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a b s t r a c t 

This article addresses the objective, experimental design and 

methodology of the tests conducted for battery State of 

Health (SOH) estimation using an accelerated test method. 

For this purpose, 25 unused cylindrical cells were aged, by 

continual electrical cycling using a 0.5C charge and 1C dis- 

charge to 5 different SOH breakpoints (80, 85, 90, 95 and 

100%). Ageing of the cells to the different SOH values was 

undertaken at a temperature of 25 °C. A reference perfor- 

mance test (RPT) of C/3 charge-discharge at 25 °C was per- 

formed when the cells were new and at each stage of cy- 

cling to define the energy capacity reduction due to in- 

creased charge-throughput. An electrochemical impedance 

spectroscopy (EIS) test was performed at 5, 20, 50, 70 and 

95% states of charge (SOC) for each cell at temperatures of 

15, 25 and 35 °C. The shared data includes the raw data files 

for the reference test and the measured energy capacity and 

the measured SOH for each cell. It contains the 360 EIS data 

files and a file which tabulates the key features of the EIS 

plot for each test case. The reported data has been used to 

train a machine-learning model for the rapid estimation of 

battery SOH discussed in the manuscript co-submitted (MF 

Niri et al., 2022). The reported data can be used for the cre- 

ation and validation of battery performance and ageing mod- 
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els to underpin different application studies and the design 

of control algorithms to be employed in battery management 

systems (BMS). 

Crown Copyright © 2023 Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications Table 

Subject Energy 

Specific subject area State of Health Estimation of New and Aged Lithium-Ion Batteries 

Type of data Tabulated 

Graphical 

Excel files (.xlsx/.xls) 

Battery Cycler (Digitron) files (.csv) 

MATLAB files (.mat) 

How the data were acquired Electrochemical Testing (Ageing, Performance, and Impedance Test) 

Motivation 

A set of experiments defined as (1) reference performance test (RPT) and (2) 

cyclic ageing test 

Reference Performance Test (RPT) 

In total 25 LIBs were employed for testing. For each SOH condition, 5 cells 

were tested. An RPT was performed on each LIB when aged through cycling to 

SOH values of 100% 95%, 90%, 85% and 80%. 

As part of RPT, the impedance of each LIB was measured using EIS at five 

different states of charge (SOC): 5%, 20%, 50%, 70%, and 95%. The ambient 

temperature of the LIBs was set to 15 °C, 25 °C and 35 °C. Providing a 

combined dataset of 75 separate test conditions (see Table 1 ). 

Cyclic Ageing Test 

The cycling ageing was performed at C/2 currnet charge in CC mode then CV 

mode (C/20) and 1C current discharge. 

Data format Raw 

Analysed 

Filtered 

Description of data collection Electrochemical data (e.g., energy capacity) was collected in .csv output file 

format from the 10A Digotron cycler (MCT10-6-192HD). 

EIS impedance data was recorded using the IVIUM Multiplexer (MUX-64) and 

stored in .xlsx file format. 

Data source location Data source location Institution: 

WMG, University of Warwick 

City: Coventry 

Country: United Kingdom 

GPS coordinates for collected samples/data: 52.38363378953185, 

−1.5615186436655097 

Data accessibility Repository name: Mendeley Data 

DOI: 10.17632/mn9fb7xdx6.3 [1] 

Direct URL to data: https://data.mendeley.com/datasets/mn9fb7xdx6/3 

Related research article M. Faraji-Niri, M. Rashid, J. Sansom, M. Sheikh, D. Widanage, J. Marco, 

“Accelerated state of health estimation of second life lithium-ion batteries via 

electrochemical impedance spectroscopy tests and machine learning 

techniques”, Journal of Energy Storage, 58 (2023) 106295. (DOI: 

https://doi.org/10.1016/j.est.2022.106295 ) [2] 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/mn9fb7xdx6.3
https://data.mendeley.com/datasets/mn9fb7xdx6/3
https://doi.org/10.1016/j.est.2022.106295
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Value of the Data 

• This dataset represents a complete collection of ageing information for commercially avail-

able and widely used lithium-ion batteries that include an assessment of how the re-

tained energy capacity of the cell and impedance changes as a function of increased charge-

throughput (ageing). The dataset quantities the inter-dependency between SOC and temper-

ature of LIB impedance at different ageing states: from 100% −80% SOH. 

• The datasets can be employed by a range of researchers and engineers engaged in battery-

related research. Specifically, in the creation of low-order representations of the battery

through equivalent circuit models. Such models are widely employed when simulating elec-

tric vehicles and other modes of electrified transport, in which the voltage response of the

battery is of primary interest. 

• This dataset can also be employed in the creation of battery models to underpin the design of

control algorithms within the battery management system (BMS) for SOC and SOH estimation

or as one element within the thermal management system. And to explore the use of data-

driven methods to quantify battery health linked, in part, to accelerated test techniques such

as EIS. 

• Both academic researchers and industrial engineers would benefit from this data. While sim-

ilar data does exist in the public domain, often all that is provided are ad-hod datasets for

specific SOC or temperature conditions. This data provides a complete dataset to create and

validate their models/analysis, in which the source of the data and the experimental meth-

ods employed are fully documented and encompass a range of environmental conditions and

ageing states. 

• This dataset contains a range of test conditions for a commercially available 21,700 format

cell with an NMC 811 chemistry. The experimental methodology can be reused to generate

comparable datasets for other LIB formats comprising different cathode materials. Further,

the models developed from this data will support the experimental evaluation of these cells

towards system integration and control system validation. 

1. Objective 

This data is generated to understand the battery degradation with cycling and subsequent

variation in SOH. It also contains information about the changes in battery impedance with tem-

perature and SOC at different SOH break points to correlate the battery SOH with impedance

rise. The developed dataset can help identify the SOH of an unknown battery using a quick

impedance test. This dataset is related to the article published in the Journal of Energy Stor-

age (DOI: https://doi.org/10.1016/j.est.2022.106295 ) which adds value to this article by providing

complete information about the tests and analysis and can support the further development of

battery management system ( Table 1 ). 

https://doi.org/10.1016/j.est.2022.106295
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Table 1 

Summaries of the different test cases comprised in the dataset. There are five SOH conditions were chosen for the test. 

On each SOH, five different SOC conditions and three different temperature conditions were used to conduct the EIS test, 

hence a total of 375 EIS tests have been conducted. And the energy capacity test has been conducted at 5 cells at 25 °C 
for each SOH on conditions as listed. 

EIS - Test Parameter Test Breakpoint Conditions Total number of Test Cases 

SOH (%) 80, 85, 90, 95 and 100% 5 

SOC (%) 5, 20, 50, 70 and 95% 5 

Ambient Temperature °C 15, 25, 35 3 

Total EIS test cases 75 

5 cells per RPT stage, the total number of EIS datasets across the complete 

experimental design space 

375 

Energy Capacity - Test Parameter Test Breakpoint Conditions Total number of Test Cases 

SOH (%) 80, 85, 90, 95 and 100% 5 

Ambient Temperature °C 25 1 

Total energy capacity test cases 5 

5 cells per RPT stage, the total number of energy capacity datasets across the 

complete experimental design space 

25 
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. Data Description 

All the files are stored in the root folder name “DIB_Data”. The output of the reference per-

ormance test (RPT), namely the energy capacity data and the EIS data for the different SOH

roups can be found in raw form in the folder name “csvfiles”. This folder contains the follow-

ng sub-folders and files: 

1. Capacity_Check 

2. EIS_Test 

This data has also been converted to the MATLAB format (MAT) and is stored in the folder

amed “matfiles”. The structure of this folder is the same as that employed in the “csvfiles”

older above. A full description of each folder and files contained is provided below for com-

leteness and to facilitate efficient data access. 

1. Capacity_Check 

This folder contains the subfolders for the capacity test data for each SOH condition, namely

00–80% SOH. The syntax of the folder names is defined using the format: 

“80per_Cells_Capacity_Check_08122021_020cycle” where: 

• 80per: defines the SOH condition, e.g., 80% 

• Cells_Capacity_Check: name of the test 

• 08122021: the date the test was performed, e.g., day/month/year 

• 020cycle: the number of ageing cycles after which the energy capacity test was conducted.

In this case, the energy capacity data was obtained after 20 cycles of ageing. 

Contained within each folder are the associated .csv / .mat files. The naming convention for

hese files follows the format: 

Cellnn_100 SOH_Capacity_Check_25 degC_000cycle 

Where 

• Cellnn: represents a unique identifier for each LIB used in the experimental research, where

nn relates to the cell number 

• 100SOH: the state of health of the cell (in this case the cell was new) 

• Capacity_Check: name of the test 
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• 100SOH: defines the SOH condition of the cell 

• 25degC: the ambient temperature of the LIB when the test was undertaken (note that for

this dataset, all energy capacity data was measured at 25 °C). 

The structure of the raw data files is as follows: 

• Rows 1–15: Header information of the test. 

• Row 16: Variable names 

• Row 17: Unit of the variables 

• Row 18-End: Values of the test variables 

Definition of each column for Row 16 with units: 

• Column 1: Test step [No Unit] 

• Column 2: State of the test, i.e., PAU: Pause, DCH: Discharge, CHA: Charge [No unit] 

• Column 3: Time for the step [s] 

• Column 4: Total program time [s] 

• Column 5: Cycle number [No unit] 

• Column 6: Cycle level [No unit] 

• Column 7: Procedure: Name of the program [No unit] 

• Column 8: Cell voltage [V] 

• Column 9: Applied current, 0 for no current, + x : charge current, -x: discharge current [A] 

• Column 10: Accumulative ampere-hours [Ah] 

• Column 11: Ampere hours at previous step [AhPrev] 

• Column 12: Accumulative Watt-hours [Wh] 

• Column 13: Power [Watt] 

• Column 14: Cell temperature [ °C] 

The headers, column names and units can only be seen in the .csv files and not in the .mat

files. However, data in .mat files have the same structure as explained above for the .csv. 

All csv and mat files can be found in the root folder as demonstrated in Fig. 1 . 
Fig. 1. A demonstration to locate capacity check data files in the root folder (DIB_Data). In the root folder, there are 

two subfolders, .matfiles and .csvfiles. Each of these subfolders contains two folders, Capacity_Cehck and EIS ¬_Test. Fur- 

ther going into the Capacity_Check folder, several folders naming “80_per_Cells……” etc. . can be seen. Further to the 

“80_per_Cells……” folders the capacity check data files “Cell15_80SOH_Capacity_Check ……” can be seen. Example file 

name “Cell15_80SOH_Capacity_Check_25degC_080cycle” represents Capacity check data for Cell15 at 80% SOH measured 

at 25degC. 
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For completeness, a summary file documents the energy capacity of each cell for different

ycle numbers. The file is named: CapacityvsCycleNumber.xlsx. There are five workbooks in this

le, and each represents the capacity data for that SOH group of cells. In each sheet, the first

olumn represents the cycle number, and the following set of two columns represents the energy

apacity (Ah) and calculated SOH for a cell as shown in Fig. 2 . For each cell, three columns of

ata are defined: cycle number; energy capacity (Ah) and calculated SOH (%). Each workbook in

he file represents the data for LIBs from different SOH groups which can also be seen in Fig. 2 .

ig. 2. A demonstration to locate capacity vs. cycle number data in the root folder. In the root folder, there is an Excel

le “CapacityVsCycleNumber” represents the capacity and SOH of the cells measured at 25degC using the RPT test at

arious stages of cycling. There are 5 sheets in this Excel file which contain the capacity/SOH data for the cells for

ifferent SOH groups. 

2. EIS_Test 

This folder contains the data files for all EIS tests conducted across the temperature range:

5, 25 and 35 °C and for the SOC conditions: 5%, 20%, 50%, 70%, and 95%. The naming convention

mployed for the EIS folder structure is defined below (also demonstrated in Fig. 3 ): 

“Cellnn_100SOH_35degC_95SOC_10,000 ′′ 
Where 

• Cellnn: defines a unique cell identifier, where nn relates to the cell number 

• 100SOH: the state of health of the cell when the EIS data was taken (in this case the cell was

new) 

• 35degC: the ambient temperature for the cell. 

• 95SOC: the SOC condition the cell discharged too 

• 10,0 0 0: represents the actual SOHx100, e.g., 9505 stands for 95.05% of actual SOH 

Within the EIS Test folder .xls (.csvfiles/EIS Test) and .mat file (.matfiles/EIS Test) are stored

or each associated test condition. Each file is named following the same convention presented

bove. The structure of both data files is the same: 

• Column 1: Frequency (Hz) 

• Column 2: Real component of the impedance (Ohms) 

• Column 3: Imaginary component of the impedance (Ohms) 

For completeness, a “WholeDataRealSOH.mat” file is provided within the EIS Test folder that

ummarises the EIS data for each cell (as demonstrated in Fig. 4 ). The structure of the file com-
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Fig. 3. Example to locate EIS_Test data in the root folder. In the root folder, there are two subfolders, .matfiles and .csv- 

files. Each of these subfolders contains two folders, Capacity_Cehck and EIS_Test. Further going into the EIS_Test folder, 

the EIS data files “Cell02_95SOH_15degC……” can be seen. Example file name “Cell02_95SOH_15degC_05SOC_9505 ′′ rep- 

resents EIS data for Cell2 at 95% SOH measured at 25degC and 5% SOC, the numeric digits in the name represents the 

actual SOH of the cell multiplied by 100. 

Fig. 4. Representation of the whole EIS data with EIS features in the root folder. In the root folder, there is a mat file 

“WholeDataRealSOH” which contains the full EIS data, EIS features, as well as SOH, temperature, SOC conditions for each 

cell as named by the columns. Full EIS data is shown in the inset at the right and the EIS features in shown in the inset 

at the top. 
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rises a separate column for cell name, SOH, temperature, and SOC. For each measured spec-

rum, seven features (F1 to F7) from the Nyquist plot are quantified. These were employed

xtensively when training the machine learning algorithm in the associated research article. A

ummary of their meaning is provided: 

• F1: Highest frequency Datapoint, Freq (Hz), Re (Z), Im (Z) 

• F2: Point with minimum re value: Freq (Hz), Re (Z), Im (Z) 

• F3: Lowest frequency datapoint: Freq (Hz), Re (Z), Im (Z) 

• F4: Zero Crossing Point: Freq (Hz), Re (Z), Im (Z) 

• F5: local Peak Point: Freq (Hz), Re (Z), Im (Z) 

• F6: local dip between Zcross and Peak, Freq (Hz), Re (Z), Im (Z) 

• F7: local dip between peak and end point, Freq (Hz), Re (Z), Im (Z) 

. Experimental Design, Materials and Methods 

Implicit assumptions about battery SOH underpin many studies that evaluate different mod-

ls for a future battery circular economy. Different end-of-life (EOL) strategies encompassing the

ecovery and reuse of LIBs are often cited without defining how battery health will be quanti-

ed, in the real world, with an accuracy and repeatability that is required to underpin robust

ecision-making. As a result, stakeholders are often driven to undertake experimental character-

sation of LIBs to define key metrics to quantify health and therefore the economic value of the

sed battery. 

The precise battery SOH is widely assessed by a series of charge/discharge cycles which takes

everal hours to conduct and hence time-consuming and costly [3–7] . Therefore, a mere exper-

mental approach is insufficient to rapidly grade retired batteries for the optimum energy uti-

ization in potential second-life applications. Hence, a fast-screening method with high accuracy

s highly desirable to make the reuse of EV batteries sustainable. So, conducting a set of exper-

ments on the selected batteries and developing a model base on the measured data which can

uickly assess the battery SOH will only be a viable solution to this problem. Therefore, in con-

unction with the experimental test procedure machine learning method can be a promising tool

o assess and validate the battery SOH and the remaining useful life of the batteries for the sec-

nd life applications. Although, significant effort has been made on using the statistical method

nd the machine learning method to estimate the battery SOH in view of the 1st/2nd life ap-

lication [5 , 8–12] . However, these methods are developed based on the data set of very limited

perational and environmental conditions such as SOC range and working temperatures. EIS is

ighly used to assess the battery SOH at a significantly reduced time span [4 , 13–14] . However,

he EIS (non-linear) is highly dependent on SOC and temperature and its challenging to attain

he right SOC together with the distribution system level impedance to the module and cell

evel. The model derived based on the limited condition cannot assess the battery SOH in went

hrough the real condition during the first life application, a comprehensive test condition needs

o be used to generate the training data. Our research aims to experimentally characterize a set

f commercially available LIBs to generate the training and validation dataset for the machine-

earning-based SOH prediction algorithm. This dataset helped answer the following questions

hich have already been discussed and compared in the main article [2] : 

a. If the EIS test data can be directly used for the SoH estimation of cells or feature engineering

is necessary? 

b. What is the configuration of a ML model for SoH estimation? 

c. How robust the method is to the measurement noise? 

d. How generalisable are the ML-based models to real-world uncertainties arising from varia-

tions in test equipment? 

e. What is the minimum amount of conditioning information required for an accurate SoH es-

timation? 
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As discussed above, the experimental research comprised of (1) an RPT to quantify key cell

attributes such as energy capacity and impedance at different states of charge and within dif-

ferent ambient temperatures and (2) cyclic ageing to degrade the LIBs from their initial new

condition to 80% SOH. Within the context of this research, SOH is defined as the ratio of the

energy capacity measured for the cell at a given cycle number relative to the energy capacity

measured when the cell was new. 

SOH = 

Current Capacity 

Reference Capacity 
× 100 (1) 

4. Experimental Process 

4.1. Reference Performance Test (RPT) 

In total 25 LIBs were employed for testing. For each SOH condition, 5 cells were tested. An

RPT was performed on each LIB when aged through electrical cycling to SOH values of 100%

95%, 90%, 85% and 80%. 

To measure the retained energy capacity, LIBs were stored in a thermal chamber at 25 °C.

They were allowed to soak for one hour to allow them to equilibrate. Each LIB was then charged

using a C/3 constant current profile to 4.2 V at which point the LIB was held at this voltage

and charged in constant voltage (CV) mode until the value of the charging current reduced to

C/20. Once fully charged, the cells were relaxed for one hour to minimize the concentration and

potential gradients caused due to the application of the current and to avoid any subsequent

effect on the discharge process. LIBs were discharged using a C/3 constant current to a voltage

of 2.5 V. The energy extracted during discharge is used to define the cells’ energy capacity. 

As part of each RPT, the impedance of each LIB was measured using EIS at five different

states of charge (SOC): 5%, 20%, 50%, 70%, and 95%. The ambient temperature of the LIBs was

set to 15 °C, 25 °C and 35 °C. Providing a combined dataset of 75 separate test conditions (see

Table 1 ). Thermal stability and homogeneity were provided by immersing the cells in dielectric

oil. The temperature of the oil was maintained by an external circulation unit. For each EIS test

condition, fully charged LIBs were allowed to rest in the oil for 4 h to eliminate any temperature

variation between cells. LIBs were discharged using a C/3 current to the target SOC and allowed

to equilibrate for 4 h before the EIS measurement was made. To measure the spectrum, a si-

nusoidal current of 250 mA, between the frequency range: 10kHz-10mHz was applied to each

cell 

4.2. Cyclic Ageing Test 

The cycling ageing was performed by continually charging - discharging the cells at C/2 in

CC mode to 4.2 V followed by a CV mode until the charge current was reduced to C/20. During

discharge, a 1C discharge current is applied until the cell voltage is reduced to 2.5 V. Cells were

conditioned to a temperature of 25 °C during electrical loading through oil immersion, in line

with the EIS measurements as part of the RPT. 

A summary of the experimental steps is provided below. 

Step 1 : A set of RPT experiments were performed on 25 new LIBs (SOH = 100%). After energy

capacity and EIS characterization, five cells were held in storage to support future validation

activities. 

Step 2 : 20 LIBs continued to be electrically cycled (following the ageing test profile defined

above) until the cells had degraded to a SOH equal to 95%. As highlighted in the associated data

files, SOH variations of + /- 1.2% can be observed. This is due to subtle cell-to-cell variations

meaning differences in energy capacity and the fact that it is not possible to exactly synchro-

nize the ageing of different cells under electrical load. At this point, five cells were selected for
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PT characterization. As defined above, this comprised an energy capacity measurement at 25 °C
nd an impedance measurement for SOC conditions: 5, 20, 50, 70 and 95 and at temperatures:

5 °C, 25 °C and 35 °C. Characterization of 5 cells underpins greater confidence in the efficacy

f the dataset and the identification of any cell-to-cell variations that may exist. For all EIS mea-

urements, thermal stability was achieved by immersing the LIBs within dielectric oil set to the

esired temperature. 

Steps 3–5 follow the same process defined in Step 2. The set of LIBs was cycled to SOH

reakpoints of 90%, 85% and 80%. At each SOH condition, 5 cells were removed for RPT charac-

erisation. 

The dataset generated using this approach has been published in the Mendeley repository

nd can be accessed at ref [1] and using this data set a machine learning model has been de-

eloped which can estimate the battery SOH within an error of 1.1% [2] . 

.3. Lithium-Ion Battery Technology and Equipment 

25 unused LGM50 lithium-ion LIBs with a rated energy capacity of 5 Ah were chosen. The

ells comprise a nickel-manganese-cobalt (NMC 8111) cathode within a 21,700 cylindrical cell

ormat. The cells have a defined maximum current of 0.7C in charge and 1.5C in discharge. 

Direct Current (DC) excitation of the LIBs for charge and discharge employed a 10A Digatron

ycler (Model number: MCT10–6–192HD). Electrochemical impedance spectroscopy (EIS) data

as measured using an IVIUM Multiplexer (Model number: MUX-64) Thermal conditioning of

he cells employed an ESPEC thermal chamber (Model number: PL3J). Temperate control of the

ielectric oil employed a Lauda circulation unit (Model number: RP245E). 
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