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With the increasing need for graph analysis, massive Concurrent iterative Graph Processing (CGP) jobs are usu-

ally performed on the common large-scale real-world graph. Although several solutions have been proposed,

these CGP jobs are not coordinated with the consideration of the inherent dependencies in graph data driven

by graph topology. As a result, they suffer from redundant and fragmented accesses of the same underlying

graph dispersed over distributed platform, because the same graph is typically irregularly traversed by these

jobs along different paths at the same time.

In this work, we develop GraphTune, which can be integrated into existing distributed graph processing

systems, such as D-Galois, Gemini, PowerGraph, and Chaos, to efficiently perform CGP jobs and enhance sys-

tem throughput. The key component of GraphTune is a dependency-aware synchronous execution engine in

conjunction with several optimization strategies based on the constructed cross-iteration dependency graph

of chunks. Specifically, GraphTune transparently regularizes the processing behavior of the CGP jobs in a

novel synchronous way and assigns the chunks of graph data to be handled by them based on the topological

order of the dependency graph so as to maximize the performance. In this way, it can transform the irregular

accesses of the chunks into more regular ones so that as many CGP jobs as possible can fully share the data

This is a new article, not an extension of a conference paper.

This article is supported by National Key Research and Development Program of China under grant No. 2022YFB2404202,

NSFC (No. 62072193), Major Scientific Research Project of Zhejiang Lab No. 2022PI0AC03, CCF-AFSG Research Fund

No. RF20220211, and the Young Top-notch Talent Cultivation Program of Hubei Province.

Authors’ addresses: J. Zhao, Zhejiang Lab & National Engineering Research Center for Big Data Technology and Sys-

tem, Service Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and

Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China; email:

zjin@hust.edu.cn; Y. Zhang (corresponding author), Q. Li, X. Zhang, X. Jiang, H. Yu, X. Liao, H. Jin, L. Gu, and H. Liu,

National Engineering Research Center for Big Data Technology and System, Service Computing Technology and System

Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and

Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China; emails: {zhyu, lqk2021, xiangz, xinyujiang, huiy, xfliao, hjin,

lingu, hkliu}@hust.edu.cn; L. He, University of Warwick, Coventry, CV4 7AL, UK; email: ligang.he@warwick.ac.uk; B. He,

National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore; email: hebs@comp.nus.edu.sg; J. Zhang,

University of Southern Queensland, West Street, Toowoomba Qld, 4350, Australia; email: zhangji77@gmail.com; X. Song,

L. Wang, and J. Zhou, ANT Group, Xihu District, Hangzhou, Zhejiang, 310000, China; emails: {xianzheng.sxz, fred.wl,

jun.zhoujun}@antgroup.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1544-3566/2023/07-ART37

https://doi.org/10.1145/3600091

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 37. Publication date: July 2023.

https://orcid.org/0000-0003-4217-7886
https://orcid.org/0000-0003-0718-8045
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0009-0007-9559-9800
https://orcid.org/0009-0008-6054-6036
https://orcid.org/0000-0003-0029-6027
https://orcid.org/0000-0002-6559-6111
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-6525-9334
https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0001-8618-4581
https://orcid.org/0000-0002-1244-2880
https://orcid.org/0009-0005-6700-4713
https://orcid.org/0000-0002-9807-9479
https://orcid.org/0000-0001-6033-6102
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600091
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600091&domain=pdf&date_stamp=2023-07-19


37:2 J. Zhao et al.

accesses to the common graph. Meanwhile, it also efficiently synchronizes the communications launched by

different CGP jobs based on the dependency graph to minimize the communication cost. We integrate it into

four cutting-edge distributed graph processing systems and a popular out-of-core graph processing system to

demonstrate the efficiency of GraphTune. Experimental results show that GraphTune improves the through-

put of CGP jobs by 3.1∼6.2, 3.8∼8.5, 3.5∼10.8, 4.3∼12.4, and 3.8∼6.9 times over D-Galois, Gemini, PowerGraph,

Chaos, and GraphChi, respectively.
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1 INTRODUCTION

Large-scale graph analysis is a crucial task for many enterprises, and they typically perform mas-
sive Concurrent iterative Graph Processing (CGP) jobs on their distributed graph processing
systems daily to exploit various properties of the same underlying graphs. For example, Face-
book [1], Google [2], Twitter [7], and Tencent [6] use Giraph [22], Pregel [36], GraphJet [46],
and Plato [54, 62] to handle many graph algorithms for different applications (e.g., the variants of
PageRank [42] for content recommendation, Weakly Connected Component (WCC) [23] for so-
cial media monitoring, and k-means [21] for customer segmentation), respectively. An experiment
on a large graph processing platform of a real Chinese social network also shows that a massive
number of jobs concurrently and periodically run on the same graph every day and there can be up
to 45 CGP jobs [31, 61]. However, existing distributed systems [17, 19, 24, 28, 44, 62] are primarily
proposed to process a single graph processing job. To enable efficient execution of multiple CGP
jobs on existing graph processing systems, GraphM [31, 61] introduces a graph storage system
that can be plugged into these systems to reduce the data access and storage cost of CGP jobs.
Although several solutions [15, 31, 52, 53, 57, 60, 61] are proposed to serve the execution of CGP
jobs, challenges still remain for high throughput of them.

A major challenge is induced by the irregular data accesses that occur when the CGP jobs pro-
cess the same graph in different patterns. Specifically, these jobs are usually submitted with various
parameters and executed by the graph algorithms with different computing complexities, making
these jobs traverse the same graph along different paths (patterns). It leads to the following two
types of irregularities. (1) Irregular memory access: These jobs usually access different graph
data simultaneously, although most proportion of the graph data are the same for them. Thus, the
same graph data may have to be transferred from the memory to the Last-Level Cache (LLC) re-
peatedly. (2) Irregular communication: The jobs conduct their communications independently
to exchange information between the hosts. Our studies show that it incurs many small messages
and extra communication cost, leading to underutilized network bandwidth. These irregularities
induce the inefficient use of data access channels due to the redundant and fragmented data ac-
cesses, eventually resulting in low system throughput.

In this work, we analyse the data access patterns of CGP jobs that process a common graph,
and find that the irregular data accesses of different CGP jobs can be regulated by controlling
the order in which the graph vertices and edges are handled following the graph topology. In
particular, the vertex states are inherently propagated along the state propagating dependencies
intrinsic to the graph topology, thus an inactive chunk of graph data needs to be accessed and
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processed by a job only when its neighbor chunks propagate their vertices’ new states to it to
activate it. Based on the analyses and findings, we develop an effective and lightweight runtime
system, called GraphTune, which can be integrated into existing distributed graph processing
systems. The programmers only need to make a minor extension to existing system via a few
APIs provided by GraphTune, and then the system can gain performance improvement brought
by GraphTune. Fundamentally different from existing solutions, GraphTune proposes an efficient
dependency-aware synchronous execution model to fully alleviate the data access irregularities
for CGP jobs and enable multiple jobs to fully share the accesses to the same chunks of graph data.
Specifically, GraphTune constructs a dependency graph of the chunks to describe the topology
of possible vertex state propagations between the chunks when graph algorithm runs through
different iterations. Then, GraphTune transparently regulates the traversal paths of the chunks of
different jobs to follow the topological order of the dependency graph and triggers the related CGP
jobs to concurrently handle each loaded chunk in a synchronous way. By such means, the common
chunks can be processed by the related jobs at the same time, and the accesses to them can be fully
shared by these jobs. Based on the dependency graph, a coalesced communication scheme is also
designed to minimize communication overhead for multiple jobs.

The contributions of this article are summarized as follows.

— We investigate the problem of irregular data access when executing multiple CGP jobs with
existing distributed graph processing systems and find that it is the primary cause of low
throughput in the CGP jobs.

— We propose an efficient dependency-aware synchronous execution model for CGP jobs to
regularize their traversal paths along a common order. It enables multiple CGP jobs to fully
share the access to the same graph, significantly reducing data access and storage cost.

— We propose several optimization techniques to improve the performance of running mul-
tiple CGP jobs in distributed environments, including (1) an efficient strategy to generate
the cross-iteration dependency graph; (2) a load balancing scheme to achieve high resource
utilization; (3) a coalesced communication method to reduce the communication cost.

— We integrate GraphTune with five systems, i.e., D-Galois [17], Gemini [62], PowerGraph [19],
Chaos [44], and GraphChi [30], and conduct extensive experiments to evaluate the perfor-
mance improved by GraphTune. The results show that GraphTune improves the throughput
of CGP jobs by 3.1∼6.2, 3.8∼8.5, 3.5∼10.8, 4.3∼12.4, and 3.8∼6.9 times over D-Galois, Gemini,
PowerGraph, Chaos, and GraphChi, respectively.

2 BACKGROUND AND MOTIVATION

In existing distributed systems [17, 19, 36, 44, 62], a graph is usually divided into chunks, which
are evenly allocated to the hosts for parallel processing and the chunk is the processing unit. The
data of each job consist of the job-specific data, i.e., S , which is the set of vertex states (such as the
ranking score for PageRank [42] and the distance from source vertex for SSSP [39]) calculated by
this job, and the graph structure data, i.e.,G=(V , E,W ). To efficiently store the graph structure data,
the edges of each vertex are stored in the edge array, and the offsets of the beginning and end of the
edges in the edge array for each vertex are maintained in the vertex array. The weight of each edge
is stored in the weight array. During the execution, each job on the system propagates its vertex
states along the edges to update the states of other vertices. In fact, multiple jobs usually process
a common graph along different graph paths due to their different submission times, parameters,
and computing complexities. Without proper coordination, these CGP jobs exhibit irregular data
accesses, causing low system throughput.
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Fig. 1. Execution of two BFS jobs on a distributed platform with four hosts.

2.1 Irregular Data Access of the CGP Jobs

Several approaches have been proposed in literature [15, 52, 53, 57, 60, 61] to enable the accesses
associated with the common graph data to be locally shared by CGP jobs in each iteration. Specif-
ically, these approaches explore the graph structure data that each job needs to process before
each iteration and enable the accesses associated with the intersections of the explored data to be
shared by different CGP jobs. Nevertheless, different CGP jobs usually traverse the same graph
along different graph paths, because these jobs typically own various characteristics, e.g., submit-
ting with different parameters and executing with different computing complexities. As a result,
the accesses to the same graph structure data are not coordinated among different CGP jobs, in-
ducing significant unnecessary overhead for data storage and access.

Let us employ Figure 1 to illustrate the problem. Two Breadth-First Search (BFS) [3] jobs
traverse the graph from different vertices, i.e., BFS 1 starting from v0 and BFS 2 from v3. In the
figure, the orange and blue numbers above the vertices represent the iteration number in which
the vertices are handled by BFS 1 and BFS 2, respectively. The traversing order of the vertices (i.e.,
the traversal path) can also be reflected by the iteration numbers.

Observation 1: Most proportion of the same graph data are accessed repeatedly by various CGP

jobs at different times, resulting in low ratio of shared data accesses. We can see from Figure 1 that
most vertices need to be handled by the two BFS jobs, but in different iterations. When BFS 1
and BFS 2 start the first iteration, they first access v0 and v3, respectively. Although v3 also needs
to be accessed by BFS 1 at its third iteration, with existing methods, BFS 1 and BFS 2 access v3

individually. The graph data associated withv3 have to be reloaded again to serve BFS 1 at its third
iteration. In this example, due to such irregular memory accesses, these two jobs only access v22,
v23, v24, and v25 at the same time and can share the accesses of these vertices, while the accesses
of other vertices cannot be shared. It causes low ratio of shared data accesses. Figure 2(a) shows
the ratio of accesses shared by the CGP jobs executed on a cutting-edge system called D-Galois-M
(i.e., D-Galois [17] integrated with GraphM [61]) on uk-union [11], where the jobs are submitted
according to the trace profiled from a real Chinese social network. The details of the platform and
benchmark are presented in Section 5. From Figure 2(a), we can find that the accesses to the same
graph data are only shared by a small portion of jobs. Less than 8% of the accesses are shared by
five or more jobs. It indicates that multiple copies of the same graph data have to be repeatedly
swapped into the LLC to support the execution of various jobs at different time.
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Fig. 2. Performance of the CGP jobs over uk-union: (a) the ratio of accesses shared by the jobs, where those

legends (e.g., the first legend [1, 2]) for the columns mean the ratio of data accesses shared by the range

of the number of CGP jobs (i.e., ranging from 1 to 2); (b) the cumulative distribution of the sizes of the

messages generated in D-Galois-M every two hours (e.g., the legend [0, 2] means the time interval between

0 hour and 2 hour); (c) the percentage of graph data which is the same for different number of CGP jobs;

(d) the average number of access times of each shared chunk normalized to that of each unshared chunk in

each hour.

Observation 2: The state synchronization of the same vertex is independently performed by various

CGP jobs at different time, incurring many small messages and much redundant communication cost.

After graph partitioning [17, 19, 32, 44, 62], a vertex may have multiple mirrors distributed over
many hosts. For example, the shaded vertices in Figure 1 are the mirror vertices. When a mirror
vertex’s state is updated, this state needs to be synchronized with its master vertex in another host,
and then the master’s new state also needs to be broadcasted to its mirrors on other hosts. With
existing solutions [52, 53, 57, 60, 61], state synchronization of the same vertex handled by various
jobs are triggered independently at different time, resulting in significant irregular communication.
For example, the state of mirror vertex v15 on host 0 is updated by BFS 1 after the third iteration
but by BFS 2 after the first iteration. Thus, multiple messages are generated for the two jobs to
synchronize their states of the same vertex. More importantly, most of them are small messages
and are unable to be fully consolidated. It is because, after a few iterations, only a few vertices in
most chunks are active and need to send their new states, due to the power-law property [19]. In
Figure 2(b), more than 73% of the messages have the size less than Maximum Transmission Unit
(MTU) [34, 35], i.e., 2 KB, of the network. These small messages eventually cause underutilized
network bandwidth and also high cost of packet header. In addition, although many messages
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Fig. 3. The ratio of the data accesses shared by different number of BFS jobs: (a) when submitting 64 BFS

jobs following the Poisson process [20] with different λ; and (b) when the starting vertices (but the number

of hops between the starting vertices of different jobs are controlled increasing from 1 to 8) are randomly

selected for the 64 BFS jobs, respectively.

are sent by the jobs to synchronize the same vertex, many graph data, e.g., the same vertex ID,
have to be duplicated in these messages [17, 19, 44, 62]. In the experiments, the extra cost (i.e.,
the packet headers and redundant graph data) occupies up to 56.5% of the total communication
volume.

2.2 Motivation

Figures 2(c) and (d) show the data access statistics of the jobs in the above experiments. We have
two findings. First, as depicted in Figure 2(c), a large ratio (e.g., more than 76%) of the graph data to be

processed by CGP jobs (e.g., more than four jobs) are the same. Second, as depicted in Figure 2(d), the

number of access times to different chunks is skewed. In each hour, the average number of access times

of each shared chunk is more than 89.4 times that of each unshared chunk, because the shared chunks

are repeatedly accessed by many CGP jobs and many of them also need more iterations to converge

than the unshared chunks. It means that more than 76% of all accesses are allowed to be shared by
five or more jobs, which is more than 8% gotten by D-Galois-M as depicted in Figure 2(a) due to
the irregular access behavior of the CGP jobs. Besides, the sharing ratio of D-Galois-M becomes
lower when the access behavior is more irregular. Figures 3(a) and (b) show the impact of arrival
rate and starting vertices of 64 BFS jobs on the sharing of accesses on D-Galois-M for uk-union. In
Figure 3(a), when the interval between the starting time of the jobs becomes longer (i.e., smaller
value of λ), the accesses are shared by fewer jobs. In Figure 3(b), when the starting vertices of the
jobs are farther away from each other (i.e., the number of hops is larger), the accesses are shared
by fewer jobs, although 60.2%–85.8% of the accessed graph data are the same for all BFS jobs due
to graphs’ power-law property. These findings motivate us to develop GraphTune to fully exploit the

hidden similar data access patterns among CGP jobs and coordinate the execution of multiple jobs,

thereby efficiently consolidating and sharing the data accesses of different jobs.

We still use the example of Figure 1 to illustrate our basic idea in coordinating the execution of
various jobs. In fact, an inactive vertex, e.g.,v1, needs to be processed by a job only if its precursors,
e.g.,v0, propagate their new states to it. Thus, in this example, we can generate a topology order for
the vertices on host 0 asv0,v1,v2,v3,v9, andv4. We then coordinate BFS 1 and BFS 2 to process the
vertices following this order. Since the starting vertex of BFS 1 isv0,v0 is handled first by BFS 1, and
then v1 is activated. After v1 is handled by BFS 1, v2 and v3 are activated. After v2 is processed by
BFS 1,v3 then can be appointed to be processed by BFS 1 and BFS 2 at the same time. It allows these
two jobs to share the access tov3. Similarly,v9 andv4 can be handled simultaneously by these two
jobs, also allowing to share their accesses. Moreover, when v3 is concurrently handled by them,
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the state of mirror vertex v15 will be updated by the two jobs. Thus, the state synchronization
of v15 between host 0 and host 2 are triggered by these two jobs at the same time. Likewise, the
communications associated with v4, v5, and v9 are also performed by these two jobs concurrently.
In this way, there are more opportunities for coalesced communication for these two jobs.

3 OVERVIEW OF GRAPHTUNE

We propose GraphTune to address the above-mentioned limitations and opportunities in CGP jobs.
In GraphTune, a cross-iteration dependency graph is first generated to describe the topology of
possible vertex state propagations between the chunks at different iterations. Then, it proposes a
dependency-aware execution model to regularize the traversal paths of the chunks for CGP jobs
along the topology order of the dependency graph such that the accesses to the same graph can
be shared by more jobs. Next, several optimization strategies are designed to improve resource
utilization and reduce communication cost. Some APIs are also provided, through which Graph-
Tune can be integrated into existing distributed systems to transparently support high-throughput
execution of the CGP jobs.

3.1 Dependency-Aware Synchronous Execution

According to our findings, the irregular data accesses can be transformed into more regular ones
when the processing order of the graph data is tuned for the jobs based on the graph topology. Thus,
in Figures 4(a) and (b), a cross-iteration dependency graphG ′ is first constructed for the chunks of
existing systems to depict the dependencies between these chunks. Namely,G ′=(V ′,E ′,W ′), where
V ′={Cm |Cm∈G} and E ′={<Cm ,Cn> | ∃Cm∈G∧∃Cn∈G s.t. <va ,vb>∈E ∧va∈ Cm∧vb∈Cn }.Cm and
Cn denote themth and nth chunks of the graphG, respectively.W ′ is the set of weights associated
with E ′, representing the number of edges between two chunks. Each directed edge <Cm , Cn>
means that Cm is a precursor of Cn , and the states of Cm will be propagated to Cn to activate its
processing at the next iteration. After that, the topological order of the chunks designated in this
dependency graph is expected to be used to guide the jobs to efficiently access and process these
chunks along a regularized traversal path.

However, the dependencies between some chunks may constitute a cyclic path (e.g.,C0→C1→C0

in Figure 4(b)) such that the states of a chunk will be propagated back to this chunk itself. To gener-
ate the topological order for the chunks, a Directed Acyclic Graph (DAG) sketch [49] (described
in Figure 4(c)) of the dependency graphG ′ is generated by contracting Strongly Connected Com-
ponents (SCCs), i.e., the components form a cyclic path, of G ′ into vertices.

Each SCC-vertex, e.g., SCCx , of the DAG is a set of chunks, and each edge of the DAG represents
the state propagation topology between two SCC-vertices, which in turn describes the topological
order between the chunks belonging to the SCC-vertices. Following this DAG’s topological order,
the active chunks (i.e., the chunks need to be handled) can be handled by the jobs more regularly,
allowing the accesses to these chunks to be shared by these jobs. In detail, the chunks are dis-
patched to be processed along the topological order of the SCC-vertices in the DAG. The chunks
contained in the same SCC-vertex are directly assigned with an order, e.g., the order of them when
traversing them according to their dependencies in a breadth-first order. Then, for each dispatched
chunk, all related jobs (i.e., the ones need to process this chunk) are triggered to synchronously
process it, reducing the storage and access overhead corresponding to this chunk. The next chunk
is assigned to be handled only when the current chunk has been processed by all related jobs. Note
that the active chunks belonging to independent SCC-vertices can be dispatched in parallel.

Figure 5 compares the data access patterns of existing solutions and our model by taking the
execution of the two jobs in Figure 1 as an example, where BFS 1 is assumed to be submitted at the
end of the first iteration of BFS 2. Existing solutions exploit the similar data access patterns locally
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Fig. 4. Generation of dependency graph: (a) the graph is divided into 12 chunks; (b) the state propagation

dependencies between the chunks; (c) the DAG of the dependency graph, and 0,1© represents that the SCC-

vertex consists of C0 and C1.

Fig. 5. Data access patterns of the CGP jobs on the existing execution model (left) and our dependency-aware

execution model (right).

at each iteration. Thus, only a small portion of chunks’ accesses (e.g., C8 at the fifth iteration)
are shared by these jobs. In our model, the active chunks are handled based on the topological
order. For example, at the second iteration, the active chunks consist ofC0,C2, andC7. Because the
topological order of SCC0 (withC0) is lower than that of SCC1 (with C2) and SCC4 (withC7), C0 is
handled first by BFS 1 and then C1 is activated. Similarly, C0, C1, and C6 are handled at the third
and forth iterations, because SCC0 (with C0 and C1) and SCC3 (with C6) own lower topological
order than SCC1 (withC2) and SCC4 (withC7). After that,C2 andC7 are activated by BFS 1. Hence,
the accesses to C2 and C7 can be shared by BFS 1 and BFS 2 at the fifth iteration. It shows that
more CGP jobs can directly retrieve the shared chunks from the LLC, enabling more accesses to
be shared by the CGP jobs than existing solutions.
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Fig. 6. Architecture of GraphTune.

3.2 System Architecture

The architecture of GraphTune is depicted in Figure 6. Original graph is partitioned into several
subgraphs, i.e., G = ∪iG

i . GraphTune on each host maintains a subgraph, e.g., Gi , and has the
following three main components.

Dependency Graph Generator. Graph formats and partition strategies usually vary on differ-
ent distributed graph processing systems [17, 19, 28, 36, 44, 62]. Thus, before starting the execution
of an existing system, the subgraphs of the original graph stored in GraphTune are first converted
to the graph format specific to this system (such as the edge list format for Chaos, and the CSR/CSC
format for D-Galois, Gemini, and PowerGraph) using Convert(). After that, the subgraphs are di-
vided into chunks by the existing system for parallel processing using its own partitioning scheme.
A dependency graph is created to describe the dependencies between these chunks. A DAG sketch
is also generated for this dependency graph.

Dependency-aware Computation Controller. It regularizes the processing behavior of the
CGP jobs. The subgraphGi is loaded into the memory by GraphTune and is allowed to be shared by
all related jobs. At execution time, for each job, it traces the chunks (i.e., the chunks to be processed
by this job in the next iteration) activated in current iteration. Thus, at the end of the current
iteration, it can obtain the set of jobs to handle a chunk in the next iteration. This information
about the chunks on each host is maintained in its local table, where each entry contains a list
of the IDs of the jobs to handle the corresponding chunk. Then, the jobs synchronously grab the
chunks to be handled by them. In detail, the processing order of the chunks is assigned based on
the dependency graph of chunks. Each chunk is loaded into the LLC for the related jobs by one of
them (step ❶), and is also allowed to be shared by these jobs. After that, it activates these jobs to
concurrently process this chunk (step ❷). The other non-related jobs are suspended and wait for
their chunks to be grabbed (step ❸).

Dependency-aware Communication Manager. It assembles and disassembles the messages
on each host to eliminate the problems of small messages and redundant communication cost.
Specifically, it tries to ensure coalesced communication for as many CGP jobs as possible based on
the dependency graph of the chunks handled by them.

Programming APIs. To use GraphTune, the user only requires to simply insert the provided
APIs (Table 1) into existing distributed graph processing systems and no modification is needed for
graph applications. Figure 7 shows how to integrate a distributed system D-Galois with GraphTune
using these APIs. Init () is used to initialize GraphTune. To efficiently load the shared graph data,
Access() replaces the original data load operation of existing system. Sync() replaces its original
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Fig. 7. Illustration of integrating GraphTune into D-Galois.

Table 1. Programming Interfaces of GraphTune

APIs Description

Init () Initializing GraphTune
Convert () Converting original graph to specific format
GetActiveChunks () Obtaining active chunks in each iteration
Access ()/Sync () Loading the subgraph and synchronously grabbing its shared chunks for processing
Reдularize () Assembling and disassembling the communication messages

grab operation for synchronous processing of the chunks. Regularize() replaces its communication
operation to achieve the optimized communication. Note that, to obtain the active chunks before
each iteration, GetActiveChunks() is also provided, because this operation is used by some systems
(e.g., D-Galois) to skip the processing of inactive chunks.

4 IMPLEMENTATION OF GRAPHTUNE

4.1 Generation of Dependency Graph

Generation of Dependency Graph. GraphTune generates the dependency graph in parallel. Each
host first gets the dependencies between the chunks of its subgraphGi . As shown in Algorithm 1,
for each chunk Cm in Gi , it traverses its edges to collect the set of their source and destination
vertices, i.e., src_set and dst_set (lines 2-3). Then, it stores src_set and dst_set into Set i , where
Set i [m] corresponds to the sets of the chunkCm (line 4). Next, it obtains the intersection of src_set
and dst_set between Cm and the set of chunks (i.e., Ci

∗) which have collected their src_set and
dst_set (line 5). If the intersection of the dst_set of Cm and the src_set of Cn is not empty (line 6),
it creates a directed edge, i.e., <Cm ,Cn> (line 7). The number of edges between them is regarded as
this edge’s weight (line 8). For example,v3’s new state inC1 is propagated tov4 andv9 inC2 along
the edges <v3, v4> and <v3, v9>. Thus, the weight of the edge <C1, C2> is 2. Similar operations
are performed on the opposite direction (lines 10–13). When all dependencies in each subgraph
have been created, the dependency graph G ′ is finally generated by merging these dependencies.
Meanwhile, as shown in Figure 4(b), the dependencies between the chunks on the same host are
marked as intra-host dependencies, while the others are marked as inter-host dependencies, so as to
guide the message batching (discussed in Section 4.4). The DAG sketch can be generated for this
dependency graph using Tarjan algorithm [49]. Note that, when the graph has changes, i.e., the
vertices/edges in some chunks are added/deleted, their dependencies are also updated, and then a
new DAG will be constructed to obtain their new topological order.
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Fig. 8. Representation of (a) the dependency graph and (b) its DAG sketch for the example graph shown

in Figure 4.

ALGORITHM 1: Dependency Graph Generation in GraphTune

1: function Generate(Cm , Set i , E ′,W ′)
2: src_set ← CollectSourceVertices(Cm)
3: dst_set ← CollectDestinationVertices(Cm)
4: Set i [m].Store(src_set , dst_set )
5: for each chunk Cn (excepts Cm ) in Ci

∗ do

6: if Set i [m].dst_set ∩ Set i [n].src_set � ∅ then

7: E ′.CreateEdge(<Cm , Cn>)
8: W ′.<Cm , Cn>← GetWeight(Cm , Cn)
9: end if

10: if Set i [n].dst_set ∩ Set i [m].src_set � ∅ then

11: E ′.CreateEdge(<Cn , Cm>)
12: W ′.<Cn , Cm>← GetWeight(Cn , Cm)
13: end if

14: end for

15: end function

Storage of Dependency Graph. To efficiently store the dependency graph (Figure 8(a)), an array
CNbrOffset is employed to store the offset of the beginning and the end of the neighbors for each
chunk, while CNbr stores all neighbors for them. Moreover, two arrays, i.e., Weights and Marks,
are used to store the weiдht and the mark of each dependency, where the value 0 or 1 of a mark

indicates the related dependency is an intra-host one or inter-host one. To store the DAG sketch
(Figure 8(b)), SNbrOffset stores the offset of the beginning and the end of the neighbors for each
SCC, and SNbr stores all neighbors for them. SCCTable and ChunkArray are employed to record
the set of chunks contained in each SCC-vertex.

4.2 Dependency-Aware Computation

To make the jobs efficiently share their data accesses using our approach, several challenges need
to be tackled. First, as shown in Figure 2(d), because of the power-law property [19], a few chunks
may need to be frequently accessed by more jobs than the others and many chunks may also
depend on such a small set of chunks. When the processing of these important chunks is delayed,
many jobs and many chunks cannot be activated, inducing low ratio of shared data accesses. Sec-
ond, the same chunk’s computational load is usually skewed in various jobs due to the difference in
computing complexity and the different number of active vertices. It may incur high synchroniza-
tion cost when synchronizing the execution of these jobs. We now discuss how to address these
challenges.
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ALGORITHM 2: Iteration Number Prediction in GraphTune

1: function Predict(Croot , SCCx , I )
2: Set the chunk Croot to be visited and I root to zero
3: while SCCx has unvisited chunks do

4: for each visited chunk Cm in SCCx do

5: for each successor Cn of Cm in SCCx do

6: if Cn is unvisited then

7: In ← Im + 1
8: Set the chunk Cn to visited
9: end if

10: end for

11: end for

12: end while

13: end function

Mining of Topological Order. The DAG sketch is first divided into layers. Each SCC-vertex is
assigned with a layer number as shown in Figure 4(c), so that the SCC-vertices in a layer can only
be activated by the SCC-vertices at the lower layer. To give an order for each chunk in the same
SCC-vertex, it performs the propagation operation (e.g., breadth-first search [14]) to follow the de-
pendencies between these chunks, and approximately predicts the iteration number to update this
chunk. In Algorithm 2, for each SCC-vertex, one of its chunks (i.e., Croot ) is randomly selected as
the root andCroot ’s iteration number is set to zero (line 2). Then, it repeatedly marks the iteration
numbers (e.g., In ) of the successors (e.g.,Cn) of each visited chunkCm , and the marked chunks are
set to be visited (lines 5–8). When all chunks have been visited, the order can be obtained. Specifi-
cally, the chunks of the SCC-vertex with lower layer number is assigned with a lower topological
order. Each chunk in the same SCC-vertex is assigned with a lower order as its iteration number
is lower.

Effective Processing Scheduling of Chunks. To maximize the ratio of shared data accesses,
each active chunk Cm is given a priority Pri (Cm ) to determine its processing order. As discussed
above, the active chunks should be handled by the CGP jobs following the topological order. Be-
sides, when an active chunk is to be handled by more CGP jobs, or has more out-going depen-
dencies, or owns more active vertices, it also should be handled preferably, because it can activate
more jobs and chunks. These rules can be expressed as follows:

Pri (Cm ) = θ · N (Jm ) · N (Cm ) ·
∑

W ′
+ (Cm ) − Im

Nx

− Lm , (1)

where Nx is the number of chunks in SCCx containingCm and N (Jm ) is the number of jobs to han-
dleCm . N (Cm ), Im (0≤Im<Nx ),

∑
W ′
+ (Cm ), and Lm are the number of active vertices, the iteration

number, the total weights of out-going dependencies, and the layer number of Cm , respectively.
θ = 1

N ( J ) ·Nmax (C ) ·∑max W ′
+ (C ) is the scaling factor to expect that the chunk with the lowest topo-

logical order is first handled. N (J ) is the number of CGP jobs. Nmax (C ) and
∑

max W
′
+ (C ) are the

maximum number of vertices and the maximum total weights of out-going dependencies of any
chunk, respectively. The values of

∑
W ′
+ (Cm ), Im , Nx , Nmax (C ),

∑
max W

′
+ (C ), Lm , and the initial

values of N (Cm ), N (Jm ), N (J ) are obtained at the preprocessing stage, while N (Cm ), N (Jm ), and
N (J ) are updated incrementally during the execution. The priority needs to be updated before the
start of each iteration of any job. Then, the processing order of the chunks on each host can be
gotten by sorting them based on their priorities.
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Efficient Synchronous Processing of Chunks. When an active chunk is grabbed based on the
above scheduled order, GraphTune triggers the related jobs to concurrently process this chunk.
The next chunk is loaded when these jobs have completed the current chunk’s processing. To
efficiently synchronize the graph traversals of the jobs in this way, for the processing of each
chunk, the computing resources will be unevenly assigned to these jobs based on their skewed
computational loads, to make them finish this chunk’s processing almost at the same time. For a
job j, the load O j (Cm ) to handle a chunkCm can be calculated by O j (Cm ) = α j · Ej (Cm ), where α j

is its average time to handle an edge at the previous iterations, and Ej (Cm ) represents the number
of edges inCm that need to be processed by the job j at the next iteration. In this way, the chunks
can be regularly loaded into the LLC with low synchronization cost.

4.3 Efficient Inter-Host Load Balancing

During the execution, the load of the hosts may be skewed. However, existing load-balancing
schemes [19, 44, 62] assume that each host’s load is determined by the number of edges of its
active chunks, and do not take into account the load differences between various jobs. As a result,
they either face much runtime cost to balance load dynamically or experience imbalanced load
between the hosts. For example, although the number of edges of active chunks on the hosts is
skewed, the load may be even across these hosts.

Thus, based on the above profiled load, i.e., O j (Cm ), of each job j to handle each chunk Cm ,
GraphTune first gets the total load of this chunk, i.e., O (Cm ), by summing the load of the related
jobs for the processing of this chunk. After that, GraphTune incrementally balances the chunks
between the hosts in advance based on the predicted total load of each chunk. To ensure data
locality, for each overloaded host, its chunk with the lowest priority Pri (Cm ) is tried to be migrated
to another underloaded host that contains the most number of chunks depended by this chunk. In
detail, when migrating a chunk Cm in the overloaded host (i.e., hostover ) to another underloaded
host (i.e., hostunder ), hostover needs to migrate the graph data (e.g., the graph structure data and
the job-specific data of the CGP jobs) associated withCm to hostunder . Then, hostover updates the
vertices of other dependent chunks that have vertices in this migrated chunk Cm as the mirror
vertices, while hostunder denotes the vertices in this migrated chunk Cm as the master vertices.
Note that the chunkCm is migrated only when its migration time is less thanOs = OH−MAX {OH−
O (Cm ), OL + O (Cm )}. The migration time is the profiled average time to send this chunk at the
previous iterations.OH andOL are the total load of the overloaded host and the underloaded host,
respectively. After the migration, the related jobs then can handle these migrated chunks at the
next iteration.

4.4 Dependency-Aware Communication

When the chunks are synchronously handled by multiple jobs with the above approach, it provides
the opportunity for fully consolidated communication for these jobs to synchronize their vertex
states. Specifically, the jobs also access their job-specific data in a similar way, because the shared
chunks are regularly traversed by them along a common path. However, with existing solutions [17,
19, 44, 62], the jobs send their messages independently, incurring high communication cost.

Dependency-aware Message Batching. To exploit the above characteristic of the communica-
tions issued by the CGP jobs, GraphTune creates several queues to efficiently batch the messages
for consolidated communications. Each queue (e.g., Desti ) is used to buffer the messages to be sent
to a destination host (e.g., host i), and Desti is generated only when there is inter-host dependency
from the local host to the host i, because the communication can be only triggered by the state
propagation dependency between them. In Figure 9, two queues (i.e., Dest1 and Dest2) are created
on host 0 to buffer the messages to be sent to hosts 1 and 2, respectively. Each queue is associated
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Fig. 9. Consolidated communication between hosts.

with two pointers, i.e., Head and Tail, along with a Window (which defines the packet size to be
sent and is determined by MTU size of the network). When the CGP jobs have handled a chunk,
their messages are pushed into the related queues based on their destination hosts and then the
Tail pointer is updated. Once the buffered messages’ size reaches the Window size, the operation
of sending the full packet is triggered. The Head pointer is then updated when the send opera-
tion has been completed. Then, the messages of different jobs destined to the same host can be
sent together in a batch. In this way, it not only reduces the cost of sending many packet headers
for small messages but also provides the opportunity for effective coalesced communication as
follows.

Assembling and Disassembling Messages. As discussed above, in GraphTune, multiple jobs
usually propagate their new states regarding the same vertex to another host simultaneously. It
allows us to efficiently assemble the messages of these jobs to a large one and also only keep one
copy of the vertex ID for these messages for less communication cost. In detail, the messages are
coalesced when there exist the messages sent by other jobs to the same vertex in the queue. For
example, assume the messages for jobs 2 and 3 to update v14 have been assembled and buffered
in Dest2. Then, when S1[v14] of job 1 is pushed into Dest2, the messages of jobs 1, 2, and 3 are
coalesced and the coalesced message is again stored in Dest2 (step ❶), because they are destined
to the same vertex v14. The Tail of Dest2 is also updated accordingly (step ❷). Next, the original
message sent by jobs 2 and 3 tov14 is marked as empty to skip its sending (step ❸), and the marked
message’s size is added to the current Window size of Dest2 (step ❹). When the coalesced message
arrives at the destination host, it is disassembled to several messages for different jobs. Then, these
jobs can utilize the network resources more efficiently. To distinguish vertex states of different jobs,
each vertex state needs to be sent along with the related job ID. To spare the cost of sending the
IDs of the jobs, GraphTune assembles different jobs’ vertex states following a specific order. It uses
a field-specific bit-vector (i.e., Bitvec_states) for each sending vertex to indicate the jobs that send
these messages. In Figure 9, the messages for jobs 1, 2, 3 to update v14 are assembled to one larger
message, where the states of different jobs for the same vertex are successively stored along with
a bit-vector. In this way, it can distinguish different jobs’ vertex states although the IDs of these
jobs are not sent.

Dependency-aware Message Sending. During the execution, the volume of data to be trans-
ferred from one host to another, i.e., communication workload, are usually skewed for different
queues because of the power-law property [19]. The queue with higher communication workload
has the opportunity to coalesce more messages. Thus, this queue is expected to be delayed to be
sent, aiming to allow more messages to be pushed into this queue to be fully coalesced. In prac-
tice, the inter-host dependency with higher weight usually incurs more messages, and the chunks
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with more active vertices or handled by more jobs would also generate more messages. Thus, each
queue Desti can be assigned with a priority Pri (Di ) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

Li (Cm ) =
N (Cm )

|VCm | · N (Jm ) ·
∑

e ∈E′
i
(Cm )

W ′(e )

Pri (Di ) =

∑
Cm ∈A∗ Li (Cm )∑
Cm ∈A Li (Cm )

(2)

Li (Cm ) is the predicted communication workload of a chunk Cm in the queue Desti . N (Cm ) and
|VCm | are the number of active vertices and the total number of vertices ofCm , respectively. E ′i (Cm )
is the set of inter-host dependencies fromCm to the chunks on the host i. N (Jm ) is the number of
jobs to handleCm .W ′(e ) is the weight associated with e .A∗ is the set of chunks that have buffered
their messages in the queue Desti . A consists of the ones in A∗ and the active chunks to push their
messages into Desti . Each queue’s priority is updated after processing each chunk or sending its
packet. When the network is available, the packets generated in the queue with the highest priority
are first sent, because less opportunity is left for it to coalesce messages than other queues.

5 EVALUATION

The platform is a cluster with 32 hosts interconnected by an Infiniband EDR network (with up to
100 Gbps bandwidth) and the MTU size is 2 KB. Each host contains a 2-way 8-core Intel Xeon E5-
2670 CPUs (each CPU has 20 MB LLC), a 32 GB physical memory, and an 1 TB hard drive, running
the Linux operation system with the kernel version 5.3.18. The program is compiled with cmake
2.8.3 and gcc 4.4.5.

Competitors. To evaluate GraphTune, we integrate it into four popular distributed graph pro-
cessing systems, i.e., D-Galois (v6.0.0) [17], Gemini (v1.0) [62], Chaos (v1.0) [44], and PowerGraph
(v2.2) [19], to run multiple CGP jobs. Due to space, we focus on presenting those on D-Galois
because it is a cutting-edge distributed graph processing system and outperforms other solu-
tions [19, 44, 62], and briefly discuss others in Section 5.6. In detail, the D-Galois integrated with
GraphTune (called D-Galois-T in the experiments) is compared with three execution schemes of
the original system, called D-Galois-S, D-Galois-C, and D-Galois-M. D-Galois-S sequentially han-
dles the jobs, while D-Galois-C and D-Galois-M process the jobs concurrently. In D-Galois-C, each
job runs independently, and the CGP jobs are managed by the operating system. In D-Galois-M,
the CGP jobs share the underlying graph and are managed by GraphM (v1.0) [61]. It is the same for
the experiments of Gemini, PowerGraph, and Chaos in Section 5.6. Besides, to qualitatively and
quantitatively evaluate GraphTune, we also integrate it into a popular out-of-core graph process-
ing system, i.e., GraphChi (v1.0) [30]. CGraph [60] is also evaluated to demonstrate the efficiency
of GraphTune. Their performance is evaluated with their best-performance settings.

Datasets and Benchmarks. Five real-world graphs (see Table 2) are used. The jobs in the real
trace from a real Chinese social network are periodically executed jobs and can be classified into
two categories: all-active algorithms (all vertices are active at the beginning) and non-all-active

algorithms (a subset of vertices are active at the beginning). The proportion of the former is about
22.2%, and that of the latter is 77.8%. Specifically, the all-active algorithms are the variants of PageR-
ank [42], WCC [23], k-core [26], Label propagation [10], Louvain modularity [33], k-means [21],
Graph coloring [25], MIS [8], Maximal matching [9], and Degree centrality [27], while the non-all-
active algorithms are implemented based on Single Source Shortest Path (SSSP) [18, 37, 39] or
BFS [3, 14, 41]. We also submit the jobs following this real trace. In detail, when the job in the trace
is the all-active job, we submit the corresponding algorithm described above. When the job in the
trace is implemented based on SSSP or BFS, we submit the SSSP or BFS with a randomly selected
starting vertex. Note that the jobs are dynamically submitted along the time of the real trace until
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Table 2. Graph Datasets Proprieties (Dia.max Denotes the Maximum Diameter, Dmax

Represents the Max Degree, and D Represents the Average Degree)

Datasets #Vertices #Edges Data sizes Dia.max Dmax D
twitter [29] 41.7 M 1.5 B 17.5 GB 24 3,081,112 35.3

friendster [5] 65.6 M 1.8 B 22.7 GB 32 5,214 27.53
uk-2007 [4] 105.9 M 3.7 B 46.2 GB 82 15,402 35.31

uk-union [11] 133.6 M 5.5 B 68.3 GB 147 22,429 41.22
clueweb12 [4] 978.4 M 42.6 B 317 GB 498 7,447 43.51

Table 3. Preprocessing Time (in Seconds)

twitter friendster uk-2007 uk-union clueweb12

D-Galois 34.20 47.47 79.48 97.40 845.11
D-Galois-T 37.29 53.26 87.60 108.67 961.04

the specified number of jobs have been generated, instead of submitting all jobs at the same time.
We run all benchmarks 10 times and the following results are the averaged values.

5.1 Preprocessing Overhead

D-Galois-T’s preprocessing cost is shown in Table 3. As observed, D-Galois-T needs little time
than the original system D-Galois to generate the dependency graph by traversing the graph once.
The preprocessing time is increased 9%, 12.2%, 10.2%, 9.2%, and 13.7% for twitter, friendster, uk-
2007, uk-union, and clueweb12, respectively. The extra storage cost for D-Galois-T is also small
and occupies 3.6%–5.8% of the space required for the original graph, i.e., 847.2 MB (4.7%), 962.7
MB (4.1%), 1.68 GB (3.6%), 3.7 GB (5.4%), and 18.5 GB (5.8%) for twitter, friendster, uk-2007, uk-
union, and clueweb12, respectively. GraphTune spares much redundant data access cost, although
it requires this additional cost.

5.2 Performance Comparison

Figure 10 evaluates the execution time of 64 jobs submitted on various schemes normalized to that
of D-Galois-C. As shown in Figure 10, the jobs run by D-Galois-T require shorter execution time
than other schemes. For different graphs, compared with D-Galois-S, D-Galois-C, and D-Galois-M,
the throughput improved by D-Galois-T is 4.1∼7.9, 3.5∼7.1, and 3.1∼6.2 times, respectively, due to
lower data access cost. We attribute such acceleration to more regular data access of D-Galois-T.

To verify the above discussion, we have broken down the total execution time into three parts:
(1) the time to process graph data, (2) the time to transfer the data from memory to LLC, and
(3) the communication time. As shown in Figure 11, D-Galois-T spends fewer data transfer time
and communication time than other three schemes. On clueweb12, compared with D-Galois-S, D-
Galois-C, and D-Galois-M, the data transfer time is reduced by D-Galois-T by 16.7, 15.2, and 10.9
times, and the communication time is spared by D-Galois-T by 7.3, 6.5, and 6.3 times, respectively.
It is because the jobs on D-Galois-T can fully share the data accesses, which is represented in
two-fold: (1) these jobs can traverse the common subgraph together, reducing redundant data
transferring between the memory and the LLC; (2) the messages issued by the jobs are coalesced,
reducing the network cost.

Figure 12 shows the volume of the graph data loaded into LLC when executing 64 jobs. Because
of intense cache interference in D-Galois-C, more data are loaded into LLC by D-Galois-C than D-
Galois-S. Meanwhile, we can observe that D-Galois-T always swaps less volume of data into LLC
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Fig. 10. Normalized execution time of the CGP jobs

on various schemes.

Fig. 11. Execution time breakdown of the CGP jobs

on various schemes.

Fig. 12. Normalized volume of data loaded into the

LLC on various schemes.

Fig. 13. Ratio of the shared data accesses on various

schemes.

than others. It is because the loaded data are enabled to be shared by more CGP jobs on D-Galois-T
via regularly streaming them into LLC.

Figure 13 depicts the percentage of data accesses to the same graph data amortized by various
number of CGP jobs. D-Galois-T enables a higher ratio of accesses to be shared by more jobs than
D-Galois-M. For example, when processing clueweb12, more than 63% of data accesses are shared
by more than 4 jobs in D-Galois-T, while only 9% in D-Galois-M. It indicates that less data access
cost and storage overhead is required by D-Galois-T to run the CGP jobs.

Figure 14 evaluates the total volume of communication when running the 64 jobs. Obviously,
D-Galois-T needs the least volume. For clueweb12, D-Galois-T reduces the volume of D-Galois-M
by 54.9%. It is because many small messages initiated by the CGP jobs are combined into large
ones, which are further batched efficiently to reduce communication cost.

Figure 15 depicts the ratio of effective communication volume (after removing packet headers
and redundant graph data) to the total volume for the 64 jobs. This figure shows that D-Galois-T
obtains a higher ratio of effective communication volume compared with the other three schemes.
It is because many small messages are merged and repetitive graph data are also removed in D-
Galois-T. GraphTune can efficiently utilize the network resource in the case of multiple CGP jobs,
potentially improving the system throughput.

5.3 Sensitivity Study

Figure 16 evaluates the job submission frequency’s impact on GraphTune for clueweb12, where
we submit the jobs following the Poisson process [20] with different values of the arrival rate λ.
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Fig. 14. Communication volume normalized to

D-Galois-C.

Fig. 15. Ratio of effective communication volume on

various schemes.

Fig. 16. Execution time normalized to that of

D-Galois-C.

Fig. 17. Impact of the hops between the starting ver-

tices on various schemes.

D-Galois-M and D-Galois-T achieve higher speedup as the jobs are submitted more frequently (i.e.,
larger λ). However, due to the regular data accesses in D-Galois-T, its performance is always more
outstanding than others.

Figure 17 depicts the performance of 64 BFS jobs submitted on clueweb12 with various schemes,
where the starting vertices of these BFS jobs are randomly selected but in the range of different
number of hops. Under such circumstances, the intersections of the graph data to be handled by
the BFS jobs occupy 84.2%–93.6% of the whole graph. Through regularizing their traversal paths,
GraphTune enables the accesses to the common graph data to be fully amortized by these jobs.
Thus, D-Galois-T improves the throughput by 4.3–7.8, 3.8–6.9, and 3.5–4.8 times in comparison
with D-Galois-S, D-Galois-C, and D-Galois-M, respectively. Besides, D-Galois-T obtains much bet-
ter performance than other schemes when the starting vertices of these jobs are further away from
each other.

5.4 Evaluation of Scalability

Figure 18 evaluates the performance of different number of jobs on clueweb12. We observe that
D-Galois-T obtains higher performance when submitting more CGP jobs. When there are 4, 8,
16, 32, and 64 jobs, D-Galois-T improves the throughput by 1.37, 1.75, 2.45, 3.71, and 6.21 times,
respectively, in comparison with that of D-Galois-M. It is because the data accesses of more CGP
jobs are regularized by GraphTune.

Figure 19 evaluates their scale-out scalability over uk-union by submitting the 64 jobs. We ob-
serve that D-Galois-T has better scalability than other schemes, because less communication cost

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 37. Publication date: July 2023.



An Efficient Dependency-Aware Substrate to Alleviate Irregularity in CGP 37:19

Fig. 18. Total execution time of different number of

jobs on various schemes.

Fig. 19. Speedup on different number of hosts on var-

ious schemes.

Fig. 20. Communication on different number of

hosts over various schemes.

Fig. 21. Normalized execution time of the CGP jobs

on various schemes.

is required by D-Galois-T than others. Figure 20 shows the total volume of communication when
the 64 jobs are run on uk-union. It shows that, by merging small messages and eliminating re-
dundant communication for multiple CGP jobs, GraphTune generates much less communication
volume than other schemes when we increase the number of hosts.

5.5 Hierarchical Evaluation of GraphTune

We also evaluate the performance contributions from different optimization strategies of Graph-
Tune when it is integrated with D-Galois. Figure 21 depicts the normalized execution time of those
CGP jobs when running with several levels of optimizations. In D-Galois-T-w/o, the optimiza-
tion of both load balancing and dependency-aware message sending of the CGP jobs are disabled,
whereas the traversal paths of the jobs are regularized based on the dependency graph and the
messages of these jobs are coalesced. The optimization strategies of load balancing and message
sending are enabled in D-Galois-T-OL and D-Galois-T-OM, respectively. We can observe that D-
Galois-T-OL achieves better performance than D-Galois-T-w/o because it efficiently balances the
chunks among the hosts for multiple CGP jobs, achieving higher utilization of the hosts’ resources.
D-Galois-T-OM requires shorter execution time than D-Galois-T-w/o because the communication
is further coalesced.

5.6 Integration with Other Systems

Table 4 depicts the execution time of the 64 jobs on other graph processing systems with different
schemes. As shown in this table, they achieve high performance improvements after integrating
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Table 4. Total Execution Time (in Seconds) of Other Graph Processing Systems (i.e.,

Gemini, PowerGraph, Chaos, GraphChi, and CGraph) Integrated with GraphTune,

Where “ − " Means That It Cannot Be Executed Due to Memory Errors and the

Experiments of GraphChi Are Performed on a Host of the Used Cluster

twitter friendster uk-2007 uk-union clueweb12

Gemini-S 56 156 243 478 4,093
Gemini-C 47 138 225 446 3,839
Gemini-M 39 124 192 394 3,359
Gemini-T 9 33 42 59 394

PowerGraph-S 368 576 5,632 28,732 −
PowerGraph-C 332 444 4,612 26,612 −
PowerGraph-M 284 388 4,260 24,296 −
PowerGraph-T 82 105 537 2,256 −

Chaos-S 896 686 18,672 118,152 >1 week
Chaos-C 2,064 2,352 48,044 123,772 >1 week
Chaos-M 788 597 15,148 99,316 >1 week
Chaos-T 172 139 3,089 10,456 82,524

GraphChi-S 38,652 52,365 81,643 132,583 >1 week
GraphChi-C 12,753 19,347 27,734 41,491 >1 week
GraphChi-M 8,241 11,573 18,324 23,863 296,826
GraphChi-T 2,137 2,936 4,708 5,532 42,734

CGraph 32 79 154 269 2,042

with GraphTune. Because different ratios of total execution time are consumed by various sys-
tems to access graph data, different performance improvements are obtained by them after using
GraphTune, respectively. Generally, more prominent improvements can be obtained by Graph-
Tune, when the original system has a higher ratio. Besides, when integrating GraphTune into the
out-of-core graph processing system, i.e., GraphChi, it also gains better performance than other
schemes. This is because GraphTune enables the graph data to be regularly loaded from the disk
to memory and from memory to cache, ensuring much lower data access cost.

6 RELATED WORK

Single-machine Graph Processing. GridGraph [63] designs a hierarchical partitioning method
for better data locality. Galois [40] implements a graph DSLs to support application-specific
priority-based scheduling of fine-grained tasks. FBSGraph [59], HotGraph [58], and Wonder-
land [55] are designed to achieve fast state propagation. GraphBolt [38] and LUMOS [50] track
dependencies between vertices’ states to proactively propagate vertex states while ensuring syn-
chronous processing semantics. Ascetic [48] exploits data reuse across iterations to reduce data
transfer between CPU main memory and GPU memory. Different from them, GraphTune con-
structs a dependency graph of the chunks to predict the traversal path of them for various jobs, gen-
erates a DAG based on this dependency graph aiming to maximize the sharing ratio of the accessed
graph data, and adopts a "synchronous execution" scheme to regularize the accessing/processing
behavior of the CGP jobs.

Distributed Graph Processing. To ensure balanced load, PowerGraph [19] uses a vertex-
cutting method. Chaos [44] scales out X-Stream [45] on multiple machines. Gemini [62] adopts a
dual update propagation model and a chunk-based partitioning scheme to build scalability on top
of efficiency. D-Galois [17] is a Galois system interfaced with the Gluon runtime that optimizes
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the communication for distributed graph processing. DH-Falcon [16] presents a graph domain-
specific language to express graph algorithms targeting heterogeneous (CPU and GPU) distributed
platforms. Nevertheless, these approaches are mostly proposed for a single graph processing job,
suffering from redundant data access and storage cost when executing multiple CGP jobs on the
common underlying graph.

Concurrent Graph Processing. Seraph [52, 53] decouples the data model of graph processing
to reduce memory consumption. CGraph [57, 60] uses a programming model to enable the same
graph data to be shared by CGP jobs for less data access overhead. GraphM [31, 61] is a recently
developed graph storage system that enables existing graph processing systems to efficiently han-
dle multiple CGP jobs with lower data storage and access cost through sharing the accesses to the
same graph data. However, they mainly focus on reducing the data access overhead on a single
machine. Importantly, they cannot fully exploit the similar data access patterns among the CGP
jobs because there is no consideration about the irregular data accesses between the jobs. In com-
parison with them, GraphTune can transparently and significantly shorten the execution time of
the CGP jobs on existing distributed graph processing systems by maximizing the sharing ratio of
data accesses and also minimizing the communication cost.

Concurrent Graph Queries. Some systems [12, 13, 47] are also developed for concurrent
graph queries. Wukong+S [56] tries to support real-time consistent queries over fast-evolving data.
Wukong+G [51] achieves fast concurrent RDF queries through exploiting the hybrid parallelism of
GPU and CPU. Congra [43] adopts a dynamic scheduler to manage concurrent queries for resource
efficiency. However, they cannot efficiently handle the CGP jobs due to their diverse traversal char-
acteristics. Usually, they only handle a small subgraph for exactly once, whereas iterative graph
processing traverses the entire graph frequently.

7 CONCLUSION

In this work, we investigate data access characteristics of CGP jobs and find that their irregular
data access behaviors incur low throughput. We then propose a novel dependency-aware synchro-
nous execution model to fully transform the irregular data accesses of CGP jobs into more regular
ones, opening new opportunity of data access sharing on each host and coalesced communication
between hosts. Based on this model, we design GraphTune, which can integrate with existing dis-
tributed graph processing systems to significantly improve the throughput of CGP jobs over them
by up to 12.4 times.
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