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Abstract
Recombination is a fundamental evolutionary force, but it is difficult to quantify
because the effect of a recombination event on patterns of variation in a sample of
genetic data can be hard to discern. Estimators for the recombination rate, which are
usually based on the idea of integrating over the unobserved possible evolutionary
histories of a sample, can therefore be noisy. Here we consider a related question: how
would an estimator behave if the evolutionary history actually was observed? This
would offer an upper bound on the performance of estimators used in practice. In this
paper we derive an expression for the maximum likelihood estimator for the recom-
bination rate based on a continuously observed, multi-locus, Wright–Fisher diffusion
of haplotype frequencies, complementing existing work for an estimator of selection.
We show that, contrary to selection, the estimator has unusual properties because the
observed information matrix can explode in finite time whereupon the recombination
parameter is learned without error. We also show that the recombination estimator
is robust to the presence of selection in the sense that incorporating selection into
the model leaves the estimator unchanged. We study the properties of the estimator
by simulation and show that its distribution can be quite sensitive to the underlying
mutation rates.
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1 Introduction

Recombination is a fundamental evolutionary force which shuffles genetic variation
along a chromosome and gives rise to new haplotypes not previously seen in a popula-
tion. It is a major goal of population genetics to infer rates of recombination along the
genome and to disentangle its effects from other evolutionary forces such as mutation,
selection, migration, and genetic drift. However, the effects of recombination can be
difficult to detect; generally the signal of recombination is weak and a single recombi-
nation event may leave no discernible trace in a sample of genetic data (Hayman et al.
2022). Typically one observes a sample from the state of the population only at the
present day, while the evolutionary history of the population, which can be muchmore
informative for recombination, is a latent, unobserved variable. A wide range of infer-
ential methods tackle this problem by positing a generative reproductive model for
the population and integrating over all possible evolutionary histories, or by approx-
imating this idea. A popular model is the diffusion limit of a Cannings-type model
for recombination, genetic drift, and mutation. Under this limit the evolution of hap-
lotype frequencies follows the Wright–Fisher diffusion with recombination (Ohta and
Kimura 1969a, b) while the genealogical history of a sample is known as the ancestral
recombination graph (ARG) (Griffiths and Marjoram 1997). Reconstruction of ARGs
is a major current endeavour (see Peñalba andWolf 2020, for recent review), and with
the very large samples available in recent datasets it becomes ever more necessary to
introduce computational and/or model heuristics.

In this paper we address a related question: in the idealised situation in which one
observes the entire evolutionary history of a population, as defined via the trajectory of
haplotype frequencies in the diffusion limit, can we define an estimator for the recom-
bination rate based on this observation and derive its properties? Although observing
the entire sample path of a diffusion is unrealistic in practice, we may regard the corre-
sponding estimator as setting an upper bound on the information about recombination
available to us. We note that statistical inference from a continuously observed diffu-
sion is by now a standard problem; see Kutoyants (2004) for textbook treatment for
scalar diffusions (though regularity conditions imposed throughout that work preclude
most of it applying to the Wright–Fisher diffusion even in one dimension). Further,
advances in sequencing technologies are leading to growing availability of genetic
data sampled from a population across different times, sometimes over very long
timescales, and providing great potential for improved statistical inference (Dehasque
et al. 2020); such datasets can be considered as discrete, noisy versions of the idealised
setting studied in this paper.

A motivation for this work is Watterson (1979) who derived the maximum like-
lihood estimator ŝ for natural selection from an observation of the trajectory of a
Wright–Fisher diffusion (here a diallelic, one-locus model comprising only selection
and genetic drift). He found the complete distribution of the estimator. It is worth
noting that in this model ŝ does not enjoy the usual desirable asymptotic properties
such as consistency, since one of the alleles will almost surely go extinct in finite time
and thus the total information available about the parameter up to time T remains
finite as T → ∞. If we introduce bidirectional recurrent mutation to the model then
it becomes ergodic, and Sant et al. (2022) have recently shown that in this situation
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the estimator enjoys the properties of consistency (uniformly over compact subsets of
the parameter space) as well as asymptotic normality and asymptotic efficiency. We
will see that, with or without mutation, the estimator for recombination behaves very
differently to that of selection because the ‘information’ (defined formally below) can
become infinite in finite time. Essentially, in a model of selection the signal-to-noise
ratio for the selection parameter remains finite on hitting a boundary of the simplex
of possible frequencies, while for the recombination parameter it may not. We will
see that if the information becomes infinite then the maximum likelihood estimator
(MLE) for recombination becomes exact, ρ̂MLE = ρ.

The paper is structured as follows. In Sect. 2 we summarise likelihood theory for
a continuously observed diffusion and specialise it to the infinitesimal variance of a
Wright–Fisher diffusion. In Sect. 3 we derive the MLE for a general Wright–Fisher
diffusion with arbitrary infinitesimal drift subject only to the constraint that the drift is
linear in its unknown parameters. We then specialise this to the model of our primary
interest, a multi-locus model with unknown recombination rate. Throughout we focus
on the two-locus case which illustrates the main ideas without complicating the nota-
tion. Our main results are to derive an expression for the MLE and to show that if the
information explodes then it is possible to learn the recombination parameter without
error. Section4 studies the impact of the presence of selection on this estimator, and
in Sect. 5 we conduct a simulation study to investigate the empirical properties of the
MLE. We discuss some potential directions for future work in Sect. 6.

2 Likelihood in diffusion paths

2.1 General case

We first give a summary of general likelihood-based inference for the parameters of a
diffusion before specialising to the Wright–Fisher diffusion. Let {X(t) : t ≥ 0} be a
d-dimensional diffusion process and suppose its path {X(t) : t ∈ [0, T ]} is observed
up to time T . The generator of the diffusion has a form

L = 1

2

d∑

i, j=1

Vi j (x)
∂2

∂xi∂x j
+

d∑

i=1

μi (x;ϕ)
∂

∂xi
, (1)

where the model has r parameters ϕ = (ϕ1, . . . , ϕr )
� in a parameter space �. We

assume the drift μ = (μ1 . . . , μd)� can be written in the form

μ(x;ϕ) = c(x) + a(x;ϕ), (2)

with a(x;ϕ0) ≡ 0 for a fixed reference parameter ϕ0, and c(·) does not contain any
parameters to be estimated. (For example, later we will estimate the rate of recom-
bination in the presence of recurrent mutation with the latter having rates fixed and
known. Then a(·;ϕ) will correspond to the contribution of recombination while c(·)
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will correspond to the contribution of mutation, containing known mutation parame-
ters.)

Wewill denote the corresponding pathmeasure on continuous functions from [0, T ]
to Rd by P

(T )
ϕ .

If the d ×d matrix V = (Vi j ) is non-singular for almost all t ∈ [0, T ] and, for each
ϕ ∈ �,

P
(T )
ϕ (Ii j < ∞, i, j = 1, . . . , r) = 1, (3)

where IT = (Ii j ) is the r × r observed information matrix

IT =
∫ T

0
Z(X(t);ϕ)�V −1(X(t))Z(X(t);ϕ) dt, Zi j (x;ϕ) = ∂ai (x;ϕ)

∂ϕ j
, (4)

then the likelihood for ϕ takes the form of a Radon–Nikodym derivative

LT (ϕ) = dP(T )
ϕ

dP(T )
ϕ0

given with respect to a dominating measure which here we have chosen to be the
model parametrised by ϕ0 so that P

(T )
ϕ0 is the distribution over paths with drift c. Under

these conditions, the likelihood takes the form

LT (ϕ) = exp

(∫ T

0
a(X(t);ϕ)�V (X(t))−1 d X̃(t)

−1

2

∫ T

0
a(X(t);ϕ)�V (X(t))−1a(X(t);ϕ) dt

)
, (5)

where

X̃(t) = X(t) −
∫ t

0
c(X(s)) ds. (6)

The first integral in (5) is with respect to the path {X̃(t) : t ∈ [0, T ]} and the second
is with respect to t .

A heuristic way to understand Eq. (5) is as follows. Let�X(t) = X(t +�t)− X(t).
The distribution of�X(t) given X(t) = x is taken as approximately normalwithmean
μ(x)�t and covariance matrix V (x)�t as �t → 0. If V (x) is non-singular, then the
quadratic form in the exponent of the normal density of �X(t) is

[
�X(t) − μ(x)�t

]�[
�tV (X)

]−1[
�X(t) − μ(x)�t

] =
μ(x)�V (x)−1μ(x)�t − 2μ(x)�V (x)−1�X(t) + O((�t)2).

We are expressing this density with respect to another normal density with mean
c(x)�t and covariance matrix V (x)�t , and thus we subtract the corresponding
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quadratic form

c(x)�V (x)−1c(x)�t − 2c(x)�V (x)−1�X(t) + O((�t)2).

After some rearrangement, letting �t → 0, and integrating from 0 to T , we recover
the quadratic form appearing in (5). Note that the likelihood ignores the terms |V (x)|
in the diffusion, since we assume that the likelihood is with respect to a parametric
form only for μ. (Statistical inference for parameters of V would be trivial in this
setting, since V is identifiable from the path via its quadratic variation.) See Basawa
and Prakasa Rao (1980, Ch. 9) and Kloeden et al. (2003, Ch. 6) for further details on
the general case.

2.2 Wright–Fisher diffusion

The family of Wright–Fisher diffusions has generator (1) with diffusion coefficient of
the form

Vi j (x) = xi (δi j − x j ),

where δi j denotes the Kronecker delta (i.e. δi j = 1 if i = j and δi j = 0 if i �= j). The
diffusion takes values in the simplex

�d−1 :=
{

x ∈ [0, 1]d :
d∑

i=1

xi = 1

}
,

and the domain ofL isD(L) = C2(�d−1), twice continuously differentiable functions
with domain�d−1. For nowwe continue to leave the drift in the form (2) but otherwise
unspecified.

Thematrix V (x) is singular since
∑d

i=1 xi = 1. Our first task, then, is to modify the
results from Sect. 2.1 to accommodate this issue. We achieve this by studying the first
d − 1 coordinates of X , whose infinitesimal covariance matrix V ∗(x) is non-singular.
Fortunately, its inverse V ∗(x)−1 takes on a particularly simple form, as we now show.

Theorem 1 Assume (3) holds for a Wright–Fisher diffusion with drift coefficient
μ(x;ϕ) = c(x) + a(x;ϕ) and diffusion coefficient V = (Vi j ), Vi j (x) = xi (δi j − x j ).
Then the likelihood is

LT (ϕ) = exp

(∫ T

0

d∑

i=1

ai (X(t);ϕ)

Xi (t)
d X̃i (t) − 1

2

∫ T

0

d∑

i=1

ai (X(t);ϕ)2

Xi (t)
dt

)
, (7)

with X̃ given by (6).

Proof We consider the diffusion (X1(t), . . . , Xd−1(t)) with drift μ∗(x;ϕ) =
(μ1(x;ϕ), . . . , μd−1(x;ϕ))� and non-singular (d − 1) × (d − 1) covariance matrix
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V ∗(x). Define Xd(t) = 1−∑d−1
i=1 Xi (t) andμd(x;ϕ) = −∑d

i=1 μi (x;ϕ). It follows
from standard normal theory, for example Kendall et al. (1994, p520–521), that

[V ∗(x)−1]i j = (
x−1

d + x−1
i δi j

)
. (8)

We know that
∑d

i=1 ai (x;ϕ) = 0 and
∑d

i=1 d X̃i (t) = 0 (since both
∑d

i=1 dXi (t) = 0
and

∑d
i=1 ci (X(t)) = 0, the latter required for X to take values in�d−1 whenϕ = ϕ0),

so

a∗(X(t);ϕ)�V ∗(X(t))−1 d X̃(t) =
d−1∑

i=1

d−1∑

j=1

ai (X(t);ϕ)(Xd(t)−1+δi j Xi (t)
−1) d X̃ j (t)

= ad(X(t);ϕ)

Xd(t)
d X̃d(t) +

d−1∑

i=1

ai (X(t);ϕ)

Xi (t)
d X̃i (t)

=
d∑

i=1

ai (X(t);ϕ)

Xi (t)
d X̃i (t), (9)

with a similar calculation for

a∗(X(t);ϕ)�V ∗(X(t))−1a∗(X(t);ϕ) =
d−1∑

i=1

d−1∑

j=1

ai (X(t);ϕ)a j (X(t);ϕ)V ∗
i j (X(t))−1

=
d∑

i=1

ai (X(t);ϕ)2

Xi (t)
. (10)

Substituting (9) and (10) into (5) yields (7). 
�

3 Theory for maximum likelihood estimators

3.1 GeneralWright–Fisher diffusion

Our next goal is to derive an MLE for the parameters ϕ of a Wright–Fisher diffusion.
This is found by differentiating the log-likelihood with respect to the parameters. In
all the examples we encounter, the drift is a linear function of the parameters so for
the remainder of this article we assume a(x;ϕ) to be of the form

ai (x;ϕ) =
r∑

k=1

Zik(x)ϕk, (11)

where Zik(x) = ∂ai (x;ϕ)
∂ϕk

does not depend on ϕ. To avoid issues of identifiability we
suppose that the columns of Z = (Zi j ) are linearly independent functions. Then from
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Theorem 1 the log-likelihood is a quadratic function

log LT (ϕ) =
r∑

k=1

ϕk

∫ T

0

d∑

i=1

Zik(X(t))

Xi (t)
d X̃i (t)

−1

2

r∑

k=1

r∑

l=1

ϕkϕl

∫ T

0

d∑

i=1

Zik(X(t))Zil(X(t))

Xi (t)
dt,

with a unique maximum, ϕ̂, in R
r , which is the solution of the set of equations for

k = 1, . . . , r :

0 =
∫ T

0

d∑

i=1

Zik(X(t))

Xi (t)
d X̃i (t) −

r∑

l=1

ϕl

∫ T

0

d∑

i=1

Zik(X(t))Zil(X(t))

Xi (t)
dt . (12)

The set of Eq. (12) are familiar in regression theory. Now denote the (r × 1) vector
Y = (

Yk
)
with elements

Yk =
∫ T

0

d∑

i=1

Zik(X(t))

Xi (t)
d X̃i (t),

and let �(X(t)) = diag(Xi (t)). Then the Eq. (12) can be written

[∫ T

0
Z(X(t))��−1(X(t))Z(X(t)) dt

]
ϕ̂ = Y .

Continuing to assume (3), the matrix on the left-hand side of the previous equation is
non-singular (see Basawa and Prakasa Rao (1980, p223–224), Kloeden et al. (2003,
p231)) and hence we arrive at the form

ϕ̂ =
[∫ T

0
Z(X(t))��−1(X(t))Z(X(t)) dt

]−1

Y . (13)

Of course if � ⊂ R
r then it is not guaranteed that ϕ̂ ∈ �, and ϕ̂ must be adjusted

appropriately to ensure it is the MLE. An example of this adjustment is given later.
The observed information matrix (4) is a key quantity in telling us about how

informative the data is for ϕ. For this model, the observed information matrix IT has
elements

Ikl =
∫ T

0

d∑

i=1

1

Xi (t)
Zik(X(t))Zil(X(t)) dt (14)
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using linearity of ai (x;ϕ); the information matrix does not depend on ϕ̂. The expres-
sion (13) for ϕ̂ can be written

ϕ̂ = I −1
T Y .

3.1.1 Deterministic model

As a check on the expression for ϕ̂, we can ask for the estimator we would obtain if
the observed trajectory is that of the deterministic model

dxi

dt
= μi (x;ϕ), i = 1, . . . , d. (15)

Now from (2) and (6) we find

dx̃ = dx − c(x) dt = (c(x) + a(x;ϕ)) dt − c(x) dt = a(x;ϕ) dt,

and so we can substitute this expression for dx̃ into the likelihood Eq. (12) to obtain
that ϕ̂ is a solution to

0 =
∫ T

0

d∑

i=1

[ai (x(t);ϕ) − ai (x(t); ϕ̂)]
xi (t)

∂ai (x(t); ϕ̂)

∂ϕl
dt . (16)

Owing to the factor ai (x(t);ϕ)−ai (x(t); ϕ̂), it is clear that a solution to the likelihood
equation is given by ϕ̂ = ϕ. It is reassuring that the estimator is well behaved even
in this crude level of approximation; the trajectory defined by (15) is not a realisation
from the assumed model since it is a path of bounded variation.

3.2 Neutral two-locus model

We now turn to our main result, an expression for the MLE for the recombination
parameter ρ ∈ [0,∞) =: �. Consider a neutral two-locus model in which there are
K possible alleles at the first locus, locus A, and L possible alleles at the second,
locus B. The haplotype of an individual is denoted (i, j) ∈ {1, . . . , K } × {1, . . . , L},
and its frequency in the population is xi j . Note that to reconcile this double-index
notation with previous sections we must implicitly stack the K L possible haplotypes
in some agreed order into a vector of length d = K L . We will switch between the two
notations as required. To emphasise when haplotypes have been stacked we will use
a bold index, so xi denotes the frequency of haplotype i , i = 1, . . . , d.

The model is completed by specifying the drift. Here it is of the form

ai j (x; ρ) = ρ(xi ·x· j − xi j ), i = 1, . . . , K ; j = 1, . . . , L,

where xi · := ∑L
l=1 xil and x· j := ∑K

k=1 xk j . Recombination occurs between the two
loci at rate ρ; specifically this is a model of the homologous crossing-over that takes
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place during meiosis. To simplify later results, we omit the conventional factor of 1/2
in the recombination rate parameter.

In much of what follows the choice for c(x) is immaterial, but for concreteness we
will set

ci j (x) = θA

2

K∑

k=1

xk j (P A
ki − δik) + θB

2

L∑

l=1

xil(P B
l j − δ jl).

Here mutation takes place at locus A and B at respective rates θA/2 and θB/2 on the
timescale of the diffusion.When amutation occurs, the change in allele is governed by
the K ×K and L ×L mutation transitionmatrices P A and P B (i.e. if a mutation occurs
at locus A on haplotype (k, j) then it mutates to haplotype (i, j) with probability P A

ki ,
i = 1, . . . , K ; similarly for P B). We allow θA, θB ≥ 0, so the model may or may not
be ergodic.

Note the separate roles for the two components of the drift: here it is only ρ to
be estimated, with the other parameters appearing in c(·) considered known. The
likelihood is expressed with respect to the parametrisation ρ0 = 0, a model in which
the two loci are completely linked but the mutation parameters are the same.

Using the results of Sect. 3.1, for this model the log-likelihood is

log LT (ρ) = ρ

∫ T

0

K∑

i=1

L∑

j=1

(
Xi ·(t)X · j (t)

Xi j (t)
− 1

)
d X̃i j (t)

− 1

2
ρ2

∫ T

0

K∑

i=1

L∑

j=1

(Xi j (t) − Xi ·(t)X · j (t))2

Xi j (t)
dt

= ρ

∫ T

0

K∑

i=1

L∑

j=1

Xi ·(t)X · j (t)

Xi j (t)
d X̃i j (t)

−1

2
ρ2

∫ T

0

K∑

i=1

L∑

j=1

(Xi j (t) − Xi ·(t)X · j (t))2

Xi j (t)
dt, (17)

where for the second equality we recall
∑K

i=1
∑L

j=1 d X̃i j (t) = 0, with

X̃i j (t) = Xi j (t) −
∫ t

0
ci j (X(s)) ds, i = 1, . . . , K ; j = 1, . . . , L.

The estimator ρ̂ is therefore

ρ̂ =

∫ T

0

K∑

i=1

L∑

j=1

Xi ·(t)X · j (t)

Xi j (t)
d X̃i j (t)

∫ T

0

K∑

i=1

L∑

j=1

(Xi j (t) − Xi ·(t)X · j (t))2

Xi j (t)
dt

, (18)
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and the observed information is

IT =
∫ T

0

K∑

i=1

L∑

j=1

(Xi j (t) − Xi ·(t)X · j (t))2

Xi j (t)
dt . (19)

The denominator in ρ̂ and the information can be simplified to

IT =
∫ T

0

K∑

i=1

L∑

j=1

Xi ·(t)2X · j (t)2

Xi j (t)
dt − T .

It is worth remarking on the functional form (17) for log LT (ρ). This is a polynomial
in ρ and we can think of a trade-off between the order of the polynomial and the
complexity of its coefficients. In this model we have a particularly simple quadratic
polynomial in ρ, order only two, with the benefit of knowing that the function is
convex with a unique finite maximum (since the coefficient of ρ2 is negative). The
price we pay is that the coefficients of the polynomial are highly cumbersome in the
sense that they are given as integrals over the sample path of a diffusion. Contrast this
with the dual coalescent model in which the likelihood for an observed sample path
of an ARG would be a product of exponential waiting time densities times a product
of rational functions for the transitions of the jump chain. With many possible jumps,
these rational functions may be constructed from polynomials in ρ of very high order,
though their coefficients are much simpler than the stochastic integrals encountered
here. In a coalescent model, the shape of the likelihood curve as a function of ρ can
be rather complicated, even exhibiting local minima when integrating over ARGs
(Jenkins and Song 2009).

3.2.1 Deterministic model

Is ρ̂ in (18) a reasonable estimate? Again we can check what happens when X solves
a deterministic model. Setting θA = θB = 0 for the moment, the deterministic model
is

dxi j

dt
= ρ(xi ·x· j − xi j ), i = 1, . . . , K ; j = 1, . . . , L. (20)

and substituting dxi j directly into (18) again shows that ρ̂ = ρ.
We can further describe the evolution of IT . Note that in this deterministic model

(summing (20) over j):

dxi ·
dt

= 0, i = 1, . . . , K .

Therefore xi ·(t) = xi ·(0) for all t ≥ 0, and similarly for x· j (t). The solution to (20) is
then

xi j (t) = xi j (0)e
−ρt + xi ·(0)x· j (0)(1 − e−ρt ). (21)
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We have that

log

(
xi j (T )

xi j (0)

)
=
∫ T

0

dxi j

xi j
= ρ

(∫ T

0

xi ·x· j

xi j
dt − T

)
,

so (provided ρ > 0):

IT = ρ−1
K∑

i=1

L∑

j=1

xi ·(0)x· j (0) log

(
xi j (T )

xi j (0)

)
. (22)

The limit information is therefore

lim
T →∞ IT = ρ−1

K∑

i=1

L∑

j=1

xi ·(0)x· j (0) log

(
xi ·(0)x· j (0)

xi j (0)

)
.

As far as the deterministic model goes, the information is in the transient phase until
the frequencies come to equilibrium. The accumulated information IT remains finite
as T → ∞. In a stochastic model on the other hand, we will see that the injection of
noise allows IT → ∞ as T → ∞. We note that one should regard this contrasting
behaviour with caution: it does not mean that the estimator is consistent only in the
stochastic setting. We have just seen that ρ̂ = ρ in the deterministic setting, which is
trivially consistent, and creates a paradox when we try to reconcile this fact with the
asymptotic finiteness of IT . The paradox is resolved by noting that the data-generating
mechanism differs from the one assumed in designing the estimator. Had we assumed
a deterministic model throughout our analysis then, since the parameter is simply a
rate appearing in an observed ODE, the ‘likelihood’ would be a point mass on the true
rate and the MLE would be equal to that true rate. The ‘information’ in this setting,
being the curvature of the log-likelihood, is immediately infinite. The fact that ρ̂ = ρ

demonstrates that the estimator adapts automatically to a change in data-generating
mechanism. The quantity IT could be regarded not as the information under the true
model but as a way of quantifying ‘the informativeness of the deterministic trajectory
under stochastic assumptions’. It is this quantity that remains finite as T → ∞.

It is possible to repeat these calculations for a model with θA, θB > 0; that is,
to solve the deterministic mutation-recombination equation. Again IT converges to a
finite limit; see Appendix A.

3.2.2 Stochastic differential equation interpretation

We can find an expression for the error associated with ρ̂ by regarding X(t) as the
solution to a stochastic differential equation (SDE):

dX(t) = [c(X(t)) + a(X(t);ϕ)] dt + σ(X(t)) dW (t), X(0) = x(0), (23)

where W is a (d − 1)-dimensional Brownian motion and σ(x) is a (non-unique)
d × (d − 1) matrix satisfying σ(x)σ (x)� = V (x).
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There are various ways to define σ subject to this constraint. It is common to ask
for σ to be lower triangular by applying a Cholesky decomposition to V . In the case
of the covariance matrix of the Wright–Fisher diffusion, the Cholesky decomposition
is given analytically by Sato (1976), though it is one that explodes at the boundaries.

Proposition 1 The error associated with ρ̂ is

ρ̂ − ρ = −

∫ T

0

d∑

i=1

Di (t)

X i (t)

d−1∑

j=1

σi j (X(t)) dW j (t)

∫ T

0

d∑

i=1

Di (t)2

X i (t)
dt

, (24)

where Di (t) = Xi1i2(t) − Xi1·(t)X ·i2(t) is the coefficient of linkage disequilibrium
for haplotype i = (i1, i2).

Proof Rearranging (18) slightly and using
∑d

i=1 d X̃ i (t) = 0, we have

ρ̂ IT = −
∫ T

0

d∑

i=1

Di (t)

X i (t)
d X̃ i (t).

Now substituting for d X̃ i (t) = dX i (t) − ci (X(t)) dt using (23),

ρ̂ IT = ρ IT −
∫ T

0

d∑

i=1

Di (t)

X i (t)

d−1∑

j=1

σi j (X(t)) dW j (t),

which leads to (24). 
�
Thus the bias and mean squared error of ρ̂ are given respectively by the expectation
of the term on the right-hand side of (24) and the expectation of its square. Estimators
of this form are not unbiased in general (Basawa and Prakasa Rao 1980, p 218).

3.2.3 Corrected MLE

There are two problems with the estimator ρ̂ defined in (18). First, the parameter
space is � = [0,∞) but we cannot ensure ρ̂ ≥ 0. (Although ρ < 0 is biologically
unrealistic, mathematically it is nonetheless a valid model and a sample path may
point to this region of the parameter space if d X̃i j (t) is sufficiently negative.) This
is easily corrected by applying a rectified linear unit, max{0, ρ̂}. The second issue is
more serious: it is not guaranteed that (3) holds. In other words, we have not ruled out
the possibility that IT explodes in finite time. For observations for which IT < ∞,
we can still interpret (17) as a quasi-log-likelihood function (Kloeden et al. 2003,
p231), but otherwise we must treat LT (ρ) as a generalized density valid only until the
stopping time

S := inf {t ∈ [0,∞) : It = ∞} . (25)
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SeeLiptser andShiryaev (2001,Ch. 6) andMijatović et al. (2012) for further discussion
on this subtle point. Writing ρ̂ = ρ̂T for the estimator in (18), we define the following
corrected estimator:

ρ̂MLE := I[0,S)(T )max
{
0, ρ̂T

} + I[S,∞)(T ) lim
t↑S

ρ̂t . (26)

A similar issue arises in the estimation of the immigration rate of the continuous
branching with immigration (CBI) diffusion, where a related correction is proposed
(Overbeck 1998, in particular Theorem2(iv)). The subscript in (26) rather suggestively
posits this quantity as the MLE; this is proven shortly, in Corollary 1. Although taking
limt↑S ρ̂t in (26) might seem to be unstable, that this is the appropriate correction to
our estimator is justified by the following theorem.

Theorem 2 If S ≤ T then ρ̂MLE = ρ with probability 1.

Proof From the definition (26) of ρ̂MLE it suffices to show that ρ̂ → ρ as T ↑ S. Let

NT = −
∫ T ∧S

0

d∑

i=1

Di (t)

X i (t)

d−1∑

j=1

σi j (X(t)) dW j (t).

This is a continuous, stopped martingale with N0 = 0 and quadratic variation

〈N 〉T =
〈
−
∫ T ∧S

0

d∑

i=1

Di (t)

X i (t)

d−1∑

j=1

σi j (X(t)) dW j (t)

〉

T

=
∫ T ∧S

0

d∑

i=1

d−1∑

j=1

Di (t)

X i (t)
σi j (X(t))

d∑

k=1

Dk(t)

Xk(t)
σk j (X(t)) dt

=
∫ T ∧S

0

d∑

i=1

d∑

k=1

Di (t)

X i (t)

Dk(t)

Xk(t)
Vi k(X(t)) dt

=
∫ T ∧S

0

d∑

i=1

Di (t)2

X i (t)
dt

= IT ∧S .

where the second equality uses that 〈·, ·〉 is a bilinear form and 〈dW j , dWl 〉 = δ j l dt .
Thus by the law of large numbers for local martingales (Revuz and Yor 1999, Ch. V.1,
Exercise 1.16, p186),

lim
T →∞

NT

IT ∧S
= 0 with probability 1 on {I∞ = ∞}.

The limit as T ↑ S is the same. But NT /IT ∧S is precisely the error ρ̂ − ρ given in
Proposition 1, so ρ̂ → ρ as T ↑ S with probability 1. 
�
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Corollary 1 ρ̂MLE is the MLE for ρ.

Proof This follows since we have separately verified that it is the MLE on {T < S}
and on {S ≤ T }. In the latter case ρ is identifiable, so LT (ρ) is zero anywhere other
than the true value. 
�
Corollary 2 The error associated with ρ̂MLE is

ρ̂MLE − ρ = −I[0,S)(T ) ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

d∑

i=1

Di (t)

X i (t)

d−1∑

j=1

σi j (X(t)) dW j (t)

∫ T

0

d∑

i=1

Di (t)2

X i (t)
dt

, ρ̂ ≥ 0,

ρ, ρ̂ < 0,

where we recall that ρ̂ is the uncorrected estimator given in (18).

Proof This follows by combining Theorem 2 and Proposition 1. 
�
The relevance of Theorem 2 is: If the sample path is such that IT = ∞, then we
learn ρ without error. Inspecting the form of IT in (19), we see that its integrand
is locally integrable in the interior of �d−1. Thus for IT = ∞ it is necessary to
have at least one haplotype frequency Xi j (t) → 0 before time T . We should expect
the same phenomenon when inferring the mutation parameters in a one-locus model,
where hitting one of the boundaries is completely informative for one of the mutation
parameters.

The next result shows that having IT = ∞ is not a hypothetical concern, and the
proof makes it clear that explosion of IT is intimately related with hitting a boundary
of �d−1.

Theorem 3 Suppose that ρ + θA
2 + θB

2 < 1
2 , that mutation is parent-independent

(i.e. P A and P B each have identical rows), and that x(0) lies in the interior of �d−1.
Then P(IT = ∞) > 0.

Proof It is clear from the form of IT in (19) that {IT = ∞} will occur if for some i, j ,

(i) For some δ > 0 and for all t ∈ [0, T ], X(t) lies in A1 := {x ∈ �d−1 :
(xi j − xi ·x· j )

2 > δ};
(ii) Tε(Xi j ) := inf{t ∈ [0,∞) : Xi j (t) = ε}, the first hitting time of ε by Xi j ,

satisfies T0(Xi j ) ∈ (0, T ]; and
(iii) The integral

∫ Tε(Xi j )

0

1

Xi j (t)
dt

diverges as ε → 0.
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Condition (iii) extracts the explosion of IT from a denominator of its integrand, while
condition (i) controls the corresponding numerator. Condition (ii) ensures that such
explosion takes place before time T .

To study the finiteness or otherwise of the integral in (iii), choose a decomposition
σ(x)σ (x)� = V (x) so that the component of the SDE (23) corresponding to Xi j (t)
has the form

dXi j (t) = μi j (Xi j (t)) dt +
√

Xi j (t)(1 − Xi j (t)) dW (t), Xi j (0) = xi j (0),

for a scalar Brownian motion W , where

μi j (Xi j (t)) = ρ[Xi ·(t)X · j (t) − Xi j (t)] + θA

2
[X · j (t)P A

i − Xi j (t)]

+θB

2
[Xi ·(t)P B

j − Xi j (t)].

The idea is to show that this SDE behaves locally like a one-locus model of mutation
only. More precisely we will compare Xi j to another diffusion which solves the SDE

dZ(t) = ϑ

2
[P − Z(t)] dt + √

Z(t)(1 − Z(t)) dW (t), Z(0) = xi j (0),

for some ϑ ∈ [0, 1), P ∈ (0, 1). Choose ϑ so that ρ + θA
2 + θB

2 < ϑ
2 and choose P

so that xi ·(0)x· j (0) < P , P A
i < P , and P B

j < P . Then on the set A2 := {x ∈ �d−1 :
xi ·x· j < P} it is straightforward to verify we have

μi j (x) <
ϑ

2
(P − x),

and thus by a standard comparison theorem (see Theorem 1.1 and Remark 1.1 in Ikeda
and Watanabe, 1977), we can construct a probability space on which Z(t) ≥ Xi j (t)
for all t ∈ [0, TA�

2
), where TA := inf{t ∈ [0,∞) : X(t) ∈ A}. (For the comparison

theorem to hold there is a required growth condition on the diffusion coefficient. That
this holds follows from the fact that

√
x(1 − x) is 1/2-Hölder continuous; see also

Remark 3.9 on p298 of Ethier and Kurtz (1986).) Thus condition (iii) is implied by
the a.s. divergence of

∫ Tε(Z)

0

1

Z(t)
dt

as ε → 0, which in turn follows from Lemma 4.4 of Barton et al. (2004), noting that
ϑ < 1 guarantees the 0-boundary for Z is accessible. [Some errors in the proof of
Lemma 4.4 are corrected by Taylor (2007).] Tracing our steps backwards, we have
shown that condition (iii) holds provided 0 < T0(Xi j ) ≤ T < TA�

2
. Since

P(TA�
1

> T , 0 < T0(Xi j ) ≤ T < TA�
2
) > 0,
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we conclude P(IT = ∞) > 0. 
�

The conditions given in Theorem 3 simplify our proof, but it seems feasible to
substantially weaken them.

3.3 Testing for the presence of recombination

It is possible to use ρ̂MLE to design a likelihood ratio test for the null hypothesis that
ρ0 = 0. Using (17), the appropriate likelihood ratio statistic is, for IT < ∞,

 := 2 log
dP(T )

ρ̂MLE

dP(T )
ρ0

= ρ̂2
MLE IT , IT < ∞.

Under standard assumptions, noting that ρ0 = 0 lies on the boundary of�, this has an
asymptotic distribution which is an equal mixture between a χ2

1 distribution and a χ2
0

distribution under the null hypothesis (Self and Liang 1987). Denote the CDF of this
distribution by Fm . In particular, to construct a level 5% test one should reject ρ0 = 0
if  exceeds the 95th percentile of Fm ; equivalently if it exceeds the 90th percentile
of a χ2

1 distribution.
To account for the possibility that IT = ∞ we set

 :=
{

+∞, ρ̂MLE > 0,

0, ρ̂MLE = 0.
, IT = ∞.

The asymptotic null distribution for is now less clear, thoughwe note that continuing
to assume Fm would be conservative. We study the power of this test empirically in
Sect. 5.

3.4 Multiple loci

It is possible to extend the above results to a general multi-locus model. The extension
is straightforward and we omit many of the lengthy but straightforward calculations.

In a multi-locus model of � loci with K j possible alleles at locus j , haplotypes
are of the form i = (i1, . . . , i�) ∈ ∏�

j=1{1, . . . , K j } =: E in a diffusion on �d−1

with d = ∏�
j=1 K j coordinates. Stacking the haplotypes, the diffusion coefficient has

entries Vi k(x) = xi (δi k − xk) as usual, and the unknown component of the drift is

ai (x; ρ1, . . . , ρ�−1) =
�−1∑

j=1

ρ j (xi≤ j xi> j − xi ),

where ρ j is the recombination rate between locus j and j + 1, with each ρ j to be
estimated; xi is the frequency of haplotype i ; and we marginalize over a contiguous
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subset of loci by writing

xi≤ j =
K j+1∑

i j+1=1

· · ·
K�∑

i�=1

x(i1,...,i�), xi> j =
K1∑

i1=1

· · ·
K j∑

i j =1

x(i1,...,i�).

From (13) and (14) the joint estimator for (ρ1, . . . , ρ�−1) is �̂ = I −1
T Y where IT is

(� − 1) × (� − 1) and Y is (� − 1) × 1 with elements

I jk =
∫ T

0

∑

i∈E

(
X i≤ j (t)X i> j (t) − X i (t)

) (
X i≤k (t)X i>k (t) − X i (t)

)

X i (t)
dt

=
∫ T

0

∑

i∈E

X i≤ j (t)X i> j (t)X i≤k (t)X i>k (t)

X i (t)
dt − T ,

Y j =
∫ T

0

∑

i∈E

X i≤ j (t)X i> j (t) − X i (t)

X i (t)
d X̃ i (t) =

∫ T

0

∑

i∈E

X i≤ j (t)X i> j (t)

X i (t)
d X̃ i (t).

An alternative model is to set ρ j = ρ for each j = 1, . . . , � and to construct a
single scalar estimator. Then the estimator is

�̂ =

�−1∑

j=1

∫ T

0

∑

i∈E

X i≤ j (t)X i> j (t)

X i (t)
d X̃ i (t)

�−1∑

j,k=1

∫ T

0

∑

i∈E

X i≤ j (t)X i> j (t)X i≤k (t)X i>k (t)

X i (t)
dt − (� − 1)2T

.

These estimators should be corrected as in (26).

4 The effects of natural selection

Methods for inference of recombination can be confounded by natural selection (Reed
and Tishkoff 2006; O’Reilly et al. 2008; Peñalba and Wolf 2020). In this section we
investigate the effect of selection on ρ̂MLE, for simplicity returning to a two-locus
model, though it should be straightforward to extend these results to general multi-
locus models.

4.1 Confounding by selection

First consider the following: Suppose that, unknown to the investigator, the two loci
are under selection—possibly a complicated type with epistatic interaction. What
effect does this have on our estimator for ρ? More precisely, consider a model in
which the component of the drift with parameters to be estimated is still ai j (x; ρ) =
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ρ(xi ·x· j − xi j ), but the ‘known’ component of the drift is now

ci j (x) = θA

2

K∑

k=1

xk j (P A
ki − δik) + θB

2

L∑

l=1

xil(P B
l j − δ jl)

+ xi j

2

[
K∑

k=1

L∑

l=1

(
si j,kl xkl −

K∑

m=1

L∑

n=1

skl,mn xkl xmn

)]
,

i = 1, . . . , K ; j = 1, . . . , L.

This is a very general diploid, epistaticmodel of selection inwhich the selective advan-
tage of an individual carrying haplotypes (i, j) and (k, l), relative to other individuals,
is parametrised by si j,kl . We are interested in the role of selection as a confounder,
whereby inference is carried out using the incorrect selection parameters in the dom-
inating measure.

From Eq. (18), c(·) has an effect on ρ̂ only through the term d X̃i j (t) = dXi j (t) −
ci j (X(t)) dt . Therefore, in a model with selection we should adjust (18) by defining a
new estimator

ρ̂sel = ρ̂ − 1

IT

∫ T

0

K∑

i=1

L∑

j=1

Xi ·(t)X · j (t)

Xi j (t)

× Xi j (t)

2

[
K∑

k=1

L∑

l=1

(
si j,kl Xkl(t) −

K∑

m=1

L∑

n=1

skl,mn Xkl(t)Xmn(t)

)]
dt

= ρ̂ − 1

IT

∫ T

0

K∑

i=1

L∑

j=1

(Xi ·(t)X · j (t) − Xi j (t))
K∑

k=1

L∑

l=1

si j,kl

2
Xkl(t) dt . (27)

The last term, which is linear in the selection parameters, quantifies the error intro-
duced by ignoring selection. However, it demonstrates a remarkable property in the
absence of epistasis. In that case we can write si j,kl = s A

ik + s B
jl , where s A

ik is the selec-

tion parameter associated with genotype ik at locus A, and similarly for s B
jl . Then Eq.

(27) simplifies to

ρ̂sel = ρ̂.

That is, we have an attractive robustness property: if an investigator uses the incorrect
model for selection then the estimator ρ̂ is unaffected provided selection is not epistatic.
The observed information is also the same. Noting that Theorem 2 continues to hold
when c(·) is altered, we conclude that ρ̂MLE defined in Sect. 3.2.3 is still the MLE for
ρ in the presence of (non-epistatic) selection.

4.2 General confounding

Returning to the general inference problem of Sect. 3.1, we can generalise the previous
observations by asking: when does a contribution c(x) to the drift leave the estimator

123



An estimator for the recombination... Page 19 of 29    98 

ϕ̂ unchanged? From (5), its contribution to the estimator via d X̃(t) will be zero if
and only if a(X(t);ϕ)�V (X(t))−1c(X(t)) does not depend explicitly on ϕ. When the
drift is linear in the parameters as in (11), this requirement becomes

(∗) ϕ�Z�V −1c does not depend on ϕ.

If (∗) holds we will say that the estimation problem for ϕ̂ is robust to the contribution
of c(x). In the context of the Wright–Fisher diffusion we have the following result.

Proposition 2 For a Wright–Fisher diffusion with drift coefficient μ(x;ϕ) = c(x) +
Z(x)ϕ and diffusion coefficient V = (Vi j ), Vi j (x) = xi (δi j − x j ), the estimator ϕ̂ in
(13) is robust to c(x) if and only if

d∑

i=1

1

xi

∂ai

∂ϕk
(x)ci (x) = 0, (28)

for each k = 1, . . . , r .

Proof We determine (∗) for the first d −1 coordinates of the Wright–Fisher diffusion,
with [V ∗(x)]−1 as in (8):

ϕ�Z(x)�[V ∗(x)]−1c(x) =
r∑

k=1

ϕk

d−1∑

i=1

(
1

xi

∂ai

∂ϕk
(x) − 1

xd

∂ad

∂ϕk
(x)

)
ci (x)

=
r∑

k=1

ϕk

d∑

i=1

1

xi

∂ai

∂ϕk
(x)ci (x),

cd(x) := −
d−1∑

i=1

ci (x).

Since ∂ai
∂ϕk

(x) and ci (x) do not depend on ϕ, the above quantity is a linear combination
of the ϕk . It does not depend on any ϕk if and only if each of its coefficients is zero,
i.e. (28) holds. 
�

To give another example of the applicability of Proposition 2, consider reversing the
roles of selection and recombination, so thatwe are interested in designing an estimator
for (non-epistatic) selection at locus A in the confounding presence of recombination.
For simplicity we focus on a genic selection model without mutation:

ci j (x) = ρ(xi ·x· j − xi j ),

ai j (x; s A
1 , . . . , s A

K ) = xi j

2

(
s A

i −
K∑

k=1

s A
k xk·

)
, i = 1, . . . , K ; j = 1, . . . , L.

In this model we find

K∑

i=1

L∑

j=1

1

xi j

∂ai j

∂s A
k

(x)ci j (x) =
K∑

i=1

L∑

j=1

1

xi j

xi j

2
(δik − xk·)ρ(xi ·x· j − xi j ) = 0,
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and (28) holds; by Proposition 2 the estimator ŝ A for (s A
1 , . . . , s A

K ) is robust to recom-
bination, as we might hope.

Using Proposition 2 it is also possible to show that the following problems are
robust:

(i) Estimation of mutation at locus A when there is selection at locus B,
(ii) Estimation of genic selection at locus A when there is mutation at locus B;

while the following problems are not robust:

(iii) Estimation of recombination when there is mutation at either locus,
(iv) Estimation of mutation at locus A when there is mutation at locus B,
(v) Estimation of mutation at locus A when there is recombination,
(vi) Estimation of mutation at locus A when there is selection at locus A,
(vii) Estimation of genic selection at locus A when there is mutation at locus A;

similarly for problems interchanging the two loci. We omit the straightforward cal-
culations. We caution that in the estimation problems above, the likelihood, and thus
the estimator ϕ̂, will be valid only up to time S as in (25). It is possible to have
IT = ∞ even in models without recombination (in particular, we expect two path
measures with different mutation parameters to be mutually singular if certain allele
frequencies reach 0).

4.3 Joint estimation of recombination and selection

In contrast to Sect. 4.1, one might recognise the possible existence of selection and
be interested in constructing a joint estimator for recombination and selection. How
does the marginal estimator for ρ from this compare to those already developed? To
illustrate the idea, we consider a simple genic selection model at locus A in which
only allele k is under selection; that is, s A

i = 0 for i �= k:

ci j (x) = θA

2

K∑

k=1

xk j (P A
ki − δik) + θB

2

L∑

l=1

xil(P B
l j − δ jl),

ai j (x; ρ, s A
k ) = ρ(xi ·x· j − xi j ) + xi j

2

(
δiks A

k − s A
k xk·

)
,

i = 1, . . . , K ; j = 1, . . . , L.

From (13) and (14) we find

IT =

⎛

⎜⎜⎜⎝

∫ T

0

K∑

i=1

L∑

j=1

(Xi j (t) − Xi ·(t)X · j (t))2

Xi j (t)
dt 0

0
1

4

∫ T

0
Xk·(t)(1 − Xk·(t)) dt

⎞

⎟⎟⎟⎠ ,
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Y =

⎛

⎜⎜⎜⎝

∫ T

0

K∑

i=1

L∑

j=1

Xi ·(t)X · j (t)

Xi j (t)
d X̃i j (t)

1

2

∫ T

0
d X̃k·(t)

⎞

⎟⎟⎟⎠ ,

and so ϕ̂ = I −1
T Y simplifies to

ϕ̂ =
(

ρ̂

ŝ A
k

)
,

where ρ̂ is the same estimator as we found in (18) and

ŝ A
k = 2(X̃(T ) − X̃(0))

∫ T
0 Xk·(t)(1 − Xk·(t)) dt

.

Setting θA = θB = 0 recovers the estimator for selection found by Watterson (1979),
up to a choice of timescale. The key point is that the presence of selection as a ‘known-
unknown’ leaves the estimator for ρ unaffected, as is clear from the diagonal nature
of IT . In fact this might have been predicted even earlier: requiring Ikl = 0 for the off-
diagonal entry of an observed information matrix, corresponding to two parameters
ϕk , ϕl , is essentially equivalent to the robustness condition (∗). (To see this we identify
the ci (x) term in (∗) with Zilϕl , so ϕl parametrises what would have been a confounder
in (∗).)

5 Simulation study

In this section we conduct an empirical study of the properties of ρ̂MLE by simulation.
Although there has been recent progress in the development of algorithms for exact
simulation of certain classes of Wright–Fisher diffusion (Jenkins and Spanò 2017;
Griffiths et al. 2018; García-Pareja et al. 2021), these algorithms do not cover the
non-reversible diffusions considered in this paper. Instead we resort to simple Euler–
Maruyama simulation; that is, to simulate small increments of the diffusion over a
fixed, small timestep �t using the approximation

X(t + �t) = X(t) + [c(X(t)) + a(X(t);ϕ)]�t + σ(X(t))[W (t + �t) − W (t)],
X(0) = x(0),

where W (t) is the (d − 1)-dimensional Brownian motion in (23). Integrals involving
the sample path of X can be approximated using Riemann sums constructed from the
same set of gridpoints.

Because of its singularities at the boundaries of�d−1, the Cholesky decomposition
of V (x) of Sato (1976) is perhaps not the best choice of σ(x) for the purposes of
simulation, a point also noted in He et al. (2020). Instead we use a decomposition
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found for instance in Pal (2011, 2013):

σi j (x) = √
xi (δi j − √

xi x j ), i, j = 1, . . . , d.

This formulation has the advantage of being simple, symmetric, bounded in x , and
vectorising easily via

σ(x) = (Id − diag(x)1d)diag(
√

x),

where Id is the identity matrix and 1d is the d × d matrix of ones. A disadvantage is
that it uses a d-dimensional Brownian motion, one dimension more than is necessary
for simulation.

Using Euler–Maruyama simulation it is possible to obtain a realisation with Xi j (t +
�t) ≤ 0 for some (i, j). If this occurs we set Xi j (t +�t) = 0, renormalize X(t +�t)
so that X(t + �t) ∈ �d−1, and set It+�t = ∞.

In the followingwe posit a two-locus, diallelic (K = L = 2)model with symmetric

mutation (P A = P B =
(
1/2 1/2
1/2 1/2

)
) and initial condition X(0) =

(
2/5 1/5
1/5 1/5

)
. The

stepsize is set to �t = 10−6 and paths are simulated up to a time T = 1. We consider
two sets of mutation parameters: (i) θA = θB = 1, and (ii) θA = θB = 5, in order to
distinguish models in which the boundaries can or cannot be approached. We explore
a variety of recombination parameters, ρ ∈ {0, 0.1, 1, 2.5, 5, 10, 25}, and to estimate
distributional properties of the estimator we repeat each experiment 100 times.

As an illustration and a check that our implementation is accurate, examples of
individual sample paths for ρ = 5 are shown in Figs. 1 and 2, together with the
accumulated information, It , and the evolving error, ρ̂MLE − ρ, as functions of time.
As is clear from the Figures, the error is stochastically converging towards 0, with
erratic jumps towards 0 in regions where the information accumulates most rapidly.
In the second example, in which θA = θB = 1, the trajectory for X22(t) wanders
sufficiently closely to 0 that It = ∞ for some t < T , whereupon ρ̂MLE = ρ. The
distribution of ρ̂MLE across 100 experiments using these parameters are shown in
Fig. 3, with results for further experiments summarised in Table 1.

As is clear from Table 1, ρ̂MLE is slightly upwardly biased, with the relative bias
greater for ρ close to 0. Even with our assumption that the entire sample path is
observed, for θA = θB = 5 the distribution of ρ̂MLE is rather flat: for example, when
ρ = 2.5 the central 90% of its mass is approximately contained in the interval [0, 15].
The power to reject the hypothesis ρ0 = 0 at level 5% is consequently poor for small
ρ, exceeding 0.5 only for the rows in the table with ρ ≥ 10.

For θA = θB = 1 the picture is very different, demonstrating the sensitivity of
ρ̂MLE to the mutation parameters. We can see that here there is high probability that
P(ρ̂MLE = ρ), providing very high power to reject ρ0 = 0 even for small ρ > 0.

6 Discussion

In this article we have derived an expression for the maximum likelihood estimator
of the recombination rate, ρ̂MLE, from a continuously observed diffusion model of
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Fig. 1 Example trajectories in a two-locus model with two alleles at each locus, ρ = 5, and θA = θB = 5.
Also shown in the lower plots are the trajectories of ρ̂MLE − ρ and It for this sample path

Fig. 2 As Fig. 1 but with θA = θB = 1
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Fig. 3 Distribution of ρ̂MLE estimated from 100 replicates. Mutation parameters are θA = θB = 5 (left)
and θA = θB = 1 (right). The true recombination parameter, shown by a red line, is ρ = 5

haplotype frequencies. As well as recombination, the diffusion model can incorporate
mutation, selection, and genetic drift. We have investigated the empirical properties
of the estimator and its robustness to the presence of other processes. We have shown
that, contrary to a typical estimator, it is possible to have ρ̂MLE = ρ with positive
probability, and this event is intimately associated with the hitting of the boundary
by the diffusion (Theorem 3). Although in that theorem we made some convenient
assumptions about the trajectory of X(t), we expect it is possible to refine this result
further; indeed we conjecture that {IT = ∞} is equal to the event that one haplotype
frequency reaches 0 by time T . This would provide an easy way to check whether
{IT = ∞} has occurred.

AlthoughTheorems 2 and 3 arewritten in statistical language, in terms of estimators
and information, we can gain some further intuition by phrasing them in a more
fundamental way: it is known that the non-explosion condition (4) holds if and only
if P(T )

ϕ � P
(T )
ϕ0 (Hobson and Rogers 1998). Thus, when estimating recombination

(or mutation, but not selection), hitting a boundary of the diffusion leads to the loss
of absolute continuity of one path measure with respect to another. The information
IT provides a natural measure of ‘signal-to-noise’. From the point of view of a finite
population, although one usually thinks of stochastic effects as being more important
when an allele is very rare compared towhen it is common, on the contrarywhatmatters
in the diffusion limit here is that the variance in offspring distribution (noise) goes to
zero at the boundary while the mean detectable effect of recombination (signal) does
not. (The qualitatively different behaviour at a boundary between a finite population
model and its diffusion limit is also remarked on by Ewens (2004, p180).) This also
explains the effects of the mutation rate on estimation of ρ as observed in Sect. 5:
higher mutation rates act to push haplotype frequencies toward the interior of the
simplex, where the accumulation of information is slower. It also matches biological
intuition: if mutation rates are very small, we can reject a null of no recombination by
using the four-gamete test on just a sample at a single time point. As mutation rates
increase, it is harder to tell apart recurrent mutation from recombination.

Because of the unusual behaviour of the estimator for ρ, we have refrained from
providing a detailed description of its asymptotic properties such as local asymptotic
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normality (LAN). Using the estimator for the immigration rate of the CBI diffusion
as a guide, it should be possible to show that inference for ρ exhibits LAN along the
sequence of random times

Tn := inf{t ∈ [0, T ] : It = n};

see Overbeck (1998, §3.4). However, in the case IT < ∞ for each T , finding the
asymptotic behaviour of ρ̂MLE is more involved since we do not know the stationary
distribution of X .

Finally, we observe that fundamental quantities appearing throughout this work are

K∑

i=1

L∑

j=1

(Xi j − Xi · X · j )
2

Xi j
, and

K∑

i=1

L∑

j=1

Xi j − Xi · X · j

Xi j
. (29)

The role of Xi j in the denominators has been to upweight the importance of those parts
of the trajectories where the frequency of haplotype (i, j) is small, since these regions
aremore informative for ρ. In one sense this is unsatisfactory since the diffusionmodel
is often regarded as an approximation of a discrete population of size N , and behaviour
near the boundaries is inappropriate when true frequencies can only be a multiple of
1/N . One might prefer to replace the estimator ρ̂, which integrates each Xi j (t) over
[0, T ], with one that integrates Xi j (t) only over some sub-region

{t ∈ [0, T ] : ε ≤ Xi j (t) ≤ 1 − ε}.

Even under this restriction, the quantities in (29) tell us to focus our attention on
those regions where the haplotype frequency is far from 1/2. The normalizations
inherent in (29) seem to offer ‘natural’ newnormalizations for the coefficient of linkage
disequilibrium, which do not correspond to the usual normalizations found in r2 and
D′, for example (Sved andHill 2018). Exploring the properties of these new summaries
of LD will be the subject of future work.
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A Appendix

In this section we study the deterministic mutation-recombination equation

dxi j

dt
= ρ(xi ·x· j − xi j ) + θA

2
(x· j P A

i − xi j ) + θB

2
(xi · P B

j − xi j ),

i = 1, . . . , K ; j = 1, . . . , L. (30)

Summing (30) over j yields:

dxi ·
dt

= θA

2
(P A

i − xi ·), i = 1, . . . , K ,

whose solution is

xi ·(t) = P A
i + (xi ·(0) − P A

i )e− θA
2 t , i = 1, . . . , K .

Similarly,

x· j (t) = P B
j + (x· j (0) − P B

j )e− θB
2 t , j = 1, . . . , L.

Therefore, (30) can be written

dxi j

dt
+
(

ρ + θ

2

)
xi j (t) = ρxi ·(t)x· j (t) + θA

2
x· j (t)P A

i + θB

2
xi ·(t)P B

j =: F(t),

with F(t) known and θ := θA + θB . This can be solved via an integrating factor; the
solution is

xi j (t) = e
−
(
ρ+ θ

2

)
t
[

xi j (0) +
∫ t

0
F(s)e

(
ρ+ θ

2

)
s
ds

]

=
(
1 − e

−
(
ρ+ θ

2

)
t
)

P A
i P B

j

+ (x· j (0) − P B
j )P A

i

(
e− θB

2 t − e
−
(
ρ+ θ

2

)
t
)

+ (xi ·(0) − P A
i )P B

j

(
e− θA

2 t − e
−
(
ρ+ θ

2

)
t
)

+ (xi ·(0) − P A
i )(x· j (0) − P B

j )

(
e− θ

2 t − e
−
(
ρ+ θ

2

)
t
)

+ xi j (0)e
−
(
ρ+ θ

2

)
t
.
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Substituting the solutions for xi ·(t), x· j (t), and xi j (t) into (19) gives an expression for
the observed information. After some simplification we arrive at

IT

=
∫ T

0

K∑

i=1

L∑

j=1

Di j (0)2e
−2

(
ρ+ θ

2

)
t

Di j (0)e
−
(
ρ+ θ

2

)
t+[P A

i +(xi ·(0)−P A
i )e− θA

2 t ][P B
j +(x· j (0)−P B

j )e− θB
2 t ]

dt .

where Di j (0) = xi j (0) − xi ·(0)x· j (0). Since the integrand of IT decays exponen-
tially in t , clearly I∞ < ∞ as before.
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