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A B S T R A C T   

In studies of firm’s innovation performance, regression analysis can involve a significant level of model uncer-
tainty because the ‘true’ model, and therefore the appropriate set of explanatory variables are unknown. Drawing 
on innovation survey data for France, Germany, and the United Kingdom, we assess the robustness of the 
literature on inbound open innovation to variable selection choices, using Bayesian model averaging (BMA). We 
investigate a wide range of innovation determinants proposed in the literature and establish a robust set of 
findings for the variables related to the introduction of new-to-the-firm and new-to-the-world innovation with 
the aim of gauging the overall healthiness of the literature. Overall, we find greater robustness for explanations 
for new-to-the-firm rather than new-to-the-world innovation. We explore how this approach might help to 
improve our understanding of innovation.   

1. Introduction 

In innovation studies, researchers have long sought to understand 
the firm level determinants of innovation and why some firms are better 
able to introduce new products, processes, and services to the market. 
The early innovation literature tends to focus on firm-internal factors, 
including research and development (R&D) spending, firm size, age, and 
managerial structure, and how these aspects affect the pattern of inno-
vation at both the firm and industry levels (Cohen, 1995). Over time, 
attention has shifted toward the impact on innovation performance of 
factors external to the firm such as collaboration and search. This more 
recent body of work builds on the concept of absorptive capacity which 
highlights the importance of R&D as enabling the development of new 
products and processes and as a means that allows the firm to learn from 
external sources of information (Cohen & Levinthal, 1990). 

In the stream of research on firm-external factors related to inbound 
open innovation, the two contributions by Laursen and Salter (2006) 
and Cassiman and Veugelers (2006) are important. These studies use 
innovation survey data for the United Kingdom (UK) and Belgium, 
respectively. Laursen and Salter (2006) show that firm innovation per-
formance benefits from openness to external sources of knowledge, 
which they describe as external search breadth and external search 

depth – but that after a certain point, decreasing and even negative 
returns set in. Cassiman and Veugelers (2006) demonstrate that firms 
benefit from making and buying innovations, suggesting complemen-
tarity between internal and external innovation sources. These two 
studies triggered a large body of research exploring whether and how 
external search and collaboration shape innovation performance 
including attempts to extend, reconceptualize, replicate, and revise 
those original works while also making a contribution in their own right 
(e.g., Garriga et al., 2013; Leiponen & Helfat, 2010; Love et al., 2014; 
Tether & Tajar, 2008). These studies adopt Laursen and Salter’s (2006) 
and Cassiman and Veugelers’s (2006) modeling choices but pay little 
attention to their appropriateness. The present paper focuses on the 
choice of variables, that is, the choice of which independent variables to 
include in the model. Given how this literature has evolved, there is a 
risk that this research stream does not build on sufficiently empirically 
robust results. By robust, in this context we mean results that hold for a 
substantial number of variable selection choices. The present study in-
vestigates the robustness of the central analyses in this literature based 
on a single empirical model, the same dependent variable, and a large 
number of different independent variables to try to derive a set of 
empirical results that are robust to different variables selection choices. 
We illustrate that Bayesian model averaging (BMA) which is the method 
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we apply, is useful to investigate a wide range of topics in innovation 
research.1 

This endeavor reflects the idea that “the goal of science is empirical 
generalization or knowledge development leading to some degree of 
understanding” (Hubbard et al., 1998, p. 251). However, in innovation 
studies, as in many scientific fields, the integrity of the relevant empir-
ical literature has generally been questioned on two distinct counts. The 
first is that rather frequent errors and biases in the reporting of findings 
imperil the reliability of empirical research (Bruns et al., 2019). Bruns 
and colleagues (2019) report that about 45% of the papers they analyzed 
contained at least one reporting error. The second is that published 
empirical research may be burdened by what Rosenthal (1979) called 
the “file drawer problem” and by what is commonly referred to as 
“p-hacking”, respectively. That is, papers that do not contain significant 
results do not get published, and that only significant results are pre-
sented (see Bruns et al., 2019) or only data leading to significant results 
will be retrieved (see Bruns & Kalthaus, 2020). This implies that the 
papers published in journals may be dominated by those reporting re-
sults with Type I errors (erroneous rejection of the null hypothesis) while 
papers with null outcomes are filed away by the researchers. In other 
words, when researchers “search for asterisks” (Bettis, 2012), in pub-
lished papers, Type I error rates will be well in excess of the prescribed, 
conventional 5% level of significance (Denton, 1985). For instance, 
Goldfarb and King (2016) report that between 24% and 40% of the 
findings published in the top five strategic management research jour-
nals are likely the result of chance rather than reflecting true relation-
ships. Bettis (2012) and Hubbard et al. (1998) suggest that robustness 
studies could help to mitigate this problem by establishing a set of 
reliable empirical results. Even if researchers do not "search for aster-
isks", statistical tests by their nature produce Type I errors. 

Overall and especially from the point of view of variables selection 
our knowledge is limited about which results are empirically general-
izable and whether they potentially add to our understanding. In prin-
ciple, when researchers work on similar datasets and use similar or 
identical dependent variables, the robust (and less robust) results can be 
extracted while controlling for a host of other factors. Many currently 
available standard datasets provide information on firm-level variables 
(e.g., Compustat), strategic alliances (Schilling, 2009), patents (Hall 
et al., 2001), and innovation processes and outcomes based on various 
national Community Innovation Surveys (CIS), all of which are con-
ducted according to a standardized procedure (Smith, 2005). The exis-
tence of these datasets for innovation research enables scholars to 
conduct a range of studies. However, in these studies as in most 
empirical applications, the “true” model, and therefore appropriate se-
lection of the explanatory variables are essentially unknown. Here, "true 
model" refers to “the model that generated the data” (Ley & Steel, 2012, 
p. 256). The fact that the true model is unknown to the researcher leads 
to the phenomenon of “model uncertainty” (Chatfield, 1995; George & 
Clyde, 2004; Hoeting et al., 1999). Disregarding model uncertainty re-
sults in too small standard errors and over-confidence in the statistical 
findings (Raftery, 1995a,b; Hoeting et al., 1999). Model uncertainty can 
also facilitate the search for asterisks. Because the specification of the 
true model in terms of which variables to include is unknown, re-
searchers may be tempted to opt for a specification that results in esti-
mator significances that fit the researcher’s line of reasoning. This can 

lead to a plethora of different models which all try to explain the same 
phenomenon. 

In this paper, we address two claims made by Bruns et al. (2019). 
First, they consider robustness studies a tool to help generate more 
reliable empirical findings. We respond to this claim and contribute by 
presenting a cross-country robustness study of the association between 
inbound open innovation and innovation performance to examine 
whether model uncertainty is a concern in this influential literature. We 
consider this effort as providing a “health check” on this domain with 
respect to model uncertainty.2 Second, Bruns et al. (2019) claim that in a 
field where the theory does not lead immediately to a uniquely accepted 
model specification, there are many possibilities for its empirical spec-
ification. Searching among potential models threatens the reliability of 
the research if the researcher confuses explorative research with hy-
pothesis testing. This suggests that ensuring robust knowledge in inno-
vation studies requires methods that constrain the researcher’s options 
to search for individual models that fit the research expectations. One 
strategy might be to base inferences not on a single model but on a 
collection of models (Bruns & Ioannidis, 2020). In this study, we suggest 
a model averaging approach to provide a tractable way to avoid 
searching for a single, well-fitting model specification. We employ BMA 
and apply it to a key issue in the innovation literature. The BMA 
approach was originally applied to analyses of the macroeconomic de-
terminants of growth (see for instance Bruns & Ioannidis, 2020 and 
Fernandez et al., 2001) and has not previously been employed in inno-
vation studies. We believe that robustness studies of this type can make 
an important contribution to help alleviating the problem of our un-
derstanding of innovation being dominated by papers reporting results 
with Type I errors. In particular, the publication of robustness studies 
should discourage undesirable behaviors such as p-hacking. 

Overall, our BMA analysis of pooled data from France, Germany, and 
the UK, shows that prior research in this area has a high degree of 
robustness which suggests that these early and influential attempts to 
link innovative performance to inbound open innovation variables 
(external search, collaboration, and make or buy decisions) are largely 
reliable. However, we find that the results related to new-to-the-world 
innovation are less robust than those related to new-to-the-firm inno-
vation. We highlight the implications of these findings for this literature 
and discuss the potential application of a BMA approach to check the 
"health" of the field to other innovation research domains. 

2. Innovation performance and innovation surveys 

The literature on the drivers of firm-level innovative performance is 
vast. The traditional variables of interest are firm size and R&D activity 
or R&D spending. Papers testing the so-called Schumpeterian Mark II 
hypothesis which suggests that large firms are more innovative than 
small firms, have generated a large stream of generally inconclusive and 
even contradictory evidence (Cohen, 1995). Over time, attention has 
shifted to firm age based on the assumption that frequently firm size and 
firm age are related (Acs & Audretsch, 1988). Although research on the 
(dis)advantages of young and old firms in different industries is incon-
clusive, it suggests some advantages for young firms in new industries 
and for mature firms in older industries (Sørensen & Stuart, 2000). It has 
long been assumed that R&D investment helps firms to innovate and that 
the benefits of R&D reside not only in the direct effects of new goods, 
services, and processes but also in the building of firm absorptive ca-
pacity (Cohen & Levinthal, 1990). Yet, to a degree R&D investment may 
be determined endogenously by the intent to innovate or may fail to 
generate significant value for the organization (Hall et al., 2010). 

In recent years, interest in the benefits that firms derive from 

1 We follow Clemens (2017, p. 327) and define a robustness analysis as an 
analysis in which the parameter estimates are drawn from a sampling distri-
bution that is different from the sampling distribution in the original study, 
using the same or a different type of statistical analysis. This contrasts with 
replication analysis where the parameter estimates are drawn from the same 
sampling distribution as in the original study and the the statistical analysis is 
also the same as in the original study. Note that the type of robustness analysis 
we consider in this paper concerns the robustness of the model selection, not 
robustness with respect to other econometric problems such as endogeneity. 

2 Obviously, in our empirical set up there are many other concerns than 
model uncertainty that could cause non-robust results; we therefore do not 
claim that our results are robust in general. 
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external collaboration or search for innovative performance has 
increased significantly. Early work considered the effect of formal 
external collaboration on innovation performance (Ahuja, 2000; Powell 
et al., 1996) but the focus shifted later to the impact of internal and 
external search (Katila & Ahuja, 2002; Laursen & Salter, 2006) and 
external knowledge acquisition (Cassiman & Veugelers, 2006). Several 
scholars have broadened the range of potential variables of interest to 
include among others appropriability strategy (e.g., Ballot et al., 2015; 
Cassiman & Veugelers, 2002; Cohen et al., 2000; Laursen & Salter, 
2014), managerial practices (e.g., Foss et al., 2011), internationalization 
(e.g., Basile, 2001; Cassiman & Golovko, 2011), and mergers and ac-
quisitions (e.g., Paruchuri et al., 2006; Puranam et al., 2006). An 
important part of this research stream focuses on the exploration of the 
effects of search efforts on different types of innovative outcomes, and 
contrasting new-to-the-firm, associated with more “incremental” forms 
of innovation, with new-to-the-world, associated with more “radical” 
types of innovation. 

A problem common to innovation studies is lack of data on innova-
tion outputs across economic systems. In part, this reflects the lack of 
agreement on the definition and operationalization of the concept of 
innovation. The existence of many different types of innovation (e.g. 
product, process, organization, marketing, business model, service, 
modular, architectural, and incremental versus radical) has been 
acknowledged. The availability of NBER patent data and other online 
resources (Hall et al., 2001) has resulted in much research focused on 
patents as the primary measure of innovation. This has sparked 
numerous studies of patent-intensive industries such as semiconductors, 
robotics, biotechnology, and pharmaceuticals. At the same time, inno-
vation survey data have become a major resource for scholars seeking to 
understand the determinants of innovation. 

The primary focus of early work using innovation survey data was on 
the effects of collaboration and external knowledge sourcing on inno-
vation performance. Laursen and Salter (2006) and Cassiman and 
Veugelers (2006) are two particularly influential papers which capture 
inbound open innovation practices such as collaboration, knowledge 
search, and knowledge sourcing. Laursen and Salter (2006) use data 
from an innovation survey of manufacturing firms in the UK to suggest 
that the breadth and depth of firms’ external search are curvilinearly 
(inverted U-shaped) related to their innovation performance. They also 
compare the results for new-to-the-firm and new-to-the-world innova-
tion. Cassiman and Veugelers (2006) use survey data for Belgium and 
focus on the complementarities in the make or buy decision with respect 
to innovation. They show that there are strong complementarities be-
tween use of in-house and external knowledge with respect to product 
innovation. These two papers—and others published before and after 
them—have stimulated a stream of work on the costs and benefits of 
external search and collaboration for innovation performance, focusing 
on a range of firm-level contingencies that might moderate or mediate 
this relationship (e.g., Garriga et al., 2013; Leiponen & Helfat, 2010; 
Love et al., 2014; Tether & Tajar, 2008). The research shows that 
absorptive capacity may mediate the effect of external search and 
collaboration on performance (Escribano et al., 2009), that the breadth 
of external search and its objectives have mutual effects on innovative 
performance (Leiponen & Helfat, 2010), that the obstacles to innovation 
can mediate the effect of external search on innovative outcomes 
(Garriga et al., 2013), and that prior search and collaboration can shape 
future search and innovative outcomes (Love et al., 2014). Cassiman and 
Valentini (2016) suggest that the complementary benefits of buying in 
and selling knowledge from outside the firm are small due to the asso-
ciated external engagement and internal coordination costs. 

Given the influence of the abovementioned studies, it is important to 
establish which elements of the empirical parts of these studies have a 
degree of robustness. The objective is not to suggest that any of the 
authors of these studies engaged in dubious research practices or made 
unsustainable model choices but to provide insights into whether the 
different findings across these studies may be considered robust with 

respect to model uncertainty. By doing so, we hope to inspire future 
work to examine the robustness of research in other domains of inno-
vation studies. 

Of course, these studies do not provide evidence of causal relation-
ships. Although cross-sectional estimations can help to identify the di-
rection of the relationship, they do not provide causal evidence of the 
effects of openness and/or make-buy decisions on firm-level perfor-
mance per se. However, these studies can provide a stimulus for other 
researchers to experiment with research designs that could get closer to 
causal identification of the proposed relationship. They may also inspire 
more research into the mechanisms that underpin the correlations. For 
example, von Hippel and colleagues’ early work on the role of lead users 
in the innovation process (e.g., Urban & von Hippel, 1988) spurred a lot 
of research into how users shape and enable innovative efforts and led to 
more insights into the ways engagement with users shapes innovative 
outcomes. These subsequent studies are careful attempts at causal 
identification, and specification of the more precise mechanisms un-
derlying the phenomenon (see for instance Lilien et al., 2002; Dahl, 
Fuchs, & Schreier, 2015). Similarly, in studies of innovation perfor-
mance at firm level where causal identification is notoriously difficult, 
correlations can provide a focusing device for subsequent research. 
However, given the usefulness of correlations in the research process 
and the aim of ensuring that future research is based on productive and 
reliable foundations, it is important that these correlations are robust, in 
the sense of being robust to variable selection choices. Our aim in this 
paper is to establish robust correlations. 

3. Data and measures 

Our empirical analysis uses firm-level innovation survey data from 
the 4th CIS for France, Germany, and the UK (Mairesse & Mohnen, 2010; 
Smith, 2005). The innovation outcome variables refer to year 2004, and 
the independent variables refer to year 2004 or the period 2002–2004. 
We restrict our sample to 7,841 manufacturing firms; Table 1 presents 
their sectoral breakdown. 

Our analytical variables are constructed by focusing on the most 
influential papers in the relevant literature, such as Laursen and Salter 
(2006) and Cassiman and Veugelers (2006). We assume that these 
studies have influenced the modeling strategies adopted in subsequent 
work. We also include measures taken from the studies by Leiponen 
(2005), Schmiedeberg (2008), Roper et al. (2008, 2017), Grimpe and 
Kaiser (2010), Love et al. (2014), and Ballot et al. (2015). The list of the 
variables examined in these studies is extensive, and the contexts of the 
studies vary. To render our analysis tractable, we include only the key 
variables from each of the studies and the core control variables 
included in the innovation research literature. Table 2 lists the variables 
and the related innovation research. 

Table 1 
Sectoral distribution (in percent).  

Sector Total 
(N=7,841) 

France 
(N=3,681) 

Germany 
(N=1,762) 

UK 
(N=2,398) 

Food 11.49 15.65 4.94 9.92 
Textile 6.19 8.23 4.48 4.30 
Pulp and Paper 11.07 9.51 12.03 12.76 
Chemicals 8.79 10.38 9.42 5.88 
Rubber and 

Plastics 
6.39 5.73 6.70 7.17 

Metal 3.99 4.56 3.23 3.67 
Fabricated Metal 12.09 10.65 14.76 12.34 
Equipment & 

Electronics 
26.36 22.44 34.40 26.48 

Other 
Manufacturing 

13.63 12.85 10.04 17.48 

Total 100 100 100 100  
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3.1. Dependent variables 

In line with other research using CIS data, we measure innovation 
performance as share of sales based on innovation defined as sales of 
new products in 2004 in the total sales in 2004. We use two variants of 
the innovation performance measure, based on innovation novelty: 
INNOWORLD is the share of sales of new-to-the-world products, and 
INNOFIRM captures the share of sales of new-to-the-firm products. 

3.2. Potential predictors 

Unless otherwise stated, all the independent variables refer to the 
period 2002–2004. 

Table 2 
Description of the variables used.  

Variables Description Used in 

INNOWORLD, 
INNOFIRM 

Sales share of new-to-the- 
world or new-to-the-firm 
products, respectively. log as 
logarithmic transformation, 
and r as raw percentage. 

Laursen and Salter (2006)log;  
Cassiman and Veugelers 
(2006)r; Schmiedeberg 
(2008)r; Love et al. (2014)r;  
Leiponen and Helfat (2010)r;  
Roper et al. (2008)r;  
Leiponen (2005a)r; Grimpe 
and Kaiser (2010)r; Garriga 
et al. (2013)r; Ballot et al. 
(2015)log; Roper et al. 
(2017)r 

BREADTH Number of sources of 
information used by the firm. 
The knowledge sources 
include internal sources, 
suppliers, customers, 
competitors, consulting firms, 
universities, governmental 
research organizations, 
conferences, publications, and 
business associations (0–10). 

Laursen and Salter (2006);  
Love et al. (2014); Leiponen 
and Helfat (2010); Garriga 
et al. (2013) 

DEPTH Number of sources of 
information used to a high 
degree by the firm. The 
knowledge sources include 
internal sources, suppliers, 
customers, competitors, 
consulting firms, universities, 
governmental research 
organizations, conferences, 
publications, and business 
associations (0–10). 

Laursen and Salter (2006);  
Garriga et al. (2013); Ballot 
et al. (2015) 

USER Firm uses customer 
information to a high degree 
(0/1) 

Laursen and Salter (2006);  
Garriga et al. (2013) 

COMPINFO Importance of competitors as 
an information source on a 
scale of one (low) to three 
(high) (0–3). 

Cassiman and Veugelers 
(2006); Roper et al. (2008) 

BASICINFO Importance of universities and 
research institutes relative to 
suppliers and customers as 
information sources 
(0.00–1.00). 

Cassiman and Veugelers 
(2006) 

PUBINFO Importance of publications 
and conferences relative to 
suppliers and customers as 
information sources 
(0.00–1.00). 

Cassiman and Veugelers 
(2006) 

COLLAB Firm is involved in innovation 
collaboration (0/1). 

Laursen and Salter (2006);  
Schmiedeberg (2008);  
Garriga et al. (2013); Ballot 
et al. (2015) 

COLDEPTH Number of partner types used 
for innovation collaboration. 
Partner types include 
suppliers, customers, 
competitors, consulting firms, 
universities, and 
governmental research 
organizations (0–6). 

Laursen and Salter (2006);  
Grimpe and Kaiser (2010);  
Schmiedeberg (2008) 

RD R&D expenditure as a share of 
sales (0.00–1.00). log as 
logarithmic transformation, 
and r as raw percentage. 

Laursen and Salter (2006)log;  
Cassiman and Veugelers 
(2006)r; Schmiedeberg 
(2008)r; Love et al. (2014)r;  
Leiponen and Helfat (2010)r;  
Roper et al. (2008)r;  
Leiponen (2005a)r; Grimpe 
and Kaiser (2010)r; Garriga 
et al. (2013)r; Ballot et al. 
(2015)log 

INTMKT Main markets of the firm are 
international (0/1). 

Laursen and Salter (2006);  
Ballot et al. (2015) 

NATMKT Laursen and Salter (2006)  

Table 2 (continued ) 

Variables Description Used in 

Main markets of the firm are 
national (0/1). 

IPF Number of formal methods of 
protection for innovation, 
including the registration of 
designs, trademarks, or 
patents and the use of 
copyrights (0–4). 

Cassiman and Veugelers 
(2006); Ballot et al. (2015)    

IPNF Number of informal methods 
of protection for innovation, 
including secrecy, complexity 
of design, or lead time 
advantage (0–3). 

Cassiman and Veugelers 
(2006); Ballot et al. (2015)    

OBSFIN Lack of finance inside or 
outside the firm is ‘very 
important’ or ‘important’ (0/ 
1). 

Roper et al. (2008); Ballot 
et al. (2015) 

OBSKNOW Lack of qualified personnel, 
lack of information on 
technology, or lack of 
information on markets is 
‘very important’ or ‘important’ 
(0/1). 

Cassiman and Veugelers 
(2006); Ballot et al. (2015) 

OBSMKT Market domination by 
established enterprises or 
uncertain demand for 
innovative goods and services 
is ‘very important’ or 
‘important’ (0/1). 

Cassiman and Veugelers 
(2006); Ballot et al. (2015) 

MAKEONLY Internal R&D activities (0/1). Cassiman and Veugelers 
(2006) 

BUYONLY Acquisition of technology 
through external R&D 
contracts, purchase of 
machinery for innovation, 
purchase of knowledge 
through patents, licensing, etc. 
(0/1). 

Cassiman and Veugelers 
(2006) 

MAKEBUY Internal R&D activities and 
acquisition of technology 
through external R&D 
contracts, purchase of 
machinery for innovation, 
purchase of knowledge 
through patents, licensing, etc. 
(0/1). 

Cassiman and Veugelers 
(2006) 

LOGEMP Logarithm of the number of 
employees. 

Laursen and Salter (2006);  
Love et al. (2014); Leiponen 
and Helfat (2010); Roper 
et al. (2008); Leiponen 
(2005); Grimpe and Kaiser 
(2010); Garriga et al. (2013); 
Ballot et al. (2015) 

STARTUP Firm was a startup in the three 
years of the observation period 
(0/1). 

Laursen and Salter (2006);  
Garriga et al. (2013)  
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Search: Firms’ innovation search activities are captured by 
BREADTH and DEPTH. We integrate particular information flows from 
users or from competitors through the variables USER and COMPINFO. 
We capture the value of the information from the science system by 
BASICINFO and from publicly available sources by PUBINFO. 

Collaboration: Patterns of innovation collaboration are captured by 
a collaboration dummy variable COLLAB and by a variable indicating 
collaboration depth COLDEPTH. 

R&D: R&D activities are reflected by total R&D expenditure as a 
share of sales in year 2004. 

Markets: The firm’s main market is indicated by INTMKT for inter-
national and NATMKT for national market. The reference category is 
regional market. 

Appropriability strategy: IPF and IPNF denote formal and informal 
appropriability strategy, respectively. 

Obstacles to innovation: We include financial obstacles to innova-
tion (OBSFIN), knowledge obstacles to innovation (OBSKNOW), and 
market obstacles to innovation (OBSMKT). 

Make or buy: Three dummy variables capture the make or buy 
decisions—MAKEONLY, BUYONLY, and MAKEBUY—with the neither 
make nor buy decision as the reference category. 

Firm demographics: Firm size is measured as the log of the number of 
employees (LOGEMP) in year 2004. STARTUP indicates firm foundation 
between 2002 and 2004. We also include eight industry dummies to 
capture the firms’ main area of activity. The firms from France, Ger-
many, and the UK are differentiated by two country dummies. 

Table B1 in the Supplementary Material presents the correlations 
among the potential predictors, and Table B2 in the Supplementary 
Material provides a more detailed descriptive account of the data by 
country. 

4. Methodology 

4.1. Model uncertainty and model averaging 

If in an empirical endeavor the true model specification in terms of 
the selection of independent variables is essentially unknown, model 
uncertainty (Chatfield, 1995) occurs in the form of variable selection 
uncertainty (George & Clyde, 2004; Hoeting et al., 1999). This applies to 
most of the analyses in innovation research. That is, at the outset, the 
model is unknown and the predictors that should be included in the 
regression model are unclear. In general, different sets of predictors and 
therefore different models can lead to dramatically different conclu-
sions. Furthermore, neglecting model uncertainty and not addressing 
the dependence of the results on the chosen model leads to 
over-confident inferences based on the statistical estimates (Hoeting 
et al., 1999; Raftery, 1995b). 

Model averaging approaches address this model uncertainty and 
recognize that in addition to the model parameters, the structure of the 
model needs to be estimated. Model averaging approaches achieve this 
without incurring the common problem of data mining: searching for 
and selecting a single best model but not presenting the process leading 
to its selection (Brock et al., 2007; Chatfield, 1995). 

Model averaging includes both Bayesian and non-Bayesian ap-
proaches. Non-Bayesian approaches are documented in Hansen (2007) 
and Hjort and Claeskens (2003). Recently, BMA has attracted increased 
attention in diverse areas of economic research such as macroeconomic 
growth models (e.g., Bruns & Ioannidis, 2020; Crespo Cuaresma et al., 
2011; Durlauf, 2001; Fernandez et al., 2001; Magnus et al., 2010), 
forecasting (Liu & Maheu, 2009; Wright, 2009), and agricultural eco-
nomics (Balcombe & Rapsomanikis, 2010; Tiffin & Balcombe, 2011). 
Steel (2020) provides an extensive overview of the use of model aver-
aging in economics. In management research there are only two studies 
studies so far that use an averaging approach (Arin et al., 2015; 
Melián-González et al., 2011). To the best of our knowledge, model 
uncertainty has not received attention in research on innovation. 

4.2. Bayesian model averaging in a nutshell 

Model averaging proposes a solution to model uncertainty by esti-
mating several plausible models, averaging over the models, and 
drawing inferences based on weighted averages. 

Relative to single variable selection approaches, BMA has certain 
advantages (Hinne et al., 2020): it reduces over-confidence in the esti-
mation (e.g., Hoeting et al., 1999), improves prediction (e.g., Jacobson 
& Karlsson, 2004), avoids the "winner-takes-it-all" nature of single var-
iable selection approaches (e.g., Wang et al., 2004), and is relatively 
robust with respect to model misspecification. We focus on the first of 
these advantages in our brief exposition of the model averaging process. 
Assume that, for inference, we are interested in an unknown statistic Δ. 
We can think of Δ being the regression coefficients . If we estimate this 
statistic with a single regression model, then the estimate is conditional 
on this model. As already indicated, model uncertainty arises when the 
researcher is not certain that the model is the correct one; then, subse-
quently, not accounting for this uncertainty leads to over-confident 
conclusions from the analysis. Although it is common practice in 
empirical analyses to report a number of different models to illustrate 
robustness, this does not eliminate model uncertainty because the 
inference typically is still based on a single model. 

To address this uncertainty, we are interested in an estimate of Δ that 
is unconditional on any specific model. BMA offers a viable approach to 
accomplish this since it does not search for a single good or best fit model 
and does not base all future conclusions on this single model. Rather, 
BMA uses all possible models to estimate Δ. In short, for each of the 
possible models, BMA computes a posterior model probability (PMP) by 
updating our prior belief in the model with a measure of how well the 
model captures the given data. This PMP is used as a weight for aver-
aging over all models to obtain an estimate of Δ which then is uncon-
ditional on a single individual model. 

4.3. Bayesian model averaging in more detail 

Bayes’s rule tells us how our prior belief about Δ changes after we 
have seen the available data D. This gives us the posterior belief p(Δ|D). 
Assume now that there are several models Mj that can be used to 
describe the relationship between Δ and data D. Again, we can use 
Bayes’s rule and compute the posterior model probability (PMP), 
p(Mj

⃒
⃒D), for each of the several models. p(Mj

⃒
⃒D) then serves as a measure 

of plausibility for model Mj after we have seen the data. Were we to 
perform variable selection, we would be searching for the single most 
plausible model and would identify the model with the highest PMP and 
base our inference on this single model. In the case of uncertainty about 
the underlying true model, Bayesian model averaging (BMA) allows us 
to base our inference not on a single model but on an ensemble of 
estimated models. It does this by averaging over all the estimated dis-
tributions of Δ in all the estimated models using the PMP as a weight. 

The general idea in model averaging is to estimate a large number of 
models for the data D with N observations which consist of the N × 1 
vector of the dependent variable y and the N × K matrix X of predictors. 
The models Mj ∈ {M1…M2K} all differ in terms of the predictors Xj 

included. We assume a linear regression model, where α is the constant, 
βj are the coefficients, and ε ∼ N(0, σ2I) are the error terms. 

y = α + Xjβ’
j + ε 

The distribution of the parameter of interest Δ is computed as the 
weighted sum of the parameter distributions derived from the estima-
tions of the models Mj: 

p(Δ|D) =
∑2K

j=1
p
(
Δ
⃒
⃒D,Mj

)
p
(
Mj

⃒
⃒D

)
.

p(Δ
⃒
⃒D,Mj) is the posterior distribution of Δ based on the model Mj. 
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Note that Δ can be any statistic. As noted above in our case it is the 
regression coefficients β that we are interested in. 

p(Mj
⃒
⃒D) is the posterior model probability (PMP). It is used as the 

weight in the averaging process and indicates the probability that the 
model Mj is the correct model. This of course, is conditional on one of the 
models M1…M2K being the correct model. p(Mj

⃒
⃒D) is given by: 

p
(
Mj

⃒
⃒D

)
=

p
(
D
⃒
⃒Mj

)
p
(
Mj

)

∑2K

i=1p(D|Mi)p(Mi)

Here, p(D
⃒
⃒Mj) is the marginal likelihood of model Mj: 

p(D
⃒
⃒Mj) =

∫
p(D

⃒
⃒α, βj, σ,Mj)⋅p(α, βj, σ

⃒
⃒Mj)dα dβj dσ . 

p(D
⃒
⃒α, βj, σ,Mj) is the likelihood of model Mj, and p(α, βj, σ

⃒
⃒Mj) is the 

prior density of the coefficients of model Mj. 

4.4. Specification of the BMA 

As suggested by Fernandez et al. (2001) and used very recently by 
Bruns and Ioannidis (2020), we assume for α and σ2 an improper and 
non-informative prior p(α)∝1 and p(σ)∝σ− 1, respectively. For βj, we 
assume a g-prior (Zellner, 1986): 

βj|σ,Mj ∼ N(0,σ2g(X’
jXj)

− 1
).

As Bruns and Ioannidis (2020) point out, the analysis can be sensitive 
to the selection of the hyperprior g. Selecting a small g would indicate a 
strong belief in a distribution tightly wrapped around zero. In contrast, a 
large g leads to results that focus on a few models, giving rise to the 
so-called supermodel effect. This can make the findings rather fragile 
(Feldkircher & Zeugner, 2009, 2012), since any selection of the fixed g 
entails the risk that the value is either too small or too large given the 
noise in the data. To prevent this, Feldkircher and Zeugner (2009) 
suggest avoiding fixed g-priors completely and substituting the fixed 

g-prior by a prior distribution on the g-parameter to "let … the data 
choose" (Feldkircher & Zeugner, 2009, p. 4). Liang et al. (2008) suggest 
a hyper-g-prior approach which essentially puts a Beta prior on the 
shrinkage factor g/(1 + g): 

g
1+g ∼ Beta

(
1, a

2 − 1
)

We use a = 2 + 2/N as N > K2 for all our samples and subsamples. 
This ensures that the expected shrinkage is max{N,K2} which is the 
benchmark proposed by Fernandez et al. (2001). The model priors p(Mj)

are: 
p(Mj) = πkj (1 − π)K− kj .

There, π is the probability of inclusion of each regressor, and kj is the 
number of regressors in model Mj. Analogously, 1 − π is the probability 
for each regressor of not being included in the model, and K − kj is the 
number of regressors that are not in model Mj. In general, it is preferable 
to prevent the prior from affecting the posterior distribution by 
assuming an inclusion probability of π = 0.5 (Brock et al., 2007) which 
is intended to be non-informative. However, Bruns and Ioannidis (2020) 
remind us that Ley and Steel (2009, p. 672) “strongly discourage the use 
of the fixed [π] prior as a ‘non-informative’ prior, as it has clearly been 
shown to be quite informative” because a fixed inclusion probability 
leads to a prior model size distribution that is quite concentrated, and 
hence rather informative. As suggested by Ley and Steel (2009) and 
implemented recently by Bruns and Ioannidis (2020), we impose a 
hyperprior on the inclusion probability, where π is drawn from a Beta 
distribution. In contrast to macroeconomic growth regressions, where 
Sala-i-Martin et al. (2004) and Sala-i-Martin (1997) suggest an expected 
size of the growth regression models, we have no information about the 
expected model size. Hence, we assume an expected model size of 0.5 K. 
In the Appendix, we report analyses with expected model sizes of 0.4 K 
and 0.6 K (see Table A2 and A3). 

Table 3 
Results of BMA analyses of the pooled data – innovations new-to-the-firm.   

Including squared terms and interactions+ No squared terms and interactions  

(a) (b) (c) (d) (a) (b) (c) (d) 
Var PIP Post Mean Post SD Cond. Pos.Sign PIP Post Mean Post SD Cond. Pos.Sign 

BREADTH 0.776 0.416 0.387 0.941 0.423 -0.004 0.066 0.524 
BREADTH2 0.677 -0.035 0.031 0.000     
DEPTH 0.977 0.427 0.252 1.000 0.963 0.423 0.177 1.000 
DEPTH2 0.414 0.002 0.034 0.811     
COLDEPTH 0.998 0.488 0.353 1.000 0.997 0.524 0.158 1.000 
COLDEPTH2 0.439 0.011 0.057 0.925     
INTMKT 0.644 0.463 0.538 0.998 0.643 0.470 0.543 0.999 
RD 0.722 -0.096 0.156 0.000 0.475 -0.064 0.135 0.000 
COLLAB 0.483 -0.231 0.524 0.003 0.477 -0.208 0.444 0.006 
USER 0.465 -0.140 0.345 0.016 0.451 -0.122 0.333 0.030 
LOGEMP 1.000 -0.604 0.134 0.000 1.000 -0.634 0.133 0.000 
STARTUP 0.997 3.989 1.682 1.000 0.991 4.701 1.505 1.000 
STARTUP*RD 0.558 8.519 10.002 1.000     
MAKEONLY 0.508 0.235 0.679 0.905 0.508 0.308 0.700 0.937 
BUYONLY 0.481 -0.155 0.649 0.277 0.457 -0.061 0.634 0.511 
MAKEBUY 0.929 1.333 0.708 1.000 0.952 1.459 0.700 1.000 
OBSFIN 0.433 -0.065 0.252 0.000 0.423 -0.061 0.250 0.000 
OBSKNOW 0.481 -0.186 0.388 0.000 0.473 -0.182 0.386 0.000 
OBSMKT 0.468 0.138 0.322 1.000 0.457 0.136 0.320 1.000 
BASICINFO 0.564 -0.257 0.388 0.000 0.638 -0.366 0.417 0.000 
PUBINFO 0.447 -0.075 0.249 0.117 0.415 -0.010 0.215 0.593 
COMPINFO 0.971 0.640 0.257 1.000 0.987 0.689 0.239 1.000 
NATMKT 0.629 0.487 0.593 0.996 0.627 0.491 0.597 0.997 
IPF 0.792 0.251 0.195 1.000 0.797 0.258 0.196 1.000 
IPNF 0.482 0.066 0.141 1.000 0.471 0.062 0.139 1.000 
N 7,384    7,384    
N. of burn-in steps 1×106    1×106    

N. of iteration steps 5×106    5×106    

Corr. PMP 0.997    0.996    
Threshold 0.500    0.500    

Note: Expected model size = 0.5 K. Results for the industry and country dummies are not reported. Variables with PIP>threshold are in bold. + Strong heredity 
enforced (Crespo Cuaresma 2011). Based on the 1,000 best models. 
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Our set of regressors comprises the 21 variables summarized in 
Table 2, eight sector dummies, and two country dummies. Additionally, 
we include the second-order terms of BREADTH, DEPTH, and COL-
DEPTH and an interaction term (STARTPU*RD) of STARTUP and RD to 
capture all the variables in Laursen and Salter’s (2006) main regressions. 
To ease “interpretability” (Moser & Hofmarcher, 2014, p. 346) of the 
second order or interaction term estimates the literature (Crespo Cuar-
esma, 2011; Hasan et al., 2018) suggests implementing the strong he-
redity principle (Chipman, 1996). It implies that every second order or 
interaction effect also has a main effect in the model. As in Hasan et al. 
(2018) we implement two different types of BMA analyses: one with 
second order and interaction variables and employing the strong he-
redity principle with 35 predictors, and one with only first order terms 
and 31 predictors. 

The model space consists of all 2K models that can be constructed 
from the respective K=35 and K=31 potential predictors. Searching this 
extensive model space requires use of a Markov Chain Monte Carlo 
(MCMC) algorithm. The MCMC algorithm runs through the model space 
by generating draws from a Markov chain on the model space and ap-
proximates the posterior model distribution (Fernandez et al., 2001). We 
perform 1,000,000 burn-in steps and 5,000,000 iterations to compute 
the results. Burn-in steps are required for the MCMC algorithm to zoom 
in on the important parts of the model space which are those with high 
PMPs. In the Supplementary Material, we include the details of our 
implementation using the R-package BMS (Zeugner & Feldkircher, 
2015). 

5. Results 

Tables 3 and 4 report the results of the BMA analysis of the pooled 
data for the sales shares of the new-to-the-firm and new-to-the-world 
innovations, respectively, as dependent variables. To document 

Markov chain’s convergence, we report the correlation coefficient Corr. 
PMP (Fernandez et al., 2001). Correlation coefficient values of 0.999 
and 0.997 indicate that the algorithm converges to important areas of 
the model distribution. The left sides of Tables 3 and 4 report the 
analysis with the strong heredity principle imposed for the squared 
terms and for the interaction terms. The right sides of the tables report 
the analysis without the squared terms and without the interaction 
terms. 

The posterior inclusion probability (PIP) reported in column (a) in 
Table 3 and Table 4 is the sum of the probabilities of the models that 
include this predictor. The PIP is the sum of the posterior model prob-
abilities which are used as the weights in the averaging process. The PIP 
directly addresses model uncertainty. It represents the probability of 
each potential predictor to be part of the true model (see e.g., Crespo 
Cuaresma, 2010). The Post Mean in column (b) presents the direction 
and magnitude of the parameter estimates; it reports the mean param-
eter estimate for all the models that include the respective variable. In 
column (c), Post SD is the posterior standard deviation of the parameter 
estimates conditional on the variable being part of the model. Finally, 
Cond. Pos. Sign in column (d) is the fraction of the models with a positive 
parameter estimate when the variable is included in the model. 

When interpreting the findings from the BMA analysis, it is important 
to consider the PIP relative to the prior inclusion probability which acts 
as the threshold for interpreting the variables as “significant” (Sala-i--
Martin et al., 2004). We assume a prior inclusion probability that yields 
an expected model size of 0.5 K. If the results show that the PIP of the 
variables exceeds this threshold this supports our belief that the vari-
ables are part of the true model; in other words, that the variables 
“belong in the regression” (Sala-i-Martin, 2004, p. 823). Below, we label 
these variables “robust correlates” of innovation performance. In the 
analyses in the Appendix, we use the expected model size 0.4 K and 0.6 K 
to illustrate how much our findings depend on the prior inclusion 

Table 4 
Results of BMA analyses of the pooled data – innovations new-to-the-world.   

Including squared terms and interactions+ No squared terms and interactions  

(a) (b) (c) (d) (a) (b) (c) (d) 
Var PIP Post Mean Post SD Cond. Pos.Sign PIP Post Mean Post SD Cond. Pos.Sign 

BREADTH 0.319 0.006 0.109 0.415 0.331 -0.008 0.052 0.271 
BREADTH2 0.099 -0.001 0.008 0.002     
DEPTH 0.945 0.493 0.287 1.000 0.936 0.365 0.167 1.000 
DEPTH2 0.374 -0.024 0.043 0.000     
COLDEPTH 0.942 0.408 0.279 1.000 0.931 0.406 0.180 1.000 
COLDEPTH2 0.223 0.002 0.038 0.402     
INTMKT 0.995 1.451 0.418 1.000 0.996 1.474 0.426 1.000 
RD 1.000 1.468 0.163 1.000 1.000 1.467 0.163 1.000 
COLLAB 0.357 0.262 0.518 1.000 0.456 0.305 0.514 1.000 
USER 0.262 0.065 0.254 0.998 0.359 0.104 0.295 1.000 
LOGEMP 1.000 -0.776 0.120 0.000 1.000 -0.776 0.120 0.000 
STARTUP 0.555 1.168 1.472 1.000 0.592 1.297 1.491 1.000 
STARTUP*RD 0.148 0.606 3.501 1.000     
MAKEONLY 0.947 2.260 0.850 1.000 0.964 2.318 0.815 1.000 
BUYONLY 0.269 -0.136 0.632 0.176 0.334 -0.086 0.615 0.469 
MAKEBUY 0.953 2.198 0.751 1.000 0.970 2.262 0.716 1.000 
OBSFIN 0.220 0.000 0.160 0.431 0.297 0.001 0.186 0.585 
OBSKNOW 0.218 0.000 0.213 0.474 0.301 0.001 0.250 0.562 
OBSMKT 0.998 -1.504 0.393 0.000 0.998 -1.501 0.392 0.000 
BASICINFO 0.239 0.034 0.199 0.758 0.322 0.046 0.227 0.807 
PUBINFO 0.476 -0.219 0.306 0.000 0.570 -0.262 0.317 0.000 
COMPINFO 0.341 -0.078 0.161 0.008 0.435 -0.099 0.175 0.008 
NATMKT 0.237 -0.045 0.251 0.013 0.317 -0.057 0.289 0.009 
IPF 1.000 0.775 0.155 1.000 1.000 0.776 0.155 1.000 
IPNF 1.000 1.382 0.164 1.000 1.000 1.382 0.164 1.000 
N 7,841    7,841    
N. of burn-in steps 1×106    1×106    

N. of iteration steps 5×106    5×106    

Corr. PMP 0.997    0.997    
Threshold 0.500    0.500    

Note: Expected model size = 0.5 K. Results for the industry and country dummies are not reported. Variables with PIP>threshold are in bold. + Strong heredity 
implemented (Cuaresma 2011). Based on the 1,000 best models. 

B. Ebersberger et al.                                                                                                                                                                                                                            



Research Policy 50 (2021) 104271

8

probability choice.3 Table 5 presents a summary. It reports the shape 
and direction of the correlation of the inbound open innovation vari-
ables with innovation performance. The prior literature finds that with 
some exceptions most of these variables affect innovation performance.4 

We focus on those inbound open innovation variables where all of 
the six models or the three models for the respective squared terms, 
summarized in Table 5, show agreement on the robustness and direction 
of the correlation. 

Applying BMA to the pooled data shows that the search effort in-
tensity matters for new-to-the-firm innovations, measured as both 
DEPTH of search and collaboration depth (COLDEPTH).5 Only make 
(MAKEONLY) and simultaneous make and buy (MAKEBUY) are above 
the threshold with positive means. Note that the estimates of the pos-
terior means of the three different make and buy decisions fulfill the 
condition for complementarity (Cassiman & Veugelers, 2006, p. 70) 
between make and buy. 

Information from competitors (COMPINFO) with a positive posterior 

mean is a robust correlate given a PIP well above the threshold, whereas 
information from basic R&D such as universities and research organi-
zations (BASICINFO) is a robust but negative correlate with innovation 
performance measured by the share of sales of new-to-the-firm 
innovations. 

Formal IP protection measures (IPF) has a PIP larger than the 
threshold. The posterior mean of IPF points to a positive association with 
the share of sales of new-to-the-firm innovations. 

It is important to note that search breadth (BREADTH) has a robust 
correlation with the share of sales of new-to-the-firm innovations and 
takes an inverted U-shape when second order and interaction terms are 
included in the analysis. Across the three models with the expected 
model sizes of 0.5 K, 0.4 K, and 0.6 K, the peak of the inverted-U is 
consistently at six out of ten information sources which is close to the 
median for the search breadth distribution. The BMA analyses which do 
not include second order and interaction terms, are not able to pick up 
this correlation. Rather, these analyses suggest no correlation which is 
inconsistent with the observation that more than 50% of the observa-
tions have a search breadth that suggests over-searching (see Laursen & 
Salter 2006). 

The determinants of the share of sales of new-to-the-world in-
novations (bottom panel of the summary Table 5) overlap with the de-
terminants of the share of sales of new-to-the-firm innovations. Both 
DEPTH and COLDEPTH are robust correlates with PIPs above the 
threshold. The overlap also contains MAKEONLY and MAKEBUY. Here 
again we find that the size of the posterior means of the three make and 
buy variables fulfil Cassiman and Veugelers’s (2006, p. 70) condition for 
complementarity. Analysis of the pooled data shows that COMPINFO is 
not correlated with the share of sales of new-to-the-world innovations. 
Formal IP protection measures are correlated with a positive posterior 

Table 5 
Determinants’ effects (open innovation variables only).   

All All All  
(expected model size = 0.5 K) (expected model size = 0.4 K) (expected model size = 0.6 K) 

Squared & interaction terms Yes No Yes No Yes No 
Threshold 0.5 0.5 0.4 0.4 0.6 0.6 

Sales share of new-to-the-firm innovations 

BREADTH Inverse U (6) - Inverse U (6) - Inverse U (6) - 
DEPTH Positive Positive Positive Positive Positive Positive 
COLDEPTH Positive Positive Positive Positive Positive Positive 
COLLAB - - Negative Negative - - 
USER - - Negative - - - 
MAKEONLY Positive Positive Positive Positive Positiveþ Positiveþ

BUYONLY - - Negative Negative - - 
MAKEBUY Positive Positive Positive Positive Positive Positive 
BASICINFO Negative Negative Negative Negative Negative Negative 
PUBINFO - - - - - - 
COMPINFO Positive Positive Positive Positive Positive Positive 
IPF Positive Positive Positive Positive Positive Positive 
IPNF Positive Positive Positive Positive - - 

Sales share of new-to-the-world innovations 

BREADTH - - - - - - 
DEPTH Positive Positive Positive Positive Positive Positive 
COLDEPTH Positive Positive Positive Positive Positive Positive 
COLLAB - - - Positive - - 
USER - - - - - - 
MAKEONLY Positive Positive Positive Positive Positiveþ Positiveþ

BUYONLY - - - - - - 
MAKEBUY Positive Positive Positive Positive Positive Positive 
BASICINFO - - - - - - 
PUBINFO - Negative Negative Negative - - 
COMPINFO - - - Negative - - 
IPF Positive Positive Positive Positive Positive Positive 
IPNF Positive Positive Positive Positive - Positive 

Note: This table condenses the information contained Table 3, Table 4 and Tables A1-A4 in the Appendix. It reports the direction and shape of robust (PIP > threshold) 
correlations that open innovation variables have with the sales share of innovation. – indicates regressors that we have not identified as robust correlates (PIP ≤
threshold) +indicates 0.550 < PIP ≤ 0.600. Consistent findings across these six (or three) models are in bold. 

3 In the Supplementary Material, in Tables B6-B8 we also report the BMA 
analyses for France, Germany, and the UK. We do not interpret these findings in 
detail but refer the reader to the summary table (Table B9) in the Supple-
mentary Material.  

4 For instance, in Cassiman and Veugelers (2006), among the three critical 
make and buy variables, only the variable reflecting MAKEBUY is consistently 
strongly significant in the regressions. However, these results—including the 
weak or insignificant results for MAKEONLY and BUYONLY—play an important 
part in establishing that there is complementarity between make and buy, 
which is in line with the aim of the analysis.  

5 For comparison, traditional ordinary least square regressions of the pooled 
dataset are reported in Table B10 and Table B11 in the Supplementary Material. 
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mean and a PIP consistently at the value of 1. Search breadth is not 
identified as a robust correlate with innovation performance when 
measured as the share of sales of the more radical new-to-the-world 
innovations. 

If we compare the results in Tables 3 and 4 for new-to-the-firm in-
novations and new-to-the-world-innovations, we can identify more 
robust correlations in the case of new-to-the-firm innovations (16 vari-
ables), compared to new-to-the-world-innovations (11 variables) based 
on the full models including the squared and the interaction terms. 

6. Conclusions 

6.1. Summary and contributions 

In this study, we set out to assess the robustness of the literature on 
inbound open innovation and its impact on firm-level innovation per-
formance by accounting for model uncertainty employing BMA. Similar 
to the original literature, our results do not identify causal relationships. 
Rather, we establish a set of “robust correlations” in the sense that they 
hold for a very large number of variable selection choices. We would 
argue that robust correlations could be a fruitful starting point for future 
research addressing causal interpretations and explicit modeling of the 
underlying mechanisms. 

Overall, we found a degree of conformity between the BMA analysis 
and the original empirical literature, suggesting that the prior studies 
generate some robust findings. More specifically, we found robust cor-
relations for critical inbound open innovation variables (external search, 
collaboration, and innovation make or buy decisions) considered in the 
literature and the related variables for appropriability strategies. How-
ever, we found some important differences in terms of some of the 
variables capturing some aspects of inbound open innovation. For 
example, while we found consistently robust correlations suggesting 
inverted U-shaped relationships such as those hypothesized by Laursen 
and Salter (2006) with respect to new-to-the-firm innovations, we did 
not find consistently robust correlations suggesting such relationships 
with respect to new-to-the-world innovations. More generally, the cor-
relations suggest that the results for new-to-firm innovations are 
consistently more robust than the results for new-to-the-world in-
novations. In part, this might be because radical innovation is more 
difficult and therefore more uncertain than incremental innovation in 
terms of the factors shaping their outcomes. However, it would be un-
wise to see these results as definitive statements of a ‘true’ model for 
assessing external sources and collaboration and their effect on inno-
vation performance. Our analysis has some important limitations with 
respect to the data used, the contexts covered, and variables available 
for inclusion all of which we discuss in greater detail below. 

This paper makes two principal contributions. First, our analytical 
exercise shows that implementation of a model averaging approach to 
analyze innovation survey data allows for simultaneous estimation of 
the parameters and structure of the innovation performance model 
which contributes to reducing model uncertainty and our aim to 
examine the robustness of the literature. As stated in the introduction to 
this study, we believe that the publication of robustness studies would 
discourage undesirable research behaviors particularly "p-hacking". 
They would also encourage researchers to consider their modeling 
choices more carefully. Second, we contribute by presenting a cross- 
country robustness study of the association between inbound open 
innovation and innovation performance to examine whether model 
uncertainty, and therefore the robustness of the variable choices, is an 
issue in this literature. In other words, we conducted a “health check” on 
the literature and can cautiously conclude that it is in a quite healthy 
state. However, we found that the robustness of the variables for new-to- 
the-world innovation was markedly lower than in the case of the vari-
ables for new-to-the-firm innovation which highlights the need to 
consider modeling choices with respect to these two different types of 
innovation outcomes with great care. 

Based on our study, we conjecture that averaging approaches that 
address model uncertainty could be a valuable tool in a range of inno-
vation research contexts. We highlighted the particular value of this 
technique for a robustness study in a context where a relatively large 
number of studies (with many—potentially competing—explanatory 
variables) use the same or similar datasets while relying on the same 
dependent variable. Although many areas within innovation studies 
meet this condition, we would point to three potentially fruitful appli-
cations. First, many studies of firm-level innovation rely on patent 
counts or citation weighted patents as the dependent variable and use a 
wide range of explanatory variables from patent data and other sources 
as the independent variables. To improve the consistency and trans-
parency of patent measures (Bruns & Kalthaus, 2020), BMA might allow 
greater transparency about the effect of model uncertainty in patent 
studies, and help to reduce the potential for Type 1 errors in the liter-
ature. Second, science, technology, and innovation studies have for long 
focused on scientific performance and used various measures of aca-
demic productivity such as citations, and a range of different explana-
tory variables to explain productivity differences among academics. It 
would be useful to know which among this wide gamut of potential 
variables are robust to model uncertainty. Finally, diffusion studies 
explore the uptake of different technologies over time, highlighting a 
wide array of factors that might explain technology adoption. Tackling 
model uncertainty in these diffusion studies could allow a richer 
appreciation of the factors driving technology adoption and a better 
understanding of the innovation process. 

6.2. Limitations 

Although BMA approaches can help to assess the health of a domain 
with respect to robustness to variable selection and model uncertainty in 
that particular context, these approaches evidently do not address 
problems related to unobserved heterogeneity or other endogeneity 
problems. Other methods and research tools such as experiments, 
regression discontinuity, or instrumental variables would be required to 
generate stronger evidence on the causal link between search or 
collaboration and innovation performance, and to understand the spe-
cific mechanisms that link these practices to the expected outcomes. 
Moreover, although BMA approaches can help to assess the robustness of 
operationalizations and the implications of the theoretical arguments in 
prior work, they should not be seen as alternatives to theory develop-
ment. Indeed, our robustness analysis does not confirm or reject the 
theoretical predictions in the research considered. However, BMA 
analysis could act as an antidote to strong assumptions about the validity 
of theory based on current operationalizations in the empirical litera-
ture, and thus, could encourage scholars to build their theories on more 
reliable empirical foundations. 

Although our study suggests new ways to assess the robustness of the 
literature in an important research area in innovation studies, it is 
subject to some important limitations. First, we assume that linear 
regression as the chosen econometric model is the correct specification, 
since unlike other model specifications linear regression models are 
well-established in the BMA approach. This means we cannot use the 
methodology to cross-check the appropriateness of the functional form 
of the model. Second, our approach assumes that the true model can be 
built from a subset of the potential predictors included in the analysis. In 
reality, predictors not yet identified in the literature could play a central 
role in identifying the true model. So, our findings should be interpreted 
contingent on this. Third, our approach relies on information contained 
in the CIS dataset and might suffer from omissions such as exclusion of 
important additional variables, and/or commission such as design and 
measurement errors emerging from the questionnaire. The approach 
proposed in this paper is appropriate for environments with relatively 
stable research designs and limited use of supplementary data. Fourth, 
and as pointed out above, model averaging of cross-sectional data does 
not help to resolve the endogeneity issues related to innovation data. A 
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Table A2 
Results of BMA analyses of the pooled data – innovations new-to-the-world (Robustness, expected model size = 0.4 K).   

Including squared terms and interactions+ No squared terms and interactions  

(a) (b) (c) (d) (a) (b) (c) (d) 
Var PIP Post Mean Post SD Cond. Pos.Sign PIP Post Mean Post SD Cond. Pos.Sign 

BREADTH 0.289 0.004 0.100 0.387 0.302 -0.008 0.049 0.255 
BREADTH2 0.082 -0.001 0.007 0.002     
DEPTH 0.940 0.484 0.284 1.000 0.933 0.364 0.167 1.000 
DEPTH2 0.351 -0.023 0.042 0.000     
COLDEPTH 0.939 0.412 0.269 0.999 0.929 0.409 0.180 1.000 
COLDEPTH2 0.202 0.002 0.036 0.374     
INTMKT 0.994 1.448 0.418 1.000 0.996 1.470 0.424 1.000 
RD 1.000 1.470 0.163 1.000 1.000 1.468 0.163 1.000 
COLLAB 0.342 0.254 0.511 1.000 0.427 0.291 0.510 1.000 
USER 0.245 0.064 0.250 0.998 0.330 0.098 0.286 1.000 
LOGEMP 1.000 -0.776 0.120 0.000 1.000 -0.777 0.120 0.000 
STARTUP 0.527 1.112 1.458 1.000 0.561 1.230 1.480 1.000 
STARTUP*RD 0.131 0.538 3.301 1.000     
MAKEONLY 0.942 2.252 0.860 1.000 0.963 2.317 0.811 1.000 
BUYONLY 0.258 -0.145 0.639 0.178 0.305 -0.089 0.602 0.431 
MAKEBUY 0.949 2.192 0.761 1.000 0.969 2.262 0.710 1.000 
OBSFIN 0.200 0.000 0.153 0.411 0.271 0.001 0.178 0.544 
OBSKNOW 0.202 0.000 0.205 0.462 0.272 0.001 0.238 0.535 
OBSMKT 0.998 -1.506 0.392 0.000 0.998 -1.503 0.392 0.000 
BASICINFO 0.221 0.029 0.189 0.736 0.291 0.040 0.214 0.786 
PUBINFO 0.457 -0.210 0.302 0.000 0.544 -0.249 0.314 0.000 
COMPINFO 0.317 -0.072 0.156 0.010 0.404 -0.091 0.170 0.009 
NATMKT 0.221 -0.042 0.242 0.014 0.291 -0.053 0.277 0.011 
IPF 1.000 0.775 0.155 1.000 1.000 0.776 0.155 1.000 
IPNF 1.000 1.384 0.164 1.000 1.000 1.383 0.164 1.000 
N 7,841    7,841    
N. of burn-in steps 1×106    1×106    

N. of iteration steps 5×106    5×106    

Corr. PMP 0.998    0.998    
Threshold 0.400    0.400    

Note: Expected model size = 0.4 K. Results for the industry and country dummies are not reported. Variables with PIP>threshold are in bold. +Strong heredity 
implemented (Cuaresma 2011). Based on the 1,000 best models. 

Table A1 
Results of BMA analyses of the pooled data – innovations new-to-the-firm (Robustness, expected model size = 0.4 K).   

Including squared terms and interactions+ No squared terms and interactions  

(a) (b) (c) (d) (a) (b) (c) (d) 
Var PIP Post Mean Post SD Cond. Pos.Sign PIP Post Mean Post SD Cond. Pos.Sign 

BREADTH 0.723 0.377 0.388 0.927 0.374 -0.004 0.062 0.527 
BREADTH2 0.614 -0.032 0.032 0.000     
DEPTH 0.972 0.426 0.242 1.000 0.957 0.419 0.179 1.000 
DEPTH2 0.354 0.002 0.031 0.766     
COLDEPTH 0.998 0.485 0.328 1.000 0.997 0.521 0.156 1.000 
COLDEPTH2 0.384 0.010 0.053 0.916     
INTMKT 0.601 0.443 0.539 0.998 0.607 0.453 0.544 0.998 
RD 0.658 -0.088 0.152 0.000 0.422 -0.057 0.129 0.000 
COLLAB 0.424 -0.203 0.490 0.004 0.425 -0.185 0.425 0.006 
USER 0.402 -0.117 0.323 0.021 0.399 -0.104 0.316 0.037 
LOGEMP 1.000 -0.606 0.134 0.000 1.000 -0.633 0.133 0.000 
STARTUP 0.996 4.105 1.679 1.000 0.989 4.714 1.521 1.000 
STARTUP*RD 0.483 7.402 9.782 1.000     
MAKEONLY 0.454 0.211 0.638 0.900 0.460 0.271 0.662 0.930 
BUYONLY 0.423 -0.153 0.608 0.272 0.409 -0.078 0.597 0.446 
MAKEBUY 0.929 1.339 0.683 1.000 0.950 1.444 0.677 1.000 
OBSFIN 0.372 -0.055 0.235 0.000 0.370 -0.052 0.234 0.000 
OBSKNOW 0.419 -0.161 0.367 0.000 0.420 -0.160 0.368 0.000 
OBSMKT 0.408 0.119 0.303 1.000 0.407 0.120 0.305 1.000 
BASICINFO 0.511 -0.240 0.379 0.000 0.594 -0.340 0.411 0.000 
PUBINFO 0.388 -0.064 0.233 0.139 0.366 -0.011 0.201 0.584 
COMPINFO 0.968 0.648 0.260 1.000 0.986 0.694 0.239 1.000 
NATMKT 0.583 0.464 0.592 0.995 0.587 0.471 0.596 0.997 
IPF 0.761 0.244 0.198 1.000 0.770 0.251 0.199 1.000 
IPNF 0.427 0.059 0.135 1.000 0.419 0.056 0.134 1.000 
N 7,384    7,384    
N. of burn-in steps 1×106    1×106    
N. of iteration steps 5×106    5×106    
Corr. PMP 0.996    0.997    
Threshold 0.400    0.400    

Note: Expected model size = 0.4 K. Results for the industry and country dummies are not reported. Variables with PIP>threshold are in bold. + Strong heredity 
implemented (Cuaresma 2011). Based on the 1,000 best models. 
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Table A3 
Results of BMA analyses of the pooled data – innovations new-to-the-firm (Robustness, expected model size = 0.6 K).   

Including squared terms and interactions+ No squared terms and interactions  

(a) (b) (c) (d) (a) (b) (c) (d) 
Var PIP Post Mean Post SD Cond. Pos.Sign PIP Post Mean Post SD Cond. Pos.Sign 

BREADTH 0.815 0.446 0.383 0.951 0.472 -0.004 0.069 0.502 
BREADTH2 0.726 -0.037 0.031 0.000     
DEPTH 0.981 0.427 0.260 1.000 0.967 0.425 0.176 1.000 
DEPTH2 0.473 0.003 0.036 0.851     
COLDEPTH 0.999 0.490 0.378 1.000 0.997 0.528 0.160 1.000 
COLDEPTH2 0.494 0.011 0.061 0.935     
INTMKT 0.684 0.479 0.537 0.999 0.680 0.487 0.543 0.999 
RD 0.765 -0.102 0.158 0.000 0.518 -0.070 0.139 0.000 
COLLAB 0.537 -0.256 0.554 0.002 0.523 -0.228 0.458 0.005 
USER 0.519 -0.160 0.361 0.013 0.502 -0.138 0.349 0.025 
LOGEMP 1.000 -0.603 0.134 0.000 1.000 -0.634 0.133 0.000 
STARTUP 0.997 3.898 1.681 1.000 0.993 4.686 1.494 1.000 
STARTUP*RD 0.615 9.353 10.072 1.000     
MAKEONLY 0.556 0.262 0.713 0.918 0.553 0.345 0.735 0.944 
BUYONLY 0.530 -0.146 0.679 0.274 0.503 -0.042 0.670 0.573 
MAKEBUY 0.936 1.339 0.725 1.000 0.955 1.477 0.721 1.000 
OBSFIN 0.489 -0.075 0.267 0.000 0.473 -0.069 0.263 0.000 
OBSKNOW 0.536 -0.208 0.404 0.000 0.519 -0.201 0.401 0.000 
OBSMKT 0.523 0.156 0.337 1.000 0.507 0.153 0.334 1.000 
BASICINFO 0.607 -0.269 0.393 0.000 0.675 -0.388 0.421 0.000 
PUBINFO 0.507 -0.088 0.264 0.096 0.464 -0.009 0.227 0.577 
COMPINFO 0.974 0.633 0.256 1.000 0.988 0.686 0.238 1.000 
NATMKT 0.669 0.504 0.592 0.997 0.660 0.505 0.596 0.998 
IPF 0.820 0.257 0.191 1.000 0.821 0.263 0.193 1.000 
IPNF 0.539 0.073 0.146 1.000 0.518 0.067 0.144 1.000 
N 7,384    7,384    
N. of burn-in steps 1×106    1×106    

N. of iteration steps 5×106    5×106    

Corr. PMP 0.999    0.999    
Threshold 0.600    0.600    

Note: Expected model size = 0.6 K. Results for the industry and country dummies are not reported. Variables with PIP>threshold are in bold. + Strong heredity 
implemented (Cuaresma 2011). Based on the 1,000 best models. 

Table A4 
Results of BMA analyses of the pooled data – innovations new-to-the-world (Robustness, expected model size = 0.6 K).   

Including squared terms and interactions+ No squared terms and interactions  

(a) (b) (c) (d) (a) (b) (c) (d) 
Var PIP Post Mean Post SD Cond. Pos.Sign PIP Post Mean Post SD Cond. Pos.Sign 

BREADTH 0.333 0.008 0.115 0.432 0.355 -0.008 0.054 0.279 
BREADTH2 0.110 -0.002 0.009 0.002     
DEPTH 0.947 0.500 0.289 1.000 0.941 0.367 0.166 1.000 
DEPTH2 0.389 -0.025 0.043 0.000     
COLDEPTH 0.943 0.403 0.286 0.999 0.933 0.403 0.180 1.000 
COLDEPTH2 0.235 0.003 0.040 0.426     
INTMKT 0.994 1.452 0.421 1.000 0.996 1.479 0.429 1.000 
RD 1.000 1.468 0.163 1.000 1.000 1.466 0.163 1.000 
COLLAB 0.373 0.273 0.526 1.000 0.479 0.316 0.517 1.000 
USER 0.272 0.065 0.257 0.998 0.384 0.109 0.300 1.000 
LOGEMP 1.000 -0.775 0.120 0.000 1.000 -0.776 0.120 0.000 
STARTUP 0.571 1.196 1.478 1.000 0.613 1.342 1.495 1.000 
STARTUP*RD 0.162 0.663 3.657 1.000     
MAKEONLY 0.947 2.258 0.852 1.000 0.966 2.322 0.814 1.000 
BUYONLY 0.281 -0.136 0.638 0.174 0.355 -0.081 0.620 0.502 
MAKEBUY 0.953 2.196 0.755 1.000 0.972 2.265 0.715 1.000 
OBSFIN 0.229 0.000 0.163 0.456 0.325 0.002 0.195 0.622 
OBSKNOW 0.230 0.000 0.219 0.482 0.326 0.001 0.260 0.589 
OBSMKT 0.998 -1.503 0.392 0.000 0.999 -1.499 0.392 0.000 
BASICINFO 0.254 0.039 0.206 0.776 0.350 0.053 0.237 0.826 
PUBINFO 0.492 -0.227 0.310 0.000 0.593 -0.273 0.320 0.000 
COMPINFO 0.356 -0.082 0.164 0.008 0.464 -0.106 0.180 0.007 
NATMKT 0.249 -0.047 0.257 0.013 0.344 -0.061 0.301 0.008 
IPF 1.000 0.775 0.155 1.000 1.000 0.776 0.155 1.000 
IPNF 0.333 0.008 0.115 0.432 1.000 1.381 0.164 1.000 
N 7,841    7,841    
N. of burn-in steps 1×106    1×106    

N. of iteration steps 5×106    5×106    

Corr. PMP 0.997    0.998    
Threshold 0.600    0.600    

Note: Expected model size = 0.6 K. Results for the industry and country dummies are not reported. Variables with PIP>threshold are in bold. +Strong heredity 
implemented (Cuaresma 2011). Based on the 1,000 best models. 
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larger number of innovative firms might have inherently better quality 
(in terms of management, routines, etc.); therefore, cross-sectional data 
in part may reflect an omitted variable that would help to explain both 
the firms’ use of different innovation strategies and their different 
innovation performance. It might also be the case that innovation per-
formance drives strategic choice which in turn drives innovation. In the 
absence of evidence based on panel data and strong instruments, it is 
difficult to make strong inferences about the causal effects of particular 
variables on innovation outcomes. Fifth, although our study involves 
pooling of data for three countries, we found some important differences 
in terms of the robustness of some variables across these settings (see the 
Supplementary Material). Since we lack information on the national 
factors that might give rise to these differences systematically, in the 
present study we put this issue to the side. Future research based on data 
for a larger number countries could explore how these national (or even 
regional) differences shape the robustness of the key variables. Finally, it 
should be pointed out that BMA and model averaging more generally, is 
not a universal cure for model uncertainty but is itself subject to more 
research. For example, the findings by Sala-i-Martin et al. (2004) ob-
tained using Bayesian averaging of classical estimators have been shown 
to be rather fragile (Ciccone & Jarociński, 2010). 

Despite these limitations, we believe that robustness studies would 
help to ensure that the results in the innovation literature are general-
izable in terms of variable selection, and also might encourage further 
efforts to find the most appropriate analytical model. This could lead to 
new research directions, and trigger questions about common modeling 
choices and new findings that lack robustness. Note that model uncer-
tainty can be addressed from other than empirical perspectives. Theo-
retical advances—particularly in relation to the development of exact 
analytical models grounded in current innovation and management 
theory—might be helpful and complement work to address model un-
certainty. However, we hope that our study provides a tool to help in-
crease the research community’s confidence in the robustness of a class 
of studies using similar dependent variables. In doing so, such tools 
might help to anchor the literature around common understandings and 
to direct the attention of scholars to new areas that require further 
research. 
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