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Abstract
Generally, re-entrant structures are a key part of fabricating superoleophobic surfaces, and this structure appears in almost all 
kinds of published research articles regarding superoleophobicity. However, the application of related fabrication methods 
is usually too complex and costly in real practice. In this paper, we present a simple method to generate micro-cauliflower 
structures, which work as re-entrant structures in microcone arrays, to promote the formation of superoleophobic surfaces. 
The heating process after alkali-assisted surface oxidation is the main reason for the appearance of a micro-ball structure, 
and the oxidation time can influence the size of the micro-ball. To the best of our knowledge, the influence of the heating 
process after alkali-assisted surface oxidation on the birth of the micro-ball structure is seldom researched. A low-surface-
energy treatment was also analyzed in influencing the size of the re-entrant structure and its relative wettability. Droplets of 
5 μl of n-decane show contact angles of 155 ± 1°on the as-prepared superoleophobic surface, and air pockets can be clearly 
seen underneath, indicating a stable Cassie contacting state and a promising application value in the near future.

Highlights

1. A hybrid method with concise process of fabricating 
superoleophobic surfaces was shown.

2. The influence of heating process after alkali-assisted 
surface oxidation was investigated.

3. Superoleophobic surface with clear Cassie state was fab-
ricated.
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1 Introduction

During the past several decades, extreme nonwetting sur-
faces have been the research hotpot among researchers 
[1–4]. These nonwetting surfaces can also be applied in 
different areas, such as oil transportation, oil–water separa-
tion, micro-droplet manipulation [5], self-cleaning [6], and 
anticorrosion. Generally, a surface with a static water contact 
angle greater than 150° and a dynamic water roll-off angle 
below 10° is defined as a superhydrophobic surface [7–9]. 
A similar definition can also be used in superoleophobic 
surfaces [10, 11]. The so-called “oil” refers to liquids with 
relatively low surface tension (lower than water; γ < 72.1 
mN  m−1), so a superoleophobic surface usually includes a 
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superhydrophobic surface, except for some special surfaces 
with peculiar chemical components [12–14]. Superoleo-
phobic surfaces have a broader application prospect than 
superhydrophobic surfaces, and the former are, without a 
doubt, harder than the latter [15, 16]. In 1997, the first arti-
cle on superoleophobic surface fabrication was written and 
published by Tsujii et al. [17, 18]. In their opinion, only 
a solid surface tension lower than a quarter of the liquid 
surface tension (γS < γL/4) can make a smooth surface oleo-
phobic (CA > 90°). They finally obtained a superoleophobic 
surface with a rapeseed oil droplet contact angle of 150° 
via anodization and chemical medication on an aluminum 
plate, followed by immersing the plate in an ethanolic solu-
tion of fluorinated monoalkyl phosphates. In 2001, Li et al. 
prepared aligned carbon nanotube films with a fluoroalkyl-
silane coating, which showed superamphiphobic (both supe-
rhydrophobic and superoleophobic) properties with water 
and rapeseed oil contact angles of 171 ± 0.5° and 161 ± 1.0°, 
respectively [19]. In 2004, Xie et al. used a one-step pro-
cess to successfully fabricate superamphiphobic films [20]. 
Two polymer materials, i.e., polymethylmethacrylate and 
fluorine-end-capped polyurethane, were used in this pro-
cess, and the whole process did not need any further surface 
modification.

Before 2007, very few articles about superoleophobicity 
were published due to the limitation of the superoleophobic 
theory. In the last 15 years, there has been rapid develop-
ment in the research of superoleophobic surfaces [21, 22]. 
In 2007, Tuteja et al. first introduced the re-entrant surface 
curvature as the third parameter (besides surface roughness 
and chemical component) to design superoleophobic sur-
faces [23]. The so-called “re-entrant structure” generally 
includes a T-shaped structure, a mushroom-like structure, an 
overhang structure, an inverted trapezoid structure, a match-
stick-like structure, and some other irregular microstructures 
[11]. The new concept of the re-entrant structure has greatly 
energized the oil-repellent field, and the related development 
has stepped into a new stage. The existence of re-entrant 
structures is so crucial in superoleophobicity because they 
can provide an upward pressure to balance the downward 
Laplace pressure and droplet gravity [24]. In 2014, a nor-
mal re-entrant structure was upgraded to a double re-entrant 
structure by Liu et al. [25]. They found that microscale posts 
with double nanoscale vertical overhangs can repel almost 
all available liquids, even perfluorohexane, whose surface 
tension could go as low as under 10 mN  m−1.

Although the key point of oil-repellent surface fabrica-
tion is to generate a re-entrant structure, the method varies, 
including chemical etching, solution–immersion, template, 
and photoetching, but most of them are not suitable for real 
practice [26, 27]. In 2019, Li et al. designed transparent 
superamphiphobic surfaces with a matchstick-like struc-
ture [28]. Micropillar arrays were obtained from a negative 

photoresist via standard photolithography, and a micro re-
entrant poly(dimethylsiloxane) (PDMS) ball was designed 
using a spin-coating method and transferred technique. 
Moreover, the nano re-entrant structure was served by fluori-
nated candle soot, then they were transferred onto the micro 
PDMS ball, and the micro/nano re-entrant-coordinated 
superamphiphobic surface was finally obtained. In spite 
of exquisite micro/nanostructure arrays and excellent oil-
repellent ability, the fabricating method was too technically 
cumbersome and time-consuming, so this technology needs 
a long way to serve factories and the public. In 2013, Ou 
et al. reported a convenient way to fabricate superoleophobic 
surfaces via strong acid etching and alkali-assisted surface 
oxidation, followed by surface fluorination [29]. The solu-
tion–immersion approach seems to be convenient and effi-
cient. However, the utilization of strong acid (concentrated 
nitric acid in this paper) can cause environmental pollution, 
and toxic gases may be generated during the process. As the 
advantages of laser processing have been discovered, more 
researchers have chosen the laser direct writing technique to 
process micro/nanostructures [30–32].

Laser–chemical hybrid method is an economical and 
efficient way to produce micro/nanostructures, including re-
entrant structures [33–35]. In 2018, Han et al. obtained durable 
superamphiphobic surfaces via a laser–chemical hybrid method 
consisting of ultrafast laser ablation and chemical oxidation, fol-
lowed by a fluorination treatment [36]. As they reported, the 
prepared superamphiphobic surface could show a static dode-
cane droplet contact angle of > 150°, but liquids with low sur-
face tension, such as n-decane droplets, were not mentioned in 
this paper. Furthermore, the imported ultrafast laser machine 
greatly increased the production cost, which is not preferable for 
large-scale applications [35]. In this paper, we propose a simi-
lar laser–chemical hybrid method to fabricate superoleophobic 
surfaces. Different from previous studies, we used a nanosec-
ond laser machine to process the microstructure and control the 
re-entrant cauliflower-like micro-ball can be controlled by the 
process parameters. Droplets of 5 μl of n-decane show contact 
angles of > 155° on the as-prepared superoleophobic surface, 
and air pockets can be clearly seen underneath, representing a 
stable Cassie state.

2  Experimental Section

2.1  Materials

Copper sheets with a thickness of 0.8 mm and purity of over 
99% were bought online. Anhydrous ethanol was supplied by 
Jiangtian Chemical Technology Co., Ltd. (Tianjin, China). 
Analytical-grade sodium hydroxide (NaOH), n-decane, 
ammonium peroxodisulfate [(NH4)2S2O8], and hydro-
chloric acid (HCl) were purchased from Shanghai Aladdin 
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Bio-Chem Technology Co., Ltd. A highly fluorinated thiol 
(purity ≥ 97%) of 1H,1H,2H,2H-perfluorodecanethiol 
(PFDT) was purchased from Alfa Aesar. The distilled water 
was provided by a UCP-III water purification system. All 
chemicals (AR level) were used as received without further 
purification.

2.2  Preparation of Microcone Arrays

A 0.8-mm-thick copper sheet (purity ≥ 99.7%, commercially 
available) was cut into 10 mm × 10 mm × 0.8 mm samples. 
After deep washing with ethyl alcohol in an ultrasonic 
cleaner for 10 min, the copper plate samples were pro-
cessed by a nanosecond ytterbium fiber laser machine (IPG 
Photonics, Germany) with 50-ns pulse duration, 1064-nm 
wavelength, 20-kHz pulse repetition, and 20-W maximum 
average power. The schematic process of surface texturing 
is shown in Fig. 1. The laser was focused on the surface of 
the samples, and it scanned vertically at a constant speed 
of 100 mm  s−1, a repeating time of 30, an average power 
of 10 W, and scanning intervals in the x and y directions of 
60 μm. After the laser direct writing process, the oxide on 
the copper surface needs to be removed via immersion in 
1 M diluted hydrochloric acid for 1 min.

2.3  Preparation of Re‑entrant Structures 
with Diverse Sizes

The aforementioned as-prepared samples with a microcone 
array structure were immersed in a 200-ml well-mixed aque-
ous solution of 2.5 M NaOH and 0.15 M  (NH4)2S2O8 on 
a heating stage. The temperature was set at 30 °C, which 

was slightly higher than the ambient temperature, to accel-
erate the reaction rate, as shown in Fig. 2a (step 2). The 
alkali-assisted oxidation time was set at 30 min and 1 h. 
If the oxidation time was not mentioned, the default value 
was 30 min. After the oxidation reaction, the samples were 
flushed with distilled water and dried in an oven at 110 °C 
for 10 min.

After the alkali-assisted oxidation, the samples were 
immersed in a 1 M ethanol solution of PFDT for 10, 30, 
50, 70, and 90 min. Then, the samples were flushed with 
anhydrous ethanol and dried in an oven at 110 °C for 30 min.

2.4  Instruments and Characterization

The surface microtopography of all the samples was 
observed by a field emission scanning electron microscope 
(SEM, SUPRA 55 Sapphire, Zeiss, Germany). The contents 
of the elements were analyzed with an energy-dispersive 
spectroscope (EDS, Oxford, Germany). Oil droplets were 
directly dropped onto the surface of the samples in the 
atmospheric environment to investigate their oil repellency. 
The contact angles of the 5-μl n-decane droplets were meas-
ured by an optical contact angle meter (ASTVCM Optima, 
USA).

3  Results and Discussion

After the laser direct writing process, as shown in Fig. 2a 
(step 1), the microcone arrays were preliminarily obtained. 
Then, the samples were ultrasonically washed with 1 M 

Fig. 1  Schematic of surface ablation on the copper plate surface by a nanosecond laser
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Fig. 2  a Steps of the re-entrant structure fabrication process, b–d 
SEM images of laser-ablated microcone arrays in different magnifica-
tions, e–g SEM images of microcone arrays after 30  min of alkali-
assisted oxidation, h–j SEM images of microcone arrays after 1 h of 

alkali-assisted oxidation, k–m SEM images of microcone arrays after 
30  min of alkali-assisted oxidation followed by 10, 30, 50, 70, and 
90 min perfluorothiolate reaction, respectively
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diluted hydrochloric acid for 1 min to remove the copper 
oxide. The chemical reaction goes as follows:

The SEM images of the samples after laser processing fol-
lowed by copper oxide elimination are shown in Fig. 2b–d. 
We can obviously see the orderly microcone array in Fig. 2b, 
and the image of a randomly selected microcode is magni-
fied in Fig. 2c. After cleaning using a diluted hydrochloric 
acid solution, the surface of the microcode seems smooth in 
spite of the presence of some micro-wave structures caused 
by the melting and resolidification of copper because of 
the heat effect of the nanosecond laser. In Fig. 2d, we can 
further observe nanoparticles, which may be caused by the 
reduction reaction and deposition of copper when washed by 
diluted hydrochloric acid or copper resolidification during 
the laser ablation process. The obtained microcone struc-
ture serves as the main body of the functionalized surface 
to have a huge effect in enlarging the reacting area in the 
chemical immersion reaction, reducing the contacting area 
between the liquid and solid surfaces and enhancing the sur-
face robustness [37].

The as-prepared samples with a microcone array structure 
were immersed in a 200-ml well-mixed aqueous solution of 
2.5 M NaOH and 0.15 M  (NH4)2S2O8 on a heating stage, 
as shown in Fig. 2a (step 2). The alkali-assisted oxidation 
process is presented as follows [38–40]:

After alkali-assisted oxidation for 30 min, we dried the 
sample in an oven at 110 °C for 10 min, which was totally 
different from previous works, as shown in Fig. 2a (step 3). 
Normally, after the oxidation reaction, the samples would be 
dried with high-pressure nitrogen at room temperature. In 
2019, Pan et al. obtained Cu(OH)2 nanorods on microcones; 
the samples underwent 20 min of alkali-assisted oxidation 
and were dried with high-pressure nitrogen [41, 42]. To gain 
micro-ball structures on the microcones, the chemical oxi-
dation was performed at 90 °C for 50 min. In the present 
work, after oven-drying at 110 °C, the surface topography 
was obviously different from those of other works. As shown 
in Fig. 2e and f, the half bottom of the microcone is full of 
uniformly distributed nanorods and micro-balls. However, 
on the top half of the microcone, the nanorods seem to disap-
pear and turn to nano-grass, with a very short length result-
ing from the high-temperature drying process. Compared 
with the image in Fig. 2b, the bottom of the trench between 
two microcones is full of micro/nanostructure in Fig. 2e. 
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2
+ H

2
O

Cu
2
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2
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2
O

Cu + 4NaOH +
(

NH
4
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By contrast, we continued to take laser-ablated samples to 
have 1 h of alkali-assisted oxidation and then dried them in 
an oven at 110 °C for 10 min. As shown in Fig. 2h and i, the 
micro/nanostructure is distributed on the surface; however, 
the micro-balls seem bigger but less in number than those 
in Fig. 2e and f. In Fig. 2g and j, the difference in micro-
balls generated by different oxidation time periods can be 
clearly seen. In Fig. 2g, the randomly selected micro-ball 
diameter is ~ 3 μm, and the micro-ball constitutes several 
nano-grasses. In Fig. 2j, the randomly selected micro-ball 
generated after 1 h of oxidation has a diameter of roughly 
5 μm, and this micro-ball constitutes several nanosheets. 
Furthermore, the nanorods in Fig. 2j are obviously thinner 
than those in Fig. 2g. Hence, as the oxidation time goes 
by, the nanorods gradually turn into micro-balls composed 
of nano-grass and then accumulate into bigger micro-balls 
constituting nanosheets [42]. The micro-ball acts as a re-
entrant structure, and it shows a great importance in fabricat-
ing superoleophobic surfaces.

Although the re-entrant micro-ball was generated on the 
microcone surface, the sample showed superhydrophilic and 
superoleophilic properties because of the high sample sur-
face energy and its roughness. Here, we propose an approach 
to fabricate superoleophobic surfaces utilizing PFDT. The 
samples after alkali-assisted oxidation were immersed in an 
ethanol solution of PFDT (roughly 1 M) for 10, 30, 50, 70, 
and 90 min to determine how the fluoridation time influ-
ences the superoleophobicity. The perfluorothiolate reaction 
between Cu(OH)2 and PFDT can be written by referring to 
the reaction between Cu(OH)2 and alkyl thiols. The equation 
of the perfluorothiolate reaction is as follows [43]:

Cu(OH)2 + 2CF
3

(

CF
2

)

7

(

CH
2

)

2
SH → Cu

(

SC
2
H

4
C
8
F
17

)

2
+ 2H

2
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Fig. 3  Contact angle of the prepared sample with different fluorida-
tion times
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As shown by the SEM images in Fig. 2k–m, the micro-
balls gradually disappear with the increase in the fluorida-
tion time. When the fluoridation time is 10 min, as shown 
in Fig. 2k, the micro-balls with a diameter of ~ 3 μm are 
uniformly distributed on the surface of the microcone 
except at the top of it, and the nanorods do not have obvious 
changes, as compared with those shown in Fig. 2f. When the 
fluoridation time increases to 30 min, as shown in Fig. 2l, 
the number of micro-balls dramatically decreases, and so 
does the size of the micro-balls. In addition, the nanorods 
seem in a mess. When the fluoridation time continues to 
increase to 50 min, as shown in Fig. 2m, little micro-balls 
can be found on most areas of the microcone surface, only a 
few microcones exit at the junction of two microcones, and 
the nanorods barely exist anymore. As time continues to 
increase, almost all micro-balls disappear.

The oil contact angles of the above-mentioned five sam-
ples were measured. As shown in Fig. 3, droplets of 5 μl of 
n-decane were placed on the as-prepared samples. When 
the fluoridation time is 10 min, the contact angle is ~ 155°, 
and in the picture, we can clearly see the air pocket between 
the oil droplet and sample surface, which corresponds to 
the Cassie state. This phenomenon indicates a stable oil-
repellent ability with little liquid–solid contact area. As the 
fluoridation time increases to 70 min, the oil contact angle 
decreases slightly, but it is still above 150°. Moreover, the 
air pocket becomes less obvious because of the reduction of 
micro-balls. When the fluoridation time increases from 70 
to 90 min, the contact angle shows a significant reduction to 
roughly 130°, and the air pocket completely vanishes. There-
fore, the Wenzel state is formed, and the oil droplet cannot 
leave without any loss. Thus, by controlling the fluoridation 
time, we can control the number of micro-balls and then the 
superoleophobicity.

In a previous experiment, we found that PFDT can have 
a reaction with the product of the alkali-assisted oxida-
tion (mainly Cu(OH)2 in this experiment), and this can 
definitely affect the wetting ability of the sample surface. 
Thus, the cooperation of chemical immersion, including the 
alkali-assisted oxidation reaction time and perfluorothiolate 
reaction time, was further investigated. From the former 
experiment, when the oxidation time was set at 30 min, 
the superoleophobicity of the sample decreased with the 
increase in the fluoridation time. However, if the fluoridation 
time was long enough (e.g., 2 h), with the increase in the oxi-
dation time, the superoleophobicity could be enhanced. To 
make the role of the re-entrant structure in superoleophobic 
surface fabrication prominent, the influence of microcone 
spacing was also researched. In Fig. 4, values in the x direc-
tion represent the microcone spacing, and values in the y 
direction represent the different cooperation of the chemical 
immersion time. Regardless of the difference in microcone 
spacing, samples that underwent 30 min of oxidation and 
2 h of fluoridation showed the Wenzel state when droplets 
of 5 μl of n-decane were placed on the sample surfaces. 
However, if the oxidation time increased to 1 h while the 
fluoridation time remained unchanged, the n-decane drop-
let on the surfaces turned to the Cassie state. Therefore, if 
the chemical immersion time can have an optimal combina-
tion, the as-prepared sample surface can repel an oil droplet, 
which has low surface tension. When the chemical immer-
sion time combination was set at 1 h of oxidation and 2 h of 
fluoridation, the contact angle of the n-decane droplets on 
the sample surfaces had little change with the increase in 
microcone spacing, the Cassie state remained, and the air 
pocket always existed.

The EDS spectrum was tested to detect the content of five 
elements, namely C, O, F, S, and Cu, during the fabrication 

Fig. 4  Contact angle comparison as influenced by microcone spacing (x direction) and cooperation of chemical immersion time (y direction, oxi-
dation time + fluoridation time)
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process. Four representative EDS spectra were selected, as 
shown in Fig. 5. In Fig. 5a, after cleaning with diluted hydro-
chloric acid, the laser-ablated copper plate had little C and O 
on its surface. The element of Cu accounted for 94.25% of the 
weight of the whole surface, and No F and S were also found. 
After 30 min of alkali-assisted oxidation, the proportion of O 
dramatically increased from 1.63% to 27.21%, as shown in 
Fig. 5b, and this mainly resulted from the formation of oxides 
on the surface. The content of C roughly remained unchanged, 
and no elements of F and S were detected on the surface. In 
Fig. 5c, the EDS spectrum obviously changed as compared 

with the above two spectra. We can also find a large increase 
of the C element after 10 min of fluoridation, and the F and S 
elements appeared and increased a lot. The augment of the C, 
F, and S elements originated from PFDT, which means that 
the −  CF3/ −  CF2 − groups were successfully bonded on the 
sample surface by the perfluorothiolate reaction. In Fig. 5d, 
when the fluoridation time continued to increase to 90 min, the 
contents of C, F, and S all showed an increase. On the contrary, 
the proportion of O and Cu elements decreased. However, due 
to the limits on the content of oxidation products caused by the 
limited oxidation time, the increase of the F element was not 

Fig. 5  EDS spectra of a the original copper sample with microcone arrays, b sample after 30 min of oxidation, c sample after 30 min of oxida-
tion followed by 10 min of fluoridation, d sample after 30 min of oxidation followed by 90 min of fluoridation



 Nanomanufacturing and Metrology            (2023) 6:18 

1 3

   18  Page 8 of 11

as obvious as the first 10-min fluoridation reaction. Hence, the 
perfluorothiolate reaction can introduce low-surface-energy 
functional groups to the surface, and proper cooperation of the 
chemical immersion time has the potential to further decrease 
the whole surface energy of the surface.

4  Conclusions

In summary, a laser–chemical hybrid method to fabricate 
superoleophobic surfaces is reported here, and the diame-
ter of re-entrant micro-balls can be controlled by adjusting 
the parameter of the chemical immersion reaction. Drop-
lets of 5 μl of n-decane on the as-prepared superoleopho-
bic surface showed contact angles of 155 ± 1° with clear 
air pockets underneath, showing a Cassie state contacting 
mode. The cooperation of the chemical immersion time, 
including the alkali-assisted oxidation reaction time and 
perfluorothiolate reaction time, was discussed. A suitable 
combination of the chemical immersion time contributed 
to a good oil-repellent surface. Similar microcone arrays 
with different cone spacing were also discussed here, and 
the n-decane droplet could stay spherical and maintained 
in the Cassie state even on the surface with microcone 
spacing at 150 μm, which greatly highlighted the impor-
tance of the re-entrant structure in the fabrication of 
superoleophobic surfaces. We believe that our research 
results could be helpful in research on oil repellency for oil 
droplets with extremely low surface energies (Additional 
files 1, 2, 3, 4, 5). 
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