
warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/176103

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/176103
mailto:wrap@warwick.ac.uk

1

Waterwave: A GPU Memory Flow Engine for
Concurrent DNN Training

Xuanhua Shi, Senior Member, IEEE, Xuan Peng, Ligang He, Yunfei Zhao, and Hai Jin, Fellow, IEEE

Abstract—Training Deep Neural Networks (DNN) concurrently is becoming increasingly important for deep learning practitioners, e.g.,
hyperparameter optimization (HPO) and neural architecture search (NAS). The GPU memory capacity is the impediment that prohibits
multiple DNNs from being trained on the same GPU due to the large memory usage during training. In this paper, we propose
Waterwave, a GPU memory flow engine for concurrent deep learning training. Firstly, to address the memory explosion brought by the
long time lag between memory allocation and deallocation time, we develop an allocator tailored for multi-streams. By making the
allocator aware of the stream information, a prioritized allocation is conducted based on the chunk’s synchronization attributes,
allowing us to provide useable memory after scheduling rather than waiting it to be really released after GPU computation. Secondly,
Waterwave partitions the compute graph to a set of continuous node groups and then performs finer-grained scheduling: NodeGroup
pipeline execution, to guarantee a proper memory requests order. Waterwave can accomplish up to 96.8% of the maximum batch size
of solo training. Additionally, in scenarios with high memory demand, Waterwave can outperform existing spatial sharing and temporal
sharing by up to 12x and 1.49x, respectively.

Index Terms—GPU, Memory management, Deep learning training, Scheduling.

✦

1 INTRODUCTION

D EEP neural networks (DNNs) have made huge strides
forward in a variety of fields, including image classifi-

cation, object identification, speech recognition, and natural
language processing. Given the marvelous power of various
computing hardware, including GPU, TPU [1] and ASIC, the
deep learning practitioners are able to explore deeper and
more intricate deep neural networks architectures. In recent
years, more and more automatic approaches for deep learn-
ing have been proposed. Hyperparameter optimization [2],
[3], [4] and Neural Architecture Search [5], [6] are two ex-
amples, which pursue finding a set of optimal/sub-optimal
parameters and neural network architectures, respectively.
These methods usually define a large search space and need
to train a large number of homogeneous or heterogeneous
neural networks. During the training, the next optimization
direction is determined according to the previous results.

In prior works, a GPU device is shared by multiple
deep learning (DL) jobs from temporal and spatial perspec-
tives. Temporal sharing, which is adopted by the systems
such as Gandiva [7] and Salus [8], seeks to multiplex a
GPU device at the time slice level (e.g., a training step or
several minutes). Through switching the contexts of co-
located jobs, only one active job runs on the GPU at a
time. Therefore, the GPU resources are still under-utilized
for some models such as Tacotron2 [9] and GNMT [10]. This
is because such models lack enough degree of parallelism

• Xuanhua Shi, Xuan Peng, Yunfei Zhao, and Hai Jin are with the National
Engineering Research Center for Big Data Technology and System, Ser-
vices Computing Technology and System Lab, Huazhong University of
Science and Technology, Wuhan, 430074, China. E-mail: {piecesix, xhshi,
yfzhao, hjin}@hust.edu.cn

• Ligang He is with University of Warwick, UK. E-mail: lig-
ang.he@warwick.ac.uk

to saturate the GPU and suffer from scheduling overhead
due to tens of thousands of kernels being launched in a
single iteration. On the other hand, spatial sharing runs mul-
tiple jobs concurrently on a GPU and usually exhibits the
greater throughput than temporal sharing. However, this
method is constrained by the total memory size required
by the concurrently running jobs, which cannot exceed the
GPU memory capacity. Although the Multi-Process Service
(MPS) [11] and Unified Virtual Memory (UVM) provided by
NVIDIA can serve multiple jobs in single GPU and leverage
CPU DRAM as an external storage when GPU memory is
being oversubscribed, they will stall the GPU computation
due to the on-demand memory swap based on page fault
and limited PCI-e bandwidth, which substantially affects
the training performance.

Figure 1 shows the memory usage of three iterations’
training in ResNet50 [12] and Bert-base [13], in which
ResNet50 uses the SGD optimizer while Bert-base adopts
the Adam optimizer. It can be seen that the memory usage
increases as the feature maps accumulate in the forward
propagation and decreases as the backward propagation
progresses. Although the peak memory consumption of
a DL job during its execution could approach the GPU
memory capacity, the average memory footprint is actually
small. This is because the majority of the memory footprint
during the training are feature maps [14], [15], [16], which
are generated at each layer in forward propagation and
will be freed when the corresponding backward propaga-
tion has completed. Therefore, the memory footprint in a
single training iteration of a DL job exhibits the trend of
“first increase then drop”. And this pattern repeats across the
iterations.

It is obvious that the co-located jobs should not be
allowed to reach their maximum memory footprint at the
same time, which could easily exceed the GPU memory

2

 0

 5

 10

 15

 0 1 3

M
em

or
y

U
sa

ge
 (

G
B

)

Time (s)

T1

2

T2

(a) ResNet50

 0

 5

 10

 15

 0 1 2 3 4

M
em

or
y

U
sa

ge
 (

G
B

)

Time (s)

(b) Bert-base

Fig. 1: Memory Usage over Time in Model Training

capacity. An intuitive idea is to schedule the ‘memory drop’
phase of one job in parallel with the ‘memory increase’ phase
of another job. In that case, the memory freed by one job can
be utilized by another job. Although this idea seems easy
and straightforward, it is not applicable in the current DL
frameworks like TensorFlow [17] or PyTorch [18], since they
are both tailored in such a way that a single job occupies the
entire GPU exclusively during its execution.

To enable efficient memory sharing in concurrent train-
ing with current DL frameworks, there are two key prob-
lems. Firstly, the DL frameworks usually allocate a large
bulk of memory (e.g. the entire GPU memory) as a mem-
ory pool and perform the dynamic (de)allocations on it.
This means that instead of actually releasing the physical
memory when freeing memory, only the memory chunk in
the memory pool is marked as available. This is to avoid
the expensive overhead of frequent GPU (de)allocations,
like cudaMalloc and cudaFree in NVIDIA GPU. There-
fore, a job’s freed memory cannot be utilized due to this
caching approach. A natural method is to share a common
memory pool across co-located jobs, but there could be
memory corruption with concurrent training. To fully utilize
GPU computing resources, the next ready kernels can be
scheduled in CPU without waiting the preceding kernel
to finish its computations in GPU, i.e., the kernel schedul-
ing in CPU is performed in parallel with the computations in
GPU. Memory allocation and deallocation occur during the
scheduling without memory corruption, which is achieved
by dispatching all computations to a single GPU stream,
ensuring that they are processed in a strictly sequential
manner. However, it is not the case anymore when multiple
jobs run concurrently in different streams (it will lose the
meaning of spatial sharing if multiple jobs are run in a
single stream sequentially). There is no guarantee of the
execution order when the computations are scheduled into
different streams. The prior works [17], [19] opt to free the
memory when a kernel’s computations are finished in GPU.
Nonetheless, the scheduling in CPU is much faster than
the heavy GPU computations, which results in a big gap
between the memory allocation time and deallocation time.
Consequently, the memory footprint could explode very
quickly. On the other hand, in order to avoid the memory
bloat, if we also move the timing of memory allocation to
when GPU computations are performed, the GPU computa-
tions can no longer overlap with the CPU scheduling, which
leads to the decrease in training performance.

Secondly, when multiple jobs’ computations are sched-
uled in parallel, we need to ensure that the order of the

memory requests is the order we wanted. Namely, the
memory of a job should be freed first and then used by
other jobs. All prior works [19], [20] perform mini-batch level
scheduling, where there could be thousands, even hundreds
of thousands, of memory requests in an iteration. When a
job’s forward computations are scheduled before another
job’s backward computations, it will lead to memory over-
subscription since many memory deallocation operations in
backward propagation are not scheduled promptly before
the memory is allocated in the forward propagation. To
make the situation more complicated, there are also a lot
of memory allocations in the backward phase. Furthermore,
prior spatial sharing works do not naturally support more
than two concurrent jobs except NVIDIA MPS. This is
because they made the assumption that a job can only be
scheduled into a single GPU stream. Zico [19] gives an
advice that organizes the jobs into two group pairs and
schedules them using the method of handling two jobs. In
addition to losing a degree of parallelism, it may lead to the
imbalanced distribution of workloads in two GPU streams.

In this paper, we propose a GPU memory flow engine
named Waterwave, which aims to make the GPU memory
flow back and forth among the concurrently running DL jobs.
Firstly, we develop an asynchronous multi-streams memory
allocator to tackle the first problem. By making the allo-
cator aware of what GPU stream each memory chunk is
allocated on, it can determine whether a chunk that’s freed
after scheduling is ‘safe’ to be used in current allocation
— this chunk has been freed in the same stream or before
streams synchronization. Moreover, the allocator can proac-
tively synchronize the GPU streams to leverage free chunks
on other streams when there is no such memory chunk
to satisfy the current allocation request. Since this stream
synchronization is an asynchronous operation, the allocator
can provide useable memory after scheduling rather than
waiting for GPU computation to finish.

To solve the second problem, we propose NodeGroup
pipeline execution, which schedules the jobs in a finer-
granularity than existing mini-batch level scheduling. The
compute graph of each job is partitioned into a set of
continuous node groups, each with a similar total allocation
or deallocation size. The node group is then used as the
basic scheduling unit and node groups inside a job are
processed sequentially. In this manner, a job’s node group
with positive allocation size can be scheduled in parallel
with the node group with negative allocation size from
another job. And such parallel node groups are referred
as a node group pair. Before scheduling a new node group
pair, the streams synchronization function is invoked to mark
previous free chunks in all streams as synchronized. In that
case, the released memory of previous node group pair is
free to be used by current node group pair’s allocation
requests. Furthermore, from Waterwave’s point of view, a
job’s node groups can be dispatched to any stream as long
as the order of the node groups in a job doesn’t change.
Therefore, there is actually no job concept in Waterwave’s
scheduler but the ready node group, which give us much
more flexibility to schedule more than two jobs.

3

We have prototyped Waterwave1 on top of a popular
deep learning framework, TensorFlow. By evaluating six
models including CNN, RNN, and transformer on the V100
and P100 GPUs, the results reveal that Waterwave delivers
effective memory sharing in concurrent training, which can
achieve up to 96.8% maximum batch size of solo run-
ning. Moreover, Waterwave outperforms MPS and temporal
sharing in terms of throughput by up to 12x and 1.49x,
respectively.

2 BACKGROUND

2.1 Deep Learning Training

Typically, the training process involves millions of iter-
ations, aiming to find an adequate collection of the model
parameters. In each iteration, the inputs are fed into the
neural network, and then the training process starts from the
input layer and proceeds until the loss is calculated, which
is known as forward propagation. The backward propagation
will then start from the output layer and progress reversely.
There are various optimizers that can be used to update the
model parameters, like stochastic gradient descent (SGD),
Momentum [21], and Adam [22].

During the DL training, the memory allocation requests
are primarily issued by four components: 1) model parame-
ters; 2) feature maps, which are the output in forward prop-
agation; 3) gradient maps, which are the output in backward
propagation; 4) temporary storage, which is used to assist the
computation (e.g., workspace in the convolutional layer).
The model parameters are stored permanently in the GPU
memory, which usually consumes little memory. The latter
two types of memory can be released immediately upon
the completion of the associated computations. Since the
feature maps are required in both forward computation and
backward computation, which results in a long lifespan,
they consume the majority of the GPU memory.

2.2 Sharing the GPU Demand

Except the scenario in which multiple tenants commit
the training of their models in a shared GPU cluster (it
has been shown in prior works [7], [8], [23] that concurrent
training is capable of improving GPU utilization and reduc-
ing the average job completion time), there are two other
specific scenarios where concurrent training can speedup
the training process too. We will give a brief introduction of
these two cases in this section.

2.2.1 Hyperparameter Optimization
Apart from the ideal model parameters determined dur-

ing the training, a number of parameters termed hyperpa-
rameters must be adjusted prior to the training, e.g., batch
size and learning rate. Additionally, determining the opti-
mal (or suboptimal) selection of hyperparameters is critical
to the effectiveness of deep neural networks. Typically, the
range of potential hyperparameter values is far too large
to try all of them. There are some straightforward search
strategies, such as grid search and random search [2]. In

1. Waterwave is available as an open-source software at
http://github.com/HinPeng/tensorflow/tree/waterwave-dev.

both methods, a grid of hyperparameters are established
firstly. The grid search will then train the model on each
of the possible combinations whereas the random search
just randomly pick some combinations. To make the search
more intelligent, several works have been proposed, such as
Hyperdrive [3], Hyperband [4], and HyperOpt [24]. Hyper-
drive supports the dynamic scheduling and the early termi-
nation mechanism to jointly optimize the model quality and
searching cost. HyperOpt accepts a set of hyperparameters
as an input to search and move within the set based on
the results of previous trials. As the result, regardless of
the search approach used, the ability of training as many
combinations concurrently as feasible will benefit the search
process. There are several works on deep learning cluster
scheduling [7], [8], [23], which try to accelerate the process
of hyperparameter optimization mainly through temporal
sharing.

2.2.2 Neural Architecture Search
Handcrafting neural networks to identify the best per-

forming structure has always been a painstaking and time
consuming task. Neural Architecture Search (NAS) is de-
veloped to automate this process of identifying effective
architectures for a given DL problem. Modern deep neu-
ral networks often have many (up to hundreds) layers
of different types, with the varied connections between
the layers. As a result, NAS has a vast design space for
exploring the neural architectures. Apart from the funda-
mental grid search and random search that are similar as
in hyperparameter optimization, there are numerous ad-
vanced techniques for optimizing the search strategy, such
as evolutionary algorithm [5], Bayesian optimization [6],
and reinforcement learning [25]. The reinforcement learning
has been used successfully to drive the search process for
better architectures. It samples from the search space using
a controller network (usually a recurrent neural network)
and then updates itself using the training results of the
sampled networks. NAS requires concurrent training in the
same way as hyperparameter optimization; the distinction
is that the neural network architectures searched for in NAS
are different while the network architecture is the same in
hyperparameter optimization.

3 OPPORTUNITY AND CHALLENGES

3.1 Memory Usage Pattern in Deep Learning Training

Except for the memory usage pattern of “first increase
then drop” during training, we have also noticed that there is
a time gap between the last deallocation of an iteration and
the start of the next iteration. For example, in Figure 1(a),
there is no memory allocation or deallocation after T1 in the
first iteration and before the second iteration that started at
T2. We found that T1 is actually the time when the scheduling
has been completed in CPU whereas T2 is the time when the
computation has finished in GPU (ignore the time spent in
post-processing of an iteration). This means that all memory
allocations and deallocations occur at the CPU scheduling.
In detail, when the scheduling of a kernel2 is started, it will

2. A kernel is the basic computing unit in deep learning frameworks,
which has the same meaning as an operation in this paper.

http://github.com/HinPeng/tensorflow/tree/waterwave-dev

4

allocate all required memory from the GPU memory pool
and return the memory that is no longer needed at the
end of its scheduling. The purpose is to overlap the CPU
scheduling with the GPU computation so as to avoid the
scheduling overhead. Although it is obtained by running
in TensorFlow, we also observe the similar results in other
deep learning frameworks, such as PyTorch [18].

In summary, although the peak memory usage is enor-
mous, it only lasts for a very short time, which indicates that
there is much free memory during each iteration. However,
it cannot utilize the memory freed by other jobs due to the
caching strategy in the DL frameworks as mentioned before.
A natural idea is to share a common memory pool across the
co-located jobs. However, it may cause memory corruption
when deallocating the memory at the end of the kernel’s
scheduling. We will clarify this point in more detail in next
section.

3.2 Memory Explosion in Concurrent Training

There is no guarantee on the kernels’ execution order
when they are scheduled into multiple GPU streams, which
will lead to memory corruption if the memory is freed at
the end of scheduling. A straightforward solution to this
problem is to release the memory after the kernel’s com-
putation in GPU has been completed, rather than when its
scheduling in CPU is finished. This method is adopted in the
work presented in [19]. However, the kernel’s computation
in GPU is significantly slower than its scheduling in the CPU
as shown in Figure 1, which increases the time gap between
the allocation and deallocation of memory chunks. This, in
turn, causes a rapid increase in GPU memory usage.

To demonstrate how fast the memory growth is, we
conduct a micro-benchmark, which runs a ResNet50 model
solely in a P100 GPU with two configurations and compares
two scenarios where the memory is deallocated after the
kernel’s scheduling (marked by “Sche.” in Figure 2) or
after its computation (“Comp.”). The results are depicted
in Figure 2. It can be observed from the figure that when the
memory is released after the scheduling, the memory usage
increases during the forward pass, reaching the peak usage
of approximately 5.4 GB at 50 ms. The memory usage then
decreases during the backward pass. However, the memory
usage peaked with over 13 GB being observed at about 200
ms when the memory is released after the computations,
due to the delayed memory deallocation. It is not until 180
ms that the backward pass starts its computations on the
GPU and frees the feature map memory. This caused the
memory sharing space to be considerably more constrained,
as the peak and average memory usage become significantly
larger.

To mitigate this explosive memory growth and usage,
one way is to shift the timing of memory allocation from
the start of the kernel scheduling in CPU to the start of the
kernel’s computation in GPU. Specifically, a kernel will not
be scheduled until the previous kernel’s computation has
been completed in GPU3. However, this introduces another

3. Before launching a GPU kernel, the required GPU memory must
be provisioned in advance. As a result, the timing of memory allocation
can be adjusted only through regulating the timing of the kernel launch.

 0

 4

 8

 12

 0 100 200 300M
em

or
y

U
sa

ge
 (

G
B

)

Time (ms)

Comp. Sche.

Fig. 2: Memory Usage of an
Iteration with Different Mem-
ory Deallocation Timings

 0

 0.2

 0.4

 0.6

 0.8

 1

ResNet152
Bert-base

Tacotron2N
or

m
al

iz
ed

 P
er

fo
rm

an
ce Parallel Sequential

Fig. 3: Normalized Perfor-
mance of Parallel and Se-
quential Scheduling

problem: scheduling overhead, since the scheduling and com-
putation will become sequential. If the kernel scheduling
and the kernel computation can overlap with each other,
we call this scheduling “parallel scheduling”. Otherwise,
it is called “sequential scheduling”. Figure 3 presents the
normalized performance when performing parallel schedul-
ing and sequential scheduling on three models respectively.
We can see that the three models show 24.6%, 34.6%, and
70.7% performance degradation respectively. The perfor-
mance loss is basically proportional to the number of kernels
launched in an iteration. Bert-base will launch over 7000
kernels in an iteration while this number in Tacotron2 is
close to 80000. Although there are fewer nodes in CNN
models, it can still experience more than about 25% perfor-
mance loss. Such performance overhead is unacceptable in
DL training due to the expensive GPU resources. Moreover,
the performance degradation will become more severe in
concurrent training as one job needs to wait for others to
release their memory, which can take longer time. Therefore,
the first challenge is to regulate the allocation and deallocation
timings without increasing the scheduling overhead.

3.3 Scheduling Granularity in Concurrent Training
The memory sharing could not be accomplished if the

forward computations of the co-located jobs (issuing many
allocation requests) were scheduled simultaneously — the
memory will oversubscribe before the deallocation starts.
The order of memory requests from the jobs, or called
the operation scheduling sequence, determines whether the
requested memory will exceed the GPU memory capacity.

To facilitate the following description, we use allocation
part to represent the training process that mainly produces
the allocation requests, and deallocation part to represent
the training process that frees the memory. Prior works all
adopt the mini-batch-level scheduling approach to scheduling
the allocation part of one job and the deallocation part
of another in parallel. There are lots of operations (over
thousands, even hundreds of thousands) in an iteration.
Hence, the execution order of the operations in the concur-
rent training is determined totally by the process schedul-
ing in CPU. It is almost impossible to obtain exactly the
same operation scheduling order for so many operations in
two scheduling solutions. Besides, lots of allocations also
occur (up to tens of GB) in the deallocation part. Let us
assume a situation where the memory footprint is close to
the memory limit and the free memory is only capable of
scheduling one operation. If we schedule the operation that
will free the memory first, the released memory can serve

5

Profiling

Model 1

Model N

…

Asynchronous Multi-Streams
Memory Allocator

SyncAndCoalesce Allocate/Deallocate

Partition

stream 1 synced

Free Chunk Set

…

stream 2

Job 0 Job 1 Job 2

…
…

Job 1 Job 2 Job 3

NodeGroup Pipeline Executor

Time

Fig. 4: Waterwave System Architecture

the next operation that needs the memory allocation. But
if the operation that needs the allocation is scheduled first,
there is not enough memory for scheduling the operations
that will free the memory. Therefore, such coarse-grained
scheduling is much easier to oversubscribe the memory in
a scenario of high memory usage, which leaves the “fate”
to the sequence in CPU process scheduling. Moreover, it
is obvious that too fine-grained scheduling (like operation-
level) in a centralized way will introduce the scheduling
overhead. Therefore, the second challenge is to determine the
appropriate level of granularity at which multiple jobs’ computa-
tions are scheduled and the memory freed by one job can exactly
be used by other jobs.

4 DESIGN OF Waterwave
4.1 Design Overview

The overall architecture of Waterwave is shown in Fig-
ure 4. When multiple jobs attempt to share the GPU, the
iterations of these jobs are first scheduled sequentially,
which operates in a similar way as the temporal sharing
with all model parameters being kept in GPU memory.
The purpose is to profile the execution characteristics of
each job in its solo run and decide the memory sharing
strategy accordingly. Waterwave re-designs two modules in
the current DL frameworks: allocator and executor, aiming to
address the two aforementioned difficulties.

Firstly, we develop an asynchronous multi-streams memory
allocator, which frees the memory when the kernel’s schedul-
ing is completed rather than wait until its computation is
finished in GPU. The intuition is to make use of the fact
that allocations and deallocations in the same stream are
sequential, which makes it safe to allocate a free chunk
that is asynchronously deallocated in the same stream.
Furthermore, if the synchronization function of the streams
has been invoked (e.g., streams synchronization) prior to
a specific memory allocation, any chunks that have been
deallocated before this allocation are accessible regardless
of which streams they are in. Only when trying to allocate
a chunk that is deallocated in different streams does the
explicit synchronization becomes necessary.

Although the accessible memory can be obtained from
other streams by synchronizing the streams explicitly, it

harms the parallel execution of multiple jobs. Moreover, the
increase in the accessible memory after the synchronization
depends on the sequence in which the memory is allocated
and freed. To address this issue, we propose the NodeGroup
pipeline executor, which divides the computation graph of
each job into a set of continuous node groups with the similar
total (de)allocation size. Then the node group with the
positive allocation size is scheduled in conjunction with the
node group with the negative allocation size.

Next, we will dive into the details of the asynchronous
multi-streams memory allocator, NodeGroup pipeline executor,
and the graph partition and scheduling algorithms.

4.2 Asynchronous Multi-streams Memory Allocator
In DL frameworks, the typical memory allocator is obliv-

ious of any additional information about a memory chunk.
This implies that when an allocation request comes in, we
have no idea if the allocator’s returned chunk has been
deallocated (and if so by which stream) and if it is a “clean”
chunk that has never been used. To ensure the memory
correctness, current works opt to release the memory un-
til the relevant GPU computations are completed. Since
all memory allocations occur in the CPU time view, the
time gap between CPU scheduling and GPU computation
rapidly cause the memory footprint to increase rapidly.

A basic idea is to presume that the memory is released
when the scheduling in CPU finishes. Then when an alloca-
tion request is received, we can still attempt to search for a
’clean’ chunk or the free chunks that are deallocated in the
same stream. The latter chunks can be used safely without
synchronization since all operations in the same stream are
executed sequentially. Based on the above discussions, we
design a memory allocator tailored for multiple streams.
Note that two streams are sufficient for parallel allocation
and deallocation, and often contain enough computations
to saturate the GPU compute resources [26], [27]. Thus, we
only use two compute streams in the current implementa-
tion. Nonetheless, the multi-stream memory allocator can
support any number of streams.
class Allocator{
void* Allocate(int64 bytes, int stream_id);
void Deallocate(void* addr);
void SyncAndCoalesce();
vector<FreeChunkSet> no_synced_free_chunks;
FreeChunkSet synced_free_chunks;

}

Listing 1: Multi-streams Memory Allocator

The Allocator structure is partially illustrated in Listing 1.
We will mainly discuss the distinctions between the multi-
stream allocator and a traditional allocator. The stream_id
specifies the stream that the allocator should perform,
which is the same as the corresponding operation. In
a traditional allocator, there is only one FreeChunkSet
to store the freed chunks. However, in a multi-stream
environment, we divide the free chunks into two cate-
gories according to their synchronization property. The
first one is no_synced_free_chunks, which is used to
hold the free chunks that are deallocated without syn-
chronization. Each stream is configured with its own
no_synced_free_chunks set. That is, if an allocation in
stream A wishes to utilize the no_synced_free_chunks

6

in stream B, a memory error may occur as the result of
undefined concurrent activities on the same chunk. The
second is synced_free_chunks, which indicates that all
free chunks in this set have been synchronized. For example,
all chunks associated with the job will become synchronized
at the end of an iteration. Prior to the execution, all chunks
are initialized as synced free chunk. While the free chunks
are summarized in two categories, there are actually three
distinct types of free chunk for a given allocation: 1). no
synced free chunk with the same stream id; 2). no synced free
chunk with a different stream id; 3). synced free chunk.

a) Allocate: When an allocation request is received, a
prioritized search will be performed across the three kinds
of chunks. Firstly, we search for free chunks with the
same stream id in the no_synced_free_chunks. It be-
haves just like the case where a single job performs the
computation in a single stream. Thus the synchroniza-
tion is not required. Secondly, we consider the case of
synced_free_chunks. While these two types of chunks
can both be safely used without synchronization for the
current allocation, the former has the more restricted usage:
the allocations that occur in other streams cannot use these
chunks for free (synchronization is needed). Therefore, we
begin with searching for the former type of chunk. If neither
of the above two searches succeeds, we have to consider
the no_synced_free_chunks in other streams. Here, a
stream’s synchronization function is invoked to convert the
no synced free chunk to the synced free chunk.

b) Deallocate: When a chunk is ready to be deallocated, it
is placed in the associated no_synced_free_chunks with
its allocation stream id as the index. To avoid the memory
fragmentation, a coalescing function is often performed to
coalesce the free chunks. The difference between this and
the multi-stream case is that this free chunk can only be
coalesced with other free chunks with the same stream
id in no_synced_free_chunks. It is self-evident that it
cannot be coalesced with other streams’ freed chunks. While
coalescing with synced free chunks is safe and does not
need synchronization, this synced free chunk will become
a no_synced_free_chunks, which reduces the available
memory size of the synced free chunks. This is detrimental
to the subsequent allocations. Therefore, we defer such
coalescing when we have to select no synced free chunks in
distinct streams in Allocate.

c) SyncAndCoalesce: The traditional allocator for a single
stream does not adopt this approach. It is obvious that
when an allocated synced free chunk is deallocated, the
synced free chunk will be converted to no synced free chunk.
Conversely, the approach in a traditional allocator aims to
mark all chunks in no_synced_free_chunks as synced
for all streams and try to coalesce all the free chunks. To
ensure that this operation can change the synchronization
property of the chunks correctly, a stream’s synchronization
function needs to be invoked explicitly. It may be triggered
by the allocator, for example, when selecting the chunks
from no_synced_free_chunks in other streams, or by the
executor, e.g., at the end of each training iteration.

4.3 NodeGroup Pipeline Execution
Although the multi-stream allocator attempts to first al-

locate no synced free chunk in the current stream, this kind

1 3

4

11 22 3

4 5 6

2

3 4

Time

stream 1

stream 2

Job 1 Job 2 Job 3 NodeGroup memory flow

streams sync

Fig. 5: An Example of NodeGroup Pipeline Execution on
Three Jobs (a purple arrow represents that the freed memory
from a DNG can be used by the very next ANG, i.e.,
symbolizing the memory flow.)

of memory is extremely rare when the memory demand is
large. Thus, the critical issue for ensuring the high availability
and high-performance of multi-streams allocator is how we can
always reserve enough synced free chunks for subsequent
allocations. On the one hand, the synchronization at the end
of each iteration can only yield the synchronized free chunks
when the computations of the iteration are completed in
GPU, despite the fact that a significant amount of memory
has already been deallocated during the scheduling of the
iteration. On the other hand, relying on the active syn-
chronization in allocator cannot guarantee there are enough
synced memory available after the synchronization. For in-
stance, if two jobs’ allocation parts are both scheduled first,
the number of free chunks will be depleted rapidly. Addi-
tionally, excessively frequent synchronization will degrade
the training performance. Briefly speaking, we aim to enable
the deallocated memory from one job to be reused by other
jobs immediately and at a low cost. To tackle this problem, we
develop a NodeGroup pipeline executor that allows for fine-
grained scheduling of computations.

Let us first define the concept of NodeGroup (NG). Given
a compute graph G= (V,E) of a job, it will be partitioned
into a set of continuous NodeGroups, which is a subgraph of
G. The node groups of a job are processed in strict sequence
regardless of which stream they are dispatched to. For a node
group, the root nodes are the nodes that will be scheduled
first while the leaf nodes are the last to be scheduled. The
completion of the leaf nodes’ scheduling indicates that the
scheduling of next node group can start. Notice that the set
of leaf nodes can be empty if all nodes in the node group
have no dependency to each other. In such circumstances,
the root nodes are also the leaf nodes.

When a node group is determined, the total
(de)allocation memory size can be calculated using the
allocations information of each node inside this node group.
When this value is positive, it indicates that the specified
amount of memory will be allocated, while the memory will
be released when the value is negative. They are called al-
location node group (ANG) and deallocation node group (DNG)
respectively. Considering the memory usage pattern during
an iteration, a job’s node groups can be divided into a series
of continuous ANGs followed by a series of continuous
DNGs. Figure 5 presents an example of three jobs’ pipeline
execution. These three jobs are partitioned into six, four,
and four node groups respectively with the first half being
ANGs. For the sake of convenience, we denote the first node

7

1

2 3

4

1

2 3

5

6

4 5

7 6

CounterBarrier

: Node

original dependency control dependency

: NG pair 1

: NG pair 2

Job 1 Job 2

Fig. 6: The Implementation of CounterBarrier that Ensures
the Sequential Execution Order of NodeGroup Pair; the
original dependency is represented by the solid arrows in the
compute graph whereas the control dependency is represented
through the dotted arrows added by the CounterBarrier.

group of Job 1 by J1NG1. The node groups aligned from
different streams are processed in parallel, e.g., J1NG4 and
J2NG1, J2NG3 and J3NG2. Such parallel node groups are
referred to as a node group pair. The next node group pair
is not scheduled until the scheduling of the previous node
group pair is completed. Moreover, each time when a new
node group pair is scheduled, a streams synchronization
function is invoked, which also calls SyncAndCoalesce
API in the allocator to transform all previous no synced free
chunks to synced free chunks. In this way, the allocations in the
current node group pair can use the freed memory of the
previous node group pair directly. This direction of memory
flow is depicted by the purple arrow in Figure 5.

Notice that we have made an assumption that the node
group pairs can be scheduled sequentially. However, this
cannot be guaranteed by the scheduler in a current DL
framework since it is possible that there is no dependency
between the leaf nodes of previous node group pair and the
root nodes of and the current node group pair. In Figure 6,
for instance, Node 4 in Job 1 is ready to be scheduled
once Node 1 has finished the scheduling. However, we
want it to be scheduled when Node 1-3 of two jobs (i.e.,
NG1) have both finished the scheduling. Hence, we need
a mechanism to implement such scheduling semantic. Al-
though it is easy to implement such control dependency by
adding the edges in the original compute graph, it is not
that flexible as the jobs are “free to come and go”. Figure 6
depicts how we ensure the scheduling dependency between
the adjacent node group pairs. We use a CounterBarrier
(CB) that is initialized with two int values: the leaf nodes
number of the previous node group pair (prev count) and
the root nodes number of the current node group pair
(succ count). A CB is shared by the adjacent node group
pairs and can be added or removed on-the-fly. During the
scheduling, the leaf nodes will decrease prev count whereas
the root nodes decrease succ count of the same CB. Each
time before scheduling a root node, it will check whether
prev count of the corresponding CB is zero, if it is, this

Algorithm 1: The Scheduling Algorithm
Input : jobs, mem limit
Output: two vectors: av and dv

1 Sort(jobs);
2 f numANG← jobs. f ront().numANG;
3 f peakMem← jobs. f ront().peakMem;
4 p← (mem limit− f peakMem)/split size−1;
5 of fset← f numANG− p;
6 idx1← 0, idx2← f numANG;
7 foreach job in jobs do
8 s← isSecondJob(job) ? p : 0;
9 /* Schedule job’s ANGs */

10 if isSecondJob(job) then
11 for i = 0 to s do
12 dv[of fset ++] = {i++, job. job id}
13 end
14 end
15 for i = s to (job.numANG−1) do
16 av[idx1++] = {i++, job. job id};
17 end
18 /* Schedule job’s DNGs */
19 while i < job.numNG do
20 if isLastJob(job) and idx2 > idx1 then
21 av[idx1++] = {i++, job. job id};
22 end
23 else
24 dv[idx2++] = {i++, job. job id};
25 end
26 end
27 end

node will be scheduled. Otherwise, it will wait. When the
value of succ count becomes zero, the CB’s state will be
reset to be used for the next iteration. These two decrement
operators are implemented by atomic and lock operations
respectively, which are efficient and introduce nearly no
scheduling overhead.

4.4 Graph Partition and Scheduling

In this section, we describe how to partition the graph
into a series of continuous node groups and assign them to
different GPU streams.

The partition goal is to ensure that each node group has
a comparable size of overall (de)allocation memory, which is
called split size. In the profiling phase, we have obtained the
allocation information of each node in a computation graph,
as well as the graph topology. With this information, we first
perform a Breadth First Search (BFS) on the graph to obtain
the depth of each node4. The nodes with the same depth
are arranged in the ascending order of node id (a number to
identify a node). Then, starting at the first depth, we traverse
the graph, adding nodes to the current node group until the
total (de)allocation size meets the predefined split size. The
scheduling aims to schedule as many parallel node groups
as possible subject to the GPU memory limit. For instance,
if two co-located jobs have such peak memory usages that

4. There are the cycles in RNNs. We remove the cycles through DFS
and then perform BFS.

8

their total does not exceed the GPU memory limit, both jobs
can be scheduled simultaneously. However, if their peak
memory usage is too high, we must delay the scheduling of
the second job until the sufficient memory is available (i.e.,
wait for the DNGs of the first job to free the memory). The
challenge then becomes determining an appropriate value
for the delay, in other words, determining the point at which
enough node groups of the first job have been scheduled to
allow the scheduling of the second job to commence. By
carefully controlling the scheduling of ANGs and DNGs to
different GPU streams, we can ensure high utilization of
memory and computing resources.

The scheduling algorithm is shown as Algorithm 1. We
use the pair {node group id, job id} to denote a unique node
group. The output of the algorithm is two vectors that rep-
resent two streams, in which each element is a unique node
group. The node groups that have the same index in two
vectors are a pair of node groups that will be scheduled in
parallel. At the beginning, we arrange the jobs in descending
order of their node groups’ sizes, which is to minimize the
pipeline bubbles caused by node group dependency. We
decide the number of ANGs of the second job (denoted by p)
that can be scheduled in parallel with ANGs of the first job
according to the total GPU memory, peak memory of the
first job and split size (line 4 in Algorithm 1). The reason
why we decrease by one is because we want a DNG to
finish first so that the memory is freed for next ANG. Except
for the first p ANGs in the second job being scheduled to
the second stream, the rest ANGs are all scheduled to the
first GPU stream, i.e., av. For the DNGs of the last job, we
will schedule them to av first if there are still empty place
(line 20-21 in the algorithm), which can increase parallelism.
The rest DNGs will be scheduled to the second stream. We
can then add the CounterBarrier between the adjacent node
group pairs in the output vectors.

In practice, it can be difficult to determine an optimal
split size that ensures each node group has a comparable
size of overall (de)allocation memory, particularly when
there are significant architecture differences between two
different DNN models. In such situation, we may relax the
criterion by allowing for greater variance in the memory
size of the node groups. We also prefer to guarantee that
the memory sizes of DNGs are greater than that of ANGs to
ensure that there is sufficient memory for the next ANG
when the scheduling of the current DNG is completed,
although this may come at the cost of modest memory
sharing efficiency. Additionally, the selection of appropriate
jobs for co-running is another research topic known as deep
learning cluster scheduling, and is beyond the scope of this
work.

Note that we aim to propose a simple but effective
graph partition and scheduling algorithm. There can be
more delicate and intricate algorithms. For example, it is
unnecessary to guarantee all node groups’ (de)allocation
memory size being equal, because it is good enough that
in the adjacent node group pairs, the allocation memory
size of ANGs is comparable to the deallocation memory size
of DNG. So the compute graph can be partitioned with a
variable split size.

5 EVALUATION

5.1 Methodology
5.1.1 Experimental setup

Our experiments were conducted on two servers. The
first server is equipped with NVIDIA Tesla V100 GPU with
32 GB GPU memory, dual 2.00Ghz Intel Xeon Gold 5117
CPU and 256 GB RAM. We refer to it as V100-S for simplic-
ity. The second server is equipped with NVIDIA Tesla P100
GPU with 16 GB GPU memory, dual 2.60GHz Intel Xeon
CPU E5-2680 v4 processors and 256 GB RAM. We refer to it
as P100-S. Both servers are installed with Ubuntu 16.04, the
CUDA Toolkit 10.0 and cuDNN 7.6.5. TensorFlow of version
1.15.2 (based on which Waterwave is modified).

5.1.2 Workloads
We evaluate Waterwave on 7 state-of-the-art deep learn-

ing workloads including 1) CNN models: ResNet50 [12],
ResNet152 [12], InceptionV3 [28], and NasNet [29]; 2) RNN
models: Tacotron2 [9]; 3) Transformer model: Bert [13].
All the CNN models are very popular in the CV field.
NasNet is a neural network that is computed by the NAS
(Neural Architecture Search) algorithm. All CNN models
use the stochastic gradient descent (SGD) optimizer. BERT
is proposed by Google AI Language and has achieved
the state-of-the-art results in a wide variety of NLP tasks.
The base version of BERT includes 768 hidden layers of
110 million parameters. Tacotron2 is a neural network for
speech synthesis directly from text, which includes 29.016
million parameters. BERT and Tacotron2 use the default
Adam optimizer.

5.1.3 Baselines
We have set three baselines to evaluate the memory

sharing efficiency and training throughput, which are listed
below.
• NVIDIA MPS: Serve multiple GPU computing jobs by

intercepting the specific CUDA API and re-schedule
them. UVM is also enabled with MPS to meet larger
memory requirement.

• Temporal sharing: We simulate the temporal sharing
in prior works by disabling the profiling phase in
Waterwave.

• Waterwave-s: In order to demonstrate the memory shar-
ing efficiency of fine-grained scheduling, we implement
other two coarser-grained graph partition algorithms.
One partitions the graph from the peak memory node
into two node groups. The peak memory node means that
the memory footprint reaches the maximum size when
scheduling this node, which is obtained in the profiling
phase. The other algorithm partitions the graph into
two node groups: forward propagation part and back-
ward propagation part, which is similar to the method
adopted in Wavelet [20]. In the following experiments,
we select the better algorithm and denote it as Water-
wave-s.

5.2 Memory Sharing Efficiency
In this section, we evaluate the memory sharing effi-

ciency of Waterwave on both V100-S and P100-S. We use the

9

TABLE 1: Maximum Batch Size of Running Two Identical Models

V100-S P100-S
Models Sole MPS Waterwave-s Waterwave Waterwave/Sole Sole MPS Waterwave-s Waterwave Waterwave/Sole

ResNet50 406 384 266 370 91.61% 190 190 120 176 92.63%
ResNet152 186 176 118 160 86.02% 86 86 62 78 90.70%

NasNet 560 556 316 544 96.80% 280 265 192 260 92.86%
InceptionV3 332 328 204 310 93.34% 160 160 106 150 93.75%
BERT-base 138 136 88 124 89.86% 60 56 38 48 80.00%
Tacotron2 198 198 96 152 76.77% 98 94 48 72 73.47%

maximum batch size to quantify the efficiency of memory
sharing. To demonstrate that, we also test the largest batch
size that a model can achieve when being run solely. Due
to the fact that temporal sharing does not share the GPU
memory between jobs, the temporal sharing is excluded
from this comparison. Nonetheless, the maximum batch
size for temporal sharing is predictable, which is equal to
the maximum batch size for the solo run when the context
switching is utilized, and is somewhat smaller (depending
on the quantity of model parameters) when the context
switching is not employed. Besides, there is actually no
memory sharing in MPS, in which the batch size increment
results from UVM leveraging extra CPU memory to swap
the GPU memory.

We first conduct the experiment with two identical mod-
els running on the same GPU. The results are shown in
Table 1, which include the maximum batch sizes of the six
models that sole run, MPS, Waterwave-s, and Waterwave can
achieve. MPS exhibits the maximum batch size among all
models, thanks to the power of unified virtual memory that
automatically swaps the memory between CPU host mem-
ory when GPU memory is oversubscribed. Nonetheless,
the maximum batch sizes that Waterwave can achieve are
also comparable to those in sole run. Specifically, Waterwave
achieves the best memory efficiency when training NasNet
on V100-S, which is 96.8% of maximum batch size in sole
run, and 92.2% on average on the CNN models. This ratio on
P100-S is usually smaller than that on V100-S, especially for
the Bert-base. This is because Bert-base has the most model
parameters among these six models. As a result, twice size
of the model parameters has a greater impact on the P100-S,
which has only half the GPU memory capacity of the V100-
S.

In comparison to the CNN models and Bert-base,
Tacotron2’s memory sharing efficiency is smaller, which
is less than 80%. There are two reasons for this. On the
one hand, the memory requirement of a node increases
with the batch size, which implies that we cannot divide
the compute graph in a too fine granularity. On the other
hand, the number of kernels launched in each iteration of
Tacotron2 is far bigger than those of the other models. Thus,
there are still lots of operations in each node group after
partitioning the compute graph, which makes it difficult to
schedule memory requests in the desired order. By the way,
we partitioned Tacotron2’s compute graph into eight node
groups to achieve the maximum batch size.

Compared to Waterwave-s, Waterwave outperforms by
around 1.5x in all six models. Notably, the maximum batch
size of Waterwave-s is obtained by running a batch size six
times. This batch size is recorded as long as one of the
runs succeeds. It is possible that Waterwave-s failed with this

batch size in other five times. This is because such coarse-
grained scheduling cannot organize the memory requests in
the desired order, resulting in unstable results.

TABLE 2: Maximum Batch Size When Running Two Non-
identical Models

Maximum Batch Size
(ModelA + ModelB) Model A Model B

ResNet50 + Bert-base 358 116
ResNet50 + Tacotron2 370 150
Bert-base + Tacotron2 120 150

Additionally, we conduct concurrent training on the
different types of models. We choose three combi-
nations according to the model type: 1) ResNet50
+ Bert (CNN+Transformer); 2) ResNet50 + Tacotron2
(CNN+RNN); 3) Bert + Tacotron2 (Transformer+RNN). The
results are shown in Table 2. As can be seen, the maximum
batch size of each model is basically equivalent to the
maximum batch size for running two identical models.

5.3 Concurrent Training Throughput
In this section, we evaluate the concurrent training

throughput (the total training speeds of the co-located jobs)
of Waterwave against MPS and temporal sharing on V100-
S. We exclude Waterwave-s for the throughput comparison
since it is mainly set for demonstrating the memory shar-
ing efficiency of fine-grained partition and scheduling. The
throughput of Waterwave-s is almost the same as that of
Waterwave as long as the batch size does not exceed the GPU
memory limit. Note that we also conduct the experiments
on P100-S. The conclusions are identical to those on V100-S.
Hence, we only present the results on V100-S due to space
limitations.

Figure 7 shows the throughput of the six models under
different batch sizes. When the batch sizes do not exceed
the memory limit, Waterwave and MPS show the comparable
throughput, with MPS often outperforming Waterwave by a
very small margin. This is due to the fact that Waterwave
runs on a single framework, while MPS runs different
jobs on different framework instances and processes, which
result in the increased scheduling latency when accessing
shared components in Waterwave such as the memory allo-
cator and operator library. Compared to temporal sharing,
the throughput improvement is limited in the CNN models
and Bert-base. Waterwave obtains the highest promotion rate
of 14.27% in ResNet152 with the batch size of 32. This
is because CNN and Transformer-based models show the
great degree of parallelism, which can occupy the most GPU
compute resources even with a relatively small batch size.
But in Tacotron2, which cannot fully utilize GPU, Waterwave

10

 350

 380

 100 150 200 250 300 350T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)

Batch size

 25

 50

 410
Waterwave TemporalMPS

(a) ResNet50

 135

 150

 25 45 65 85 105 125 145 165Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

Batch size

 20

 35

 165
TemporalMPS Waterwave

(b) ResNet152

 150

 175

 50 100 150 200 250 300 350 400Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

Batch size

 45

 50

TemporalMPS
 200

Waterwave

(c) NasNet

 235

 250

 55 90 125 160 195 230 265 300Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

Batch size

 30

 50

TemporalMPS
 265

Waterwave

(d) InceptionV3

 106

 109

 112

 115

 30 43 56 69 82 95 108Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

Batch size

 15

 40

TemporalMPS
 118

Waterwave

(e) Bert-base

 10

 20

 30

 25 45 65 85 105 125 145 165
Batch size

TemporalMPS

 40

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
) Waterwave

(f) Tacotron2

Fig. 7: Throughput of Training the Same Models

outperforms temporal sharing by up to 1.49x. It is worth
noting that the result of temporal sharing in our configura-
tion does not include the context switching overhead.

As the batch size grows much larger, the throughput of
MPS begins to decline substantially (by up to more than
90%). This is due to the fact that when the GPU memory
is oversubscribed, UVM will swap memory pages between
GPU and CPU, which cause the GPU computation to stall.
As a result, such frequent memory swapping significantly
reduces the overall training throughput. Because of this,
compared to MPS, Waterwave is over 12 times faster in
ResNet50, 6.8 times faster in Bert-base, and 3.1 times faster
in Tacotron2.

5.4 Effect of Split Size
The split size has the impact on the number of node

groups created after the graph partition, which determines
the number of times we need to synchronize the streams in
an iteration. In this section, we will evaluate the maximum
batch size and the training throughput on V100-S with
varied split sizes. We select split sizes of 2, 4, 6, 8, and 12 GB
for ResNet50, NasNet, InceptionV3, and Bert-base. An extra
split size of 1 GB is evaluated on ResNet152. Due to the fact
that we need to guarantee the dependency between node
group pairs, we cannot cut the compute graph from a node
that is in a cyclic path in the RNN models, because such
nodes will be executed for multiple times (related to input)
in an iteration. This constraint leads to an imbalanced total
memory size of each node group in Tacotron2. Thus we use
“Number of NodeGroups” instead.

The results are depicted in Figure 8. For the first four
models, we can observe that the maximum batch size and
throughput are both rather tiny at the split size of 2 GB.

 300

 315

 330

 345

 360

 375

 0 2 4 6 8 10 12 14
 390

 395

 400

 405

M
ax

im
um

 B
at

ch
 S

iz
e

T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)

Split Size (GB)

Batch Size Throughput

(a) ResNet50

 350

 400

 450

 500

 550

 0 2 4 6 8 10 12 14
 178

 180

 182

 184

 186

 188

M
ax

im
um

 B
at

ch
 S

iz
e

T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)

Split Size (GB)

Batch Size Throughput

(b) NasNet

 240

 260

 280

 300

 320

 0 2 4 6 8 10 12 14
 245

 250

 255

 260

 265

M
ax

im
um

 B
at

ch
 S

iz
e

T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)

Split Size (GB)

Batch Size Throughput

(c) InceptionV3

 100

 105

 110

 115

 120

 125

 0 2 4 6 8 10 12 14
 108

 112

 116

 120

 124

M
ax

im
um

 B
at

ch
 S

iz
e

T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)

Split Size (GB)

Batch Size Throughput

(d) Bert-base

 145

 150

 155

 160

 165

 0 2 4 6 8 10 12 14
 158

 160

 162

 164

 166

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

Split Size (GB)

Batch Size Throughput

M
ax

im
um

 B
at

ch
 S

iz
e

(e) ResNet152

 95

 115

 135

 155

 0 2 4 6 8 10 12 14
 25

 30

 35

 40

 45

Number of NodeGroups

Batch Size Throughput

M
ax

im
um

 B
at

ch
 S

iz
e

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

ec
)

(f) Tacotron2

Fig. 8: Maximum Batch Size and Throughput under Differ-
ent Split Sizes

The reason is that small split size introduces more stream
synchronization and also makes it difficult to handle the
nodes with large size of allocation requests. The batch size
is maximized when the split size is set to 6 GB across these
models. The corresponding throughput is either optimal
or suboptimal. NasNet, on the other hand, achieves its
maximum batch size with a split size of 12 GB. This is
because NasNet has the greatest batch size, which results
in the largest allocation size for a single node and requires
a bigger split size to schedule. As the split size continues
to increase, both the maximum batch size and throughput
decrease, since it becomes more difficult to maintain the
order of memory requests. This will subsequently cause the
allocator to begin synchronizing the streams aggressively,
which results in performance degradation. This conclusion
can also be drawn from Tacotron2’s result. In ResNet152,
the maximum batch size can be achieved at the split size of
2 GB and remains the same at the split sizes of 4, 6, and 8 GB.
This is because the large memory footprint of ResNet152 is
caused by the biggest model depth rather than the large
batch size compared to other CNN models. This means the
maximum value of a single memory allocation in ResNet152
is smaller than other models. Therefore, a smaller split size
is capable of achieving the best memory sharing efficiency.

5.5 Training More than Two Jobs

This section demonstrates Waterwave’s capability in en-
abling concurrent training for more than two jobs. We con-
figure to run three and four ResNet50 models concurrently
on V100-S and evaluate the corresponding maximum batch

11

size and throughput. The maximum batch sizes are 336 and
310. The throughput is 402.76 and 401.58, which is slightly
higher than those when two models are run concurrently.
This result is because of the following two reasons: 1) we
only use two streams for the computations currently as
stated in Section 4, more jobs will not increase the degree
of parallelism. 2) ResNet50 is a model with high GPU
utilization. The GPU compute resource is already saturated
even with two jobs running concurrently. However, we
believe Waterwave is becoming increasingly valuable as GPU
computing power continues to grow rapidly, while the GPU
memory capacity increases at a relatively slower speed.

6 DISCUSSION

a) Distributed training: Distributed training is common
to speedup the overall training process and support massive
models, such as GPT-serial models [30], [31]. It includes data
parallelism, model parallelism [32], and pipeline model par-
allelism [33], [34], [35]. The distributed training is compli-
cated than single-GPU training as it introduces communica-
tion and parameters aggregation across GPUs. Nonetheless,
the memory usage of an iteration inside a single GPU still
follows “first increase then drop” pattern. Therefore, the idea
in Waterwave is still applicable in distributed training. But
the selection of jobs to co-locate with distributed training
job needs to be more careful, since the speed slowdown on
one GPU lead to the performance degradation of overall
distributed training. We leave the extension of Waterwave to
distributed training as a future work.

b) Job priority: There are usually two kinds of jobs in
DL GPU cluster: high-priority job and low-priority job. When
co-locating jobs with different priorities, it’s an important
and challenging problem to provide performance guarantee
on jobs with high-priority. AntMan [27] made an attempt to
achieve it through limiting the operator launch rate of low-
priority jobs. The current scheduling in Waterwave does not
take the job priority into account. Nonetheless, it’s easy to
integrate the batch scheduling policy or operator scheduling
policy into Waterwave to achieve prioritized scheduling,
since all jobs’ batches are submitted to Waterwave and the
operator scheduling can also be achieved via NodeGroup
abstract in Waterwave. And it’s an interesting topic that how
to achieve memory sharing efficiency while guaranteeing
the job priority. We leave the consideration of job priority
and computation time as a future work.

c) Balancing computation in graph partition and
scheduling: In graph partition and scheduling of Waterwave,
we merely consider balancing the memory footprint of each
partition, ignoring the balance of computation. In theory, if
both jobs have high GPU computation demand so that can
fully utilize the GPU, then imbalanced computation of node
groups will have little impact on performance. However,
if one of the models has lower computational demands,
such imbalanced computation will degrade the performance
to some extent. A significant challenge in considering the
computation time is that the parallel kernel scheduling in
NVIDIA GPU is opaque. Therefore, it is difficult to predict
whether the kernels in question can be parallelized and
also difficult to assess the performance of the parallelized
kernels. As a result, it is challenging to determine if a

particular partition and scheduling policy can achieve a
higher training throughput.

d) Security: Security is crucial for DL training as this
process could last long for months, an accident exiting due
to unpredictable faults will waste expensive GPU resources.
When jobs are running in their own CUDA context on
the same GPU, the fault only affects themselves, not to
other jobs. However, in order to share the GPU memory
resources across jobs, they need to run in the same CUDA
context, which will break the fault isolation: the failure in
a job doesn’t impact other co-located jobs. This security
issue exists in the frameworks that merge numerous jobs’
contexts into one, such as NVIDIA MPS [11], Salus [8], and
also Waterwave. A good aspect is that DL training job can be
recovered at an arbitrary step as long as the training state
(parameters) at that step has been saved. And this recovery
is lightweight since the time to run a single training step is
small (seconds level). But too frequent checkpointing will
also influence the overall training performance. The users
need to balance the frequency of checkpointing to make
a tradeoff. On the other side, another method to support
concurrent running of multiple jobs while guaranteeing
fault isolation is virtualizing a GPU to numerous virtualized
GPUs (vGPU) [36]. The latest technology is Multi-Instance
GPU (MIG) [37] which is provided by NVIDIA and sup-
ported on the NVIDIA Ampere architecture and after (such
as A100 and H100 GPU). MIG partitions a single GPU into
numerous separate GPU instances where each one owns
the dedicated compute, memory, and memory bandwidth
resources. But it has limitations for supporting concurrent
training. First, the compute and memory resource configu-
rations of a GPU instance are pre-defined by NVIDIA that
cannot be changed at will. Besides, when the GPU instances
have been configured, the resources cannot be adjusted
flexible on-fly. This collides with the diverse and dynamic
resources requirement of DL training jobs. Second, the GPU
memory resources are isolated across instances, thus cannot
be shared.

7 RELATED WORK

7.1 GPU Sharing in Training
Gandiva [7] and Salus [8] both propose a time slicing

method on GPU which runs multiple models alternatively.
The main difference between them is that before running
a new model, Gandiva needs to swap the context of the
current model out of GPU and swap the context of the new
model into GPU. This context switching overhead is non-
trivial for large models (200+ ms). Conversely, Salus opts
to store all model’s parameters in GPU memory, and hence
does not introduce the context switching overhead.

Zico [19] adopts spatial sharing that manages the mem-
ory as a set of chunks with identical sizes and releases
them when the computations have finished in GPU. It is
hard to choose the chunk size since too small chunk size
requires more CPU resources, which degrades the perfor-
mance further for the models that are already bounded to
preprocessing in CPU [38], [39], while a too big size limits
the memory sharing space, which in turn limits the number
of in-flight kernels and make the computation speed of
GPU to be comparable to the CPU scheduling. But a fixed

12

number may not work well with the training of the whole
model. For the scheduling part, Zico performs the mini-batch
scheduling while Waterwave schedules the computation in
a finer-granularity to achieve precise memory sharing. Be-
sides, Zico cannot support more than two jobs currently.

7.2 Memory Optimization in Single Model’s Training
There are many prior works aiming to optimize mem-

ory usage when a single job is trained, which can be catego-
rized into three kinds according to the techniques: 1) swap,
which leverages the CPU DRAM as an external storage to
swap the GPU memory; 2) recomputation, which drops the
feature maps in the forward pass and recompute them in the
backward pass; 3) compression, which compresses the data in
a more memory-saving encoding.

vDNN [14] is the leading work in swap, which chooses
the inputs of the convolutional layers as the target since
they tend to overlap the swapping overhead with the heavy
comptuation of the convolutional layer. SwapAdvisor [40]
optimizes the swapping decisions by taking both memory
allocation and operator scheduling into account. SuperNeu-
rons [15] and Capuchin [16] optimize memory through both
swapping and recomputation. The swapping and recom-
putation tend to optimize memory usage according to the
characteristics in the single-job training, while we aim to
enable the efficient memory sharing in concurrent training.
By observing the feature of particular model architecture,
Gist [41] and CDMA [42] compress the tensor to reduce
the memory footprint. The compression methodology is
orthogonal to our work.

8 CONCLUSIONS

This paper proposes Waterwave, aiming to make the
GPU memory flow back and forth smoothly among the con-
currently running DL training jobs. Waterwave accomplished
the goal through the coordinated allocation and scheduling.
By making the allocator aware of the stream information
associated with the chunks, the allocator can perform an
asynchronous and prioritized de/allocation in the multi-
stream scenario. Through partitioning the compute graph
into a series of fine-grained node groups, we gain the ability
and flexibility to order the memory requests as desired. The
experimental results demonstrate that Waterwave delivers
the efficient memory sharing and throughput compared to
the existing works.

REFERENCES
[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Kille-
brew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross,
M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA 2017, Toronto, ON,
Canada, June 24-28, 2017, 2017, pp. 1–12.

[2] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization.” Journal of machine learning research, vol. 13, no. 2,
2012.

[3] J. Rasley, Y. He, F. Yan, O. Ruwase, and R. Fonseca, “Hyperdrive:
Exploring hyperparameters with pop scheduling,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference, 2017, pp. 1–
13.

[4] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 6765–6816, 2017.

[5] K. Maziarz, M. Tan, A. Khorlin, M. Georgiev, and A. Gesmundo,
“Evolutionary-neural hybrid agents for architecture search,” arXiv
preprint arXiv:1811.09828, 2018.

[6] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P.
Xing, “Neural architecture search with bayesian optimisation and
optimal transport,” Advances in neural information processing sys-
tems, vol. 31, 2018.

[7] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou,
“Gandiva: Introspective cluster scheduling for deep learning,” in
Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 2018, pp. 595–610.

[8] P. Yu and M. Chowdhury, “Fine-grained GPU sharing primitives
for deep learning applications,” in Proceedings of Machine
Learning and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020, I. S. Dhillon, D. S. Papailiopoulos, and
V. Sze, Eds. mlsys.org, 2020. [Online]. Available: https:
//proceedings.mlsys.org/book/294.pdf

[9] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis
by conditioning wavenet on mel spectrogram predictions,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 4779–4783.

[10] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[11] “NVIDIA MPS,” https://docs.nvidia.com/deploy/mps/index.
html/.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[14] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Press, 2016,
p. 18.

[15] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and
T. Kraska, “Superneurons: Dynamic gpu memory management for
training deep neural networks,” in ACM SIGPLAN Notices, vol. 53,
no. 1. ACM, 2018, pp. 41–53.

[16] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang,
and X. Qian, “Capuchin: Tensor-based gpu memory management
for deep learning,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 891–905.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Va-
sudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
A System for Large-Scale Machine Learning,” in Proceedings of
the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), vol. 16. USENIX Association, 2016,
pp. 265–283.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in PyTorch,” 2017.

[19] G. Lim, J. Ahn, W. Xiao, Y. Kwon, and M. Jeon, “Zico: Efficient gpu
memory sharing for concurrent dnn training,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 161–175.

[20] G. Wang, K. Wang, K. Jiang, X. Li, and I. Stoica, “Wavelet: Efficient
dnn training with tick-tock scheduling,” Proceedings of Machine
Learning and Systems, vol. 3, 2021.

https://proceedings.mlsys.org/book/294.pdf
https://proceedings.mlsys.org/book/294.pdf
https://docs.nvidia.com/deploy/mps/index.html/
https://docs.nvidia.com/deploy/mps/index.html/

13

[21] X. Yu, N. K. Loh, and W. Miller, “A new acceleration technique for
the backpropagation algorithm,” in IEEE International Conference
on Neural Networks. IEEE, 1993, pp. 1157–1161.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[23] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and
efficient gpu cluster scheduling,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020, pp.
289–304.

[24] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions
for vision architectures,” in International conference on machine
learning. PMLR, 2013, pp. 115–123.

[25] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” arXiv preprint arXiv:1611.01578, 2016.

[26] H. Dai, X. Peng, X. Shi, L. He, Q. Xiong, and H. Jin, “Reveal
training performance mystery between tensorflow and pytorch in
the single gpu environment,” Science China Information Sciences,
vol. 65, no. 1, pp. 1–17, 2022.

[27] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep
learning,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 533–548.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2818–2826.

[29] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” arXiv preprint
arXiv:1707.07012, 2017.

[30] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[31] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Lan-
guage models are few-shot learners,” Advances in neural informa-
tion processing systems, vol. 33, pp. 1877–1901, 2020.

[32] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-lm: Training multi-billion param-
eter language models using model parallelism,” arXiv preprint
arXiv:1909.08053, 2019.

[33] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, 2019.

[34] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. De-
vanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream:
generalized pipeline parallelism for dnn training,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019,
pp. 1–15.

[35] S. Eliad, I. Hakimi, A. De Jagger, M. Silberstein, and A. Schuster,
“Fine-tuning giant neural networks on commodity hardware with
automatic pipeline model parallelism,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), 2021, pp. 381–396.

[36] “NVIDIA vGPU,” https://docs.nvidia.com/grid/10.0/
grid-vgpu-user-guide/index.html.

[37] “NVIDIA Multi-Instance GPU,” https://www.nvidia.com/
en-us/technologies/multi-instance-gpu/.

[38] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram,
“Analyzing and mitigating data stalls in dnn training,” arXiv
preprint arXiv:2007.06775, 2020.

[39] W. Xiao, Z. Han, H. Zhao, X. Peng, Q. Zhang, F. Yang, and L. Zhou,
“Scheduling cpu for gpu-based deep learning jobs,” in Proceedings
of the ACM Symposium on Cloud Computing. ACM, 2018, pp. 503–
503.

[40] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learn-
ing beyond the gpu memory limit via smart swapping,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp.
1341–1355.

[41] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko,
“Gist: Efficient data encoding for deep neural network training,”
in 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 2018, pp. 776–789.

[42] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W.
Keckler, “Compressing DMA engine: Leveraging activation spar-
sity for training deep neural networks,” in 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 78–91.

Xuanhua Shi (Senior Member, IEEE) received
the PhD degree in computer engineering from
the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2005. He is currently
a professor with the National Engineering Re-
search Center for Big Data Technology and Sys-
tem Services Computing Technology and Sys-
tem/Services Computing Technology and Sys-
tem Lab, Huazhong University of Science and
Technology (China). From 2006, he worked as
an INRIA postdoctoral in PARIS team at Rennes

for one year. His research interests cloud computing and big data pro-
cessing. He published over more than 100 peer-reviewed publications,
received research support from a variety of governmental and industrial
organizations, such as National Science Foundation of China, Ministry
of Science and Technology, Ministry of Education, European Union,
Alibaba, ByteDance, Intel and so on. He is a senior member of CCF.

Xuan Peng is currently working toward the PhD
degree with the School of Computer Science
and Technology, Huazhong University of Sci-
ence and Technology, Wuhan, China. His re-
search focuses on intelligent computing, mem-
ory management for AI systems.

Ligang He is now a Reader in the Department of
Computer Science at the University of Warwick,
UK. His research area is mainly parallel and
distributed computing. He has published more
than 190 papers in the research area.

Yunfei Zhao received the bachelor’s degree
in computer science and technology from the
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2022. Her research in-
terests include intelligent computing, AI systems
optimization.

Hai Jin (Fellow, IEEE) received the Ph.D. degree
in computer engineering from the Huazhong Uni-
versity of Science and Technology in 1994. He
received the German Academic Exchange Ser-
vice Fellowship to visit the Technical University
of Chemnitz, Germany, in 1996. He worked at
The University of Hong Kong from 1998 to 2000
and as a Visiting Scholar at the University of
Southern California from 1999 to 2000. He re-
ceived the Excellent Youth Award from the Na-
tional Science Foundation of China in 2001. He

is a Cheung Kung Scholars Chair Professor of computer science and
engineering of the Huazhong University of Science and Technology. He
has coauthored 22 books and published over 800 research articles. His
research interests include computer architecture, virtualization technol-
ogy, cluster computing and cloud computing, peer-to-peer computing,
network storage, and network security. He is a fellow of the CCF and a
member of the ACM.

https://docs.nvidia.com/grid/10.0/grid-vgpu-user-guide/index.html
https://docs.nvidia.com/grid/10.0/grid-vgpu-user-guide/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

	NEW_WRAP_Coversheet_Accepted_AAM_13_07_2018 - Copy
	dcs-040723-wrap--waterwave
	Introduction
	Background
	Deep Learning Training
	Sharing the GPU Demand
	Hyperparameter Optimization
	Neural Architecture Search

	Opportunity and Challenges
	Memory Usage Pattern in Deep Learning Training
	Memory Explosion in Concurrent Training
	Scheduling Granularity in Concurrent Training

	Design of Waterwave
	Design Overview
	Asynchronous Multi-streams Memory Allocator
	NodeGroup Pipeline Execution
	Graph Partition and Scheduling

	Evaluation
	Methodology
	Experimental setup
	Workloads
	Baselines

	Memory Sharing Efficiency
	Concurrent Training Throughput
	Effect of Split Size
	Training More than Two Jobs

	Discussion
	Related Work
	GPU Sharing in Training
	Memory Optimization in Single Model's Training

	Conclusions
	References
	Biographies
	Xuanhua Shi
	Xuan Peng
	Ligang He
	Yunfei Zhao
	Hai Jin

