters.

The first fitness rule I will test is the “mean fitness” rule described in section 3.2.2.2 of

the methods.

Figure 3.7: Mean and variance of the lengths of MHC clusters under the mean

fitness rule. The empty markers are the value of L̄ and V ar(L) for each individual

simulation. The filled in and larger marker is the average value of L̄ and V ar(L) over

the 100 simulations. The parameters used are as follows: N = 5000, Initial number of

exons = 10, Initial number of Loci = 2, UL = 5, pR = 10−4 and pM = 10−6. For the blue

markers α = 0, for the red marker α = 0.01 and σ = 0.1. Simulation with blue markers

has not passed the stability test see table 3.2

In the absence of CPS, the mean fitness rule selects for greater numbers of sequence

variants of an MHC gene in a cluster than the L̄ = 2 expected under the null model

(figure 3.7, blue markers). This increase in L̄ only occurs over very long time scales

and is disrupted by any process which encourages changes in the fitness contributions of
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MHC sequence variants (e.g. CPS or higher mutation rates). I therefore do not regard

this result as particularly biologically plausible.

As CPS of differing levels of intensity is applied, the mean fitness rule selects for

lower and lower values of L̄ (figure 3.7 orange and red markers). The mean fitness rule

allows individuals to have a high fitness only if most or all of the MHC sequences on their

chromosomes are well adapted. If MHC sequence variants’ fitness contributions change

over time (due to the introduction of new pathogens), then longer clusters are more likely

to lead to a drop in individual fitness, simply because they have more sequence variants

present which could have undergone a detrimental change. Short clusters, containing

whichever sequence variants happen to be best adapted in that generation, will tend to

dominate the system. The value of L̄ is strongly related to σ. σ determines how big

a change CPS tends to induce in MHC sequence variants properties. The greater the

value of σ, the bigger the change in fitness contribution an MHC sequence variant could

experience from generation to generation. Thus, figure 6 demonstrates that any process

which tends to increase the magnitude of fitness contribution changes for MHC sequence

variants from generation to generation leads to shorter chromosomes under the mean

fitness rule.

L̄ tells us about trends in the numbers of sequence variants of an MHC gene present

within a single cluster. However, to consider possible variation in MHC cluster length

within populations I also wish to consider the variance of L. Figure 3.7 demonstrates

that the stronger the selection for shorter MHC clusters, the less variation observed in

L. In Appendix B section B.3 I show that any results with lower L̄ tend to also have low

variation in L due to boundary conditions on L.
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3.3.3 A “maximum fitness” rule encourages long clusters, espe-

cially in the presence of changing pathogen selection pres-

sure

Figure 3.8: Mean and variance of the lengths of MHC clusters under the maxi-

mum fitness rule. The empty markers are the value of L̄ and V ar(L) for each individual

simulation. The filled in and larger marker is the average value of L̄ and V ar(L) over

the 100 simulations. The parameters used are as follows: N = 5000, Initial number of

exons = 10, Initial number of Loci = 2, UL = 5, pR = 10−4 and pM = 10−6. For the blue

markers α = 0, for the red marker α = 0.01 and σ = 0.1

Under the maximum fitness rule, all scenarios are above L̄ = 3. The maximum fitness

rule allows individuals to have a high fitness so long as at least one sequence is well

adapted. Under the maximum fitness rule, if a biological process such as mutation, CPS

or a change in allele frequency causes a reduction in the fitness contribution of a particular

MHC sequence within a chromosome, the fitness of the individual will only be affected if

the relevant MHC sequence had previously been the best adapted within the whole cluster.

69



However, if the change happens to increase the fitness contribution of an MHC sequence,

under the maximum fitness rule any such change has the potential to enhance the fitness

of the individual. Thus, given the max fitness rule, positive changes in individual MHC’s

fitness contributions are more likely to affect the overall fitness of the host than negative

changes. Under these conditions, longer MHC clusters, containing more MHC sequence

variants (with more potential to undergo changes in their fitness contribution) tend to be

favoured.

As shown in figure 3.8, we observe longer clusters in the presence of CPS than in

its absence. The inclusion of CPS offers more opportunities for changes in the fitness

contributions of MHC sequence variants, thus increasing the strength of selection in favour

of the longest possible lengths of cluster. The more extreme the CPS, the lower the

variability in L (copy number variation). In these scenarios larger gene clusters are being

selected for more heavily so the populations are entirely longer gene clusters, approaching

the maximum length possible within the system. Looking at both the mean and maximum

fitness rules we see that CPS has drastically different outcomes for L̄. However with both

these rules a stronger CPS means certain MHC cluster sizes are selected for more strongly,

therefore stronger CPS gives rise to lower variations of L (i.e. lower levels of copy number

variation) within populations. In appendix B section B.3 I show how systems that tend

to large numbers of L tend to have lower variance in L due to boundary conditions.

3.3.4 Real world data is more similar to the results of the mean

fitness rule than the max fitness rule

As a comparison to how CNV for the MHC behaves in closely related vertebrate species,

I have plotted L̄ and V ar(L) for humans at the HLA-A and HLA-B and for mauritian

cynomolgus macaques at the Mafa-A and Mafa-B loci. The data was acquired from

Wiseman et al. [2013] figure 2.
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Figure 3.9: Mean and variance of the lengths of MHC clusters from data that

was acquired from Wiseman et al. [2013] figure 2.

As we can see in figure 3.9 we have human HLA A and B which is located at the

bottom left of the figure with an L̄ if 1 and zero V ar(L). For mauritian cynomolgus

macaques mafa-A and mafa-B have higher values for both L̄ and V ar(L). This is not

too far a difference from the results we have obtained in figure 3.7 where we have shown

the level of CNV depends on the intensity of CPS. We can also see when comparing it to

figure 3.8 that figure 3.8 does not show the same patter of results we have here in figure

3.9.
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3.3.5 Allowing recombination hotspots to exist between exons,

as opposed to only between genes, reduces the lengths of

MHC clusters

As noted in the introduction, recombination events can occur between the exons of MHC

sequences as well as between genes and this will generate new MHC sequences at the

same time as changing the lengths of clusters. To explore the potential impact of this

phenomenon, I look at the outcomes where I test an array of different ratios of the two

types of recombination. The proportion β is a parameter I use to decide how many re-

combination breakpoints occur between MHC sequences or between the exons of an MHC

sequence. β = 0 means all recombination breakpoints occur between MHC sequences and

β = 1 means all recombination breakpoints occur between the exons of MHC sequences.
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Figure 3.10: The impact of between-exon recombination and CPS on the lengths

of MHC clusters. Each point on the graph is the average of L̄ over 100 simulations and

the error bars represent the 0.95 percentile of the distribution of L̄. The shaded in area

of the figures represents the 0.95 percentile of the distribution of L̄ for the results where

β = 0 (the dashed line result). (a) and (b) the fitness rule used is the mean fitness rule,

(c) and (d) the fitness rule used is the maximum fitness rule. The parameters used are

as follows: N = 5000, Initial number of exons = 10, Initial number of Loci = 2, UL = 5,

pR = 10−4 and pM = 10−6. For (a) and (c) α = 0 and for (b) and (d) α = 0 and σ = 0.1.

Figure (a) β = 1 has not stabilised see table 3.2.

As can be seen in figure 3.10 we see that for both fitness rules, having a higher value

for β encourages smaller MHC clusters. In Appendix B I show a time series where no

selection is present only boundary conditions on L are applied and β = 1. Figure B.4

in the appendix B shows us that the system tends to an absorbing state of L = 1 for
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every individual in the population when β = 1. The only result above that has the entire

population at L = 1 is in figure 3.10b when β = 1. For every other scenario when β = 1

we see that 〈L̄〉 > 1 showing that the selection rules applied still cause some MHC CNV.

It should also be noted that for the maximum fitness rule, CPS reduces L when β is

higher than 10−2. This contrasts with the results presented in figure 3.8, where when

β = 0, CPS increases L for the maximum fitness rule.

3.4 Discussion

Class I MHC CNV in mammals can be characterised as highly variable. Some organisms

like humans have no Class I MHC CNV while others such as the rhesus macaque have been

found to have haplotypes of mamu-A that contain 2-3 copies of the mamu-A gene. Some

of these differences could be due to radically different selective pressures, however among

primate species it seems reasonable to speculate that the selective pressures acting on

macaque class I MHCs might not have been all that radically different to those acting on

humans. It would therefore be interesting to identify which conditions allow a relatively

small change to give both evolutionary outcomes (no CNV, as is observed for human

MHC class I and CNV, as is observed for macaque MHC class I).

My results show that when the mean fitness rule is applied, applying different levels

of CPS can make the difference between no CNV and some CNV (figure 3.7 red and

orange markers). I therefore propose that (i) the mean fitness rule is a better fit for the

way primate MHC clusters evolve than the max fitness rule (see also figure 3.9), and (ii)

differences between CNV for the MHC between humans and macaques could be due to a

difference in their respective patterns of changing pathogen climates.

The mean fitness rule implies that all MHC gene sequences in a cluster need to all be

functional in order to protect the host. Under these conditions, the more changes that

happened to the host’s pathogen climate, the more shorter gene clusters were selected

resulting in lower CNV (figure 3.7 red and orange markers). Thus, my results imply

humans may have less CNV than macaques because humans have had a more changing

pathogen climate whereas macaques may have had a relatively more static pathogen

climate.

How realistic was this CPS I implemented into the model? CPS was meant to imitate

74



the effect of new pathogens entering or leaving the population, be this from mutations

in an existing pathogen, or a completely new pathogen entering the system. I sought

to model this dynamic by changing the raw fitness contribution (Aij) of the MHC gene

sequences each generation, as the protection these genes gave in the previous pathogen

climate will change when a new pathogen enters it. Examples of MHC alleles giving

individuals increased susceptibility or protection to a pathogen has been a highly studied

topic (Hill et al. [1991]) so saying that the advantageousness of certain MHC alleles would

change due to a pathogen outbreak or disappearance is a reasonable assumption. How

I applied change to Aij was using a truncated normal distribution where the mean of

the distribution would be the previous Aij , I also varied σ to vary how large this change

should be. The reason the distribution had the mean of the previous Aij was so its

previous fitness contribution affected its fitness contribution in the next generation. I

believed if an allele was advantageous in the previous pathogen climate it would have a

higher chance of still being advantageous when a new pathogen enters. I believe this to

be a reasonable assumption as MHC alleles would still convey protection to pathogens

that were and are still in the population. I only change a fraction of the MHC alleles

raw fitness contributions each generation (α). It could be argued to be more realistic to

change all Aij ; as all alleles’ ability to defend a host might be changed if a new pathogen

entered the population.

As I have shown in section B.3 in appendix B,variance in cluster length (CNV) is

reduced when the average number of gene sequences in the clusters in the population

is near the upper or lower boundary allowed within the system (figure B.2). A lower

boundary clearly exists in real populations, and it seems reasonable that the closer the

mean cluster length is to 1, the lower the variation in the number of copies. There

are reasons that there should exist upper limits to how many copies of a MHC gene an

organism has. For example if one had too many different MHC genes showcasing many

different peptides, the important peptides from a deadly pathogen may go unnoticed due

to being less represented on the surface of a cell which is a finite space. However the

number is not necessarily exact and hard bounded. I have shown that even with a softer

boundary condition the effect still occurs (see figure B.3 in supplementary materials) but

the upper boundary in reality maybe very different to the modelled version and may vary
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between individuals which would allow for potentially more variation in gene copies. It

is difficult to say whether or not a evolutionary pressure which heavily encourages larger

MHC gene clusters would actually exhibit lower CNV in populations due to the gene

cluster size being pushed to the upper limit. However for the lower limit this effect would

definitely still occur.

I have shown that between-exon recombination events in general reduce cluster length

(figure 3.10) and in the appendix have shown and explained why this mechanistically

has occurred (section B.1). However even with the steady state found in figure B.4 in

the supplementary materials, MHC CNV was found in the vast majority of the results

including when β = 1 (β is the proportion of recombination events that happen in between

the exons of a gene) especially for the maximum fitness rule. In the absence of between-

exon recombination (β = 0), when the maximum fitness rule is applied, CPS increases L̄,

as explained in section 3.3.3. However I observed that different values of β changed the

effect CPS would have when using the maximum fitness rule. When β was above 10−2

CPS reduced the value of L̄. I am not entirely sure why β > 10−2 would cause CPS to

lower the value of L̄. The results I show in section B.1 (which indicate that between-exon

recombination leads to shorter MHC clusters) could suggest that CPS for the maximum

fitness rule is causing individuals who have had in between exon recombination to be

selected for over individuals who have had between allele-recombination.

Krüger and Vogel [1975] creates a mathematical model to analyse the stable distribu-

tion of numbers of copies of genes in the presence of unequal crossing over. They have

three scenarios they look at. They have a scenario where there is no selection, a scenario

where there is an optimum number of repeated genes and finally scenario where larger

number of genes is advantages. The only comparable scenario to the work here is the

no selection scenario and comparing it to the results in section 3.3.1. In the results we

found that the stable distribution did not depend on the initial number of loci but rather

the upper limit that is given to the number of MHC sequences that a gene cluster may

have. Krüger and Vogel [1975] finds that the initial distribution of gene copies influences

the final stable distribution. However there are multiple differences between the model

outlined here and Krüger and Vogel [1975]. For instance in Krüger and Vogel [1975] no

selection scenario there is no upper limit to the number of copies. They also have a lower
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probability of unequal crossing happening compared with regular crossover events, the

work here the probability of all break points are equal. They also cannot have unequal

crossing over until there are two copies which is not the case of the work here.

Bentkowski and Radwan [2019] uses a individual based model that is similar to the

model used in Borghans et al. [2004] with the added feature of allowing the duplication

and deletion of MHC genes. One of the main results found in this work is that the number

of MHC genes increased with a more diverse pathogen climate, but only when the cost

of having many numbers of gene copies was low.

My model includes inherent differences in fitness contributions between MHC alleles,

but these can change depending on the assumed pathogen climate. In the Bentkowski

and Radwan [2019] model, MHC contribution to individual fitness depends only on what

pathogen types (explicitly modelled) are present. Differences in MHC fitness contributions

in the Bentkowski and Radwan [2019] model are greatest at low pathogen richness (when

it is likely that some MHCs are able to match with pathogens and others can’t). This

means that the results in Bentkowski and Radwan [2019] when pathogen richness is “low”

in their system are most comparable to my results. My maximum fitness rule is also most

comparable to the Bentkowski and Radwan [2019] model, since within the Bentkowski

and Radwan [2019] model, having just one “good” MHC will be enough to defend a host

against a pathogen. In the context of low pathogen richness, Bentkowski and Radwan

[2019] found that higher pathogen mutation rates would cause larger numbers of copies of

MHC genes. I believe this result is comparable to my results in section 3.3.3. More intense

CPS (in my model) is comparable to higher pathogen mutation rates (in Bentkowski and

Radwan [2019] model), and both lead to longer gene clusters if we assume that one “good”

MHC is enough to protect the host. However, I did not consider the results generated

by my maximum fitness rule to be the most realistic, at least for primate class I MHCs,

due to the results figure 3.9 matching figure 3.7 than figure 3.8. The effects of MHCs on

fitness may not be as additive as implied by the Bentkowski and Radwan [2019] model.

Whilst my fitness rules are highly abstracted, they offer a useful contrasting perspective

to the results found by Bentkowski and Radwan [2019].

Bentkowski and Radwan [2019] do not present many results on within-species CNV

per se, but they report they observed it the least at the lowest pathogen richnesses (which,
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in terms of my model, would mean observing less CNV when fitness differences between

MHCs are at their most stark). My results concur with this to some extent in that the

most extreme forms of CPS (which will lead to big differences in MHC fitness contri-

butions) tend to drive the system towards either the longest or shortest MHC clusters,

and hence (as shown in appendix B) CNV is inherently lower (due to reasons discussed in

section B.3). It would be interesting if the phenomenon of pushing up against a boundary

also accounts for the instances of low CNV in the Bentkowski and Radwan [2019] model.

Varying CNV for the Class I MHC has been observed across many organisms. My

model indicates that pathogen selection could have a critical role in determining the level

of MHC CNV observed, and preliminary suggests that a ”mean” fitness rule might apply

to primate class I MHCs. As larger numbers of species are surveyed, improved data such

as that shown in figure 3.9 will allow us to define realistic fitness scenarios with greater

accuracy.
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Chapter 4

The Evolution of MHC

Promiscuity

4.1 Introduction

As mentioned in section 1.1.1 MHC molecules can vary in binding peptide repertoire (Paul

et al. [2013]). In humans the most promiscuous HLA alleles are ones that belong to the

HLA-A2 supergroup (Kaufman [2020]). Pockets in the binding grooves of A2 molecules

can accommodate two or three different amino acids (Madden et al. [1993], Chen et al.

[2012]). In contrast HLA-B*57:01 is considered fastidious for humans; one of its pockets

requires a rare amino acid tryptophan (Illing et al. [2012]). For chickens one of their

most promiscuous MHC alleles is BF2*02:01 (Chappell et al. [2015]). BF2*04:01 encodes

a highly fastidious MHC molecule which requires binding of rare amino acids in each of

three pockets (Wallny et al. [2006], Zhang et al. [2012]). Chickens compared to humans

have the more extreme alleles on the spectrum of fastidious to promiscuous MHC alleles.

Chickens only have one highly expressed MHC class I gene (as opposed to 3 in humans),

and it is believed that this has caused the evolution of these alleles to be so extreme

(Kaufman [2020]).

Both a fastidious and a promiscuous MHC molecule could be advantageous. The ad-

vantages of binding promiscuity, when it comes to responding to pathogens, seem fairly
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obvious: having a wider variety of peptide shapes it can bind means that a promiscu-

ous MHC could help a host to make immune responses against a greater diversity of

pathogens/pathogen strains. The advantageousness of a fastidious allele, by contrast,

can be explained if we suppose that focusing T cell responses against very particular

pathogen peptides (not just any peptide) is the best way to respond to certain pathogens.

It has been shown that fastidious HLA-B*57:01 and HLA-B*27:05 alleles are associated

with better control of HIV and long HIV progression times to AIDS whereas HLA-B*35

is associated with rapid progression (Košmrlj et al. [2010], Gao et al. [2010]).

Many previous models of MHC evolution (see chapter 1) consider MHC alleles as

having flat fitness values and do not consider the complexities of variable MHC attributes.

Siljestam and Rueffler [2019] gives a nice example of representing MHC functionality

without giving flat fitness values to alleles and individuals. They represent MHC alleles

having 10 functioning parts and pathogens also have 10 corresponding parts. These

parts are represented by numbers and the closer the allele parts are to the pathogen

parts the more defended an individual is against that pathogen. They find that allelic

polymorphism is maintained with the heterozygote advantage and alleles adapting to be

more specific to the several pathogens. Here I also implement an allele trait system but

model pathogen selection differently (see Discussion for a full comparison of approaches).

Siljestam and Rueffler [2019] is concerned with arguing heterozygote advantage being a

viable mechanism for maintaining polymorphic loci. In contrast here I ask how pathogenic

climates can shape the fastidiousness or promiscuity of a population’s MHC alleles and

whether or not both generalist and specialist alleles can coexist.

4.2 Methods

Here I will describe the individual based model I designed to gain insight into MHC’s

alleles binding cleft promiscuity. I use an individual based model due to the wide range

of allele properties I wanted to make possible within the system, and hence the wide range

of possible host types.
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4.2.1 Population

The population is represented by an integer column vector (G) which represents the

population’s MHC class I alleles at a single locus. Each row of the vector is a chromosome

and every two rows represents a diploid individual in the population. I have a variable

population size (N) which I limit to a size of K as I wanted to see which scenarios ended

in extinction. The number of elements in G is 2K, integers above zero represent the

different MHC alleles and if the population is not at its limiting size of K, zeros represent

the absence of individuals. For this work we are only considering the population from

the perspective of a single MHC locus. This makes the work especially relevant to the

chicken, which has only 1 highly expressed MHC class I gene (Kaufman [2018]).

Each generation I infect a proportion of the population which I notate as pI . These

infected individuals may die due to rules described later. The population size then in-

creases for the next generation by an amount r. If I notate the proportion of individuals

who die due to infection as pd, the next generation population size would be according to

the following equation:

Nt+1 = Nt(1− pd)r (4.1)

where t represents generation time steps. If Nt+1 > K from equation 4.1 I then say

Nt+1 = K.

4.2.2 Allele Attributes

In this model each allele possesses a set of attributes. The number of attributes is notated

as L. Each attribute represents a potential property of the protein encoded by that allele.

In terms of the MHC each attribute could represent the capacity to bind a peptide shape,

thus the value an MHC allele has for an attribute could represent how fastidiously the

binding cleft of an MHC molecule binds to a peptide motif. These attributes can have a

value between 0 and 1 and are notated as ai where i represents the attribute in question.

I constrain the properties of each allele such that the sum of all their attributes must

be equal to 1. This means that, to continue the MHC analogy, if L = 3, then an allele

with attributes 1,0,0 is a very fastidious allele that binds just one type of peptide motif.

An allele with attributes 0.2,0.2,0.6 is less fastidious but has a preference for binding the

third type of peptide motif. Alleles that have a value of close to 1 in an attribute could
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be considered specialist in terms of this model. Alleles that do not have a high value in

any attribute could be considered generalist.

This terminology gets more difficult the more attributes you have. For instance with

only three attributes you have two types of generalist; the obvious type is an allele having

attribute values close to a 1
3 , the second is an allele having two attributes close to a 1

2 .

To distinguish between alleles which are different types of generalists I will notate them

as Gj where the j represents the number of attributes that have some value for ai that

are above 0 and are close to value 1
j . Generally when the attribute values are close to

the 1
j and L− j attributes have values close to 0 we would call this a Gj allele. Stricter

definitions can be found in section 4.3.4 for a section of the results when L = 3. MHC

alleles that are only good at one attribute, a specialist, I represent as S alleles. Figure 4.1

are examples of ai values for an S MHC allele (figure 4.1a) and a G3 MHC allele (figure

4.1b).

(a) (b)

Figure 4.1: Bar charts illustrating how an allele can be specialist or generalist

in the framework described. (a) is an example of an allele that would be considered

a specialist, (b) is an example of an allele that would be considered a generalist. The

parameters are as follows: L = 3.

In the simulations, I want different types of alleles to emerge through mutations. The

rate of mutation of generalist and specialist alleles will affect the overall dynamics of

how specialist and generalist alleles may co exist. I used two different approaches to
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add new alleles through mutation: a deterministic method in which a fixed proportion of

alleles generated through mutation were completely specialist and a fixed proportion of

alleles were generalists of different properties, and a stochastic method in which mutations

generated alleles along a spectrum from generalist to specialist.

4.2.2.1 Deterministic

These methods are deterministic in the sense that the attribute values are decided before

they are assigned, however which attribute is assigned what value is still stochastic.

When generating alleles I first have to select how promiscuous or fastidious I want the

allele to be. For example if L = 3 there are three types of alleles: one which is good at

all 3 attributes, one that is slightly better but at only 2 attributes and one that is even

better but only good at 1 attribute. The number of attributes an allele will be effective

at (g) depends on L where 1 ≤ g ≤ L. Once g has been decided if g < L I then randomly

decide which attributes will be selected. The value of the attributes selected will then

equal 1
g and the rest will equal 0.

When I want to have all allele types in the system, every time I generate an allele I

randomise g uniformly. This way all allele types from S to GL will be generated with

equal probability.

4.2.2.2 Stochastic

These methods assign attributes values more randomly than the deterministic method

described above. Generating alleles this way allows for more flexibility in allele properties

If I simply generated L uniform random numbers between 0 and 1 (U(0, 1)) for each

attribute notated as Xi and then normalised the values obtained such that they summed

to 1 then I would generate generalist alleles far more often than specialist alleles (see

figure 4.2).
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Figure 4.2: A histogram of values a1 takes when generating alleles using the

normalised attributes method. Parameters used are: L = 3.

As can be seen in figure 4.2 that the most likely alleles produced are just below ai = 0.4

and very few examples of ai being close to 1.

I therefore developed the “one at a time” method to ensure that specialist alleles were still

likely to emerge. I first select the order in which I want to assign value to the attributes

of an allele. For instance if L = 3 I would randomly order the numbers 1 to 3 which

could be 2,3 and 1. I then assign values to the attributes in this order. The first attribute

would then be assigned a random number a2 = U(0, 1). The next attribute would then

be assigned a value of a3 = U(0, 1 − a2). Finally the last attribute would be assigned

whatever is left of the total adding up to 1, in this example a1 = 1− a2− a3. Generating

alleles this way increases the chance of ai being given a value close to 1.
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Figure 4.3: A histogram of values a1 takes when generating alleles using the

normalised attributes method and the one at a time method. Parameters used

are: L = 3.

I use the One at a time method of generating alleles in section 4.3.4 of the results as

it generates all allele types more evenly.

Alleles are introduced in two ways into the system. The first way is to initialise the

population with a certain number of unique alleles. This number is 1000 for all results

in section 4.3. The second way I introduce alleles into the system is through mutations.

When a parent passes on its genes to the next generation there is a probability pM that a

mutation will occur and create a new unique allele that will be inherited instead. When

a method from above is decided for generating alleles attribute values, it is used for both

initialising the alleles in the population and for creating new alleles due to mutations.
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4.2.3 Pathogen Test

I generate a pathogen challenge each generation, in terms of a specific MHC allele attribute

(i), and a minimum threshold value of ai (P) which a host must possess in order to survive

the pathogen challenge. In biological terms, this equates to the existence of a pathogen

where the ability of host MHCs to bind a particular peptide from that pathogen with a

particular degree of fastidiousness is important to successfully combating the infection.

The higher the value of P , the more fastidiousness is required (to give examples from

humans, the more HIV-like the pathogen is in terms of the immune responses which

control it best).

Each generation I applied this pathogen challenge as follows:

• I sum the values for each MHC attribute in the parental generation, and determine

which of these MHC attributes had the lowest values. I select this attribute as the

attribute to be tested. To put this in biologically relevant terms, this represents

a peptide motif which the MHC molecules of the parental generation were the

least likely to bind, and a pathogen bearing this motif is doing especially well in

the population during the current generation. I notate the attribute that is being

tested as aT .

• I infect a proportion pI of the population, chosen at random.

• For each infection I generate a random number P between 0 and 1. If an indi-

vidual is infected and does not have an allele in their genotype for which aT ≤ P

that individual will die and have zero chance of passing on their genes to the next

generation.

• Everyone who has survived the pathogen test or has not been infected will all be

equally likely to be selected as a parent to pass on their genes to the next generation.

How P is distributed determines the evolutionary outcome I get. I chose to generate

P using a Kumaraswamy distribution, because this distribution is capable of taking a

range of contrasting relevant shapes. The Kumaraswamy distribution has the following

probability density function:
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f(P, a, b) = abP a−1(1− P a)b−1 (4.2)

where P ∈ (0, 1). The parameters a and b are non negative. Examples of what the

probability density function looks like for the Kumaraswamy distribution are shown in

figure 4.4. If I use a distribution for P like the red line (a = 5 and b = 1) it would mean

that very fastidious binding is required to survive infection, most of the time however for

something like the yellow line (a = 1 and b = 3) a fastidious binding is rarely required.
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Figure 4.4: An example of the probability density function for the Ku-

maraswamy distribution for varying values of a and b. (a) is an example of

f(P ) when a and b vary. (b) is an example of f(P ) when a = 1 and b varies. (c) is an

example of f(P ) when b = 1 and a varies.
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4.2.4 No Co-evolution

In section 4.3.5 I investigate how a pathogen climate that does not depend on properties

of the host population affects evolutionary outcomes. I do this by randomly selecting each

generation which attribute will be selected for testing. This random selection is instead

of selecting the attribute that was least represented in the previous generation.

4.2.5 Defining different evolutionary outcomes

In my results I represent an evolutionary outcome with a specific colour. First I define

allele types into three groups: the first being the most fastidious alleles of type S, the next

are alleles which are the most promiscuous of type GL, are and finally alleles of which are

not the most fastidious or promiscuous, alleles of type G2 up to GL−1. For each value of

a and b I run 50 simulations. From the combined results of all 50 simulations I calculate

the proportion of alleles present in the final generation that are each allele type (as just

defined). According to these proportions I define each evolutionary outcomes as follows:

• If the proportion of an allele group is above 0.1 and the other two are below 0.1, I

define that scenario as a population that is dominated by one allele type. For this

I have three colours, red for S , green for G2 to GL−1 and blue for GL.

• If the proportion of 2 allele group types is above 0.1 and the other is below 0.1 I

define this population as being dominated by 2 allele groups. This is again three

colours yellow for populations with S and G2 to GL−1. Purple for populations with

S and GL allele types. Turquoise for populations with G2 to GL−1 and GL allele

types.

• If all allele group types are above 0.1 I represent this with the colour white.

Below is a venn diagram (figure 4.5) which illustrates the different colours used to

define the evolutionary outcomes I have detailed above. These colours will be used con-

sistently throughout the results section, to indicate the relevant combination of allele

types.
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S GL

G2...GL-1

Figure 4.5: A venn diagram illustrating the different evolutionary outcomes I

have defined.

4.3 Results

4.3.1 Sporadic outbreaks of pathogens requiring fastidious im-

mune responses, against a background of pathogens re-

quiring less fastidious responses, favour the coexistence

of generalist and specialist MHCs

We first look at the case for when L = 2 as this is the simplest number of attributes I

can have that will give us specialists (S) and generalists (G2). To explore a wide range

of P distributions I use the Kumaraswamy distribution. This distribution has a bounded

PDF and is defined around two parameters a and b (see section 4.2.3). I vary a and b
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from 0.1 to 10 on a log scale as this parameter range produces all evolutionary outcomes

of interest when performing single simulations. I first consider a case where the host

population never becomes extinct. In this example pI = 0.0909 and r = 1.1. As I do not

know the pI value that causes extinction for all the possible combinations of a and b I use

pI = 0.0909 because even if all the individuals in the pathogen test die r = 1.1 is large

enough to reproduce individuals back up to the limit population size K (see equation C.1

in supplementary materials).
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Figure 4.6: Which allele types co-exist for varying a − b parameter space, for

two binding attributes. (b) shows the distributions of P that correspond to the shaded

square on the heat map (a), the colour of each line corresponds to the colour of the

shaded square. Different colours represent the allele type/types that are predominant.

Red represents alleles of type S, blue of type G2 and purple a mix of type S and G2. The

parameters are as follows: L = 2 and PM = 10−5, r = 1.1, PI = 0.0909, N = 5000 and

generation simulated to 20,000.

For the case of L = 2 I see three evolutionary outcomes for different parameter space

of a and b (figure 4.6). The entirely red region is where populations have predominantly

S MHC alleles, the entirely blue region the population has predominantly G2 alleles

which for the case of L = 2 are the most general alleles. I finally have a region where

the populations tend to have a mixture of S and G2 MHC alleles co existing (figure 4.6
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purple).

If the pathogen test is more likely to require fastidious binding (a higher P ) then

generally specialists are selected for as they are the only MHC alleles that can withstand

the test (see figure 4.6b red line). If the pathogen test does not require fastidious binding

(a lower P ) then generalists are selected for given that a generalist allele can amply protect

against both pathogens (see figure 4.6b blue line). In the scenario where both types of

alleles co-exist the test sometimes requires high fastidiousness but most of the time the

generalist will suffice, we see in figure 4.6b that the purple line is in between these two

extreme distributions of P .

For L = 3 I again want to explore the parameter space of a and b. I again set

pI = 0.0909 and r = 1.1 as I do not know the pI value that causes extinction for all the

possible combinations of a and b.
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Figure 4.7: Which allele types co-exist for varying a−b parameter space, with 3

possible binding attributes. (b) shows the distributions of P that correspond to the

shaded square on the heat map (a). The colour of each line corresponds to the colour of

the shaded square with the exception of the black line which represents the white shaded

square in (a). Different colours represent the allele type/types that are predominant. Red

represents alleles of types S, green of type G2 and blue of type G3. The other colours

represent populations with multiple allele types present (yellow S and G2, purple S and

G3, turquoise G2 and G3 and white all allele types). The parameters are as follows: L = 3

and PM = 10−5, r = 1.1, PI = 0.0909, N = 5000 and generation simulated to 20,000.

In figure 4.7 we see regions of a and b parameter space where each allele type for

L = 3 dominates. We also see like we did in figure 4.6 that we get regions where S and

G2 alleles co-exist and we get regions where G2 and G3 alleles co-exist. However we now

see there are even regions where S and G3 alleles co-exist (figure 4.7a). The reason this

might be surprising is because you might expect G2 to thrive instead of the co-existence

of G3 and S. However this latter state is clearly being selected for over only G2 alleles in

the purple region of figure 4.7a.

As can be seen in figure 4.7b, purple line, the distribution has a higher chance of being

very small or very large. The rise in f(P ) for smaller values of P is larger than the rise

in f(P ) for larger values of P . For L = 3 in order for S and G3 to be selected for this
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needs to be the case for if the ends of the distribution were symmetrical the system is

dominated by S MHC alleles for the case of L = 3. Meaning the P test needs to be more

likely to have smaller values than larger ones for S and G3 MHC alleles to be selected.

It should be noted that in figures 4.6 and 4.7 I do not explicitly show if co-existence

is occurring for each simulation just that there are multiple allele types over the 50

simulations. In section C.2 of the supplementary materials I show that these regions of

multiple allele types existing over the 50 simulations correspond also to where co-existence

of multiple allele types exist in single simulations.

If I increase the number of attributes past L = 3 we do not see any new interesting

features to the heat map for the parameter space of a and b currently explored (see figure

4.8).
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Figure 4.8: Which allele types co-exist for varying a− b parameter space, with

5 possible binding attributes. Different colours represent the allele type/types that

are predominant. Red represents alleles of type S, green of type G2, G3 and G4. Blue

represents alleles of type G5. The other colours represent populations with multiple allele

types present (yellow S with G2, purple S with G5, turquoise G2, G3 and G4 with G5 and

white all allele types). The parameters are as follows: L = 5 and PM = 10−5, r = 1.1,

PI = 0.0909, N = 5000 and generation simulated to 20,000.

For L = 5, if I group alleles into the most specialist S, the most generalist G5 and

those that are in between G2, G3 and G4 (figure 4.8) we get a very similar picture of

evolutionary outcomes as we did for L = 3 (figure 4.7). If I group alleles this way it does

not seem to introduce any new features to the heat map.
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4.3.2 If extinction can occur, the parameter space in which en-

tirely specialist alleles emerge is severely limited

I have shown how evolutionary outcomes are affected by the distribution of P when

extinction cannot occur. Now I will vary pI (proportion of population infected each

generation) and allow the possibility of extinction, to get more perspective on how this

affects outcomes. I again generate P with a Kumaraswamy distribution. When P is from

a uniform distribution (when a = b = 1), S MHC alleles are selected for when L = 3.

From this I know then that if I make high values for P more likely it will only result in

populations evolving to have S type alleles. I want to go from a uniform distribution of

generated P to distributions of P where lower values are more likely to occur. In order

to achieve this I keep a = 1 and I vary b from 1 to 10. I also vary pI from 0.1 to 1. I

also investigate evolutionary outcomes over this parameter space when only certain allele

types are present. For instance I investigate how well a population survives with only S

alleles or only G2 alleles or combinations of these and so on.
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Figure 4.9: Which allele types co-exist for varying PI − b parameter space. Dif-

ferent colours represent the allele type/types that are predominant. Red represents alleles

of types S, green of type G2 and blue of type G3. The other colours represent popula-

tions with multiple allele types present (yellow S and G2, purple S and G3, turquoise

G2 and G3 and white all allele types). How dark the square is represents the size of the

population (black means went extinct). For each heatmap only a limited amount of allele

types were inputted in the system, (a) S, (b) G2 and (c) G3, (d) S & G3 and (e) S, G2

& G3. The parameters are as follows: L = 3, PM = 10−5, r = 1.1, a = 1, N = 5000 and

generation simulated to 20,000.

A population with only specialist alleles can only survive in a very limited parameter

space (figure 4.9a). We see that populations with only S alleles can survive for all values of

b but only at the lowest values for PI . Suggesting that even for P distributions that mainly

give lower numbers S alleles are not a viable strategy if the amount of the population that

gets infected is too high. Given how I have generated specialists as having no value in the
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other attributes, whenever a host is infected with a pathogen that is testing an attribute

they do not have a specialist for, they will die. If the population size of infected hosts

whose MHC genotypes does contain the specialist allele that is being tested is consistently

larger than the population increase due to reproduction then extinction will occur. This

is the reason why we see population values of S alleles going extinct for PI ≥ 0.2 for all

values of b.

When all allele types are in the system (figure 4.9e) we see as b increases from 1 to

10 that we move from the simulations tending to be dominated by S type alleles to G3

alleles. In between these two extremes we see regions where G2 alleles thrive and regions

where it is mixed which allele type dominates just as we have seen previously (figure 4.7).

We can see in figure 4.9e that as b increases there is a larger range of pI where populations

do not go extinct. We also note that pI can vary which allele type is being selected for

but only very slightly, it seems to mainly determine whether or not a population will go

extinct.

4.3.3 Coexistence of generalist and specialist alleles generally

coincides with the greatest allelic diversity

The allele types present in a population determine the allelic diversity within that popu-

lation.
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Figure 4.10: Heat Map representing the average number of alleles over a − b

parameter space. Figures (a), (b) and (c) are heat maps representing the number of

unique alleles over a and b parameter space for L = 3, L = 5 and L = 10. Figures (d), (e)

and (f) represent the proportion of varying allele types over a and b parameter space for

L = 3, L = 5 and L = 10 respectively. Different colours represent the allele type/types

that are predominant in the population. The colour red represents S alleles, the colour

blue represents GL alleles and green represents all allele types from G2 to GL−1. The

other colours represent populations with multiple allele types present (yellow S with G2

to GL−1, purple S with GL, turquoise G2 to GL and white all allele types). For figure

(a), (b), (c) and (d) N = 5000 and for figures (e) and (f) N = 10, 000. The parameters

are as follows: PM = 10−5, PI = 0.0909 and generation simulated to 20,000.

The least polymorphic populations are the ones that have the most generalist MHC

alleles (figure 4.10). This is likely due to the fact that if MHC alleles cover all attributes

there are less available niches for other MHC alleles to co-exist. As the number of at-

tributes increases from L = 3 (figure 4.10a and 4.10d) to L = 10 (figure 4.10c and 4.10f)
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we see that populations including specialist alleles tend to have greater allelic diversity.

A specialist population with a higher L requires more alleles to cover all attribute types.

However for all scenarios the highest allelic diversity regions seem to be where allele types

(i.e. the broad types of ”generalist” or ”specialist”) co-exist or at least close to these

regions. We see this in figure 4.10c and that its highest values occur in the white regions

of figure 4.10f.

4.3.4 If allele properties are generated stochastically, the cur-

rent classification for allele types fails to explain the range

in promiscuity of MHC alleles

In section 4.2.2.2 I outline a method of generating alleles stochastically. Generating alleles

this way allows us to see more possible allele types that may form. In figure 4.11 I explore

the same parameter space in figure 4.7 using the “One at a time” method of generating

allele attributes.
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Figure 4.11: Heat Map representing how much of the population had each allele

type. Different colours represent the allele type/types that are predominant. The colour

red represents S alleles, the colour blue represents G3 alleles and green represents G2

alleles. The other colours represent populations with multiple allele types present (yellow

S with G2, purple S with G3, turquoise G2 with G3 and white all allele types) The

parameters are as follows: L = 3, PM = 10−5, PI = 0.0909, N = 5000 and generation

simulated to 20,000.

We see similar regions of allele types when I compare figure 4.11 with 4.7. The major

difference we see is in the top right region where all allele types seem to be somewhat

equally selected for in figure 4.11. I believe this difference in the top right region happens

due to f(P ) being large at lower values for P , which I believe makes it easier for all allele

types to potentially exist. The reason we do not see this in the deterministic case of

generating alleles is because for the case L = 3 there are only 3 allele types (in terms

of promiscuity) and so the type of allele that dominates in the top right region is more
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distinct than when the alleles are generated stochastically. However in figure 4.11 the

regions depend on how I define each allele type. With a different definition of allele types

we could make the top right region to be dominated by G3 allele types, it all depends

how we define this. Here is a list of conditions I used to define the three allele types in

figure 4.11:

• Allele type is S if any attributes are above 0.7. ai > 0.7 for i = 1, 2 or 3.

• Allele type is G2 if any attributes are between 0.4 and 0.7 and any attribute is below

0.1.

• Allele type is G3 if all attributes are above 0.1. ai > 0.1 for i = 1, 2 and 3.

These definitions I have made to include every type of allele produced stochastically.

However my definitions of S, G2 and G3 allele types make less sense here as now any

possible combination of trait fitnesses adding up to 1 (ai where i is the trait) are now

possible. To explore the full properties of the alleles, I plot the allele attributes on ternary

plots for all 7 possible combinations of allele types (see Venn diagram figure 4.5)
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Figure 4.12: Ternary Plots showing the attributes of stochastically generated

alleles that are within the system for varying values of a and b. Different

colours represent the allele type/types that are predominant in the population as defined

above (see section 4.2.5 and figure 4.5). The size of each marker represents the frequency

that allele was in the population. The parameters are as follows: L = 3, PM = 10−5,

PI = 0.0909, N = 5000 and generation simulated to 20,000. (a) a = 3.79 and b = 0.34,

(b) a = 1.83 and b = 7.85, (c) a = 0.7 and b = 7.85. Each plot shows all alleles present

at the end of each of 50 simulations.
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(a) (b)

(c) (d)

Figure 4.13: Ternary Plots showing the attributes of stochastically generated

alleles that are within the system for varying values of a and b. Different colours

represent the allele type/types that are predominant in the population as defined above

(see section 4.2.5 and figure 4.5), Except for figure (d) where we use black to make the

figure clearer however this represents the white evolutionary outcome . The size of each

marker represents the frequency that allele was in the population. The parameters are

as follows: L = 3, PM = 10−5, PI = 0.0909, N = 5000 and generation simulated to

20,000. (a) a = 1.13 and b = 1.83, (b) a = 0.13 and b = 0.43, (c) a = 0.55 and b = 2.34,

(d) a = 0.21 and b = 0.89. Each plot shows all alleles present at the end of each of 50

simulations.
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In figure 4.12 we see for figures 4.12a, 4.12b and 4.12c that we get alleles of attribute

values that converge quite well on my definitions of allele types for S G2 and G3. However

when we look at the remaining cases where multiple allele types co-exist (figure 4.13) we

see that the alleles present are also in areas of the plot that are blended between the allele

types I have defined. This is particularly true for figure 4.13d, which corresponds to the

value of parameters a and b that generates the maximum possible coexistence between

specialists and different types of generalists. In this panel, we see alleles present that

cover the whole attribute landscape and not just the areas covered by figures 4.12a, 4.12b

and 4.12c.
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Figure 4.14: Ternary Plot showing the properties of stochastically generated

alleles in a scenario where the maximum possible range of different allele types

coexist. Different colours represent different simulations, each unique colour belongs to

one simulation. The parameters are as follows: L = 3, PM = 10−5, PI = 0.0909, N =

5000, generation simulated to 20,000, a = 0.21 and b = 0.89. Here we are looking at 4

simulations.

In figure 4.14 I have used the same values for a and b that produced the plot 4.13d,

but this time focus on 4 individual simulations. For any given simulation, allele attributes

are spread across the ternary plot. All attributes are covered, but how these attributes

are covered can vary from simulation to simulation. For example the yellow dots show
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us that this simulation ended with three alleles: a specialist (S) , a generalist (G3) and

a single G2 allele type. The blue dots however do not seem to have as clear of a G3

allele as the yellow dots. When looking at figure 4.13d it gives the impression that alleles

attribute can belong anywhere, which is true but it needs corresponding alleles in the

same population to cover other attributes as shown in figure 4.14.

4.3.5 When the pathogen test is independent of the host’s ge-

netic landscape, there is less MHC allelic diversity as well

as more unstable MHC allele lifetimes.

So far, all the results that have been displayed used the co evolutionary mechanism, that

the pathogen attribute that is tested is the least represented attribute in the previous

generation of the host population. I wanted to see how the evolutionary outcomes might

differ if I instead uniformly randomly select the pathogen attribute to be tested each

generation.

106



(a) (b)

(c) (d)

Figure 4.15: Histograms highlighting impact of coevolution in the model. Panels

(a) and (c) compare the difference in the number of alleles in the final generation of

the model. panels (b) and (d) compare the average ages of alleles present in the final

generation (the mean of the number of generations that each had been present in the

population). Each panel shows the results from 50 simulations. The parameters are as

follows: PM = 10−5, N = 5000 and generation simulated to 20,000. For (a) and (b),

a = 0.545559, b = 1.12884, L = 3, and PI = 0.2. For (c) and (d), a = 0.336, b = 0.546,

L = 5 and PI = 0.14. a and b values were chosen to coincide with a parameter space

where the maximum range of allele types coexisted.

It should be noted I use different values for PI for when L = 3 and L = 5. I do

this as depending on the value of L, how high PI can be before populations go extinct
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decreases as L increases. Therefore different values of PI are needed if I want to pressure

the population with pathogen selection but also not let the population go extinct. When

L = 3 (top row of fig 27), there is not a big difference in the number of alleles present

between the two types of simulation. However when I increase L to 5 we start to see there

is a difference in the number of alleles in the final generation. The same trend of difference

is observed for the average allele lifetimes. As I increase L we see that co evolution

mechanisms in the model seem to increase the lifetime of the alleles and also increase the

number of alleles present. When L is small the cyclic effects of which attribute is being

tested (due to the co evolutionary process of picking the least represented attribute) may

not differ mechanically too much from just randomly selecting which attribute is tested.

As I increase L the co-evolutionary process is more likely to test a different attribute than

one selected at random.
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(a) (b)

(c)

Figure 4.16: Histograms highlighting the impact of coevolution on allele lifetime, for

different allele types. All figures are histograms of the mean lifetime of the alleles present

in each simulation (how many generations they have been in the population). Figure (a) is the

average lifetimes of S alleles, figure (b) is the average lifetimes of G2...GL−1 alleles and figures (c)

is the average lifetimes of GL alleles. The parameters are as follows: PM = 10−5, a = 0.545559,

b = 1.12884, L = 3, PI = 0.2, N = 5000 and generation simulated to 20,000. a and b values were

chosen to coincide with a parameter space where the maximum range of allele types coexisted.
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(a) (b)

(c)

Figure 4.17: Histograms highlighting the impact of coevolution on allele lifetime, for

different allele types. All figures are histograms of the mean lifetime of the alleles present

in each simulation (how many generations they have been in the population). Figure (a) is the

average lifetimes of S alleles, figure (b) is the average lifetimes of G2...GL−1 alleles and figures

(c) is the average lifetimes of GL alleles. The parameters are as follows: PM = 10−5, a = 0.336,

b = 0.546, L = 5, PI = 0.14, N = 5000 and generation simulated to 20,000. a and b values were

chosen to coincide with a parameter space where the maximum range of allele types coexisted.

As can be seen in figure 4.16 and 4.17 , the biggest impact of co-evolution seems to

be on the lifetime of specialists (S) alleles, and this difference is most striking for L = 5
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(figure 4.17a).

It seems possible that the differences observed when considering the average lifetime

of all alleles in figure 4.15d was mainly being driven by differences in the lifespan of

specialist alleles.

p values have been presented for each panel, and they do indicate that the difference

seen in figure 4.17a is significant; however, since the distributions of allele lifespans display

such widely different patterns in all the panels, interpreting and comparing p values

between the panels is not very meaningful.

Since the numbers of simulations were the same for each panel, p values provide a

way of ranking how much the distributions differ within each panel (with higher p values

indicating small or no difference and smaller p values indicating a bigger difference). I

acknowledge however that using a cutoff of 5% is not especially meaningful when dealing

with results of simulations, and so defining some of the differences as “significant” is not

strictly valid.

4.3.6 Discussion

I have presented a model which illustrates how pathogen selection can drive the evolution

of specialist or generalist MHC alleles, or the co-existence of the two. My model focuses

on the probability of a host being challenged by a pathogen which requires a particular

level of MHC specialisation for that host to survive (i.e. the probability of meeting a

pathogen where the fastidiousness of MHC molecules matters). I have shown that different

distributions of pathogen properties (P ) can produce all possible combinations of co-

existing alleles within my model. However, the specific (and allelic diversity maximising)

co-existence of specialist and generalist alleles requires a distribution of P with a particular

shape (see figure 4.7). Kaufman [2018] proposes that chickens possess MHC alleles which

encompass a more extreme spectrum than those of humans, thus chicken MHC class I

alleles range from very fastidious to very promiscuous, whilst human MHC class I alleles

occupy a narrower range. Within my model, the white region (which captures the greatest

range of coexisting allele types) could thus be compared to the chicken MHC. Humans

could be compared to the green regions or any region that involved G2...GL−1.

I have shown that different distributions of P give varying results when it comes to
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MHC promiscuity in our model. As I have mentioned the white regions could represent

chicken populations while green could represent human populations. The shape of f(P )

for the green regions of figure 4.7, has highest point around the value 0.3 for P whereas for

the white areas in figure 4.7 f(P ) has a much flatter shape across all values of P . I have

plotted the cumulative distribution of P (F (P )) in the supplementary materials (figure

C.2) as well as a table showing the values of F (P ). These results show us that maybe

for white regions to occur, high values of P can only occur every 20th generation and for

green regions high values of P cannot occur in order for the middle valued alleles to exist.

Our results suggest that perhaps chickens have been subjected to pathogens that require

a more fastidious MHC allele recognition, more often than humans have been subjected

to such pathogens. The exact shape P would be for organisms is not really possible to

know as it is an abstract quantity but it may be possible to deduce, for certain/host

pathogen systems, the likely frequency with which a highly fastidious immune response

may be required.

Chimpanzees have an MHC allele Patr-B*06:03 that has been found to reduce the viral

load of SIV (Wroblewski et al. [2015]). Patr-B*06:03 is structurally similar to HLA*B57,

which we know is also associated with a reduced viral load for HIV as mentioned in section

4.1 (Košmrlj et al. [2010], Gao et al. [2010]). As mentioned HLA-B*57 is a fastidious

MHC molecule in terms of its peptide repertoire and it is not unreasonable to assume

Patr-B*06:03 is also fastidious given the similarity in structure. Given HIV is a relatively

new pathogen for humans we will not witness much evolutionary effects of the pathogen

however SIV may have been present with chimpanzees for much longer. It would be

fascinating to study the population genetic pattern of chimpanzee MHC promiscuity, and

relate this to whether SIV tends to be present in every generation, or tends to die out/re

occur sporadically in chimpanzee populations.

Is it reasonable to assign a finite number of attributes an MHC allele can be good at?

For HLA-A and B there have been categorised 10 HLA supertypes which are groups of

binding cleft specificities (Sette and Sidney [1999]). These different groups can account

for the vast majority of HLA alleles for A and B. These groups are defined by which

alleles share common binding motifs however they do not necessarily represent the peptide

binding repertoire each allele has as pointed out by Kaufman [2020]. When I use attributes
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in the work here I imagine each attribute could represent a specific peptide shape from a

pathogen and the value an allele has in that attribute is how well that shape can be held

by the binding cleft of that MHC molecule. When a mutation occurred in our model I

generated a new allele and had to assign new values to each attribute. For the majority

of the results I did this by making allele types using the “deterministic” method. This

method guaranteed I would get alleles of all types equally. However it could easily be

argued as not correct as some allele types have more variations than others. For instance

if L = 3, S type alleles have three variations but G3 alleles only have 1 variation. G3

alleles are just as likely to be generated as S alleles even though there are more variations

of S alleles. It could be argued I should have generated every possible variation of alleles

equally. How does MHC alleles promiscuity change with mutations in reality? A mutation

is only likely to change the properties of one pocket of a binding cleft. I do not know

whether the change is likely to make this pocket more or less promiscuous.

In this model we assume a very simplistic infection mechanism. Each generation I

infect a proportion pI of the population randomly. For a single simulation this value of

pI is fixed meaning there is no epidemiological feedback. Another assumption is that if

a host did not have a high enough value for ai when attribute i was being tested they

would die if they were infected which could be considered a very strict and fast cut off

for survival as it is binary whether you survive or do not survive. The reason for the lack

of explicit epidemiological modelling and drastic survival conditions is I wanted a simple

way to induce selection on my hosts according to their MHC alleles. Wanting to see how

the hosts evolve and also modelling infectious disease would make analyses much more

difficult in a already complicated system.

Kaufman [2018] suggests that humans have evolved to have a smaller range of MHC

binding promiscuities than chickens due to having multiple MHC class I molecules ex-

pressed. An obvious improvement to this study would be the addition of multiple loci

in the model. We could see the effects this would have on the evolutionary outcomes

over a, b parameter space. Given that it is believed chickens have more promiscuous and

fastidious alleles due to having only 1 MHC molecule it would be interesting to see if more

loci would in fact increase the size of the region of the middle allele types (G2...GL−1).

We observe that when using co evolutionary mechanisms we have higher numbers of
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alleles and alleles that have longer lifetimes. This result is in line with other previous the-

oretical works about co evolution and allelic diversity (Borghans et al. [2004]). Borghans

et al. [2004] developed a model where both host and pathogen are selected for. Borghans

et al. [2004] compares the stable number of alleles in a simulation when pathogens are se-

lected for as well (coevolution) and when they are not. They find similar results as I have

here that coevolution causes there to be a greater number of alleles and that individual

alleles stably remain in the population.

Varying MHC molecule peptide repertoire has been observed for humans and for

chickens in detail (Paul et al. [2013], Kaufman [2020]). The theoretical study of why

MHC molecules would evolve to have varying peptide repertoires has not been studied.

Here I present a model that represents MHC alleles as having different attributes that

can have finite amounts of fitness in the total of these attributes. I show how a pathogen

climate can shape the promiscuity of MCH alleles and what type of pathogen climates

give what type of evolutionary outcome.
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Chapter 5

Conclusion and Future work

In this thesis I explored the evolutionary dynamics and epidemiological consequences of

MHC genetic diversity. This work was split into three distinct parts.

In chapter 2 I used an epidemiological ODE model to model a multi strain pathogen

in a host population where hosts are defined by their MHC (or, to use the human specific

nomenclature HLA) genotype at a single locus. I showed that varying the frequency of

HLA alleles in a population changed the levels of which pathogen strain in the system

was most prevalent. This in turn changed how an odds ratio measurement would change,

if the odds ratio measurement only took into account infection by a pathogen and not a

specific pathogen strain. I showed that the perceived protection a HLA allele gave a host

from infection was negatively correlated with the presence of said HLA allele.

My results suggest that if case control studies are trying to find associations between

HLA alleles and a multi strain pathogen disease outcome, that the associations should be

done with specific pathogen strains rather than with infection in general by a pathogen of

that species. Some work which has taken this into account has already done this (Toyo-

Oka et al. [2017], Salie et al. [2013]). Toyo-Oka et al. [2017] shows that when not grouping

their cases into pathogen strains they find no associations but do find associations when

splitting the cases into pathogen strain groups. One of the major difficulties (besides

having to sequence the pathogen in every infected individual) for future work to take

advantage of this insight is how pathogen strains would need to be defined and grouped.

My results suggest a potential solution to this challenge. I observed that if an HLA
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allele does confer protection to a specific pathogen strain, the apparent measured protec-

tion that HLA allele gives a host against the pathogen in general is inversely correlated

with the frequency of said allele. If multiple case control studies of HLA associations with

infectious diseases have been carried out in different populations, then it would be possi-

ble to measure if a particular HLA allele’s association with infection with a multi strain

pathogen is correlated with the frequency of said allele within a population. Future work

could be to conduct a specific form of meta analysis of HLA case control studies. This

would involve plotting the odds ratio for HLA protectiveness against infection against the

frequency of the HLA allele of interest and see if any correlation of the two is occurring. If

a correlation is occurring it could be a sign that the allele is associated with a particular

strain rather than the pathogen itself.

Case control studies to find associations between MHC alleles and disease outcome

are still being performed (Ben Shachar et al. [2021]). Ben Shachar et al. [2021] perfomed

a case control study where the cases were individuals who tested positve for SARS-CoV-2

by PCR and the controls were individuals who tested negative. Ben Shachar et al. [2021]

found no associations between any HLA alleles and testing positive or negative for SARS-

CoV-2 by PCR. SARS-Cov-2 is still evolving and it would be interesting to see if HLA

alleles are more or less protective in association with new emerging strains.

In chapter 3 I used an individual based model to model copy number variation (CNV)

among MHC genes in a population. I used unequal crossing over as a mechanism for

generating more copies of an MHC gene on a chromosome, and allowed mutations to

generate variation amongst MHC genes. I tested different rules for how MHC genotypes

(with variable numbers of copies of genes) would interact with pathogens. I found that

a “mean fitness rule” (where the fitness of a host is equal to the average fitness of said

hosts allele fitnesses) meant that the number of copies of MHC genes on chromosomes was

inversely correlated with the intensity of changing pathogen selection. Such a mechanism

could explain why species such as macaque and humans have varying CNV for the MHC.

My results imply that humans could have less CNV in the MHC than macaques due to

having a more changing pathogen climate compared to macaques.

I further show that when recombination happens in between exons of a gene (where

116



the gene itself gets new properties at the same time as possibly increasing or decreasing

the number of copies of a gene in a cluster) we see a general trend to observing fewer

copies of MHC genes in clusters. I showed the steady state for a scenario including only

between-exon recombination, with no pathogen selection present, to be a single copy of

a gene for the entire population. Even with this steady state, however, interactions with

pathogens (e.g. obeying the maximum fitness rule ) can generate systems which have

multiple copies of MHC genes.

To fully understand the mechanisms occurring in chapter 3, a more analytical ap-

proach could be taken that gives more insight than using an individual based model.

Analytical work on unequal crossing over and the distribution of repeated genes has had

some attention (Krüger and Vogel [1975], Takahata [1981], Baake [2008], Shpak and At-

teson [2002]). Extensions of works like this to include selection that is more fitting to

MHC genes could give clearer insights why some species exhibit CNV but others do not,

that are difficult to extract from an individual based model.

In chapter 4 I used an individual based model in which MHC alleles were given different

attribute values representing how well the MHC molecule could bind to a particular type

of peptide shape. I showed that varying pathogen climate, in terms of how frequently

the recognition of a particular peptide with a particular level of binding fastidiousness

is needed, could generate differing MHC genetic landscapes in terms of MHC peptide

binding repertoire. The frequency of requiring recognition of a pathogen peptide with a

particular degree of fastidiousness was captured by the distribution of parameter P . I

compared evolutionary outcomes from the model to the examples of humans and chicken

MHC peptide repertoires and showed what f(P ) distributions caused these outcomes.

I noted that the cases where all allele types were present (i.e where specialist and all

potential forms of generalists co-exist) were for particular shapes of f(P ). My model also

demonstrated a previously identified behaviour (Borghans et al. [2004]), that the inclusion

of co evolutionary mechanisms produced systems with greater numbers of MHC alleles.

A useful extension of this work would be to use the same model principles but extend

it to have multiple numbers of loci. As mentioned previously Kaufman [2018] suggests

that the reasons humans do not display such stark differences between very fastidious
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and very specialised MHC alleles could be due to the fact they have multiple MHC class

I loci. With the model presented here and increasing the number of alleles one could see

how it affects the promiscuity of alleles in the system.

Current research is investigating the potential of deep neural networks to predict

binding affinities of MHC molecules (Jin et al. [2021], Jiang et al. [2021], Cheng et al.

[2021]). Such work could also be used like Paul et al. [2013] to analyse predicted binding

repertoires as well as peptide binding affinities and could extend to see if such quantities

correlate. This could also be extended to see how such quantities like the peptide binding

repertoire or peptide binding affinities vary across different species or populations. Any

patterns observed could be the subject of further study using evolutionary simulations

building on the work of chapter 4.

The use of theoretical models for examining MHC evolution is a difficult process as for

every model huge assumptions have to be made and decisions on model mechanisms have

to be made when the reality is certain mechanisms are just unknown. For example in

chapter 3 I assume that MHC alleles experience negative frequency dependent selection,

when the topic of whether or not frequency dependent selection is occurring for the MHC

is still debated (Peng et al. [2021]). Until greater experimental evidence is available, such

assumptions will always be the weak points of any theoretical modelling of the MHC. In

the absence of experimental evidence, variations of model types on the same questions

is a great way to explore mechanically why things are occurring. One of the best ways

models can help is when they suggest a new way of measuring something that might give

insight into underlying mechanisms in the MHC’s evolution. For example in chapter 2 I

give an example of how we might observe frequency dependence in the measured ability

a HLA allele offers a host using meta analysis of case control studies see section 2.4.

In the work here I have used individual based models and ODE models. Individual

based models have the advantage of being able to model more complicated mechanisms

but at the same time are very difficult to analyse. ODE models are useful and are easy

to model infectious disease mechanics as well as being easier to analyse. However for

complicated host types as I have explored in chapter 3 with varying numbers of loci, an

individual model seemed like a fitting type of model.
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The MHC is an extremely interesting gene region being one of the most polymorphic

in all vertebrates. Given the role of MHC molecules in the immune system it is highly

likely that MHC loci have co evolved with pathogens. This very relationship is why it

has been very difficult to determine the exact mechanisms that causes the MHC’s many

interesting features. This thesis has contributed to three specific, yet relatively-little

studied questions about the MHC:

• Why do case control studies that investigate the association between HLA alleles

and infectious disease outcomes get contradicting results?

• Why have different species evolved to have varying degrees of CNV for the MHC?

• Why have different species evolved to have varying MHC promiscuity?

I hope my models and the results of my analyses presented here have gone some way

towards answering these questions, and that my work will help contextualise and explain

MHC properties and behaviours as they continue to be uncovered.
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Chapter 2 supplementary

material
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A.1 Table of Notation

Notation Definition

σi
Recovery rate for hosts who do not have the correct allele for memory immune

responses.

µi

Recovery rate for hosts who do have the correct allele for memory immune

responses.

βi Transmission rate.

c
A proportion c of the force of infection from a pathogen strain will be applied

to hosts who are already infected with another pathogen strain.

α
A proportion α of recoveries will recover to being immune to all pathogen

strains.

pi Gene frequency of allele i.

Nnm
ij

Proportion of hosts of genotype ij in the n state with pathogen strain 1 and

in the m state with pathogen strain 2.

Si Ii Ri

The proportion of the population that are Susceptible, Infected and Recovered

respectively with pathogen strain i.

P (I | i)

P (I | î)

The proportion of hosts with allele i that are infected and the the proportion

of hosts without allele i that are infected respectively.

ORi The odds ratio of being infected given you have HLA allele i.

n(I | i)

n(I | î)

n(Î | i)

n(Î | î)

The number of hosts who are infected and have allele i. The number of hosts

who are infected and do not have allele i. The number of people who are not

infected and have allele i. The number of people who are not infected and do

not have allele i respectively.

ΩB ΩA

The difference between the minimum and maximum values of p1 at which the

odds ratio is significantly below and above 1 respectively.

Iii Iîi Iî̂i

The proportion of hosts who are infected in the genotype group who are ho-

mozygous with HLA allele i, who are heterozygous with HLA allele i and who

do not have HLA allele i respectively

Table A.1: Table of notations used in chapter 2
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A.2 Two Strain, Two Allele Model

The ODEs for the main two strain, two allele model in which HLA allele 1 confers the

ability to develop a memory immune response against pathogen strain 1, and HLA allele

2 confers the ability to develop a memory immune response against allele 2, are as follows:

dNSS
ij

dt
= dpipj(2− δi,j)−

∑
k

λkN
SS
ij + ((1− δ1,ij)σ1N IS

ij

+ (1− δ2,ij)σ2NSI
ij )(1− α)− dNSS

ij

dNSI
ij

dt
= λ2N

SS
ij − λ1NSI

ij c− (1− δ2,ij)σ2NSI
ij − δ2,ijµ2N

SI
ij

+ (1− δ1,ij)σ1N II
ij )(1− α)− dNSI

ij

dN IS
ij

dt
= λ1N

SS
ij − λ2N IS

ij c− (1− δ1,ij)σ1N IS
ij − δ1,ijµ1N

IS
ij

+ (1− δ2,ij)σ2N II
ij )(1− α)− dN IS

ij

dN II
ij

dt
= λ1N

SI
ij c+ λ2N

IS
ij c− (1− δ1,ij)σ1N II

ij − (1− δ2,ij)σ2N II
ij

− δ1,ijµ1N
II
ij − δ2,ijµ2N

II
ij − dN II

ij

dNSR
ij

dt
= δ2,ijµ2N

SI
ij − λ1NSR

ij + (1− δ1,ij)σ1N IR
ij (1− α)− dNSR

ij

dN IR
ij

dt
= λ1N

SR
ij − (1− δ1,ij)σ1N IR

ij − δ1,ijµ1N
IR
ij + δ2,ijµ2N

II
ij (1− α)− dN IR

ij

dNRS
ij

dt
= δ1,ijµ1N

IS
ij − λ2NRS

ij + (1− δ2,ij)σ2NRI
ij (1− α)− dNRS

ij

dNRI
ij

dt
= λ2N

RS
ij − (1− δ2,ij)σ2NRI

ij − δ2,ijµ2N
RI
ij + δ1,ijµ1N

II
ij (1− α)− dN IR

ij

dNRR
ij

dt
= δ1,ijµ1N

IR
ij + δ2,ijµ2N

RI
ij + α((1− δ1,ij)σ1(N IS

ij +N IR
ij +N II

ij )

+ (1− δ2,ij)σ2(NSI
ij +NRI

ij +N II
ij ) + δ1,ijµ1N

II
ij + δ2,ijµ2N

II
ij )− dNRR

ij ,

(A.1)

where

δ1,ij = δ1,i + δ1,j − δ1,iδ1,j , (A.2)

where δ1,ij = 1 if at least one index is 1 and 0 otherwise i.e. terms preceded by (1− δ1,ij)

contribute only to individuals of genotype 22.
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A.3 Three Strain, Three Allele Model

In order to investigate the impact of increasing complexity I introduced a third pathogen

strain and a third HLA allele at the considered locus.
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Figure A.1: The possible infectious states of the population and pathways be-

tween them in the three strain, three allele model. (a) is a flow chart of the

possible paths a host of any genotype ij can take from initially being susceptible to all

pathogen strains. (b) is a flow chart specifically for a host of genotype 11.
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Figure A.1 illustrates the different states possible for hosts in the 3 strain model. The

the notation in figure A.1 is the same as for two strain, two allele model described in

the Methods of the Main text. SIR indicates a host is susceptible to pathogen strain 1,

infected with pathogen strain 2 and immune to pathogen strain 3. There are six genotypes

in this model (ij = 11, 12, 22, 23, 33, 13). Since a host can only posses two HLA alleles,

no host can become immune to all three pathogen strains, so there is no RRR class of

hosts. Representative ODEs for the three strain, three allele model are as follows:

NSSS
ij

dt
=dpipj(2− δi,j)−

∑
k

λkN
SSS
ij

+ (1− δ1,ij)σ1N ISS
ij + (1− δ2,ij)σ2NSIS

ij

+ (1− δ3,ij)σ3NSSI
ij − dNSSS

ij

N ISS
ij

dt
=λ1N

SSS
ij − (1− δ1,ij)σ1N ISS

ij − δ1,ijµ1N
ISS
ij − dN ISS

ij

NRSS
ij

dt
=δ1,ijµ1N

ISS
ij − λ2NRSS

ij − λ3NRSS
ij

+ (1− δ2,ij)σ2NRIS
ij + (1− δ3,ij)σ3NRSI

ij − dNRSS
ij

(A.3)

There is no coinfection or strain transcending immunity included in the three strain

model.

A.4 Further analyses including HLA alleles which are

not strain specific in their effects.

In order to investigate how the presence of HLA alleles with non-strain-specific effects

affect the outcomes of my model, I adapted the three allele system so that allele 1 and

2 remain strain specific, but allele 3 confers no ability to recognise any strain (a useless

allele) or allele 3 confers the ability to recognise strain 1 and strain 2 (a perfect allele). I

only allowed pathogen strains 1 and 2 to circulate. Tables A.2 and A.3 illustrate which

epidemiological rules different host genotypes follow for each pathogen strain.
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Genotype Strain 1 behaviours Strain 2 behaviours

11 SIR SIS

12 SIR SIR

13 SIR SIS

22 SIS SIR

23 SIS SIR

33 SIS SIS

Table A.2: Host epidemiology when HLA allele 3 recognises neither pathogen strain 1

and 2.

Genotype Strain 1 behaviours Strain 2 behaviours

11 SIR SIS

12 SIR SIR

13 SIR SIR

22 SIS SIR

23 SIR SIR

33 SIR SIR

Table A.3: Host epidemiology when HLA allele 3 recognises both pathogen strains 1 and

2.
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Figure A.2: OR1 and its relationship with the frequency of HLA allele 1 in a

3 allele system containing a useless or perfect allele. The solid line is OR1 when

allele 3 is useless (does not confer the ability to mount a memory immune response against

any strain). The dashed line is OR1 when allele 3 is perfect (confers the ability to mount

a memory immune response against all strains). The parameter values are: d = 0.01,

βi = 0.06, µi = 0.02 and σi == 0.02 (i = 1, 2). For the solid line σ3 = 0.02 for the dashed

line µ3 = 0.02.

When allele 3 is useless we still see that OR1 is positively correlated with p1, and

switches from below 1 to above 1 as p1 increases (figure A.2, solid line). When allele

3 is a perfect allele (figure A.2, dashed line) it is harder for allele 1 to exhibit strong

protectiveness against the prevailing local infection, due to allele 3 being protective against

both pathogens strains. However, despite this, even when allele 3 is a perfect allele OR1

is below 1 for low values of p1 and OR1 follows the same general trends we see in the

multi pathogen strain systems in figure 2.
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Figure A.3: OR1 and its relationship with the frequency of HLA allele 1 in a

2 allele system containing a useless or perfect allele. The solid line is OR1 when

allele 2 is useless (does not confer the ability to mount a memory immune response against

any strain). The dashed line is OR1 when allele 2 is perfect (confers the ability to mount

a memory immune response against all strains). The parameter values are: d = 0.01,

βi = 0.06, µ1 = 0.02 and σ1 = 0.02 (i = 1, 2). For the solid line σ2 = 0.02 for the dashed

line µ2 = 0.02.

In a system containing only alleles 1 and 2, where allele 2 is a useless allele, OR1 = 1

for almost all of p1 (figure A.3, solid line). This is due to pathogen strain 2 out competing

pathogen strain 1 in this system at all frequencies of p1. In this system, no host can ever

become immune to strain 2, so strain 2 always has an advantage. Once strain 2 has out

competed strain 1, allele 1 is just as useless as allele 2, hence OR1 = 1.

In the case where HLA allele 2 is a perfect allele (figure A.3, dashed line), hosts who

have HLA allele 1 are always found to be more at risk of being infected with the prevailing

local infection. Genotypes containing HLA allele 2 will be able to become immune to both
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strains 1 and 2, whilst genotypes containing only HLA allele 1 will only ever be able to

become immune to strain 1, hence the constant advantage to allele 2.

A.5 Further analyses of how protective or risky asso-

ciations may arise and be detected.

A.5.1 Lower sample sizes

In figure 7 of the main text I show how OR1 and its 95% confidence intervals vary when

I introduce more pathogen strains into the system. Here I reproduce the same plot but

for the case where we have 100 cases and 100 controls as the sample size.

(a) (b) (c)

Figure A.4: OR′1 and its relationship with the frequency of HLA allele 1. The

highlighted regions are the 95% confidence intervals for OR′i. (a) illustrates a system

with one pathogen strain and two HLA alleles in the population. (b) illustrates a system

with two pathogen strains and two strain specific HLA alleles within the population.

(c) illustrates a system with three pathogen strains and three strain specific HLA alleles

within a population. The confidence intervals were calculated with a sample size of

100 cases and 100 controls (see Methods for further details). The parameter values are:

d = 0.01, βi = 0.06, µi = 0.02 and σi = 0.02 (i = 1, 2, 3).

We see in figures A.4b and A.4c (where more than one pathogen strain is present)

that the confidence interval for OR1 overlaps 1 at all allele frequencies. The trend of

OR1 is identical to that of figure 7 in the main text and we see in figure A.4b that the

upper boundary of the confidence interval is closer to the value 1 than it is in figure A.4c.

129



However if I increase R0 we do get frequencies of p1 at which OR1 is significantly below

1 even with the smaller sample size (figure A.5).

(a) (b) (c)

Figure A.5: OR′1 and its relationship with the frequency of HLA allele 1. The

highlighted regions are the 95% confidence intervals for OR′i. (a) illustrates a system

with one pathogen strain and two HLA alleles in the population. (b) illustrates a system

with two pathogen strains and two strain specific HLA alleles within the population.

(c) illustrates a system with three pathogen strains and three strain specific HLA alleles

within a population. The confidence intervals were calculated with a sample size of

100 cases and 100 controls (see Methods for further details). The parameter values are:

d = 0.01, βi = 0.15, µi = 0.02 and σi = 0.02 (i = 1, 2, 3).

A.5.2 Further analyses of how pathogen properties affect OR and

Ω.

In the Methods I introduced the odds ratio for allele i (ORi):

ORi =

(
P (I | i)

1− P (I | i)

) / (
P (I | î)

1− P (I | î)

)
. (A.4)

In the results of the main text I defined pcrit as the pi value at which ORi crosses

the value 1. To find an analytical formula for pcrit I first write out the terms in equation

(A.4) as functions of pi.

P (I | i) =
Iiip

2
i + Iîi2pi(1− pi)
p2i + 2pi(1− pi)

,

P (I | î) =Iî̂i.

(A.5)
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Here Iii is the proportion of the homozygotes who have allele i that are infected. Iîi is

the proportion of the hetrozygotes who have allele i and are infected. Iî̂i is the proportion

of hosts who do not have allele i and are infected. Substituting (A.5) into the formula

for ORi and applying the conditions, pi = pcrit when ORi = 1 I can solve for pcrit and

acquire an expression for pcrit.

pcrit =
2Iî̂i − 2Iîi

Iii + Iî̂i − 2Iîi
. (A.6)

I calculated values for Iii, Iîi and Iî̂i numerically, and explored how pcrit varies when

σ and R0 are varied, for both the two strain and three strain systems (figure A.6).
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Figure A.6: The behaviour of pcrit, and key quantities affecting pcrit, as R0 and

σ are varied in the two strain, two allele system and the three strain, three

allele system. (a) and (c) are of the two pathogen strain model. (b) and (d) are of

the three pathogens strain model. The parameter values are: d = 0.01. For (a) and (b)

R0 = 5, µi and σi are increased from 10−1 to 101. For (c) and (d) µi and σi are 10−1

and R0 is increased from 2 to 20.

In figures 7 and 8 of the main text, I introduced Ω, the difference between the max-

imum and minimum values of p1 at which the odds ratio is significantly below (ΩB ) or

above (ΩA). pcrit is the maximum possible value of ΩB , and (1− pcrit) is the maximum

possible value of ΩA. The behaviour of pcrit under different values of R0 and σ, in the two

strain, two allele and three strain, three allele systems (figure A.6) helps to explain the

patterns observed in figures 7 and 8 of the main text. The value pcrit takes is determined

by the balance between Iii, Iîi and Iî̂i, and the relationship between these quantities is
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ultimately determined by competition between the pathogen strains. Anything which

promotes coexistence of the pathogen strains at higher values of p1 increases pcrit, and

anything which discourages that coexistence decreases pcrit.

In the two strain, two allele system there is a negative relationship between σ and pcrit

(figure A.6a). Increasing σ it increases the competition between the two strains. Figures

A.7 and A.8 show that as σ is increased the transition at which one pathogen strain

dominates over other occurs over a shorter range of p1. Increasing σ allows pathogen

strain 2 to dominate at lower values of p1, hence decreasing pcrit.

In the two strain, two allele system a particular value of R0 is associated with a

minimum value of pcrit. As R0 is increased or decreased from this value, pcrit increases

(figure A.6c). As shown in figure A.8 the fastest relative change between the frequencies

of the two pathogen strains occurs when R0 = 5 for all values of σ shown. This is the

value of R0 where, pcrit is at its lowest. At values of R0 < 5, the two pathogen strains

coexist, both at a low level, for a wide range of values of p1 (see figure A.7). When both

pathogen strains are only present at a low level it is harder for one to out-compete the

other. At values of R0 > 5, the two pathogens are also more likely to coexist, since they

both occur at generally higher frequencies (figure A.7). The value of R0 which minimises

coexistence (here approximately 5), also minimises pcrit. Changes away from this value

of R0 in either direction increase strain coexistence and increase pcrit.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.7: The effect of the frequency of allele 1 on the balance between the

pathogen strains, and how this changes for different values of R0 and σ, in

the two strain, two allele system. The parameter values are: d = 0.01. For (a), (b)

and (c) σ = 101, for (d), (e) and (f) σ = 100 and for (g), (h) and (i) σ = 10−1. For (a),

(d) and (g) R0 = 2, for (b), (e) and (h) R0 = 5 and for (c), (f) and (i) R0 = 20. βi is

calculated as βi = R0(d+ σ).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.8: The effect of the frequency of allele 1 on the balance between the

pathogen strains, and how this changes for different values of R0 and σ, in

the two strain, two allele system. The parameter values are: d = 0.01. For (a), (b)

and (c) σ = 101, for (d), (e) and (f) σ = 100 and for (g), (h) and (i) σ = 10−1. For (a),

(d) and (g) R0 = 2, for (b), (e) and (h) R0 = 5 and for (c), (f) and (i) R0 = 20. βi is

calculated as βi = R0(d+ σ).

In the three strain, three allele system, we observed very little relationship between

R0 and σ and ΩA and ΩB , other than a minimal threshold value of R0 and σ required

to generate a statistically significant pattern. As shown in figure A.6, in the three strain,

three allele system, changes in R0 and σ have a much smaller impact on pcrit than in

the two strain, two allele system. This is due to the different characteristics of Iîi in the

two strain and three strain systems, which places different constraints on pcrit. In the

two strain model, Iîi contains only genotype 12 hosts who can become immune to either

strain in the population. In the three strain model, Iîi contains genotype 12 and 13 hosts,
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which can each only become immune to two out of the three strains in the system. Hence,

in the three strain model, Iîi takes higher values, and behaves far more similarly to Iî̂i

than in the two strain model. The relationship between Iii, Iîi and Iî̂i determines what

values pcrit can take. In the 3 strain model, Iii, Iîi and Iî̂i are more similar than in the

2 strain model, and this limits the range of values of pcrit. The limited range of values

of pcrit leads to the lower variability in ΩB and ΩA observed for the three strain, three

allele system.
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B.1 Table of Notation

Notation Definition

G Matrix of integers that represent the populations MHC alleles.

IL Initial number of loci in the system.

IA Initial number of unique MHC alleles in the system.

N Population size which is constant during simulation.

UL

Upper limit on the number of copies of a gene that can be present on a chro-

mosome.

S =
∑N

n=1 Sn Individual n has a fitness of Sn and the sum of the populations fitness is S.

[ij] exon i and j form MHC allele [ij].

Aij the raw fitness value of MHC allele [ij] .

pij the allele frequency of MHC allele [ij] .

fij = Aij(1− pij)
the actual fitness of MHC allele [ij] after we account for negative frequency

dependence.

pM The probability a mutation event will occur per individual loci

pR The probability a recombination event will occur per individual loci

L The number of copies of a gene in a MHC cluster

L̄ The average number of copies of a gene in a MHC cluster in the population

β
The proportion of recombination events where the break point occurs between

the exons of a gene

α
The proportion of MHC alleles that has its raw allele fitness changed due to

changing pathogen selection in the model

σ
The standard deviation of the truncated normal distribution to assign a alleles

raw fitness after changing pathogen selection has occurred

Table B.1: Table of notations used in chapter 2

138



B.2 Time Series

To better understand how the simulations behave here I show a time series of the mean

of L̄ and the error bars are the 95 percentile of the distribution of L̄ (figure B.1).
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Figure B.1: Showing a time series of L̄. (a) and (b) use the mean fitness rule and (c)

and (d) use the max fitness rule. The parameters used are as follows: N = 5000, Initial

number of exons = 10, Initial number of Loci = 2, UL = 5, pR = 10−4 and pM = 10−6.

For (a) and (c) α = 0, for (b) and (d) α = 0.01 and σ = 0.1

The reason there are more data points towards the end of 1,000,000 generations in

figure B.1 is due to this being the data points I use to determine if the simulations have

reached stability in terms of L̄.
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B.3 The closer L̄ is to the boundaries the lower the

variance of L

Figure B.2: Highlighting the differences in outcome by comparing L̄ and V ar(L)

for varying degrees of CPS when using the max fitness rule. The parameters

used are as follows: N = 5000, Initial number of exons = 10, Initial number of Loci =

2, UL = 5, pR = 10−4 and pM = 10−6. For the blue markers α = 0, for the red marker

α = 0.01 and σ = 0.1

Here I have plotted all simulations from every scenario run in this work. I note that

whenever L̄ is close to the upper and lower boundary the lower V ar(L) is. This is

expected as I have defined hard boundaries and if either short or long gene sequences are

selected for then the system would tend to the edge of the boundaries defined. In terms

of trying to replicate reality this is fine for the lower limit as there would be a lower limit

in reality for an MHC gene. If an organism went below one gene copy (zero copied) then

they have lost all means of that gene’s functionality. However the upper limit is less likely
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to be such a hard boundary. Here I have tested how a softer boundary affects V ar(L) as

longer genes are being selected for.

I created a soft boundary that gradually decreases linearly the fitness of an individual

when they pass the upper boundary of 5. This decrease will eventually hit 0 when the

gene length is 10 or more.

0 0.5 1 1.5 2 2.5
1
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3

4

5

Figure B.3: Mean and variance of MHC clusters when applying soft and hard

boundary conditions. The empty markers are the value of L̄ and V ar(L) for each

individual simulation. The parameters used are as follows: N = 5000, Initial number of

exons = 10, Initial number of Loci = 2, UL = 5, pR = 10−4, pM = 10−6, α = 0.01 and

σ = 0.1

In figure B.3 we see that the soft boundary results do not seem to differ from the hard

boundary results. This was tested for the maximum fitness rule and using CPS due to

that scenario selecting for longer gene clusters.
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B.4 Absorbing state when all recombination events

occur between exons

Here I show how L̄ changes when β = 1 and no selection rules are present but the

boundary conditions on L.
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Figure B.4: Mean lengths of MHC clusters (L̄) in the absence of pathogen

mediated selection. Both (a) and (b) are of 50 simulations, (a) is a time series of L̄

for each simulation. (b) is a time series of the average of l̄. The parameters used are as

follows: N = 5000, pR = 1 and β = 1. For the blue lines UL = 50, red lines UL = 100,

green lines UL = 200.

In figure B.4 we see that before we reach generation 200,000 that every simulation has

reached the absorbing state of every individual having an L = 1. This occurs due to when

β = 1, when an individual has a chromosome with L = 1 and a chromosome with L = n

(n > 1), recombination between these two gene clusters can only produce gene clusters

with n or less gene sequences in them. So systems that have β = 1 are more drawn to

L = 1 and when everyone having chromosomes of L = 1 is an absorbing state.
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C.1 Table of Notation

Notation Definition

G Column vector of integers that represent the populations MHC alleles.

Nt The number of individuals in the population at generation t.

K The carrying capacity.

L The number of attributes alleles are represented by.

ai The fitness value used for attribute i.

r The population increases by the proportion r each generation.

r The population increases by the proportion r each generation.

pI Each generation a proportion pI of the population is infected.

pM The probability a mutation event will

P
Is the random number generated from a Kumaraswamy distribution which

represents the pathogen test for that generation.

f(P ; a, b) The probability density function of P .

F (P ; a, b) The cumulative distribution function of P .

a and b Parameters of the Kumaraswamy distribution, a > 0 and b > 0.

S Denotes an allele that has a high fitness value in one attribute (specialist).

Gi Denotes an allele that has a high fitness value in i attributes (generalist).

Table C.1: Table of notations used in chapter 4
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C.2 Proportion of simulations that had co-existing al-

lele types
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Figure C.1: (a) Heat Map representing how much of the population had each

allele type and (b) represents the proportion of simulations that have multiple

allele types in each simulation. Different colours represent the allele type/types that

are predominant in the population. Red represents alleles of types S, green of type G2

and blue of type G3. The other colours represent populations with multiple allele types

present (yellow S and G2, purple S and G3, turquoise G2 and G3 and white all allele

types). (b) shows the proportion of simulations that had multiple allele types which had

a frequency above 0.1. The parameters are as follows: L = 3 and PM = 10−5, r = 1.1,

PI = 0.0909, N = 5000 and generation simulated to 20,000.
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In section 4.3.1 I show figures 4.6a and 4.7a which are also shown above in figures C.1a

and C.1c. These figures show which allele types are present in the 50 simulations for the

parameter space a and b. It does not show if co-existence is actually occurring for allele

types in a single simulation, it just shows that there are multiple allele types over the 50

simulations. As we are concerned with whether or not co existence is occurring between

allele types, I have produced figure C.1b and C.1d which shows us the proportion of the

50 simulations which had multiple allele types over 0.1 allele frequency. As can be seen

in figure C.1 the regions in figuresC.1b and C.1d coincide with the regions in figures C.1a

and C.1c. This showcases when we observe multiple allele types over the 50 simulations

we are seeing coexistence of allele types within each single simulation as well.

C.3 No Extinction limit

If

PI < 1− 1

r
(C.1)

then no extinction can occur.

C.4 Cumulative distribution of P

Here I have plotted the cumulative distribution of P (F (P )) for the various probability

density functions of P (f(P )) that I have plotted throughout the result.
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Figure C.2: Plots of the probability density function and cumulative distribu-

tion of P for various values of a and b. (a) is a plot of the probability density function

of P (b) is a plot of the cumulative distribution of P . The colours match the scenarios

for the varying allele promiscuity co existence for the case of L = 3.

Here is a table that shows the value of F (P ) for the same values of a and b in figure

C.2a.

a b P F (P ) 1− F (P )

4.83 0.16 0.9 0.1385 0.8615

0.16 6.16 0.9 1.0000 0.0000

0.13 0.43 0.9 0.8424 0.1576

1.83 6.16 0.9 1.0000 0.0000

0.55 1.83 0.9 0.9949 0.0051

1.44 1.83 0.9 0.9725 0.0275

0.7 1.13 0.9 0.9497 0.0503

Table C.2: Table that shows the value of F (P ) for varying values of a and b.
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