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ABSTRACT

Inference of effective population size from genomic data can provide unique information about

demographic history, and when applied to pathogen genetic data can also provide insights into

epidemiological dynamics. The combination of non-parametric models for population dynamics with

molecular clock models which relate genetic data to time has enabled phylodynamic inference based

on large sets of time-stamped genetic sequence data. The methodology for non-parametric inference

of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist

approach based on non-parametric latent process models of population size dynamics. We appeal to

statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that

control shape and smoothness of the population size over time. Our methodology is implemented in a

new R package entitled mlesky. We demonstrate the flexibility and speed of this approach in a series

of simulation experiments, and apply the methodology to a dataset of HIV-1 in the USA. We also

estimate the impact of non-pharmaceutical interventions for COVID-19 in England using thousands of

SARS-CoV-2 sequences. By incorporating a measure of the strength of these interventions over time

within the phylodynamic model, we estimate the impact of the first national lockdown in the UK on

the epidemic reproduction number.
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INTRODUCTION

Past fluctuation in the size of a population is reflected in the genealogy of a sample of individuals from

that population. For example, under the coalescent model, two distinct lines of ancestry coalesce (i.e.

find a common ancestor) at a rate that is inversely proportional to the effective population size at any

given time (Kingman 1982; Griffiths and Tavare 1994; Donnelly and Tavare 1995). More coalescent

events are therefore likely when the population size is small compared to when the population size is

large. This causal effect of population size on genealogies can be reversed in an inferential framework

to recover past population size dynamics from a given pathogen genealogy. This approach to inference

of past demographic changes was first proposed 20 years ago (Pybus et al. 2000, 2001; Strimmer and

Pybus 2001) and has been fruitfully applied to many disease systems (Pybus and Rambaut 2009; Ho

and Shapiro 2011; Baele et al. 2016).

Population size analysis is often performed within the Bayesian BEAST framework (Suchard et al. 2018;

Bouckaert et al. 2019) which jointly infers a phylogeny and demographic history from genetic data.

Here we focus on an alternative approach in which the dated phylogeny is inferred first, for example

using treedater (Volz and Frost 2017), TreeTime (Sagulenko et al. 2018) or BactDating (Didelot

et al. 2018), and demography is investigated on the basis of the phylogeny. Although potentially

less sensitive, this approach has the advantage of scalability to very large sequence datasets, which is

why it has attracted increasing attention over the past few years (Didelot and Parkhill 2022). This post-

processing approach also allows more focus on models and assumptions involved in the demographic

inference itself as previously noted in studies following the same strategy (Lan et al. 2015; Karcher

et al. 2017; Volz and Didelot 2018; Volz et al. 2020). However, some of the methodology and results

we describe here should be applicable in a joint inferential setting as well.

The reconstruction of past population size dynamics is usually based on a non-parametric model,

since the choice of any parametric function for the past population size would cause restrictions and

be hard to justify in many real-life applications (Drummond et al. 2005; Ho and Shapiro 2011).

However, even if a non-parametric approach offers a lot more flexibility than a parametric one, it

does not fully circumvent the question of how to design the demographic model to use as the basis of

inference. For example, the skygrid model considers that the logarithm of the effective population size

is piecewise constant, with values following a Gaussian Markov random field, in which each value is
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normally distributed around neighbouring values and standard deviation determined by a smoothing

hyperparameter (Gill et al. 2013). This model can be justified as an approximation to the skyride model

in which the logarithm of the population size is allowed to change at each coalescent time following a

Brownian motion (Minin et al. 2008). Alternatively, the skygrowth model is a similar Gaussian Markov

random field on the growth rate of the population size (Volz and Didelot 2018). Both models can be

conveniently extended to explore the association between population size dynamics and covariate data

(Gill et al. 2016; Volz and Didelot 2018).

The skygrid, skygrowth or other similar models can be assumed when performing the inference of

the demographic function, and the effect of this model choice has not been formally investigated.

Furthermore, these non-parametric models require several model design choices which are often

given little consideration in practice. This includes the number of pieces in the piecewise constant

demographic function, the location of boundaries between pieces, and the prior expectation for the

difference from one piece to another. All of these model design choices may have significant effect

on the inference results. Several previous studies have investigated some of these questions, and our

study therefore represents an additional contribution to the growing body of research on this topic.

Strimmer and Pybus (2001) used the Akaike information criterion (AIC) to choose the number and

position of pieces in the demographic function. Parag and Donnelly (2020) compared this AIC with

the Bayesian information criterion (BIC) and a frequentist generalisation of both. On the other hand,

Opgen-Rhein et al. (2005) proposed a reversible jump Markov Chain Monte-Carlo to estimate the

dimension and smoothing of the demographic function. Minin et al. (2008) developed significance

tests for the difference from one skyline piece to another, while Palacios and Minin (2013) attempted

to reframe the smoothing selection problem within a Gaussian process framework. Gill et al. (2013)

proposed the skygrid model described above, whereas the previous Bayesian skyline plot (Drummond

et al. 2005) sampled across the locations of boundaries and used a different demographic function. The

parameter controlling the smoothness of the population size function is usually assumed to have an

arbitrary non-informative prior distribution in a Bayesian inferential setting (Minin et al. 2008; Gill

et al. 2013). As an exception to this, Faulkner et al. (2020) use weakly informative priors and present a

method for automatically setting the hyperparameter for the global scale of the step increments. Most

recently, (Parag et al. 2022) developed metrics for choosing both the resolution and smoothness based

on how much information they contribute to effective population size estimates, and (Bouckaert 2022)
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combined conjugate gamma priors on the effective population size with Markov Chain Monte-Carlo

integration to implicitly perform the regularisation.

Here we propose several statistical procedures to optimise these variables and implement them in a

new R package entitled mlesky. In particular, we propose a frequentist statistical approach based on

out-of-sample prediction accuracy in order to select the smoothness parameter. We tested the effect of

these procedures on simulated datasets, where the correct demographic function is known and can be

used to assess the relative accuracy of inference under various conditions. We applied our methodology

to real data on HIV-1 in the USA and SARS-CoV-2 in England.

MATERIALS AND METHODS

Demographic Models

Let the demographic function Ne(t) denote the effective population size of a pathogen at time t. Let us

consider that Ne(t) is piecewise constant with R pieces of equal length h over the timescale of interest.

Let γi denote the logarithm of the effective population size in the i-th piece. In the skygrid model (Gill

et al. 2013), the values of γi follow a Gaussian Markov random field, with the conditional distribution

of γi+1 given γi equal to:

γi+1 ∼ N (γi, h/τ) (1)

where τ is a precision parameter also known as the ’smoothing’ parameter.

By contrast, the skygrowth model (Volz and Didelot 2018) is defined using the effective population size

growth rates ρi which are assumed constant in each interval and are equal to:

ρi =
exp(γi+1)− exp(γi)

hexp(γi)
(2)

These growth rate values form a Gaussian Markov random field, with:

ρi+1 ∼ N (ρi, h/τ) (3)
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We also define a third model which we call skykappa based on the values κi of the second order

differences of the logarithm of the effective population size:

κi = (γi+1 − γi)− (γi − γi−1) = γi+1 − 2γi + γi−1 (4)

Once again we consider a Gaussian Markov random field in which:

κi+1 ∼ N (κi, h/τ) (5)

The skykappa model is a second-order random walk, or second-order Gaussian Markov random field

model. Faulkner et al. (2020) used the second-order random walk models extensively and called them

GMRF-2 in the case of the standard Gaussian Markov random field as a random walk of order 2.

Palacios and Minin (2013) used an integrated Brownian motion model, which is a continuous version

of the second-order random walk, for testing prior sensitivity.

Dependency on known covariate time series can be easily incorporated into these models as previously

described (Gill et al. 2016; Volz and Didelot 2018). Let there be a m×p matrix X1:m,1:p of p covariate

measurements for each of m time points. Ideally these time points would correspond to the R + 1

boundaries between pieces of the demographic function, but otherwise linear interpolation can be used

to make it so. We model the effect of this covariate data as a modification of the expected change in

the demographic variables defined above (γi, ρi or κi). For example, in the skykappa model (Equation

5), the kernel of the Markov random field becomes:

κi+1 ∼ N (κi + (Xi+1,1:p −Xi,1:p)β, h/τ) (6)

where β1:p is a vector of coefficients for a linear model of the covariate data on the expected value of

the stepwise differences κi+1−κi. Note in particular that if a term in the β vector is equal to zero, then

this covariate measurement has no effect on the demographic function, so that to test the significance

of covariate requires to test whether the corresponding value in the β vector is non-zero.
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Coalescent framework

Each of the models above defines a demographic function Ne(t) from which the probability of the

genealogy G can be calculated as briefly described below. Let n denote the number of leaves in G, let

s1:n denote the dates of the leaves and c1:(n−1) denote the dates of the internal nodes. Let A(t) denote

the number of extant lineages at time t in G which is easily computed as the number of leaves dated

after t minus the number of internal nodes dated after t:

A(t) =

n∑
i=1

1[si > t]−
n−1∑
i=1

1[ci > t] (7)

This quantity is important because in the coalescent model, each pair of lineages finds a common

ancestor at rate 1/Ne(t). Since there are A(t)(A(t) − 1)/2 unordered pairs of lineages at time t, the

total coalescent rate at time t is equal to:

λ(t) =


A(t)(A(t)−1)

2Ne(t)
, if A(t) ≥ 2

0, otherwise.
(8)

The full probability of the coalescent process is therefore computed as (Griffiths and Tavare 1994;

Donnelly and Tavare 1995):

p(G|Ne(t)) = exp

(
−
∫ ∞

−∞
1[A(t) ≥ 2]

A(t)(A(t)− 1)

2Ne(t)
dt

) n−1∏
i=1

1

Ne(ci)
(9)

This computation is straightforward for the models considered here where the demographic function

Ne(t) is piecewise constant. Finally we can define the likelihood of the joint demographic/phylogenetic

process as:

L = p(G, Ne(t)) = p(G|Ne(t))p(Ne(t)) (10)

This likelihood is the product of the probability of the coalescent process given in Equation 9 times
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the probability of the demographic function which is determined by Equation 1, 3 or 5, depending on

the model used.

Selection of the precision parameter

The demographic models described above (skygrid, skygrowth and skykappa) all rely on a precision

parameter τ . The value of τ controls the amount of variance between consecutive values of the

parameters used by each model. The selection of this parameter is therefore shaped by competing aims

of optimising the fit to observed data and maximizing explanatory power and avoidance of overfitting.

In frequentist statistics, a standard approach to selecting smoothing parameters is to minimize the

out-of-sample prediction error. For the problem of phylodynamic inference, Bayesian methods have

predominated, and there have been few applications of cross-validation for model selection, although

the use of such strategies in a hierarchical Bayesian setting has been considered (Duchêne et al. 2016).

Here, we propose a novel strategy based on k-fold cross-validation where genealogical data is partitioned

into k sets, k − 1 of which are used for fitting, and the last one is used for prediction. This procedure

is equivalent to maximizing the following objective function:

f(τ) =

k∏
j=1

p(G \Xj |N̂e(Xj , τ)), (11)

where N̂e(Xj , τ) is the maximum likelihood estimate of the demographic function Ne(t) on the partial

data Xj ⊂ G and assuming the precision parameter is τ . In this case Xj=1:k represents a subset of the

sample times and internal node times of the genealogy G.

This is a standard formulation of the cross-validation method, but the implementation depends on

how genealogical data is partitioned. We use the strategy of discretizing the coalescent probability

(Equation 9) into intervals bordered by the time of nodes (leaves si plus internal nodes ci of the tree)

and the R − 1 times when the piecewise-constant Ne(t) function changes value. Given R − 1 change

points, n leaves, and n− 1 internal nodes of G, there are R+ 2n− 3 intervals (ι1, · · · , ιR+2n−3). Each

cross-validation training set is formed by taking a staggered sequence of these intervals and collecting

the genealogical data contained in each, so that Xj = {ιa=1:R+2n−3|(a + j − 1) mod k ̸= 0}. The

cross-validation test sets are made of the remaining intervals, so that G \Xj = {ιa=1:R+2n−3|(a+ j −

8
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1) mod k = 0}. For example, if n = 5, R = 4 and k = 3 we have R + 2n − 3 = 11 intervals denoted

(ι1, · · · , ι11). The training sets are X1 = {ι1, ι2, ι4, ι5, ι7, ι8, ι10, ι11}, X2 = {ι1, ι3, ι4, ι6, ι7, ι9, ι10}

and X3 = {ι2, ι3, ι5, ι6, ι8, ι9, ι11}. The corresponding test sets are G \ X1 = {ι3, ι6, ι9}, G \ X2 =

{ι2, ι5, ι8, ι11} and G \X3 = {ι1, ι4, ι7, ι10}.

Selection of the grid resolution

Before any of the non-parametric models described above can be fitted, the number R of pieces in the

piecewise demographic function needs to be specified. Setting R too low may lead to an oversimplified

output that does not capture all the information on past population changes suggested by the genealogy,

whereas setting R too high can lead to overfitting.

We therefore propose to use well established statistical methods to select the optimal value of R. First

the model is fitted for multiple proposed values of R, and then for each output we compute the Akaike

information criterion (AIC), which is equal to:

AICR = 2R− 2log(LR) (12)

where LR is the maximum value of the likelihood when using R pieces. The value of R giving the

smallest value of AICR is selected. We also implemented the Bayesian information criterion (BIC),

which is equal to:

BICR = Rlog(n− 1)− 2log(LR) (13)

The AIC and BIC criterions have been used for similar problems before, for example to generate the

generalized Skyline plot (Strimmer and Pybus 2001) and to select the number of knots in smoothing

approaches such as B-splines (Malloy et al. 2009).

Simulation of testing data

In order to test the accuracy of our methodology, we implemented a simulator of coalescent genealogies

given sampling dates and a past demographic function Ne(t), following a similar approach as previously

9
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used elsewhere (Adams et al. 2009; Palacios and Minin 2013; Karcher et al. 2017) and briefly outlined

below. When the demographic function is constant, the simulation of coalescent genealogies is

equivalent to simulating from a piecewise homogeneous Poisson process, in which the waiting times

from one event to the next are exponentially distributed. To extend this to the situation where

the demographic function is non-constant requires to simulate from an equivalent non-homogeneous

Poisson process. The approach we used to achieve this is to consider a homogeneous Poisson process

with a population size Nm which is lower than any value of Ne(t), i.e. ∀t,Ne(t) ≥ Nm. We simulate

this process using exponential waiting times, but filter an event happening at time t according to

the ratio Nm/Ne(t). Specifically, we draw u ∼ Unif(0, 1) and if u < Nm/Ne(t) the event is accepted

and otherwise rejected. The resulting filtered Poisson process simulates from the non-homogeneous

Poisson process as required (Ross 2014). The disadvantage of this approach over other methods of

simulations is that there may be many rejections if Ne(t) takes small values so that Nm needs to be

small too. However, efficiency of simulation is not important for our purpose here, and this method

has the advantage to avoid the computation of integrals on the Ne(t) function which other methods

would require.

To measure Ne(t) estimation accuracy through time across different demographic models and sample

sizes, 500 dated phylogenies were simulated with a total of n ∈ {100, 200} leaves sampled uniformly at

regular intervals between 2000 and 2020, which are also represented as the times to the most recent

sample -20 to 0. Additionally, constant and variable (sinus and bottleneck) demographic functions were

applied. Since the Ne(t) for the constant and bottleneck functions do not have a characteristic timescale

(one change in Ne(t) at maximum), we let the algorithms described above select R (see Methods section

“Selection of the grid resolution”) and τ (see Methods section “Selection of the precision parameter”)

for all trees. For the sinus function, which has a period of 2π, we have used a fixed R based on prior

information (R = 30) and the cross-validation method to choose τ as for the other functions.

Coverage probabilities, defined as the proportion of samples for which the known population parameter

is contained in the confidence interval according to the parametric bootstrap procedure (see Methods

section “Implementation”), were calculated for each time point and summarized over the entire time

axis. Since the confidence interval is of 95%, we would expect around 475 of the 500 replicates to

contain the true Ne(t) value for each time point and the overall coverage probability to be 0.95. Finally,

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were computed for the Ne(t)

10
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maximum likelihood estimate for each simulation and summarized over all simulations. Importantly,

we discarded the simulated trees in which the optimal solution for grid resolution was R ≤ 2 without

replacement. This choice is anchored in subsequent considerations (see Methods section “Selection

of the grid resolution”) about lack of power to retrieve all potential fluctuations on past population

changes. Coverage probability, MAE and RMSE plots were compared considering the three different

demographic functions implemented by mlesky and sample sizes defined above.

Since the time of the pieces (knots) of the demographic function are variable across different simulated

phylogenies, we defined a common time axis based on linear interpolation of time and Ne(t) estimates

using the approx function from the stats package (R Core Team 2022), and getting the most recent

first time of the pieces, as well as the older of the latest piece times across all simulations as respective

boundaries for this common time axis. Then we define the new number of pieces of the unique time

axis by dividing the total quantity of pieces across all 500 simulations by the amount of simulated

trees and make their respective time points equally-spaced. By using this approach, we could obtain

comparable Ne(t) estimates across different simulations.

Implementation

We implemented the simulation and inference methods described in this paper into a new R

package entitled mlesky which is available at https://github.com/emvolz-phylodynamics/mlesky. The

optimisation of the demographic function makes use of the quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method implemented in the optim command (Nash 2014). Confidence intervals (95%)

can be computed using (a) a standard bootstrap procedure if multiple samples from the bootstrap

distribution of the ML phylogeny can be provided, or (b) a parametric bootstrap procedure whereby

coalescent trees are simulated conditional on the ML estimated of Ne(t) and known sample times (see

Methods section “Simulation of testing data”). If multiple CPU cores are available, these resources

are exploited within the procedure of selection of the smoothing parameter where the computation

can be split between the different cross values in the cross-validation. Multicore processing is also

applied in the procedure of selection of the grid resolution where computation can be split between

different values of the resolution parameter R. All the code and data needed to reproduce our results

on simulated and real datasets is available at https://github.com/mrc-ide/mlesky-experiments.
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RESULTS

Application to simulated phylogenies with constant population size

A dated phylogeny was simulated with 200 leaves sampled at regular intervals between 2000 and 2020,

and a constant past population size function Ne(t) = 20 (Figure S1). To illustrate the importance of

the resolution R and precision τ parameters, we inferred the demographic function under the skygrid

model (cf Equation 1) for a grid of values with R ∈ {5, 20, 50} and τ ∈ {1, 10, 20} (Figure 1). The

equivalent analyses under the skygrowth model (Equation 3) and the skykappa model (Equation 5) are

shown in Figures S2 and S3, respectively. The results look quite different depending on the parameters

used, and in particular when R is large and τ is small, fluctuations in the population size are incorrectly

inferred. When applying the AIC procedure to this dataset, the correct value of R = 1 was inferred

for which the parameter τ becomes irrelevant. In these conditions the effective population size was

estimated to be 19.65 with confidence interval ranging from 17.10 to 22.57 which includes the correct

value of 20 used in the simulation.

After simulating 500 dated phylogenies and applying a constant past demographic function Ne(t) = 20,

we attempted to reconstruct the demographic function based on the phylogeny under the three models

skygrid, skygrowth and skykappa described in Equations 1, 3 and 5, respectively. Regarding coverage

probabilities (i.e. the probability that estimated confidence intervals given by mlesky cover the constant

Ne(t) = 20 function in this case), all sample sizes and demographic models kept near entire coverage

over time as expected (Table 1). Moreover, RMSE estimates were lower for n = 200 in comparison

with n = 100, except for the skygrid model that presented more extreme error values (Figure S4). The

skykappa and skygrowth models performed very similarly for both sample sizes (Table 2 and Figure

S4).

Application to simulated phylogenies with varying population size

Subsequently, we simulated 500 dated phylogenies with the same scheme of leaf number and dates as

previously defined, but now using a demographic function Ne(t) that was sinusoidal with minimum 2

and maximum 22 and period 6.28 years. Figure S5 shows an example of both the demographic sinus
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function used and the resulting simulated phylogeny and Figure S6 gives an example of inference using

the three models.

Remarkably, the coverage probabilities for both samples sizes suffered from three main drops, each

approximately occurring around the sinusoidal function period (6.28 years). The skygrid model

performs slightly better than the other models for n = 200 and is significantly superior for n = 100

(Figure 2). As expected, higher sample size was associated with lower RMSE values (Figure S7).

Despite RMSE estimates similar across models, the IQR for skygrowth and skykappa when n = 100 is

> 3, showing that error estimates are more spread out in these cases (Table 3). Figure S8 illustrates

the effect of optimizing the value of τ using the new cross-validation procedure compared to several

fixed values.

One situation in which all three models are expected to perform poorly is when there are sudden

changes to the demographic function (Palacios and Minin 2013). To exemplify this, we simulated

another set of 500 dated phylogeny with the same scheme of leaf number and dates as before, but

using a bottleneck function for Ne(t) which was equal to 10 at all times except between 2005 (i.e. -15

years before most recent sample) and 2010 (i.e. -10 years before most recent sample) when it was equal

to 1. An example is shown in Figure S9.

Under the bottleneck simulation scenarios, all models performed well for the time where the Ne(t)

reproduced a constant function (Ne(t) = 10), but badly when the abrupt change (bottleneck event)

to Ne(t) = 1 was reached. In the middle of the bottleneck interval there is also a noticeable

improvement. Different models performed similarly in this case, even though there are some minor

coverage probability peaks favoring the new skykappa model. Importantly, in the the higher sample size

scheme (n = 200), the Ne(t) estimates are covered in around 25% of the simulations in the bottleneck

event boundaries, whereas there are points with zero coverage for the lower sample size (n = 100),

demonstrating that higher sample sizes can mitigate major estimation errors when the population

process generating the data go against the priors of the employed demographic models (Figure 3).

RMSE estimates were slightly higher for the skygrid model with n = 100 but similar in the remaining

scenarios (Figure S10).

Collectively, these results suggest that when the precision parameter is optimised using the cross-
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validation method, the choice between these three models becomes less important. However, in

practice, the choice of using one model rather than another is sometimes guided by the presence of

covariate data and whether these are expected to correlate with the effective population size directly

or some other function of it such as the population growth rates (Gill et al. 2016; Volz and Didelot

2018).

Application to simulated phylogeny with covariate data

Finally, we used simulations to test our procedure for the analysis of association between demography

and covariate data. An example is shown in Figure S11 where the covariate data follows a simple

function in order to create a boom and bust dynamic (Figure S11A). The growth rate of the population

is equal to this function times a multiplicative factor. From this growth rate we compute the effective

population size function over time (Figure S11B) and simulate a phylogenetic tree as previously, with

200 leaves sampled at regular intervals between 2000 and 2020 (Figure S11C). We then analysed this

simulated phylogeny alongside the covariate data, and found in this case an association with coefficient

β = 0.44. We repeated this procedure 100 times with values of the multiplicative factor varying from

zero (in which case the growth rate is constant equal to 0 and there is no association with the covariate)

to 9 times the factor used for Figure S11. The results are summarised in Figure S12. As expected, we

found that as the multiplicative factor increases, the coefficient of association β between growth rate

and the covariate increases, and that the association becomes zero when the multiplicative factor is

zero.

HIV-1 in the USA

To examine how effective population size is related to independent estimates of incidence and prevalence

we investigated a dataset based on HIV-1 in North Carolina, USA. Several factors related to HIV

epidemiology and the natural history of HIV infection may cause the relationship between HIV

prevalence and Ne to be complex: The rate of diagnosis and treatment has increased over time.

HIV infection leads to a treatable chronic infection resulting in low mortality. While prevalence has

increased in the recent past due to reduced mortality, incidence has decreased, and a growing proportion

14

 

 
 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/advance-article/doi/10.1093/ve/vead028/7152969 by guest on 16 M

ay 2023



of the infected population receives antiretroviral therapy and has suppressed viral loads. The frequency

of transmission of HIV is typically concentrated in the early period (first year) of HIV infection because

of higher viral loads, lower probability of being diagnosed and treated, and fluctuating risk behavior

(Romero-Severson et al. 2015).

In Dennis et al. (2021) a dated phylogenetic tree was estimated using treedater (Volz and Frost 2017)

based on 1,850 HIV-1 partial pol sequences sampled from North Carolina between 1997 and 2019. An

estimate of new infections per year (denoted ι(t)) and an estimate of the number of people living with

HIV (denoted π(t)) in North Carolina was reported by the US Centers for Disease Control for the

period 2010-2019 (Linley et al. 2019). We fit a skygrid model to these data, estimating the smoothing

parameter by 5-fold cross validation (which took approximately 30 seconds on a standard laptop

computer) and estimating CIs with parametric bootstrap (which took approximately 90 seconds).

Three covariates were considered:

1. log(Ne(t)) was modelled as proportional to log(π(t));

2. log(Ne(t)) was modelled as proportional to log(ι(t));

3. log(Ne(t)) was modelled as proportion to ν(t) = log(π(t)2/ι(t)).

This final formulation was derived as the asymptotic behaviour of Ne in a population with variable

incidence and prevalence. During periods where there is a stable relationship between incidence and

prevalence (e.g. during exponential growth) there is a linear relationship between Ne(t) and π(t).

Skygrid analysis showed that neither incidence nor prevalence had a significant association with Ne.

A highly significant association was seen for ν(t), with a coefficient βν = 2.05 (95% CI: 1.05–3.56).

COVID-19 in England

In order to demonstrate the ability of the mlesky model to estimate the impact of public health

interventions, we analysed time-scaled phylogenies which were previously estimated for the B.1.1.7

(Alpha) SARS-CoV-2 lineage (Volz et al. 2021). In response to growing case numbers resulting from

B.1.1.7, a national lockdown was implemented on January 5, 2021 resulting in a large decrease in
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human mobility outside of households. We combined phylogenetic data with information about human

mobility collected from smartphone location tracking and publicly released by Google (Google LLC

2022) in the period of 1 November 2020 to 13 February 2021. We focus on the metric describing

smartphone presence in transit stations which is reported as a difference from historic baseline levels.

We hypothesize that the decline in mobility and concomitant decline in incidence will be reflected by

a drop in the growth rate of Ne and mlesky will estimate the strength of the association.

Effective population size may not decline immediately following lockdown since transmission can

continue in some settings (households and hospitals) while transmission is heavily curtailed in the

community. This can produce a lag between mobility metrics based on public transport attendance

and the decline in transmissions. We investigated the time-dependency of the association by first

smoothing the mobility metrics (smooth.spline in R with 5-fold cross-validation) and then time-

shifting the metric by between -15 and +36 days. For each shifted time series, we fit mlesky under

a skygrid model with the shifted mobility metric as a single covariate. This was repeated for 500

time-scaled phylogenies, each reconstructed from 3000 B.1.1.7 sequences. The running time for each

lag value was less than three minutes on a standard laptop computer.

Figure 4A shows the estimated effective population size through time which peaked on 14 January

2021. The growth rate of effective size versus the mobility metric is shown in Figure 4B. Note that

human mobility declined precipitously in the period preceding lockdown with increasing awareness of

B.1.1.7 and the end of the Christmas holiday. We find that human mobility has a large and significant

impact on growth rate of Ne, however this effect is only apparent in the time-shifted data. The time

lag showing the strongest association is +21 days (Figure 4C).

DISCUSSION

Non-parametric phylodynamic inference of population size dynamics is usually carried out in a Bayesian

framework (Drummond et al. 2005; Minin et al. 2008; Gill et al. 2013). Here we presented methods

for performing such inference in a frequentist setting with a particular view towards model selection

and avoiding over-fitting. Optimal smoothing can be obtained in a natural way using standard cross-

validation methods, and the optimal resolution of the discretised demographic function is achieved
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using the well-established AIC criterion. This approach can be advantageous when prior distributions

are difficult to design or results are sensitive to arbitrarily chosen priors. Methods based on likelihood

maximization are also fast and scalable to datasets much larger than is conventionally studied with

Bayesian methods, and the selection of smoothing parameters does not require arbitrarily chosen

hyperparameters. Conventional AIC metrics also alleviate the difficulty of model selection. In most of

our simulations, we find relatively little difference in our estimates when parameterizing the model in

terms of log(Ne(t)) (Equation 1), the growth rate of Ne(t) (Equation 3) or the second order variation

of log(Ne(t)) (Equation 5), as long as the precision parameter τ for each model is optimized as we

proposed.

Our methodology assumed that a dated phylogeny has been previously reconstructed from the genetic

data. It is therefore well suited for the post-processing analysis of the outputs from treedater (Volz

and Frost 2017) or TreeTime (Sagulenko et al. 2018). A key assumption of our method, as with

its Bayesian counterparts, is that all samples in the phylogeny come from a single population ruled

by a unique demographic function. To ensure that this is indeed the case, complementary methods

are emerging that can test for the presence or asymmetry or hidden population structure in dated

phylogenies (Dearlove and Frost 2015; Volz et al. 2020). Conversely, if multiple phylogenies follow the

same demographic dynamic, they can be analysed jointly to provide a more precise reconstruction

of the demographic function and epidemiological parameters (Xu et al. 2019), and our software

implementation is able to perform such a joint analysis when appropriate. It should be noted that

Bayesian phylogenetics is also increasingly concerned with the adequacy of the phylodynamic model

used (Duchene et al. 2019) and has made considerable improvements in scalability over the past few

years (Fisher et al. 2022).

Past variations in the effective population size of a pathogen population can reveal key insights into

past epidemiological dynamics and help make predictions about the future. It is important to note

that the effective population size is not generally equal to or even proportional to the number of

infections over time (Volz et al. 2009; Dearlove and Wilson 2013). On the other hand, the growth rate

of the effective population size can be used to estimate the basic reproduction number over time R(t)

(Wallinga and Lipsitch 2007; Volz et al. 2013; Volz and Didelot 2018) as we used in our application

to COVID-19 in England. Having good estimates of this quantity is especially important for assessing

the effect of infectious disease control measures (Fraser 2007), and phylodynamic approaches provide
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a useful complementary approach to more traditional methods of estimation based on case report data

(Cori et al. 2013).
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Figure 1: Result on a simulated phylogeny under a constant demographic function using the skygrid
model, from top to bottom R = 5, 20, 50 and from left to right τ = 1, 10, 20. The dashed line represents
the correct function Ne(t) = 20.
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Figure 2: Coverage probabilities over time for the sinusoidal demographic function across 500 simulated
phylogenies considering different sample sizes (n ∈ {100, 200}) and colored by demographic model
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Figure 3: Coverage probabilities over time for the bottleneck demographic function across 500
simulated phylogenies considering different sample sizes (n ∈ {100, 200}) and colored by demographic
model
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Figure 4: The epidemiological trajectory of SARS-CoV-2 lineage B.1.1.7 in England during spring
2020 inferred using mlesky and 3000 SARS-CoV-2 sequences. Dashed lines show dates (December 19,
2020 and January 6, 2021) when NPIs were implemented in England. (A) Effective population size
Ne(t) through time. (B) Lines(black) show growth rate (1/year) in Ne(t) corresponding to panel A.
Points (orange,right axis) show the human mobility score over time. (C) Estimated coefficient and 95%
confidence interval of the human mobility score on effective population size computed using mlesky.
The mobility time series is shifted by a lag shown on the x axis.
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Table 1: Coverage probabilities over time for the constant demographic function across 500 simulated
phylogenies considering different sample sizes (n ∈ {100, 200})

Time
n=200 n=100

skykappa skygrid skygrowth skykappa skygrid skygrowth

-26.241 0.848 0.936 0.860 0.859 0.922 0.855

-24.711 0.878 0.942 0.888 0.883 0.926 0.881

-23.181 0.912 0.944 0.908 0.912 0.928 0.912

-21.651 0.944 0.950 0.934 0.942 0.948 0.938

-20.121 0.960 0.958 0.958 0.958 0.948 0.964

-18.592 0.968 0.962 0.972 0.964 0.956 0.970

-17.062 0.976 0.966 0.974 0.970 0.954 0.974

-15.532 0.980 0.978 0.988 0.972 0.950 0.974

-14.002 0.980 0.972 0.980 0.972 0.946 0.970

-12.472 0.980 0.970 0.980 0.980 0.952 0.980

-10.943 0.980 0.970 0.986 0.980 0.948 0.978

-9.413 0.982 0.970 0.988 0.974 0.950 0.974

-7.883 0.980 0.968 0.980 0.976 0.946 0.978

Table 2: RMSE mean, median, and IQR estimates across the 500 simulated phylogenies for the constant
demographic function Ne(t) = 20 considering different sample sizes (n ∈ {100, 200})

RMSE
n=200 n=100

skykappa skygrid skygrowth skykappa skygrid skygrowth

Mean 2.460 4.663 2.521 2.678 2.107 2.749

Median 2.067 1.323 2.066 2.453 1.684 2.481

IQR 1.632 1.414 1.599 2.054 1.821 2.057
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Table 3: RMSE mean, median, and IQR estimates across the 500 simulated phylogenies for the
sinusoidal demographic function considering different sample sizes (n ∈ {100, 200})

RMSE
n=200 n=100

skykappa skygrid skygrowth skykappa skygrid skygrowth

Mean 3.311 3.481 3.7 5.381 4.768 5.802

Mean 3.134 3.363 3.475 4.817 4.496 5.449

IQR 1.223 1.036 1.411 3.598 1.575 3.236
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